WO2024088065A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024088065A1
WO2024088065A1 PCT/CN2023/124100 CN2023124100W WO2024088065A1 WO 2024088065 A1 WO2024088065 A1 WO 2024088065A1 CN 2023124100 W CN2023124100 W CN 2023124100W WO 2024088065 A1 WO2024088065 A1 WO 2024088065A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm subcarriers
information
fsk
ofdm
frequency
Prior art date
Application number
PCT/CN2023/124100
Other languages
English (en)
French (fr)
Inventor
韩超
罗之虎
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024088065A1 publication Critical patent/WO2024088065A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • the third generation partnership project (3GPP) has standardized a series of IoT technologies such as machine type communication (MTC), narrowband IoT (NB-IoT) and reduced capability (RedCap) terminal devices, and more and more IoT devices are being deployed in people's lives.
  • MTC machine type communication
  • NB-IoT narrowband IoT
  • RedCap reduced capability terminal devices
  • the method to reduce device power consumption is to use non-coherent demodulation to receive.
  • the more commonly used non-coherent demodulation methods include frequency shift keying (FSK) modulation.
  • FSK modulation frequency shift keying
  • the present application provides a communication method and apparatus for improving the FSK demodulation performance of low-power devices.
  • the present application provides a communication method, which can be applied to a first device, a functional module in the first device, a processor or a chip in the first device, etc.
  • the method may include: after the first device determines at least two orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) subcarriers, sending a frequency shift keying (frequency shift keying, FSK) signal to a second device through the at least two OFDM subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • FSK frequency shift keying
  • the FSK transmission of the low-power receiver can be made compatible with OFDM, and the FSK demodulation performance can be improved.
  • the frequency domain between each two adjacent OFDM subcarriers of the at least two OFDM subcarriers does not carry information, which can reduce interference information of the FSK signal.
  • the frequency of the FSK signal may be the same as the frequency of the OFDM subcarrier corresponding to the FSK signal, so that FSK transmission can be compatible with OFDM.
  • the FSK signal may occupy one OFDM subcarrier among the at least two OFDM subcarriers within a time unit, so that the first device can successfully send the FSK signal.
  • the at least two OFDM subcarriers are two OFDM subcarriers, and the frequencies of the two OFDM subcarriers may satisfy the following formula:
  • ⁇ f is the frequency interval between the frequencies of the two OFDM subcarriers relative to the center frequencies of the two OFDM subcarriers
  • f0 is the intermediate frequency
  • n is the delay coefficient
  • the first device determines at least two OFDM subcarriers
  • the method may include: the first device may receive first information sent by the second device, and the first information may be used to determine the at least two OFDM subcarriers; the first device may determine the at least two OFDM subcarriers according to the first information; or, the first device may determine the at least two predefined OFDM subcarriers. In this way, the first device can flexibly and accurately determine the at least two OFDM subcarriers, thereby realizing the transmission of FSK signals.
  • the first information may include at least one of the following: the intermediate frequency of the second device, information on whether the second device supports an orthogonal self-delay receiver structure, information on whether the second device supports a fractional delay filter, a delay coefficient supported by the second device, information on whether the second device supports FSK, an order of FSK supported by the second device, the number of subcarriers of at least two OFDM subcarriers supported by the second device, and a bandpass filter parameter of the second device.
  • the first device can accurately determine the at least two OFDM subcarriers through the first information.
  • the FSK signal can be used for the second device to acquire time and/or frequency synchronization, and the at least two OFDM subcarriers can be a first subcarrier set; or, the FSK signal can be used for the second device to acquire data, and the at least two OFDM subcarriers can be a second subcarrier set; wherein the first subcarrier set and the second subcarrier set are different. In this way, appropriate OFDM subcarriers can be selected under different requirements.
  • the FSK signal can be used for the second device to obtain time and/or frequency synchronization, and the delay coefficient used by the second device can be a first delay coefficient; or, the FSK signal can be used for the second device to obtain data, and the delay coefficient used by the second device can be a second delay coefficient; wherein the first delay coefficient and the second delay coefficient are different. In this way, a suitable delay coefficient can be selected under different requirements.
  • the present application provides a communication method, which can be applied to a second device, a functional module in the second device, a processor or chip in the second device, etc.
  • the method may include: after the second device receives an FSK signal sent by the first device through at least two OFDM subcarriers, demodulating the FSK signal.
  • the FSK transmission of the low-power receiver can be made compatible with OFDM, and the FSK demodulation performance can be improved.
  • the frequency domain between each two adjacent OFDM subcarriers of the at least two OFDM subcarriers does not carry information, which can reduce interference information of the FSK signal.
  • the frequency of the FSK signal is the same as the frequency of the OFDM subcarrier corresponding to the FSK signal, so that FSK transmission can be compatible with OFDM.
  • the FSK signal may occupy one OFDM subcarrier among the at least two OFDM subcarriers within a time unit, so that the second device can successfully receive the FSK signal.
  • the at least two OFDM subcarriers are two OFDM subcarriers, and the frequencies of the two OFDM subcarriers satisfy the following formula:
  • ⁇ f is the frequency interval between the frequencies of the two OFDM subcarriers relative to the center frequencies of the two OFDM subcarriers
  • f0 is the intermediate frequency
  • n is the delay coefficient
  • the second device may send first information to the first device, where the first information is used to determine the at least two OFDM subcarriers; or the second device determines the predefined at least two OFDM subcarriers. This allows the first device to flexibly and accurately determine the at least two OFDM subcarriers, thereby achieving transmission of FSK signals.
  • the first information may include at least one of the following: the intermediate frequency of the second device, information on whether the second device supports an orthogonal self-delay receiver structure, information on whether the second device supports a fractional delay filter, a delay coefficient supported by the second device, information on whether the second device supports FSK, an order of FSK supported by the second device, the number of subcarriers of at least two OFDM subcarriers supported by the second device, and a bandpass filter parameter of the second device.
  • the first device can accurately determine the at least two OFDM subcarriers through the first information.
  • the FSK signal can be used for the second device to acquire time and/or frequency synchronization, and the at least two OFDM subcarriers can be a first subcarrier set; or, the FSK signal can be used for the second device to acquire data, and the at least two OFDM subcarriers can be a second subcarrier set; wherein the first subcarrier set and the second subcarrier set are different. In this way, appropriate OFDM subcarriers can be selected under different requirements.
  • the FSK signal can be used for the second device to obtain time and/or frequency synchronization, and when the second device receives the FSK signal, the delay coefficient used can be the first delay coefficient; or, the FSK signal can be used for the second device to obtain data, and when the second device receives the FSK signal, the delay coefficient used can be the second delay coefficient; wherein the first delay coefficient and the second delay coefficient are different. In this way, a suitable delay coefficient can be selected according to different requirements.
  • the present application further provides a communication device, which may be a first device, and which has the function of implementing the first aspect or each possible design example of the first aspect.
  • the function may be implemented by hardware or by hardware. Execute the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, which can execute the detailed description in the above-mentioned first aspect or various possible design examples of the first aspect, which are not repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive signals or data, and to communicate and interact with other devices in the communication system
  • the processor is configured to support the communication device to perform the corresponding functions in the above-mentioned first aspect or each possible design example of the first aspect.
  • the memory is coupled to the processor, and stores the necessary program instructions and data for the communication device.
  • the present application further provides a communication device, which may be a second device, and has the function of implementing the above-mentioned second aspect or each possible design example of the second aspect.
  • the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, which can execute the detailed description of the above-mentioned second aspect or various possible design examples of the second aspect, which are not repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive signals or data, and to communicate and interact with other devices in the communication system
  • the processor is configured to support the communication device to perform the corresponding functions in the above-mentioned second aspect or each possible design example of the second aspect.
  • the memory is coupled to the processor, and stores the necessary program instructions and data for the communication device.
  • an embodiment of the present application provides a communication system, which may include the first device of the first aspect above, and the second device of the second aspect above, etc.
  • a computer-readable storage medium in an embodiment of the present application, and the computer-readable storage medium stores program instructions.
  • the program instructions When the program instructions are executed on a computer, the computer executes the method described in the first aspect of the embodiment of the present application and any possible design thereof, or the second aspect and any possible design thereof.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include a non-transient computer-readable medium, a random-access memory (RAM), a read-only memory (ROM), an electrically erasable programmable read-only memory (EEPROM), a CD-ROM or other optical disk storage, a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of an instruction or data structure and can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM or other optical disk storage a CD-ROM or other optical disk storage
  • disk storage medium or other magnetic storage device or any other medium that can be used to carry or store the desired program code in the form of an instruction or data structure and can be accessed by a computer.
  • an embodiment of the present application provides a computer program product, including computer program codes or instructions.
  • the computer program codes or instructions are run on a computer, the method described in the above-mentioned first aspect or any possible design of the first aspect, or the above-mentioned second aspect or any possible design of the second aspect is executed.
  • the present application also provides a chip, including a processor, which is coupled to a memory and is used to read and execute program instructions stored in the memory so that the chip implements the method described in the above-mentioned first aspect or any possible design of the first aspect, or the above-mentioned second aspect or any possible design of the second aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system provided by the present application.
  • FIG2 is a schematic diagram of a low power consumption receiver provided by the present application.
  • FIG3 is a flow chart of a communication method provided by the present application.
  • FIG4 is a schematic diagram of an OFDM-compatible FSK transmission structure provided by the present application.
  • FIG5 is a schematic diagram of the structure of a communication device provided by the present application.
  • FIG6 is a structural diagram of a communication device provided in the present application.
  • the present application provides a communication method and apparatus for improving the FSK demodulation performance of low-power devices.
  • the method and device are based on the same technical concept. Since the method and device solve the problem in a similar manner, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • At least one means one or more, and more means two or more.
  • At least one of the following or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or plural.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • "/" means “or", for example, a/b means a or b.
  • the communication method provided in the present application can be applied to various communication systems.
  • the embodiments of the present application can be applied to Internet of Things (IoT) networks, backscatter communication systems (also known as passive communication systems) or semi-passive communication systems.
