WO2019120179A1 - 一种信号发送、接收方法及设备 - Google Patents

一种信号发送、接收方法及设备 Download PDF

Info

Publication number
WO2019120179A1
WO2019120179A1 PCT/CN2018/121593 CN2018121593W WO2019120179A1 WO 2019120179 A1 WO2019120179 A1 WO 2019120179A1 CN 2018121593 W CN2018121593 W CN 2018121593W WO 2019120179 A1 WO2019120179 A1 WO 2019120179A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
indication information
ssb
terminal device
subcarrier
Prior art date
Application number
PCT/CN2018/121593
Other languages
English (en)
French (fr)
Inventor
郭志恒
谢信乾
吴茜
费永强
毕文平
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020012076-6A priority Critical patent/BR112020012076A2/pt
Priority to EP23166677.7A priority patent/EP4231731A3/en
Priority to EP18892744.6A priority patent/EP3726894B1/en
Publication of WO2019120179A1 publication Critical patent/WO2019120179A1/zh
Priority to US16/903,936 priority patent/US11452053B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a signal transmitting and receiving method and device.
  • a synchronization signal/physical broadcast channel block In the new radio (NR) technology in the fifth generation mobile communication system (5G), a synchronization signal/physical broadcast channel block (SSB) is defined, in the time domain, One SSB occupies four consecutive orthogonal frequency division multiplexing (OFDM) symbols. In the frequency domain, one SSB occupies consecutive 240 subcarriers, for example, numbered from 0 to 239, and the 240 subcarriers belong to 20 resource blocks (RBs), for example, the number of resource blocks is numbered from 0 to 19, in each resource block, the subcarriers can be, for example, numbered from 0 to 12
  • OFDM orthogonal frequency division multiplexing
  • the frequency location needs to meet the synchronization rule, that is, the frequency position of each SSB needs
  • the synchronization raster rule is satisfied, wherein the frequency position of the SSB can also be understood as the frequency position of the reference subcarrier in the SSB, and the reference subcarrier is usually the central subcarrier of the SSB, for example, a continuous 240 subcarrier occupied by the SSB.
  • the subcarrier in the carrier number is 120, that is, the subcarrier with the number 0 in the resource block numbered 10.
  • the current rule is that the frequency of the SSB is equal to (N ⁇ 900KHz+M ⁇ 5KHz), where N is positive.
  • M is -1 or 0 or 1, and the positions corresponding to these frequencies or frequencies can be collectively referred to as a sync grid.
  • the terminal device Before accessing the NR system, the terminal device needs to search for the SSB broadcasted by the network device to perform downlink synchronization. Usually the terminal device searches on the frequency of the sync grid. Meanwhile, in the NR system, the center frequency or reference frequency of a cell or carrier needs to satisfy the channel grid rule, and the center frequency or reference frequency needs to be equal to L ⁇ 100 KHz, or L ⁇ 15 KHz, or L ⁇ 60 KHz, and L is a positive integer. .
  • the frequency of the channel grid position is equal to L ⁇ 100 KHz, which is generally also understood to be a channel raster value equal to 100 KHz; for a frequency band of 3 GHz to 24 GHz, the frequency of the channel grid position is equal to L ⁇ 15 KHz. That is, the channel raster value is equal to 15 KHz; for the frequency band of 24 GHz to 100 GHz, the frequency of the channel grid position is equal to L ⁇ 60 KHz, that is, the channel raster value is equal to 60 KHz.
  • the accuracy of the crystal oscillator of the terminal device is low, and the accuracy of the crystal oscillator of the network device is high.
  • the terminal device re-adjusts its own frequency according to the SSB received from the network device to obtain more accurate. Frequency of.
  • the frequency of the reference subcarrier of the SSB broadcasted by the network device is 900 MHz, and since the frequency determined by the terminal device may have a large deviation, for example, the 899.995 MHz understood by the terminal device is actually 900 MHz, the terminal device follows The frequency of 899.995MHz understood by the terminal device can successfully receive the SSB broadcasted by the network device.
  • the terminal device cannot find that its own frequency deviates from the actual frequency.
  • the operating frequency determined by the terminal device may also have a frequency deviation, which may affect the performance of communication between the network device and the terminal device.
  • the embodiment of the present application provides a signal sending and receiving method and device, which are used to improve the accuracy of adjusting a frequency offset of a terminal device.
  • a signal transmission method which can be performed by a network device, such as a base station.
  • the method includes: the network device determining the SSB and the indication information, wherein the indication information is used to indicate that the frequency location of the SSB is one of a frequency set, the frequency set includes a first frequency and a second frequency, or the first a frequency, a second frequency, and a third frequency; the network device transmitting the SSB and the indication information to the terminal device.
  • a signal receiving method which can be performed by a terminal device.
  • the method includes: the terminal device receives the SSB and the indication information from the network device; the terminal device determines, according to the indication information, a frequency location of the SSB as one of a frequency set, where the frequency set includes a first frequency and a second frequency , or the first frequency, the second frequency, and the third frequency.
  • the network device may send the indication information to the terminal device, where the indication information can indicate the frequency position of the SSB sent by the network device, so that the terminal device can determine the frequency position of the SSB according to the indication information, so the terminal device can be compared.
  • the frequency offset between the terminal device and the network device is accurately determined, thereby adjusting the frequency of the terminal device, effectively improving the accuracy of adjusting the frequency offset of the terminal device, and reducing the frequency offset between the terminal device and the network device.
  • the frequency position of the SSB may be the location of the reference subcarrier in the SSB.
  • the first subcarrier may be a subcarrier with the number 0 in the resource block numbered 10 in the SSB, that is, the SSB. Central subcarrier.
  • the frequency position of the SSB may also be the location of other subcarriers in the SSB, which is not limited herein.
  • the indication information includes first indication information and second indication information, where the first indication information is used to indicate that a frequency location of the SSB is a first frequency or a fourth frequency,
  • the fourth frequency is the second frequency or the third frequency
  • the second indication information is used to indicate that the first indication information indicates that the frequency position of the SSB is the fourth frequency.
  • the frequency position of the SSB is the second frequency or the third frequency.
  • the terminal device determines, according to the indication information, a frequency location of the SSB as one of a frequency set, including: the terminal Determining, according to the first indication information, that the frequency position of the SSB is the first frequency or the fourth frequency, where the fourth frequency is the second frequency or the third frequency, according to the terminal device If the first indication information determines that the frequency position of the SSB is the fourth frequency, the terminal device further determines, according to the second indication information, that the frequency position of the SSB is the second frequency, or For the third frequency.
  • the message is located in one field (that is, the field in which the second indication information is located), and the terminal device generally detects the length of the field in which the message carries the second indication information, if the message has one less field. May cause the terminal device to be unable to detect the message. Therefore, in order to facilitate the detection of the terminal device, in the embodiment, the network device may still send the second indication information, but if the first indication information indicates that the frequency position of the SSB is the first frequency, the terminal device may not pay attention to the second indication.
  • the information for example, may not need to be parsed by the second indication information, and the second indication information does not have any effect at this time.
  • the value of the second indication information may be random, or a default value may be set, which is not limited in the embodiment of the present application.
  • the indication information includes first indication information, where the first indication information is used to indicate that a frequency position of the SSB is a first frequency or a fourth frequency, and the fourth frequency is the The second frequency or the third frequency, where the first indication information indicates that the frequency position of the SSB is the fourth frequency, the indication information further includes second indication information, used to indicate the SSB The frequency position is the second frequency or the third frequency.
  • the terminal device determines, according to the indication information, that the frequency position of the SSB is the first frequency, the second frequency, or the third frequency, the method, the terminal device determining, according to the first indication information included in the indication information, The frequency position of the SSB is the first frequency or the fourth frequency, the fourth frequency is the second frequency or the third frequency, and the terminal device determines the frequency position of the SSB according to the first indication information.
  • the indication information includes the first indication information, or the terminal device determines, according to the first indication information, that the frequency position of the SSB is the fourth frequency.
  • the indication information includes the first indication information and the second indication information, and the terminal device further determines, according to the second indication information, that the frequency position of the SSB is the second frequency, or is Third frequency.
  • the network device sends the first indication.
  • the second indication information may be sent in addition to the information, where the indication information includes the first indication information and the second indication information, and if the terminal device does not need to use the second indication information, the first indication information indicates that the frequency position of the SSB is the first
  • the frequency information is that the network device does not need to send the second indication information, and the indication information only includes the first indication information. In this way, transmission resources can also be saved without affecting the terminal device determining the frequency position of the SSB.
  • the first indication information is a first field in a PBCH in the SSB, and the second indication information is a mask of a CRC in the PBCH; or, the first indication The information is a first field in the PBCH, and the second indication information is a second field in the PBCH; or the first indication information is a first field in the PBCH, the second indication The information is the fourth field in the RMSI.
  • first indication information and the second indication information are given, and are not limited thereto in the embodiment of the present application.
  • the first field in the PBCH is a field indicating an offset between a location of a second subcarrier in the SSB and a location of a third subcarrier in a reference resource block.
  • the terminal device may determine, according to the first field in the PBCH, an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block.
  • the reference resource block can be understood as any resource block in the common resource grid.
  • the value indicated by the third field may be any one of 0 to 11, or may be any one of 0 to 23.
  • the common resource block grid can be understood as a resource block grid of any downlink signal sent by the network device to the terminal device except for the SSB, for example, the downlink signal may be a signal carrying a system message.
  • the implicitly indicating the grid position of the SSB is the first frequency
  • the implicitly indicating the grid position of the SSB is The second frequency or the third frequency, so the network device can indicate the grid location of the SSB through the first field.
  • the currently existing field can be directly used as the indication information, which can reduce the frequency offset between the network device and the terminal device, save transmission resources, and reduce the terminal device. Analyze complexity.
  • the indication information is used to indicate that a deviation of a frequency position of the SSB from the first frequency is one of a set of deviations, where the first set of deviations includes 0, a first deviation, and a second deviation.
  • the terminal device determines, according to the indication information, that the frequency position of the SSB is one of a frequency set, and the terminal device determines, according to the indication information, a frequency location of the SSB and the first frequency.
  • the deviation is one of the set of deviations, the first set of deviations includes 0, the first deviation, and the second deviation; in the case where it is determined that the deviation of the frequency position of the SSB from the first frequency is 0, Determining, by the terminal device, a frequency position of the SSB as the first frequency; or, in a case of determining that a deviation of a frequency position of the SSB and the first frequency is the first deviation, the terminal device determines The frequency position of the SSB is the second frequency; or, in a case where it is determined that the deviation of the frequency position of the SSB from the first frequency is the second deviation, the terminal device determines the frequency of the SSB The location is the third frequency.
  • the indication information may directly indicate that the frequency position of the SSB is one of the frequency sets, for example, directly indicating that the frequency position of the SSB is the first frequency, the second frequency, or the third frequency, or may indirectly indicate the SSB.
  • the frequency position is one of the set of frequencies, for example, indirectly indicating that the frequency position of the SSB is the first frequency, the second frequency, or the third frequency.
  • the indication information may indicate that the deviation of the frequency position of the SSB from the first frequency is one of a set of deviations, and the set of deviations includes 0, a first deviation, and a second deviation, the first deviation may be understood as The deviation between the first frequency and the second frequency, the second deviation can be understood as the deviation between the first frequency and the third frequency, then the deviation included in the deviation set is a one-to-one correspondence with the frequency included in the frequency set.
  • the deviation is indicated, which is equivalent to indicating the corresponding frequency.
  • the first deviation is +5KHz
  • the second deviation is -5KHz
  • the indication information indicates that the deviation between the frequency position of the SSB and the first frequency is the first deviation
  • the terminal device knows that the first frequency is N ⁇ 900KHz
  • the terminal Based on the first frequency and the first deviation, the device can determine that the frequency position of the SSB is (N ⁇ 900+5) KHz.
  • the indication information indirectly indicates an example of the frequency position of the SSB.
  • the embodiment of the present application does not limit the indication manner when the indication information indicates the frequency position of the SSB indirectly.
  • the first frequency is N x 900 kHz
  • the second frequency is (N x 900 + k) kilohertz
  • the third frequency is (N x 900-k) kilohertz
  • N is a positive integer
  • M is a positive integer.
  • the embodiment of the present application is not limited.
  • M may not be equal to 10.
  • the second frequency and the third frequency are not limited herein to be symmetric with the first frequency, that is, the absolute value of the difference between the second frequency and the first frequency is equal to the absolute value of the difference between the third frequency and the first frequency, so that the first
  • the frequency is equal to N ⁇ 900KHz
  • the second frequency is equal to (N ⁇ 900+k1)KHz
  • a signal transmission method which can be performed by a network device, such as a base station.
  • the method includes: the network device determining an SSB, wherein the frequency position of the SSB is one of a frequency set, the frequency set includes a first frequency and a second frequency, or includes a first frequency, a second frequency, and a third frequency,
  • the first frequency is N ⁇ 900 kHz
  • the second frequency is (N ⁇ 900+M ⁇ 10) kHz
  • the third frequency is (N ⁇ 900-M ⁇ 10) kHz
  • N and M All are positive integers
  • a signal receiving method which can be performed by a terminal device.
  • the method includes: the terminal device receives an SSB from a network device, the terminal device determines that a frequency location of the SSB is one of a frequency set, the frequency set includes a first frequency and a second frequency, or includes a first frequency, a second frequency And a third frequency, the first frequency is N ⁇ 900 kHz, the second frequency is (N ⁇ 900+M ⁇ 10) kHz, and the third frequency is (N ⁇ 900-M ⁇ 10) In kilohertz, N and M are positive integers.
  • the first frequency is N x 900 KHz
  • the second frequency is (N x 900 + k) KHz
  • the channel raster value is 100 kHz
  • the value of the center frequency of the carrier is 700 MHz
  • the subcarrier spacing of the SSB and the system resource block are both 30 kHz
  • the SSB synchronization grid rule ie N ⁇ 900 kHz, (N ⁇ 900 + 5) kHz, (N ⁇ 900 - 5) kHz, can not find a usable synchronous grid frequency for transmission SSB.
  • the first frequency is N x 900 KHz
  • the second frequency is (N x 900 + k) kilohertz
  • the third frequency is (N x 900-k) kilohertz, where k is a multiple of 10. , but not a multiple of 30, nor 100.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the third or third aspect above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the third aspect or the third aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible designs of the fourth aspect or the fourth aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the third aspect or the third aspect above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible designs of the fourth aspect or the fourth aspect above.
  • a communication system comprising a network device and a terminal device.
  • the network device is configured to determine the SSB and the indication information, and send the SSB and the indication information to the terminal device, where the indication information is used to indicate that the frequency location of the SSB is in a frequency set.
  • the frequency set includes a first frequency and a second frequency, or a first frequency, a second frequency, and a third frequency;
  • the terminal device is configured to receive an SSB and indication information from the network device, according to the indication The information determines that the frequency location of the SSB is one of a set of frequencies, the set of frequencies comprising a first frequency and a second frequency, or a first frequency, a second frequency, and a third frequency.
  • a communication system comprising a network device and a terminal device.
  • the network device is configured to determine an SSB, and send the SSB to the terminal device, where a frequency location of the SSB is one of a frequency set, and the frequency set includes a first frequency and a second frequency, where Or a first frequency, a second frequency, and a third frequency, the first frequency is N ⁇ 900 kHz, the second frequency is (N ⁇ 900+M ⁇ 10) kHz, and the third frequency is ( N ⁇ 900 - M ⁇ 10) kilohertz, N is a positive integer;
  • the terminal device is configured to receive an SSB from the network device, determine that the frequency position of the SSB is one of a frequency set, and the frequency set includes a first frequency and a second frequency, or a first frequency, a second frequency, and a third frequency, the first frequency being N ⁇ 900 kHz and the second frequency being (N ⁇ 900+M ⁇ 10) k
  • the network device provided in the seventeenth aspect and the communication system provided in the eighteenth aspect may be different communication systems, or may be the same communication system.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the first aspect or the first aspect of the first aspect The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-second aspect a computer storage medium is provided, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • a twenty-third aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a twenty-fourth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the second aspect or the second aspect described above The method described in the design.
  • a twenty-fifth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-sixth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • the terminal device can determine the frequency position of the SSB according to the indication information sent by the network device, so the terminal device can accurately determine the frequency offset between the terminal device and the network device, thereby effectively improving the terminal device adjustment frequency.
  • the accuracy of the offset reduces the frequency offset between the terminal device and the network device.
  • Figure 1 is a schematic view of the SSB
  • FIG. 2 is a schematic diagram of a synchronous grid position in an SSB
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a first method for transmitting and receiving signals according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of carrying the indication information in a signal of an SSB according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a second method for sending and receiving signals according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a third method for sending and receiving signals according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a fourth method for sending and receiving signals according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a fifth method for sending and receiving signals according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • 12A-12B are two schematic structural diagrams of a communication device according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user Equipment (user device) and so on.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • LTE long term evolution
  • LTE-A evolved LTE system
  • the next generation node B (gNB) in the 5G NR system may be included in the embodiment of the present application.
  • Subcarriers In the OFDM system, the frequency domain resources are divided into several sub-resources, and the sub-resources in each frequency domain may be referred to as one sub-carrier. Subcarriers can also be understood as the minimum granularity of frequency domain resources.
  • Subcarrier spacing the interval value between the center position or the peak position of two adjacent subcarriers in the frequency domain in the OFDM system.
  • the subcarrier spacing in the LTE system is 15 kHz
  • the subcarrier spacing of the NR system in the 5G may be 15 kHz, or 30 kHz, or 60 kHz, or 120 kHz, and the like.
  • Resource blocks consecutive N subcarriers in the frequency domain may be referred to as one resource block.
  • one resource block in the LTE system includes 12 subcarriers
  • one resource block of the NR system in the 5G also includes 12 subcarriers.
  • the number of subcarriers included in one resource block may also be other values.
  • Resource block grid the system will define the location of the starting subcarrier when dividing the frequency domain resource into resource blocks, that is, the subcarrier numbered 0, then from the subcarrier numbered 0 to the number 11 Subcarriers, these 12 subcarriers may be referred to as a resource block, and the resource block may also be numbered, for example, numbered 0. In addition, from the subcarrier numbered 12 to the subcarrier numbered 23, the 12 subcarriers may also be referred to as one resource block, for example, the number is 1, and so on. But from the subcarrier numbered 1 to the subcarrier numbered 12, the 12 subcarriers cannot be called a resource block. Therefore, it should be understood that the system defines the correspondence between subcarriers and resource blocks. Once the correspondence is determined, it is equivalent to determining the resource block grid.
  • SSB is defined in the NR technology in 5G.
  • An SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • FIG. 1 in the time domain, one SSB occupies four consecutive OFDM symbols. In the frequency domain, one SSB occupies consecutive 240 subcarriers, and the 240 subcarriers are numbered from 0 to 239. .
  • usually one resource block includes 12 consecutive subcarriers, and the 12 subcarriers are numbered from 0 to 11, so 240 subcarriers occupied by one SSB may also be referred to as 20 resource blocks. And these 20 resource blocks are numbered from 0 to 19.
  • the number of the resource block, the number of the subcarrier, and the like are all exemplified by the order from the low frequency to the high frequency.
  • the name of the synchronization signal/broadcast channel block is not limited in this application.
  • the signal may be directly referred to as a synchronization signal, or a synchronization signal block. Of course, it may also be referred to as another name for different communications.
  • the name of the signal can also be different. This is called SSB, but is an example in the embodiment of the present application.
  • the subcarrier with the number 0 in the resource block of the number 10 occupied by the SSB is recorded as the reference subcarrier, and the reference subcarrier corresponding to each SSB corresponds to The frequency needs to meet the synchronization rule.
  • the synchronous grid rule is: the frequency of the reference subcarrier of the SSB is equal to (N ⁇ 900KHz + M ⁇ 5KHz), where N is a positive integer, M Taking -1, 0 or 1, according to the synchronization grid rule, the frequency of the reference subcarrier of each SSB in the NR system is one of (895KHz, 900KHz, 905KHz, 1795KHz, ...), these frequencies or these frequencies or these The position corresponding to the frequency can be collectively referred to as a synchronization grid, and the specific value range of the synchronization grid is determined by the value range of N. Referring to Figure 2, several sync grid locations are listed.
  • the subcarrier with the number 0 in the resource block numbered 10 occupied by the SSB is referred to as the reference subcarrier, which is only an example.
  • the reference subcarrier may also be other locations in the SSB.
  • the subcarriers, for example, may be changed in the position of the reference subcarriers as the communication system evolves.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the terminal device Before accessing the NR system, the terminal device needs to search for the SSB broadcasted by the network device to perform downlink synchronization. Usually, the terminal device searches on the frequency of the synchronization grid. For example, the terminal device first attempts to receive the SSB on the frequency of 895 kHz. If the SSB is successfully received, the subsequent communication process continues. If the SSB is not successfully received, the terminal The device will try to receive the SSB at 900KHz. If the SSB is successfully received, the subsequent communication process will continue. If the SSB is not successfully received, it will continue to try to receive the SSB on the frequency of other synchronous grids. Until SSB.
  • the accuracy of the crystal oscillator of the terminal device is low, and the accuracy of the crystal oscillator of the network device is high.
  • the terminal device re-adjusts its own frequency according to the SSB received from the network device to obtain more accurate. Frequency of.
  • the frequency of the reference subcarrier of the SSB broadcasted by the network device is 900 MHz, and since the frequency determined by the terminal device may have a large deviation, for example, the 899.995 MHz understood by the terminal device is actually 900 MHz, the terminal device follows The frequency of 899.995MHz understood by the terminal device can successfully receive the SSB broadcasted by the network device.
  • the terminal device cannot find that its own frequency deviates from the actual frequency.
  • the operating frequency determined by the terminal device may also have a frequency deviation, which may affect the performance of communication between the network device and the terminal device.
  • the technical solution of the embodiment of the present application is provided, which can effectively improve the accuracy of adjusting the frequency offset of the terminal device, and reduce the frequency offset between the terminal device and the network device.
  • the embodiments of the present application can be applied to a 5G NR system, and can also be applied to a next generation mobile communication system or other similar communication system.
  • FIG. 3 is an application scenario of an embodiment of the present application.
  • a network device and at least one terminal device are included, and the network device and the terminal device operate in a 5G NR communication system, for example, a base station.
  • the terminal device and the network device can communicate through the 5G NR communication system.
  • an embodiment of the present application provides a first method for transmitting and receiving a signal.
  • the application scenario shown in FIG. 3 is applied to the example. The flow of this method is described below.
  • the network device determines the SSB and the indication information, where the indication information is used to indicate that the frequency position of the SSB is one of the frequency sets, the frequency set includes the first frequency and the second frequency, or includes the first frequency and the second frequency. And a third frequency;
  • the network device sends the SSB and the indication information to the terminal device, where the terminal device receives the SSB and the indication information.
  • the terminal device determines, according to the indication information, a frequency location of the SSB as one of the frequency sets.
  • the first frequency is equal to N ⁇ 900 KHz
  • the second frequency is equal to (N ⁇ 900+k) KHz
  • the third frequency is equal to (N ⁇ 900-k) KHz, where N is a positive integer.
  • N is a positive integer.
  • the second frequency and the third frequency are symmetric with respect to the first frequency, that is, the absolute value of the difference between the second frequency and the first frequency and the absolute value of the difference between the third frequency and the first frequency are not limited.
  • the first frequency can be equal to N ⁇ 900KHz
  • the second frequency is equal to (N ⁇ 900+k1)KHz
  • the third frequency is equal to (N ⁇ 900-k2)KHz, where k1 and k2 can be equal or not equal
  • a frequency should actually be understood as a frequency group.
