WO2020020330A1 - 一种数据调制方法、装置及计算机存储介质 - Google Patents

一种数据调制方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2020020330A1
WO2020020330A1 PCT/CN2019/097845 CN2019097845W WO2020020330A1 WO 2020020330 A1 WO2020020330 A1 WO 2020020330A1 CN 2019097845 W CN2019097845 W CN 2019097845W WO 2020020330 A1 WO2020020330 A1 WO 2020020330A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data sequence
sequence
adjacent
modulation
Prior art date
Application number
PCT/CN2019/097845
Other languages
English (en)
French (fr)
Inventor
辛雨
边峦剑
郁光辉
许进
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19842202.4A priority Critical patent/EP3829125A4/en
Priority to US17/263,398 priority patent/US11329854B2/en
Publication of WO2020020330A1 publication Critical patent/WO2020020330A1/zh
Priority to US17/709,777 priority patent/US11621877B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2644Modulators with oversampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to, but is not limited to, the field of coding and modulation, and in particular, to a data modulation method, device, and computer storage medium.
  • PA peak-to-average ratio
  • MTC Internet of Things
  • MCS Modulation and Coding Scheme
  • the PAPR of communication signals in the related art is still relatively high, and it is difficult to meet the demand for lower PAPR in some communication scenarios (such as the mMTC scenario). Therefore, it is necessary to design a lower PAPR signal modulation method, and it can be said that it is necessary to design a modulation technology that further reduces PAPR. In this regard, there is no effective solution in related technologies.
  • the embodiments of the present application provide a data modulation method, device, and computer storage medium, which solve the problem of high PAPR.
  • a data modulation method includes: modulating a first data sequence to obtain a second data sequence; inserting a third data sequence into the second data sequence to obtain a fourth data sequence;
  • each data of the third data sequence inserted in the fourth data sequence satisfies: the power of the data is equal to two adjacent data The average power of the two data, the phase of the data is within the angle between the two adjacent data; and the fourth data sequence is transmitted.
  • a data modulation apparatus includes: a modulation unit configured to modulate the first data sequence to obtain a second data sequence; and an insertion unit configured to be used in the second data sequence Insert a third data sequence to obtain a fourth data sequence; in the fourth data sequence, in addition to the first data and the last data, insert the third data sequence in the fourth data sequence
  • a modulation unit configured to modulate the first data sequence to obtain a second data sequence
  • an insertion unit configured to be used in the second data sequence
  • the fourth data sequence in addition to the first data and the last data, insert the third data sequence in the fourth data sequence
  • Each data satisfies: the power of the data is equal to the average power of two adjacent data, the phase of the data is within the included angle of the two adjacent data, and the transmission unit is configured to transmit the fourth data sequence.
  • a data modulation apparatus includes: a memory storing a computer program; and a processor configured to implement the steps of the method described in the foregoing solution when the computer program is executed.
  • a computer storage medium in the embodiment of the present application stores a computer program thereon, and when the computer program is executed by a processor, the steps of the method in the foregoing solution are implemented.
  • the first data sequence is modulated to obtain a second data sequence; a third data sequence is inserted into the second data sequence to obtain a fourth data sequence; and in the fourth data sequence,
  • each data of the third data sequence inserted in the fourth data sequence satisfies: the power of the data is equal to the average power of two adjacent data, and the data The phase of is within the angle between the two adjacent data; the fourth data sequence is transmitted.
  • a signal modulation method in which data is inserted between two adjacent modulation data is adopted, which can effectively reduce the phase difference between adjacent data in the time domain, thereby greatly reducing PAPR.
  • FIG. 1 is a schematic diagram of an application scenario according to Embodiment 1 of the present application.
  • FIG. 2 is a flowchart of a method according to Embodiment 1;
  • FIG. 6 is a structural diagram of a component unit of a device according to this embodiment.
  • 7-8 is a constellation point diagram corresponding to the ⁇ / 2-BPSK modulation method of this embodiment
  • FIG. 10 is a QPSK modulation constellation point diagram of this embodiment.
  • FIG. 11 is a s (k) constellation point diagram obtained by using the QPSK modulation method of this embodiment.
  • the terms “including”, “including” or any other variants thereof are intended to cover non-exclusive inclusion, so that the method or device including a series of elements includes not only the explicitly recorded Elements, but also other elements not explicitly listed, or elements inherent to the implementation of the method or device.
  • the element limited by the sentence "including a " does not exclude that there are other related elements (such as steps in the method or units in the device) in the method or device including the element.
  • a unit may be part of a circuit, part of a processor, part of a program or software, etc.).
  • the data modulation method provided in the embodiment of the present application includes a series of steps, but the data modulation method provided in the embodiment of the present application is not limited to the recorded steps.
  • the data modulation device provided in the embodiment of the present application includes A series of units, but the data modulation device provided in the embodiments of the present application is not limited to the units explicitly listed, and may also include units that need to be set in order to obtain related information or perform processing based on the information.
  • first ⁇ second ⁇ third ⁇ fourth involved in the embodiment of the present application is only to distinguish similar objects, and does not represent a specific ordering of objects. Understandably, “first ⁇ second "Two ⁇ third ⁇ fourth" can be interchanged in a specific order or order if allowed. It should be understood that the objects of the "first ⁇ second ⁇ third ⁇ fourth" distinction may be interchanged where appropriate, so that the embodiments of the present application described herein can be in an order other than those illustrated or described herein Implementation.
  • FIG. 1 An application scenario of the data modulation method of the present application is shown in FIG. 1 and includes: base stations 101-102, where there are three terminals 11-13 in the cell coverage area of the base station 101, and five terminals 21- 25.
  • the terminal may be a mobile phone terminal as shown in FIG. 1, or may be various IoT terminals in the mMTC scenario.
  • the path loss and shadow attenuation will be relatively large in a high-frequency scene.
  • Some areas at the edge of the cell, such as the terminal 13 under the jurisdiction of the base station 101, are located at the edge of the coverage area of the cell, and its signal-to-noise ratio will be very low.
  • the first data sequence [b (0), b (1), ..., b (m), ..., b (M-1)] is modulated, where M is the The number of sequence elements, m is the element number, and is an integer between 0 and M-1.
  • the sequence [b (0), b (1), ..., b (m), ..., b (M-1)] can be composed of 0 and 1 or 1 and -1.
  • the modulation method of [b (m)] can be constellation point modulation, and a second data sequence [x (i)] can be obtained after modulation.
  • Inserting the third data sequence [y (j)] in [x (i)] may be to insert all the data between all adjacent data in [x (i)], or it may be [x (i) Insert data between the adjacent data in the part of] to obtain the fourth data sequence [s (k)].
  • each data of the third data sequence inserted in the fourth data sequence satisfies: the power of the data is equal to two adjacent data The average power of each piece of data, the phase of the data is within the angle between the two adjacent data, and after the encoding and modulation is completed, [s (k)] is carried on the physical time-frequency resource for transmission.
  • the first data and the last data can also satisfy: From the perspective of the end-to-end circular connection of [s (k)], the power of the data is equal to the average power of two adjacent data, and the phase of the data is in the range Within the angle between two adjacent data.
  • the application does not limit the requirements of the first data and the last data. Because the phase of the inserted data is between the angles of two adjacent modulation data, and the angles of the inserted data and the two modulation data are equal, respectively, the phase difference between adjacent data in the time domain can be effectively reduced. This drastically reduces PAPR.
  • a data modulation method according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • Step 201 Obtain a first data sequence.
  • the processing before the first data sequence is input to the modulation module generally includes obtaining the first data sequence.
  • the process of inputting the first data sequence to the modulation module is called acquiring the first data sequence.
  • Step 202 Modulate the first data sequence to obtain a second data sequence.
  • Modulating the first data sequence may be performing constellation point modulation on the first data sequence, or other modulations, such as inverse discrete Fourier transform (IDFT) processing.
  • IDFT inverse discrete Fourier transform
  • Step 203 Insert a third data sequence into the second data sequence to obtain a fourth data sequence.
  • Step 204 In the fourth data sequence, in addition to the first data and the last data, each data of the third data sequence inserted in the fourth data sequence satisfies: the power of the data is equal to The average power of two adjacent data, and the phase of the data is within the included angle of the two adjacent data.
  • Step 205 Transmit the fourth data sequence.
  • the first data sequence [b (m)] may be composed of 0 and 1, or may be composed of 1 and -1.
  • the first data sequence is modulated, for example, constellation point modulation is performed.
  • a second data sequence can be obtained, such as a data sequence [x (i)]. Extract the adjacent first data x (i) and the second data x (i + 1) from the second data sequence, for example, in the data sequence [x (i)] (some or all) of the first adjacent elements
  • the third data y (j) is inserted between the data x (i) and the second data x (i + 1).
  • the phase of y (j) is between x (i) and x ( i + 1) within the included angle, so the PAPR of the transmitted signal can be reduced accordingly.
  • the phase difference is the difference between the two data phases.
  • n is an integer.
  • the phase value of the data is the phase difference between the data and a certain reference coordinate.
  • the included angle of the two data is an angular range space formed by the connection between the two data and the origin, and the included value is the angle value of the included angle. In this application, the included angle is between [0, ⁇ ].
  • phase difference between data A and data B is ⁇
  • phase difference between data B and data A is - ⁇
  • included angle between data A and data B is ⁇
  • the angle between data B and data A is also ⁇ .
  • the inserted third data sequence is [y (j)], and the phase of the data is within the included angle between the two adjacent data, which means that the data and the The angle between two adjacent data is equal.
  • the modulus value of the data is equal to the average modulus value of two adjacent data.
  • the modulus value of the inserted data is equal to the average modulus value of the two adjacent data, and the power of the inserted data is equal to the average power of the two adjacent data.
  • the third data is equal to the angle between the first data and the second data, respectively.
  • the power of y (j) is equal to the average power of x (i) and x (i + 1)
  • the phase value of y (j) is within the angle between x (i) and x (i + 1).
  • the angles between y (j) and x (i) and x (i + 1) are equal. Because the phase of the inserted data is between the angles of two adjacent modulation data, and the angles of the inserted data and the two modulation data are equal, respectively, the demodulation signal-to-noise ratio can be improved, thereby further reducing PAPR significantly.
  • inserting a third data sequence into the second data sequence specifically includes: inserting a third data sequence between adjacent data in the second data sequence, for example, all Inserting data; or inserting data between adjacent data of a part of the second data sequence.
  • x (N) and x (0) may or may not be adjacent data. That is, x (N) and x (0) may be included in each pair of adjacent data, or may not be included in each pair of adjacent data.
  • the method includes: inserting third data y (j) between the first data pair composed of each pair of adjacent data.
  • the method includes: selecting a part of adjacent data among each pair of adjacent data, and inserting third data y (j) between a second data pair composed of the partially adjacent data.
