WO2023174353A1 - 一种安全ltf序列确定方法及相关装置 - Google Patents

一种安全ltf序列确定方法及相关装置 Download PDF

Info

Publication number
WO2023174353A1
WO2023174353A1 PCT/CN2023/081778 CN2023081778W WO2023174353A1 WO 2023174353 A1 WO2023174353 A1 WO 2023174353A1 CN 2023081778 W CN2023081778 W CN 2023081778W WO 2023174353 A1 WO2023174353 A1 WO 2023174353A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
equal
integer greater
secure
less
Prior art date
Application number
PCT/CN2023/081778
Other languages
English (en)
French (fr)
Inventor
刘辰辰
周正春
杨洋
唐小虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174353A1 publication Critical patent/WO2023174353A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • H04W12/121Wireless intrusion detection systems [WIDS]; Wireless intrusion prevention systems [WIPS]
    • H04W12/122Counter-measures against attacks; Protection against rogue devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication technology, and in particular, to a secure LTF sequence determination method and related devices.
  • the sender can use a secure long training field (LTF) sequence for secure ranging or sensing.
  • LTF long training field
  • the attacker can use the attack signal to attack the secure LTF sequence to obtain measurement information. The higher the correlation between the attack signal used by the attacker and the secure LTF sequence, the worse the security of the secure LTF sequence.
  • the 64-order amplitude modulation (QAM) secure LET sequence for secure ranging or sensing
  • the attack signal generated by the attacker has a small correlation with the secure LTF sequence, so the security of the 64QAM modulation is LTF sequences are safe and reliable.
  • the 64-QAM modulated secure LTF sequence has a large peak to average power ratio (PAPR), which will reduce the measurement accuracy. distance and perceived performance.
  • PAPR peak to average power ratio
  • the embodiments of the present application provide a safe LTF sequence determination method and related devices, which can make the safe LTF sequence have a lower peak-to-average power ratio.
  • embodiments of the present application provide a method for determining a secure LTF sequence.
  • the sending end determines the sequence X based on the modulation method.
  • the transmitting end performs a fast Fourier FFT transform on the sequence X and normalizes the result of the FFT transform to obtain the sequence Y.
  • the transmitting end determines the secure long training symbol LTF sequence M based on the sequence Y.
  • the transmitting end determines the sequence X from the time domain based on the modulation method, and then determines the safe LTF sequence M based on the sequence X.
  • the elements in the sequence k is an integer greater than or equal to 0 and less than or equal to N-1, and i is an imaginary unit.
  • ⁇ k belongs to [0,1) and obeys discrete or continuous uniform distribution.
  • N is the number of subcarriers in the working bandwidth of the transmitter.
  • the transmitter performs amplitude modulation so that its amplitude is all 1 and the phase obeys the uniform distribution of [0,1). In other words, the transmitter generates each element in the sequence X based on the amplitude modulation method.
  • the elements in the sequence k is an integer greater than or equal to 0 and less than or equal to N-1, and i is an imaginary unit.
  • l is an integer greater than or equal to 0 and less than or equal to M-1.
  • M is the order of phase shift keying, and is an integer greater than or equal to 1.
  • N is the number of subcarriers in the working bandwidth of the transmitter.
  • the element x k in the sequence constellation point, k is an integer greater than or equal to 0 and less than or equal to N-1.
  • N is the number of subcarriers in the working bandwidth of the transmitter.
  • the element x k in the sequence X can also represent one of the constellation points of the normalized QAM. Among the normalized QAM constellation points, the amplitudes and phases of different constellation points are different. Therefore, the transmitter generates each element in the sequence X based on the QAM modulation method, that is, using the amplitude modulation method and the phase modulation method to generate the sequence X.
  • the transmitting end can determine the sequence X containing N elements based on different modulation methods. That is, the transmitting end can flexibly use different modulation methods to determine the sequence X in the time domain.
  • the element m k in the secure LTF sequence M is equal to zero; when subcarrier k in the working bandwidth of the sending end is a bearer subcarrier.
  • S is a default value greater than or equal to 0.
  • N is the number of subcarriers in the working bandwidth of the transmitter.
  • n is an integer greater than or equal to 0 and less than or equal to N-1.
  • the sender determines that the k-th element in the secure LTF sequence M is 0; when subcarrier k is a bearer subcarrier, it determines the security based on the mapping function f(x) and sequence Y The kth element in the LTF sequence M.
  • the above Angle(x) is the phase angle of the complex number x.
  • the value range of the phase angle is [- ⁇ , ⁇ ], and i is an imaginary unit.
  • mapping function is e i*Angle(x) .
  • the transmitter modulates the amplitude of the sequence Y to 1, and the phase of each element in the sequence Y is not processed. Therefore, the transmitter maps the sequence Y to the secure LTF sequence M based on the sequence Y and the amplitude modulation method.
  • Angle(x) is the phase angle of the complex number x, and the value range of the phase angle is [- ⁇ , ⁇ ].
  • M is the order of phase shift keying, and is an integer greater than or equal to 1.
  • i is an imaginary unit.
  • the transmitter keeps the amplitude of the sequence Y constant to 1, and maps the sequence Y to the safe LTF sequence M by adjusting the phase of the elements in the sequence Y.
  • Y l represents one constellation point among the first constellation points.
  • the first constellation point is the constellation point after energy normalization of the M-order quadrature amplitude modulation QAM constellation point.
  • l is an integer greater than or equal to 1 and less than or equal to M.
  • M is an integer greater than 1.
  • i is an imaginary unit.
  • the transmitter maps each element in the sequence Y to the QAM constellation point closest to the element, that is, maps it to one of the QAM constellation points, thereby generating a secure LTF sequence M.
  • the transmitting end can map the sequence Y to the secure LTF sequence M based on the sequence Y and different modulation modes.
  • this application also provides a safe LTF sequence determination method.
  • the transmitting end determines the first secure long training symbol LTF sequence.
  • the transmitting end determines the second safe LTF sequence, and the PAPR of the second safe LTF sequence is less than the PAPR threshold.
  • the sending end when the determined PAPR of the first safe LTF sequence is greater than or equal to the PAPR threshold, the sending end re-determines the second safe LTF sequence whose PAPR is less than the PAPR threshold.
  • This method can make the PAPR of the safe LTF sequence used by the transmitter for ranging and sensing less than the PAPR threshold, thus helping to ensure ranging and sensing performance.
  • this application also provides a communication device.
  • the communication device has the ability to implement part or all of the functions of the sending end described in the first aspect, or has the ability to implement part or all of the functions of the sending end described in the second aspect.
  • the communication device may have the functions of some or all of the embodiments of the sending end described in the first aspect of this application, or may have the functions of independently implementing any of the embodiments of this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may further include a storage unit coupled to the processing unit and the communication unit, which stores necessary program instructions and data for the communication device.
  • the communication device includes: a processing unit and a communication unit, the communication unit is used to send and receive data/signaling;
  • a processing unit used to determine the sequence X based on the modulation method
  • the processing unit is also configured to perform a fast Fourier FFT transform on the sequence X, and normalize the result after the FFT transform to obtain the sequence Y;
  • the processing unit is also configured to determine the secure long training symbol LTF sequence M based on the sequence Y.
  • the communication device includes: a processing unit and a communication unit, the communication unit is used to send and receive data/signaling;
  • a processing unit configured to determine the first secure long training symbol LTF sequence
  • the processing unit is also configured to determine a second safe LTF sequence when the peak-to-average power ratio PAPR of the first safe LTF sequence is greater than or equal to the PAPR threshold, and the PAPR of the second safe LTF sequence is less than the PAPR threshold.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device includes: a processor and a transceiver, and the transceiver is used to transmit and receive data/signaling;
  • the processor is also configured to perform a fast Fourier FFT transform on the sequence X, and normalize the result after the FFT transform to obtain the sequence Y;
  • the processor is further configured to determine the secure long training symbol LTF sequence M based on the sequence Y.
  • the communication device includes: a processor and a transceiver, and the transceiver is used to transmit and receive data/signaling;
  • a processor configured to determine the first secure long training symbol LTF sequence
  • the processor is also configured to determine a second safe LTF sequence when the peak-to-average power ratio PAPR of the first safe LTF sequence is greater than or equal to the PAPR threshold, and the PAPR of the second safe LTF sequence is less than the PAPR threshold.
  • the communication device is a chip or a chip system.
  • the processing unit can also be embodied as a processing circuit or a logic circuit; the transceiver unit can be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may be used to perform, for example, but not limited to, baseband related processing
  • the transceiver may be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above-mentioned devices may be arranged on separate chips, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • the digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • SoC System on a Chip
  • the embodiments of this application do not limit the implementation form of the above devices.
  • this application also provides a processor for executing the various methods mentioned above.
  • the process of sending the above information and receiving the above information in the above method can be understood as the process of the processor outputting the above information, and the process of the processor receiving the input above information.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the processor receives the above information input, the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • processor output and reception, input operations rather than the transmitting and receiving operations performed directly by RF circuits and antennas.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor. They can be installed on the same chip, or they can also be installed on different chips.