  • IoT Internet of Things
  • the embodiments of the present application can also be applied to other possible communication systems, such as long term evolution (LTE) systems, LTE frequency division duplex (FDD) systems, LTE time division duplex (TDD) systems, advanced long term evolution (LTE-A) systems, universal mobile telecommunication systems (UMTS), worldwide interoperability for microwave access (WiMAX) communication systems, 5G communication systems (such as NR systems), and future sixth generation (6G) communication systems or other future communication systems or networks.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication systems
  • WiMAX worldwide interoperability for microwave access
  • FIG1 shows the architecture of a possible communication system to which the communication method provided by the present application is applicable, and the structure of the communication system may include at least one network device and at least one terminal device.
  • the communication system may include two network devices, network device 1 and network device 2, and eight terminal devices, terminal device 1 to terminal device 8.
  • network device 1 can send information to one or more terminal devices among terminal devices 1 to 6.
  • Network device 1 can send information to one or more terminal devices among terminal devices 7 and 8 through network device 2.
  • terminal devices 4 to 6 can also form a sub-communication system, in which terminal device 5 can send information to one or more terminal devices among terminal devices 4 and 6.
  • Network device 2, terminal device 7 and terminal device 8 can also form a sub-communication system, in which network device 2 can send information to one or more terminal devices among terminal devices 7 and 8.
  • Figure 1 is only a schematic diagram, and the present application does not specifically limit the type of communication system, the number and type of devices included in the communication system, etc.
  • the network device can be a device with wireless transceiver function or a chip that can be set in the network device.
  • the network device includes but is not limited to: LTE base station (eNodeB), NR base station (generation node B, gNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, Wi-Fi) system, wireless relay node, wireless backhaul node, transmission point receiving point (transmission and reception point, TRP), transmission point (transmission point, TP), reader, helper, etc., and can also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a transmission
  • the network device When the network device is a base station, it can be a macro base station, a micro base station, a small base station, or a pole station.
  • the network device can be a network device that supports receiving data transmitted through reflection communication.
  • the network device can also be a network device that supports sending a wake-up signal.
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiments of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a passive terminal device, a passive IoT terminal device, a semi-passive terminal device, a semi-passive IoT terminal device, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, Wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, terminal devices for machine-type communications, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may be a terminal device that supports reflection communication, such as a tag.
  • the terminal device may be a device that supports wake-up receivers or a device that does not support wake-up receivers.
  • the terminal device may also be a chip or chip module (or chip system) that can be set in the above devices.
  • the embodiments of the present application do not limit the application scenarios.
  • terminal devices with wireless transceiver functions and chips that can be set in the aforementioned terminal devices are collectively referred to as terminal devices.
  • the modulation method that controls the frequency change of the carrier with a baseband digital signal is called frequency shift keying modulation.
  • the simplest form is binary frequency shift keying (2FSK).
  • the carrier sends a carrier signal at one of the two frequencies under the control of a digital signal of 1 or 0.
  • the digital signal is 1, the carrier of frequency f1 is connected, and at this time, there is a carrier sent on the f1 transmission channel; when the digital signal is 0, the carrier of frequency f2 is connected, and at this time, there is a carrier sent on the f2 transmission channel. Therefore, the receiving end can compare which channel on the f1 and f2 transmission channels has a carrier to determine whether the digital signal 1 or 0 is sent.
  • the transmitted baseband digital signal is similar to the OOK modulation signal.
  • the signal amplitude (or envelope, level or energy, etc.) of frequency point f1 is higher than the signal amplitude (or envelope, level or energy, etc.) of frequency point f2, which is called 2FSK modulation symbol ⁇ 1 ⁇ ; conversely, the signal amplitude (or envelope, level or energy, etc.) of frequency point f1 is lower than the signal amplitude (or envelope, level or energy, etc.) of frequency point f2, which is called 2FSK modulation symbol ⁇ 0 ⁇ .
  • the high and low amplitude of a single frequency signal is defined relative to the high and low amplitude of another frequency signal.
  • the amplitude greater than the amplitude of another frequency signal is called high amplitude
  • the amplitude lower than the amplitude of another frequency signal is called low amplitude.
  • Traditional receivers are mainly used in scenarios with high data rate and reliability requirements. In these scenarios, the signal modulation method is generally complex.
  • Traditional receivers need to use some high-performance and high-precision circuit modules, such as high-linearity mixers, high-precision sampling discrete Fourier transform (DFT)/fast Fourier transform (FFT) modules, and voltage-controlled oscillators that can provide high-precision local oscillators.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • voltage-controlled oscillators that can provide high-precision local oscillators.
  • the power consumption of traditional receivers cannot be reduced.
  • low-power receivers need to meet strict power consumption limits, such as less than 1 milliwatt (mW).
  • mW milliwatt
  • amplitude modulation and/or frequency shift keying modulation low-power receivers can detect signals through envelope detection, thereby avoiding the use of high-power circuit modules, such as FFT modules, high-linearity mixers, high-precision voltage-controlled oscillators, etc. Therefore, low-power receivers can achieve lower power consumption levels.
  • a low-power receiver for frequency shift keying modulation can adopt an orthogonal self-delay structure with an indefinite intermediate frequency as shown in Figure 2.
  • the schematic diagram of the receiver structure shown in Figure 2 can be demodulated and received for 2FSK, and mainly includes a ring oscillator, a mixer, a delay device, and other parts.
  • the RF signal is first converted into a lower frequency intermediate frequency signal through a mixer, and then the signal is divided into two paths, one path remains unchanged, and the other path is mixed with the signal itself after a delay.
  • the delay size meets a certain orthogonal condition, the baseband signal can be demodulated and output through a low-pass filter.
  • this structure When this structure down-converts the RF signal to an intermediate frequency, it needs to provide a local oscillator signal.
  • a ring oscillator In order to simplify the structure and reduce power consumption, a ring oscillator is usually used to generate the local oscillator signal.
  • the frequency offset generated by the ring oscillator is large and varies within a certain range, resulting in an uncertain frequency of the intermediate frequency signal after mixing through the ring oscillator. Therefore, the receiver structure becomes an indefinite intermediate frequency structure. Since the frequency of the local oscillator signal generated by the ring oscillator is inaccurate and will change with time and temperature, an additional frequency calibration circuit may be required to calibrate the frequency of the ring oscillator, as shown in the dotted box in Figure 2.
  • the traditional 2FSK envelope detection receiver requires two narrowband filters to align the modulation frequency for reception and demodulation.
  • one of the main characteristics of the above-mentioned variable intermediate frequency structure is the dynamic deviation of the intermediate frequency signal frequency. Therefore, the traditional narrowband filter-based envelope detection scheme is not applicable because the large frequency deviation may cause the signal frequency to fail to fall within the passband range of the narrowband filter.
  • Figure 2 The low-power receiver shown in the figure delays the signal during demodulation and then mixes it with the original signal, and finally outputs it through a low-pass filter. Therefore, it is called the orthogonal self-delay method, and its basic principle can be as follows:
  • the intermediate frequency signal expression can be: Among them, f0 is the intermediate frequency signal frequency, ⁇ f is the offset between the modulation frequency and the intermediate frequency frequency. After the intermediate frequency signal is delayed by ⁇ , the signal s(t- ⁇ ) is obtained, and then mixed with the signal itself, we can get:
  • the baseband signal sin( ⁇ 2 ⁇ f ⁇ ) is obtained.
  • the original bit stream signal can be determined to be 0 or 1 based on the positive or negative value of the signal.
  • the low-power receiver does not use a voltage-controlled oscillator that can provide a precise local oscillator, a high-sampling FFT module, and a precise narrowband filter.
  • OFDM modulation is a widely used modulation technology.
  • terminal devices that support NR or IoT terminal devices that support standard features such as narrow-band (NB)-IoT can use OFDM as the basic mechanism for signal transmission.
  • NB narrow-band
  • the system bandwidth can be divided into multiple parallel subcarriers. Multiple subcarriers are orthogonal in the time domain and overlap in the frequency domain.
  • the channel is divided into several orthogonal subchannels, and the high-speed data signal is converted into parallel low-speed sub-data streams, which are modulated to each subchannel for transmission.
  • Each subcarrier of OFDM can be considered to be flat fading, which can improve the anti-multipath fading performance.
  • OFDM waveform can be realized through FFT and its inverse process.
  • OFDM in order to resist the memory of the channel and eliminate inter-symbol interference and inter-code interference, OFDM usually introduces a cyclic prefix (CP) as a protection interval.
  • CP cyclic prefix
  • the transmitter maps the information bit stream into PSK or QAM symbols for modulation.
  • the data to be transmitted is first modulated and mapped into a complex symbol, which can be written as a is the magnitude of the sign,
  • the phase of the symbol optionally, the modulation will use quadrature amplitude modulation (QAM) mapping to map the information into a QAM symbol (QAM symbols are also complex symbols).
  • QAM symbols are also complex symbols.
  • serial-to-parallel conversion each QAM symbol is mapped to a different subcarrier.
  • the symbols on different subcarriers are input into the inverse fast Fourier transform (IFFT), and the fast inverse Fourier operation is performed to convert them into a time domain sequence.
  • IFFT inverse fast Fourier transform
  • the tail part of the time domain sequence is copied to the front end of the signal, which is called a cyclic prefix.
  • the main function of the cyclic prefix is to counteract the multipath transmission delay in the wireless channel and eliminate inter-symbol interference and inter-code interference.
  • the transmitter After the cyclic prefix is added, the transmitter will perform digital to analog conversion on the signal and then transmit it after up-conversion.
  • the method to reduce the power consumption of devices is to receive by non-coherent demodulation.
  • the more commonly used non-coherent demodulation methods include FSK modulation.
  • the compatibility of FSK and OFDM is not considered, which may lead to the limitation of FSK application for low-power devices.
  • the FSK orthogonal self-delay low-power receiver with variable intermediate frequency may be incompatible with OFDM, which may lead to poor demodulation performance.