  • a data modulation method according to an embodiment of the present application. As shown in FIG. 3, the method includes:
  • Step 301 Obtain a first data sequence.
  • Step 302 Modulate the first data sequence to obtain a second data sequence.
  • Modulating the first data sequence may be performing constellation point modulation on the first data sequence, or other modulations, such as IDFT processing.
  • Step 303 Inserting a third data sequence into the second data sequence is to insert data between all adjacent data in the second data sequence to obtain a fourth data sequence.
  • the data inserted between two adjacent data in the second data sequence is one or more data.
  • inserting y (j) between x (i) and x (i + 1) is an embodiment of inserting 1 data.
  • J N, that is, the number of elements of the second data sequence and the elements of the third data sequence The number is equal.
  • Step 304 In the fourth data sequence, in addition to the first data and the last data, each data of the third data sequence inserted in the fourth data sequence satisfies: the power of the data is equal to The average power of two adjacent data, and the phase of the data is within the included angle of the two adjacent data.
  • Step 305 Transmit a fourth data sequence.
  • a data modulation method according to an embodiment of the present application. As shown in FIG. 4, the method includes:
  • Step 401 Obtain a first data sequence.
  • Step 402 Modulate the first data sequence to obtain a second data sequence.
  • Modulating the first data sequence may be performing constellation point modulation on the first data sequence, or other modulations, such as inverse discrete Fourier transform (IDFT) processing.
  • IDFT inverse discrete Fourier transform
  • Step 403 Inserting a third data sequence into the second data sequence is to insert data between a part of adjacent data in the second data sequence to obtain a fourth data sequence.
  • insert y (j) between x1 and x2 do not insert y (j) between x2 and x3, insert y (j) between x3 and x4, ..., x (i) and x (i +1) does not insert y (j). That is, insert third data, such as data y (j), between adjacent elements x (i) and x (i + 1) in a part of the data sequence [x (i)].
  • the PAPR of the transmission signal can be reduced accordingly.
  • the data inserted between two adjacent data in the second data sequence is one or more data.
  • Step 404 In the fourth data sequence, in addition to the first data and the last data, each data of the third data sequence inserted in the fourth data sequence satisfies: the power of the data is equal to The average power of two adjacent data, and the phase of the data is within the included angle of the two adjacent data.
  • Step 405 Transmit a fourth data sequence.
  • transmitting the fourth data sequence includes: carrying the fourth data sequence on a physical time-frequency resource for transmission.
  • the data sequence [s (k)] is carried on physical time-frequency resources for transmission.
  • the maximum ratio is used.
  • Related detection algorithms such as merging obtain data containing the data sequence [x (i)], and then recover the data sequence [b (m)] by decoding and constellation point demodulation module or other modules. Compared with the ordinary modulation method, since the receiving end involved in this application only adds the maximum ratio combining detection algorithm, the added complexity is relatively low.
  • the data elements do not cause error propagation between each other.
  • the length of [s (k)] is longer than the length of [x (i)] at the transmitting end of data modulation, that is to say, it takes more physical resources to transmit, but because the receiving end can use the maximum ratio Combining detection algorithms, so the demodulation performance [SNR (SNR)] of [s (k)] can be improved, this benefit can make up for the loss of transmission efficiency.
  • SNR demodulation performance
  • the first data sequence is a data sequence [b (m)], and the second data sequence is [x (i)]; the first data sequence is inserted into the second data sequence.
  • Three data sequences including: inserting third data y (j) between the first data x (i) and the second data x (i + 1) that are partially adjacent or each adjacent in the [x (i)] Then, a data sequence [s (k)] is formed, where [s (k)] is the fourth data sequence.
  • the range of the included angle that constitutes the first data and the second data is [0, ⁇ ]; where m, i, j, and k are all non-negative integers, and specifically, m is 0, 1, ..., non-negative integers of M-1, i is a non-negative integer of 0, 1, ..., N-1, j is a non-negative integer of 0, 1, ..., J-1, and k is Non-negative integers of 0, 1, ..., K-1, and M, N, J, and K are positive integers.
  • third data y is inserted between all or part of adjacent first data x (i) and second data x (i + 1) in the [x (i)].
  • third data y is inserted between all or part of adjacent first data x (i) and second data x (i + 1) in the [x (i)].
  • the third data y (J-1) is another value. That is, the value of y (J-1) is not limited.
  • third data is inserted between x (N-1) and x (0), such as data y (J-1).
  • the y (J-1) is placed at the first or last position in the fourth data sequence.
  • placing the first y (J-1) in the fourth data sequence is equivalent to: placing y (J-1) in the last one in the fourth data sequence, and then looping Shift 1 time.
  • Example 1 of the present application when the constellation point modulation used for modulating the first data sequence is ⁇ / 2-BPSK, every adjacent first data x (i) and second data x (i After the third data y (j) is inserted between +1), the mode of y (j) is equal to the mode of ⁇ / 2-BPSK modulation data, and the phase of y (j) is between x (i) and x ( i + 1), and the angle between y (j) and x (i) and the angle between y (j) and x (i + 1) are both ⁇ / 4.
  • Example 1 of the present application when the constellation point modulation used for modulating the first data sequence is QPSK, every adjacent first data x (i) and second data x (i + 1) After the third data y (j) is inserted in between, the mode of y (j) is equal to the mode of QPSK modulation data, and the phase of y (j) is between the angle between x (i) and x (i + 1) And the angles between y (j) and x (i) and x (i + 1) are equal.
  • a data modulation method according to an embodiment of the present application. As shown in FIG. 5, the method includes:
  • Step 501 Obtain a first data sequence [b (i)].
  • i and k are both non-negative integers. Specifically, i is a non-negative integer of 0, 1, ..., N-1, and k is 0, 1, ..., 2N-2 or k is a non-negative integer of 0, 1, ..., 2N-1. Negative integer.
  • the modulation process described in the embodiment of the present application may include: constellation point modulation and insertion modulation.
  • 1 data may be inserted between the last data element and the first data element of the data sequence modulated by the constellation point, or no data may be inserted. Therefore, the length of the data sequence [s (k)] can be 2N-1 or 2N, and the value of s (2N-1) is not limited in this embodiment of the present application.
  • Step 503 Transmit the second data sequence.
  • the data sequence [b (i)] is composed of 0 and 1.
  • the [s (k)] further includes the following feature: an angle between s (k) and s (k + 1) is ⁇ / 4.
  • the [s (k)] further includes the following feature: an angle value between s (k) and s (k + 1) is 0 or ⁇ / 4 or ⁇ / 2.
  • i and k are both non-negative integers. Specifically, i is a non-negative integer of 0, 1, ..., N-1, and k is 0, 1, ..., 2N-2 or k is a non-negative integer of 0, 1, ..., 2N-1. Negative integers, N is a positive integer, and ⁇ is a preset constant.
  • i and k are non-negative integers, specifically, i is a non-negative integer of 0, 1, ..., N-1, k is 0, 1, ..., 2N-2 or k is 0, 1, ..., 2N-1 non-negative integers, N is a positive integer, and ⁇ is a preset constant.
  • the apparatus includes: an obtaining unit 31 configured to obtain a first data sequence; and a modulation unit 32 configured to modulate the first data sequence. Obtaining a second data sequence; an inserting unit 33, configured to insert, in the fourth data sequence, in addition to the first data and the last data, the third data sequence in the fourth data sequence.
  • the power of the data is equal to the average power of two adjacent data
  • the phase of the data is within the included angle of the two adjacent data
  • the transmission unit 34 is configured to transmit a fourth data sequence.
  • the implementation functions of the units in the apparatus shown in FIG. 6 can be understood with reference to the related description of the foregoing signal sending method.
  • the functions of the units in the device shown in FIG. 6 may be implemented by a program running on a processor, or may be implemented by a specific logic circuit.
  • the functions implemented by the units in the data modulation device can be implemented by a central processing unit (CPU) or a microcontroller unit (MPU) located in the data modulation device , Or digital signal processing (DSP, digital signal processor), or field programmable gate array (FPGA, Field-Programmable Gate Array).
  • CPU central processing unit
  • MPU microcontroller unit
  • DSP digital signal processing
  • FPGA Field-Programmable Gate Array
  • a phase of the data is within an included angle of the two adjacent data, and an included angle value of the data and the two adjacent data are equal.
  • the modulation unit is further configured to modulate a first data sequence to perform constellation point modulation on the first data sequence.
  • the inserting unit is further configured to: insert all data between all adjacent data in the second data sequence; or, part of the second data sequence Insert data between adjacent data.
  • the transmission unit is further configured to carry the fourth data sequence on a physical time-frequency resource for transmission.
  • the inserting unit is further configured to: when the first data sequence is a data sequence [b (m)], and when the second data sequence is [x (i)], In [x (i)], the third data y (j) is inserted between the first data x (i) and the second data x (i + 1) adjacent to each other to form a data sequence [s ( k)], where [s (k)] is the fourth data sequence.
  • the included angle that constitutes the first data and the second data ranges from [0, ⁇ ]; where m, i, j, and k are all non-negative integers.
  • the third data y (J-1) is another value. That is, the value of y (J-1) is not limited.
  • third data is inserted between x (N-1) and x (0), such as data y (J-1).
  • the inserting unit is further configured to: place the y (J-1) at the first or last position in the fourth data sequence.
  • placing the first y (J-1) in the fourth data sequence is equivalent to: placing y (J-1) in the last one in the fourth data sequence, and then looping Shift 1 time.
  • the inserting unit is further configured to: when the first data sequence is modulated using constellation point modulation to ⁇ / 2-BPSK, every adjacent first data x (i ) And the second data x (i + 1) are inserted into the third data y (j), the modulus of said y (j) is equal to the modulus of ⁇ / 2-BPSK modulation data, and the phase of said y (j) Within the angle between x (i) and x (i + 1), and the angle between y (j) and x (i) and the angle between y (j) and x (i + 1) are ⁇ / 4.
  • the data sequence [s (k)] carried on the physical time-frequency resources for transmission is obtained.
  • the constellation point modulation is ⁇ / 2-BPSK
  • the following scheme is designed: a data sequence [b (i)] composed of 0 and 1 and the modulated data sequence is [s (k)].
  • i and k are both non-negative integers (specifically, i is a non-negative integer of 0, 1, ..., N-1, k is 0, 1, ..., 2N-2 or k is 0, 1, ..., 2N-1 non-negative integers), N is a positive integer, and ⁇ is a preset constant.
  • the inserting unit is further configured to: when the first data sequence is modulated using constellation point modulation as QPSK, each adjacent first data x (i) and the second data After the third data y (j) is inserted between the data x (i + 1), the modulus of the y (j) is equal to the modulus of the QPSK modulated data, and the phase of the y (j) is between x (i) and x ( i + 1), and y (j) is equal to the angle between x (i) and x (i + 1), respectively.