  • ROM read-only memory
  • the embodiment of the present application does not limit the type of memory and the arrangement method of the memory and the processor.
  • this application also provides a communication system, which includes at least two APs and at least two STAs.
  • the system may also include other devices that interact with the AP and STA in the solution provided by this application.
  • the present application provides a computer-readable storage medium for storing instructions. When the instructions are executed by a computer, the method described in the first or second aspect is implemented.
  • the present application also provides a computer program product including instructions that, when run on a computer, implement the method described in the first or second aspect.
  • this application provides a chip system.
  • the chip system includes a processor and an interface.
  • the interface is used to obtain a program or instructions.
  • the processor is used to call the program or instructions to implement or support the sending end implementation. Functions covered by the first or second aspect. For example, at least one of the data and information involved in the above method is determined or processed.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data for the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is an IAPR schematic diagram of a Golay complementary pair provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a secure LTF sequence determination method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of constellation points of QAM modulation with different modulation orders provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of subcarrier planning within an 80MHz bandwidth provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a PAPR distribution comparison provided by an embodiment of the present application.
  • Figure 7(a) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 7(b) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 7(c) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 7(d) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 7(e) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 7(f) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 8(a) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 8(b) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 8(c) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 8(d) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 8(e) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 8(f) is another schematic diagram of PAPR distribution comparison provided by the embodiment of the present application.
  • Figure 9 is a schematic flow chart of another secure LTF sequence determination method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to two access points (APs) and two stations (STAs).
  • the number and shape of the devices shown in Figure 1 are for example and do not constitute a limitation on the embodiment of the present application. In actual applications, three or more APs and three or more STAs may be included.
  • the communication system shown in Figure 1 takes AP 1011, AP 1012, STA 1021 and STA 1022 as an example to illustrate, and the AP1011 and AP 1012 can provide wireless services for STA 1021 and STA 1022.
  • AP1011 and AP 1012 in Figure 1 take the base station as an example
  • STA1021 and STA1022 take a mobile phone as an example.
  • the above communication system may be a wireless local area network (WLAN) or a cellular network, or other wireless communication systems that support multiple links for parallel transmission.
  • WLAN wireless local area network
  • Various aspects involved in the embodiments of the present application can be extended to other networks using various standards or protocols, such as BLUETOOTH (Bluetooth), high performance wireless LAN (HIPERLAN) (a wireless network similar to the IEEE 802.11 standard). standard, mainly used in Europe) and wide area network (WAN), personal area network (PAN) or other networks now known or later developed. Therefore, the various aspects provided herein may be applicable to any suitable wireless network, regardless of the coverage and wireless access protocols used.
  • BLUETOOTH Bluetooth
  • HIPERLAN high performance wireless LAN
  • WAN wide area network
  • PAN personal area network
  • the STA has a wireless transceiver function and can support the 802.11 series protocols to communicate with the AP or other STAs.
  • the STA can be any user communication device that allows the user to communicate with the AP and then communicate with the WLAN, such as, but not limited to, tablet computers, desktops, laptops, notebook computers, ultra-mobile Personal Computers, UMPC), handheld computers, netbooks, personal digital assistants (Personal Digital Assistant, PDA), mobile phones and other user equipment that can be connected to the Internet, or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, etc.
  • STA can also be the chips and processing systems in the above terminals.
  • the AP is a device that provides services for STA and can support the 802.11 series protocols.
  • APs can be communication entities such as communication servers, routers, switches, and bridges, or APs can include various forms of macro base stations, micro base stations, relay stations, etc.
  • APs can also be chips in these various forms of equipment. and processing system, thereby realizing the methods and functions of the embodiments of the present application.
  • the embodiments of this application involve data communication between one or more nodes and one or more nodes.
  • the main scenario involves data communication between AP and STA, but it also applies to data communication between AP and AP and STA and STA.
  • the sending end may be an AP or a STA.
  • the transmitter can use a secure long training field (LTF) sequence for secure ranging or sensing.
  • LTF long training field
  • the attacker can use the attack signal to attack the secure LTF sequence to obtain measurement information.
  • the security of the LTF sequence not only lies in whether the attacker can recover the sequence, but also depends on the relevant attack signals or attack time generated by the attacker.
  • attackers can generate attack signals based on Per-tone equalizer and Viterbi equalizer.
  • Per-tone equalizer When an attacker uses a Per-tone equalizer to generate an attack signal, the transmitter's LTF sequence based on QAM modulation above 16th order amplitude modulation (QAM) has security issues. Since the duration of the LTF sequence is short and the entropy of the physical signal is large, when an attacker uses the Viterbi equalizer to generate an attack signal, its calculation efficiency is higher and its performance is close to that of Machine Language (ML).
  • ML Machine Language
  • the security of the secure LTF sequence is related to the number of taps of the filter modeled in the Viterbi equalizer, the number of states K in the Viterbi equalizer, the observation period, and the modulation order of the secure LTF sequence. Number related.
  • the modulation order of the secure LTF sequence is the same, and the number of taps and the number of states K in the Viterbi equalizer are the same, the larger the observation period, the attacker uses the Viterbi equalizer to generate The greater the correlation between the attack signal and the secure LTF sequence, the easier it is for the attacker to attack the secure LTF sequence. At this time, the security of the secure LTF sequence is worse. Under the same SNR condition, when the modulation order of the secure LTF sequence is the same as the attacker's observation period, the greater the state number K in the Viterbi equalizer used by the attacker, the greater the correlation between the attack signal generated by the attacker and the secure LTF sequence.
  • SNR signal-to-noise ratio
  • the greater the modulation order of the secure LTF sequence the greater the number of taps and the number of states K used by the attacker using the Viterbi equalizer, the smaller the correlation between the attack signal generated by the attacker and the secure LTF sequence, and the secure LTF sequence The safer and more reliable it is.
  • the 64-QAM modulated secure LTF sequence has a large peak to average power ratio (PAPR), which will reduce ranging and Perceived performance.
  • PAPR peak to average power ratio
  • a and b in (a, b) are a pair of sequences of length N. If the non-periodic autocorrelation functions of a and b satisfy:
  • a and b are Golay sequences.
  • the instantaneous average power ratio (IAPR) of the Golay complementary pair is shown in Figure 2.
  • the IAPR peak value of sequences a and b is 2, or 3dB, so the maximum PAPR value of sequence a and b does not exceed 2 (3dB).
  • the Golay complementary pair has a lower PAPR. Therefore, in order to reduce the PAPR of the secure LTF sequence, the sender can generate a secure LTF sequence based on Golay complementary pairs.
  • the number of constructed Golay complementary pairs is limited. For example, as shown in Table 1 below, there are 64 Golay sequences in Table 1 that constitute a length of 10.
  • FIG. 3 is a schematic flowchart of the method 100 for determining a safe LTF sequence.
  • the secure LTF sequence determination method 100 is explained from the perspective of the transmitter.
  • the safe LTF sequence determination method 100 includes but is not limited to the following steps:
  • the sending end determines the sequence X based on the modulation method.
  • the length of the sequence X is N, and the sequence X is (x 0 , x 1 ,..., x N-1 ).
  • N is the number of subcarriers in the working bandwidth of the transmitter, and is an integer greater than or equal to 1.
  • the working bandwidth of the transmitter can be configured by the base station or predefined.
  • the elements in the sequence k is an integer greater than or equal to 0 and less than or equal to N-1, and i is an imaginary unit.
  • ⁇ k belongs to [0,1) and obeys discrete or continuous uniform distribution.
  • the transmitting end performs amplitude modulation so that the amplitudes are all 1, and the phases are uniformly distributed in [0,1).
  • the transmitter generates each element in the sequence X based on the amplitude modulation method.
  • the elements in the sequence k is an integer greater than or equal to 0 and less than or equal to N-1, and i is an imaginary unit.
  • l is an integer greater than or equal to 0 and less than or equal to M-1.
  • M is the order of phase shift keying, and is an integer greater than or equal to 1.
  • the element x k in the sequence constellation point, k is an integer greater than or equal to 0 and less than or equal to N-1.
  • Figure 4 shows the constellation point positions of QAM modulation with different modulation orders. It can be seen from Figure 4 that in QAM modulation under different modulation orders, the amplitudes and phases represented by different constellation points are different.
  • the first constellation point is determined based on the constellation point in Figure 4.