  • an embodiment of the present application provides a communication method to make FSK signal transmission compatible with the OFDM transmission mechanism while reducing interference to traditional receivers.
  • the device to which the method in the embodiment of the present application is applied may have a traditional receiver and a low-power receiver, or may only have a low-power receiver.
  • the communication method in the embodiment of the present application may be applied to the following devices: a device having a traditional receiver and a low-power receiver, where currently only the low-power receiver is turned on and the traditional receiver is turned off; or a device having only a low-power receiver.
  • the communication method provided in the present application is described in detail by taking the first device and the second device as examples. It should be understood that the operation performed by the first device can also be implemented by the processor in the first device, or a chip or a chip system, or a functional module, etc., and the operation performed by the second device can also be implemented by the processor in the second device, or a chip or a chip system, or a functional module, etc., and the present application does not limit this.
  • a communication method provided in an embodiment of the present application is applicable to the communication system shown in Figure 1.
  • the process of the method may include:
  • Step 301 The first device determines at least two OFDM subcarriers.
  • the first device may determine the at least two OFDM subcarriers in the following manner:
  • Mode a1 The first device receives indication information sent by the second device, where the indication information is used to indicate the at least two OFDM subcarriers, and then the first device can determine the at least two OFDM subcarriers according to the indication information.
  • the second device may determine at least two OFDM subcarriers according to its own demodulation performance requirements and then send the indication information to the first device.
  • Mode a2 The first device receives first information sent by the second device, where the first information is used to determine the at least two OFDM subcarriers; further, the first device determines the at least two OFDM subcarriers according to the first information.
  • the first information may be used to indicate the frequency positions of the at least two OFDM subcarriers. Furthermore, the first device may determine the at least two OFDM subcarriers based on the frequency positions of the at least two OFDM subcarriers indicated by the first information. For example, the at least two OFDM subcarriers are two subcarriers, and the first information may be used to indicate that the frequency positions of the two OFDM subcarriers are 45kHz and 180kHz.
  • the first information may be used to indicate the subcarrier indexes of the at least two OFDM subcarriers within the first bandwidth, and then, the first device may determine the at least two OFDM subcarriers according to the subcarrier indexes of the at least two OFDM subcarriers within the first bandwidth.
  • the at least two OFDM subcarriers are two subcarriers
  • the first bandwidth is 1 resource block (RB)
  • the first information may be used to indicate that the indexes of the two OFDM subcarriers within the first bandwidth are 0 and 11.
  • the first information may include at least one of the following information: the intermediate frequency of the second device, information on whether the second device supports an orthogonal self-delay receiver structure, information on whether the second device supports a fractional delay filter, a delay coefficient supported by the second device, information on whether the second device supports FSK, an order of FSK supported by the second device, the number of subcarriers of at least two OFDM subcarriers supported by the second device, and a bandpass filter parameter of the second device.
  • the first device can accurately determine the at least two OFDM subcarriers through the first information.
  • the at least two OFDM subcarriers may be predefined, that is, the first device may determine the at least two predefined OFDM subcarriers.
  • the frequency positions of the at least two OFDM subcarriers may be predefined, and then the first device may determine the at least two OFDM subcarriers based on the predefined frequency positions of the at least two OFDM subcarriers.
  • the at least two OFDM subcarriers are two subcarriers, and the frequency positions of the two OFDM subcarriers may be predefined as 45kHz and 180kHz.
  • subcarrier indexes of the at least two OFDM subcarriers within the first bandwidth may be predefined, and then the first device may determine the at least two OFDM subcarriers according to the subcarrier indexes of the at least two OFDM subcarriers within the first bandwidth.
  • the at least two OFDM subcarriers are two subcarriers
  • the first bandwidth is 1 resource block (RB)
  • the indexes of the two OFDM subcarriers within the first bandwidth may be predefined as 0 and 11.
  • the at least two OFDM subcarriers may be predefined in many other ways, which is not limited in the present application.
  • the at least two OFDM subcarriers may be pre-negotiated between the first device and the second device, that is, the first device may determine the at least two negotiated OFDM subcarriers.
  • the first device can determine the at least two OFDM subcarriers by itself.
  • the first device may notify the second device of the determined at least two OFDM subcarriers.
  • the frequency domain between each adjacent two OFDM subcarriers in the at least two OFDM subcarriers may not carry information to avoid interference.
  • every two adjacent OFDM subcarriers here refer to the multiple OFDM subcarriers, after the frequencies are sorted from small to large or from large to small, and then every two adjacent OFDM subcarriers are arranged in sequence.
  • at least two OFDM subcarriers include subcarrier 1, subcarrier 2, and subcarrier 3.
  • subcarrier 1 and subcarrier 2 are adjacent OFDM subcarriers
  • subcarrier 2 and subcarrier 3 are adjacent OFDM subcarriers
  • the frequency domain range between each adjacent two OFDM subcarriers in the at least two OFDM subcarriers does not carry information is one implementation mode, and optionally, the frequency domain range between each adjacent two OFDM subcarriers in the two OFDM subcarriers also carries information. It can carry information, and this application does not limit this.
  • an OFDM signal may be carried on multiple subcarriers, and the at least two OFDM subcarriers are at least two of the multiple subcarriers.
  • Information of the at least two OFDM subcarriers may refer to OFDM signal parameters.
  • OFDM signal parameters may include but are not limited to the following parameters: subcarrier bandwidth, spectral position of subcarrier, symbol period or CP length, etc.
  • Step 302 The first device sends an FSK signal to the second device through the at least two OFDM subcarriers.
  • the second device receives the FSK signal sent by the first device through the at least two OFDM subcarriers.
  • Step 303 The second device demodulates the FSK signal.
  • the first device sends an FSK signal to the second device through the at least two OFDM subcarriers. It can be understood that the first device performs FSK modulation on the data bits and then maps them to the at least two OFDM subcarriers for sending.
  • the frequency of the FSK signal is the same as the frequency of the OFDM subcarrier corresponding to the FSK signal.
  • the FSK signal may occupy one OFDM subcarrier among the at least two OFDM subcarriers in one time unit. That is, in one time unit, the first device sends the FSK signal through one OFDM subcarrier among the at least two OFDM subcarriers.
  • a time unit may include one or more OFDM symbols, or may include one or more time slots, or may be in other forms, which is not limited in this application.
  • FIG4 shows a schematic diagram of an FSK transmission structure compatible with OFDM, which is explained in combination with a time-frequency grid.
  • an OFDM signal corresponds to a plurality of optional OFDM subcarriers
  • the first device can select two of the OFDM subcarriers to send the FSK signal.
  • the frequencies corresponding to the two OFDM subcarriers can be expressed as ⁇ f 1 , f 2 ⁇
  • the frequency interval of the OFDM subcarrier relative to the center frequencies of the two OFDM subcarriers can be expressed as
  • ⁇ f can also be described as half of the frequency interval between two OFDM subcarriers.
  • the first FSK symbol (FSK signal sent by time unit T1 in the figure) represents a first value (e.g., logic "0")
  • the second and third FSK symbols (FSK signals sent by time units T2 and T3 in the figure) represent a second value (e.g., logic "1").
  • the subcarriers in ⁇ f 1 ,f 2 ⁇ that do not perform FSK transmission do not carry information, that is, the FSK signal occupies one of the OFDM subcarriers in one time unit.
  • the second device may include a low-power receiver, for example, its structure may be shown in FIG2.
  • the present application may introduce a delay coefficient n (n may be an integer greater than or equal to zero) to control the delay strength of the delay device, so that it is not limited to the delay described in 2) above.
  • Delay where the delay coefficient can be understood as the delay coefficient of the delay device in the low-power receiver of the second device.
  • Introducing the delay coefficient can increase the baseband signal output eye diagram and improve the FSK demodulation performance.
  • the low-power receiver usually controls the delay to meet the orthogonal condition between the delayed signal and the original signal.
  • the baseband signal output is Generally speaking, the receiver intermediate frequency f0 is several orders of magnitude higher than the FSK signal frequency interval ⁇ f, resulting in a smaller baseband signal amplitude (eye diagram) and lower transmission reliability.
  • the receiver delay can meet The self-delay signal and the original signal still meet the orthogonality.
  • the baseband signal output can be It can be seen from the results that the delay coefficient n can increase the baseband signal eye diagram and improve the FSK signal demodulation performance.
  • the second device can demodulate the FSK signal by differential self-delay and perform delay operation on the intermediate frequency signal after digital sampling.
  • the delay device can be a discrete digital delay device.
  • the system parameters must satisfy the constraint that the discrete delay point is an integer, which can be expressed as Wherein fs is the sampling rate of the second device; or, fs is the approximation of the delay effect by the second device using a fractional delay filter, in which case there is no integer constraint, and N + is a positive integer.
  • This embodiment does not specifically limit the signal delay implementation method, that is, the above-mentioned discrete digital delay device is only an example of a delay device, and this application does not limit it.
  • the delay coefficient n may be predefined, or may be negotiated between the first device and the second device, or may be set by the first device.
  • the second device may directly indicate the status of the second device, or the second device may determine the status of the second device itself, or the second device may determine the status of the second device in other ways, which is not limited in the present application.
  • the second device When the second device demodulates the FSK signal, it can perform data demodulation by mixing the FSK signal with the original signal after self-delay.
  • the demodulation performance can be reflected in the size of the baseband signal eye diagram, and the eye diagram size is related to the selected OFDM subcarrier, delay coefficient, intermediate frequency and other parameters. Therefore, by adjusting the above FSK transmission parameters, better link performance can be achieved.
  • the at least two OFDM subcarriers are two OFDM subcarriers, and the frequencies of the two OFDM subcarriers may satisfy the following formula 1:
  • ⁇ f is the frequency interval between the frequencies of the two OFDM subcarriers relative to the center frequencies of the two OFDM subcarriers, or ⁇ f can also be described as half of the frequency interval between the two OFDM subcarriers.