  • the first frequency should actually be understood as a frequency group including ⁇ 900, 1800, 2700, ... ⁇ KHz.
  • the frequency set may include only the first frequency, the second frequency, and the third frequency.
  • the frequency set includes a first frequency of N ⁇ 900 KHz, the second frequency is (N ⁇ 900+5) KHz, and the third frequency is (N ⁇ 900-5) KHz; or, in addition to the first frequency, the second frequency, and the third frequency, other frequencies may be included in the frequency set, for example, including a fourth frequency and a fifth frequency, etc., such as a frequency
  • the first frequency included in the set is N ⁇ 900 KHz
  • the second frequency is (N ⁇ 900+5) KHz
  • the third frequency is (N ⁇ 900-5) KHz
  • the fourth frequency is (N ⁇ 900+10) KHz.
  • the fifth frequency is (N ⁇ 900-10) KHz, which is not limited in the embodiment of the present application.
  • the frequency set may include only the first frequency and the second frequency, or only the first frequency and the third frequency, which are not limited in the embodiment of the present application.
  • the first frequency in the above is not limited to N ⁇ 900 KHz, and may be N ⁇ 600 KHz, or N ⁇ 300 KHz. Of course, other values may be used, which are not limited herein. It should be noted that the first frequency defined in the existing wireless communication system is N ⁇ 900 KHz, and the value of the first frequency may also change as the system evolves.
  • the second frequency and the third frequency are not limited in the embodiment of the present application. For example, in the case where the first frequency is N ⁇ 600 KHz, the second frequency may be (N ⁇ 600+k)KHz, and the third The frequency can be (N x 600-k) KHz.
  • the first frequency is equal to (N ⁇ P)KHz
  • the second frequency is equal to (N ⁇ P+k)KHz
  • the third frequency is equal to (N ⁇ Pk)KHz
  • P can be equal to 900, or can also be taken
  • Other values such as 600 or 300, etc., are not limited in the embodiment of the present application.
  • the frequency set is only included in the first frequency, the second frequency, and the third frequency. If the indication information is used to indicate that the frequency position of the SSB is one of the frequency sets, it can be understood that the indication information is used for The frequency position indicating the SSB is the first frequency, the second frequency, or the third frequency. If other frequencies are included in the frequency set, the indication manner of the indication information may refer to the manner to be described in the following text, and will not be described again.
  • the frequency location of the SSB may be the location of the first subcarrier in the SSB, and the first subcarrier may be a reference subcarrier in the SSB.
  • the first subcarrier may be numbered in the SSB.
  • the first subcarrier may also be other subcarriers, which is not limited herein.
  • the specific terminal device can detect the value of the N, and can be specified by the protocol, or the network device can notify the terminal device, and can also be determined by the terminal device, which is not limited in the embodiment of the present application.
  • the indication information may directly indicate that the frequency of the first subcarrier is one of the frequency sets, for example, directly indicating that the frequency of the first subcarrier is the first frequency, the second frequency, or the third frequency, or
  • the frequency of the first subcarrier may be indirectly indicated as one of the frequency sets, for example, the frequency of the first subcarrier is indirectly indicated as the first frequency, the second frequency, or the third frequency.
  • the indication information may indicate that the deviation of the frequency of the first subcarrier from the first frequency is one of a set of deviations, and the set of deviations includes 0, a first deviation, and a second deviation.
  • the indication information may be used to indicate that the frequency of the first subcarrier deviates from the first frequency by 0, the first deviation or the second deviation, and the first deviation may be understood as a deviation between the first frequency and the second frequency,
  • the second deviation can be understood as the deviation between the first frequency and the third frequency, and then the deviation included in the deviation set is a one-to-one correspondence with the frequency included in the frequency set.
  • the terminal device may pre-store the first frequency, for example, the first frequency is specified by the protocol, or the first frequency is sent by the network device to the terminal device in advance.
  • the terminal device may determine, according to the indication information, a deviation between the frequency of the first subcarrier and the first frequency, and determine, according to the first frequency, a deviation of the frequency of the first subcarrier from the first frequency, The frequency of the first subcarrier. Specifically, if the frequency of the first subcarrier and the first frequency are 0, the terminal device determines that the frequency of the first subcarrier is the first frequency, if the frequency of the first subcarrier and the first frequency are the first The terminal device determines that the frequency of the first subcarrier is the second frequency.
  • the terminal device determines that the frequency of the first subcarrier is the third frequency. For example, the first deviation is +5KHz, the second deviation is -5KHz, the indication information indicates that the deviation between the frequency of the first subcarrier and the first frequency is the first deviation, and the terminal device knows that the first frequency is N ⁇ 900KHz, Then, the terminal device determines that the frequency of the first subcarrier is (N ⁇ 900+5) KHz according to the first frequency and the first deviation.
  • the deviation set also includes corresponding deviations.
  • the frequency set further includes the fourth frequency
  • the deviation set further includes a third deviation
  • the third deviation The deviation between the fourth frequency and the first frequency is not limited in the embodiment of the present application.
  • the indication information may indicate that the type of the frequency is one of a set of types, and the set of types includes the first type, the second type, and the third type.
  • the type of the frequency is divided in advance, the type of the first frequency is the first type, the type of the second frequency is the second type, and the type of the third frequency is the third type.
  • the indication information may be used to indicate the first subtype.
  • the type of the carrier frequency is the first type, the second type, or the third type.
  • the terminal device may pre-store the mapping relationship between the frequency and the type of the frequency.
  • the mapping relationship between the frequency and the frequency type is specified by the protocol, or the mapping relationship between the frequency and the frequency type is sent to the terminal by the network device in advance. device.
  • the type of the first frequency is the first type
  • the type of the second frequency is the second type
  • the type of the third frequency is the third type
  • the mapping relationship between the frequency and the type of frequency may also include other corresponding mapping relationships.
  • the terminal device can determine the type of the frequency of the first subcarrier according to the type of the frequency indicated by the indication information, and then determine the first subcarrier according to the mapping relationship between the frequency and the type of the frequency. frequency.
  • the type of the frequency of the first subcarrier indicated by the indication information is the first type
  • the terminal device determines, according to the mapping relationship between the frequency and the type of the frequency, that the frequency of the first subcarrier is the first frequency, or the indication
  • the type of the frequency of the first subcarrier indicated by the information is the second type
  • the terminal device determines, according to the mapping relationship between the frequency and the type of the frequency, the frequency of the first subcarrier is the second frequency, or the indication indicated by the indication information
  • the type of the frequency of one subcarrier is the third type
  • the terminal device determines that the frequency of the first subcarrier is the third frequency according to the mapping relationship between the frequency and the type of the frequency.
  • the indication information may be used to indicate that the grouping information of the frequency is one of the group of group information, and the group of grouping information includes the first group, the second group, and the third group.
  • the first frequency belongs to the first group
  • the second frequency belongs to the second group
  • the third frequency belongs to the third group
  • the first frequency is equal to N ⁇ 900 KHz
  • the second frequency is equal to (N ⁇ 900+ 5) KHz
  • the third frequency is equal to (N ⁇ 900 - 5) KHz as an example.
  • the first group in which the first frequency is located includes the frequency of ⁇ 900, 1800, 2700, ... ⁇ KHz.
  • the second group in which the second frequency is located includes frequencies of ⁇ 905, 1805, 2705, ... ⁇ KHz
  • the third group in which the third frequency is located includes frequencies of ⁇ 895, 1795, 2695, ... ⁇ KHz.
  • the indication information may be used to indicate that the group in which the frequency of the first subcarrier is located is the first group, the second group, or the third group.
  • the terminal device may pre-store the mapping relationship between the frequency and frequency packets, for example, the mapping relationship between the frequency and frequency packets is specified by the protocol, or the mapping relationship between the frequency and frequency packets is sent by the network device to the terminal in advance. device.
  • the first frequency group is the first group
  • the second frequency group is the second group
  • the third frequency group is the third group.
  • the terminal device can determine, according to the group information of the frequency indicated by the indication information, the packet to which the frequency of the first subcarrier belongs, according to the group to which the frequency of the first subcarrier belongs and the group of the frequency and the frequency. By mapping the relationship, the frequency of the first subcarrier can be determined.
  • the terminal device determines, according to the mapping relationship between the frequency and the frequency group, the frequency of the first subcarrier is The first frequency, or the group information of the frequency of the first subcarrier indicated by the indication information is that the frequency of the first subcarrier belongs to the second group, and the terminal device determines the first sub according to the mapping relationship between the packets of the frequency and the frequency.
  • the frequency of the carrier is the second frequency
  • the indication information indicates that the packet information of the frequency of the first subcarrier is the third subgroup, and the terminal device determines the mapping relationship between the packets of the frequency and the frequency.
  • the frequency of the first subcarrier is the third frequency.
  • the group information group also includes a corresponding group.
  • the group information group further includes a fourth group
  • the fourth group corresponds to the fourth frequency, which is not limited in the embodiment of the present application.
  • the indication information indirectly indicates the frequency of the first subcarrier.
  • the embodiment of the present application does not limit the indication manner when the indication information indicates the frequency of the first subcarrier indirectly.
  • the indication information indicates that the frequency of the first subcarrier in the SSB is one of the frequency sets.
  • the indication information may be indicated as a whole, or may be indicated by a hierarchical indication. It can be clarified that whether the indication is performed as a whole or by means of hierarchical indication, the frequency of the first subcarrier can be directly indicated as one of the frequency sets, or the frequency of the first subcarrier can be indirectly indicated. It is one of the frequency sets. Therefore, the indication information described below indicates that the frequency of the first subcarrier is one of the frequency sets, and may be a direct indication or an indirect indication, which will not be further described below. The manner in which the indication is performed as a whole and the manner in which the indication is indicated by the hierarchical indication are respectively described below.
  • the indication information is indicated as a whole.
  • the indication information includes a third field in the PBCH in the SSB, or a fourth field including remaining minimum system information (RMSI), and may of course include fields in other messages, such as other system messages. (other system information, OSI), there are no restrictions here. That is, the network device may indicate that the frequency of the first subcarrier is one of the frequency sets by using a third field in the PBCH or a fourth field in the RMSI or a corresponding field in other messages.
  • RMSI remaining minimum system information
  • this indication mode it is divided into a display indication mode and an implicit indication mode.
  • the third field or the fourth field includes 2 bits, and when the value of the 2 bits is 00, the frequency of the first subcarrier is indicated as the first frequency, and when the value of the 2 bits is 01, The frequency indicating the first subcarrier is the second frequency. When the value of the 2 bit is 10, the frequency of the first subcarrier is the third frequency. When the value of the 2 bit is 11, the state is reserved. It should be noted that the value of the two bits may be other correspondences between the values indicated by the two bits, and is not limited thereto.
  • the third field or the fourth field includes 1 bit. If the third field is carried in the PBCH or the fourth field is carried in the RMSI, and the value of the 1 bit is 0, the first sub The frequency of the carrier is the second frequency. If the third field is carried in the PBCH or the fourth field is carried in the RMSI, and the value of the 1 bit is 1, the frequency of the first subcarrier is indicated as the third frequency, and if The third field is not carried in the PBCH or the fourth field is not carried in the RMSI, and the frequency of the first subcarrier is implicitly indicated as the first frequency. It should be noted that the value of the one bit and other states may be other correspondences, which are merely examples and are not limited thereto.
  • the indication information may include a third field in the PBCH in the SSB, because the SSB is generally sent before the RMSI, and if the terminal device determines the frequency of the first subcarrier according to the third field of the PBCH in the SSB, The frequency of the terminal device can be corrected in time, so that the terminal device can receive the RMSI on a relatively accurate frequency, which can improve the reliability of the terminal device receiving the RMSI.
  • the third field in the PBCH may be a field indicating an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block.
  • the reference resource block can be understood as any resource block in the common resource grid. For example, it can be a resource block with the number 0, or a resource block with other values.
  • the value indicated by the third field may be any one of 0 to 11, or may be any one of 0 to 23.
  • the common resource block grid can be understood as a resource block grid of any downlink signal sent by the network device to the terminal device except for the SSB.
  • the downlink signal may be a signal carrying a system message, such as RMSI, and of course other Downstream signal.
  • the resource block grid of the SSB and the grid of the common resource block may be aligned, for example, a subcarrier with a number of 0 in a resource block of the SSB and a resource block in a common resource block grid.
  • the subcarriers numbered 0 are aligned, the number in the resource block in the SSB is the alignment of the subcarriers of the subcarriers in the resource block in the common resource block grid, and so on, or so, SSB
  • the resource block grid and the grid of the common resource block may also be out of alignment. For example, the numbered 0 subcarrier in a certain resource block of the SSB and the resource block in the common resource block grid are numbered 0. Subcarriers are not aligned.
  • the subcarriers in the resource block of the SSB and the subcarriers of the common resource block must be aligned.
  • the alignment here should be understood as the center/peak position of one subcarrier in the resource block of the SSB and one subcarrier in the common resource block.
  • the center/peak position is the same.
  • the center/peak position of one of the subcarriers in the resource block of the SSB is not the same as the position between two subcarriers in the common resource block.
  • the subcarrier spacing of the SSB and the subcarrier spacing of the common resource block may be equal or not equal, and are not limited herein.
  • the implicit indication indicates that the grid position of the SSB is the first frequency
  • the implicitly indicating the grid position of the SSB is The second frequency or the third frequency, so the network device can indicate the grid location of the SSB through the third field.
  • the terminal device may finally determine the first by detecting the second frequency and the third frequency.
  • the frequency of the subcarriers Because the difference between the second frequency and the third frequency is large, it is easy to distinguish for the terminal device, and the possibility of confusion is small. Therefore, in the embodiment of the present application, the currently existing field can be directly used as the indication information. The effect of reducing the frequency offset between the network device and the terminal device can be achieved, the transmission resource can be saved, and the analysis complexity of the terminal device can be reduced.
  • the indication mode is relatively simple and clear, and the frequency of the first subcarrier can be indicated directly by 2 bits or 1 bit, which is convenient for the terminal device to understand. Wherein, if the indication information is indicated by 1 bit, the amount of information is smaller with respect to 2 bits, which helps to save transmission resources.
  • the indication information may be carried in a scrambling code of a PBCH in the SSB.
  • the scrambling code set may be set for the PBCH by using a protocol, and the set of scrambling code sets may include the number of scrambling codes and the number of frequencies included in the frequency set may be consistent.
  • the frequency set includes a first frequency, a second frequency, and a third frequency, and the first scrambling code, the second scrambling code, and the third scrambling code may be included in the scrambling code set.
  • the correspondence between the scrambling code and the frequency may be pre-defined by the protocol, for example, in the correspondence between the scrambling code and the frequency, the first scrambling code corresponds to the first frequency, and the second scrambling code corresponds to the second frequency, The three scrambling code corresponds to the third frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency according to the correspondence between the scrambling code and the frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the second frequency according to the correspondence between the scrambling code and the frequency, or if the PBCH is determined to be used.
  • the scrambling code is the third scrambling code, and the terminal device can determine that the frequency of the first subcarrier is the third frequency according to the correspondence between the scrambling code and the frequency. It should be noted that the scrambling code and other states indicated by the scrambling code may be other correspondences, and are merely examples and are not limited thereto.
  • the indication information may be carried in the signal of the SSB.
  • the PSS is transmitted on the OFDM symbol numbered 0 in the SSB, and in the frequency domain, the PSS only occupies a total of 127 subcarriers numbered from 56 to 182, that is, on the OFDM symbol 0, Subcarriers numbered 0 through 55 and numbered 183 through 239 are not used to transmit signals. Therefore, the network device can use the subcarriers that are not utilized to transmit the signal carrying the indication information.
  • the network device may pre-set a mapping relationship between a subcarrier and a frequency occupied by a signal carrying the indication information, and the signal carrying the indication information is, for example, a first signal.
  • the signal carrying the indication information is, for example, a first signal.
  • the mapping relationship between the subcarriers occupied by the first signal and the frequency when the subcarriers occupied by the first signal are subcarriers numbered 0 to 47 on the OFDM symbol 0, The corresponding frequency is the third frequency.
  • -5 KHz corresponds to the third frequency.
  • the corresponding frequency is The second frequency, in FIG.
  • 5KHz corresponds to the second frequency, and the subcarriers numbered 0 to 47 and 192 to 239 on the OFDM symbol 0 do not transmit the first signal, that is, the first signal is in the OFDM symbol 0.
  • the corresponding frequency is the first frequency.
  • 0 KHz corresponds to the first frequency, in which case It can be considered that the first signal does not occupy any subcarrier on OFDM symbol 0, and it can be considered that the network device does not transmit the first signal.
  • the number of subcarriers occupied by the first signal and the position of the subcarriers occupied by the first signal may be other correspondences between the subcarriers occupied by the first signal. Not limited.
  • the subcarriers occupied by the first signal are fixed, and different frequencies may be indicated by different contents of the first signal.
  • the network device may pre-set a mapping relationship between the first signal and the frequency. In the mapping relationship between the first signal and the frequency, if the first signal is the first sub-signal, the corresponding frequency is the first frequency.
  • the corresponding frequency is the second frequency
  • the corresponding frequency is the third frequency, or the mapping between the first signal and the frequency
  • the corresponding frequency is the third frequency
  • the subcarriers occupied by the first signal in OFDM symbol 0 are always fixed, for example, occupying subcarriers numbered 0 to 47, or occupying subcarriers numbered 192 to 239, and the like.
  • the first signal may be a sequence signal, a pilot signal, or an energy signal, which is not limited herein.
  • the first signal is, for example, a sequence signal, the first sub-signal is a first sequence, the second sub-signal is a second sequence, and the third sub-signal is a third sequence, or the first signal is, for example, a pilot signal,
  • the sub-signal is the first pilot, the second sub-signal is the second pilot, the third sub-signal is the third pilot, and so on.
  • the first signal may be in other correspondences with the state indicated by the first signal.
  • the indication information is indexed.
  • the indication information may include first indication information and second indication information.
  • the first indication information is used to indicate that the frequency of the first subcarrier is the first frequency or the fourth frequency, and the fourth frequency is the second frequency or the third frequency. Then, if the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device may directly determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and if the first indication information indicates the first The frequency of the subcarrier is the fourth frequency, and the terminal device further needs to determine whether the frequency of the first subcarrier is the second frequency or the third frequency. In this case, the terminal device can also determine by using the second indication information.
  • the second indication information is used to indicate that the frequency of the first subcarrier is the second frequency or the third frequency if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency. In this way, the terminal device can determine the frequency of the first subcarrier by using the first indication information and the second indication information.
  • the hierarchical indication it is also divided into a display indication mode and an implicit indication mode.
  • the first indication information includes 1 bit
  • the second indication information also includes 1 bit. If the 1 bit of the first indication information is 0, the frequency of the first subcarrier is the first frequency, and if the 1 bit of the first indication information is 1, the frequency of the first subcarrier is indicated as the fourth. frequency. If the 1 bit of the first indication information is 1, if the 1 bit of the second indication information is 0, the frequency of the first subcarrier is indicated as the second frequency, and if the 1st bit of the second indication information is 1 bit. A value of 1 indicates that the frequency of the first subcarrier is the third frequency.
  • the value of the bit and the state indicated by the bit may be other correspondences, which are merely examples and are not limited thereto.
  • the first indication information is a first field in the PBCH
  • the second indication information is a second field in the PBCH.
  • the first indication information is a first field in the PBCH
  • the second indication information is a fourth field in the RMSI.
  • the network device may not need to send the second indication information.
  • the PBCH or the RMSI is less than one field, and the terminal device generally detects the PBCH with the second field or the RMSI with the fourth field length.
  • a field with one less PBCH or RMSI may cause the terminal device to fail to detect PBCH or RMSI. Therefore, in order to facilitate the detection of the terminal device, in the embodiment, the network device may still send the second indication information, but if the first indication information takes a value of 0, the terminal device may not pay attention to the second indication information, for example, may not be needed.
  • the second indication information is parsed, and the second indication information does not have any effect at this time. Then, in the case that the first indication information takes a value of 0, the value of the second indication information may be random, or a default value may be set, for example, the default value is 0 or 1.
  • the first indication information may be carried in the scrambling code of the PBCH in the SSB, and the second indication information may be a fifth field of the PBCH in the SSB or a sixth field of the RMSI.
  • the scrambling code set may be set for the PBCH by using a protocol, where the set of scrambling codes includes, for example, a first scrambling code and a second scrambling code, and specifies that if the PBCH uses the first scrambling code, indicating that the frequency of the first subcarrier is the first A frequency, if the PBCH uses the second scrambling code, indicating that the frequency of the first subcarrier is the fourth frequency. Then, after the terminal device receives the PBCH, if it is determined that the scrambling code used by the PBCH is the first scrambling code, the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to resort to the second indication information.
  • the set of scrambling codes includes, for example, a first scrambling code and a second scrambling code
  • the terminal device may determine that the frequency of the first subcarrier is fourth. Frequency, at this time, the terminal device further needs to determine the frequency of the first subcarrier by means of the second indication information, for example, the second indication information occupies 1 bit, and if the 1 bit of the second indication information takes a value of 0, indicating the first subcarrier The frequency is the second frequency. If the 1 bit of the second indication information is 1, it indicates that the frequency of the first subcarrier is the third frequency.
  • the scrambling code and other states indicated by the scrambling code may be other corresponding relationships, and the bit values of the second indication information may be other correspondences with the indicated state. For example, it is not limited.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the first indication information may be a seventh field in the PBCH, and the second indication information may be carried in a scrambling code of the PBCH in the SSB.
  • the seventh field in the PBCH may be a field indicating an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block, which may be understood as a seventh in the PBCH.
  • the field and the third field of the PBCH introduced in the foregoing are the same field. Therefore, for the introduction of the seventh field in the PBCH, refer to the foregoing, and no further description is provided. Then, when the value indicated by the seventh field is an even number, the implicit indication indicates that the grid position of the SSB is the first frequency, and when the value indicated by the seventh field is an odd number, the grid position indicating the SSB is implicitly indicated.
  • the network device can indicate the grid position of the SSB through the seventh field. Then, after the terminal device receives the SSB, if it is determined that the value indicated by the seventh field is an even number, the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information, according to the An indication may determine that the frequency of the first subcarrier is the first frequency; or, if the value indicated by the seventh field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further The frequency of the first subcarrier needs to be determined by means of the second indication information, wherein the scrambling code set can be set for the PBCH by using a protocol, and the set of scrambling codes includes, for example, a first scrambling code and a second scrambling code, and specifies if the PBCH Using the first scrambling code, indicating that the frequency of the first subcarrier
  • the PBCH uses the first scrambling code, determining that the frequency of the first subcarrier is the second frequency, if it is determined that the PBCH is used.
  • a second scrambling code determining a first subcarrier frequency to the third frequency. It should be noted that the scrambling code and other states indicated by the scrambling code may be other correspondences, and are merely examples and are not limited thereto.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the first indication information may be carried in the signal of the SSB, and the second indication information may be a fifth field of the PBCH in the SSB or a sixth field of the RMSI.
  • the PSS is transmitted on the OFDM symbol numbered 0 in the SSB, and in the frequency domain, the PSS only occupies a total of 127 subcarriers numbered from 56 to 182, that is, on the OFDM symbol 0, Subcarriers numbered 0 through 55 and numbered 183 through 239 are not used to transmit signals.
  • the network device may use the subcarriers that are not utilized to transmit the signal carrying the indication information, and the signal carrying the indication information is referred to as the first signal.