  • Energy normalization of the constellation points of M-order QAM means: dividing the value of each constellation point of M-order QAM by the square root of the average energy of all constellation points in the M-order QAM constellation point, so that
  • x k can also represent one of the constellation points of the normalized QAM.
  • the amplitudes and phases of different constellation points are different. Therefore, in this method, the transmitter generates each element in the sequence X based on the QAM modulation method, that is, using amplitude modulation and phase modulation to generate the sequence X.
  • the transmitting end can determine the sequence X including the number of subcarriers within the operating bandwidth based on different modulation methods, and can flexibly use different modulation methods to determine the sequence X in the time domain.
  • the transmitting end performs a fast Fourier FFT transform on the sequence X, and normalizes the result of the FFT transform to obtain the sequence Y.
  • the sequence Y is (y 0 ,y 1 ,...,y N-1 ).
  • the transmitting end performs a fast Fourier transform (FFT) on the sequence X to transform the time domain sequence X into a frequency domain sequence.
  • FFT fast Fourier transform
  • the transmitting end then normalizes the result after the FFT transformation to obtain the sequence Y, so that the sequence Y is a frequency domain sequence with an amplitude less than 1 in the frequency domain.
  • the time domain sequence X determined by the sending end has a lower PAPR, so the sequence Y obtained by the sending end based on the sequence X can also have a lower PAPR.
  • S102 can also be replaced by: the sending end takes the conjugate of the sequence After normalization, the sequence Y is obtained.
  • the sending end can also obtain sequence Y based on the conjugation and IFFT transformation of sequence X.
  • This application does not limit the implementation of determining sequence Y based on sequence X, that is, the sending end can flexibly choose the above implementation to determine sequence Y based on sequence X.
  • the transmitting end determines the secure long training symbol LTF sequence M based on the sequence Y.
  • the sending end determines the safe LTF sequence M based on the sequence Y and the carrier planning of the working bandwidth of the sending end.
  • Carrier planning is a plan in a communication protocol for each subcarrier within different bandwidths to carry data or not.
  • the subcarrier planning diagram within the 80MHz bandwidth in the 802.11ax protocol is shown in Figure 5.
  • the 80MHz bandwidth can include 12 non-bearing subcarriers on the left edge, 11 non-bearing subcarriers on the right edge, and 996 bearer subcarriers (i.e., 996 usable tones in Figure 5) and 5 direct current (DC) in the middle ) subcarrier.
  • Bearer subcarriers refer to subcarriers that can be used to transmit data
  • non-bearer subcarriers refer to subcarriers that cannot be used to transmit data.
  • the 80MHz bandwidth may include 12 non-carrier subcarriers on the left edge, 11 non-carrier subcarriers on the right edge, and two left and right subcarriers. There are 242 bearer subcarriers in the middle part, 13 bearer subcarriers and 7 DC subcarriers in the middle two parts.
  • Other planning methods for subcarriers within the 80MHz bandwidth can be as shown in the 802.11ax protocol, which will not be described in detail.
  • the element m k in the secure LTF sequence M is equal to zero; when subcarrier k in the working bandwidth of the sending end is a bearer subcarrier.
  • S is a default value greater than or equal to 0.
  • N is the number of subcarriers in the working bandwidth of the sending end.
  • n is an integer greater than or equal to 0 and less than or equal to N-1.
  • the sender determines that the element of the secure LTF sequence M at the position of the subcarrier is zero; when a certain subcarrier in the working bandwidth is When a subcarrier carries data, the elements of the secure LTF sequence M at the subcarrier location are determined based on the mapping function f(x).
  • the variables of the mapping function f(x) are related to the elements in the above sequence Y.
  • f(x) ei *Angle(x)
  • Angle(x) is the phase angle of the complex number x.
  • the value range of the phase angle is [- ⁇ , ⁇ ], and i is an imaginary unit.
  • x
  • the transmitter modulates the amplitude of the sequence Y to 1, and the phase of each element in the sequence Y is not processed. Therefore, the transmitter maps the sequence Y to the secure LTF sequence M based on the sequence Y and amplitude modulation.
  • Angle(x) is the phase angle of the complex number x, and the value range of the phase angle is [- ⁇ , ⁇ ].
  • M is the order of phase shift keying, and is an integer greater than or equal to 1.
  • the transmitter keeps the amplitude of the sequence Y constant to 1, and maps the sequence Y to the safe LTF sequence M by adjusting the phase of the elements in the sequence Y.
  • Y l represents one constellation point among the first constellation points.
  • the first constellation point is the constellation point after energy normalization of the M-order quadrature amplitude modulation QAM constellation point.
  • l is an integer greater than or equal to 1 and less than or equal to M.
  • M is an integer greater than 1.
  • i is an imaginary unit.
  • the transmitting end maps each element in the sequence Y to the nearest QAM constellation point to the element, that is, maps it to one of the QAM constellation points, thereby generating a secure LTF sequence M.
  • the transmitting end can map the sequence Y to the secure LTF sequence M based on different modulation methods.
  • the sending end can flexibly choose the above three implementation methods to determine the safe LTF sequence M based on the sequence Y.
  • the application embodiments are not limited to the above three implementations of determining the safe LTF sequence based on sequence Y.
  • the sequence It is beneficial to improve ranging and perception performance.
  • the PAPR distribution of the random sequence and the PAPR comparison result of the safe LTF sequence generated by the safe LTF sequence determination method 100 proposed by the embodiment of the present application are shown in Figure 6.
  • the cumulative distribution function (CDF) in Figure 6 counts the probability that the PAPR bit error rate is less than a certain value. It can be seen from Figure 6 that when the CDF is fixed, the PAPR of the secure LTF sequence generated using the embodiment of the present application is much smaller than the PAPR of the random sequence determined from the frequency domain generation method based on the current modulation method.
  • the embodiment of this application uses a subcarrier with a bandwidth of 80MHz in the 802.11ax protocol, and the mapping function in S103
  • the PAPR of the random sequence generated from the frequency domain based on the modulation method is obtained, and the secure LTF sequence determination method 100 proposed in the embodiment of the present application is obtained, and each is based on binary phase shift keying (BPSK). ), quadrature phase shift keying (QPSK), 8PSK, 16PSK, 32PSK, 64PSK modulation PAPR comparison results of secure LTF sequences generated, respectively, as shown in Figure 7(a), Figure 7(b), Figure 7(c), Figure 7(d), Figure 7(e), and Figure 7(f).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 8PSK 8PSK
  • 16PSK 16PSK
  • 32PSK 64PSK modulation
  • the embodiment of this application uses a subcarrier with a bandwidth of 80MHz in the 802.11ax protocol, and the mapping function in S103 Obtain the PAPR of the random sequence currently generated from the frequency domain based on the modulation method, and use the secure LTF sequence determination method 100 proposed in the embodiment of this application, and generate it based on the 4QAM, 16QAM, 64QAM, 256QAM, 1024QAM, and 4096QAM modulation methods respectively.
  • the PAPR comparison results of safe LTF sequences are shown in Figure 8(a), Figure 8(b), Figure 8(c), Figure 8(d), Figure 8(e), and Figure 8(f) respectively.
  • the secure LTF sequences generated by the secure LTF sequence determination method proposed in the embodiments of this application have lower PAPR, which is conducive to guaranteeing the secure LTF sequence. security.
  • PAPR refers to the ratio of the peak power to the average power of the time domain signal.
  • the sequence PAPR PAPR.
  • the transmitter generates a secure LTF sequence from the frequency domain based on the modulation method
  • the generated secure LTF sequence The amplitude value listed in the frequency domain changes relatively fixedly, but when calculating the PAPR, it is necessary to convert from the frequency domain to the time domain calculation, which may cause the safe LTF sequence to have a higher PAPR.
  • FIG. 9 is a schematic flowchart of the safe LTF sequence determination method 200.
  • the secure LTF sequence determination method 200 is also explained from the perspective of the transmitter.
  • the safe LTF sequence determination method 200 includes but is not limited to the following steps:
  • the transmitting end determines the first secure long training symbol LTF sequence.
  • the implementation manner in which the sending end determines the first safe LTF sequence is not limited.
  • the transmitting end can use the current frequency domain method to determine the first safe LTF sequence.
  • the transmitting end may also determine the first secure LTF sequence using the method in the secure LTF sequence determination method 100 mentioned above.
  • the transmitting end determines the second safe LTF sequence, and the PAPR of the second safe LTF sequence is less than the PAPR threshold.
  • the PAPR threshold can be configured by the network device or predefined.
  • the PAPR threshold can be determined based on ranging and sensing performance, and the PAPR threshold can ensure that ranging and sensing performance are within a certain range.
  • the sending end determines that the PAPR threshold condition is not met. If the transmitter uses the first safe LTF sequence for ranging and sensing, it will lead to poor ranging and sensing performance. Therefore, the sending end re-determines the second safe LTF sequence, and the PAPR of the second safe LTF sequence is less than the PAPR threshold. Therefore, the safe LTF sequence used by the transmitter for ranging and sensing is the second safe LTF sequence with a PAPR smaller than the PAPR threshold, which is beneficial to ensuring ranging and sensing performance.
  • the sending end continues to re-determine the secure LTF sequence until the PAPR of the determined secure LTF sequence is less than the PAPR threshold, and the secure LTF sequence is used. Perform ranging and sensing.
  • the sending end keeps re-determining the safe LTF sequence until the number of times it is determined that the safe LTF sequence is greater than the preset threshold, and then stops the step of determining the safe LTF sequence.
  • the PAPR of the safe LTF sequence determined by the sending end is within the PAPR threshold range, which can ensure that the PAPR of the safe LTF sequence used for ranging and sensing is low, thereby improving ranging and sensing performance.