  • the frequencies corresponding to the two OFDM subcarriers can be expressed as ⁇ f 1 ,f 2 ⁇ , where f 0 is the intermediate frequency and n is the delay coefficient.
  • the first device can determine the OFDM subcarrier pair within a certain frequency domain resource when performing FSK transmission, and the delay coefficient n should satisfy a positive integer, the above formula 1 may not be strictly equal to 1.
  • the second device can select n by itself according to the two-way subcarrier spacing of the FSK signal and the local intermediate frequency to achieve better demodulation performance.
  • the OFDM subcarrier spacing is 15kHz.
  • the first device selects the FSK frequency within the frequency domain resource of 12 subcarriers, that is, selects two OFDM subcarriers.
  • the above formula 1 may be a relationship that can be satisfied by the OFDM subcarrier and the delay coefficient when there is no frequency offset in the second device.
  • the receiver has an indefinite intermediate frequency structure and cannot provide an accurate local oscillator signal, resulting in a large frequency deviation of the received signal relative to the transmitted signal.
  • frequency deviation estimation and correction are not realized, and the frequency deviation will affect the data demodulation performance, which is specifically manifested as the baseband signal eye diagram size changes periodically with the frequency deviation.
  • appropriate OFDM subcarriers and delay coefficients can be selected based on different requirements.
  • the FSK signal can be used for the second device to obtain time and/or frequency synchronization, and the at least two OFDM subcarriers can be a first subcarrier set; or, the FSK signal can be used for the second device to obtain data, and the at least two OFDM subcarriers can be a second subcarrier set; wherein, the first subcarrier set and the second subcarrier set can be different.
  • the FSK signal can be used by the second device to obtain time and/or frequency synchronization, and the delay coefficient used when the second device receives the FSK signal can be a first delay coefficient; or, the FSK signal can be used by the second device to obtain data, and the delay coefficient used when the second device receives the FSK signal can be a second delay coefficient; wherein, the first delay coefficient and the second delay coefficient are different.
  • the first delay coefficient may be smaller than the second delay coefficient, or the first delay coefficient may be larger than the second delay coefficient, which is not limited in this application.
  • a set of subcarrier pairs can be selected. and a lower delay coefficient n for FSK modulation and demodulation, and send synchronization signals to achieve better anti-frequency deviation performance; in the data transmission stage, another set of subcarrier pairs can be selected FSK modulation and demodulation are performed with a higher delay coefficient n to send data signals so as to achieve better anti-noise performance.
  • the FSK transmission of the low-power receiver can be made compatible with OFDM, and the FSK demodulation performance can be improved.
  • the embodiments of the present application further provide a communication device, as shown in FIG5 , the communication device 500 may include a transceiver unit 501 and a processing unit 502.
  • the transceiver unit 501 is used for the communication device 500 to receive signals (messages or data) or send information (messages or data), and the processing unit 502 is used to control and manage the actions of the communication device 500.
  • the processing unit 502 may also control the steps performed by the transceiver unit 501.
  • the communication device 500 may specifically be the first device in the above-mentioned embodiment, the processor in the first device, or a chip, or a chip system, or a functional module, etc.; or, the communication device 500 may specifically be the second device in the above-mentioned embodiment, the processor of the second device, or a chip, or a chip system, or a functional module, etc.
  • the communication device 500 when used to implement the function of the first device in the embodiment described in Figure 3 above, it may include: the processing unit 502 can be used to determine at least two orthogonal frequency division multiplexing OFDM subcarriers; the transceiver unit 501 can be used to send a frequency shift keying FSK signal to the second device through the at least two OFDM subcarriers.
  • the frequency domain range between every two adjacent OFDM subcarriers among the at least two OFDM subcarriers does not carry information.
  • the frequency of the FSK signal is the same as the frequency of an OFDM subcarrier corresponding to the FSK signal.
  • the FSK signal occupies one OFDM subcarrier among the at least two OFDM subcarriers within a time unit.
  • the at least two OFDM subcarriers are two OFDM subcarriers, and the frequencies of the two OFDM subcarriers satisfy the following formula:
  • ⁇ f is the frequency interval between the frequencies of the two OFDM subcarriers relative to the center frequencies of the two OFDM subcarriers
  • f0 is the intermediate frequency
  • n is the delay coefficient
  • the processing unit 502 may be used to:
  • Control the transceiver unit 501 to receive first information sent by the second device, where the first information is used to determine the at least two OFDM subcarriers; determine the at least two OFDM subcarriers according to the first information; or
  • the at least two predefined OFDM subcarriers are determined.
  • the first information may include at least one of the following: the intermediate frequency of the second device, information on whether the second device supports an orthogonal self-delay receiver structure, information on whether the second device supports a fractional delay filter, a delay coefficient supported by the second device, information on whether the second device supports FSK, the order of FSK supported by the second device, the number of subcarriers of at least two OFDM subcarriers supported by the second device, and bandpass filter parameters of the second device.
  • the FSK signal is used for the second device to obtain time and/or frequency synchronization, and the at least two OFDM subcarriers are a first subcarrier set; or, the FSK signal is used for the second device to obtain data, and the at least two OFDM subcarriers are a second subcarrier set; wherein the first subcarrier set and the second subcarrier set are different.
  • the FSK signal is used by the second device to obtain time and/or frequency synchronization, and the delay coefficient used by the second device is a first delay coefficient; or, the FSK signal is used by the second device to obtain data, and the delay coefficient used by the second device is a second delay coefficient; wherein the first delay coefficient and the second delay coefficient are different.
  • the communication device 500 when used to implement the function of the second device in the embodiment described in Figure 2 above, it may include: the transceiver unit 501 can be used to receive the frequency shift keying FSK signal sent by the first device through at least two orthogonal frequency division multiplexing OFDM subcarriers; the processing unit 502 can be used to demodulate the FSK signal.
  • the frequency domain range between every two adjacent OFDM subcarriers among the at least two OFDM subcarriers does not carry information.
  • the frequency of the FSK signal is the same as the frequency of the OFDM subcarrier corresponding to the FSK signal.
  • the FSK signal occupies one OFDM subcarrier among the at least two OFDM subcarriers within a time unit.
  • the at least two OFDM subcarriers are two OFDM subcarriers, and the frequencies of the two OFDM subcarriers satisfy the following formula:
  • ⁇ f is the frequency interval between the frequencies of the two OFDM subcarriers relative to the center frequencies of the two OFDM subcarriers
  • f0 is the intermediate frequency
  • n is the delay coefficient
  • the transceiver unit 501 may also be used to send indication information to the first device, where the indication information is used to indicate the at least two OFDM subcarriers; or, send first information to the first device, where the first information is used to determine the at least two OFDM subcarriers; or
  • the processing unit 502 is further configured to determine the at least two predefined OFDM subcarriers.
  • the first information may include at least one of the following: the intermediate frequency of the second device, information on whether the second device supports an orthogonal self-delay receiver structure, information on whether the second device supports a fractional delay filter, a delay coefficient supported by the second device, information on whether the second device supports FSK, the order of FSK supported by the second device, the number of subcarriers of at least two OFDM subcarriers supported by the second device, and bandpass filter parameters of the second device.
  • the FSK signal is used for the second device to obtain time and/or frequency synchronization, and the at least two OFDM subcarriers are a first subcarrier set; or, the FSK signal is used for the second device to obtain data, and the at least two OFDM subcarriers are a second subcarrier set; wherein the first subcarrier set and the second subcarrier set are different.
  • the FSK signal is used by the second device to obtain time and/or frequency synchronization, and when the transceiver unit 501 receives the FSK signal, the delay coefficient used is a first delay coefficient; or, the FSK signal is used by the second device to obtain data, and when the transceiver unit 501 receives the FSK signal, the delay coefficient used is a second delay coefficient; wherein the first delay coefficient and the second delay coefficient are different.
  • each functional unit in the embodiments of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) or a processor (processor) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.
  • the embodiments of the present application further provide a communication device, as shown in FIG6 , the communication device 600 may include a transceiver 601 and a processor 602.
  • the communication device 600 may further include a memory 603.
  • the memory 603 may be disposed inside the communication device 600 or outside the communication device 600.
  • the processor 602 may control the transceiver 601 to receive and send information, messages or data, etc.
  • the processor 602 may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and a NP.
  • the processor 602 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the transceiver 601, the processor 602 and the memory 603 are interconnected.
  • the transceiver 601, the processor 602 and the memory 603 are interconnected via a bus 604;
  • the bus 604 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may be divided into an address bus, a data bus, a control bus and the like.
  • FIG6 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
  • the memory 603 is used to store programs, etc.
  • the program may include a program code, and the program code includes a computer operation instruction.
  • the memory 603 may include a RAM, and may also include a non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 602 executes the application stored in the memory 603 to implement the above functions, thereby realizing the functions of the communication device 600.
  • the communication device 600 may be the first device in the above embodiment; or may be the second device in the above embodiment.
  • the transceiver 601 can implement the transceiver operation performed by the first device in the embodiment shown in FIG3; the processor 602 can implement other operations except the transceiver operation performed by the first device in the embodiment shown in FIG3.
  • the processor 602 can implement other operations except the transceiver operation performed by the first device in the embodiment shown in FIG3.
  • the transceiver 601 when the communication device 600 implements the function of the second device in the embodiment shown in FIG. 3 , the transceiver 601
  • the transceiver operation performed by the second device in the embodiment shown in FIG3 can be implemented; the processor 602 can implement other operations except the transceiver operation performed by the second device in the embodiment shown in FIG3.
  • the related descriptions in the embodiment shown in FIG3 above please refer to the related descriptions in the embodiment shown in FIG3 above, which will not be described in detail here.
  • an embodiment of the present application provides a communication system, which may include the first device and the second device involved in the above embodiments.
  • An embodiment of the present application also provides a computer-readable storage medium, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the method embodiment shown in Figure 3 above.