  • the corresponding frequency is the first frequency
  • the subcarrier occupied by the first signal when the carrier is a subcarrier numbered 192 to 239, the corresponding frequency is the second frequency or the third frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, In this case, the terminal device does not need to use the second indication information, and may determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency; or, if it is determined that the subcarrier occupied by the first signal on the OFDM symbol 0 is a number For a subcarrier of 192 to 239, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further needs to determine the frequency of the first subcarrier by using the second indication information, for example, the second indication information.
  • the second indication information for example, the second indication information.
  • the 1 bit of the second indication information is 0, it indicates that the frequency of the first subcarrier is the second frequency. If the 1 bit of the second indication information is 1, the frequency of the first subcarrier is Third frequency. It should be noted that the subcarriers occupied by the first signal may also have other correspondences with the state indicated by the first signal, and the bit value of the second indication information may be other between the indicated state and the indicated state. Correspondence, here is just an example, not limited.
  • the subcarriers occupied by the first signal are fixed, and different frequencies may be indicated by different contents of the first signal.
  • the subcarriers occupied by the first signal are unchanged, for example, occupying subcarriers with numbers 0 to 47 on OFDM symbol 0, and if the first signal is the first subsignal, indicating that the frequency of the first subcarrier is the first frequency. If the first signal is the second sub-signal, it indicates that the frequency of the first sub-carrier is the second frequency or the third frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency. At this time, the terminal device does not need to use the second indication information, and may determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency; or if the subcarrier transmission with the number 0 to 47 on the OFDM symbol 0 is determined to be sent.
  • the first signal is the second sub-signal
  • the terminal device may determine that the frequency of the first sub-carrier is the fourth frequency, and the terminal device further needs to determine the frequency of the first sub-carrier by using the second indication information, for example, the second The indication information occupies 1 bit. If the 1st bit of the second indication information is 0, the frequency of the first subcarrier is the second frequency. If the 1st bit of the second indication information is 1, the first subcarrier is indicated. The frequency is the third frequency. It should be noted that the first signal may be in another correspondence relationship with the state indicated by the first signal, and the value of the bit of the second indication information may be other correspondences between the indicated state and the indicated state. It is just an example and is not limited.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the first indication information may be a seventh field in the PBCH, and the second indication information may be carried in the signal of the SSB.
  • the seventh field in the PBCH may be a field indicating an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block, which may be understood as a seventh in the PBCH.
  • the field and the third field of the PBCH introduced in the foregoing are the same field. Therefore, for the introduction of the seventh field in the PBCH, refer to the foregoing, and no further description is provided. Then, when the value indicated by the seventh field is an even number, the implicit indication indicates that the grid position of the SSB is the first frequency, and when the value indicated by the seventh field is an odd number, the grid position indicating the SSB is implicitly indicated.
  • the network device can indicate the grid position of the SSB through the seventh field. Then, after the terminal device receives the SSB, if it is determined that the value indicated by the seventh field is an even number, the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information, according to the An indication may determine that the frequency of the first subcarrier is the first frequency; or, if the value indicated by the seventh field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further The frequency of the first subcarrier needs to be determined by means of the second indication information, wherein the subcarriers occupied by the first signal are subcarriers numbered 0 to 47 on the OFDM symbol 0 of the SSB.
  • the corresponding frequency is the second frequency.
  • the corresponding frequency is the third frequency
  • the first signal is the second indication of the bearer.
  • the signal of the information when the terminal device needs to use the second indication information, the subcarrier occupied by the first signal on the OFDM symbol 0 can be determined, if the first signal is on the OFDM symbol 0
  • the occupied subcarriers are subcarriers numbered from 0 to 47, and the frequency of the first subcarrier is determined to be the second frequency.
  • the subcarriers occupied by the first signal OFDM symbol 0 are subcarriers numbered 192 to 239, Then determining that the frequency of the first subcarrier is the third frequency. It should be noted that the subcarriers occupied by the first signal may be in other correspondences with the state indicated by the first signal, which is only an example and is not limited thereto.
  • the implicit indication indicates that the grid position of the SSB is the first frequency
  • the grid position indicating the SSB is implicitly indicated. It is the second frequency or the third frequency, so the network device can indicate the grid position of the SSB through the seventh field.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information, according to the An indication may determine that the frequency of the first subcarrier is the first frequency; or, if the value indicated by the seventh field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further The frequency of the first subcarrier needs to be determined by means of the second indication information, wherein the subcarriers occupied by the first signal are fixed by a protocol, for example, occupying subcarriers with numbers 0 to 47 on OFDM symbol 0, if The first signal is the first sub-signal, indicating that the frequency of the first sub-carrier is the second frequency, and if the first signal is the second sub-signal, the frequency of the first sub-carrier is the third frequency, and the first signal is the bearer.
  • the second indication information signal when the terminal device needs to use the second indication information, the first signal of the subcarrier transmission numbered 0 to 47 on the OFDM symbol 0 can be determined. If the first signal is the first sub-signal, the terminal device determines that the frequency of the first sub-carrier is the second frequency, and if the first signal is the second sub-signal, the terminal device determines that the frequency of the first sub-carrier is the third frequency. It should be noted that the first signal may be in other correspondences with the state indicated by the first signal, and is not limited thereto.
  • the first signal may be a sequence signal, a pilot signal, or an energy signal, which is not limited herein.
  • the first signal is, for example, a sequence signal, the first sub-signal is a first sequence, and the second sub-signal is a second sequence, or the first signal is, for example, a pilot signal, and the first sub-signal is a first pilot,
  • the two sub-signals are the second pilot, and so on.
  • the indication information may include the first indication information, or the indication information may include the first indication information and the second indication information.
  • whether the indication information includes the second indication information Subject to conditions.
  • the first indication information is used to indicate that the frequency of the first subcarrier is the first frequency or the fourth frequency, and the fourth frequency is the second frequency or the third frequency. Then, if the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device may directly determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and the indication information does not need to include the second indication.
  • the information that is, the network device does not need to send the second indication information; if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency, the terminal device further needs to determine whether the frequency of the first subcarrier is the second frequency or the first
  • the indication information further includes the second indication information, that is, the network device further needs to send the second indication information, and the terminal device can also determine the frequency of the first subcarrier by using the second indication information.
  • the second indication information is used to indicate that the frequency of the first subcarrier is the second frequency or the third frequency if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency. In this way, the terminal device can determine the frequency of the first subcarrier by using the first indication information or by using the first indication information and the second indication information.
  • the hierarchical indication it is also divided into a display indication mode and an implicit indication mode.
  • the first indication information includes 1 bit. If the 1 bit of the first indication information is 0, the frequency of the first subcarrier is the first frequency, and if the 1 bit of the first indication information is 1, the frequency of the first subcarrier is indicated as the fourth. frequency. If the first bit of the first indication information is 0, the network device does not send the second indication information, and the terminal device may directly determine that the frequency of the first subcarrier is the first frequency; and the first indication information is 1 bit. If the value is 1, the network device sends the second indication information. For example, the second indication information also includes 1 bit.
  • the frequency of the first subcarrier is indicated as The second frequency
  • the 1 bit of the second indication information is 1, indicates that the frequency of the first subcarrier is the third frequency.
  • the value of the bit and the state indicated by the bit may be other correspondences, which are merely examples and are not limited thereto.
  • the first indication information is a first field in the PBCH
  • the second indication information is a second field in the PBCH.
  • the first indication information is a first field in the PBCH
  • the second indication information is a fourth field in the RMSI.
  • the network device if the first indication information takes a value of 0, the network device does not need to send the second indication information, which helps save transmission resources. For the terminal device, you can set both the detection and the
  • the terminal device may be configured to perform the second field according to the PBCH or the length of the RMSI with the fourth field.
  • the detection can also be performed according to the length of the PBCH without the second field or the RMSI without the fourth field.
  • the terminal device can first detect according to the PBCH with the second field or the length of the RMSI with the fourth field, if the detection If the detection succeeds, the indication information includes only the first indication information. If the detection fails, the terminal device continues to detect according to the length of the PBCH without the second field or the RMSI without the fourth field. In this way, both the terminal device and the transmission resource can be saved.
  • the first indication information may be carried in the scrambling code of the PBCH in the SSB.
  • the scrambling code set may be set for the PBCH by using a protocol, where the set of scrambling codes includes, for example, a first scrambling code and a second scrambling code, and specifies that if the PBCH uses the first scrambling code, indicating that the frequency of the first subcarrier is the first A frequency, if the PBCH uses the second scrambling code, indicating that the frequency of the first subcarrier is the fourth frequency. Then, after the terminal device receives the PBCH, if it is determined that the scrambling code used by the PBCH is the first scrambling code, the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to resort to the second indication information.
  • the set of scrambling codes includes, for example, a first scrambling code and a second scrambling code
  • the frequency of the first subcarrier is determined to be the first frequency according to the first indication information.
  • the network device does not need to send the second indication information, that is, in this case, the indication information includes only the first The indication information; or, if it is determined that the scrambling code used by the PBCH is the second scrambling code, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further needs to determine the first The frequency of a subcarrier, in which case the network device needs to send the second indication information in addition to the first indication information, that is, in this case, the indication information includes the first indication information and the second indication.
  • the information for example, the second indication information is a fifth field of the PBCH in the SSB, or a sixth field of the RMSI, the second indication information occupying, for example, 1 bit, if the second indication A bit rate value is 0, indicating that the first sub-carrier frequency of a second frequency, if the second indication information is 1-bit value is 1, indicates that the first subcarrier frequency to a third frequency.
  • the scrambling code and other states indicated by the scrambling code may be other corresponding relationships, and the bit values of the second indication information may be other correspondences with the indicated state. For example, it is not limited.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the first indication information may be an eighth field of the PBCH of the SSB.
  • the eighth field in the PBCH may be a field indicating an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block, which may be understood as an eighth in the PBCH.
  • the field and the third field or the seventh field of the PBCH introduced in the foregoing are the same field. Therefore, for the introduction of the eighth field in the PBCH, refer to the foregoing, and no further description is provided. Then, when the value indicated by the eighth field is an even number, the implicit indication indicates that the grid position of the SSB is the first frequency, and when the value indicated by the eighth field is an odd number, the grid position indicating the SSB is implicitly indicated.
  • the network device can indicate the grid position of the SSB through the eighth field. Then, after the terminal device receives the SSB, if it is determined that the value indicated by the eighth field is an even number, the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information, according to the An indication information may be used to determine that the frequency of the first subcarrier is the first frequency.
  • the network device does not need to send the second indication information, that is, in this case, the indication information includes only the first indication information; And if it is determined that the value indicated by the eighth field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the second frequency or the third frequency, and the terminal device further needs to determine the first subcarrier by using the second indication information.
  • the network device needs to send the second indication information in addition to the first indication information, that is, in this case, the indication information includes the first indication information and the second indication information, for example
  • the second indication information is carried in the scrambling code of the PBCH in the SSB, where the scrambling code set can be set for the PBCH by using a protocol, and the set of scrambling codes is set, for example.
  • the terminal device determines the scrambling code used by the PBCH if the second indication information is needed, and determines that the frequency of the first subcarrier is the second frequency if it is determined that the PBCH uses the first scrambling code. If it is determined that the PBCH uses the second scrambling code, it is determined that the frequency of the first subcarrier is the third frequency. It should be noted that the scrambling code and other states indicated by the scrambling code may be other correspondences, and are merely examples and are not limited thereto.
  • the first indication information may be carried in the signal of the SSB.
  • the network device may use a subcarrier that is not utilized on the OFDM symbol 0 in the SSB to transmit a signal carrying the first indication information, and the signal carrying the first indication information is referred to as a first signal. .
  • the corresponding frequency is the first frequency
  • the subcarrier occupied by the first signal is When the subcarriers are numbered 192 to 239, the corresponding frequency is the second frequency or the third frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, In this case, the terminal device does not need to use the second indication information, and the frequency of the first subcarrier is determined to be the first frequency according to the first indication information.
  • the network device does not need to send the second indication information, that is, In this case, the indication information includes only the first indication information; or, if it is determined that the subcarriers occupied by the first signal on the OFDM symbol 0 are subcarriers numbered 192 to 239, the terminal device may determine the first subcarrier.
  • the frequency is the fourth frequency.
  • the terminal device needs to determine the frequency of the first subcarrier by means of the second indication information.
  • the network device needs to send the second information in addition to the first indication information.
  • the indication information includes first indication information and second indication information
  • the second indication information is a fifth field of the PBCH in the SSB
  • the sixth field of the RMSI for example, the second indication information occupies 1 bit, if the 1st bit of the second indication information takes a value of 0, indicating that the frequency of the first subcarrier is the second frequency, if the first indication information is 1 bit.
  • a value of 1 indicates that the frequency of the first subcarrier is the third frequency.
  • the subcarriers occupied by the first signal may also have other correspondences with the state indicated by the first signal, and the bit value of the second indication information may be other between the indicated state and the indicated state. Correspondence, here is just an example, not limited.
  • the subcarriers occupied by the first signal are fixed, and different frequencies may be indicated by different contents of the first signal.
  • the subcarriers occupied by the first signal are unchanged, for example, occupying subcarriers with numbers 0 to 47 on OFDM symbol 0, and if the first signal is the first subsignal, indicating that the frequency of the first subcarrier is the first frequency. If the first signal is the second sub-signal, it indicates that the frequency of the first sub-carrier is the second frequency or the third frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency. In this case, the terminal device does not need to use the second indication information, and the frequency of the first subcarrier is determined to be the first frequency according to the first indication information.
  • the network device does not need to send the second indication information, ie,
  • the indication information includes only the first indication information; or, if it is determined that the first signal transmitted by the subcarriers numbered 0 to 47 on the OFDM symbol 0 is the second sub signal, the terminal device may determine the first The frequency of the subcarrier is the fourth frequency. In this case, the terminal device further needs to determine the frequency of the first subcarrier by means of the second indication information. In this case, the network device needs to send the first indication information in addition to the first indication information.
  • Second indication information that is, in this case, the indication information includes first indication information and second indication information, for example, the second indication information is a fifth word of the PBCH in the SSB Or the sixth field of the RMSI, for example, the second indication information occupies 1 bit, if the 1st bit of the second indication information takes a value of 0, indicating that the frequency of the first subcarrier is the second frequency, if the second indication information is 1 The bit value is 1, indicating that the frequency of the first subcarrier is the third frequency.
  • the first signal may be in another correspondence relationship with the state indicated by the first signal, and the value of the bit of the second indication information may be other correspondences between the indicated state and the indicated state. It is just an example and is not limited.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the first indication information may be an eighth field of the PBCH of the SSB.
  • the eighth field in the PBCH For the introduction of the eighth field in the PBCH, refer to the previous text, and no further description is provided. Then, when the value indicated by the eighth field is an even number, the implicit indication indicates that the grid position of the SSB is the first frequency, and when the value indicated by the eighth field is an odd number, the grid position indicating the SSB is implicitly indicated. It is the second frequency or the third frequency, so the network device can indicate the grid position of the SSB through the eighth field.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information, according to the An indication information may be used to determine that the frequency of the first subcarrier is the first frequency.
  • the network device does not need to send the second indication information, that is, in this case, the indication information includes only the first indication information;
  • the terminal device may determine that the frequency of the first subcarrier is the second frequency or the third frequency, and the terminal device further needs to determine the first subcarrier by using the second indication information.
  • the frequency in this case, the network device needs to send the second indication information in addition to the first indication information, that is, in this case, the indication information includes the first indication information and the second indication information, for example
  • the second indication information is carried in the signal of the SSB, where the first signal can be occupied by the protocol on the OFDM symbol 0 of the SSB.
  • the carrier is a subcarrier with numbers from 0 to 47, the corresponding frequency is the second frequency.
  • the corresponding frequency is The third frequency
  • the first signal is a signal carrying the second indication information
  • the terminal device needs to determine the subcarrier occupied by the first signal on the OFDM symbol 0 when the second indication information is needed by the terminal device, if the first signal is on the OFDM symbol 0 If the occupied subcarriers are subcarriers numbered 0 to 47, the frequency of the first subcarrier is determined to be the second frequency, if the subcarriers occupied by the first signal OFDM symbol 0 are subcarriers numbered 192 to 239 And determining that the frequency of the first subcarrier is the third frequency.
  • the subcarriers occupied by the first signal may be in other correspondences with the state indicated by the first signal, which is only an example and is not limited thereto.
  • the implicit indication indicates that the grid position of the SSB is the first frequency
  • the value indicated by the eighth field is an odd number
  • the grid position indicating the SSB is implicitly indicated. It is the second frequency or the third frequency, so the network device can indicate the grid position of the SSB through the eighth field. Then, after the terminal device receives the SSB, if it is determined that the value indicated by the eighth field is an even number, the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information, according to the An indication information may be used to determine that the frequency of the first subcarrier is the first frequency.
  • the network device does not need to send the second indication information, that is, in this case, the indication information includes only the first indication information; And if it is determined that the value indicated by the eighth field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the second frequency or the third frequency, and the terminal device further needs to determine the first subcarrier by using the second indication information.
  • the frequency in this case, the network device needs to send the second indication information in addition to the first indication information, that is, in this case, the indication information includes the first indication information and the second indication information, for example
  • the second indication information is carried in the signal of the SSB, where the subcarrier occupied by the first signal is fixed, for example, occupied by a protocol.
  • the subcarriers on the OFDM symbol 0 are numbered from 0 to 47. If the first signal is the first subsignal, the frequency of the first subcarrier is the second frequency, and if the first signal is the second subsignal, the The frequency of a subcarrier is a third frequency, and the first signal is a signal carrying the second indication information, and the terminal device needs to determine the subcarrier transmission numbered 0 to 47 on the OFDM symbol 0 by using the second indication information.
  • the first signal if the first signal is the first sub-signal, the terminal device determines that the frequency of the first sub-carrier is the second frequency, and if the first signal is the second sub-signal, the terminal device determines that the frequency of the first sub-carrier is Third frequency. It should be noted that the first signal may be in other correspondences with the state indicated by the first signal, and is not limited thereto.
  • the first signal may be a sequence signal, a pilot signal, or an energy signal, which is not limited herein.
  • the first signal is, for example, a sequence signal, the first sub-signal is a first sequence, and the second sub-signal is a second sequence, or the first signal is, for example, a pilot signal, and the first sub-signal is a first pilot,
  • the two sub-signals are the second pilot, and so on.
  • any one of the modes may be selected, or a specific method may be used by a protocol.
  • the terminal device After determining the frequency of the first subcarrier, the terminal device can adjust the frequency of the terminal device according to the frequency of the first subcarrier, which helps improve the accuracy of the frequency adjustment of the terminal device, and reduces the frequency between the terminal device and the network device. Partial.
  • the embodiment of the present application provides a second method for transmitting and receiving signals. Please refer to FIG. 6.
  • the application scenario shown in FIG. 3 is applied as an example. The flow of this method is described below.
  • the network device determines the SSB and the first indication information, where the first indication information is used to indicate that the frequency position of the SSB is one of the frequency sets, the frequency set includes the first frequency and the second frequency, or includes the first frequency. And the second frequency and the third frequency, the first indication information is information used to indicate an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block;
  • the network device sends the SSB and the first indication information to the terminal device, where the terminal device receives the SSB and the first indication information.
  • the terminal device receives the SSB and can receive it by:
  • the terminal device determines a first center frequency and a second center frequency, wherein the first center frequency is a frequency corresponding to a DC subcarrier that the terminal device receives a signal from the network device, and the second center frequency is the network device a frequency corresponding to a DC subcarrier that transmits a signal to the terminal device;
  • the terminal device receives an SSB from the network device according to the first center frequency and the second center frequency.
  • the terminal device when receiving the SSB, receives the SSB according to the first center frequency.
  • the first center frequency can be understood as the center of the terminal device receiving bandwidth, and the first center frequency can also be understood as The frequency at which the terminal device receives the DC position of the signal, or the frequency corresponding to the DC subcarrier.
  • the second center frequency is used for sending.
  • the second center frequency can be understood as the center of the network device sending bandwidth, and the second center frequency can also be understood as the network device sending the signal.
  • the terminal device determines the first center frequency and the second center frequency.
  • the second center frequency determined by the terminal device is understood to be sent by the network device that is understood by the terminal device.
  • the frequency of the DC position of the signal is not limited to the frequency at which the second center frequency determined by the terminal device must be equal to the frequency corresponding to the DC subcarrier of the signal transmitted by the network device. The two may be equal, and may not be equal.
  • the terminal device receives the SSB according to the first center frequency, and adjusts the signal phase according to the first center frequency and the second center frequency or according to the difference between the first center frequency and the second center frequency. .
  • the second center frequency may be predetermined, for example, the value of the second center frequency may be specified in the protocol, or the protocol may specify a rule that the terminal device determines the second center frequency, so that the terminal device can determine the second center frequency; or The second center frequency may also be notified by the network device to the terminal device.
  • the method that the terminal device determines the second center frequency, and/or receives the SSB according to the second center frequency may also be used in all applicable cases except the embodiment of the present application.
  • the terminal device may also receive the SSB by using the method, and the method may also be used for the terminal device to receive other signals except the SSB, for example, This other signal can be RMSI.
  • first center frequency and the second center frequency are just the names given herein, and are not limitations on the frequency itself, nor specifically that the frequency must be referred to as a "center frequency.”
  • the terminal device determines, according to the first indication information, a frequency location of the SSB as one of the frequency sets.
  • the frequency location of the SSB may be the location of the first subcarrier in the SSB.
  • the first subcarrier reference may also be made to the embodiment shown in FIG. 4, and details are not described herein.
  • the first indication information is, for example, a first field in a PBCH of the SSB, and the first field in the PBCH may be used to indicate a location of a second subcarrier in the SSB and a reference resource block.
  • the field of the offset between the positions of the third subcarrier can be understood as the first field of the PBCH and the third field, the seventh field or the eighth field of the PBCH introduced in the foregoing, and therefore the PBCH
  • the first field refer to the related description in the embodiment shown in FIG. 4, and details are not described.
  • the implicitly indicating the grid position of the SSB is the first frequency
  • the SSB is implicitly indicated.
  • the grid position is the second frequency or the third frequency, so the network device can indicate the grid position of the SSB through the first field.
  • the terminal device may finally determine the first child by detecting the second frequency and the third frequency.
  • the frequency of the carrier Because the difference between the second frequency and the third frequency is large, it is easy to distinguish for the terminal device, and the possibility of confusion is small. Therefore, in the embodiment of the present application, the currently existing field can be directly used as the indication information. The effect of reducing the frequency offset between the network device and the terminal device can be achieved, the transmission resource can be saved, and the analysis complexity of the terminal device can be reduced.
  • the terminal device may further determine the frequency of the first subcarrier by using the second indication information.
  • the second indication information there are two cases:
  • the indication information may include first indication information and second indication information.
  • the first indication information is used to indicate that the frequency of the first subcarrier is the first frequency or the fourth frequency, and the fourth frequency is the second frequency or the third frequency. Then, if the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device may directly determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and if the first indication information indicates the first The frequency of the subcarrier is the fourth frequency, and the terminal device further needs to determine whether the frequency of the first subcarrier is the second frequency or the third frequency. In this case, the terminal device can also determine by using the second indication information.
  • the second indication information is used to indicate that the frequency of the first subcarrier is the second frequency or the third frequency if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency. In this way, the terminal device can determine the frequency of the first subcarrier by using the first indication information and the second indication information.
  • the second indication information is the second field in the PBCH, or the second indication information is the fourth field in the RMSI, or may be a field in other messages.
  • the second indication information may be a second field in the PBCH in the SSB, because the SSB is generally sent before the RMSI, if the terminal device determines the first subcarrier according to the second field of the PBCH in the SSB.