  • an embodiment of the present application provides a communication device 1000.
  • the communication device 1000 may be a component of the sending end (eg, integrated circuit, chip, etc.).
  • the communication device 1000 may also be other communication units, used to implement the methods in the method embodiments of the present application.
  • the communication device 1000 may include: a communication unit 1001 and a processing unit 1002.
  • a storage unit 1003 may also be included.
  • one or more units as shown in Figure 10 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors and a transceiver; or may be implemented by one or more processors, memories, and transceivers, which are not limited in the embodiments of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the communication device 1000 has the function of implementing the sending end described in the embodiments of this application.
  • the communication device 1000 includes modules or units or means (means) corresponding to the sending end executing the sending end-related steps described in the embodiments of this application.
  • the functions, units or means (means) can be implemented through software, or through Hardware implementation can also be implemented by hardware executing corresponding software implementation, or it can be implemented by combining software and hardware.
  • a communication device 1000 may include: a processing unit 1002 and a communication unit 1001, the communication unit 1001 being used to transmit and receive data/signaling;
  • Processing unit 1002 configured to determine sequence X based on the modulation method
  • the processing unit 1002 is also configured to perform a fast Fourier FFT transform on the sequence X, and normalize the result after the FFT transform to obtain the sequence Y;
  • the processing unit 1002 is also configured to determine the secure long training symbol LTF sequence M based on the sequence Y.
  • the elements in the sequence The k is an integer greater than or equal to 0 and less than or equal to N-1; the i is an imaginary unit; the ⁇ k belongs to [0,1) and obeys a discrete or continuous uniform distribution; the N is The number of subcarriers in the working bandwidth of the sending end.
  • the elements in the sequence The k is an integer greater than or equal to 0 and less than or equal to N-1; the i is an imaginary unit; the l is an integer greater than or equal to 0 and less than or equal to M-1; the M is a phase
  • the order of shift keying is an integer greater than or equal to 1; the N is the number of subcarriers in the working bandwidth of the transmitter.
  • the element x k in the sequence Normalized constellation points is an integer greater than or equal to 0 and less than or equal to N-1; the N is the number of subcarriers in the working bandwidth of the transmitter.
  • the element m k in the secure LTF sequence M is equal to zero
  • the k is an integer greater than or equal to 0 and less than or equal to N-1; the S is a preset value greater than or equal to 0; the N is the number of subcarriers in the working bandwidth of the transmitting end; n is an integer greater than or equal to 0 and less than or equal to N-1.
  • the f(x) e i*Angle(x)
  • Angle(x) is the phase angle of the complex number x
  • the value range of the phase angle is [- ⁇ , ⁇ ]
  • the i is an imaginary unit.
  • the Angle(x) is the phase angle of the complex number x; the value range of the phase angle is [- ⁇ , ⁇ ]; the M is the order of phase shift keying, and is an integer greater than or equal to 1; the i is an imaginary unit.
  • the The Y l represents one constellation point among the first constellation points, and the first constellation point is a constellation point after energy normalization of the constellation points of M-order quadrature amplitude modulation QAM; the l is greater than or equal to 1, and an integer less than or equal to M; the M is an integer greater than 1; the i is an imaginary unit.
  • a communication device 1000 may include: a processing unit 1002 and a communication unit 1001, the communication unit 1001 being used to transmit and receive data/signaling;
  • Processing unit 1002 configured to determine the first secure long training symbol LTF sequence
  • the processing unit 1002 is also configured to determine a second safe LTF sequence when the PAPR of the first safe LTF sequence is greater than or equal to the peak-to-average power ratio PAPR threshold, and the PAPR of the second safe LTF sequence is less than the PAPR threshold.
  • FIG. 11 is a schematic structural diagram of the communication device 1100.
  • the communication device 1100 may be a sending end, or may be a chip, chip system, or processor that supports the sending end to implement the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the communication device 1100 may include one or more processors 1101 .
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components or a central processing unit (Central Processing Unit, CPU).
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process communication devices (such as base stations, baseband chips, terminals, terminal chips, distributed units (DU) or centralized units (centralized units)). unit, CU), etc.) to control, execute software programs, and process data of software programs.
  • DU distributed units
  • centralized units centralized units
  • the communication device 1100 may include one or more memories 1102, on which instructions 1104 may be stored, and the instructions may be executed on the processor 1101, causing the communication device 1100 to perform the above method. Methods described in the Examples.
  • the memory 1102 may also store data.
  • the processor 1101 and the memory 1102 can be provided separately or integrated together.
  • the memory 1102 may include, but is not limited to, non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), erasable and programmable memory.
  • non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), erasable and programmable memory.
  • Read-only memory Erasable Programmable ROM, EPROM
  • ROM or portable read-only memory Compact Disc Read-Only Memory, CD-ROM
  • the communication device 1100 may also include a transceiver 1105 and an antenna 1106.
  • the transceiver 1105 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1105 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1100 is the sending end: the processor 1101 is configured to execute S101, S102, and S103 in the secure LTF sequence determination method 100, and is configured to execute S201 and S202 in the secure LTF sequence determination method 200.
  • the processor 1101 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1101 can store instructions 1103, and the instructions 1103 are run on the processor 1101, which can cause the communication device 1100 to execute the method described in the above method embodiment.
  • the instructions 1103 may be fixed in the processor 1101, in which case the processor 1101 may be implemented by hardware.
  • the communication device 1100 may include a circuit, and the circuit may implement the foregoing method embodiments.
  • the processor and transceiver described in the embodiments of this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (application specific integrated circuits). , ASIC), printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a sending end, but the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include a storage component for storing data and instructions;
  • ASIC such as modem (modulator)
  • the communication device may be a chip or a chip system
  • the chip 1200 shown in FIG. 12 includes a processor 1201 and an interface 1202.
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be multiple.
  • the processor 1201 may be a logic circuit, and the interface 1202 may be an input-output interface, an input interface or an output interface.
  • the chip 1200 may also include memory 1203 .
  • the interface 1202 is used for output or reception.
  • the processor 1201 is used to determine sequence X based on the modulation method
  • the processor 1201 is also used to perform a fast Fourier FFT transform on the sequence X, and normalize the result of the FFT transform to obtain the sequence Y;
  • the processor 1201 is also configured to determine the secure long training symbol LTF sequence M based on the sequence Y.
  • the processor 1201 is used to determine the first secure long training symbol LTF sequence
  • the processor 1201 is also configured to determine a second safe LTF sequence when the peak-to-average power ratio PAPR of the first safe LTF sequence is greater than or equal to the PAPR threshold, and the PAPR of the second safe LTF sequence is less than the PAPR threshold.
  • FIG. 13 is a schematic structural diagram of the communication device 1300.
  • the communication device 1300 may be an AP or STA serving as the sending end in the embodiment of the present application.
  • the communication device 1300 includes a media access control (media access control, MAC) layer 1301, a physics (physics, PHY) layer 1302, and a radio frequency/antenna 1303.
  • RF/antenna 1303 is used to send or receive data.
  • the communication device 1300 also includes a memory 1304, a scheduler 1306, a controller 1305, and a processor 1307.
  • the memory 1304, the scheduler 1306, the controller 1305, and the processor 1307 can be connected.
  • the memory 1304 is used to store signaling information, predefined default values, etc.
  • the processor 1307 is used to parse signaling information and process related data.
  • the communication device 1100, the chip 1200, and the communication device 1300 can also execute the above-mentioned communication device 1000.
  • the described implementation Those skilled in the art can also understand that the various illustrative logical blocks and steps listed in the embodiments of this application can be implemented by electronic hardware, computer software, or a combination of both. Whether such functionality is implemented in hardware or software depends on the specific application and overall system design requirements. Those skilled in the art can use various methods to implement the described functions for each specific application, but such implementation should not be understood as exceeding the protection scope of the embodiments of the present application.
  • This application also provides a computer-readable storage medium for storing computer software instructions. When the instructions are executed by a communication device, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product for storing computer software instructions. When the instructions are executed by a communication device, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program that, when run on a computer, implements the functions of any of the above method embodiments.
  • This application also provides a communication system, which includes at least two APs and at least two STAs in the above aspect.
  • the system may also include other devices that interact with APs and STAs in the solution provided by this application.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种安全LTF序列确定方法及相关装置。该方法中,发送端基于调制方式确定序列X。发送端对序列X进行快速傅里叶FFT变换,并将FFT变换后的结果进行归一化处理,获得序列Y。发送端基于序列Y确定安全长训练符号LTF序列M。可见,发送端基于调制方式从时域确定序列X,再基于序列X确定安全LTF序列M。发送端基于调制方式从时域确定的序列X具有较低的峰值平均功率比PAPR,从而基于序列X确定的安全LTF序列M也具有较低的PAPR。