  • the data sequence [s (k)] carried on the physical time-frequency resources for transmission is obtained.
  • the constellation point modulation is QPSK
  • the following scheme is designed: a data sequence [b (i)] composed of 0 and 1 and the modulated data sequence is [s (k)].
  • i and k are both non-negative integers (specifically, i is a non-negative integer of 0, 1, ..., N-1, k is 0, 1, ..., 2N-2 or k is 0, 1, ..., 2N-1 non-negative integers), N is a positive integer, and ⁇ is a preset constant.
  • a data modulation apparatus includes: a modulation unit, configured to modulate a data sequence [b (i)] into a data sequence [s (k)].
  • the data sequence [b (i)] is composed of 0 and 1.
  • the [s (k)] further includes the following feature: an angle between s (k) and s (k + 1) is ⁇ / 4.
  • the [s (k)] further includes the following feature: an angle value between s (k) and s (k + 1) is 0 or ⁇ / 4 or ⁇ / 2.
  • is a preset constant.
  • is a preset constant.
  • a data modulation device includes: a memory storing a computer program; and a processor configured to implement the steps of the method according to any one of the foregoing embodiments when the computer program is executed.
  • a computer storage medium in the embodiment of the present application stores a computer program thereon, and when the computer program is executed by a processor, the steps of the method in any one of the foregoing embodiments are implemented.
  • the data sequence [b (m)] when the data sequence [b (m)] is composed of 0 and 1, the data sequence modulated by the constellation point is [x (i)], and in the data sequence [x (i)] (partially Or each) insert data y (j) between x (i) and x (i + 1) of adjacent elements, the power of y (j) is equal to the average power of x (i) and x (i + 1), y The phase of (j) is within the angle between x (i) and x (i + 1), and y (j) is equal to the angle between x (i) and x (i + 1), respectively.
  • the data sequence [x (i)] is inserted into [y (j)] to form a data sequence [s (k)].
  • the data sequence [s (k)] is carried on physical time-frequency resources for transmission.
  • the receiver uses the correlation detection algorithm such as maximum ratio combining to obtain the data containing the data sequence [x (i)], and then decodes it through the constellation point demodulation module or The other modules recover the data sequence [b (m)].
  • the data sequence [b (m)] may be composed of two element types of 0 and 1. It can also consist of two element types, 1 and -1, such as the data sequence [b '(m)].
  • the included angle range is [0, ⁇ ], m, i, and k are all non-negative integers (specifically, m is a non-negative integer of 0, 1, ..., M-1, and i is 0, 1, ..., N-1 non-negative integers, k is 0,1, ..., K-1 non-negative integers, M, N and K are positive integers.)
  • data y (j) is inserted between x (i) and x (i + 1) of adjacent elements in the data sequence [x (i)], so that the data sequence [x (i)] inserts data y (j) between x (i) and x (i + 1) for each adjacent element.
  • K 2N or 2N-1.
  • a data sequence [b (m)] composed of 0 and 1 and a data sequence modulated by the constellation point is [x (i)], and each adjacent x (i) and x
  • the data sequence [x (i)] is inserted into [y (j)] to form a data sequence [s (k)].
  • m, i, and k are all non-negative integers (specifically, m is a non-negative integer of 0, 1, ..., M-1, and i is a non-negative integer of 0, 1, ..., N-1 Integer, k is a non-negative integer of 0, 1, ..., 2N-2 or k is 0, 1, ..., 2N-1), and M and N are positive integers.
  • phase values differ by 2n ⁇ , they are considered equal, and n is an integer.
  • the constellation point modulation includes: ⁇ / 2-BPSK, BPSK, QPSK, ⁇ / 4-QPSK, 16QAM, 64QAM, 256QAM, etc.
  • M N
  • M 2N
  • the constellation point is ⁇ / 2-BPSK, BPSK, QPSK or ⁇ / 4-QPSK
  • the angles between y (j) and x (i) and x (i + 1) are equivalent to y (j) Euclidean distances equal to x (i) and x (i + 1), respectively.
  • phase difference is limited to (- ⁇ , ⁇ )
  • the specific design can refer to the following scheme:
  • Step 601 A data sequence [b (i)] consisting of 0 and 1 is generated as a data sequence [x (i)] after being modulated as follows.
  • i is a non-negative integer of 0, 1, ..., N-1, and N is a positive integer.
  • Step 602 The data sequence [x (i)] is modulated as follows to generate a data sequence [s (k)].
  • i is a non-negative integer of 0, 1, ..., N-1
  • k is 0, 1, ..., 2N-2 or k is a non-negative of 0, 1, ..., 2N-1 Integer.
  • the results of formulas (4) and (5) generating s (k) are equivalent (other formulas can be included to be equivalent, as long as the results are equivalent).
  • Step 701 A data sequence [b (m)] composed of 0 and 1 is generated by the following modulation to generate a data sequence [x (i)].
  • m is a non-negative integer of 0, 1, ..., M-1
  • i is a non-negative integer of 0, 1 ..., N-1
  • M and N are positive integers
  • M 2N.
  • Step 702 The data sequence [x (i)] is modulated as follows to generate a data sequence [s (k)].
  • i is a non-negative integer of 0, 1, ..., N-1
  • k is 0, 1, ..., 2N-2 or k is a non-negative of 0, 1, ..., 2N-1 Integer.
  • the results of formulas (9) and (10) for generating s (k) are equivalent (other formulas can also be included to be equivalent, as long as the results are equivalent).
  • the data sequence after constellation point modulation is [x (i)], assuming x (i) and x (i + 1)
  • the phase difference between them is ⁇ .
  • the adjacent phase difference is reduced to ⁇ / 2, and the phase difference is reduced. Therefore, compared with the data sequence [x (i)], the peak-to-average value of the analog continuous signal output by the data sequence s (k) after the digital-to-analog conversion module DAC is lower than PAPR.
  • the constellation point modulation as ⁇ / 2-BPSK as an example to further explain.
  • the data sequence [x (i)] generated by step 301 has the following characteristics: (1) the amplitude of all data is 1, and (2) the phase difference between adjacent data is ⁇ / 2. Then, the data sequence [s (k)] generated in step 302 has the following characteristics: (1) the amplitude of all data is 1, and (2) the phase difference between adjacent data is ⁇ / 4. Through step 302, the phase difference between adjacent data is reduced from ⁇ / 2 to ⁇ / 4, so the peak average value of the analog continuous signal output by the data sequence [s (k)] after the digital-to-analog conversion module DAC is lower than PAPR Already. After the receiving end receives the data containing the data sequence [s (k)], it uses a correlation detection algorithm such as maximum ratio combining to obtain the data containing the data sequence [x (i)].
  • a correlation detection algorithm such as maximum ratio combining
  • the modulation method of the present application only increases the maximum ratio combining detection algorithm at the receiving end, and the added complexity is relatively low. Moreover, the data sequence [x (i)] does not cause error propagation among the data elements during demodulation.
  • Scenario 1 The case where the constellation point modulation is ⁇ / 2-BPSK.
  • a data sequence [b (i)] consisting of 0 and 1 is generated by ⁇ / 2-BPSK modulation to generate a data sequence [x (i)].
  • the data sequence [x (i)] is modulated by formulas (3) and (4) to generate a data sequence [s (k)].
  • the constellation points are shown in FIG. 9 and FIG. 9 is a s (k) constellation point diagram.
  • k 2i
  • the constellation point of s (k) is on the real or imaginary coordinates in FIG. 9.
  • the symbol data sequence [x (i)] after ⁇ / 2-BPSK modulation is [1, -j, 1, -j , -1, j, -1, -j, 1, j]. It can be seen that the phase difference between adjacent symbols of the [x (i)] sequence is ⁇ ⁇ / 2.
  • the generated data sequence [s (k)] is [1, exp (-j * pi / 4), -j, exp (-j * pi / 4), 1, exp (-j * pi / 4), -j, exp (-j * 3pi / 4), -1, exp (j * 3pi / 4), j, exp (j * 3pi / 4), -1, exp (-j * 3pi / 4), -j, exp (-j * pi / 4), 1, exp (j * pi / 4), j, exp (j * pi / 4) ].
  • the phase difference between two adjacent symbols of this symbol sequence is now ⁇ ⁇ / 4. The phase difference is reduced.
  • the peak value of the analog continuous signal output by the data sequence [s (k)] after the digital-to-analog conversion module DAC is lower than PAPR.
  • the last data exp (j * pi / 4) of the data sequence [s (k)] is calculated according to formula (6).
  • the data exp (j * pi / 4) may not be inserted.
  • a data sequence [b (m)] consisting of 0 and 1 generates a data sequence [x (i)] after QPSK modulation.
  • the points are shown in Figure 10 below, which is a dot map of the QPSK modulation constellation.
  • x (i) 1 or -1 or j or -j, and the constellation point diagrams are shown in FIG. 10, respectively.
  • the data sequence [x (i)] is modulated by formulas (8) and (9) to generate a data sequence [s (k)].
  • the constellation points are shown in FIG. 11 and FIG. 11 is a s (k) constellation point diagram.
  • k 2i
  • the constellation point of s (k) is on the real or imaginary coordinates in FIG. 7.
  • the symbol data sequence [x (i)] after QPSK modulation is [-j, -j, j, -1, 1] . It can be seen that the phase difference between adjacent symbols of the [x (i)] sequence is 0 or ⁇ ⁇ / 2 or ⁇ .
  • the generated data sequence [s (k)] is [-j, -j, -j, 1, j, exp (j * 3pi / 4 ), -1, -j, 1, exp (-j * pi / 4)].
  • the phase difference between two adjacent symbols of this symbol sequence is now 0 or ⁇ ⁇ / 4 or ⁇ ⁇ / 2.
  • the last data exp (-j * pi / 4) of the data sequence [s (k)] is calculated according to formula (10).
  • the data exp (-j * pi / 4) may not be inserted.
  • x (i) 1 or -1 or j or -j, and the constellation point diagrams thereof are shown in FIG. 10, respectively.
  • the phase difference between adjacent symbols of the data sequence [x (i)] is 0 or ⁇ ⁇ / 2 or ⁇ .
  • the data sequence [x (i)] is modulated by formulas (8) and (9) to generate a data sequence [s (k)].
  • the phase difference between two adjacent symbols of the sequence [s (k)] is 0. Or ⁇ ⁇ / 4 or ⁇ ⁇ / 2.