  • An embodiment of the present application further provides a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application also provides a chip, including a processor, which is coupled to a memory and is used to call a program in the memory so that the chip implements the communication method provided by the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a chip, which is coupled to a memory and is used to implement the communication method provided by the method embodiment shown in FIG. 3 above.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种通信方法及装置,用以提升低功耗设备的FSK解调性能。第一设备确定至少两个OFDM子载波后,通过所述至少两个OFDM子载波向第二设备发送FSK信号,第二设备对所述FSK信号进行解调。这样可以实现低功耗接收机的FSK传输与OFDM兼容,可以提升FSK解调性能。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年10月28日提交中国专利局、申请号为202211338391.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着第五代(5th generation,5G)新空口(new radio,NR)系统的普及,物联(internet of things,IoT)通信需求逐渐兴起。其中,第三代移动通信标准化组织(3rd generation partnership project,3GPP)标准化了机器类通信(machine type communication,MTC)、窄带IoT(narrow-band IoT,NB-IoT)和缩短能力(reduced capability,RedCap)终端设备等一系列物联网技术,越来越多的物联设备被部署在人们的生活中。而随着物联通信需求的进一步增长,降低设备功耗成为延长续航的重要手段,而无线通信收发器则是设备中较耗电的组件之一。为进一步满足物联需求,需要支持更小电池甚至免电池、极小功耗和极地成本特性的物联设备,或者设计一种降低无线电收发器功耗的方法,进而来克服物联设备的成本、尺寸、功耗等的限制问题。例如,针对低功耗物联设备,降低设备功耗的方法是采用非相干解调的方式接收,较常用的非相干解调的方式包括频移键控(frequency shift keying,FSK)调制等。然而目前,针对低功耗设备采用FSK调制的方法时,解调性能较差。
发明内容
本申请提供一种通信方法及装置,用以提升低功耗设备的FSK解调性能。
第一方面,本申请提供了一种通信方法,该方法可以应用于第一设备、第一设备中的一个功能模块、第一设备中的处理器或芯片等。该方法可以包括:第一设备确定至少两个正交频分复用(orthogonal frequency division multiplexing,OFDM)子载波后,通过所述至少两个OFDM子载波向第二设备发送频移键控(frequency shift keying,FSK)信号。
通过上述方法,可以实现低功耗接收机的FSK传输与OFDM兼容,可以提升FSK解调性能。
在一个可能的设计中,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息。这样可以减少FSK信号的干扰信息。
在一个可能的设计中,所述FSK信号的频率与所述FSK信号对应的OFDM子载波的频率可以相同。这样可以实现FSK传输与OFDM兼容。
在一个可能的设计中,所述FSK信号在一个时间单元内可以占用所述至少两个OFDM子载波中的一个OFDM子载波。这样第一设备可以成功发送FSK信号。
在一个可能的设计中,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率可以满足以下公式:
其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,f0为中频频率,n为时延系数。
通过上述方法,可以提高FSK解调性能。
在一个可能的设计中,所述第一设备确定至少两个OFDM子载波,方法可以包括:所述第一设备可以接收所述第二设备发送的第一信息,所述第一信息可以用于确定所述至少两个OFDM子载波;所述第一设备可以根据所述第一信息确定所述至少两个OFDM子载波;或者,所述第一设备可以确定预定义的所述至少两个OFDM子载波。这样第一设备可以灵活且准确地确定所述至少两个OFDM子载波,进而实现FSK信号的传输。
在一个可能的设计中,所述第一信息可以包括以下至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。这样,所述第一设备可以通过所述第一信息准确地确定所述至少两个OFDM子载波。
在一个可能的设计中,所述FSK信号可以用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波可以为第一子载波集合;或者,所述FSK信号可以用于所述第二设备获取数据,所述至少两个OFDM子载波可以为第二子载波集合;其中,所述第一子载波集合和所述第二子载波集合不同。这样可以在不同需求下选择合适的OFDM子载波。
在一个可能的设计中,所述FSK信号可以用于所述第二设备获取时间和/或频率同步,所述第二设备采用的时延系数可以为第一时延系数;或者,所述FSK信号可以用于所述第二设备获取数据,所述第二设备采用的时延系数可以为第二时延系数;其中,所述第一时延系数和所述第二时延系数不同。这样可以在不同需求下选择合适的时延系数。
第二方面,本申请提供了一种通信方法,该方法可以应用于第二设备、第二设备中的一个功能模块、第二设备中的处理器或芯片等。该方法可以包括:第二设备通过至少两个OFDM子载波接收第一设备发送的FSK信号后,对所述FSK信号进行解调。
通过上述方法,可以实现低功耗接收机的FSK传输与OFDM兼容,可以提升FSK解调性能。
在一个可能的设计中,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息。这样可以减少FSK信号的干扰信息。
在一个可能的设计中,所述FSK信号的频率与所述FSK信号对应的OFDM子载波的频率相同。这样可以实现FSK传输与OFDM兼容。
在一个可能的设计中,所述FSK信号在一个时间单元内可以占用所述至少两个OFDM子载波中的一个OFDM子载波。这样第二设备可以成功接收FSK信号。
在一个可能的设计中,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率满足以下公式:
其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,f0为中频频率,n为时延系数。
通过上述方法,可以提高FSK解调性能。
在一个可能的设计中,所述第二设备可以向所述第一设备发送第一信息,所述第一信息用于确定所述至少两个OFDM子载波;或者,所述第二设备确定预定义的所述至少两个OFDM子载波。这样可以使第一设备可以灵活且准确地确定所述至少两个OFDM子载波,进而实现FSK信号的传输。
在一个可能的设计中,所述第一信息可以包括以下至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。这样,所述第一设备可以通过所述第一信息准确地确定所述至少两个OFDM子载波。
在一个可能的设计中,所述FSK信号可以用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波可以为第一子载波集合;或者,所述FSK信号可以用于所述第二设备获取数据,所述至少两个OFDM子载波可以为第二子载波集合;其中,所述第一子载波集合和所述第二子载波集合不同。这样可以在不同需求下选择合适的OFDM子载波。
在一个可能的设计中,所述FSK信号可以用于所述第二设备获取时间和/或频率同步,所述第二设备接收所述FSK信号时,采用的时延系数可以为第一时延系数;或者,所述FSK信号可以用于所述第二设备获取数据,所述第二设备接收所述FSK信号时,采用的时延系数可以为第二时延系数;其中,所述第一时延系数和所述第二时延系数不同。这样可以在不同需求下选择合适的时延系数。
第三方面,本申请还提供了一种通信装置,所述通信装置可以是第一设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中的功能。所述功能可以通过硬件实现,也可以通过硬件 执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信号或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是第二设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信号或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述第一方面的第一设备,以及上述第二方面的第二设备等。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法被执行。
第八方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法。
上述第三方面至第八方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者上述第二方面或第二方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种低功耗接收机的示意图;
图3为本申请提供的一种通信方法的流程图;
图4为本申请提供的一种与OFDM兼容的FSK传输结构示意图;
图5为本申请提供的一种通信装置的结构示意图;
图6为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以提升低功耗设备的FSK解调性能。其中,本申请所 述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。“以下至少一项”或其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b,或c中的至少一项,可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中,a,b,c可以是单个,也可以是多个。
本申请的描述中“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。“/”表示“或”,例如a/b表示a或b。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请提供的通信方法可以应用于各类通信系统中,例如,本申请实施例可以适用于物联网(internet of things,IoT)网络、反向散射通信系统(也称无源通信系统)或半无源通信系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、高级的长期演进(LTE advanced,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G通信系统(如NR系统),以及未来的第六代(6th generation,6G)通信系统或未来的其他通信系统或网络等。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
示例性的,图1示出了本申请提供的通信方法适用的一种可能的通信系统的架构,该通信系统的结构中可以包括至少一个网络设备和至少一个终端设备。例如,图1所示,该通信系统中可以包括网络设备1和网络设备2两个网络设备,以及终端设备1到终端设备8八个终端设备。
在该通信系统中,网络设备1可以发送信息给终端设备1~终端设备6中的一个或多个终端设备。网络设备1可以通过网络设备2发送信息给终端设备7和终端设备8中的一个或多个终端设备。此外,终端设备4到终端设备6也可以组成一个子通信系统,在该子通信系统中,终端设备5可以发送信息给终端设备4和终端设备6中的一个或多个终端设备。网络设备2,终端设备7和终端设备8也可以组成一个子通信系统,该子通信系统中,网络设备2可以发送信息给终端设备7和终端设备8中的一个或多个终端设备。应理解,图1仅是一种示意图,本申请并不对通信系统的类型,以及通信系统内包括的设备的数量、类型等进行具体限定。