Description

一种安全LTF序列确定方法及相关装置
本申请要求于2022年3月17日提交中国国家知识产权局、申请号为202210263999.3、申请名称为“一种安全LTF序列确定方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种安全LTF序列确定方法及相关装置。
背景技术
无线局域网(wireless local area network,WLAN)通信系统中,发送端可采用安全长训练符号(long traning field,LTF)序列进行安全测距或感知。发送端进行安全测距或感知过程中,攻击者可采用攻击信号对该安全LTF序列进行攻击,以获得测量信息。攻击者采用的攻击信号与安全LTF序列的相关性越高,安全LTF序列的安全性越差。
目前,发送端采用64阶幅度调制(quadrature amplitude modulation,QAM)的安全LET序列进行安全测距或感知时,攻击者产生的攻击信号与安全LTF序列的相关性较小,从而该64QAM调制的安全LTF序列是安全可靠的。然而,在正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,该64-QAM调制的安全LTF序列存在较大的峰值平均功率比(peak to average power ratio,PAPR),会降低测距和感知性能。
因此,如何生成较低PAPR的安全LET序列仍为目前亟需研究的一个问题。
发明内容
本申请实施例提供了一种安全LTF序列确定方法及相关装置,可使得安全LTF序列具有较低的峰值平均功率比。
第一方面,本申请实施例提供一种安全LTF序列确定方法。该方法中,发送端基于调制方式确定序列X。发送端对序列X进行快速傅里叶FFT变换,并将FFT变换后的结果进行归一化处理,获得序列Y。发送端基于序列Y确定安全长训练符号LTF序列M。
可见,本申请实施例中,发送端基于调制方式从时域确定序列X,再基于序列X确定安全LTF序列M。发送端基于调制方式从时域确定的序列X具有较低的峰值平均功率比PAPR,从而基于序列X确定的安全LTF序列M也具有较低的PAPR。
一种可选的实施方式中,序列X中的元素k为大于或等于0,且小于或等于N-1的整数,i为虚数单位。θk属于[0,1),且服从离散或连续的均匀分布。N为发送端的工作带宽中的子载波个数。
可见,当序列X中的元素时,发送端进行幅度调制,使其幅度均为1,相位服从[0,1)的均匀分布。也就是说,发送端是基于幅度调制方式,生成序列X中的每个元素。
另一种可选的实施方式中,序列X中的元素k为大于或等于0,且小于或等于N-1的整数,i为虚数单位。l为大于或等于0,且小于或等于M-1的整数。M为相移键控的阶数,且为大于或等于1的整数。N为发送端的工作带宽中的子载波个数。
可见,当序列X中的元素时,序列中每个元素的幅度恒定为1,发送端基于l对相位进行调制。从而,发送端是基于相位调制方式生成序列X中的每个元素。
又一种可选的实施方式中,序列X中的元素xk表征第一星座点中的一个星座点,第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点,k为大于或等于0,且小于或等于N-1的整数。N为发送端的工作带宽中的子载波个数。
可见,序列X中的元素xk还可以表征归一化后的QAM的星座点中的一个星座点。归一化后的QAM的星座点中,不同星座点的幅度和相位均不相同。因此,发送端是基于QAM调制方式,生成序列X中的每个元素,即采用幅度调制方式和相位调制方式生成序列X。
由上述可知,发送端可基于不同调制方式确定包含N个元素的序列X,即发送端可灵活采用不同调制方式从时域上确定序列X。
一种可选的实施方式中,发送端的工作带宽中的子载k为非承载子载波时,安全LTF序列M中的元素mk等于零;发送端的工作带宽内的子载k为承载子载波时,安全LTF序列M中的元素mk=f(x),x=yn,yn为序列Y中第n个元素;n=k+S,k为大于或等于0,且小于或等于N-1的整数。S为大于或等于0的预设值。N为发送端的工作带宽中的子载波个数。n为大于或等于0,且小于或等于N-1的整数。
可见,发送端在子载波k为非承载子载波时,确定安全LTF序列M中第k个元素为0;在子载波k为承载子载波时,基于映射函数f(x)和序列Y确定安全LTF序列M中第k个元素。
一种可选的实施方式中,上述Angle(x)为复数x的相位角。相位角的取值范围为[-π,π],i为虚数单位。
可见,上述映射函数为ei*Angle(x),发送端是将序列Y的幅度调制为1,其序列Y中每个元素的相位不做处理。因此,发送端是基于序列Y和幅度调制方式,将序列Y映射为安全LTF序列M。
另一种可选的实施方式中,Angle(x)为复数x的相位角,相位角的取值范围为[-π,π]。M为相移键控的阶数,且为大于或等于1的整数。i为虚数单位。
可见,上述映射函数为ei*Angle(x)时,发送端是将序列Y的幅度恒定为1,通过调节序列Y中元素的相位,将序列Y映射为安全LTF序列M。
又一种可选的实施方式中,Yl表征第一星座点中的一个星座点,第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点。l为大于或等于1,且小于或等于M的整数。M为大于1的整数。i为虚数单位。
可见,上述映射函数为时,发送端将序列Y中的每个元素映射为该元素离最近的QAM星座点上,即将其映射到QAM星座点中的其中一个星座点,从而生成安全LTF序列M。
也就是说,发送端可基于序列Y和不同调制方式,将序列Y映射为安全LTF序列M。
第二方面,本申请还提供一种安全LTF序列确定方法。该安全LTF序列确定方法中,发送端确定第一安全长训练符号LTF序列。发送端在第一安全LTF序列的峰值平均功率比PAPR大于或等于PAPR阈值时,确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。
可见,本申请实施例中,发送端在确定的第一安全LTF序列的PAPR大于或等于PAPR阈值时,重新确定PAPR小于PAPR阈值第二安全LTF序列。该方式可使得发送端进行测距和感知所采用的安全LTF序列的PAPR小于PAPR阈值,进而有利于保障测距和感知性能。
第三方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的发送端的部分或全部功能,或者具有实现上述第二方面所述的发送端的部分或全部功能。比如,该通信装置的功能可具备本申请中第一方面所述的发送端的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持该通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元,通信单元用于进行数据/信令收发;
处理单元,用于基于调制方式确定序列X;
处理单元,还用于对所述序列X进行快速傅里叶FFT变换,并将所述FFT变换后的结果进行归一化处理,获得序列Y;
处理单元,还用于基于所述序列Y确定安全长训练符号LTF序列M。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理单元和通信单元,通信单元用于进行数据/信令收发;
处理单元,用于确定第一安全长训练符号LTF序列;
处理单元,还用于在第一安全LTF序列的峰值平均功率比PAPR大于或等于PAPR阈值时,确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
一种实施方式中,所述通信装置包括:处理器和收发器,收发器用于进行数据/信令收发;
处理器,用于基于调制方式确定序列X;
处理器,还用于对所述序列X进行快速傅里叶FFT变换,并将所述FFT变换后的结果进行归一化处理,获得序列Y;
处理器,还用于基于所述序列Y确定安全长训练符号LTF序列M。
另外,该方面中,上行通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理器和收发器,收发器用于进行数据/信令收发;
处理器,用于确定第一安全长训练符号LTF序列;
处理器,还用于在第一安全LTF序列的峰值平均功率比PAPR大于或等于PAPR阈值时,确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述收发单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on a Chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集 成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请还提供了一种通信系统,该系统包括至少两个AP、至少两个STA。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与AP和STA进行交互的其他设备。
第六方面,本申请提供了一种计算机可读存储介质,用于储存指令,当所述指令被计算机运行时,实现上述第一方面或第二方面所述的方法。
第七方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,实现上述第一方面或第二方面所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持发送端实现第一方面或第二方面所涉及的功能。例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种Golay互补对的IAPR示意图;
图3是本申请实施例提供的一种安全LTF序列确定方法的流程示意图;
图4是本申请实施例提供的一种不同调制阶数的QAM调制的星座点示意图;
图5是本申请实施例提供的一种对80MHz带宽内的子载波规划示意图;
图6是本申请实施例提供的一种PAPR分布对比示意图;
图7(a)是本申请实施例提供的另一种PAPR分布对比示意图;
图7(b)是本申请实施例提供的又一种PAPR分布对比示意图;
图7(c)是本申请实施例提供的又一种PAPR分布对比示意图;
图7(d)是本申请实施例提供的又一种PAPR分布对比示意图;
图7(e)是本申请实施例提供的又一种PAPR分布对比示意图;
图7(f)是本申请实施例提供的又一种PAPR分布对比示意图;
图8(a)是本申请实施例提供的又一种PAPR分布对比示意图;
图8(b)是本申请实施例提供的又一种PAPR分布对比示意图;
图8(c)是本申请实施例提供的又一种PAPR分布对比示意图;
图8(d)是本申请实施例提供的又一种PAPR分布对比示意图;
图8(e)是本申请实施例提供的又一种PAPR分布对比示意图;
图8(f)是本申请实施例提供的又一种PAPR分布对比示意图;
图9是本申请实施例提供的另一种安全LTF序列确定方法的流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的一种芯片的结构示意图;
图13是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整的描述。
为了更好的理解本申请实施例公开的安全LTF序列确定方法,对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于两个接入点(access point,AP)、两个站点(station,STA)。图1所示的设备数量和形态用于举例,并不构成对本申请实施例的限定,实际应用中可以包括三个或三个以上的AP,三个或三个以上的STA。图1所示的通信系统以AP 1011、AP 1012,STA 1021和STA 1022,且该AP1011和AP 1012能够为STA 1021、STA 1022提供无线服务为例进行阐述。其中,图1中的AP1011和AP 1012以基站为例,STA1021和STA1022以手机为例。
本申请实施例中,上述通信系统可以为无线局域网(wireless local area network,WLAN)或蜂窝网,或其他支持多条链路并行进行传输的无线通信系统。本申请实施例涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,BLUETOOTH(蓝牙),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(wide area network,WAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请实施例中,STA具有无线收发功能,可以支持802.11系列协议,与AP或其他STA进行通信。例如,STA可以是允许用户与AP通信进而与WLAN通信的任何用户通信设备,如包括但不限于,平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等。可选的,STA还可以为上述这些终端中的芯片和处理系统。
本申请实施例中,AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体,或,AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
本申请实施例涉及一个或多个节点同一个或多个节点之间的数据通信。主要场景涉及AP与STA之间的数据通信,但同样适用于AP与AP、STA与STA之间的数据通信。
本申请实施例中,发送端可以是AP,也可以是STA。
WLAN通信系统中,发送端可采用安全长训练符号(long traning field,LTF)序列进行安全测距或感知。发送端进行安全测距或感知过程中,攻击者可采用攻击信号对该安全LTF序列进行攻击,以获得测量信息。
LTF序列的安全性不仅仅在于攻击者是否能够恢复序列,还与攻击者产生的相关攻击信号或攻击时间等有关。目前,攻击者可基于Per-tone均衡器和维特比(Viterbi)均衡器产生攻击信号。攻击者采用Per-tone均衡器产生攻击信号时,发送端基于16阶幅度调制(quadrature amplitude modulation,QAM)以上QAM调制的LTF序列存在安全问题。由于LTF序列的持续时间较短,且物理信号的熵量大,因此攻击者使用Viterbi均衡器生成攻击信号时,其计算效率更高,其性能接近于机器语言(Machine Language,ML)。
攻击者采用Viterbi均衡器生成攻击信号时,安全LTF序列的安全性与Viterbi均衡器中建模的滤波器的taps数量、Viterbi均衡器中的状态数K、观测周期,以及安全LTF序列的调制阶数有关。
相同信噪比(signaltonoise ratio,SNR)条件下,安全LTF序列的调制阶数相同,且Viterbi均衡器中的taps数量和状态数K相同时,观测周期越大,攻击者采用Viterbi均衡器生成的攻击信号与安全LTF序列的相关性越大,攻击者越容易攻击安全LTF序列,此时安全LTF序列的安全性越差。相同SNR条件下,安全LTF序列的调制阶数和攻击者的观测周期相同时,攻击者采用的Viterbi均衡器中状态数K越大时,攻击者产生的攻击信号与安全LTF序列的相关性越小,攻击者越不容易攻击安全LTF序列,此时安全LTF序列越安全。相同SNR条件下,安全LTF序列的调制阶数越大,攻击者采用Viterbi均衡器的taps数量和状态数K越大,攻击者产生的攻击信号与安全LTF序列的相关性越小,安全LTF序列越安全可靠。
在正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,该64-QAM调制的安全LTF序列存在较大的峰值平均功率比(peak to average power ratio,PAPR),会降低测距和感知性能。
(a,b)中的a和b是一对长度为N的序列,若a和b的非周期自相关函数满足:
则称(a,b)为Golay互补对。其中,a、b为Golay序列。
Golay互补对的瞬时平均功率比(instantaneous average power ratio,IAPR)如图2所示。由图2可以看出,序列a、b的IAPR峰值为2,或者为3dB,从而序列a、b的PAPR最大值不超过2(3dB)。
可见,Golay互补对具有较低的PAPR。因此,为降低安全LTF序列的PAPR,发送端可基于Golay互补对,生成安全LTF序列。然而,构造Golay互补对的数量有限。例如,如下表1所示,构成长度为10的Golay序列有表1中的64条。
表1