  • the foregoing device is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for making a computer device (which can be a personal computer, a server, Or network equipment, etc.) perform all or part of the methods described in the embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory (ROM, Read Only Memory), a magnetic disk, or an optical disk. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种数据调制方法、装置及存储介质,其中,所述方法包括:对第一数据序列进行调制,得到第二数据序列;在所述第二数据序列中插入第三数据序列,得到第四数据序列;在所述第四数据序列中,除了第1个数据和最后1个数据之外,所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内;传输所述第四数据序列。

Description

一种数据调制方法、装置及计算机存储介质
本申请要求在2018年07月26日提交中国专利局、申请号为201810834174.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于编码调制领域,尤其涉及一种数据调制方法、装置及计算机存储介质。
背景技术
高频场景中,路损和阴影衰弱比较大,因此在小区边缘有些区域的信噪比会非常低。而且高频时放大器(PA)的效率比较低,为了提高信噪比,同时也要节省UE电池的功耗,就需要UE发射信号的峰均比(PAPR)比较低。
在大规模物联网(mMTC)场景中,也称为海量机器类通信场景中,有些终端设备希望大幅节省电池功耗,比如希望电池寿命达到十年以上,因此,为了提高该终端的PA效率,就需要UE发射信号的PAPR比较低。特别是当大量用户非正交接入时,信号与干扰加噪声比(SINR)会很低,因此,就有需求使用一种低调制与编码策略(Modulation and Coding Scheme,MCS)且低PAPR的信号调制方式。
综上所述,相关技术中通信信号的PAPR仍然比较高,难以满足一些通信场景(如mMTC场景)对更低PAPR的需求。因此需要设计更低PAPR的信号调制方式,也可以说有必要设计进一步降低PAPR的调制技术。对此,相关技术中,并未存在有效的解决方案。
发明内容
本申请实施例提供了一种数据调制方法、装置及计算机存储介质,解决了PAPR高的问题。
本申请实施例的一种数据调制方法,所述方法包括:对第一数据序列进行调制,得到第二数据序列;在所述第二数据序列中插入第三数据序列,得到第四数据序列;在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内;传输 所述第四数据序列。
本申请实施例的一种数据调制方法,所述方法包括:数据序列[b(i)],经过调制后的数据序列为[s(k)];所述[s(k)]包括如下特征:所有s(k)的模相等;且s(2i+2)/s(2i+1)-s(2i+1)/s(2i)=0;其中,i和k都为非负整数。
本申请实施例的一种数据调制装置,所述装置包括:调制单元,用于对所述第一数据序列进行调制,得到第二数据序列;插入单元,用于在所述第二数据序列中插入第三数据序列,得到第四数据序列;在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内;传输单元,用于传输所述第四数据序列。
本申请实施例的一种数据调制装置,所述装置包括:调制单元,用于对数据序列[b(i)]经过调制后的数据序列为[s(k)];所述[s(k)]包括如下特征:所有s(k)的模相等;且s(2i+2)/s(2i+1)-s(2i+1)/s(2i)=0;其中,i和k都为非负整数。
本申请实施例的一种数据调制装置,所述装置包括:存储有计算机程序的存储器;处理器,配置为执行所述计算机程序时实现上述方案所述方法的步骤。
本申请实施例的一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述方案所述方法的步骤。
本申请实施例的技术方案中,对第一数据序列进行调制,得到第二数据序列;在所述第二数据序列中插入第三数据序列,得到第四数据序列;在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内;传输所述第四数据序列。采用了在相邻两个调制数据之间插入数据的信号调制方式,可以有效的降低时域上相邻数据间的相位差,从而大幅降低了PAPR。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本申请实施例一应用场景的示意图;
图2为本实施例一方法的流程图;
图3为本实施例又一方法的流程图;
图4为本实施例又一方法的流程图;
图5为本实施例又一方法的流程图;
图6为本实施例一装置组成单元的结构图;
图7-8为本实施例的π/2-BPSK调制方式对应的星座点图;
图9为采用本实施例的π/2-BPSK调制方式得到的s(k)星座点图;
图10为本实施例的QPSK调制星座点图;
图11为采用本实施例的QPSK调制方式得到的s(k)星座点图。
具体实施方式
以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所提供的实施例仅仅用以解释本申请,并不用于限定本申请。另外,以下所提供的实施例是用于实施本申请的部分实施例,而非提供实施本申请的全部实施例,在不冲突的情况下,本申请实施例记载的技术方案可以任意组合的方式实施。
需要说明的是,在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的方法或者装置中还存在另外的相关要素(例如方法中的步骤或者装置中的单元,例如单元可以是部分电路、部分处理器、部分程序或软件等等)。
例如,本申请实施例提供的数据调制方法包含了一系列的步骤,但是本申请实施例提供的该数据调制方法不限于所记载的步骤,同样地,本申请实施例提供的数据调制装置包括了一系列单元,但是本申请实施例提供的数据调制装置不限于包括所明确记载的单元,还可以包括为获取相关信息、或基于信息进行处理时所需要设置的单元。
需要说明的是,本申请实施例所涉及的术语“第一\第二\第三\第四”仅仅是区 别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三\第四”在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三\第四”区分的对象在适当情况下可以互换,以使这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
对本申请实施例进行进一步详细说明之前,先对本申请实施例中所涉及到的关键技术术语进行如下的解释说明:
Figure PCTCN2019097845-appb-000001
本申请的数据调制方法的一个应用场景如图1所示,包括:基站101-102,基站101的小区覆盖范围内有三个终端11-13,基站102的小区覆盖范围内有五个终端21-25。终端可以如图1所示为手机终端,也可以为mMTC场景中的各种物联网终端。各个终端与基站通信在高频场景中路损和阴影衰弱都会比较大。在小区边缘有些区域如基站101下辖的终端13位于小区覆盖范围的边缘,其信噪比会非常低。要想提高信噪比,又希望大幅节省电池功耗,比如希望电池寿命达到十年以上,就需要UE发射信号的PAPR要低一些。也就是说,为了提高该终端的PA效率,就需要UE发射信号的PAPR比较低。采用本申请实施例,对第一数据序列[b(0),b(1),...,b(m),...,b(M-1)]进行调制,其中M为所述序列元素个数,m为元素序号,为0至M-1之间的整数。本申请为了描述方便,将序列[b(0),b(1),...,b(m),...,b(M-1)]简单表示为[b(m)]。同理,本申请的其他序列描述也进行了相应的类似简单表示。序列[b(m)]可以是由0和1组成,也可以由1和-1组成。对[b(m)]进行调制的方式可以采用星座点调制,调制后可以得到第二数据序列[x(i)]。在[x(i)]中插入第三数据序列[y(j)],可以是在[x(i)]中的所有的相邻数据间全部插入数据,也可以是在[x(i)]中的部分的相邻数据间插入数据,得到第四数据序列[s(k)]。在[s(k)]中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内,编码调制结束后,将[s(k)]承载在物理时频资源上进行传输。当然,所述第 1个数据和最后1个数据也可以满足:以[s(k)]首尾循环相连的角度来看,数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内。本申请对所述第1个数据和最后1个数据的要求不做限定。由于插入数据的相位在相邻两个调制数据的夹角之间,并且插入数据分别与两个调制数据的夹角值相等,因此,可以有效的降低时域上相邻数据间的相位差,从而大幅降低PAPR。
本申请实施例的一种数据调制方法,如图2所示,所述方法包括:
步骤201、获取第一数据序列,第一数据序列输入到调制模块之前的处理一般会包含有获取第一数据序列。或者说将第一数据序列输入到调制模块的过程就称为获取第一数据序列。
步骤202、对第一数据序列进行调制,得到第二数据序列。
对第一数据序列进行调制,可以为对所述第一数据序列进行星座点调制,也可以为其他调制,比如离散傅里叶逆变换(IDFT)处理。
步骤203、在所述第二数据序列中插入第三数据序列,得到第四数据序列。
步骤204、在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内。
步骤205、传输所述第四数据序列。
在本申请实施例一实施方式中,第一数据序列[b(m)]可以是由0和1组成,也可以由1和-1组成,对第一数据序列进行调制,比如进行星座点调制,经过星座点调制后可以得到第二数据序列,如数据序列[x(i)]。从第二数据序列中提取相邻的第一数据x(i)和第二数据x(i+1),比如在数据序列[x(i)]里(部分或所有)相邻元素的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)。其中,y(j)的功率等于x(i)和x(i+1)的平均功率,y(j)的相位在x(i)和x(i+1)的夹角之内,插入第三数据序列如[y(j)]后可以得到第四数据序列[s(k)]。通过针对时域的星座点调制数据,在时域相邻的调制数据之间插入数据。由于插入的数据与相邻的调制数据相关联,如y(j)的功率等于x(i)和x(i+1)的平均功率,y(j)的相位在x(i)和x(i+1)的夹角之内,因此,可以据此来降低传输信号的PAPR。
需要指出的是,在第四数据序列中,除了原来的所述第二数据序列,剩余 的插入进来的数据就形成了所述第三数据序列。在星座点坐标系中,相位差是两数据相位之间的差值。本申请中,两相位差相差2nπ时,认为是相等的相位差,n为整数。数据的相位值是数据与某一参考坐标之间的相位差。本申请中,两数据的夹角是两数据分别与原点的连线形成的角度范围空间,夹角值为夹角的角度值。本申请中,夹角值在[0,π]之间。相位差与夹角值的区别之一为:如果数据A和数据B的相位差为θ,则数据B和数据A的相位差为-θ;如果数据A和数据B的夹角值为θ,则数据B和数据A的夹角值也为θ。
本申请实施例一实施方式中,所插入的第三数据序列如[y(j)],其数据的相位在所述相邻两个数据的夹角之内,为所述数据分别与所述相邻两个数据的夹角值相等。
本申请实施例一实施方式中,对于在第四数据序列中所插入的数据而言,其数据的模值等于相邻两个数据的平均模值。当第二数据序列的每个数据的功率相等时,所插入的数据的模值等于相邻两个数据的平均模值,与所插入的数据的功率等于相邻两个数据的平均功率是等价的。
本申请实施例一实施方式中,所述第三数据分别与所述第一数据和所述第二数据的夹角值相等。比如在数据序列[x(i)]里(部分或所有)相邻元素的x(i)和x(i+1)之间插入第三数据序列,如[y(j)]。除了y(j)的功率等于x(i)和x(i+1)的平均功率,y(j)的相位值在x(i)和x(i+1)的夹角之内。进一步的,y(j)分别与x(i)和x(i+1)的夹角值相等。由于插入数据的相位在相邻两个调制数据的夹角之间,并且插入数据分别与两个调制数据的夹角值相等,因此,可以提高解调信噪比,从而进一步大幅降低PAPR。
需要指出的是:在第二数据序列中插入第三数据序列,具体包括:在所述第二数据序列中的相邻数据间插入第三数据序列,比如,可以在所有的相邻数据间全部插入数据;或者,在所述第二数据序列中的部分的相邻数据间插入数据。
所述第二数据序列为[x(i)]时,所述方法还包括:从所述[x(i)]中获取数据x(i)和x(i+1),i=0、1、...、N-2、N-1;获取x(0)与x(1)、x(1)与x(2)、x(2)与x(3)...、x(N-1)与x(N)、x(N)与x(0)中每一对相邻数据。x(N)与x(0)可以为相邻数据,也可以不为相邻数据。即x(N)与x(0)可以被包含在每一对相邻数据里,也可以不 被包含在每一对相邻数据里。
一、在[x(i)]中相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j),针对在所有的相邻数据间全部插入数据而言,包括:在由所述每一对相邻数据构成的第一数据对间都插入第三数据y(j)。