其中,网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:LTE的基站(eNodeB),NR的基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点接收点(transmission and reception point,TRP)、传输点(transmission point,TP)、读写器(Reader)、助手(Helper)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。网络设备是基站时,可以是宏基站,也可以微基站,小基站,或者杆站。网络设备可以是支持接收通过反射通信传输的数据的网络设备。网络设备也可以是支持发送唤醒信号的网络设备。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、无源终端设备、无源IoT终端设备、半无源终端设备、半无源IoT终端设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、 无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端、机器类通信的终端设备等等。终端设备可以是支持反射通信的终端设备,比如标签。终端设备可以是支持唤醒接收机的设备,也可以是不支持唤醒接收机的设备。终端设备也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请实施例描述的通信系统的架构以及场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解,以下先对本申请实施例涉及的部分用语进行解释说明。
1)频移键控(frequency shift keying,FSK)调制
以基带数字信号控制载波的频率变化的调制方式称为频移键控调制。最简单的形式是,二进制频移键控(2FSK)。
示例性地,2FSK调制中,载波在数字信号1或0的控制下在2个频点中的1个发送载波信号,在数字信号为1的状态下,频率f1的载波接通,此时f1传输信道上有载波发送;在数字信号为0的状态下,频率f2的载波接通,此时f2传输信道上有载波发送。因此,接收端可以比较f1和f2传输通道上哪一路有载波来判断发送的是数字信号1或0。对于每一个频率的传输通道上,传输的基带数字信号和OOK调制信号类似。
将2FSK调制应用在NR或者长期演进(long term evolution,LTE)系统中,则频点f1信号幅度(或者说包络、电平或能量等)高于频点f2信号幅度(或者说包络、电平或能量等)的称为2FSK调制符号{1};反之频点f1信号幅度(或者说包络、电平或能量等)低于频点f2信号幅度(或者说包络、电平或能量等)的称为2FSK调制符号{0}。其中,单个频点信号幅度的高低相对于另外一个频点信号幅度的高低比较去定义的,大于另外一个频点信号幅度称为幅度高,低于另外一个频点信号幅度称为幅度低。
2)传统接收机与低功耗接收机(如FSK正交自时延低功耗接收机)
传统接收机主要应用于对数据速率和可靠性要求较高的场景,这些场景下一般而言,信号调制方式比较复杂,传统接收机需要采用一些性能较高以及精度较高的电路模块,例如高线性度的混频器、高精度采样的离散傅里叶变换(discrete fourier transformation,DFT)/快速傅立叶变换(fast foourier transform,FFT)模块、能提供高精度本振的压控振荡器等。为保证上述电路模块的性能,传统接收机功耗无法降低。
相比传统接收机,低功耗接收机需满足严格的功耗限制,例如小于1毫瓦(mW)。通过幅度调制和/或频移键控调制,低功耗接收机可以通过包络检波的方式对信号进行检测,进而避免采用高功耗的电路模块,例如FFT模块、高线性混频器、高精度压控振荡器等。因此,低功耗接收机可以达到较低功耗水平。
示例性的,针对频移键控调制的低功耗接收机可以采用如图2所示的不定中频的正交自时延结构。图2所示的接收机结构示意图,可以面向2FSK进行解调接收,主要包括环形振荡器、混频器、时延器等部分。射频信号先通过混频器转变为频率较低的中频信号,之后信号分为两路,一路保持不变,另一路经过时延后与信号自身进行混频,当时延大小满足一定正交条件时即可通过低通滤波器解调输出基带信号。
该结构将射频信号下变频为中频时,需为其提供本振信号。为简化结构、降低功耗,通常采用环形振荡器来产生本振信号。然而环形振荡器产生的频率偏移较大,且在一定范围内变化,导致通过环形振荡器进行混频后的中频信号频率是不确定的,因此该接收机结构成为不定中频结构。由于环形振荡器产生的本振信号频率不精确,会随时间和温度变化,可能需要额外的频率校准电路来对环形振荡器的频率进行校准,如图2中虚线框示出。
传统2FSK包络检波接收机需要两路窄带滤波器对准调制频率接收解调。然而上述不定中频结构的主要特性之一是中频信号频率动态偏移,因此传统的基于窄带滤波器式包络检波方案无法适用,因为较大的频偏可能导致信号频率无法落在窄带滤波器的通带范围内。为避免使用两路窄带带通滤波器,图2 所示的低功耗接收机进行解调时将信号延时后再与原本信号混频,最后经过低通滤波器输出,因此称为正交自时延方法,其基本原理可以如下:
中频信号表达式可以为:其中,f0为中频信号频率,Δf为调制频率与中频频率的偏移量。中频信号经过时延τ后得到信号s(t-τ),再与信号自身混频,可以得到:
当时延器控制的时延τ满足正交条件时,正交自混频后的信号经过低通滤波后得到基带信号sin(±2πΔfτ)。根据该信号的正负可判定原始比特流信号为0或1。
从上述低功耗接收机架构和原理可以看出,低功耗接收机没有采用能提供精准本振的压控振荡器、高采样的FFT模块以及精准的窄带滤波器。
3)正交频分复用(orthogonal frequency division multiplexing,OFDM)
OFDM调制是一种广泛采用的调制技术,一般支持NR的终端设备,或者支持窄频带(narrow-band,NB)-IoT等标准特性的物联终端设备,可以采用OFDM作为信号传输的基本机制。
OFDM调制中,可以将系统带宽分为多个并行的子载波,多个子载波在时域相互正交、频域相互重叠,将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。OFDM的每个子载波可以认为是平坦衰落,能够提升抗多径衰落性能。
OFDM波形可以通过FFT及其逆过程实现。同时,为抵抗信道的记忆性,消除符号间干扰和码间串扰,OFDM通常引入循环前缀(cyclic prefix,CP)作为保护间隔。一般的NR系统中,发射机将信息比特流映射成PSK或QAM符号的形式进行调制。
例如,OFDM的发射和接收流程中,首先需要发射的数据经过调制映射为一个复数符号,复数符号可以写为a为符号的幅度,为符号的相位,可选的,调制会采用正交幅度调制(quadrature amplitude modulation,QAM)映射的方式,将信息映射为一个QAM符号(QAM符号也是复数符号)。然后通过串并转换,将各个QAM符号分别映射到不同的子载波上。不同子载波上的符号输入快速傅里叶逆变换(inverse fast fourier transform,IFFT),进行快速反傅里叶运算,转变成时域序列。
常规的OFDM符号处理中,会将时域序列的尾部部分复制到信号的前端,称为循环前缀。循环前缀的主要作用是对抗无线信道中的多径传输时延,消除符号间干扰和码间串扰。在完成了循环前缀添加之后,发射机会将信号进行数模转换(digital to analog conversion),并进行上变频后发射。
目前,随着物联通信需求的进一步增长,降低设备功耗成为延长续航的重要手段,而无线通信收发器则是设备中较耗电的组件之一。为进一步满足物联需求,需要支持更小电池甚至免电池、极小功耗和极地成本特性的物联设备,或者设计一种降低无线电收发器功耗的方法,进而来克服物联设备的成本、尺寸、功耗等的限制问题。例如,针对低功耗物联设备,降低设备功耗的方法是采用非相干解调的方式接收,较常用的非相干解调的方式包括FSK调制等。然而目前,针对低功耗设备采用FSK调制的方法时,没有考虑FSK与OFDM的兼容问题,可能会导致低功耗设备采用FSK应用受限,例如不定中频的FSK正交自时延低功耗接收机可能会与OFDM存在不能兼容的问题,进而可能导致解调性能较差。
基于此,本申请实施例提供一种通信方法,以使得FSK信号传输与OFDM传输机制兼容,而减少对传统接收机的干扰。
本申请实施例中的方法应用的设备可以具备传统接收机和低功耗接收机,也可以只具备低功耗接收机。例如,本申请实施例的通信方法可以应用于以下设备:具备传统接收机和低功耗接收机,当前只有低功耗接收机处于开启状态,而传统接收机处于关闭状态的设备;或者只具备低功耗接收机的设备。
需要说明的是,在以下的实施例中,以第一设备和第二设备为例对本申请提供的通信方法进行详细说明,应理解第一设备执行的操作也可以通过第一设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等实现,第二设备执行的操作也可以通过第二设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等实现,对本申请对此不作限定。
基于以上描述,本申请实施例提供的一种通信方法,适用于图1所示的通信系统。参阅图3所示,该方法的流程可以包括:
步骤301:第一设备确定至少两个OFDM子载波。
在一种可选的实施方式中,所述第一设备确定所述至少两个OFDM子载波可以包括如下方式:
方式a1、所述第一设备接收所述第二设备发送的指示信息,所述指示信息用于指示所述至少两个OFDM子载波,进而所述第一设备根据所述指示信息可以确定所述至少两个OFDM子载波。
可选的,在该方式a1中,所述第二设备可以根据自身解调性能需求确定至少两个OFDM子载波后,向所述第一设备发送所述指示信息。
方式a2、所述第一设备接收所述第二设备发送的第一信息,所述第一信息用于确定所述至少两个OFDM子载波;进而,所述第一设备根据所述第一信息确定所述至少两个OFDM子载波。
在一种可能的方式中,所述第一信息可以用于指示所述至少两个OFDM子载波的频率位置。进而,所述第一设备可以基于所述第一信息指示的所述至少两个OFDM子载波的频率位置确定所述至少两个OFDM子载波。例如,所述至少两个OFDM子载波为两个子载波,第一信息可以用于指示所述这两个OFDM子载波的频率位置为45kHz和180kHz。
在另一种可能的方式中,所述第一信息可以用于指示所述至少两个OFDM子载波在第一带宽内的子载波索引,进而,所述第一设备可以根据所述至少两个OFDM子载波在所述第一带宽内的子载波索引确定所述至少两个OFDM子载波。例如,所述至少两个OFDM子载波为两个子载波,第一带宽为1个资源块(resource block,RB),第一信息可以用于指示这两个OFDM子载波在该第一带宽内的索引为0和11。
当然,除上述列举的方式外,第一信息还有其他多种方式来用于确定所述至少两个OFDM子载波,本申请对此不作限定。
可选的,所述第一信息可以包括以下信息中的至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。这样,所述第一设备可以通过所述第一信息准确地确定所述至少两个OFDM子载波。
方式a3、所述至少两个OFDM子载波可以为预定义的,也即所述第一设备可以确定预定义的所述至少两个OFDM子载波。
在一种可能的方式中,可以预定义所述至少两个OFDM子载波的频率位置,进而,所述第一设备可以基于预定义的所述至少两个OFDM子载波的频率位置确定所述至少两个OFDM子载波。例如,所述至少两个OFDM子载波为两个子载波,可以预定义所述这两个OFDM子载波的频率位置为45kHz和180kHz。
在另一种可能的方式中,可以预定义所述至少两个OFDM子载波在第一带宽内的子载波索引,进而,所述第一设备可以根据所述至少两个OFDM子载波在所述第一带宽内的子载波索引确定所述至少两个OFDM子载波。例如,所述至少两个OFDM子载波为两个子载波,第一带宽为1个资源块(resource block,RB),可以预定义这两个OFDM子载波在该第一带宽内的索引为0和11。
当然,除上述列举的方式外,还可以通过其他多种方式预定义所述至少两个OFDM子载波,本申请对此不作限定。
方式a4、所述至少两个OFDM子载波可以为所述第一设备和所述第二设备预先协商好的,即所述第一设备可以确定协商好的所述至少两个OFDM子载波。
方式a5、所述第一设备可以自行确定所述至少两个OFDM子载波。
在该方式a5中,所述第一设备可以将确定的所述至少两个OFDM子载波通知给所述第二设备。
由于低功耗接收机采用正交自时延的解调方法时,以2FSK信号为例,2FSK信号对应的频率之间应避免存在其他干扰频率信号,否则可能会导致解调错误,因此可选的,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内可以不承载信息,以避免干扰。其中,这里每相邻两个OFDM子载波是指多个OFDM子载波中频率按从小到大或者从大到小排序后,依次每相邻两个OFDM子载波。例如,至少两个OFDM子载波包括子载波1、子载波2和子载波3,假设子载波1的频率小于子载波2的频率,子载波2的频率小于子载波3的频率,则子载波1和子载波2为相邻的OFDM子载波,子载波2和子载波3为相邻的OFDM子载波。
应理解,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息是一种实现方式,可选的,所述两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内也 可以承载信息,本申请对此不作限定。