目前靠穷搜、交织、级联等方法获得的Golay序列有限,无法满足安全LTF序列设计中的大量伪随机比特。因此,如何生成具有较低PAPR的安全LET序列仍为目前亟需研究的一个问题。
本申请实施例提出一种安全LTF序列确定方法100,图3是该安全LTF序列确定方法100的流程示意图。该安全LTF序列确定方法100从发送端的角度进行阐述。该安全LTF序列确定方法100包括但不限于以下步骤:
S101.发送端基于调制方式确序列X。
其中,序列X的长度为N,序列X为(x0,x1,...,xN-1)。N为发送端的工作带宽中的子载波个数,且为大于或等于1的整数。发送端的工作带宽可以是基站配置的,也可以是预定义的。
一种可选的实施方式中,序列X中的元素k为大于或等于0,且小于或等于N-1的整数,i为虚数单位。θk属于[0,1),且服从离散或连续的均匀分布。
可见,当序列X中的元素时,发送端进行幅度调制,使其幅度均为1,而相位是[0,1)的均匀分布。也就是说,发送端是基于幅度调制方式,生成序列X中的每个元素。
另一种可选的实施方式中,序列X中的元素k为大于或等于0,且小于或等于N-1的整数,i为虚数单位。l为大于或等于0,且小于或等于M-1的整数。M为相移键控的阶数,且为大于或等于1的整数。
可见,当序列X中的元素时,X序列中每个元素的幅度均恒定为1,发送端基于l对相位进行调制。从而,发送端是基于相位调制方式,生成序列X中的每个元素。
又一种可选的实施方式中,序列X中的元素xk表征第一星座点中的一个星座点,第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点,k为大于或等于0,且小于或等于N-1的整数。
如图4所示,图4为不同调制阶数的QAM调制的星座点位置。由图4可知,在不同调制阶数下的QAM调制中,不同星座点表征的幅度和相位均不相同。第一星座点是基于图4中的星座点确定的。对M阶QAM的星座点进行能量归一化是指:将M阶QAM的每个星座点的值除以该M阶QAM的星座点中所有星座点能量的平均值的平方根,使得
可见,xk还可以表征归一化后的QAM的星座点中的一个星座点。归一化后的QAM的星座点中,不同星座点的幅度和相位均不相同。因此,该方式下,发送端是基于QAM调制方式,生成序列X中的每个元素,即采用调幅和调相方式生成序列X。
由上述可知,发送端可基于不同调制方式确定包含工作带宽内的子载波个数的序列X,即可灵活采用不同调制方式从时域上确定序列X。
由上述三种确定序列X的实施方式可知,发送端基于调制方式从时域确定的序列X中的元素的幅度为1或-1,即序列X中元素的幅度在1或-1中选择,其变化为固定的。由于PAPR是指时域信号的峰值功率与平均功率的比值,从而该方式可使得确定的序列X具有降低的PAPR。
S102.发送端对序列X进行快速傅里叶FFT变换,并将FFT变换后的结果进行归一化处理,获得序列Y。
其中,序列Y为(y0,y1,...,yN-1)。
发送端对序列X进行快速傅里叶变换(fast fourier transform,FFT),将时域序列X变换为频域序列。发送端再对FFT变换后的结果进行归一化处理,获得序列Y,使得序列Y为频域上幅度小于1的频域序列。
由S101可知,发送端确定的时域序列X具有较低的PAPR,从而发送端基于序列X获得的序列Y也可具有较低的PAPR。
可选的,S102也可替换为:发送端对序列X取共轭,然后对共轭后的序列进行逆向快速傅里叶变换(inverse fast fourier transform,IFFT),再对IFFT变换后的结果进行归一化处理,获得序列Y。也就是说,发送端还可基于序列X的共轭和IFFT变换,获得序列Y。
本申请不限定基于序列X确定序列Y的实施方式,即发送端可灵活选择上述实施方式基于序列X确定序列Y。
S103.发送端基于序列Y确定安全长训练符号LTF序列M。
可理解的,发送端是基于序列Y和发送端的工作带宽的载波规划确定安全LTF序列M的。载波规划是通信协议中对不同带宽内的各子载波承载数据或不承载数据的规划。
例如,802.11ax协议中对80MHz带宽内的子载波规划图如图5所示。80MHz带宽内可包括左端边缘的12个非承载子载波、右端边缘的11个非承载子载波,以及中间996个承载子载波(即图5中的996 usable tones)和5个直流(direct,DC)子载波。承载子载波是指可用于传输数据的子载波,非承载子载波是指不可用于传输数据的子载波。再例如,80MHz带宽内可包括左端边缘的12个非承载子载波、右端边缘的11个非承载子载波,以及左右两部 分的242个承载子载波、中间两部分13个承载子载波和7个直流子载波。80MHz带宽内的子载波的其他规划方式可如802.11ax协议中所示,不再细述。
一种可选的实施方式中,发送端的工作带宽中的子载k为非承载子载波时,安全LTF序列M中的元素mk等于零;发送端的工作带宽内的子载k为承载子载波时,安全LTF序列M中的元素mk=f(x),x=yn,yn为序列Y中第n个元素;n=k+S,k为大于或等于0,且小于或等于N-1的整数。S为大于或等于0的预设值。N为所述发送端的工作带宽中的子载波个数。n为大于或等于0,且小于或等于N-1的整数。
也就是说,发送端在工作带宽中的某一子载波为不承载数据的子载波时,确定该子载波位置处的安全LTF序列M的元素为零;在工作带宽中的某一子载波为承载数据的子载波时,基于映射函数f(x)确定该子载波位置处的安全LTF序列M的元素,该映射函数f(x)的变量与上述序列Y中的元素有关。
一种可选的实施方式中,f(x)=ei*Angle(x),Angle(x)为复数x的相位角。相位角的取值范围为[-π,π],i为虚数单位。x=|x|*exp(j*Angle(x))。
可见,当f(x)为ei*Angle(x)时,发送端是将序列Y的幅度调制为1,其序列Y中每个元素的相位不做处理。因此,发送端是基于序列Y和幅度调制,将序列Y映射为安全LTF序列M。
另一种可选的实施方式中,Angle(x)为复数x的相位角,相位角的取值范围为[-π,π]。M为相移键控的阶数,且为大于或等于1的整数。i为虚数单位。x=|x|*exp(j*Angle(x))。
可见,上述映射函数为ei*Angle(x)时,发送端是将序列Y的幅度恒定为1,通过调节序列Y中元素的相位,将序列Y映射为安全LTF序列M。
又一种可选的实施方式中,Yl表征第一星座点中的一个星座点,第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点。l为大于或等于1,且小于或等于M的整数。M为大于1的整数。i为虚数单位。
可见,上述映射函数为时,|x-Yl|代表的是离序列Y中每个元素最近的QAM星座点。从而,发送端是将序列Y中的每个元素映射为该元素离最近的QAM星座点上,即将其映射到QAM星座点中的其中一个星座点,从而生成安全LTF序列M。
也就是说,发送端可基于获得序列Y后,可再基于不同调制方式,将序列Y映射为安全LTF序列M。
本申请实施例中,不论发送端基于何种方式确定序列X,发送端均可灵活选择上述三种实施方式基于序列Y确定安全LTF序列M。但申请实施例不限定上述三种基于序列Y确定安全LTF序列的实施方式。
本申请实施例中,发送端基于调制方式从时域确定的序列X具有较低的PAPR,从而基于序列X确定的安全LTF序列具有较低的PAPR,即可有效降低安全LTF序列的PAPR,进而有利于提高测距和感知性能。
示例性的,本申请实施例以802.11ax协议中带宽为80MHz的子载波,且S103中的映射函数f(x)=ei*Angle(x)为例,获得目前基于调制方式从频域生成的随机序列的PAPR分布和采用本申请实施例所提出的安全LTF序列确定方法100生成的安全LTF序列的PAPR对比结果如图6所示。图6中的累计分布函数(cumulative distribution function,CDF)统计的是PAPR的误码率小于某值的概率。从图6中可以看出,当CDF固定时,采用本申请实施例生成的安全LTF序列的PAPR远小于采用目前基于调制方式从频域生成方法确定的随机序列的PAPR。
示例性的,本申请实施例以802.11ax协议中带宽为80MHz的子载波,且S103中的映射函数为例,获得目前基于调制方式从频域生成的随机序列的PAPR,以及与采用本申请实施例所提出的安全LTF序列确定方法100,且分别基于二进制相移控键(binary phase shift keying,BPSK)、正交相移控键(quadrature phase shift keying,QPSK)、8PSK、16PSK、32PSK、64PSK调制生成的安全LTF序列的PAPR对比结果,分别如图7(a)、图7(b)、图7(c)、图7(d)、图7(e)、图7(f)所示。从图7(a)至图7(f)可以看出,除采用本申请实施例所提出的安全LTF序列确定方法100且基于BPSK调制生成的安全LTF序列除外,本申请实施例采用其他PSK调制方式所构造的MPSK映射生成的安全LTF序列均具有较低的PAPR。
示例性的,本申请实施例以802.11ax协议中带宽为80MHz的子载波,且S103中的映射函数获得目前基于调制方式从频域生成的随机序列的PAPR,以及与采用本申请实施例所提出的安全LTF序列确定方法100,且分别基于4QAM、16QAM、64QAM、256QAM、1024QAM、4096QAM调制方式生成的安全LTF序列的PAPR对比结果,分别如图8(a)、图8(b)、图8(c)、图8(d)、图8(e)、图8(f)所示。从图8(a)至图8(f)可以看出,与目前基于调制方式从频域生成的随机序列相比,本申请实施例基于QAM调制方式所构造的QAM映射生成的安全LTF序列均具有较低的PAPR。
可见,与目前基于调制方式从频域生成的随机序列相比,采用本申请实施例提出的安全LTF序列确定方法所生成的安全LTF序列均具有较低的PAPR,进而有利于可保障安全LTF序列的安全性。这是由于PAPR是指时域信号的峰值功率与平均功率的比值,发送端基于调制方式从时域生成的序列X具有较低的PAPR,从而基于序列X生成的安全LTF序列也具有较低的PAPR。然而,若发送端基于调制方式从频域生成安全LTF序列,生成的安全LTF序 列在频域幅度值变化较为固定,但计算PAPR时,需从频域转换到时域计算,从而可能会使得该安全LTF序列具有较高的PAPR。
本申请实施例还提出一种安全LTF序列确定方法200,图9是该安全LTF序列确定方法200的流程示意图。该安全LTF序列确定方法200也从发送端的角度进行阐述。该安全LTF序列确定方法200包括但不限于以下步骤:
S201.发送端确定第一安全长训练符号LTF序列。
本申请实施例中,不限定发送端确定第一安全LTF序列的实施方式。例如,发送端可采用目前的频域方法确定第一安全LTF序列。再例如,发送端也可采用上述安全LTF序列确定方法100中的方法确定第一安全LTF序列。
S202.发送端在第一安全LTF序列的峰值平均功率比PAPR大于或等于PAPR阈值时,确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。
该PAPR阈值可以是网络设备配置的,也可以是预定义的。该PAPR阈值可以是基于测距和感知性能确定的,该PAPR阈值可保障测距和感知性能在一定范围内。
发送端在第一安全LTF序列的PAPR大于或等于PAPR阈值时,确定不满足PAPR阈值条件。若发送端采用该第一安全LTF序列进行测距和感知,则会导致测距和感知性能较差。因此,发送端重新确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。从而发送端进行测距和感知所采用的安全LTF序列是PAPR小于PAPR阈值的第二安全LTF序列,有利于保障测距和感知性能。
可选的,若发送端再次确定的安全LTF序列的PAPR还是大于或等于PAPR阈值,则发送端继续重新确定安全LTF序列,直至确定的安全LTF序列的PAPR小于PAPR阈值时,采用该安全LTF序列进行测距和感知。或者,发送端一直重新确定安全LTF序列,直至确定安全LTF序列的次数大于预设阈值时,停止确定安全LTF序列的步骤。
可见,本申请实施例中,发送端确定的安全LTF序列的PAPR在PAPR阈值范围内,可确保进行测距和感知所采用的安全LTF序列的PAPR较低,从而可提高测距和感知性能。
如图10所示,本申请实施例提供了一种通信装置1000。该通信装置1000可以是发送端的部件(例如,集成电路,芯片等等)。该通信装置1000也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置1000可以包括:通信单元1001和处理单元1002。可选的,还可以包括存储单元1003。
在一种可能的设计中,如图10中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置1000具备实现本申请实施例描述的发送端的功能。比如,所述通信装置1000包括发送端执行本申请实施例描述的发送端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,一种通信装置1000可包括:处理单元1002和通信单元1001,通信单元1001用于进行数据/信令收发;
处理单元1002,用于基于调制方式确定序列X;
处理单元1002,还用于对所述序列X进行快速傅里叶FFT变换,并将所述FFT变换后的结果进行归一化处理,获得序列Y;
处理单元1002,还用于基于所述序列Y确定安全长训练符号LTF序列M。
一种可选的实现方式中,所述序列X中的元素所述k为大于或等于0,且小于或等于N-1的整数;所述i为虚数单位;所述θk属于[0,1),且服从离散或连续的均匀分布;所述N为所述发送端的工作带宽中的子载波个数。
另一种可选的实现方式中,所述序列X中的元素所述k为大于或等于0,且小于或等于N-1的整数;所述i为虚数单位;所述l为大于或等于0,且小于或等于M-1的整数;所述M为相移键控的阶数,且为大于或等于1的整数;所述N为所述发送端的工作带宽中的子载波个数。