二、在[x(i)]中相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j),针对在部分的相邻数据间插入数据而言,包括:在所述每一对相邻数据间中选取部分相邻数据,在由所述部分相邻数据构成的第二数据对间插入第三数据y(j)。
本申请实施例的一种数据调制方法,如图3所示,所述方法包括:
步骤301、获取第一数据序列。
步骤302、对第一数据序列进行调制,得到第二数据序列。
对第一数据序列进行调制,可以为对所述第一数据序列进行星座点调制,也可以为其他调制,比如IDFT处理。
步骤303、在所述第二数据序列中插入第三数据序列,是在所述第二数据序列中的所有的相邻数据间全部插入数据,得到第四数据序列。
比如,在x0和x1之间、x1和x2、x2和x3、x3和x4、……、x(i)和x(i+1)之间全部都插入y(j)。采用这种插入方式,由于插入的数据与相邻的调制数据相关联,因此,可以据此来降低传输信号的PAPR。需要指出的是:在所述第二数据序列中的某两相邻数据间所插入的数据为1个或多个数据。上面这个例子里,x(i)和x(i+1)之间插入y(j)为插入1个数据的实施例。该实施例中,如果x(N-1)与x(0)之间也插入y(J-1)的话,则J=N,即第二数据序列的元素个数与第三数据序列的元素个数相等。该实施例中,如果x(N-1)与x(0)之间不插入数据的话,则J=N-1,即第二数据序列的元素个数比第三数据序列的元素个数多1个。
步骤304、在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内。
步骤305、传输第四数据序列。
本申请实施例的一种数据调制方法,如图4所示,所述方法包括:
步骤401、获取第一数据序列。
步骤402、对第一数据序列进行调制,得到第二数据序列。
对第一数据序列进行调制,可以为对所述第一数据序列进行星座点调制,也可以为其他调制,比如离散傅里叶逆变换(IDFT)处理。
步骤403、在所述第二数据序列中插入第三数据序列,是在所述第二数据序列中的部分的相邻数据间插入数据,得到第四数据序列。
比如,在x1和x2之间插入y(j),在x2和x3间不插入y(j),在x3和x4之间插入y(j),……、、x(i)和x(i+1)之间不插入y(j)。即在数据序列[x(i)]里部分的相邻元素x(i)和x(i+1)之间插入第三数据,如数据y(j)。采用这种方式,由于插入的数据与相邻的调制数据相关联,因此,可以据此来降低传输信号的PAPR。需要指出的是:在所述第二数据序列中的某两相邻数据间所插入的数据为1个或多个数据。
步骤404、在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内。
步骤405、传输第四数据序列。
本申请实施例一实施方式中,传输所述第四数据序列,包括:将所述第四数据序列承载在物理时频资源上进行传输。一个实施例中,数据序列[s(k)]承载在物理时频资源上进行传输,传输到接收端后,接收端接收到包含有数据序列[s(k)]的数据后,采用最大比合并等相关检测算法获得包含有数据序列[x(i)]的数据,然后通过解码和星座点解调模块或其他模块恢复出数据序列[b(m)]。与普通调制方式相比,由于本申请涉及的接收端仅仅只增加了最大比合并检测算法,增加的复杂度比较低。而且,数据序列在解调时数据元素相互之间不会产生误差传播。虽然在数据调制的发送端:[s(k)]的长度比[x(i)]的长度增加了,也就是说需要占用更多的物理资源来传输,但由于在接收端可以采用最大比合并检测算法,因此[s(k)]的解调性能信噪比SNR可以提高,这个好处可以弥补传输效率的损失。比如,[s(k)]的长度为[x(i)]的长度的两倍时,需要占用两倍的物理资源来传输,在低码率时,多占用1倍资源就相当于损失了3dB增益,但由于在接收端可以采用最大比合并检测算法,SNR最高可以提高3dB增益,因此可以几 乎弥补传输效率的损失。
本申请实施例一实施方式中,所述第一数据序列为数据序列[b(m)],所述第二数据序列为[x(i)];在在所述第二数据序列中插入第三数据序列,包括:在所述[x(i)]中部分相邻或每相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j)后形成数据序列[s(k)],所述[s(k)]为所述第四数据序列。构成所述第一数据和所述第二数据的夹角的夹角范围为[0,π];其中,m、i、j和k都为非负整数,具体地,m为0、1、...、M-1的非负整数,i为0、1、...、N-1的非负整数,j为0、1、...、J-1的非负整数,k为0、1、...、K-1的非负整数,M、N、J和K为正整数。
本申请实施例一实施方式中,在所述[x(i)]中所有的或部分的相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j),包括:当i为数据序列[0、1、...、N-2]中某一值时,
Figure PCTCN2019097845-appb-000002
φ(y(j))-φ(x(i))=φ(x(i+1))-φ(y(j));其中,|.|为求模运算符,φ(.)为求复数相位运算符,N为所述第二数据序列[x(i)]的元素个数。
本申请实施例一实施方式中,在所述[x(i)]中所有的或部分的相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j),包括:当i=N-1时,j=J-1,N为所述第二数据序列[x(i)]的元素个数,J为所述第三数据序列[y(j)]的元素个数;所述第三数据y(J-1)为:
Figure PCTCN2019097845-appb-000003
φ(y(J-1))-φ(x(N-1))=φ(x(0))-φ(y(J-1));其中,|.|为求模运算符,φ(.)为求复数相位运算符。或者,所述第三数据y(J-1)为其他值。即y(J-1)的值不做限定。
在x(N-1)和x(0)之间,也可以不插入数据。本实施方式是在x(N-1)和x(0)之间插入第三数据,如数据y(J-1)。
本申请实施例一实施方式中,将所述y(J-1)放在所述第四数据序列中的第1个或最后1个位置。其中,将所述y(J-1)放在所述第四数据序列中的第1个等价于:y(J-1)放在所述第四数据序列中的最后1个,然后循环移位1次。
本申请实施例一实施方式中,对所述第一数据序列进行调制采用的星座点调制为π/2-BPSK时,在每相邻的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)后,所述y(j)的模等于π/2-BPSK调制数据的模,所述y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)与x(i)的夹角值及y(j)与x(i+1)的夹角值均为π/4。
本申请实施例一实施方式中,对所述第一数据序列进行调制采用的星座点调制为QPSK时,在每相邻的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)后,所述y(j)的模等于QPSK调制数据的模,所述y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)分别与x(i)和x(i+1)的夹角值相等。
本申请实施例的一种数据调制方法,如图5所示,所述方法包括:
步骤501、获取第一数据序列[b(i)]。
步骤502、对第一数据序列[b(i)]进行调制,得到第二数据序列为[s(k)],所有s(k)的模相等;且s(2i+2)/s(2i+1)-s(2i+1)/s(2i)=0。
其中,i和k都为非负整数。具体地,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数。
本申请实施例所述调制过程可以包括:星座点调制和插入调制。所述插入调制操作中,星座点调制后的数据序列的最后1个数据元素和第1个数据元素之间可以插入1个数据或不插入数据。因此数据序列[s(k)]的长度可以为2N-1或2N,s(2N-1)的值本申请实施例不做限定。
步骤503、传输第二数据序列。
本申请实施例一实施方式中,所述数据序列[b(i)]由0和1组成。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:s(k)与s(k+1)的夹角值为π/4。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:s(k)与s(k+1)的夹角值为0或π/4或π/2。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:当k=2i时,
Figure PCTCN2019097845-appb-000004
或者,
Figure PCTCN2019097845-appb-000005
当 k=2i-1时,
Figure PCTCN2019097845-appb-000006
或者,
Figure PCTCN2019097845-appb-000007
其中,i和k都为非负整数。具体地,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数,N为正整数,θ为预设的常数。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:当k=2i时,
Figure PCTCN2019097845-appb-000008
当k=2i-1时,
Figure PCTCN2019097845-appb-000009
其中,i和k都为非负整数,具体地,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数,N为正整数,θ为预设的常数。
本申请实施例的一种数据调制装置,如图6所示,所述装置包括:获取单元31,用于获取第一数据序列;调制单元32,用于对所述第一数据序列进行调制,得到第二数据序列;插入单元33,用于在所述第四数据序列中,除了第1个数据和最后1个数据之外,插入所述第四数据序列中的所述第三数据序列的每个数据满足:数据的功率等于相邻两个数据的平均功率,数据的相位在所述相邻两个数据的夹角之内;传输单元34,用于传输第四数据序列。
本领域技术人员应当理解,图6所示装置中的各单元的实现功能可参照前述信号发送方法的相关描述而理解。图6所示装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。在实际应用中,所述数据调制装置中的各个单元所实现的功能,均可由位于数据调制装置中的中央处理器(Central Processing Unit,CPU)、或微控制器单元(MPU,micro processor uint)、或数字信号处理(DSP,digital signal processor)、或现场可编程门阵列(FPGA,Field-Programmable Gate Array)等实现。
本申请实施例一实施方式中,所述数据的相位在所述相邻两个数据的夹角之内,为所述数据分别与所述相邻两个数据的夹角值相等。
本申请实施例一实施方式中,所述调制单元,进一步用于对第一数据序列进行调制,为对所述第一数据序列进行星座点调制。
本申请实施例一实施方式中,所述插入单元,进一步用于:在所述第二数据序列中的所有的相邻数据间全部插入数据;或者,在所述第二数据序列中的部分的相邻数据间插入数据。
本申请实施例一实施方式中,所述传输单元,进一步用于:将所述第四数据序列承载在物理时频资源上进行传输。
本申请实施例一实施方式中,所述插入单元,进一步用于:所述第一数据序列为数据序列[b(m)],所述第二数据序列为[x(i)]时,在所述[x(i)]中部分相邻或每相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j)后形成数据序列[s(k)],所述[s(k)]为所述第四数据序列。构成所述第一数据和所述第二数据的夹角,夹角范围为[0,π];其中,m、i、j和k都为非负整数。
本申请实施例一实施方式中,所述插入单元,进一步用于:当i为数据序列[0、1、...、N-2]中的某一值时,
Figure PCTCN2019097845-appb-000010
φ(y(j))-φ(x(i))=φ(x(i+1))-φ(y(j));其中,|.|为求模运算符,φ(.)为求复数相位运算符,N为所述第二数据序列[x(i)]的元素个数。
本申请实施例一实施方式中,所述插入单元,进一步用于:当i=N-1时,j=J-1,N为所述第二数据序列[x(i)]的元素个数,J为所述第三数据序列[y(j)]的元素个数;所述第三数据y(J-1)为:
Figure PCTCN2019097845-appb-000011
φ(y(J-1))-φ(x(N-1))=φ(x(0))-φ(y(J-1));其中,|.|为求模运算符,φ(.)为求复数相位运算符。或者,所述第三数据y(J-1)为其他值。即y(J-1)的值不做限定。
在x(N-1)和x(0)之间,也可以不插入数据。本实施方式是在x(N-1)和x(0)之间插入第三数据,如数据y(J-1)。
所述插入单元,进一步用于:将所述y(J-1)放在所述第四数据序列中的第1个或最后1个位置。其中,将所述y(J-1)放在所述第四数据序列中的第1个等价于:y(J-1)放在所述第四数据序列中的最后1个,然后循环移位1次。
本申请实施例一实施方式中,所述插入单元,进一步用于:对所述第一数 据序列进行调制采用星座点调制为π/2-BPSK时,在每相邻的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)后,所述y(j)的模等于π/2-BPSK调制数据的模,所述y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)与x(i)的夹角值及y(j)与x(i+1)的夹角值均为π/4。插入y(j)后得到承载在物理时频资源上进行传输的数据序列[s(k)]。