  • the frequency can correct the frequency of the terminal device in time, so that the terminal device can receive the RMSI on a relatively accurate frequency, which can improve the reliability of the terminal device receiving the RMSI.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information again.
  • An indication may determine that the frequency of the first subcarrier is the first frequency; or, if the value indicated by the first field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further
  • the frequency of the first subcarrier needs to be determined by means of the second indication information, for example, the second field or the fourth field includes 1 bit, and if the value of 1 bit of the third field or the fourth field is 0, the first sub is determined.
  • the frequency of the carrier is the second frequency.
  • the frequency of the first subcarrier is determined to be the third frequency. It should be noted that the value of the one bit and other states may be other correspondences, which are merely examples and are not limited thereto.
  • the network device may not need to send the second indication information.
  • the PBCH or the RMSI is less than one field, and the terminal device generally detects the PBCH with the second field or the RMSI with the fourth field length.
  • a field with one less PBCH or RMSI may cause the terminal device to fail to detect PBCH or RMSI. Therefore, in order to facilitate the detection of the terminal device, in the embodiment, the network device may still send the second indication information, but if the first indication information takes a value of 0, the terminal device may not pay attention to the second indication information, for example, may not be needed.
  • the second indication information is parsed, and the second indication information does not have any effect at this time. Then, if the value of the first indication information is 0, the value of the second indication information may be random, or a default value may be set, for example, the default value is 0 or 1. In this case, it can be understood that the network device only The grid location of the SSB is implicitly indicated by the first indication information. It can also be understood that the network device uses the first indication information and the second indication information to jointly indicate the grid location of the SSB.
  • the indication information includes the first indication information, or the indication information includes the first indication information and the second indication information. In this embodiment, whether the indication information includes the second indication information or not depends on the condition.
  • the first indication information is used to indicate that the frequency of the first subcarrier is the first frequency or the fourth frequency, and the fourth frequency is the second frequency or the third frequency. Then, if the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device may directly determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and the indication information does not need to include the second indication.
  • the information that is, the network device does not need to send the second indication information; if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency, the terminal device further needs to determine whether the frequency of the first subcarrier is the second frequency or the first
  • the indication information further includes the second indication information, that is, the network device further needs to send the second indication information, and the terminal device can also determine the frequency of the first subcarrier by using the second indication information.
  • the second indication information is used to indicate that the frequency of the first subcarrier is the second frequency or the third frequency if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency. In this way, the terminal device can determine the frequency of the first subcarrier by using the first indication information or by using the first indication information and the second indication information.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to use the second indication information again.
  • An indication information may be used to determine that the frequency of the first subcarrier is the first frequency.
  • the network device does not need to send the second indication information, that is, in this case, the indication information includes only the first indication information; Or, if the value indicated by the first field is an odd number, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further needs to determine the frequency of the first subcarrier by using the second indication information, where In this case, the network device needs to send the second indication information in addition to the first indication information, that is, in this case, the indication information includes the first indication information and the second indication information, for example, the second field or The fourth field includes 1 bit.
  • the value of 1 bit of the third field or the fourth field is 0, it is determined that the frequency of the first subcarrier is the second frequency, such as 1-bit value of the third field, or fourth field is 1, it is determined that the first subcarrier frequency to the third frequency. It should be noted that the value of the one bit and other states may be other correspondences, which are merely examples and are not limited thereto.
  • the first indication information includes 5 bits
  • the first indication information includes 4 bits
  • the second indication information includes, for example, 1 bit.
  • the first indication information and the second indication information may also be jointly coded into one indication domain.
  • a 6-bit field may be used as an indication field to indicate the content required to be indicated by the original first indication information and the second indication information, as shown in Table 1 below.
  • the indication field represents a value of a 6-bit indication field
  • the resource block grid offset represents a location of a second subcarrier in the SSB indicated by the first indication information and a third sub-in the reference resource block.
  • the offset between the positions of the carriers, the SSB grid frequency offset refers to the deviation between the frequency of the first subcarrier and the first frequency.
  • the first frequency is equal to N ⁇ 900 KHz.
  • the second frequency is equal to (N ⁇ 900 + 5) KHz
  • the third frequency is equal to (N ⁇ 900 - 5) KHz as an example
  • Table 1 is an example of indicating the frequency by an indirect indication indicating the frequency deviation.
  • the indication field when the indication field is equal to 0, the offset between the location of the second subcarrier in the SSB indicated by the first indication information and the location of the third subcarrier in the reference resource block is 0, the indicated first The deviation between the frequency of the subcarrier and the first frequency is 0, which means that the frequency of the indicated first subcarrier is the first frequency.
  • Table 1 is only an example, and the relationship between the state of the joint indication domain and the resource block grid offset and the SSB grid position offset is not limited to that shown in Table 1, and may also be other correspondences. , here is not limited. Meanwhile, the names and types of the columns in Table 1 are not limited.
  • the SSB grid position offset may be the number of the frequency or frequency of the SSB, or the number of the frequency or frequency of the reference subcarrier of the SSB, and the like.
  • the first indication information includes 5 bits, if continuing A 6-bit indication field is used to indicate the content of the indication required by the original first indication information and the second indication information, as shown in Table 2 below.
  • the indication field is used to jointly indicate the resource block grid offset and the SSB frequency location, and the indication field is not limited herein.
  • the function and understanding of the indicator field can be different in different situations. For example, in the case that the channel raster value is 100 kHz, the function of the indication field may be as described in the foregoing embodiment; in the case that the channel raster value is 15 kHz, the function of the indication field may be used only for indicating the resource block.
  • the SSB frequency position indicated by the indication field is a unique position, for example, the first frequency, that is, in the case where the channel raster value is 15 kHz, the SSB frequency position is only N ⁇ At 900 kHz, and so on, in the case where the channel raster value is changed again, the function of the indication field may also change, which is not limited in the embodiment of the present application, and the indication field is under different channel raster values. The functions are all within the protection scope of the embodiments of the present application.
  • the terminal device After determining the frequency of the first subcarrier, the terminal device can adjust the frequency of the terminal device according to the frequency of the first subcarrier, which helps improve the accuracy of the frequency adjustment of the terminal device, and reduces the frequency between the terminal device and the network device. Partial.
  • the field in the existing PBCH is used as the first indication information, and no other field is used as the first indication information, which can effectively save transmission resources and improve information utilization.
  • the third embodiment of the present application provides a third method for transmitting and receiving signals.
  • the application scenario shown in FIG. 3 is applied as an example. The flow of this method is described below.
  • the network device determines the SSB and the indication information, where the indication information is used to indicate that the frequency position of the SSB is one of the frequency sets, the frequency set includes the first frequency and the second frequency, or includes the first frequency and the second frequency. And a third frequency, the indication information is carried in a mask of a cyclic redundancy check (CRC) of the PBCH;
  • CRC cyclic redundancy check
  • the network device sends the SSB and the indication information to the terminal device, where the terminal device receives the SSB and the indication information.
  • the terminal device determines, according to the indication information, a frequency location of the SSB as one of the frequency sets.
  • the frequency location of the SSB may be the location of the first subcarrier in the SSB.
  • the first subcarrier reference may also be made to the embodiment shown in FIG. 4, and details are not described herein.
  • the indication information indicates that the frequency of the first subcarrier in the SSB is one of the frequency sets.
  • the indication information may be indicated as a whole, or may be indicated by a hierarchical indication. It can be clarified that whether the indication is performed as a whole or by means of hierarchical indication, the frequency of the first subcarrier can be directly indicated as one of the frequency sets, or the frequency of the first subcarrier can be indirectly indicated. It is one of the frequency sets. Therefore, the indication information described below indicates that the frequency of the first subcarrier is one of the frequency sets, and may be a direct indication or an indirect indication, which will not be further described below. The manner in which the indication is performed as a whole and the manner in which the indication is indicated by the hierarchical indication are respectively described below.
  • the indication information is indicated as a whole.
  • the indication information is carried in the mask of the CRC of the PBCH. It can be considered that the indication information is implemented by the mask of the CRC of the PBCH. Therefore, the indication manner can also be considered as an implicit indication manner.
  • a plurality of masks may be set for the CRC of the PBCH by using a protocol.
  • the number of masks set is, for example, equal to the number of frequencies included in the frequency set, and the frequency of the mask and the frequency set may be a one-to-one correspondence. .
  • the network device can indicate the frequency of the first subcarrier through the CRC mask of the PBCH.
  • the terminal device receives the SSB, when demodulating the PBCH, the CRC can be verified according to the three masks respectively.
  • the frequency corresponding to the successful mask is the frequency of the first subcarrier.
  • the correspondence between the frequency corresponding to the SSB grid position and the mask of the CRC of the PBCH can be as shown in Table 3 below:
  • Table 3 is an example in which the first frequency is equal to N ⁇ 900 KHz, the second frequency is equal to (N ⁇ 900 + 5) KHz, and the third frequency is equal to (N ⁇ 900 - 5) KHz, where ⁇ 0, 0, 0, 0 , 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> for example, the first mask, ⁇ 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>. Two masks, ⁇ 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0 ,1,0 ,1,0 , 1> is, for example, a third mask, and Table 3 is an example of indicating the frequency by means of direct indication.
  • Table 3 is only an example, and the values of the CRC mask of the PBCH and the correspondence relationship with the frequency are not limited to those shown in Table 3. Meanwhile, the length of the CRC mask of the PBCH and the length of the CRC may be the same as in Table 3, and may of course be different. For example, the length of the CRC is 24, and the length of the CRC mask may be a value less than 24, such as 1, 2, Or 12, not limited here.
  • the indication information is indexed.
  • the indication information may include first indication information and second indication information.
  • the first indication information is used to indicate that the frequency of the first subcarrier is the first frequency or the fourth frequency, and the fourth frequency is the second frequency or the third frequency. Then, if the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device may directly determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and if the first indication information indicates the first The frequency of the subcarrier is the fourth frequency, and the terminal device further needs to determine whether the frequency of the first subcarrier is the second frequency or the third frequency. In this case, the terminal device can also determine by using the second indication information.
  • the second indication information is used to indicate that the frequency of the first subcarrier is the second frequency or the third frequency if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency. In this way, the terminal device can determine the frequency of the first subcarrier by using the first indication information and the second indication information.
  • the first indication information may be carried in a mask of a CRC of a PBCH of the SSB, and the second indication information may be a fifth field of the PBCH in the SSB or a sixth field of the RMSI.
  • a plurality of masks may be set for the CRC of the PBCH by using a protocol, and the set mask includes, for example, a first scrambling code and a second mask, and specifies that if the CRC of the PBCH uses the first mask, the first subcarrier is indicated.
  • the frequency is the first frequency, and if the CRC of the PBCH uses the second mask, the frequency of the first subcarrier is indicated as the fourth frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to resort to the second And indicating, according to the first indication information, that the frequency of the first subcarrier is the first frequency; or, if the mask used by the CRC of the PBCH is determined to be the second mask, the terminal device may determine the first subcarrier.
  • the frequency is the fourth frequency
  • the terminal device further needs to determine the frequency of the first subcarrier by means of the second indication information, for example, the second indication information occupies 1 bit, and if the 1st bit of the second indication information takes a value of 0,
  • the frequency of the first subcarrier is the second frequency. If the 1 bit of the second indication information is 1, the frequency of the first subcarrier is the third frequency.
  • the corresponding relationship between the mask and the state indicated by the mask may be other correspondences between the value of the second indication information and the state indicated by the other indications. For example, it is not limited.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the indication information may include the first indication information, or the indication information may include the first indication information and the second indication information.
  • whether the indication information includes the second indication information Subject to conditions.
  • the first indication information is used to indicate that the frequency of the first subcarrier is the first frequency or the fourth frequency, and the fourth frequency is the second frequency or the third frequency. Then, if the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device may directly determine, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and the indication information does not need to include the second indication.
  • the information that is, the network device does not need to send the second indication information; if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency, the terminal device further needs to determine whether the frequency of the first subcarrier is the second frequency or the first
  • the indication information further includes the second indication information, that is, the network device further needs to send the second indication information, and the terminal device can also determine the frequency of the first subcarrier by using the second indication information.
  • the second indication information is used to indicate that the frequency of the first subcarrier is the second frequency or the third frequency if the first indication information indicates that the frequency of the first subcarrier is the fourth frequency. In this way, the terminal device can determine the frequency of the first subcarrier by using the first indication information or by using the first indication information and the second indication information.
  • the first indication information may be carried in a mask of the CRC of the PBCH of the SSB.
  • a plurality of masks may be set for the CRC of the PBCH by using a protocol, and the set mask includes, for example, a first scrambling code and a second mask, and specifies that if the CRC of the PBCH uses the first mask, the first subcarrier is indicated.
  • the frequency is the first frequency, and if the CRC of the PBCH uses the second mask, the frequency of the first subcarrier is indicated as the fourth frequency.
  • the terminal device may determine that the frequency of the first subcarrier is the first frequency, and the terminal device does not need to resort to the second
  • the indication information may be determined according to the first indication information that the frequency of the first subcarrier is the first frequency.
  • the network device does not need to send the second indication information, that is, in this case, the indication information only includes The first indication information; or, if it is determined that the mask used by the CRC of the PBCH is the second mask, the terminal device may determine that the frequency of the first subcarrier is the fourth frequency, and the terminal device further needs the second indication by using the second indication.
  • the information is used to determine the frequency of the first subcarrier.
  • the network device needs to send the second indication information in addition to the first indication information, that is, in this case, the indication information includes the first indication information.
  • the second indication information for example, the second indication information is a fifth field of the PBCH in the SSB, or a sixth field of the RMSI, where the second indication information occupies, for example, 1 bit, if The 1 bit of the second indication information is 0, indicating that the frequency of the first subcarrier is the second frequency. If the 1 bit of the second indication information is 1, the frequency of the first subcarrier is the third frequency.
  • the corresponding relationship between the mask and the state indicated by the mask may be other correspondences between the value of the second indication information and the state indicated by the other indications. For example, it is not limited.
  • Such an implementation may be understood as an implicit indication manner, or, if the second indication information is considered, it may also be understood that such an implementation manner is an indication manner in which a display indication and an implicit indication are combined.
  • the frequency of the first subcarrier may be determined by using a mask, which reduces the number of information required as the indication information, helps save transmission resources, and improves information utilization.
  • the network device can indicate the frequency of the first subcarrier, which helps improve the accuracy of the frequency adjustment of the terminal device, and reduces the frequency offset between the terminal device and the network device.
  • the embodiment of the present application provides a fourth method for transmitting and receiving signals. Please refer to FIG. 8.
  • the application scenario shown in FIG. 3 is applied as an example. The flow of this method is described below.
  • the network device determines the SSB, the first indication information, and the second indication information, where the first indication information is used to indicate that the frequency location of the SSB is one of the frequency sets, and the frequency set includes the first frequency and the second frequency. Or including a first frequency, a second frequency, and a third frequency, where the first indication information is used to indicate an offset between a location of the second subcarrier in the SSB and a location of a third subcarrier in the reference resource block.
  • Information, the second indication information is carried in the mask of the PBCH of the SSB;
  • the network device sends the SSB, the first indication information, and the second indication information to the terminal device, where the terminal device receives the SSB, the first indication information, and the second indication information.
  • the frequency location of the SSB may be the location of the first subcarrier in the SSB.
  • the first subcarrier reference may also be made to the embodiment shown in FIG. 4, and details are not described herein.
  • the first indication information is, for example, a first field in a PBCH of the SSB, and the first field in the PBCH may be used to indicate a location of a second subcarrier in the SSB and a reference resource block.
  • the field of the offset between the positions of the third subcarrier can be understood as the first field of the PBCH and the third field, the seventh field or the eighth field of the PBCH introduced in the foregoing, and therefore the PBCH
  • the first field refer to the related description in the embodiment shown in FIG. 4, and details are not described.
  • the implicitly indicating the grid position of the SSB is the first frequency
  • the SSB is implicitly indicated.
  • the grid position is the second frequency or the third frequency, so the network device can indicate the grid position of the SSB through the first field.
  • the terminal device further determines, according to the second indication information, that the frequency of the first subcarrier in the SSB is one of the frequency sets, or If the first indication information indicates that the frequency of the first subcarrier is the first frequency, the terminal device determines, according to the first indication information, that the frequency of the first subcarrier is the first frequency in the frequency set, and the fourth frequency is the second frequency. Frequency or third frequency.
  • the terminal device may further determine the frequency of the first subcarrier by using the second indication information.
  • the second indication information may be carried in the mask of the PBCH of the SSB, and the second indication information may be implemented by using a mask of the CRC of the PBCH.
  • a plurality of masks may be set for the CRC of the PBCH by using a protocol, for example, two masks are set, which are respectively a first mask and a second mask, wherein the first mask corresponds to the first frequency, and the second mask
  • the code corresponds to the fourth frequency, that is, if the CRC of the PBCH uses the first mask, it implicitly indicates that the frequency of the first subcarrier is the second frequency, and if the CRC of the PBCH uses the second mask, the implicit indication
  • the frequency of the first subcarrier is a third frequency. Referring to Table 4, the first frequency is equal to N ⁇ 900 KHz, the second frequency is equal to (N ⁇ 900+5) KHz, and the third frequency is equal to (N ⁇ 900-5) KHz.
  • ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> is for example the second mask
  • ⁇ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1> is, for example, a third mask
  • Table 4 is an example of indicating a frequency by means of direct indication.
  • the network device may further indicate the frequency of the first subcarrier by using a mask of the CRC of the PBCH.
  • the terminal device may separately perform the demodulation on the PBCH.
  • the two masks check the CRC. If the value indicated by the first field is an odd number, the frequency corresponding to the mask that is successfully verified is the frequency of the first subcarrier.
  • Table 4 is only an example, and the values of the CRC mask of the PBCH and the correspondence relationship with the frequency are not limited to those shown in Table 4.
  • the terminal device directly determines, according to the first indication information, that the frequency of the first subcarrier is the first frequency, and does not need to use the first Two instructions.
  • the PBCH may use the first mask or the second mask, and which mask may be specified by the protocol, for example, the protocol sets the first mask or the second mask as the default mask, if The first field indicates an even value, and the mask of the PBCH uses a default mask.
  • the frequency of the first subcarrier can be determined by using the existing field in the PBCH or the existing field and mask in the PBCH, and no other information is needed as the indication information, which helps to save transmission. Resources and can improve the utilization of information.
  • the network device can indicate the frequency of the first subcarrier, which helps improve the accuracy of the frequency adjustment of the terminal device, and reduces the frequency offset between the terminal device and the network device.
  • the embodiment of the present application provides a fifth method for transmitting and receiving signals.
  • the method is applied to the application scenario shown in FIG. 3 .
  • the flow of this method is described below.
  • the network device determines an SSB, where the frequency position of the SSB is one of a frequency set, where the frequency set includes a first frequency and a second frequency, or includes a first frequency, a second frequency, and a third frequency.
  • the first frequency is N ⁇ 900 kHz
  • the second frequency is (N ⁇ 900+k) kilohertz
  • the third frequency is (N ⁇ 900-k) kilohertz
  • N is a positive integer
  • the network device sends the SSB to the terminal device, where the terminal device receives the SSB.
  • the frequency location of the SSB may be the location of the first subcarrier in the SSB.
  • the first subcarrier reference may also be made to the embodiment shown in FIG. 4, and details are not described herein.
  • the second frequency and the third frequency are not limited herein to be symmetric with the first frequency, that is, the absolute value of the difference between the second frequency and the first frequency is equal to the absolute value of the difference between the third frequency and the first frequency, so that the first
  • the frequency is equal to N ⁇ 900KHz
  • the second frequency is equal to (N ⁇ 900+k1)KHz
  • the terminal device can determine whether the frequency position of the SSB is the first frequency, the second frequency, or the third frequency, so that the frequency of the terminal device can be adjusted according to the frequency position of the SSB.
  • k 10 kHz
  • the position of the center frequency of the carrier there are some restrictions on the position of the center frequency of the carrier.
  • the channel raster value is 100 kHz
  • the subcarrier spacing of the SSB and the system resource block are both 30 kHz, in order to ensure that the subcarrier between the SSB and the system resource block is Aligned, according to the SSB synchronization grid rule, ie N ⁇ 900 kHz, (N ⁇ 900 + 5) kHz, (N ⁇ 900 - 5) kHz, can not find a usable synchronous grid frequency for transmission SSB.
  • the terminal device does not easily confuse the different frequencies that meet the synchronization grid rule.
  • the network device does not need to send the indication information to the terminal device, and the terminal device can also determine the detected synchronization gate more accurately.
  • the frequency of the grid can also send indication information to the terminal to ensure that the terminal device accurately determines the frequency of the detected synchronization grid.
  • k M ⁇ 10
  • M is a positive integer
  • k is not equal to X ⁇ 30
  • X is a positive integer
  • k is not equal to 100.
  • the value of k can be 10, 20, 40, 50, 70, 80, 110, 130, 140, 160, 170, 190, 200, 220, 230, 250, 260, 280, 290, 310, 320, One of 340, 350, 370, 380, 400, 410, 430, 440.
  • the values of k1 and k2 may be 10, 20, 40, 50, 70, 80, 110, 130, 140, 160, 170, 190, 200, 220, 230, 250, respectively.
  • the grid rule of the SSB can be modified to N ⁇ 900 kHz, (N ⁇ 900 + k) kilohertz, (N ⁇ 900 - k) kilohertz, (N ⁇ 900 + g) kilohertz, ( N x 900-g) kilohertz, where k is not equal to g.
  • k is equal to M ⁇ 5
  • M is a positive integer
  • g is equal to X ⁇ 10
  • X is a positive integer.
  • the value of k is one of 5, 10, 15, 20, 25, 30, 35, ..., 445
  • the value of g is 10, 20, 30, 40, 50, 60, ..., 440 one of the.
  • k is equal to M ⁇ 5, M is a positive integer, g is equal to X ⁇ 10 but not equal to Y ⁇ 30, and X and Y are positive integers.
  • the value of k is one of 5, 10, 15, 20, 25, 30, 35, ..., 445, and the value of g is 10, 20, 40, 50, 70, 80, 100, 110, One of 130, 140, 160, 170, 190, 200, 220, 230, 250, 260, 280, 290, 310, 320, 340, 350, 370, 380, 400, 410, 430, 440.
  • k is equal to X ⁇ 10
  • X is a positive integer
  • g is equal to M ⁇ 5
  • M is a positive integer, which is not limited herein.
  • the first frequency in the foregoing is not limited to N ⁇ 900 KHz, and may be N ⁇ 600 KHz, or N ⁇ 300 KHz. Of course, other values may also be used. limited. It should be noted that the first frequency defined in the existing wireless communication system is N ⁇ 900 KHz, and the value of the first frequency may also change as the system evolves.
  • the second frequency and the third frequency are not limited in the embodiment of the present application. For example, in the case where the first frequency is N ⁇ 600 KHz, the second frequency may be (N ⁇ 600+k)KHz, and the third The frequency can be (N x 600-k) KHz.
  • the first frequency is equal to (N ⁇ P)KHz
  • the second frequency is equal to (N ⁇ P+k)KHz
  • the third frequency is equal to (N ⁇ Pk)KHz
  • P can be equal to 900, or can also be taken
  • Other values such as 600 or 300, etc., are not limited in the embodiment of the present application.
  • the network device may directly send the SSB to the terminal device. If the value of k is large, the difference between the frequencies of the adjacent synchronous grid rules is also large, and for the terminal device, It is not easy to confuse the different frequencies that satisfy the synchronous grid rule. Therefore, the terminal device can determine the frequency of the detected synchronization grid more accurately without the indication information, thereby accurately adjusting the frequency of the terminal device, improving the accuracy of the frequency adjustment of the terminal device, and reducing the terminal device and Frequency offset between network devices.