又一种可选的实现方式中,所述序列X中的元素xk表征第一星座点中的一个星座点,所述第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点;所述k为大于或等于0,且小于或等于N-1的整数;所述N为所述发送端的工作带宽中的子载波个数。
一种可选的实现方式中,所述发送端的工作带宽中的子载k为非承载子载波时,所述安全LTF序列M中的元素mk等于零;
所述发送端的工作带宽内的子载k为承载子载波时,所述安全LTF序列M中的元素mk=f(x),x=yn,yn为序列Y中第n个元素;n=k+S,
所述k为大于或等于0,且小于或等于N-1的整数;所述S为大于或等于0的预设值;所述N为所述发送端的工作带宽中的子载波个数;所述n为大于或等于0,且小于或等于N-1的整数。
一种可选的实现方式中,所述f(x)=ei*Angle(x),Angle(x)为复数x的相位角;所述相位角的取值范围为[-π,π];所述i为虚数单位。
另一种可选的实现方式中,所述Angle(x)为复数x的相位角;所述相位角的取值范围为[-π,π];所述M为相移键控的阶数,且为大于或等于1的整数;所述i为虚数单位。
又一种可选的实现方式中,所述所述Yl表征第一星座点中的一个星座点,所述第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点;所述l为大于或等于1,且小于或等于M的整数;所述M为大于1的整数;所述i为虚数单位。
在另一种可能的设计中,一种通信装置1000可包括:处理单元1002和通信单元1001,通信单元1001用于进行数据/信令收发;
处理单元1002,用于确定第一安全长训练符号LTF序列;
处理单元1002,还用于在第一安全LTF序列的PAPR大于或等于峰值平均功率比PAPR阈值时,确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置1100,图11为通信装置1100的结构示意图。所述通信装置1100可以是发送端,也可以是支持发送端实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1100可以包括一个或多个处理器1101。所述处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(Central Processing Unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,分布单元(distributed unit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1100中可以包括一个或多个存储器1102,其上可以存有指令1104,所述指令可在所述处理器1101上被运行,使得所述通信装置1100执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。所述处理器1101和存储器1102可以单独设置,也可以集成在一起。
存储器1102可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、ROM或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。
可选的,所述通信装置1100还可以包括收发器1105、天线1106。所述收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1100为发送端:处理器1101用于执行上述安全LTF序列确定方法100中的S101、S102、S103,以及用于执行安全LTF序列确定方法200中的S201、S202。
另一种可能的设计中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1101可以存有指令1103,指令1103在处理器1101上运行,可使得所述通信装置1100执行上述方法实施例中描述的方法。指令1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
又一种可能的设计中,通信装置1100可以包括电路,所述电路可以实现前述方法实施例 中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequencyintegrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是发送端,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(modulator);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片1200包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。该处理器1201可以是逻辑电路,该接口1202可以是输入输出接口、输入接口或输出接口。所述芯片1200还可包括存储器1203。
一种设计中,对于芯片用于实现本申请实施例中发送端的功能的情况:接口1202用于进行输出或接收。
所述处理器1201,用于基于调制方式确定序列X;
所述处理器1201,还用于对所述序列X进行快速傅里叶FFT变换,并将所述FFT变换后的结果进行归一化处理,获得序列Y;
所述处理器1201,还用于基于所述序列Y确定安全长训练符号LTF序列M。
另一种设计中,对于芯片用于实现本申请实施例中发送端的功能的情况:
所述处理器1201,用于确定第一安全长训练符号LTF序列;
所述处理器1201,还用于在第一安全LTF序列的峰值平均功率比PAPR大于或等于PAPR阈值时,确定第二安全LTF序列,第二安全LTF序列的PAPR小于PAPR阈值。
本申请实施例还提供一种通信装置1300,图13为通信装置1300的结构示意图。该通信装置1300可以是本申请实施例中的作为发送端的AP或STA。通信装置1300包括介质访问控制(media access control,MAC)层1301、物理(physics,PHY)层1302、射频/天线1303。射频/天线1303用于发送或接收数据。通信装置1300还包括存储器1304、调度器1306、控制器1305、处理器1307,存储器1304、调度器1306、控制器1305、处理器1307可相连接。存储器1304用于存储信令信息,以及预定义的预设值等。处理器1307用于解析信令信息,处理相关数据。
本申请实施例中通信装置1100、芯片1200、通信装置1300还可执行上述通信装置1000 所述的实现方式。本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例和上述安全LTF序列确定方法100和安全LTF序列确定方法200所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述安全LTF序列确定方法100和安全LTF序列确定方法200所示实施例的描述,不再赘述。
本申请还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
本申请还提供了一种通信系统,该系统包括上述方面的至少两个AP、至少两个STA。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与AP、STA进行交互的其他设备。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种安全LTF序列确定方法,其特征在于,所述方法包括:
    发送端基于调制方式确定序列X;
    所述发送端对所述序列X进行快速傅里叶FFT变换,并将所述FFT变换后的结果进行归一化处理,获得序列Y;
    所述发送端基于所述序列Y确定安全长训练符号LTF序列M。
  2. 根据权利要求1所述的方法,其特征在于,所述序列X中的元素所述k为大于或等于0,且小于或等于N-1的整数;所述i为虚数单位;所述θk属于[0,1),且服从离散或连续的均匀分布;所述N为所述发送端的工作带宽中的子载波个数。
  3. 根据权利要求1所述的方法,其特征在于,所述序列X中的元素所述k为大于或等于0,且小于或等于N-1的整数;所述i为虚数单位;所述l为大于或等于0,且小于或等于M-1的整数;所述M为相移键控的阶数,且为大于或等于1的整数;所述N为所述发送端的工作带宽中的子载波个数。
  4. 根据权利要求1所述的方法,其特征在于,所述序列X中的元素xk表征第一星座点中的一个星座点,所述第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点;所述k为大于或等于0,且小于或等于N-1的整数;所述N为所述发送端的工作带宽中的子载波个数。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述发送端的工作带宽中的子载k为非承载子载波时,所述安全LTF序列M中的元素mk等于零;
    所述发送端的工作带宽内的子载k为承载子载波时,所述安全LTF序列M中的元素mk=f(x),x=yn,yn为序列Y中第n个元素;n=k+S,
    所述k为大于或等于0,且小于或等于N-1的整数;所述S为大于或等于0的预设值;所述N为所述发送端的工作带宽中的子载波个数;所述n为大于或等于0,且小于或等于N-1的整数。
  6. 根据权利要求5所述的方法,其特征在于,
    所述f(x)=ei*Angle(x),Angle(x)为复数x的相位角;所述相位角的取值范围为[-π,π];所述i为虚数单位。
  7. 根据权利要求5所述的方法,其特征在于,
    所述Angle(x)为复数x的相位角;所述相位角的取值范围为[-π,π];所述M为相移键控的阶数,且为大于或等于1的整数;所述i为虚数单位。
  8. 根据权利要求5所述的方法,其特征在于,
    所述所述Yl表征第一星座点中的一个星座点,所述第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点;所述l为大于或等于1,且小于或等于M的整数;所述M为大于1的整数;所述i为虚数单位。
  9. 一种通信装置,其特征在于,所述装置包括处理单元和通信单元,通信单元用于进行数据/信令收发;
    处理单元,用于基于调制方式确定序列X;
    处理单元,还用于对所述序列X进行快速傅里叶FFT变换,并将所述FFT变换后的结果进行归一化处理,获得序列Y;
    处理单元,还用于基于所述序列Y确定安全长训练符号LTF序列M。
  10. 根据权利要求9所述的装置,其特征在于,所述序列X中的元素所述k为大于或等于0,且小于或等于N-1的整数;所述i为虚数单位;所述θk属于[0,1),且服从离散或连续的均匀分布;所述N为所述发送端的工作带宽中的子载波个数。
  11. 根据权利要求9所述的装置,其特征在于,所述序列X中的元素所述k为大于或等于0,且小于或等于N-1的整数;所述i为虚数单位;所述l为大于或等于0,且小于或等于M-1的整数;所述M为相移键控的阶数,且为大于或等于1的整数;所述N为所述发送端的工作带宽中的子载波个数。
  12. 根据权利要求9所述的装置,其特征在于,所述序列X中的元素xk表征第一星座点中的一个星座点,所述第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点;所述k为大于或等于0,且小于或等于N-1的整数;所述N为所述发送端的工作带宽中的子载波个数。
  13. 根据权利要求9至12任一项所述的装置,其特征在于,
    所述发送端的工作带宽中的子载k为非承载子载波时,所述安全LTF序列M中的元素mk等于零;
    所述发送端的工作带宽内的子载k为承载子载波时,所述安全LTF序列M中的元素mk=f(x),x=yn,yn为序列Y中第n个元素;n=k+S,
    所述k为大于或等于0,且小于或等于N-1的整数;所述S为大于或等于0的预设值;所述N为所述发送端的工作带宽中的子载波个数;所述n为大于或等于0,且小于或等于N-1的整数。
  14. 根据权利要求13所述的装置,其特征在于,
    所述f(x)=ei*Angle(x),Angle(x)为复数x的相位角;所述相位角的取值范围为[-π,π];所述i为虚数单位。
  15. 根据权利要求13所述的装置,其特征在于,
    所述Angle(x)为复数x的相位角;所述相位角的取值范围为[-π,π];所述M为相移键控的阶数,且为大于或等于1的整数;所述i为虚数单位。
  16. 根据权利要求13所述的装置,其特征在于,
    所述所述Yl表征第一星座点中的一个星座点,所述第一星座点是对M阶正交振幅调制QAM的星座点进行能量归一化后的星座点;所述l为大于或等于1,且小于或等于M的整数;所述M为大于1的整数;所述i为虚数单位。
  17. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1至8任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储有指令,当其在计算机上运行时,使得权利要求1至8任一项所述的方法被执行。
  19. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得权利要求1至8任一项所述的方法被执行。
PCT/CN2023/081778 2022-03-17 2023-03-16 一种安全ltf序列确定方法及相关装置 WO2023174353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210263999.3A CN116800574A (zh) 2022-03-17 2022-03-17 一种安全ltf序列确定方法及相关装置
CN202210263999.3 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023174353A1 true WO2023174353A1 (zh) 2023-09-21