一个实例中,当星座点调制为π/2-BPSK时,设计出如下方案:由0和1组成的数据序列[b(i)],经过调制后的数据序列为[s(k)]。所述[s(k)]包括如下特征:当k=2i时,
Figure PCTCN2019097845-appb-000012
或者,
Figure PCTCN2019097845-appb-000013
当k=2i-1时,
Figure PCTCN2019097845-appb-000014
或者,
Figure PCTCN2019097845-appb-000015
其中,i和k都为非负整数(具体地,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数),N为正整数,θ为预设的常数。
本申请实施例一实施方式中,所述插入单元,进一步用于:对所述第一数据序列进行调制采用星座点调制为QPSK时,在每相邻的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)后,所述y(j)的模等于QPSK调制数据的模,所述y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)分别与x(i)和x(i+1)的夹角值相等。插入y(j)后得到承载在物理时频资源上进行传输的数据序列[s(k)]。
一个实例中,当星座点调制为QPSK时,设计出如下方案:由0和1组成的数据序列[b(i)],经过调制后的数据序列为[s(k)]。所述[s(k)]包括如下特征:当k=2i时,
Figure PCTCN2019097845-appb-000016
当k=2i-1时,
Figure PCTCN2019097845-appb-000017
其中,i和k都为非负整数(具体地,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数),N为正整数,θ为预设的常数。
本申请实施例的一种数据调制装置,所述装置包括:调制单元,用于对数据序列[b(i)]经过调制后的数据序列为[s(k)]。所述[s(k)]包括如下特征:所述[s(k)]包括如下特征:所有s(k)的模相等;且s(2i+2)/s(2i+1)-s(2i+1)/s(2i)=0。其中,i和k都为非负整数。
本申请实施例一实施方式中,所述数据序列[b(i)]由0和1组成。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:s(k)与s(k+1)的夹角值为π/4。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:s(k)与s(k+1)的夹角值为0或π/4或π/2。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:当k=2i时,
Figure PCTCN2019097845-appb-000018
或者,
Figure PCTCN2019097845-appb-000019
当k=2i-1时,
Figure PCTCN2019097845-appb-000020
或者,
Figure PCTCN2019097845-appb-000021
其中,i和k都为非负整数。θ为预设的常数。
本申请实施例一实施方式中,所述[s(k)]还包括如下特征:当k=2i时,
Figure PCTCN2019097845-appb-000022
当k=2i-1时,
Figure PCTCN2019097845-appb-000023
其中,i和k都为非负整数。θ为预设的常数。
本申请实施例的一种数据调制装置,所述装置包括:存储有计算机程序的存储器;处理器,配置为执行所述计算机程序时实现上述实施例任一项所述方法的步骤。
本申请实施例的一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例任一项所述方法的步骤。
对采用本申请实施例的各个应用场景具体描述如下。
采用本申请实施例,当数据序列[b(m)]由0和1组成时,经过星座点调制后的数据序列为[x(i)],在数据序列[x(i)]里(部分或每)相邻元素的x(i)和x(i+1) 之间插入数据y(j),y(j)的功率等于x(i)和x(i+1)的平均功率,y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)分别与x(i)和x(i+1)的夹角值相等。数据序列[x(i)]插入[y(j)]后形成数据序列[s(k)]。数据序列[s(k)]承载在物理时频资源上进行传输。接收端接收到包含有数据序列[s(k)]的数据后,采用最大比合并等相关检测算法获得包含有数据序列[x(i)]的数据,然后通过解码和星座点解调模块或其他模块恢复出数据序列[b(m)]。
需要指出的是:除了所述数据序列[b(m)]可以由0和1两种元素类型组成。还可以由1和-1这两种元素类型组成,如数据序列[b’(m)]。可以将该序列变换为0和1两种元素类型组成的序列,比如变换公式:b’(m)=1-2b(m),再进行后面的调制处理,或者直接对[b’(m)]采用相应变换后的调制方式进行处理,其效果是等价的。
其中,所述夹角范围为[0,π],m、i和k都为非负整数(具体地,m为0、1、...、M-1的非负整数,i为0、1、...、N-1的非负整数,k为0、1、...、K-1的非负整数,M、N和K为正整数。)
本申请实施例中,在所述数据序列[x(i)]里相邻元素的x(i)和x(i+1)之间插入数据y(j),为在所述数据序列[x(i)]里每相邻元素的x(i)和x(i+1)之间插入数据y(j),这时所述K=2N或2N-1。
采用具体的数据公式描述如下:由0和1组成的数据序列[b(m)],经过星座点调制后的数据序列为[x(i)],在每相邻的x(i)和x(i+1)之间插入数据y(j),y(j)满足如下特征:当i=0、1、...、N-2时,
Figure PCTCN2019097845-appb-000024
φ(y(j))-φ(x(i))=φ(x(i+1))-φ(y(j));其中,|.|为求模运算符,φ(.)为求复数相位运算符,N为所述第二数据序列[x(i)]的元素个数。
当i=N-1时,y(N-1)不插入或者插入其他值或者其他可能性的情况,描述如下:当i=N-1时,j=J-1,N为所述第二数据序列[x(i)]的元素个数,J为所述第三数据序列[y(j)]的元素个数;所述第三数据y(J-1)为:
Figure PCTCN2019097845-appb-000025
φ(y(J-1))-φ(x(N-1))=φ(x(0))-φ(y(J-1));其中,|.|为求模运算符,φ(.)为求复数相 位运算符。或者所述第三数据y(J-1)为其他值。即y(J-1)的值不做限定。
数据序列[x(i)]插入[y(j)]后形成数据序列[s(k)]。
其中,m、i和k都为非负整数(具体地,m为0、1、...、M-1的非负整数,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数),M和N为正整数。
本申请实施例中,相位值相差2nπ时,认为是相等的,n为整数。
本申请实施例中,星座点调制包括:π/2-BPSK,BPSK,QPSK,π/4-QPSK,16QAM,64QAM,256QAM.等。M和N的关系与星座点调制有关。比如,当星座点是π/2-BPSK或BPSK时,M=N;当星座点是QPSK或π/4-QPSK时,M=2N。特别地,当星座点是π/2-BPSK,BPSK,QPSK或π/4-QPSK时,y(j)分别与x(i)和x(i+1)的夹角值相等等价于y(j)分别与x(i)和x(i+1)的欧氏距离相等。
进一步地,当限定相位差值在(-π,π]时,有:
Figure PCTCN2019097845-appb-000026
采用不同星座点调制的方案,描述如下:
一、当星座点调制为π/2-BPSK时,具体设计可以参照如下方案:
步骤601:由0和1组成的数据序列[b(i)],经过如下调制后生成数据序列[x(i)]。
Figure PCTCN2019097845-appb-000027
Figure PCTCN2019097845-appb-000028
其中,i为0、1、...、N-1的非负整数,N为正整数。
θ为预设的常数。在一些实施例中,θ=0或θ=-π/4。
公式(1)和(2)中的
Figure PCTCN2019097845-appb-000029
是功率归一化因子,“j”是复数虚部的标记。
步骤602:数据序列[x(i)]经过如下调制后生成数据序列[s(k)]。
当k=2i时,s(k)=x(i)                 (3)
当k=2i-1时,
Figure PCTCN2019097845-appb-000030
Figure PCTCN2019097845-appb-000031
其中,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数。公式(4)和(5)生成s(k)的结果是等价的(也可以包含其他公式来等效,只要结果是等价的就行)。
对于S(2N-1)有两种可能的方式:
(1)S(2N-1)不生成。
(2)
Figure PCTCN2019097845-appb-000032
二、当星座点调制为QPSK时,具体设计可以参照如下方案:
步骤701:由0和1组成的数据序列[b(m)],经过如下调制后生成数据序列[x(i)]。
Figure PCTCN2019097845-appb-000033
其中,m为0、1、...、M-1的非负整数,i为0、1、...、N-1的非负整数,M和N为正整数,且M=2N。θ为预设的常数。在一些实施例中,θ=0或θ=-π/4。
步骤702:数据序列[x(i)]经过如下调制后生成数据序列[s(k)]。
当k=2i时,s(k)=x(i)                 (8)
当k=2i-1时,
Figure PCTCN2019097845-appb-000034
其中,i为0、1、...、N-1的非负整数,k为0、1、...、2N-2或k为0、1、...、2N-1的非负整数。公式(9)和(10)生成s(k)的结果是等价的(也可以包含其他公式来等效,只要结果是等价的就行)。
对于S(2N-1)有两种可能的方式:
(1)S(2N-1)不生成。
(2)
Figure PCTCN2019097845-appb-000035
采用本申请实施例,由0和1组成的数据序列[b(m)]时,经过星座点调制后的数据序列为[x(i)],假设x(i)和x(i+1)之间的相位差为α,则在相邻的x(i)和x(i+1)之间插入数据y(j)后,相邻相位差就减少到α/2,相位差减少了,因此,与数据序列[x(i)]相比,数据序列s(k)经过数模转换模块DAC后输出的模拟连续信号的峰均比PAPR就降低了。以星座点调制为π/2-BPSK为例来进一步说明。通过步骤301生成的数据序列[x(i)],具有的特征为:(1)所有数据的幅值都为1,(2)相邻数据间的相位差为π/2。然后再通过步骤302生成的数据序列[s(k)],具有的特征为:(1)所有数据的幅值都为1,(2)相邻数据间的相位差为π/4。通过步骤302,使得相邻数据间的相位差从π/2减少到π/4,因此数据序列[s(k)]经过数模转换模块DAC后输出的模拟连续信号的峰均比PAPR就降低了。接收端接收到包含有数据序列[s(k)]的数据后,采用最大比合并等相关检测算法获得包含有数据序列[x(i)]的数据。
本申请的调制方式与普通调制方式相比,接收端仅仅只增加了最大比合并检测算法,增加的复杂度比较低。而且,数据序列[x(i)]在解调时数据元素相互之间不会产生误差传播。
另外,虽然[s(k)]的长度比[x(i)]的长度增加了一倍,也就是说需要占用更多的物理资源来传输,但由于在接收端可以采用最大比合并检测算法,因此[s(k)]的解调性能信噪比SNR可以提高3dB,这个好处可以弥补传输效率的损失。
场景一、星座点调制为π/2-BPSK的情况。
由0和1组成的数据序列[b(i)],经过π/2-BPSK调制后生成数据序列[x(i)],设π/2-BPSK调制采用了公式(1),并且θ=-π/4,则其星座点如图7和图8所示,图7和图8均为为π/2-BPSK调制方式对应的星座点图。当i=0、2、4、。。。,即偶数时,x(i)=1或-1,其星座点图为图7所示。当i=1、3、5、…,即奇数时,x(i)=j或-j,其星座点图为图8所示。
数据序列[x(i)]经过公式(3)和(4)调制后生成数据序列[s(k)],则其星座点如图9所示,图9为s(k)星座点图。当k=2i时,s(k)的星座点在图9中的实数坐标上或虚数坐标上。当k=2i-1时,s(k)的星座点在图9中的四个象限上。
具体举例如下:
假如需要传输的2进制数据序列[b(i)]为[0101101100],采用π/2-BPSK调制后的符号数据序列[x(i)]就为[1,-j,1,-j,-1,j,-1,-j,1,j]。可以看出,[x(i)]序列的相邻符号间的相位差为±π/2。[x(i)]经过公式(3)和(4)调制后,生成的数据序列[s(k)]为[1,exp(-j*pi/4),-j,exp(-j*pi/4),1,exp(-j*pi/4),-j,exp(-j*3pi/4),-1,exp(j*3pi/4),j,exp(j*3pi/4),-1,exp(-j*3pi/4),-j,exp(-j*pi/4),1,exp(j*pi/4),j,exp(j*pi/4)]。现在这个符号序列的相邻两个符号之间的相位差就为±π/4了。相位差减少了,因此,与数据序列[x(i)]相比,数据序列[s(k)]经过数模转换模块DAC后输出的模拟连续信号的峰均比PAPR就降低了。数据序列[s(k)]的最后一个数据exp(j*pi/4)是按照公式(6)计算出来的。该数据exp(j*pi/4)也可以不插入进来。