示例性的,OFDM信号可以承载于多个子载波,所述至少两个OFDM子载波为多个子载波中的至少两个,所述至少两个OFDM子载波的信息可以参考OFDM信号参数,例如,OFDM信号参数可以包括但不限于以下参数:子载波带宽、子载波的频谱位置、符号周期或CP长度等。
步骤302:所述第一设备通过所述至少两个OFDM子载波向第二设备发送FSK信号。相应地,所述第二设备通过至少两个OFDM子载波接收所述第一设备发送的FSK信号。
步骤303:所述第二设备对所述FSK信号进行解调。
其中,所述第一设备通过所述至少两个OFDM子载波向第二设备发送FSK信号,可以理解为,所述第一设备对数据比特进行FSK调制后,映射到所述至少两个OFDM子载波上进行发送。
可选的,所述FSK信号的频率与所述FSK信号对应的OFDM子载波的频率相同。
示例性的,所述FSK信号在一个时间单元内可以占用所述至少两个OFDM子载波中的一个OFDM子载波。也就是说,在一个时间单元内,所述第一设备通过所述至少两个OFDM子载波中的一个OFDM子载波发送FSK信号。
例如,一个时间单元可以包括一个或多个OFDM符号,或者可以包括一个或多个时隙,或者还可以是其他形式,本申请不作限定。
例如,以两个OFDM子载波为例说明,图4示出了与OFDM兼容的FSK传输结构示意图,结合时频网格加以说明,具体的:如图4所示,OFDM信号对应多个可选的OFDM子载波,第一设备可以选择其中两个OFDM子载波进行FSK信号的发送,例如两个OFDM子载波所对应的频率可以表示为{f1,f2},OFDM子载波相对于所述两个OFDM子载波中心频率的频率间隔可以表示为可选的,Δf也可以描述为两个OFDM子载波之间的频率间隔的一半。时域上,第一个FSK符号(图中时间单元T1发送的FSK信号)表示第一值(例如,逻辑“0”),第二、第三个FSK符号(图中时间单元T2和T3发送的FSK信号)表示第二值(例如,逻辑“1”)。当前符号发送期间,{f1,f2}中不进行FSK传输的子载波不承载信息,即FSK信号在一个时间单元占用其中一个OFDM子载波。
第二设备可以包括低功耗接收机,例如其结构可以参见图2所示。本申请可以引入时延系数n(n可以为大于或等于零的整数)控制时延器的时延力度,使其不限于上述2)中描述的时延,其中,时延系数可以理解为第二设备的低功耗接收机中时延器的时延系数。引入时延系数可以增大基带信号输出眼图,提升FSK解调性能。例如,以上图4所示的接收机为例,低功耗接收机为满足时延信号与原始信号的正交条件,通常控制时延满足基带信号输出为一般而言,接收机中频频率f0要比FSK信号频率间隔Δf高几个数量级,导致基带信号幅度(眼图)较小,传输可靠性较低。引入时延系数n后,使得接收机时延器可以满足自时延信号和原始信号依然符合正交性。此时基带信号输出可以为由结果可知,时延系数n能够增大基带信号眼图,提升FSK信号解调性能。
第二设备可以通过差分自时延方式解调FSK信号,对数字采样后的中频信号进行时延操作。时延器可以为离散数字时延器,这种情况下系统参数需满足离散时延点为整数的约束,可以表示为其中fs为第二设备采样率;或者,fs为第二设备使用分数时延滤波器进行时延效果的近似,这种情况下没有整数约束,N+为正整数。本实施例不对信号时延实现方式做具体限定,即上述离散数字时延器仅为时延器的一种示例,本申请不作限定。
可选的,时延系数n可以是预定义好的,也可以是第一设备和第二设备协商好的,也可以是第一设 备直接指示给第二设备的,或者也可以是第二设备自行确定的,或者还可以有其它方式确定,本申请不作限定。
第二设备在对所述FSK信号解调时,可以通过将FSK信号进行自时延后与原信号混频,进行数据解调。解调性能可以反映在基带信号眼图大小上,而眼图大小与所选OFDM子载波、时延系数、中频频率等参数有关,因此可以通过调整上述FSK传输参数,从而实现链路性能较优。
基于此,在一种可选的实施方式中,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率可以满足以下公式一:
其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,或者Δf也可以描述为两个OFDM子载波之间的频率间隔的一半,两个OFDM子载波所对应的频率可以表示为{f1,f2},f0为中频频率,n为时延系数。
仍延用两个OFDM子载波的举例,由于第一设备进行FSK传输时,可以在一定频域资源内确定OFDM子载波对,同时时延系数n应满足正整数,所以上述公式一也可以不严格等于1,第二设备可根据FSK信号的两路子载波间隔和本地中频频率自行选取n,以使解调性能较优。例如,OFDM子载波间隔15kHz,假设第一设备在12个子载波的频域资源内选择FSK频率,即选择两个OFDM子载波。对于中频频率f0=400kHz的接收机设备,可选取第4、第10个子载波传输FSK信号,即频率间隔Δf=3×15kHz=45kHz。第二设备可以确定时延系数n=2,则第二设备的接收机的基带信号输出可以符合以下公式二:
可选的,上述公式一可以是第二设备不存在频偏的情况下,OFDM子载波和时延系数可以满足的关系。
另一种可选的实施方式中,第一设备和第二设备存在频偏,例如接收机具有不定中频结构,无法提供精准的本振信号,导致接收信号相对于发送信号产生较大频率偏移,在第一设备和第二设备之间实现数据通信前,没有实现频偏估计与校正,而频偏将影响数据解调性能,具体表现为基带信号眼图大小随频偏周期性变化。针对上述存在频偏场景,可以基于不同需求选择合适的OFDM子载波和时延系数。
在一种示例中,所述FSK信号可以用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波可以为第一子载波集合;或者,所述FSK信号可以用于所述第二设备获取数据,所述至少两个OFDM子载波可以为第二子载波集合;其中,所述第一子载波集合和所述第二子载波集合可以不同。
在另一种示例中,所述FSK信号可以用于所述第二设备获取时间和/或频率同步,所述第二设备接收所述FSK信号时,采用的时延系数可以为第一时延系数;或者,所述FSK信号可以用于所述第二设备获取数据,所述第二设备接收所述FSK信号时,采用的时延系数可以为第二时延系数;其中,所述第一时延系数和所述第二时延系数不同。
可选的,所述第一时延系数可以小于所述第二时延系数,或者,所述第一时延系数也可以大于所述第二时延系数,本申请不作限定。
例如,在同步阶段,可以选取一组子载波对和较低时延系数n进行FSK调制解调,发送同步信号,以使得抗频偏性能较优;在数据传输阶段,可以选取另一组子载波对和较高时延系数n进行FSK调制解调,发送数据信号,以使得抗噪声性能较优。
通过上述通信方法,可以实现低功耗接收机的FSK传输与OFDM兼容,可以提升FSK解调性能。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图5所示,通信装置500可以包括收发单元501和处理单元502。其中,所述收发单元501用于所述通信装置500接收信号(消息或数据)或发送信息(消息或数据),所述处理单元502用于对所述通信装置500的动作进行控制管理。所述处理单元502还可以控制所述收发单元501执行的步骤。
示例性地,该通信装置500具体可以是上述实施例中的第一设备、所述第一设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置500具体可以是上述实施例中的第二设备、所述第二设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置500用于实现上述图3所述的实施例中第一设备的功能时,可以包括:处理单元502可以用于确定至少两个正交频分复用OFDM子载波;收发单元501可以用于通过所述至少两个OFDM子载波向第二设备发送频移键控FSK信号。
示例性的,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息。
在一种可选的实施方式中,所述FSK信号的频率与所述FSK信号对应的OFDM子载波的频率相同。
可选的,所述FSK信号在一个时间单元内占用所述至少两个OFDM子载波中的一个OFDM子载波。
一种可能的方式中,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率满足以下公式:
其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,f0为中频频率,n为时延系数。
一种示例中,所述处理单元502在确定至少两个OFDM子载波时,可以用于:
控制所述收发单元501接收所述第二设备发送的指示信息,所述指示信息用于指示所述至少两个OFDM子载波;或者
控制所述收发单元501接收所述第二设备发送的第一信息,所述第一信息用于确定所述至少两个OFDM子载波;根据所述第一信息确定所述至少两个OFDM子载波;或者
确定预定义的所述至少两个OFDM子载波。
可选的,所述第一信息可以包括以下至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。
一种可能的方式中,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波为第一子载波集合;或者,所述FSK信号用于所述第二设备获取数据,所述至少两个OFDM子载波为第二子载波集合;其中,所述第一子载波集合和所述第二子载波集合不同。
一种可能的方式中,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述第二设备采用的时延系数为第一时延系数;或者,所述FSK信号用于所述第二设备获取数据,所述第二设备采用的时延系数为第二时延系数;其中,所述第一时延系数和所述第二时延系数不同。
在一个实施例中,所述通信装置500用于实现上述图2所述的实施例中第二设备的功能时,可以包括:收发单元501可以用于通过至少两个正交频分复用OFDM子载波接收第一设备发送的频移键控FSK信号;处理单元502可以用于对所述FSK信号进行解调。
示例性的,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息。
可选的,所述FSK信号的频率与所述FSK信号对应的OFDM子载波的频率相同。
在一种可选的实施方式中,所述FSK信号在一个时间单元内占用所述至少两个OFDM子载波中的一个OFDM子载波。
在一种可能的方式中,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率满足以下公式:
其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,f0为中频频率,n为时延系数。
一种示例中,所述收发单元501还可以用于向所述第一设备发送指示信息,所述指示信息用于指示所述至少两个OFDM子载波;或者,向所述第一设备发送第一信息,所述第一信息用于确定所述至少两个OFDM子载波;或者
所述处理单元502,还用于确定预定义的所述至少两个OFDM子载波。
可选的,所述第一信息可以包括以下至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。
在一种可能的方式中,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波为第一子载波集合;或者,所述FSK信号用于所述第二设备获取数据,所述至少两个OFDM子载波为第二子载波集合;其中,所述第一子载波集合和所述第二子载波集合不同。
另一种可能的方式中,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述收发单元501接收所述FSK信号时,采用的时延系数为第一时延系数;或者,所述FSK信号用于所述第二设备获取数据,所述收发单元501接收所述FSK信号时,采用的时延系数为第二时延系数;其中,所述第一时延系数和所述第二时延系数不同。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图6所示,通信装置600可以包括收发器601和处理器602。可选的,所述通信装置600中还可以包括存储器603。其中,所述存储器603可以设置于所述通信装置600内部,还可以设置于所述通信装置600外部。其中,所述处理器602可以控制所述收发器601接收和发送信息、消息或数据等。
具体地,所述处理器602可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器602还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器601、所述处理器602和所述存储器603之间相互连接。可选的,所述收发器601、所述处理器602和所述存储器603通过总线604相互连接;所述总线604可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器603,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器603可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器602执行所述存储器603所存放的应用程序,实现上述功能,从而实现通信装置600的功能。
示例性地,该通信装置600可以是上述实施例中的第一设备;还可以是上述实施例中的第二设备。