Family

ID=88022337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081778 WO2023174353A1 (zh) 2022-03-17 2023-03-16 一种安全ltf序列确定方法及相关装置

Country Status (2)

Country Link
CN (1) CN116800574A (zh)
WO (1) WO2023174353A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995692A (zh) * 2017-12-30 2019-07-09 华为技术有限公司 发送数据的方法及装置
CN111431829A (zh) * 2019-01-09 2020-07-17 华为技术有限公司 基于序列的信号处理方法与装置
US20210399933A1 (en) * 2020-06-22 2021-12-23 Qualcomm Incorporated Long training field with reduced peak-to-average power ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995692A (zh) * 2017-12-30 2019-07-09 华为技术有限公司 发送数据的方法及装置
CN111431829A (zh) * 2019-01-09 2020-07-17 华为技术有限公司 基于序列的信号处理方法与装置
US20210399933A1 (en) * 2020-06-22 2021-12-23 Qualcomm Incorporated Long training field with reduced peak-to-average power ratio

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GENADIY TSODIK (HUAWEI TECHNOLOGIES): "Further Thoughts on EHT-LTF PAPR in 802.11be", IEEE DRAFT; 11-20-0651-00-00BE-FURTHER-THOUGHTS-ON-EHT-LTF-PAPR-IN-802-11BE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 0, 11 May 2020 (2020-05-11), Piscataway, NJ USA , pages 1 - 15, XP068167845 *
SHEN, BINGSHENG ET AL.: "A Construction of Binary Golay Complementary Sets Based on Even-Shift Complementary Pairs", IEEE ACCESS, vol. 8, 18 February 2020 (2020-02-18), XP011773303, DOI: 10.1109/ACCESS.2020.2972598 *

Also Published As

Publication number Publication date
CN116800574A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US11108608B2 (en) Information transmission method and apparatus
CN112398773B (zh) 数据传输方法及其装置
WO2021259177A1 (zh) 数据调制方法、装置、设备及存储介质
KR102104947B1 (ko) 무선 근거리 네트워크에 대한 정보 송신 방법 및 장치
WO2019079936A1 (zh) 一种选择波形的方法及设备
CN108289069A (zh) 一种参考信号的传输方法、发送端和接收端
WO2024087608A1 (zh) 一种多载波背向散射通信方法、装置及系统
WO2023174353A1 (zh) 一种安全ltf序列确定方法及相关装置
WO2023040621A1 (zh) 一种通信方法及相关装置
Mefenza et al. FPGA implementation of subcarrier index modulation OFDM transceiver
WO2020020330A1 (zh) 一种数据调制方法、装置及计算机存储介质
WO2023066117A1 (zh) 一种数据传输方法及其装置
WO2023197931A1 (zh) 一种信号传输方法及装置
WO2023241319A1 (zh) 一种通信方法及通信装置
US20230327936A1 (en) Phase noise suppression method and related apparatus
WO2023142825A1 (zh) 一种数据处理方法、装置及相关设备
US20240106616A1 (en) Multi-user communication method and related communication apparatus
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2022206634A1 (zh) 一种相位噪声的确定方法及相关装置
WO2023016433A1 (zh) 参考信号配置方法、设备和存储介质
WO2024088065A1 (zh) 一种通信方法及装置
WO2023207762A1 (zh) 一种通信的方法及设备
CN114679361B (zh) 一种ofdm调制方法及通信装置
WO2012109930A1 (zh) 基带数据的传输方法、装置及系统
WO2023125338A1 (zh) 一种信息传输方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769855

Country of ref document: EP

Kind code of ref document: A1