场景二、星座点调制为QPSK的情况,数据序列[b(m)]由0和1组成。
由0和1组成的数据序列[b(m)],经过QPSK调制后生成数据序列[x(i)],设QPSK调制采用了公式(7),并且θ=-π/4,则其星座点如下图10所示,图10为QPSK调制星座点图。x(i)=1或-1或j或-j,其星座点图分别为图10所示。
数据序列[x(i)]经过公式(8)和(9)调制后生成数据序列[s(k)],则其星座点如图11所示,图11为s(k)星座点图。当k=2i时,s(k)的星座点在图7中的实数坐标上或虚数坐标上。当k=2i-1时,s(k)的星座点在图7中的四个象限上。
具体举例如下:
假如需要传输的2进制数据序列[b(m)]为[0101101100],采用QPSK调制后的符号数据序列[x(i)]就为[-j,-j,j,-1,1]。可以看出,[x(i)]序列的相邻符号间的相位差为0或±π/2或π。[x(i)]经过公式(8)和(9)调制后,生成的数据序列[s(k)]为[-j,-j,-j,1,j,exp(j*3pi/4),-1,-j,1,exp(-j*pi/4)]。现在这个符号序列的相邻两个符号之间的相位差就为0或±π/4或±π/2了。数据序列[s(k)]的最后一个数据exp(-j*pi/4)是按照公式(10)计算出来的。该数据exp(-j*pi/4)也可以不插入进来。
场景三,星座点调制为QPSK的情况,数据序列[b’(m)]由1和-1组成。
由1和-1两种元素类型组成的数据序列[b’(m)],采用公式(7)的变换形式, 进行QPSK调制,然后生成数据序列[x(i)]。变换公式为b’(m)=1-2b(m),即公式(7)变换为如下公式:
Figure PCTCN2019097845-appb-000036
可以看出,直接对[b’(m)]采用相应变换后的调制方式进行处理,其效果是等价的。
设上述公式θ=-π/4,则x(i)=1或-1或j或-j,其星座点图分别如图10所示。数据序列[x(i)]的相邻符号间的相位差为0或±π/2或π。数据序列[x(i)]经过公式(8)和(9)调制后生成数据序列[s(k)],序列[s(k)]的相邻两个符号之间的相位差就为0或±π/4或±π/2了。
本发明实施例上述装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
尽管为示例目的,已经公开了本申请的实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本申请的范围应当不限于上述实施例。

Claims (29)

  1. 一种数据调制方法,包括:
    对第一数据序列进行调制,得到第二数据序列;
    在所述第二数据序列中插入第三数据序列,得到第四数据序列;在所述第四数据序列中,除了第1个数据和最后1个数据之外,所述第四数据序列中的所述第三数据序列的每个数据满足:所述数据的功率等于相邻两个数据的平均功率,所述数据的相位在所述相邻两个数据的夹角之内;
    传输所述第四数据序列。
  2. 根据权利要求1所述的方法,其中,所述数据的相位在所述相邻两个数据的夹角之内,为所述数据分别与所述相邻两个数据的夹角值相等。
  3. 根据权利要求1所述的方法,其中,所述对第一数据序列进行调制,包括:对所述第一数据序列进行星座点调制。
  4. 根据权利要求1所述的方法,其中,在所述第二数据序列中插入第三数据序列,包括:
    在所述第二数据序列中的所有的相邻数据间全部插入数据;或者,
    在所述第二数据序列中的部分的相邻数据间插入数据。
  5. 根据权利要求1所述的方法,其中,传输所述第四数据序列,包括:将所述第四数据序列承载在物理时频资源上进行传输。
  6. 根据权利要求1所述的方法,其中,在所述第一数据序列为数据序列[b(m)],所述第二数据序列为[x(i)]的情况下,在所述第二数据序列中插入第三数据序列,包括:
    在所述[x(i)]中所有的或部分的相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j)后形成数据序列[s(k)],所述[s(k)]为所述第四数据序列;
    其中,构成所述第一数据和所述第二数据的夹角的夹角值范围为[0,π];其中,m、i、j和k都为非负整数。
  7. 根据权利要求6所述的方法,其中,
    在i从数据序列[0、1、...、N-2]中取值的情况下,
    Figure PCTCN2019097845-appb-100001
    φ(y(j))-φ(x(i))=φ(x(i+1))-φ(y(j));其中,|.|为求模运算符,φ(.)为求复数相位运算符,N为所述第二数据序列[x(i)]的元素个数。
  8. 根据权利要求6所述的方法,其中,
    在i=N-1的情况下,j=J-1;N为所述第二数据序列[x(i)]的元素个数,J为所述第三数据序列[y(j)]的元素个数;
    所述第三数据y(J-1)为:
    Figure PCTCN2019097845-appb-100002
    φ(y(J-1))-φ(x(N-1))=φ(x(0))-φ(y(J-1));
    其中,|.|为求模运算符,φ(.)为求复数相位运算符;
    或者,所述第三数据y(J-1)为其他值。
  9. 根据权利要求7或8所述的方法,还包括:从所述[x(i)]中获取数据x(i)和x(i+1),i=0、1、...、N-2、N-1;获取x(0)与x(1)、x(1)与x(2)、x(2)与x(3)...、x(N-1)与x(N)、x(N)与x(0)中每一对相邻数据;
    在所述[x(i)]中所有的或部分的相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j),包括:
    在由所述每一对相邻数据构成的第一数据对间都插入第三数据y(j);或者,
    在所述每一对相邻数据中选取部分相邻数据,在由所述部分相邻数据构成的第二数据对间插入第三数据y(j)。
  10. 根据权利要求8所述的方法,其中,
    y(J-1)在所述第四数据序列中的第1个或最后1个位置。
  11. 根据权利要求1所述的方法,其中,在对所述第一数据序列进行调制为采用星座点调制且所述星座点调制为π/2-二进制相移键控π/2-BPSK的情况 下,
    在所述第二数据序列中的每相邻的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)后,所述y(j)的模等于π/2-BPSK调制数据的模,所述y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)与x(i)的夹角值及y(j)与x(i+1)的夹角值均为π/4。
  12. 根据权利要求1所述的方法,其中,在对所述第一数据序列进行调制为采用星座点调制且所述星座点调制为正交相移键控QPSK的情况下,
    在所述第二数据序列中的每相邻的第一数据x(i)和第二数据x(i+1)之间插入第三数据y(j)后,所述y(j)的模等于QPSK调制数据的模,所述y(j)的相位在x(i)和x(i+1)的夹角之内,并且y(j)分别与x(i)和x(i+1)的夹角值相等。
  13. 一种数据调制方法,包括:
    数据序列[b(i)],经过调制后的数据序列为[s(k)];所述[s(k)]包括如下特征:
    所有s(k)的模相等;且
    s(2i+2)/s(2i+1)-s(2i+1)/s(2i)=0;
    其中,i和k都为非负整数。
  14. 根据权利要求13所述的方法,其中,所述数据序列[b(i)]由0和1组成。
  15. 根据权利要求13所述的方法,其中,所述[s(k)]还包括如下特征:s(k)与s(k+1)的夹角值为π/4。
  16. 根据权利要求13所述的方法,其中,所述[s(k)]还包括如下特征:s(k)与s(k+1)的夹角值为0或π/4或π/2。
  17. 根据权利要求13至15任一项所述的方法,其中,所述[s(k)]还包括如下特征:
    在k=2i的情况下,
    Figure PCTCN2019097845-appb-100003
    或者,
    Figure PCTCN2019097845-appb-100004
    在k=2i-1的情况下,
    Figure PCTCN2019097845-appb-100005
    或者,
    Figure PCTCN2019097845-appb-100006
    其中,i和k都为非负整数,θ为预设的常数。
  18. 根据权利要求13、14或16所述的方法,其中,所述[s(k)]还包括如下特征:
    在k=2i的情况下,
    Figure PCTCN2019097845-appb-100007
    在k=2i-1的情况下,
    Figure PCTCN2019097845-appb-100008
    其中,i和k都为非负整数,θ为预设的常数。
  19. 一种数据调制装置,包括:
    调制单元,设置为对所述第一数据序列进行调制,得到第二数据序列;
    插入单元,设置为在所述第二数据序列中插入第三数据序列,得到第四数据序列;在所述第四数据序列中,除了第1个数据和最后1个数据之外,所述第四数据序列中的所述第三数据序列的每个数据满足:所述数据的功率等于相邻两个数据的平均功率,所述数据的相位在所述相邻两个数据的夹角之内;
    传输单元,设置为传输所述第四数据序列。
  20. 根据权利要求19所述的装置,其中,所述数据的相位在所述相邻两个数据的夹角之内,为所述数据分别与所述相邻两个数据的夹角值相等。
  21. 根据权利要求19所述的装置,其中,所述插入单元,是设置为:
    在所述第二数据序列中的所有的相邻数据间全部插入数据;或者,
    在所述第二数据序列中的部分的相邻数据间插入数据。
  22. 根据权利要求19所述的装置,其中,所述插入单元,是设置为:在所 述第二数据序列为[x(i)]的情况下,在所述[x(i)]中所有的或部分的相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j);
    在i从数据序列[0、1、...、N-2]中取值的情况下,
    Figure PCTCN2019097845-appb-100009
    φ(y(j))-φ(x(i))=φ(x(i+1))-φ(y(j));其中,|.|为求模运算符,φ(.)为求复数相位运算符,N为所述第二数据序列[x(i)]的元素个数。
  23. 根据权利要求19所述的装置,其中,所述插入单元,是设置为:在所述第二数据序列为[x(i)]的情况下,在所述[x(i)]中所有的或部分的相邻的第一数据x(i)和第二数据x(i+1)间插入第三数据y(j);
    在i=N-1的情况下,j=J-1,N为所述第二数据序列[x(i)]的元素个数,J为所述第三数据序列[y(j)]的元素个数;
    所述第三数据y(J-1)为:
    Figure PCTCN2019097845-appb-100010
    φ(y(J-1))-φ(x(N-1))=φ(x(0))-φ(y(J-1));
    其中,|.|为求模运算符,φ(.)为求复数相位运算符;
    或者,所述第三数据y(J-1)为其他值。
  24. 根据权利要求23所述的装置,其中,
    y(J-1)在所述第四数据序列中的第1个或最后1个位置。
  25. 一种数据调制装置,包括:
    调制单元,设置为对数据序列[b(i)]经过调制后的数据序列为[s(k)];所述[s(k)]包括如下特征:
    所有s(k)的模相等;且
    s(2i+2)/s(2i+1)-s(2i+1)/s(2i)=0;
    其中,i和k都为非负整数。
  26. 根据权利要求25所述的装置,其中,所述[s(k)]还包括如下特征:
    在k=2i的情况下,
    Figure PCTCN2019097845-appb-100011
    或者,
    Figure PCTCN2019097845-appb-100012
    在k=2i-1的情况下,
    Figure PCTCN2019097845-appb-100013
    或者,
    Figure PCTCN2019097845-appb-100014
    其中,i和k都为非负整数,θ为预设的常数。
  27. 根据权利要求25所述的装置,其中,所述[s(k)]还包括如下特征:
    在k=2i的情况下,
    Figure PCTCN2019097845-appb-100015
    在k=2i-1的情况下,
    Figure PCTCN2019097845-appb-100016
    其中,i和k都为非负整数,θ为预设的常数。
  28. 一种数据调制装置,包括:
    存储有计算机程序的存储器;
    处理器,配置为执行所述计算机程序时实现权利要求1至12以及权利要求13至18任一项所述的方法。
  29. 一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至12以及权利要求13至18任一项所述的方法。
PCT/CN2019/097845 2018-07-26 2019-07-26 一种数据调制方法、装置及计算机存储介质 WO2020020330A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19842202.4A EP3829125A4 (en) 2018-07-26 2019-07-26 DATA MODULATION METHOD AND APPARATUS AND COMPUTER STORAGE MEDIUM