  • FIG. 10 shows a schematic structural diagram of a network device 1000.
  • the network device 1000 can implement the functions of the network devices referred to above.
  • the network device 1000 may be the network device described above or may be a chip disposed in the network device described above.
  • the network device 1000 can include a processor 1001 and a transceiver 1002.
  • the processor 1001 can be used to execute S41 in the embodiment shown in FIG. 4, S61 in the embodiment shown in FIG. 6, S71 in the embodiment shown in FIG. 7, and the embodiment shown in FIG. S81 can also be used to perform S91 in the embodiment shown in FIG. 9, and/or other processes for supporting the techniques described herein.
  • the transceiver 1002 can be used to execute S42 in the embodiment shown in FIG. 4, S62 in the embodiment shown in FIG. 6, S72 in the embodiment shown in FIG. 7, and S82 in the embodiment shown in FIG. It can also be used to perform S92 in the embodiment shown in Figure 9, and/or other processes for supporting the techniques described herein.
  • the processor 1001 is configured to determine SSB and indication information, where the indication information is used to indicate that a frequency location of the SSB is one of a frequency set, where the frequency set includes a first frequency and a second frequency, or The first frequency, the second frequency, and the third frequency are included;
  • the transceiver 1002 is configured to send the SSB and the indication information to the terminal device.
  • FIG. 11 shows a schematic structural diagram of a terminal device 1100.
  • the terminal device 1100 can implement the functions of the terminal device referred to above.
  • the terminal device 1100 may be the terminal device described above, or may be a chip provided in the terminal device described above.
  • the terminal device 1100 can include a processor 1101 and a transceiver 1102.
  • the processor 1101 can be used to execute S43 in the embodiment shown in FIG. 4, S63 in the embodiment shown in FIG. 6, S73 in the embodiment shown in FIG. 7, and the embodiment shown in FIG. S83 may also be used to perform the steps of determining the frequency location of the SSB based on the received SSB in the embodiment shown in FIG. 9, and/or other processes for supporting the techniques described herein.
  • the transceiver 1102 can be used to execute S42 in the embodiment shown in FIG. 4, S62 in the embodiment shown in FIG. 6, S72 in the embodiment shown in FIG. 7, and S82 in the embodiment shown in FIG. It can also be used to perform S92 in the embodiment shown in Figure 9, and/or other processes for supporting the techniques described herein.
  • the transceiver 1102 is configured to receive the SSB and the indication information from the network device.
  • the processor 1101 is configured to determine, according to the indication information, a frequency location of the SSB as one of a frequency set, where the frequency set includes a first frequency and a second frequency, or includes a first frequency, a second frequency, and a third frequency.
  • the network device 1000 or the terminal device 1100 can also be implemented by the structure of the communication device 1200 as shown in FIG. 12A.
  • the communication device 1200 can implement the functions of the network device or terminal device referred to above.
  • the communication device 1200 can include a processor 1201. Wherein, when the communication device 1200 is used to implement the functions of the network device in the embodiment shown in FIG. 4, the processor 1201 may be used to execute S41 in the embodiment shown in FIG. 4, and/or used to support this document. Other processes of the described techniques. When the communication device 1200 is used to implement the functions of the network device in the embodiment shown in FIG. 6, the processor 1201 may be configured to perform S61 in the embodiment shown in FIG.
  • the processor 1201 may be configured to perform S71 in the embodiment shown in FIG. 7, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform S81 in the embodiment shown in FIG. 8, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform S91 in the embodiment shown in FIG. 9, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform S43 in the embodiment shown in FIG. 4, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform S63 in the embodiment shown in FIG. 6, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform S73 in the embodiment shown in FIG. 7, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform S83 in the embodiment shown in FIG. 8, and/or to support the description herein. Other processes of technology.
  • the processor 1201 may be configured to perform the step of determining the frequency position of the SSB according to the received SSB in the embodiment shown in FIG. And/or other processes for supporting the techniques described herein.
  • the communication device 1200 can pass through a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor (central processor). Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device, The PLD) or other integrated chip implementation, the communication device 600 can be disposed in the network device or the communication device of the embodiment of the present application, so that the network device or the communication device implements the method for transmitting a message provided by the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • programmable logic device programmable logic device
  • the communication device 1200 can include a transceiver component for communicating with a network device.
  • the transceiver component may be used to execute S42 in the embodiment shown in FIG. 4, and/or for Other processes that support the techniques described herein.
  • the transceiver component may be used to execute S62 in the embodiment shown in FIG. 6, and/or to support this document. Other processes of the described techniques.
  • the communication device 1200 is used to implement the functions of the network device or the terminal device in the embodiment shown in FIG.
  • the transceiver component may be used to execute S72 in the embodiment shown in FIG. 7, and/or to support this document. Other processes of the described techniques.
  • the transceiver component may be used to execute S82 in the embodiment shown in FIG. 8, and/or to support this document. Other processes of the described techniques.
  • the transceiver component may be used to execute S92 in the embodiment shown in FIG. 9, and/or to support this document. Other processes of the described techniques.
  • the communication device 1200 can further include a memory 1202, which can be referenced to FIG. 12B, where the memory 1202 is used to store computer programs or instructions, and the processor 1201 is used to decode and execute the computer programs or instructions. .
  • these computer programs or instructions may include the functional programs of the network devices or terminal devices described above.
  • the network device can be implemented in the embodiment shown in FIG. 4, the embodiment shown in FIG. 6, and the embodiment shown in FIG. The function of the network device in the signal transmitting method provided by the embodiment shown in FIG. 8 or the embodiment shown in FIG.
  • the terminal device can implement the embodiment shown in FIG. 4, the embodiment shown in FIG. 6, and the embodiment shown in FIG. The function of the terminal device in the signal receiving method provided by the embodiment shown in FIG. 8 or the embodiment shown in FIG.
  • the functional programs of these network devices or terminal devices are stored in a memory external to the communication device 1200.
  • the function program of the network device is decoded and executed by the processor 1201, part or all of the contents of the function program of the network device are temporarily stored in the memory 1202.
  • the function program of the terminal device is decoded and executed by the processor 1201, part or all of the contents of the function program of the terminal device are temporarily stored in the memory 1202.
  • the functional programs of the network devices or terminal devices are disposed in a memory 1202 stored within the communication device 1200.
  • the communication device 1200 can be disposed in the network device of the embodiment of the present application.
  • the function program of the terminal device is stored in the memory 1202 inside the communication device 1200, the communication device 1200 can be disposed in the terminal device of the embodiment of the present application.
  • portions of the functional programs of the network devices are stored in a memory external to the communication device 1200, and other portions of the functional programs of the network devices are stored in the memory 1202 internal to the communication device 1200.
  • part of the contents of the functional programs of the terminal devices are stored in a memory external to the communication device 1200, and other portions of the functional programs of the terminal devices are stored in the memory 1602 inside the communication device 1200.
  • the network device 1000, the terminal device 1100, and the communication device 1200 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the network device 1000 provided by the embodiment shown in FIG. 10 can also be implemented in other forms.
  • the network device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1001, and the transceiver module can be implemented by the transceiver 1002.
  • the processing module may be used to execute S41 in the embodiment shown in FIG. 4, S61 in the embodiment shown in FIG. 6, S71 in the embodiment shown in FIG. 7, and the embodiment shown in FIG. S81, may also be used to perform S91 in the embodiment shown in FIG. 9, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to execute S42 in the embodiment shown in FIG. 4, S62 in the embodiment shown in FIG. 6, S72 in the embodiment shown in FIG. 7, and S82 in the embodiment shown in FIG. It can also be used to perform S92 in the embodiment shown in Figure 9, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to determine the SSB and the indication information, where the indication information is used to indicate that the frequency location of the SSB is one of a frequency set, the frequency set includes a first frequency and a second frequency, or includes a first frequency, a second frequency, and a third frequency;
  • a transceiver module configured to send the SSB and the indication information to the terminal device.
  • the terminal device 1100 provided by the embodiment shown in FIG. 11 can also be implemented in other forms.
  • the terminal device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1101, and the transceiver module can be implemented by the transceiver 1102.
  • the processing module may be used to execute S43 in the embodiment shown in FIG. 4, S63 in the embodiment shown in FIG. 6, S73 in the embodiment shown in FIG. 7, and the embodiment shown in FIG. S83, may also be used to perform the steps of determining the frequency position of the SSB according to the received SSB in the embodiment shown in FIG. 9, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to execute S42 in the embodiment shown in FIG. 4, S62 in the embodiment shown in FIG. 6, S72 in the embodiment shown in FIG. 7, and S82 in the embodiment shown in FIG. It can also be used to perform S92 in the embodiment shown in Figure 9, and/or other processes for supporting the techniques described herein.
  • a transceiver module is configured to receive the SSB and the indication information from the network device;
  • a processing module configured to determine, according to the indication information, a frequency location of the SSB as one of a frequency set, where the frequency set includes a first frequency and a second frequency, or includes a first frequency, a second frequency, and a third frequency .
  • the network device 1000, the terminal device 1100, and the communication device 1200 provided in the embodiments of the present application may be used to execute the embodiment shown in FIG. 4, the embodiment shown in FIG. 6, the embodiment shown in FIG. 7, and the embodiment shown in FIG.
  • the technical effects that can be obtained by the embodiment or the embodiment shown in FIG. 9 reference may be made to the above method embodiment, and details are not described herein again.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) ))Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号发送、接收方法及设备,用于提高终端设备调整频率偏移的准确度。其中的一种信号发送方法包括:网络设备确定SSB和指示信息,其中,所述指示信息用于指示所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率;所述网络设备向终端设备发送所述SSB和所述指示信息。

Description

一种信号发送、接收方法及设备
本申请要求在2017年12月18日提交中国专利局、申请号为201711366520.4、申请名称为“一种信号发送、接收方法及设备”的中国专利申请的优先权,以及要求在2018年1月12日提交中国专利局、申请号为201810032355.7、申请名称为“一种信号发送、接收方法及设备”的中国专利申请的优先权,这两篇中国专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号发送、接收方法及设备。
背景技术
在第五代移动通信系统(the fifth generation,5G)中的新空口(newradio,NR)技术中,定义了同步信号/物理广播信道块(synchronization signal/physicalbroadcastchannel block,SSB),在时域上,一个SSB占用连续的4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。在频域上,一个SSB占用连续的240个子载波,这240个子载波例如编号为0至239,这240个子载波属于20个资源块(resource block,RB),这20个资源块例如编号为从0至19,在每个资源块中,子载波又例如可以编号为0至12