在一个实施例中,所述通信装置600在实现图3所示的实施例中第一设备的功能时,收发器601可以实现图3所示的实施例中的由第一设备执行的收发操作;处理器602可以实现图3所示的实施例中由第一设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图3所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置600在实现图3所示的实施例中第二设备的功能时,收发器601 可以实现图3所示的实施例中的由第二设备执行的收发操作;处理器602可以实现图3所示的实施例中由第二设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图3所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的第一设备和第二设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述图3所示的方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述图3所示的方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述图3所示的方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述图3所示的方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    第一设备确定至少两个正交频分复用OFDM子载波;
    所述第一设备通过所述至少两个OFDM子载波向第二设备发送频移键控FSK信号。
  2. 如权利要求1所述的方法,其特征在于,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述FSK信号在一个时间单元内占用所述至少两个OFDM子载波中的一个OFDM子载波。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率满足以下公式:
    其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,f0为中频频率,n为时延系数。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一设备确定至少两个OFDM子载波,包括:
    所述第一设备接收所述第二设备发送的第一信息,所述第一信息用于确定所述至少两个OFDM子载波;所述第一设备根据所述第一信息确定所述至少两个OFDM子载波;或者
    所述第一设备确定预定义的所述至少两个OFDM子载波。
  6. 如权利要求5所述的方法,其特征在于,所述第一信息包括以下至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波为第一子载波集合;或者
    所述FSK信号用于所述第二设备获取数据,所述至少两个OFDM子载波为第二子载波集合;
    其中,所述第一子载波集合和所述第二子载波集合不同。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述第二设备采用的时延系数为第一时延系数;或者
    所述FSK信号用于所述第二设备获取数据,所述第二设备采用的时延系数为第二时延系数;
    其中,所述第一时延系数和所述第二时延系数不同。
  9. 一种通信方法,其特征在于,包括:
    第二设备通过至少两个正交频分复用OFDM子载波接收第一设备发送的频移键控FSK信号;
    所述第二设备对所述FSK信号进行解调。
  10. 如权利要求9所述的方法,其特征在于,所述至少两个OFDM子载波中的每相邻两个OFDM子载波之间的频域范围内不承载信息。
  11. 如权利要求9或10所述的方法,其特征在于,所述FSK信号在一个时间单元内占用所述至少两个OFDM子载波中的一个OFDM子载波。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述至少两个OFDM子载波为两个OFDM子载波,所述两个OFDM子载波的频率满足以下公式:
    其中,Δf为所述两个OFDM子载波的频率相对于所述两个OFDM子载波中心频率的频率间隔,f0为中频频率,n为时延系数。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第一信息,所述第一信息用于确定所述至少两个OFDM子载波; 或者
    所述第二设备确定预定义的所述至少两个OFDM子载波。
  14. 如权利要求13所述的方法,其特征在于,所述第一信息包括以下至少一项:所述第二设备的中频频率、所述第二设备是否支持正交自延时接收机结构的信息、所述第二设备是否支持分数时延滤波器的信息、所述第二设备支持的时延系数、所述第二设备是否支持FSK的信息、所述第二设备支持的FSK的阶数、所述第二设备支持的至少两个OFDM子载波的子载波个数、所述第二设备的带通滤波器参数。
  15. 如权利要求9-14任一项所述的方法,其特征在于,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述至少两个OFDM子载波为第一子载波集合;或者
    所述FSK信号用于所述第二设备获取数据,所述至少两个OFDM子载波为第二子载波集合;
    其中,所述第一子载波集合和所述第二子载波集合不同。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述FSK信号用于所述第二设备获取时间和/或频率同步,所述第二设备接收所述FSK信号时,采用的时延系数为第一时延系数;或者
    所述FSK信号用于所述第二设备获取数据,所述第二设备接收所述FSK信号时,采用的时延系数为第二时延系数;
    其中,所述第一时延系数和所述第二时延系数不同。
  17. 一种通信装置,其特征在于,包括用于执行权利要求1-8任一项所述的方法的模块或单元。
  18. 一种通信装置,其特征在于,包括用于执行权利要求9-16任一项所述的方法的模块或单元。
  19. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器用于接收和发送信息;
    所述处理器与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求1-8任一项所述的方法。
  20. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送信息;
    所述处理器,与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求9-16任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-8中任一项所述的方法,或者执行如权利要求9-16中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-8中任一项所述的方法,或如权利要求9-16中任一项所述的方法被执行。
  23. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-8中任一项所述的方法,或者实现如述权利要求9-16中任一项所述的方法。
PCT/CN2023/124100 2022-10-28 2023-10-11 一种通信方法及装置 WO2024088065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211338391.9 2022-10-28
CN202211338391.9A CN117955790A (zh) 2022-10-28 2022-10-28 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024088065A1 true WO2024088065A1 (zh) 2024-05-02

Family

ID=90793340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124100 WO2024088065A1 (zh) 2022-10-28 2023-10-11 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117955790A (zh)
WO (1) WO2024088065A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141421A (zh) * 2015-08-14 2018-06-08 密执安州立大学董事会 利用ofdm反向信道的低功率无线通信
US20200037251A1 (en) * 2017-01-06 2020-01-30 Huawei Technologies Co., Ltd. Methods and Devices for Sending and Receiving Wake-Up Frame
US20200162306A1 (en) * 2017-04-25 2020-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Generating an fsk signal comprised in an ofdm signal
CN113746768A (zh) * 2021-09-16 2021-12-03 厦门纵行信息科技有限公司 一种低功耗频点索引调制方法、发送机及其接收机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141421A (zh) * 2015-08-14 2018-06-08 密执安州立大学董事会 利用ofdm反向信道的低功率无线通信
US20200037251A1 (en) * 2017-01-06 2020-01-30 Huawei Technologies Co., Ltd. Methods and Devices for Sending and Receiving Wake-Up Frame
US20200162306A1 (en) * 2017-04-25 2020-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Generating an fsk signal comprised in an ofdm signal
CN113746768A (zh) * 2021-09-16 2021-12-03 厦门纵行信息科技有限公司 一种低功耗频点索引调制方法、发送机及其接收机

Also Published As

Publication number Publication date
CN117955790A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN109245844B (zh) 无线通信方法、装置及系统
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
WO2018219011A1 (zh) 一种数据传输方法及通信设备
US11165606B2 (en) Method and apparatus for sending demodulation reference signal, and demodulation method and apparatus
TWI754066B (zh) 用於傳輸信號的方法、網絡設備和終端設備
WO2021098355A1 (zh) Csi测量方法及装置
WO2022247655A1 (zh) 一种功率放大器非线性特征参数确定方法及相关装置
WO2024088065A1 (zh) 一种通信方法及装置
WO2019192456A1 (zh) 配置信息指示方法及通信装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
WO2022077514A1 (zh) 一种通信方法及装置
JP2023522532A (ja) 初期アクセス信号またはチャネルを伝送する方法、デバイス、およびシステム
WO2019141232A1 (zh) 一种通信、mcs的接收、通知方法及设备
WO2023066117A1 (zh) 一种数据传输方法及其装置
WO2024067191A1 (zh) 一种通信方法及装置
WO2024041504A1 (zh) 一种通信方法及装置
WO2023207271A1 (zh) 一种信号传输方法及装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2024055953A1 (zh) 调制方法、装置及通信设备
WO2024113322A1 (zh) 无线通信方法及装置、终端设备、网络设备
WO2023174353A1 (zh) 一种安全ltf序列确定方法及相关装置
WO2023241319A1 (zh) 一种通信方法及通信装置
WO2023212881A1 (zh) 解调参考信号dmrs的传输方法和装置
WO2021244403A1 (zh) 一种信号发送方法、信号接收方法与相关装置
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置