US17/263,398 US11329854B2 (en) 2018-07-26 2019-07-26 Data modulation method and apparatus
US17/709,777 US11621877B2 (en) 2018-07-26 2022-03-31 Data modulation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810834174.6A CN110768922B (zh) 2018-07-26 2018-07-26 一种数据调制方法、装置及计算机存储介质
CN201810834174.6 2018-07-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/263,398 A-371-Of-International US11329854B2 (en) 2018-07-26 2019-07-26 Data modulation method and apparatus
US17/709,777 Continuation US11621877B2 (en) 2018-07-26 2022-03-31 Data modulation method and apparatus

Publications (1)

Publication Number Publication Date
WO2020020330A1 true WO2020020330A1 (zh) 2020-01-30

Family

ID=69180375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097845 WO2020020330A1 (zh) 2018-07-26 2019-07-26 一种数据调制方法、装置及计算机存储介质

Country Status (4)

Country Link
US (2) US11329854B2 (zh)
EP (1) EP3829125A4 (zh)
CN (2) CN115102822A (zh)
WO (1) WO2020020330A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092838B (zh) * 2019-09-10 2024-05-24 中兴通讯股份有限公司 一种序列生成方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196359A1 (en) * 2008-01-31 2009-08-06 Texas Instruments Incorporated Methods and systems to insert filler data in unallocated resource regions of a frame
US20130188631A1 (en) * 2012-01-24 2013-07-25 Icom Incorporated Communication apparatus and communication method
CN103797718A (zh) * 2012-09-07 2014-05-14 三菱电机株式会社 发送机以及发送方法
US20170279648A1 (en) * 2016-03-24 2017-09-28 Electronics And Telecommunications Research Institute Apparatus and method for reducing peak to average power ratio (papr) in layer division multiplexing (ldm) system
CN107896206A (zh) * 2017-11-10 2018-04-10 中国地质大学(武汉) 基于四维信号插入降低ofdm系统峰均功率比的方法及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130918A (en) * 1997-12-01 2000-10-10 Nortel Networks Limited Method and apparatus for reducing the peak-to-average ratio in a multicarrier communication system
JP4455630B2 (ja) * 2007-08-29 2010-04-21 株式会社東芝 送信機および受信機
US8509324B2 (en) * 2008-07-08 2013-08-13 Qualcomm Incorporated Methods and systems for reducing PAPR of an OFDM signal
US8165232B2 (en) * 2008-10-01 2012-04-24 Harris Corporation Low peak-to-average power ratio (PAPR) preamble for orthogonal frequency division multiplexing (OFDM) communications
EP2345221B1 (en) * 2008-10-31 2012-09-19 Telecom Italia S.p.A. PAPR reduction in multi-carrier transmission
US8264946B2 (en) * 2008-12-31 2012-09-11 Qualcomm Incorporated Methods and systems for PAPR reduction in SC-FDMA systems
US10027518B2 (en) * 2010-02-12 2018-07-17 Lg Electronics Inc. Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
JP5704082B2 (ja) * 2012-01-26 2015-04-22 アイコム株式会社 通信機および通信方法
GB201222552D0 (en) * 2012-12-14 2013-01-30 Sony Corp Data processing apparatus and method
CN103763287A (zh) * 2014-01-13 2014-04-30 宁波大学 单频网抗衰落无线数字广播信号传输方法
CN105591994B (zh) * 2014-10-21 2019-08-02 中兴通讯股份有限公司 码分多址接入的多用户通信方法及装置
CN105812310B (zh) * 2016-05-06 2019-04-30 江苏中兴微通信息科技有限公司 基于zcz序列和相位旋转的单载波mimo通信方法及装置
CN107888533B (zh) * 2016-09-30 2020-11-06 华为技术有限公司 一种数据处理方法、装置和系统
US10757450B2 (en) * 2017-10-05 2020-08-25 Cable Television Laboratories, Inc System and methods for data compression and nonuniform quantizers
CN107948113B (zh) * 2017-11-10 2019-12-03 中国地质大学(武汉) 基于三维信号插入降低ofdm系统峰均功率比的方法及系统
CN109873782B (zh) * 2017-12-01 2022-02-25 中兴通讯股份有限公司 数据发送、接收方法、装置、设备及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196359A1 (en) * 2008-01-31 2009-08-06 Texas Instruments Incorporated Methods and systems to insert filler data in unallocated resource regions of a frame
US20130188631A1 (en) * 2012-01-24 2013-07-25 Icom Incorporated Communication apparatus and communication method
CN103797718A (zh) * 2012-09-07 2014-05-14 三菱电机株式会社 发送机以及发送方法
US20170279648A1 (en) * 2016-03-24 2017-09-28 Electronics And Telecommunications Research Institute Apparatus and method for reducing peak to average power ratio (papr) in layer division multiplexing (ldm) system
CN107896206A (zh) * 2017-11-10 2018-04-10 中国地质大学(武汉) 基于四维信号插入降低ofdm系统峰均功率比的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829125A4

Also Published As

Publication number Publication date
CN110768922A (zh) 2020-02-07
US20220224580A1 (en) 2022-07-14
US20210160116A1 (en) 2021-05-27
CN110768922B (zh) 2022-06-24
US11621877B2 (en) 2023-04-04
US11329854B2 (en) 2022-05-10
CN115102822A (zh) 2022-09-23
EP3829125A1 (en) 2021-06-02
EP3829125A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US10547486B2 (en) Data transmission method and apparatus
US11108608B2 (en) Information transmission method and apparatus
JP6438045B2 (ja) カバレージ改善のための低papr変調
CN106713213B (zh) 一种数字调制方法、解调方法、相关装置和系统
WO2021259177A1 (zh) 数据调制方法、装置、设备及存储介质
US20220368575A1 (en) Modulation Scheme with Amplitude Variation Within Symbol in 5G/6G
US20170346667A1 (en) Tone-phase-shift keying: a new modulation scheme for sc-fdma
WO2020020330A1 (zh) 一种数据调制方法、装置及计算机存储介质
WO2012028086A1 (zh) 调制方法和装置
WO2024113975A1 (zh) 数据调制方法、装置、介质及存储介质
WO2023016433A1 (zh) 参考信号配置方法、设备和存储介质
CN114679361B (zh) 一种ofdm调制方法及通信装置
WO2003043283A1 (fr) Procede de modulation d'amplitude en quadrature utilise dans un systeme de communication mobile numerique
WO2023174353A1 (zh) 一种安全ltf序列确定方法及相关装置
WO2024055953A1 (zh) 调制方法、装置及通信设备
Kulhandjian et al. Code design for noncoherent detection in satellite communication systems
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2023116613A1 (zh) 通信方法及装置
WO2021093075A1 (en) Time-domain modulation scheme for low peak average power ratio
JP2019510402A (ja) 非直交多元接続に適用される情報伝送方法、装置及び通信システム
WO2021093073A1 (en) Non-zero insertion based modulation scheme for low peak average power ratio
JP5207517B2 (ja) ディジタル変調方法、ディジタル変調回路、ディジタル復調回路、およびディジタル伝送システム
CN116545596A (zh) 一种数据处理方法、装置及相关设备
JP2013121136A (ja) 送信装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019842202

Country of ref document: EP