在目前的第三代合作伙伴计划(3rd generation partnership project,3GPP)标准对NR系统的讨论中,针对一个SSB,其频率位置需要满足同步栅格(raster)规则,即每个SSB的频率位置需要满足同步栅格(raster)规则,其中,SSB的频率位置也可以理解为SSB中参考子载波的频率位置,该参考子载波通常为SSB的中心子载波,例如,为SSB占用的连续的240个子载波中的编号为120的子载波,也就是编号为10的资源块中的编号为0的子载波,该规则目前为,SSB的频率等于(N×900KHz+M×5KHz),其中N为正整数,M为-1或0或1,这些频率或者频率对应的位置可以统称为同步栅格。而终端设备在接入NR系统之前,需要先搜索网络设备广播的SSB,以进行下行同步。通常终端设备会在同步栅格的频率上进行搜索。同时,在NR系统中,一个小区或者载波的中心频率或参考频率需要满足信道栅格规则,及中心频率或参考频率需要等于L×100KHz,或者L×15KHz,或者L×60KHz,L为正整数。具体的,对于0到3GHz的频段,信道栅格位置的频率等于L×100KHz,通常也可以理解为信道栅格值等于100KHz;对于3GHz到24GHz的频段,信道栅格位置的频率等于L×15KHz,即信道栅格值等于15KHz;对于24GHz到100GHz的频段,信道栅格位置的频率等于L×60KHz,即信道栅格值等于60KHz。
在硬件实现中,终端设备的晶振确定频率的精度较低,网络设备的晶振确定频率的精度较高,通常终端设备会根据从网络设备接收的SSB对自身的频率进行再调整,以获得较为精确的频率。在NR系统中,例如网络设备广播的SSB的参考子载波的频率为900MHz,由于终端设备确定的频率可能存在较大的偏差,例如终端设备所理解的899.995MHz实际上是900MHz,则终端设备按照终端设备所理解的899.995MHz的频率可成功接收网络设备广播的SSB,考虑到899.995MHz也是满足NR系统中的同步栅格规则的频率,所以终端设备无法发现自身的频率与实际频率存在偏差,这将使得终端设备后续确定的工作频率 也存在频率偏差,可能会影响网络设备与终端设备之间通信的性能。
发明内容
本申请实施例提供一种信号发送、接收方法及设备,用于提高终端设备调整频率偏移的准确度。
第一方面,提供一种信号发送方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备确定SSB和指示信息,其中,所述指示信息用于指示所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率;所述网络设备向终端设备发送所述SSB和所述指示信息。
相应的,第二方面,提供一种信号接收方法,该方法可由终端设备执行。该方法包括:终端设备从网络设备接收SSB和指示信息;所述终端设备根据所述指示信息确定所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率。
本申请实施例中,网络设备可以向终端设备发送指示信息,该指示信息能够指示网络设备发送的SSB的频率位置,从而终端设备根据该指示信息就能够确定SSB的频率位置,因此终端设备能够较为准确地确定终端设备与网络设备之间的频率偏移,从而调整终端设备的频率,有效提高了终端设备调整频率偏移的准确度,降低了终端设备与网络设备之间的频偏。
应理解,SSB的频率位置可以是SSB中的参考子载波的位置,例如,按照现有技术,第一子载波可以是SSB中编号为10的资源块中编号为0的子载波,即SSB的中心子载波。当然SSB的频率位置也可以是SSB中的其他子载波的位置,此处不做限定。
在一个可能的设计中,所述指示信息包括第一指示信息和第二指示信息,其中,所述第一指示信息用于指示所述SSB的频率位置为第一频率或第四频率,所述第四频率为所述第二频率或所述第三频率,所述第二指示信息用于在所述第一指示信息指示所述SSB的频率位置为所述第四频率的情况下,指示所述SSB的频率位置为所述第二频率,或为所述第三频率。相应的,在所述指示信息包括第一指示信息和第二指示信息的情况下,所述终端设备根据所述指示信息确定所述SSB的频率位置为频率集合中的一个,包括:所述终端设备根据所述第一指示信息确定所述SSB的频率位置为所述第一频率或第四频率,所述第四频率为所述第二频率或所述第三频率,在所述终端设备根据所述第一指示信息确定所述SSB的频率位置为所述第四频率的情况下,所述终端设备还根据所述第二指示信息确定所述SSB的频率位置为所述第二频率,或为所述第三频率。
在本申请实施例中,指示信息可以采用分级指示的方式,例如指示信息包括第一指示信息和第二指示信息,也就是说,网络设备采用了分级指示的方式来指示SSB的频率位置,终端设备根据第一指示信息和第二指示信息就可以确定SSB的频率位置。其中,如果第一指示信息用于指示SSB的频率位置为第一频率,则实际上终端设备可以无需再借助第二指示信息,但是如果网络设备不发送第二指示信息,会导致第二指示信息所在的消息少一个字段(即第二指示信息所在的字段),而终端设备在检测时一般都是按照该消息带有第二指示信息所在的字段的长度进行检测的,如果该消息少一个字段,可能会导致终端设备无法检测该消息。因此,为了便于终端设备的检测,在本实施例中,网络设备还是会发送第 二指示信息,但如果第一指示信息指示SSB的频率位置为第一频率,则终端设备可以不关注第二指示信息,例如可以无需解析第二指示信息,此时第二指示信息不起任何效果。那么,在第一指示信息指示SSB的频率位置为第一频率的情况下,第二指示信息的取值可以随机,或者可以设置缺省(default)值,本申请实施例不作限制。
在一个可能的设计中,所述指示信息包括第一指示信息,所述第一指示信息用于指示所述SSB的频率位置为第一频率或第四频率,所述第四频率为所述第二频率或所述第三频率,在所述第一指示信息指示所述SSB的频率位置为所述第四频率的情况下,所述指示信息还包括第二指示信息,用于指示所述SSB的频率位置为所述第二频率,或为所述第三频率。相应的,所述终端设备根据所述指示信息确定所述SSB的频率位置为第一频率、第二频率或第三频率,包括:所述终端设备根据指示信息包括的第一指示信息确定所述SSB的频率位置为第一频率或第四频率,所述第四频率为所述第二频率或所述第三频率,在所述终端设备根据所述第一指示信息确定所述SSB的频率位置为所述第一频率的情况下,所述指示信息包括所述第一指示信息,或,在所述终端设备根据所述第一指示信息确定所述SSB的频率位置为所述第四频率的情况下,所述指示信息包括所述第一指示信息和第二指示信息,所述终端设备还根据所述第二指示信息确定所述SSB的频率位置为所述第二频率,或为所述第三频率。
这是分级指示的另一种方式,在这种方式中,如果终端设备需要用到第二指示信息,即第一指示信息指示SSB的频率位置为第四频率,则网络设备除了发送第一指示信息外还可以发送第二指示信息,此时指示信息包括第一指示信息和第二指示信息,而如果终端设备无需用到第二指示信息,即第一指示信息指示SSB的频率位置为第一频率,则网络设备可以不用发送第二指示信息,此时指示信息只包括第一指示信息。通过这种方式,在不影响终端设备确定SSB的频率位置的情况下,也能够节省传输资源。
在一个可能的设计中,所述第一指示信息为所述SSB中的PBCH中的第一字段,所述第二指示信息为所述PBCH中的CRC的掩码;或,所述第一指示信息为所述PBCH中的第一字段,所述第二指示信息为所述PBCH中的第二字段;或,所述第一指示信息为所述PBCH中的第一字段,所述第二指示信息为RMSI中的第四字段。
给出了第一指示信息和第二指示信息的几种可能的实现方式,在本申请实施例中不限于此。
在一个可能的设计中,所述PBCH中的第一字段为用于指示所述SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的字段。相应的,所述终端设备可以根据所述PBCH中的第一字段确定所述SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移。
其中,参考资源块可以理解为公共资源网格中的任意一个资源块。该第三字段指示的值可以是0到11中的任一个,也可以是0到23中的任意一个。公共资源块网格可以理解为网络设备给终端设备发送的除SSB以外的其他任意一个下行信号的资源块网格,例如该下行信号可以是承载系统消息的信号。当第一字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第一字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第一字段指示SSB的栅格位置。可见,本申请实施例中能够直接利用目前已有的字段来作为指示信息,既能够达到减小网络设备和终端设备之间的频偏的效果,也能节省传输资源,以及减小终端设备的解析复杂度。
在一个可能的设计中,所述指示信息用于指示所述SSB的频率位置与所述第一频率的偏差为偏差集合中的一个,所述第一偏差集合包括0、第一偏差以及第二偏差。相应的,所述终端设备根据所述指示信息确定所述SSB的频率位置为频率集合中的一个,包括:所述终端设备根据所述指示信息确定所述SSB的频率位置与所述第一频率的偏差为偏差集合中的一个,所述第一偏差集合包括0、第一偏差以及第二偏差;在确定所述SSB的频率位置与所述第一频率的偏差为0的情况下,所述终端设备确定所述SSB的频率位置为所述第一频率;或,在确定所述SSB的频率位置与所述第一频率的偏差为所述第一偏差的情况下,所述终端设备确定所述SSB的频率位置为所述第二频率;或,在确定所述SSB的频率位置与所述第一频率的偏差为所述第二偏差的情况下,所述终端设备确定所述SSB的频率位置为所述第三频率。
在本申请实施例中,指示信息可以直接指示SSB的频率位置为频率集合中的一个,例如直接指示SSB的频率位置为第一频率、第二频率或第三频率,或者也可以间接指示SSB的频率位置为频率集合中的一个,例如间接指示SSB的频率位置为第一频率、第二频率或第三频率。作为间接指示的第一种示例,该指示信息可以指示SSB的频率位置与第一频率的偏差为偏差集合中的一个,偏差集合包括0、第一偏差和第二偏差,第一偏差可理解为第一频率与第二频率之间的偏差,第二偏差可理解为第一频率与第三频率之间的偏差,那么,偏差集合包括的偏差与频率集合包括的频率就是一一对应的关系,则指示了偏差,也就相当于指示了相应的频率。例如,第一偏差为+5KHz,第二偏差为-5KHz,指示信息指示SSB的频率位置与第一频率之间的偏差为第一偏差,终端设备已知晓第一频率为N×900KHz,则终端设备根据第一频率和第一偏差,就可以确定SSB的频率位置为(N×900+5)KHz。
当然,只是该指示信息间接指示SSB的频率位置的示例,本申请实施例不限制指示信息在间接指示SSB的频率位置时的指示方式。
在一个可能的设计中,所述第一频率为N×900千赫兹,所述第二频率为(N×900+k)千赫兹,所述第三频率为(N×900-k)千赫兹,其中,N为正整数。
其中,k的一种取值为k=M×10,M为正整数,具体对于k的取值,本申请实施例不作限制。例如k=5,或者k=10,或者k=20,或者k为其他取值。作为一种示例,M可以不等于10。此处并不限定第二频率和第三频率以第一频率对称,即第二频率和第一频率的差的绝对值与第三频率和第一频率的差的绝对值相等,从而可以第一频率等于N×900KHz,第二频率等于(N×900+k1)KHz,第三频率等于(N×900-k2)KHz,其中k1与k2不相等,如k1=5,k2=10,当然也可以是其他值。
第三方面,提供一种信号发送方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备确定SSB,其中,所述SSB的频率位置为频率集合中的一个,频率集合包括第一频率和第二频率,或者包括第一频率、第二频率及第三频率,所述第一频率为N×900千赫兹,所述第二频率为(N×900+M×10)千赫兹,所述第三频率为(N×900-M×10)千赫兹,N和M均为正整数,所述网络设备向终端设备发送所述SSB。
相应的,第四方面,提供一种信号接收方法,该方法可由终端设备执行。该方法包括:终端设备从网络设备接收SSB,所述终端设备确定所述SSB的频率位置为频率集合中的一个,频率集合包括第一频率和第二频率,或者包括第一频率、第二频率及第三频率,所述第一频率为N×900千赫兹,所述第二频率为(N×900+M×10)千赫兹,所述第三频率为 (N×900-M×10)千赫兹,N和M均为正整数。
例如,第一频率为N×900KHz,第二频率为(N×900+k)KHz,第三频率为(N×900-k)KHz。如果k=5,对于信道栅格值为100KHz的情况,会对载波的中心频率的位置造成一些限制。例如,对于信道栅格值为100KHz的情况,如果载波的中心频率的值为700MHz,那么当SSB和系统资源块的子载波间隔都为30KHz时,为了保证SSB和系统资源块之间子载波是对齐的,按照SSB的同步栅格规则,即N×900千赫兹,(N×900+5)千赫兹,(N×900-5)千赫兹,无法找到一个可用的同步栅格频率用于传输SSB。因此,在本实施例中,将SSB的栅格规则修改为N×900千赫兹,(N×900+M×10)千赫兹,(N×900-M×10)千赫兹,即k=M×10,则可以解决k=5情况下的问题。
在一个可能的设计中,第一频率为N×900KHz,第二频率为(N×900+k)千赫兹,第三频率为(N×900-k)千赫兹,其中,k为10的倍数,但不为30的倍数,也不为100。第五方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第八方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第九方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第十方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第十一方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第十二方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第十三方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中网络设备所执行的方法。
第十四方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中终端设备所执行的方法。
第十五方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第三方面或第三方面的任意一种可能的设计中网络设备所执行的方法。
第十六方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第四方面或第四方面的任意一种可能的设计中终端设备所执行的方法。
第十七方面,提供一种通信系统,该通信系统包括网络设备和终端设备。其中,所述网络设备,用于确定SSB和指示信息,向所述终端设备发送所述SSB和所述指示信息,其中,所述指示信息用于指示所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率;所述终端设备,用于从所述网络设备接收SSB和指示信息,根据所述指示信息确定所述SSB的频率位置为频率 集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率。
第十八方面,提供一种通信系统,该通信系统包括网络设备和终端设备。其中,所述网络设备,用于确定SSB,向所述终端设备发送所述SSB,其中,所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率,所述第一频率为N×900千赫兹,所述第二频率为(N×900+M×10)千赫兹,所述第三频率为(N×900-M×10)千赫兹,N为正整数;所述终端设备,用于从所述网络设备接收SSB,确定所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者第一频率、第二频率以及第三频率,所述第一频率为N×900千赫兹,所述第二频率为(N×900+M×10)千赫兹,所述第三频率为(N×900-M×10)千赫兹,N为正整数。
其中,第十七方面提供的网络设备和第十八方面提供的通信系统可以是不同的通信系统,或者也可以是同一通信系统。
第十九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第二十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
本申请实施例中,终端设备根据网络设备发送的指示信息就能够确定SSB的频率位置,因此终端设备能够较为准确地确定终端设备与网络设备之间的频率偏移,有效提高了终端设备调整频率偏移的准确度,降低了终端设备与网络设备之间的频偏。
附图说明
图1为SSB的示意图;
图2为SSB中的同步栅格位置的示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的第一种信号发送、接收方法的流程图;
图5为本申请实施例提供的将指示信息携带在SSB的信号中的一种示意图;
图6为本申请实施例提供的第二种信号发送、接收方法的流程图;
图7为本申请实施例提供的第三种信号发送、接收方法的流程图;
图8为本申请实施例提供的第四种信号发送、接收方法的流程图;
图9为本申请实施例提供的第五种信号发送、接收方法的流程图;
图10为本申请实施例提供的网络设备的一种结构示意图;
图11为本申请实施例提供的终端设备的一种结构示意图;
图12A-图12B为本申请实施例提供的通信装置的两种结构示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进 型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)子载波,OFDM系统中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度。
4)子载波间隔,OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15KHz,5G中NR系统的子载波间隔可以是15KHz,或30KHz,或60KHz,或120KHz等。
5)资源块,频域上连续的N个子载波可称为一个资源块。例如,LTE系统中的一个资源块包括12个子载波,5G中NR系统的一个资源块也包括12个子载波。随着通信系统的演进,一个资源块包括的子载波的个数也可以是其他值。
6)资源块网格(grid),系统在将频域资源划分成资源块时会定义起始子载波的位置,即编号为0的子载波,那么从编号为0的子载波到编号为11的子载波,这12个子载波可称为一个资源块,该资源块也可以有编号,例如编号为0。另外,从编号为12的子载波到编号为23的子载波,这12个子载波也可称为一个资源块,该资源块例如编号为1,依次类推。但是从编号为1的子载波到编号为12的子载波,这12个子载波则不能被称为一个资源块。所以应理解,系统会定义子载波与资源块的对应关系,一旦对应关系确定,则相当于确定了资源块网格。
7)SSB,在5G中的NR技术中定义了SSB,一个SSB包含了主同步信号(primarysynchronization signal,PSS),辅同步信号(secondarysynchronization signal,SSS)和物理广播信道(physicalbroadcastchannel,PBCH)。如图1所示,在时域上,一个SSB占用了连续的4个OFDM符号,在频域上,一个SSB占用了连续的240个子载波,且这240个子载波是从0到239进行编号的。在基于OFDM的通信系统中,通常1个资源块包括12个连续的子载波,这12个子载波是从0到11进行编号的,因此一个SSB占用的240个子载波也可以称为20个资源块,且这20个资源块是从0到19进行编号的。在本文中,资源块的编号以及子载波的编号等,都以按照从低频到高频的顺序来编号为例。还需要说明的是,本申请中并不限定同步信号/广播信道块的名称,该信号可以直接称为同步信号,或者称为同步信号块,当然也可以被称为其他名称,针对不同的通信系统,该信号的名称也可以不同。将其称为SSB,只是本申请实施例中的示例。
在目前的3GPP标准对NR系统的讨论中,针对一个SSB,将该SSB占用的编号为10的资源块中的编号为0的子载波记为参考子载波,并且每个SSB的参考子载波对应的频率需要满足同步栅格(raster)规则,对于NR系统的SSB,同步栅格规则目前为:SSB的参考子载波的频率等于(N×900KHz+M×5KHz),其中N为正整数,M取-1、0或1,根据该同步栅格规则可知,NR系统中的每个SSB的参考子载波的频率为(895KHz,900KHz,905KHz,1795KHz,……)中的一个,这些频率或者这些频率对应的位置可以统称为同步栅格,同步栅格具体的取值范围由N的取值范围决定。可参考图2,列举了几种同步栅格位置。
需要说明的是,将SSB占用的编号为10的资源块中的编号为0的子载波记为参考子载波,只是一种示例,在实际中,参考子载波也可以是SSB中的其他位置的子载波,例如,随着通信系统的演进,参考子载波的位置也可能发生改变,本申请实施例不作限制。
8)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两 个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
为了更好地理解本申请实施例提供的技术方案,下面先介绍本申请实施例的技术背景。
目前,终端设备在接入NR系统之前,需要先搜索网络设备广播的SSB,以进行下行同步。通常终端设备会在同步栅格的频率上进行搜索,例如,终端设备先在895KHz的频率上尝试接收SSB,若成功接收SSB,则继续进行后续的通信流程,若未成功接收SSB,则该终端设备会尝试在900KHz的频率上尝试接收SSB,若成功接收SSB,则继续进行后续的通信流程,若未成功接收SSB,则继续在其他的同步栅格的频率上尝试接收SSB,如此直到成功接收SSB为止。
在硬件实现中,终端设备的晶振确定频率的精度较低,网络设备的晶振确定频率的精度较高,通常终端设备会根据从网络设备接收的SSB对自身的频率进行再调整,以获得较为精确的频率。在NR系统中,例如网络设备广播的SSB的参考子载波的频率为900MHz,由于终端设备确定的频率可能存在较大的偏差,例如终端设备所理解的899.995MHz实际上是900MHz,则终端设备按照终端设备所理解的899.995MHz的频率可成功接收网络设备广播的SSB,考虑到899.995MHz也是满足NR系统中的同步栅格规则的频率,所以终端设备无法发现自身的频率与实际频率存在偏差,这将使得终端设备后续确定的工作频率也存在频率偏差,可能会影响网络设备与终端设备之间通信的性能。
鉴于此,提供本申请实施例的技术方案,能够有效提高终端设备调整频率偏移的准确度,降低终端设备与网络设备之间的频偏。
本申请实施例可以适用于5G NR系统,还可以适用于下一代移动通信系统或其他类似的通信系统。
请参见图3,为本申请实施例的一种应用场景。在图3中,包括网络设备以及至少一个终端设备,网络设备和终端设备工作5G NR通信系统中,网络设备例如为基站。其中,终端设备与网络设备可以通过5G NR通信系统进行通信。
需注意的是,在本申请的各个实施例中所涉及的频率集合的概念,只是用于对多个频率进行统一的描述,而并不能理解为是真正的新定义了一个集合实体,即,SSB的可选的频率位置并不是真的位于一个频率集合中,只是说这些频率都是可选择的SSB的频率位置,为了便于理解,所以描述为这些频率位于“频率集合”中。
请参见图4,本申请实施例提供第一种信号发送、接收方法,在下文的介绍过程中,以该方法应用在图3所示的应用场景为例。该方法的流程介绍如下。
S41、网络设备确定SSB和指示信息,其中,该指示信息用于指示该SSB的频率位置为频率集合中的一个,频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率;
S42、网络设备向终端设备发送该SSB和该指示信息,则终端设备接收该SSB和该指示信息;
S43、终端设备根据该指示信息确定该SSB的频率位置为该频率集合中的一个。
在本申请实施例中,第一频率等于N×900KHz,第二频率等于(N×900+k)KHz,第三频率等于(N×900-k)KHz,其中,N为正整数。对于k的取值,本申请实施例不作限制,例如k=M×5,或者k=M×10,或者k=M×20,或者k为其他取值,其中,M为正整数,例如M可以取1或2,再例如,M不等于10。另外,此处并不限定第二频率和第三频率以第一频率对称,即不限制第二频率和第一频率的差的绝对值与第三频率和第一频率的差的绝对值一定要相等,从而,可以第一频率等于N×900KHz,第二频率等于(N×900+k1)KHz,第三频率等于(N×900-k2)KHz,其中k1与k2可以相等,也可以不相等,例如k1=5,k2=10,当然也可以取其他值。
可以看到,根据N的取值,一个频率实际上应理解为一个频率组,例如第一频率实际上应理解为一个频率组,该频率组包括{900,1800,2700,……}KHz。另外,频率集合中可以只包括第一频率、第二频率以及第三频率,例如频率集合包括的第一频率为N×900KHz,第二频率为(N×900+5)KHz,第三频率为(N×900-5)KHz;或者,除了第一频率、第二频率以及第三频率之外,频率集合中还可以包括其他的频率,例如还包括第四频率和第五频率等,例如频率集合包括的第一频率为N×900KHz,第二频率为(N×900+5)KHz,第三频率为(N×900-5)KHz,第四频率为(N×900+10)KHz,第五频率为(N×900-10)KHz,本申请实施例不作限制。又例如,频率集合中可以只包括第一频率和第二频率,或者只包括第一频率和第三频率,本申请实施例不作限制。
此外,上述中的第一频率并不限于N×900KHz,也可以是N×600KHz,或N×300KHz,当然也可以是其他值,此处不做限定。需要说明的是,现有无线通信系统中定义的第一频率为N×900KHz,随着系统的演进,该第一频率的取值也可能发生改变。类似的,在本申请实施例中也不限定第二频率和第三频率,例如,在第一频率为N×600KHz的情况下,第二频率可以为(N×600+k)KHz,第三频率可以为(N×600-k)KHz。可以理解为,第一频率等于(N×P)KHz,第二频率等于(N×P+k)KHz,第三频率等于(N×P-k)KHz,其中,P可以等于900,或者也可以取其他值,例如600或300等,本申请实施例不作限制。
在本文中,主要以频率集合只包括第一频率、第二频率以及第三频率进行介绍,则指示信息用于指示SSB的频率位置为频率集合中的一个,就可以理解为指示信息是用于指示SSB的频率位置为第一频率、第二频率或第三频率。如果频率集合中还包括其他的频率,则指示信息的指示方式均可参考本文如下将要介绍的方式,不再多赘述。
应理解,SSB的频率位置可以是SSB中的第一子载波的位置,该第一子载波可以是SSB中的参考子载波,例如,按照现有技术,第一子载波可以是SSB中编号为10的资源块中编号为0的子载波,即SSB的中心子载波。当然第一子载波也可以是其他子载波,此处不做限定。
需要说明的是,网络设备可能不会指示N的取值,则如果网络设备指示了第一子载波的频率为第一频率、第二频率或第三频率,终端设备可以依次选取N的多个取值来检测SSB。例如终端设备可以从N=1开始检测,直到成功接收SSB为止。具体终端设备从N的何种取值开始检测,可以由协议规定,或者由网络设备通知终端设备,当然也可以由终端设备决定,本申请实施例不对其进行限定。
在本申请实施例中,该指示信息可以直接指示第一子载波的频率为频率集合中的一个,例如直接指示第一子载波的频率为第一频率、第二频率或第三频率,或者也可以间接指示第一子载波的频率为频率集合中的一个,例如间接指示第一子载波的频率为第一频率、第 二频率或第三频率。
作为间接指示的第一种示例,该指示信息可以指示第一子载波的频率与第一频率的偏差为偏差集合中的一个,偏差集合包括0、第一偏差和第二偏差。例如,该指示信息可以用于指示第一子载波的频率与第一频率的偏差为0、第一偏差或第二偏差,第一偏差可理解为第一频率与第二频率之间的偏差,第二偏差可理解为第一频率与第三频率之间的偏差,那么,偏差集合包括的偏差与频率集合包括的频率就是一一对应的关系。其中,终端设备可以预先存储第一频率,例如第一频率由协议规定,或者第一频率由网络设备事先发送给终端设备。则终端设备接收指示信息后,根据指示信息,就可以确定第一子载波的频率与第一频率的偏差,根据第一频率、以及第一子载波的频率与第一频率的偏差,就可以确定第一子载波的频率。具体的,如果第一子载波的频率与第一频率的偏差为0,则终端设备确定第一子载波的频率为第一频率,如果第一子载波的频率与第一频率的偏差为第一偏差,则终端设备确定第一子载波的频率为第二频率,如果第一子载波的频率与第一频率的偏差为第二偏差,则终端设备确定第一子载波的频率为第三频率。例如,第一偏差为+5KHz,第二偏差为-5KHz,指示信息指示第一子载波的频率与第一频率之间的偏差为第一偏差,终端设备已知晓第一频率为N×900KHz,则终端设备根据第一频率和第一偏差,就可以确定第一子载波的频率为(N×900+5)KHz。
当然,如果频率集合中还包括其他的频率,则偏差集合中也就还会包括相应的偏差,例如,频率集合中还包括第四频率,则偏差集合中就还包括第三偏差,第三偏差为第四频率与第一频率之间的偏差,本申请实施例不作限制。
作为间接指示的第二种示例,该指示信息可以指示频率的类型为类型集合中的一个,类型集合包括第一类型、第二类型和第三类型。例如,事先划分频率的类型,第一频率的类型为第一类型,第二频率的类型为第二类型,第三频率的类型为第三类型,那么,该指示信息可以用于指示第一子载波的频率的类型为第一类型、第二类型或第三类型。而终端设备可以预先存储频率与频率的类型之间的映射关系,例如频率与频率的类型之间的映射关系由协议规定,或者频率与频率的类型之间的映射关系由网络设备事先发送给终端设备。在频率与频率的类型之间的映射关系中,第一频率的类型为第一类型,第二频率的类型为第二类型,第三频率的类型为第三类型,当然,如果频率集合中还包括其他频率,则频率与频率的类型之间的映射关系就还可以包括其他相应的映射关系。则终端设备接收指示信息后,根据指示信息所指示的频率的类型就能确定第一子载波的频率的类型,再根据频率与频率的类型之间的映射关系,就能确定第一子载波的频率。例如,该指示信息指示的第一子载波的频率的类型为第一类型,则终端设备根据频率与频率的类型之间的映射关系确定第一子载波的频率为第一频率,或者,该指示信息指示的第一子载波的频率的类型为第二类型,则终端设备根据频率与频率的类型之间的映射关系确定第一子载波的频率为第二频率,或者,该指示信息指示的第一子载波的频率的类型为第三类型,则终端设备根据频率与频率的类型之间的映射关系确定第一子载波的频率为第三频率。
作为间接指示的第三种示例,该指示信息可用于指示频率的分组信息为分组信息集合中的一个,分组信息集合包括第一组、第二组和第三组。例如,事先划分频率的分组,第一频率属于第一组,第二频率属于第二组,第三频率属于第三组,以第一频率等于N×900KHz,第二频率等于(N×900+5)KHz,第三频率等于(N×900-5)KHz为例,根据N的不同取值可知,第一频率所在的第一组包括的频率为{900,1800,2700,……}KHz,第 二频率所在的第二组包括的频率为{905,1805,2705,……}KHz,第三频率所在的第三组包括的频率为{895,1795,2695,……}KHz。那么,该指示信息可以用于指示第一子载波的频率所在的分组为第一组、第二组或第三组。而终端设备可以预先存储频率与频率的分组之间的映射关系,例如频率与频率的分组之间的映射关系由协议规定,或者频率与频率的分组之间的映射关系由网络设备事先发送给终端设备。在频率与频率的分组之间的映射关系中,第一频率的分组为第一组,第二频率的分组为第二组,第三频率的分组为第三组。则终端设备接收指示信息后,根据指示信息所指示的频率的分组信息就能确定第一子载波的频率所属的分组,根据第一子载波的频率所属的分组和频率与频率的分组之间的映射关系,就能确定第一子载波的频率。例如,该指示信息指示的第一子载波的频率的分组信息为第一子载波的频率属于第一组,则终端设备根据频率与频率的分组之间的映射关系确定第一子载波的频率为第一频率,或者,该指示信息指示的第一子载波的频率的分组信息为第一子载波的频率属于第二组,则终端设备根据频率与频率的分组之间的映射关系确定第一子载波的频率为第二频率,或者,该指示信息指示第一子载波的频率的分组信息为第一子载波的频率属于第三组,则终端设备根据频率与频率的分组之间的映射关系确定第一子载波的频率为第三频率。
当然,如果频率集合中还包括其他的频率,则分组信息集合中也就还会包括相应的分组,例如,频率集合中还包括第四频率,则分组信息集合中就还包括第四分组,第四分组与第四频率对应,本申请实施例不作限制。
如上只是该指示信息间接指示第一子载波的频率的几种示例,本申请实施例不限制指示信息在间接指示第一子载波的频率时的指示方式。
在本申请实施例中,指示信息指示该SSB中的第一子载波的频率为频率集合中的一个,具体的,指示信息可以作为一个整体进行指示,或者也可以通过分级指示的方式进行指示。可以明确的是,无论是作为一个整体进行指示,还是通过分级指示的方式进行指示,都是可以直接指示第一子载波的频率为频率集合中的一个,也可以间接指示第一子载波的频率为频率集合中的一个,因此,下文中描述的指示信息指示第一子载波的频率为频率集合中的一个,可以是指直接指示,也可以是指间接指示,在下文中不再多赘述。下面分别介绍作为一个整体进行指示的方式和通过分级指示的方式进行指示的方式。
一、整体指示。
在这种指示方式下,指示信息作为一个整体来进行指示。
例如,该指示信息包括该SSB中的PBCH中的第三字段,或者包括剩余最小系统信息(remainingminimum system information,RMSI)的第四字段,当然还可以包括其他消息中的字段,如,其他系统消息(other system information,OSI),此处不作限制。也就是说,网络设备通过PBCH中的第三字段或RMSI中的第四字段或其他消息中的相应字段就可以指示第一子载波的频率为频率集合中的一个。
在这种指示方式下,又分为显示指示方式和隐式指示方式。
A、显示指示方式。
作为第一种实施方式,第三字段或第四字段包括2比特,该2比特的取值为00时,指示第一子载波的频率为第一频率,该2比特的取值为01时,指示第一子载波的频率为第二频率,该2比特的取值为10时,指示第一子载波的频率为第三频率,该2比特取值为11时,为预留状态。需要说明的,该2比特的取值与其所指示的状态之间也可以是其他的对应关系, 此处只是举例,并不限定。
作为第二种实施方式,第三字段或第四字段包括1比特,如果PBCH中携带了第三字段或RMSI中携带了第四字段,且该1比特的取值为0,则指示第一子载波的频率为第二频率,如果PBCH中携带了第三字段或RMSI中携带了第四字段,且该1比特的取值为1,则指示第一子载波的频率为第三频率,而如果PBCH中未携带第三字段或RMSI中未携带第四字段,则隐含指示第一子载波的频率为第一频率。需要说明的,该1比特的取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
较为优选的,该指示信息可以包括该SSB中的PBCH中的第三字段,因为SSB一般是在RMSI之前发送,如果终端设备根据SSB中的PBCH的第三字段确定了第一子载波的频率,则可以及时对终端设备的频率进行校正,从而终端设备就能够在较为准确的频率上接收RMSI,这样能够提升终端设备接收RMSI的可靠性。
在一种实施方式中,PBCH中的第三字段可以是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的字段。其中,参考资源块可以理解为公共资源网格中的任意一个资源块,例如,可以是编号为0的资源块,当然也可以是编号为其他值的资源块。该第三字段指示的值可以是0到11中的任一个,也可以是0到23中的任意一个。公共资源块网格可以理解为网络设备给终端设备发送的除SSB以外的其他任意一个下行信号的资源块网格,例如该下行信号可以是承载系统消息的信号,如RMSI,当然也可以是其他下行信号。需要说明的是,SSB的资源块网格和公共资源块的网格可以对齐,例如,SSB的某一资源块中的编号为0的子载波与公共资源块网格中的某一资源块中编号为0的子载波对齐,SSB中的该资源块中的编号为1子载波的与公共资源块网格中的该资源块中编号为1的子载波的对齐,以此类推,或者,SSB的资源块网格和公共资源块的网格也可以不对齐,例如,SSB的某一资源块中的编号为0的子载波与公共资源块网格中的某一资源块中编号为0的子载波不对齐。但是SSB的资源块中的子载波与公共资源块的子载波必须要对齐,这里的对齐,应理解为SSB的资源块中某一个子载波的中心/峰值位置与公共资源块中某一个子载波的中心/峰值位置相同,例如,SSB的资源块中某一个子载波的中心/峰值位置不会与公共资源块中某两个子载波之间的位置相同。这里,SSB的子载波间隔和公共资源块的子载波间隔可以相等,也可以不相等,此处不做限定。当第三字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第三字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第三字段指示SSB的栅格位置。
其中,当第三字段指示的值为奇数时,隐含指示SSB的栅格位置为第二频率或第三频率,此时,终端设备可以通过检测第二频率和第三频率来最终确定第一子载波的频率。由于第二频率和第三频率之间相差较大,对于终端设备来说较为容易区分,混淆的可能性较小,因此,本申请实施例中可以直接利用目前已有的字段来作为指示信息,既能够达到减小网络设备和终端设备之间的频偏的效果,也能节省传输资源,以及减小终端设备的解析复杂度。
这种指示方式较为简单明确,直接通过2比特或1比特就能够指示第一子载波的频率,方便终端设备理解。其中,如果指示信息通过1比特进行指示,相对于2比特来说信息量更小,有助于节省传输资源。
B、隐式指示方式。
作为第一种实施方式,该指示信息可以携带在该SSB中的PBCH的扰码中。
例如,可以通过协议为PBCH设置扰码集合,设置的扰码集合包括的扰码的数量与频率集合中所包括的频率的数量可以一致。例如频率集合包括第一频率、第二频率以及第三频率,则扰码集合中可以包括第一扰码、第二扰码以及第三扰码。且可以通过协议预先规定扰码和频率之间的对应关系,例如在扰码和频率之间的对应关系中,第一扰码与第一频率对应,第二扰码与第二频率对应,第三扰码与第三频率对应。那么,终端设备接收该PBCH后,如果确定该PBCH使用的扰码为第一扰码,则终端设备根据扰码和频率之间的对应关系就可以确定第一子载波的频率为第一频率,或者,如果确定该PBCH使用的扰码为第二扰码,则终端设备根据扰码和频率之间的对应关系就可以确定第一子载波的频率为第二频率,或者,如果确定该PBCH使用的扰码为第三扰码,则终端设备根据扰码和频率之间的对应关系就可以确定第一子载波的频率为第三频率。需要说明的,该扰码与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
作为第二种实施方式,该指示信息可以携带在SSB的信号中。
按照目标SSB的设计,PSS在SSB中的编号为0的OFDM符号上传输,而在频域上,PSS仅占用编号为56到编号为182的共127个子载波,即,在OFDM符号0上,编号为0到55、以及编号为183到239的子载波都不用于传输信号。因此,网络设备可以利用这些原本未被利用的子载波来发送携带该指示信息的信号。
例如,网络设备可以预先设置携带该指示信息的信号所占用的子载波与频率之间的映射关系,携带该指示信息的信号例如称为第一信号。例如,请参考图5,在第一信号所占用的子载波与频率之间的映射关系中,在OFDM符号0上,第一信号所占用的子载波为编号为0到47的子载波时,对应的频率为第三频率,在图5中,-5KHz即对应第三频率,在OFDM符号0上,第一信号所占用的子载波为编号为192到239的子载波时,对应的频率为第二频率,在图5中,5KHz即对应第二频率,而OFDM符号0上的编号为0到47以及192到239的子载波都不传输第一信号时,即第一信号在OFDM符号0上既不占用编号为0到47的子载波也不占用编号为192到239的子载波时,对应的频率为第一频率,在图5中,0KHz即对应第一频率,在这种情况下,可以认为第一信号不占用OFDM符号0上的任意子载波,也可以认为网络设备没有发送第一信号。需要说明的,第一信号所占用的子载波与其所指示的状态之间也可以是其他的对应关系,此处只是举例,本申请实施例对于第一信号所占用的子载波的数量以及位置等都不限定。
或者,第一信号所占用的子载波固定,可通过第一信号的不同内容来指示不同的频率。例如,网络设备可以预先设置第一信号与频率之间的映射关系,在第一信号与频率之间的映射关系中,如果第一信号为第一子信号,则对应的频率为第一频率,如果第一信号为第二子信号,则对应的频率为第二频率,如果第一信号为第三子信号,则对应的频率为第三频率,或者,在第一信号与频率之间的映射关系中,如果第一信号为第一子信号,则对应的频率为第一频率,如果第一信号为第二子信号,则对应的频率为第二频率,如果不传输第一信号,则对应的频率为第三频率,而第一信号在OFDM符号0中所占用的子载波始终是固定的,例如占用编号为0到47的子载波,或者占用编号为192到239的子载波等。
其中,该第一信号可以是序列信号,也可以是导频信号,或者是能量信号,此处不做限定。第一信号例如为序列信号,则第一子信号为第一序列,第二子信号为第二序列,第三子信号为第三序列,或者,第一信号例如为导频信号,则第一子信号为第一导频,第二 子信号为第二导频,第三子信号为第三导频,等等。需要说明的,第一信号与其所指示的状态之间也可以是其他的对应关系,此处只是举例,具体不限定。
二、分级指示。
在这种指示方式下,指示信息进行分级指示。
作为分级指示的第一种示例,指示信息可以包括第一指示信息和第二指示信息。
其中,第一指示信息用于指示第一子载波的频率为第一频率或第四频率,第四频率为第二频率或第三频率。那么,如果第一指示信息指示第一子载波的频率为第一频率,则终端设备可以直接根据第一指示信息确定第一子载波的频率为第一频率,而如果第一指示信息指示第一子载波的频率为第四频率,则终端设备还需要确定第一子载波的频率究竟是第二频率还是第三频率,在这种情况下,终端设备还可以借助第二指示信息来确定。第二指示信息用于在第一指示信息指示第一子载波的频率为第四频率的情况下,指示第一子载波的频率为第二频率,或为第三频率。这样,终端设备通过第一指示信息和第二指示信息就能够确定第一子载波的频率。
在分级指示的第一种示例中,也分为显示指示方式和隐式指示方式。
C、显示指示方式。
例如,第一指示信息包括1比特,第二指示信息也包括1比特。如果第一指示信息的1比特取值为0,则指示第一子载波的频率为第一频率,如果第一指示信息的1比特取值为1,则指示第一子载波的频率为第四频率。在第一指示信息的1比特取值为1的情况下,如果第二指示信息的1比特取值为0,则指示第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,则指示第一子载波的频率为第三频率。当然,无论对于第一指示信息还是第二指示信息,比特的取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
例如,第一指示信息为PBCH中的第一字段,第二指示信息为PBCH中的第二字段。
或者,第一指示信息为PBCH中的第一字段,第二指示信息为RMSI中的第四字段。
需要说明的是,如果第一指示信息取值为0,则理论上来讲,网络设备可以无需发送第二指示信息。但是如果网络设备不发送第二指示信息,会导致PBCH或RMSI少一个字段,而终端设备在检测时一般都是按照PBCH带有第二字段或RMSI带有第四字段的长度进行检测的,如果PBCH或RMSI少一个字段,可能会导致终端设备无法检测PBCH或RMSI。因此,为了便于终端设备的检测,在本实施例中,网络设备还是会发送第二指示信息,但如果第一指示信息取值为0,则终端设备可以不关注第二指示信息,例如可以无需解析第二指示信息,此时第二指示信息不起任何效果。那么,在第一指示信息取值为0的情况下,第二指示信息的取值可以随机,或者可以设置缺省(default)值,例如缺省值为0或1。
D、隐式指示方式。
作为第一种实施方式,第一指示信息可以携带在该SSB中的PBCH的扰码中,第二指示信息可以是该SSB中的PBCH的第五字段,或是RMSI的第六字段。
例如,可以通过协议为PBCH设置扰码集合,设置的扰码集合例如包括第一扰码和第二扰码,并规定,如果PBCH使用第一扰码,则指示第一子载波的频率为第一频率,如果PBCH使用第二扰码,则指示第一子载波的频率为第四频率。那么,终端设备接收该PBCH后,如果确定该PBCH使用的扰码为第一扰码,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子 载波的频率为第一频率;或者,如果确定该PBCH使用的扰码为第二扰码,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,例如第二指示信息占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该扰码与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
作为第二种实施方式,第一指示信息可以是PBCH中的第七字段,第二指示信息可以携带在该SSB中的PBCH的扰码中。
PBCH中的第七字段可以是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的字段,可以理解为,PBCH中的第七字段和前文介绍的PBCH的第三字段为同一字段,因此对于PBCH中的第七字段的介绍可参考前文,不多赘述。则,第七字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第七字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第七字段指示SSB的栅格位置。那么,终端设备接收该SSB后,如果确定第七字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果第七字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,其中,可以通过协议为PBCH设置扰码集合,设置的扰码集合例如包括第一扰码和第二扰码,并规定,如果PBCH使用第一扰码,则指示第一子载波的频率为第二频率,如果PBCH使用第二扰码,则指示第一子载波的频率为第三频率,则终端设备如果需要借助第二指示信息,就确定PBCH所使用的扰码,如果确定PBCH使用的是第一扰码,则确定第一子载波的频率为第二频率,如果确定PBCH使用的是第二扰码,则确定第一子载波的频率为第三频率。需要说明的,该扰码与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
作为第三种实施方式,第一指示信息可以携带在该SSB的信号中,第二指示信息可以是该SSB中的PBCH的第五字段,或是RMSI的第六字段。
按照目标SSB的设计,PSS在SSB中的编号为0的OFDM符号上传输,而在频域上,PSS仅占用编号为56到编号为182的共127个子载波,即,在OFDM符号0上,编号为0到55、以及编号为183到239的子载波都不用于传输信号。同样的,在本实施例中,网络设备可以利用这些原本未被利用的子载波来发送携带该指示信息的信号,携带该指示信息的信号称为第一信号。
例如,在SSB的OFDM符号0上,第一信号所占用的子载波为编号为0到47的子载波时,对应的频率为第一频率,在OFDM符号0上,第一信号所占用的子载波为编号为192到239的子载波时,对应的频率为第二频率或第三频率。那么,终端设备接收该PBCH后,如果确定第一信号在OFDM符号0上所占用的子载波为编号为0到47的子载波,则终端设备可以 确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果确定第一信号在OFDM符号0上所占用的子载波为编号为192到239的子载波,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,例如第二指示信息占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该第一信号所占用的子载波与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
或者,第一信号所占用的子载波固定,可通过第一信号的不同内容来指示不同的频率。例如,第一信号占用的子载波不变,例如占用OFDM符号0上的编号为0到47的子载波,如果第一信号为第一子信号,则表明第一子载波的频率为第一频率,如果第一信号为第二子信号,则表明第一子载波的频率为第二频率或第三频率。那么,终端设备接收该PBCH后,如果确定OFDM符号0上的编号为0到47的子载波发送的第一信号为第一子信号,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果确定OFDM符号0上的编号为0到47的子载波发送的第一信号为第二子信号,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,例如第二指示信息占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该第一信号与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
作为第四种实施方式,第一指示信息可以是PBCH中的第七字段,第二指示信息可以携带在该SSB的信号中。
PBCH中的第七字段可以是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的字段,可以理解为,PBCH中的第七字段和前文介绍的PBCH的第三字段为同一字段,因此对于PBCH中的第七字段的介绍可参考前文,不多赘述。则,第七字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第七字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第七字段指示SSB的栅格位置。那么,终端设备接收该SSB后,如果确定第七字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果第七字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,其中,可以通过协议预先规定,在SSB的OFDM符号0上,第一信号所占用的子载波为编号为0到47的子载波时,对应的频率为第二频率,在OFDM符号0上,第一信号所占用的子载波为编号为192到239的子载波时,对应的频率为第三频率,第一信号为承载第二指示信息的信号,那么终端设 备需要借助第二指示信息时,可以确定第一信号在OFDM符号0上所占用的子载波,如果第一信号OFDM符号0上所占用的子载波为编号为0到47的子载波,则确定第一子载波的频率为第二频率,如果第一信号OFDM符号0上所占用的子载波为编号为192到239的子载波,则确定第一子载波的频率为第三频率。需要说明的,该第一信号所占用的子载波与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
或者,第七字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第七字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第七字段指示SSB的栅格位置。那么,终端设备接收该SSB后,如果确定第七字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果第七字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,其中,可以通过协议预先规定,第一信号占用的子载波固定,例如占用OFDM符号0上的编号为0到47的子载波,如果第一信号为第一子信号,则表明第一子载波的频率为第二频率,如果第一信号为第二子信号,则表明第一子载波的频率为第三频率,第一信号为承载第二指示信息的信号,那么终端设备需要借助第二指示信息时,可以确定OFDM符号0上的编号为0到47的子载波传输的第一信号,如果第一信号为第一子信号,则终端设备确定第一子载波的频率为第二频率,如果第一信号为第二子信号,则终端设备确定第一子载波的频率为第三频率。需要说明的,该第一信号与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
其中,第一信号可以是序列信号,也可以是导频信号,或者是能量信号,此处不做限定。第一信号例如为序列信号,则第一子信号为第一序列,第二子信号为第二序列,或者,第一信号例如为导频信号,则第一子信号为第一导频,第二子信号为第二导频,等等。
作为分级指示的第二种示例,指示信息可以包括第一指示信息,或者,指示信息可以包括第一指示信息和第二指示信息,在本实施例中,指示信息究竟是否包括第二指示信息,需视条件而定。
其中,第一指示信息用于指示第一子载波的频率为第一频率或第四频率,第四频率为第二频率或第三频率。那么,如果第一指示信息指示第一子载波的频率为第一频率,则终端设备可以直接根据第一指示信息确定第一子载波的频率为第一频率,此时指示信息无需包括第二指示信息,即,网络设备无需发送第二指示信息;而如果第一指示信息指示第一子载波的频率为第四频率,则终端设备还需要确定第一子载波的频率究竟是第二频率还是第三频率,在这种情况下,指示信息还包括第二指示信息,即,网络设备还需发送第二指示信息,终端设备还可以借助第二指示信息来确定第一子载波的频率。第二指示信息用于在第一指示信息指示第一子载波的频率为第四频率的情况下,指示第一子载波的频率为第二频率,或为第三频率。这样,终端设备通过第一指示信息,或者通过第一指示信息和第二指示信息就能够确定第一子载波的频率。
在分级指示的第二种示例中,也分为显示指示方式和隐式指示方式。
E、显示指示方式。
例如,第一指示信息包括1比特。如果第一指示信息的1比特取值为0,则指示第一子载波的频率为第一频率,如果第一指示信息的1比特取值为1,则指示第一子载波的频率为 第四频率。在第一指示信息的1比特取值为0的情况下,网络设备不发送第二指示信息,终端设备可以直接确定第一子载波的频率为第一频率;而在第一指示信息的1比特取值为1的情况下,网络设备还会发送第二指示信息,例如第二指示信息也包括1比特,如果第二指示信息的1比特取值为0,则指示第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,则指示第一子载波的频率为第三频率。当然,无论对于第一指示信息还是第二指示信息,比特的取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
例如,第一指示信息为PBCH中的第一字段,第二指示信息为PBCH中的第二字段。
或者,第一指示信息为PBCH中的第一字段,第二指示信息为RMSI中的第四字段。
在本申请实施例中,如果第一指示信息取值为0,则网络设备无需发送第二指示信息,有助于节省传输资源。对于终端设备来说,可以设置既检测带有第
但是如果网络设备不发送第二指示信息,会导致PBCH或RMSI少一个字段,因此在本实施例中,可以设置终端设备既能按照PBCH带有第二字段或RMSI带有第四字段的长度进行检测,也能按照PBCH不带第二字段或RMSI不带第四字段的长度进行检测,例如,终端设备可先按照PBCH带有第二字段或RMSI带有第四字段的长度进行检测,如果检测成功,则表明指示信息只包括第一指示信息,如果检测失败,则终端设备继续按照PBCH不带第二字段或RMSI不带第四字段的长度进行检测。通过这种方式,既保证终端设备能够进行检测,也有助于节省传输资源。
F、隐式指示方式。
作为隐式指示方式的第一种实施方式,第一指示信息可以携带在该SSB中的PBCH的扰码中。
例如,可以通过协议为PBCH设置扰码集合,设置的扰码集合例如包括第一扰码和第二扰码,并规定,如果PBCH使用第一扰码,则指示第一子载波的频率为第一频率,如果PBCH使用第二扰码,则指示第一子载波的频率为第四频率。那么,终端设备接收该PBCH后,如果确定该PBCH使用的扰码为第一扰码,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;或者,如果确定该PBCH使用的扰码为第二扰码,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息为该SSB中的PBCH的第五字段,或是RMSI的第六字段,第二指示信息例如占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该扰码与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
作为隐式指示方式的第二种实施方式,第一指示信息可以是该SSB的PBCH的第八字段。
PBCH中的第八字段可以是用于指示该SSB中的第二子载波的位置与参考资源块中的 第三子载波的位置之间的偏移的字段,可以理解为,PBCH中的第八字段和前文介绍的PBCH的第三字段或第七字段为同一字段,因此对于PBCH中的第八字段的介绍可参考前文,不多赘述。则,第八字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第八字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第八字段指示SSB的栅格位置。那么,终端设备接收该SSB后,如果确定第八字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;而如果确定第八字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第二频率或第三频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息携带在该SSB中的PBCH的扰码中,其中,可以通过协议为PBCH设置扰码集合,设置的扰码集合例如包括第一扰码和第二扰码,并规定,如果PBCH使用第一扰码,则指示第一子载波的频率为第二频率,如果PBCH使用第二扰码,则指示第一子载波的频率为第三频率,则终端设备如果需要借助第二指示信息,就确定PBCH所使用的扰码,如果确定PBCH使用的是第一扰码,则确定第一子载波的频率为第二频率,如果确定PBCH使用的是第二扰码,则确定第一子载波的频率为第三频率。需要说明的,该扰码与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
作为隐式指示方式的第三种实施方式,第一指示信息可以携带在该SSB的信号中。
同样的,在本实施例中,网络设备可以利用SSB中的OFDM符号0上的原本未被利用的子载波来发送携带第一指示信息的信号,携带第一指示信息的信号称为第一信号。
例如,在OFDM符号0上,第一信号所占用的子载波为编号为0到47的子载波时,对应的频率为第一频率,在OFDM符号0上,第一信号所占用的子载波为编号为192到239的子载波时,对应的频率为第二频率或第三频率。那么,终端设备接收该PBCH后,如果确定第一信号在OFDM符号0上所占用的子载波为编号为0到47的子载波,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;或者,如果确定第一信号在OFDM符号0上所占用的子载波为编号为192到239的子载波,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息为该SSB中的PBCH的第五字段,或是RMSI的第六字段,例如第二指示信息占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该第一信号所占用的子载波与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
或者,第一信号所占用的子载波固定,可通过第一信号的不同内容来指示不同的频率。例如,第一信号占用的子载波不变,例如占用OFDM符号0上的编号为0到47的子载波,如 果第一信号为第一子信号,则表明第一子载波的频率为第一频率,如果第一信号为第二子信号,则表明第一子载波的频率为第二频率或第三频率。那么,终端设备接收该PBCH后,如果确定OFDM符号0上的编号为0到47的子载波发送的第一信号为第一子信号,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;或者,如果确定OFDM符号0上的编号为0到47的子载波发送的第一信号为第二子信号,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息为该SSB中的PBCH的第五字段,或是RMSI的第六字段,例如第二指示信息占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该第一信号与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
作为隐式指示方式的第四种实施方式,第一指示信息可以是该SSB的PBCH的第八字段。
对于PBCH中的第八字段的介绍可参考前文,不多赘述。则,第八字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第八字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第八字段指示SSB的栅格位置。那么,终端设备接收该SSB后,如果确定第八字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;而如果确定第八字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第二频率或第三频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息携带在该SSB的信号中,其中,可以通过协议预先规定,在SSB的OFDM符号0上,第一信号所占用的子载波为编号为0到47的子载波时,对应的频率为第二频率,在OFDM符号0上,第一信号所占用的子载波为编号为192到239的子载波时,对应的频率为第三频率,第一信号为承载第二指示信息的信号,那么终端设备需要借助第二指示信息时,可以确定第一信号在OFDM符号0上所占用的子载波,如果第一信号OFDM符号0上所占用的子载波为编号为0到47的子载波,则确定第一子载波的频率为第二频率,如果第一信号OFDM符号0上所占用的子载波为编号为192到239的子载波,则确定第一子载波的频率为第三频率。需要说明的,该第一信号所占用的子载波与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
或者,第八字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第八字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第八字段指示SSB的栅格位置。那么,终端设备接收该SSB后,如果 确定第八字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;而如果确定第八字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第二频率或第三频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息携带在该SSB的信号中,其中,可以通过协议预先规定,第一信号占用的子载波固定,例如占用OFDM符号0上的编号为0到47的子载波,如果第一信号为第一子信号,则表明第一子载波的频率为第二频率,如果第一信号为第二子信号,则表明第一子载波的频率为第三频率,第一信号为承载第二指示信息的信号,那么终端设备需要借助第二指示信息时,可以确定OFDM符号0上的编号为0到47的子载波传输的第一信号,如果第一信号为第一子信号,则终端设备确定第一子载波的频率为第二频率,如果第一信号为第二子信号,则终端设备确定第一子载波的频率为第三频率。需要说明的,该第一信号与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
其中,该第一信号可以是序列信号,也可以是导频信号,或者是能量信号,此处不做限定。第一信号例如为序列信号,则第一子信号为第一序列,第二子信号为第二序列,或者,第一信号例如为导频信号,则第一子信号为第一导频,第二子信号为第二导频,等等。
如上介绍了多种方式来使得终端设备确定第一子载波的频率,在具体应用过程中,可以选择其中的任意一种方式,或者具体使用哪种方式可通过协议规定。
在确定第一子载波的频率后,终端设备就可以根据第一子载波的频率来调整终端设备的频率,有助于提高终端设备的频率调整的精度,降低终端设备与网络设备之间的频偏。
接下来,为了提高终端设备调整频率偏移的准确度,本申请实施例提供第二种信号发送、接收方法,请参考图6。在下文的介绍过程中,以该方法应用在图3所示的应用场景为例。该方法的流程介绍如下。
S61、网络设备确定SSB和第一指示信息,其中,该第一指示信息用于指示该SSB的频率位置为频率集合中的一个,频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率,该第一指示信息是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的信息;
S62、网络设备向终端设备发送该SSB和该第一指示信息,则终端设备接收该SSB和该第一指示信息;
终端设备接收SSB,可以通过以下方式接收:
终端设备确定第一中心频率和第二中心频率,其中,所述第一中心频率为所述终端设备从网络设备接收信号的直流子载波对应的频率,所述第二中心频率为所述网络设备向所述终端设备发送信号的直流子载波对应的频率;
所述终端设备根据所述第一中心频率和所述第二中心频率从所述网络设备接收SSB。
在现有技术中,终端设备接收该SSB时,会按照第一中心频率来对该SSB进行接收,该第一中心频率可以理解为终端设备接收带宽的中心,该第一中心频率还可以理解为终端设备接收信号的直流位置的频率,或者是直流子载波对应的频率。而网络设备向终端设备发送该SSB时,会使用第二中心频率来进行发送,该第二中心频率可以理解为网络设备发 送带宽的中心,该第二中心频率还可以理解为网络设备发送信号的直流位置的频率,或者是直流子载波对应的频率。在本申请的实施例中,终端设备会确定第一中心频率和第二中心频率,需要说明的是,终端设备所确定的第二中心频率,应理解为是“终端设备理解的”网络设备发送信号的直流位置的频率,并不限定终端设备所确定的第二中心频率必须等于网络设备发送信号的直流子载波对应的频率,二者可以相等,当然也可以不相等。具体的,终端设备会根据第一中心频率对该SSB进行接收,并且根据第一中心频率与第二中心频率或者根据第一中心频率与第二中心频率之间的差值来对信号相位进行调整。该第二中心频率可以是预先确定的,例如协议中可规定第二中心频率的取值,或者协议可规定终端设备确定第二中心频率的规则,从而终端设备能够确定第二中心频率;或者,该第二中心频率也可以是网络设备通知给终端设备的。
需要说明的是,本申请实施例中,终端设备确定第二中心频率,和/或,根据第二中心频率来接收SSB,的方法,也可以用于本申请实施例以外的所有适用的情况,例如,在网络设备不向终端设备发送第一指示信息的情况下,终端设备也可以采用该方法接收SSB,同时,该方法也可以用于终端设备接收除SSB以外的其他信号的情况,例如,该其他信号可以是RMSI。
另外,第一中心频率以及第二中心频率等只是本文给予的命名,并不是对频率本身的限制,也并不是特指该频率一定被称为“中心频率”。
S63、终端设备根据该第一指示信息确定该SSB的频率位置为该频率集合中的一个。
关于对SSB的频率位置、频率集合、第一频率、第二频率、第三频率等一些概念的介绍,均可参考图4所示的实施例,不多赘述。应理解,本申请实施例中,SSB的频率位置可以是SSB中的第一子载波的位置,关于对第一子载波的介绍,也可参考图4所示的实施例,不多赘述。
在本申请实施例中,第一指示信息例如为该SSB的PBCH中的第一字段,PBCH中的第一字段可以是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的字段,可以理解为,PBCH的第一字段与前文所介绍的PBCH的第三字段、第七字段或第八字段均为同一字段,因此关于PBCH的第一字段的介绍可参考图4所示的实施例中的相关介绍,不多赘述。那么可以理解,当第一字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第一字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第一字段指示SSB的栅格位置。
其中,如果第一字段指示的值为奇数,隐含指示SSB的栅格位置为第二频率或第三频率,此时,终端设备可以通过检测第二频率和第三频率来最终确定第一子载波的频率。由于第二频率和第三频率之间相差较大,对于终端设备来说较为容易区分,混淆的可能性较小,因此,本申请实施例中可以直接利用目前已有的字段来作为指示信息,既能够达到减小网络设备和终端设备之间的频偏的效果,也能节省传输资源,以及减小终端设备的解析复杂度。
或者,如果第一字段指示的值为奇数,隐含指示SSB的栅格位置为第二频率或第三频率,则终端设备还可以借助第二指示信息来最终确定第一子载波的频率。关于第二指示信息,分为两种情况:
第一种情况,指示信息可以包括第一指示信息和第二指示信息。
其中,第一指示信息用于指示第一子载波的频率为第一频率或第四频率,第四频率为 第二频率或第三频率。那么,如果第一指示信息指示第一子载波的频率为第一频率,则终端设备可以直接根据第一指示信息确定第一子载波的频率为第一频率,而如果第一指示信息指示第一子载波的频率为第四频率,则终端设备还需要确定第一子载波的频率究竟是第二频率还是第三频率,在这种情况下,终端设备还可以借助第二指示信息来确定。第二指示信息用于在第一指示信息指示第一子载波的频率为第四频率的情况下,指示第一子载波的频率为第二频率,或为第三频率。这样,终端设备通过第一指示信息和第二指示信息就能够确定第一子载波的频率。
例如,第二指示信息为该PBCH中的第二字段,或者第二指示信息为RMSI中的第四字段,或者也可以是其他消息中的字段。较为优选的,该第二指示信息可以为该SSB中的PBCH中的第二字段,因为SSB一般是在RMSI之前发送,如果终端设备根据SSB中的PBCH的第二字段确定了第一子载波的频率,则可以及时对终端设备的频率进行校正,从而终端设备就能够在较为准确的频率上接收RMSI,这样能够提升终端设备接收RMSI的可靠性。
例如,终端设备接收该SSB后,如果确定第一字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果第一字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,例如第二字段或第四字段包括1比特,如果第三字段或第四字段的1比特的取值为0,则确定第一子载波的频率为第二频率,如果第三字段或第四字段的1比特的取值为1,则确定第一子载波的频率为第三频率。需要说明的,该1比特的取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
需要说明的是,如果第一指示信息取值为0,则理论上来讲,网络设备可以无需发送第二指示信息。但是如果网络设备不发送第二指示信息,会导致PBCH或RMSI少一个字段,而终端设备在检测时一般都是按照PBCH带有第二字段或RMSI带有第四字段的长度进行检测的,如果PBCH或RMSI少一个字段,可能会导致终端设备无法检测PBCH或RMSI。因此,为了便于终端设备的检测,在本实施例中,网络设备还是会发送第二指示信息,但如果第一指示信息取值为0,则终端设备可以不关注第二指示信息,例如可以无需解析第二指示信息,此时第二指示信息不起任何效果。那么,在第一指示信息取值为0的情况下,第二指示信息的取值可以随机,或者可以设置缺省值,例如缺省值为0或1,此时,可以理解为网络设备仅通过第一指示信息隐含地指示了SSB的栅格位置,也可以理解为网络设备采用第一指示信息和第二指示信息联合指示了SSB的栅格位置。
第二种情况,指示信息包括第一指示信息,或者,指示信息包括第一指示信息和第二指示信息。在本实施例中,指示信息究竟是否包括第二指示信息,需视条件而定。
其中,第一指示信息用于指示第一子载波的频率为第一频率或第四频率,第四频率为第二频率或第三频率。那么,如果第一指示信息指示第一子载波的频率为第一频率,则终端设备可以直接根据第一指示信息确定第一子载波的频率为第一频率,此时指示信息无需包括第二指示信息,即,网络设备无需发送第二指示信息;而如果第一指示信息指示第一子载波的频率为第四频率,则终端设备还需要确定第一子载波的频率究竟是第二频率还是第三频率,在这种情况下,指示信息还包括第二指示信息,即,网络设备还需发送第二指示信息,终端设备还可以借助第二指示信息来确定第一子载波的频率。第二指示信息用于在第一指示信息指示第一子载波的频率为第四频率的情况下,指示第一子载波的频率为第 二频率,或为第三频率。这样,终端设备通过第一指示信息,或者通过第一指示信息和第二指示信息就能够确定第一子载波的频率。
例如,第二指示信息为该PBCH中的第二字段,或者第二指示信息为RMSI中的第四字段,或者也可以是其他消息中的字段。较为优选的,该第二指示信息可以为该SSB中的PBCH中的第二字段,因为SSB一般是在RMSI之前发送,如果终端设备根据SSB中的PBCH的第二字段确定了第一子载波的频率,则可以及时对终端设备的频率进行校正,从而终端设备就能够在较为准确的频率上接收RMSI,这样能够提升终端设备接收RMSI的可靠性。
例如,终端设备接收该SSB后,如果确定第一字段指示的值为偶数,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;或者,如果第一字段指示的值为奇数,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二字段或第四字段包括1比特,如果第三字段或第四字段的1比特的取值为0,则确定第一子载波的频率为第二频率,如果第三字段或第四字段的1比特的取值为1,则确定第一子载波的频率为第三频率。需要说明的,该1比特的取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
需要说明的,目前,针对低于6GHz的频段,第一指示信息包含5比特,针对高于6GHz的频段,第一指示信息包含4比特。在本申请实施例中,第二指示信息例如包含1比特。可选的,第一指示信息和第二指示信息还可以联合编码为一个指示域。例如,在第一指示信息包含5比特的情况下,可以采用一个6比特的字段作为指示字段来指示原第一指示信息和第二指示信息所需指示的内容,如下表1所示。
表1
Figure PCTCN2018121593-appb-000001
Figure PCTCN2018121593-appb-000002
表1中,指示域代表6比特的指示字段的取值,资源块网格偏移,代表第一指示信息所指示的该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移,SSB栅格频率偏移,是指第一子载波的频率与第一频率之间的偏差,可以看到,表1中是以第一频率等于N×900KHz,第二频率等于(N×900+5)KHz,以及第三频率等于(N×900-5)KHz为例,且表1是以通过指示频率偏差的间接指示方式来指示频率为例。例如,指示域等于0时,第一指示信息所指示的该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移为0,所指示的第一子载波的频率与第一频率之间的偏差为0,这也就表明,所指示的第一子载波的频率为第一频率。
需要说明的是,表1只是一种示例,该联合指示域的状态与资源块网格偏移以及SSB栅 格位置偏移的对应不关系不限于表1所示,也可以是其他的对应关系,此处不做限定。同时,并不限定表1中各列的名称和类型,例如SSB栅格位置偏移也可以是SSB的频率或频率的编号,或者是SSB的参考子载波的频率或频率的编号等。
在第一频率等于N×900KHz,第二频率等于(N×900-10)KHz,以及第三频率等于(N×900+10)KHz的情况下,例如第一指示信息包含5比特,如果继续采用一个6比特的指示字段来指示原第一指示信息和第二指示信息所需指示的内容,则可以如下表2所示。
表2
Figure PCTCN2018121593-appb-000003
Figure PCTCN2018121593-appb-000004
需要说明的是,在上述实施例中,该指示字段用于联合指示资源块网格偏移和SSB频率位置,此处并不限定该指示字段只有这一种理解。在不同情况下,该指示字段的功能和理解可以不同。例如,在信道栅格值为100KHz的情况下,该指示字段的功能可以如上述实施例中所述;在信道栅格值为15KHz的情况下,该指示字段的功能可以只用于指示资源块网格偏移,或者也可以理解为该指示字段指示的SSB频率位置为唯一的位置,例如第一频率,也就是说,在信道栅格值为15KHz的情况下,SSB频率位置只在N×900KHz上,以此类推,在信道栅格值再发生变化的情况下,该指示字段的功能也可能随之发生变化,本申请实施例不作限制,且该指示字段在不同的信道栅格值下的功能均在本申请实施例的保护范围之内。
在确定第一子载波的频率后,终端设备就可以根据第一子载波的频率来调整终端设备的频率,有助于提高终端设备的频率调整的精度,降低终端设备与网络设备之间的频偏。且本申请实施例利用了已有的PBCH中的字段作为第一指示信息,无需再专门采用其他的字段作为第一指示信息,能够有效节省传输资源,且能够提高信息的利用率。
下面,为了提高终端设备调整频率偏移的准确度,本申请实施例提供第三种信号发送、接收方法,请参考图7。在下文的介绍过程中,以该方法应用在图3所示的应用场景为例。该方法的流程介绍如下。
S71、网络设备确定SSB和指示信息,其中,该指示信息用于指示该SSB的频率位置为频率集合中的一个,频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率,该指示信息携带在PBCH的循环冗余校验码(cyclic redundancy check,CRC)的掩码(mask)中;
S72、网络设备向终端设备发送该SSB和该指示信息,则终端设备接收该SSB和该指示信息;
S73、终端设备根据该指示信息确定该SSB的频率位置为该频率集合中的一个。
关于对SSB的频率位置、频率集合、第一频率、第二频率、第三频率等一些概念的介绍,均可参考图4所示的实施例,不多赘述。应理解,本申请实施例中,SSB的频率位置可以是SSB中的第一子载波的位置,关于对第一子载波的介绍,也可参考图4所示的实施例,不多赘述。
在本申请实施例中,指示信息指示该SSB中的第一子载波的频率为频率集合中的一个,具体的,指示信息可以作为一个整体进行指示,或者也可以通过分级指示的方式进行指示。可以明确的是,无论是作为一个整体进行指示,还是通过分级指示的方式进行指示,都是可以直接指示第一子载波的频率为频率集合中的一个,也可以间接指示第一子载波的频率为频率集合中的一个,因此,下文中描述的指示信息指示第一子载波的频率为频率集合中的一个,可以是指直接指示,也可以是指间接指示,在下文中不再多赘述。下面分别介绍作为一个整体进行指示的方式和通过分级指示的方式进行指示的方式。
三、整体指示。
在这种指示方式下,指示信息作为一个整体来进行指示。
在本申请实施例中,指示信息携带在PBCH的CRC的掩码中,可以认为,指示信息通过PBCH的CRC的掩码实现,因此也可以认为这种指示方式是隐式指示方式。例如,可以通过协议为PBCH的CRC设置多种掩码,所设置的掩码的数量例如等于频率集合中所包括的频率的数量,则掩码与频率集合中的频率可以是一一对应的关系。以频率集合包括第一频率、第二频率和第三频率为例,例如为PBCH的CRC设置了三种掩码,分别为第一掩码、第二掩码和第三掩码,其中,第一掩码与第一频率对应,第二掩码与第二频率对应,第三掩码与第三频率对应。那么,网络设备通过PBCH的CRC的掩码就可以指示第一子载波的频率,终端设备接收SSB后,在对PBCH进行解调时,可以分别按照这三种掩码对CRC进行校验,校验成功的掩码对应的频率即为第一子载波的频率。例如,在CRC的长度为24的情况下,SSB栅格位置对应的频率与PBCH的CRC的掩码的对应关系可以如下表3所示:
表3
SSB栅格位置对应的频率(KHz) PBCH的CRC的掩码
N×900 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>
N×900+5 <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>
N×900-5 <0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1>
表3是以第一频率等于N×900KHz、第二频率等于(N×900+5)KHz、第三频率等于(N×900-5)KHz为例,其中,<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>例如为第一掩码,<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>例如为第二掩码,<0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1>例如为第三掩码,且表3是以通过直接指示的方式来指示频率为例。
需要说明的是,表3仅为举例,PBCH的CRC掩码的取值以及与频率的对应关系都不限于表3所示的情况。同时,PBCH的CRC掩码的长度和CRC的长度可以如表3中相同,当然也可以不同,例如,CRC的长度为24,CRC掩码的长度可以是小于24的值,如1,2,或12,此处不做限定。
四、分级指示。
在这种指示方式下,指示信息进行分级指示。
作为分级指示的第一种示例,指示信息可以包括第一指示信息和第二指示信息。
其中,第一指示信息用于指示第一子载波的频率为第一频率或第四频率,第四频率为第二频率或第三频率。那么,如果第一指示信息指示第一子载波的频率为第一频率,则终端设备可以直接根据第一指示信息确定第一子载波的频率为第一频率,而如果第一指示信 息指示第一子载波的频率为第四频率,则终端设备还需要确定第一子载波的频率究竟是第二频率还是第三频率,在这种情况下,终端设备还可以借助第二指示信息来确定。第二指示信息用于在第一指示信息指示第一子载波的频率为第四频率的情况下,指示第一子载波的频率为第二频率,或为第三频率。这样,终端设备通过第一指示信息和第二指示信息就能够确定第一子载波的频率。
例如,第一指示信息可以携带在该SSB的PBCH的CRC的掩码中,第二指示信息可以是该SSB中的PBCH的第五字段,或是RMSI的第六字段。
例如,可以通过协议为PBCH的CRC设置多种掩码,设置的掩码例如包括第一扰码和第二掩码,并规定,如果PBCH的CRC使用第一掩码,则指示第一子载波的频率为第一频率,如果PBCH的CRC使用第二掩码,则指示第一子载波的频率为第四频率。那么,终端设备接收该PBCH后,如果确定该PBCH的CRC使用的掩码为第一掩码,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示信息就可以确定第一子载波的频率为第一频率;或者,如果确定该PBCH的CRC使用的掩码为第二掩码,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,例如第二指示信息占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该掩码与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
作为分级指示的第二种示例,指示信息可以包括第一指示信息,或者,指示信息可以包括第一指示信息和第二指示信息,在本实施例中,指示信息究竟是否包括第二指示信息,需视条件而定。
其中,第一指示信息用于指示第一子载波的频率为第一频率或第四频率,第四频率为第二频率或第三频率。那么,如果第一指示信息指示第一子载波的频率为第一频率,则终端设备可以直接根据第一指示信息确定第一子载波的频率为第一频率,此时指示信息无需包括第二指示信息,即,网络设备无需发送第二指示信息;而如果第一指示信息指示第一子载波的频率为第四频率,则终端设备还需要确定第一子载波的频率究竟是第二频率还是第三频率,在这种情况下,指示信息还包括第二指示信息,即,网络设备还需发送第二指示信息,终端设备还可以借助第二指示信息来确定第一子载波的频率。第二指示信息用于在第一指示信息指示第一子载波的频率为第四频率的情况下,指示第一子载波的频率为第二频率,或为第三频率。这样,终端设备通过第一指示信息,或者通过第一指示信息和第二指示信息就能够确定第一子载波的频率。
例如,第一指示信息可以携带在该SSB的PBCH的CRC的掩码中。
例如,可以通过协议为PBCH的CRC设置多种掩码,设置的掩码例如包括第一扰码和第二掩码,并规定,如果PBCH的CRC使用第一掩码,则指示第一子载波的频率为第一频率,如果PBCH的CRC使用第二掩码,则指示第一子载波的频率为第四频率。那么,终端设备接收该PBCH后,如果确定该PBCH的CRC使用的掩码为第一掩码,则终端设备可以确定第一子载波的频率为第一频率,此时终端设备无需再借助第二指示信息,根据第一指示 信息就可以确定第一子载波的频率为第一频率,在这种情况下,网络设备也无需发送第二指示信息,即,在这种情况下,指示信息只包括第一指示信息;或者,如果确定该PBCH的CRC使用的掩码为第二掩码,则终端设备可以确定第一子载波的频率为第四频率,此时终端设备还需要借助于第二指示信息来确定第一子载波的频率,在这种情况下,网络设备除了需要发送第一指示信息外,还需要发送第二指示信息,即,在这种情况下,指示信息包括第一指示信息和第二指示信息,例如第二指示信息为该SSB中的PBCH的第五字段,或是RMSI的第六字段,第二指示信息例如占用1比特,如果第二指示信息的1比特取值为0,表明第一子载波的频率为第二频率,如果第二指示信息的1比特取值为1,表明第一子载波的频率为第三频率。需要说明的,该掩码与其所指示的状态之间也可以是其他的对应关系,以及,第二指示信息的比特取值与其所指示的状态之间也可以是其他的对应关系,此处只是举例,并不限定。
这种实施方式可以理解为隐式指示方式,或者,如果考虑到第二指示信息,也可以理解为,这种实施方式是显示指示和隐式指示相结合的指示方式。
本申请实施例中,可以借用掩码确定第一子载波的频率,减少了所需的专门作为指示信息的信息的数量,有助于节省传输资源,且能够提高信息的利用率。而且网络设备可指示第一子载波的频率,有助于提高终端设备的频率调整的精度,降低终端设备与网络设备之间的频偏。
下面,为了提高终端设备调整频率偏移的准确度,本申请实施例提供第四种信号发送、接收方法,请参考图8。在下文的介绍过程中,以该方法应用在图3所示的应用场景为例。该方法的流程介绍如下。
S81、网络设备确定SSB、第一指示信息和第二指示信息,其中,该第一指示信息用于指示该SSB的频率位置为频率集合中的一个,频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率,该第一指示信息是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的信息,第二指示信息携带在该SSB的PBCH的掩码中;
S82、网络设备向终端设备发送该SSB、第一指示信息和第二指示信息,则终端设备接收该SSB、该第一指示信息和第二指示信息;
S83、根据第一指示信息和第二指示信息确定SSB的频率位置为频率集合中的一个。
关于对SSB的频率位置、频率集合、第一频率、第二频率、第三频率等一些概念的介绍,均可参考图4所示的实施例,不多赘述。应理解,本申请实施例中,SSB的频率位置可以是SSB中的第一子载波的位置,关于对第一子载波的介绍,也可参考图4所示的实施例,不多赘述。
在本申请实施例中,第一指示信息例如为该SSB的PBCH中的第一字段,PBCH中的第一字段可以是用于指示该SSB中的第二子载波的位置与参考资源块中的第三子载波的位置之间的偏移的字段,可以理解为,PBCH的第一字段与前文所介绍的PBCH的第三字段、第七字段或第八字段均为同一字段,因此关于PBCH的第一字段的介绍可参考图4所示的实施例中的相关介绍,不多赘述。那么可以理解,当第一字段指示的值为偶数时,则隐含的指示了SSB的栅格位置为第一频率,当第一字段指示的值为奇数时,则隐含的指示了SSB的栅格位置为第二频率或第三频率,所以网络设备可以通过第一字段指示SSB的栅格位置。
其中,在第一指示信息指示第一子载波的频率为第四频率的情况下,终端设备还根据 第二指示信息确定该SSB中的第一子载波的频率为该频率集合中的一个,或,在第一指示信息指示第一子载波的频率为第一频率的情况下,终端设备根据第一指示信息确定第一子载波的频率为该频率集合中第一频率,第四频率为第二频率或第三频率。
具体的,如果第一字段指示的值为奇数,隐含指示SSB的栅格位置为第二频率或第三频率,则终端设备还可以借助第二指示信息来最终确定第一子载波的频率。在本申请实施例中,第二指示信息可携带在该SSB的PBCH的掩码中,可以认为,第二指示信息通过PBCH的CRC的掩码实现。例如,可以通过协议为PBCH的CRC设置多种掩码,例如设置了两种掩码,分别为第一掩码和第二掩码,其中,第一掩码与第一频率对应,第二掩码与第四频率对应,也就是说,如果PBCH的CRC使用第一掩码,则隐含指示第一子载波的频率为第二频率,如果PBCH的CRC使用第二掩码,则隐含指示第一子载波的频率为第三频率,可参考表4,以第一频率等于N×900KHz、第二频率等于(N×900+5)KHz、第三频率等于(N×900-5)KHz为例,其中,<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>例如为第二掩码,<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>例如为第三掩码,且表4是以通过直接指示的方式来指示频率为例。那么,如果第一字段指示的值为奇数,则网络设备通过PBCH的CRC的掩码就可以进一步指示第一子载波的频率,终端设备接收SSB后,在对PBCH进行解调时,可以分别按照这两种掩码对CRC进行校验,如果第一字段指示的值为奇数,那么校验成功的掩码对应的频率即为第一子载波的频率。
表4
SSB栅格位置对应的频率(KHz) PBCH的CRC掩码
N×900+5 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>
N×900-5 <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>
需要说明的是,表4仅为举例,PBCH的CRC掩码的取值以及与频率的对应关系都不限于表4所示的情况。
如果第一字段指示的值为偶数,隐含指示SSB的栅格位置为第一频率,则终端设备根据第一指示信息直接就可以确定第一子载波的频率为第一频率,无需再借助第二指示信息。在这种情况下,PBCH可以使用第一掩码或第二掩码,具体使用哪种掩码可通过协议规定,例如协议将第一掩码或第二掩码设置为缺省掩码,如果第一字段指示的值为偶数,则PBCH的掩码使用缺省掩码。
本申请实施例中,借用PBCH中已有的字段,或PBCH中已有的字段和掩码就可以确定第一子载波的频率,无需再通过其他的信息专门作为指示信息,有助于节省传输资源,且能够提高信息的利用率。而且网络设备可指示第一子载波的频率,有助于提高终端设备的频率调整的精度,降低终端设备与网络设备之间的频偏。
请参考图9,为了提高终端设备调整频率偏移的准确度,本申请实施例提供第五种信号发送、接收方法,在下文的介绍过程中,以该方法应用在图3所示的应用场景为例。该方法的流程介绍如下。
S91、网络设备确定SSB,其中,所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率,所述第一频率为N×900千赫兹,所述第二频率为(N×900+k)千赫兹,所述第三频率为(N×900-k)千赫兹,N为正整数;
S92、网络设备向终端设备发送所述SSB,则终端设备接收所述SSB。
关于对SSB的频率位置及频率集合等一些概念的介绍,均可参考图4所示的实施例,不多赘述。应理解,本申请实施例中,SSB的频率位置可以是SSB中的第一子载波的位置,关于对第一子载波的介绍,也可参考图4所示的实施例,不多赘述。
作为一种示例,k=M×10,M为正整数,例如M可以取1或2,再例如,M不等于10。作为一种示例,k=10,当然k也可以有其他取值。对于k的取值,本申请实施例不作限制,例如k=5,或者k=10,或者k=20,或者k为其他取值。此处并不限定第二频率和第三频率以第一频率对称,即第二频率和第一频率的差的绝对值与第三频率和第一频率的差的绝对值相等,从而可以第一频率等于N×900KHz,第二频率等于(N×900+k1)KHz,第三频率等于(N×900-k2)KHz,其中k1与k2不相等,如k1=5,k2=10,当然也可以是其他值。终端设备接收所述SSB后,就可以确定SSB的频率位置究竟是第一频率、第二频率还是第三频率,从而可以根据SSB的频率位置调整终端设备的频率。
优选的,k=10。在现有技术中,k=5,对于信道栅格值为100KHz的情况,会对载波的中心频率的位置造成一些限制。例如,对于信道栅格值为100KHz的情况,如果载波的中心频率的值为700MHz,那么当SSB和系统资源块的子载波间隔都为30KHz时,为了保证SSB和系统资源块之间子载波是对齐的,按照SSB的同步栅格规则,即N×900千赫兹,(N×900+5)千赫兹,(N×900-5)千赫兹,无法找到一个可用的同步栅格频率用于传输SSB。因此,在该实施例中,将SSB的栅格规则修改为N×900千赫兹,(N×900+10)千赫兹,(N×900-10)千赫兹,即k=10,则可以解决k=5情况下的问题。
或者,优选的,k=20。类似的,在该实施例中,将SSB的栅格规则修改为N×900千赫兹,(N×900+20)千赫兹,(N×900-20)千赫兹,即k=20,则可以解决k=5情况下的问题。
或者,优选的,k=50。类似的,在该实施例中,将SSB的栅格规则修改为N×900千赫兹,(N×900+50)千赫兹,(N×900-50)千赫兹,也可以解决k=5情况下的问题。可选的,在k=50的情况下,终端设备不易混淆满足同步栅格规则的不同频率,此时网络设备无需向终端设备发送指示信息,终端设备也能够较为准确地确定所检测的同步栅格的频率。当然,网络设备也可以向终端发送指示信息,以最大限度地确保终端设备准确地确定所检测的同步栅格的频率。
作为一种示例,k=M×10,M为正整数,但k不等于X×30,X为正整数,也就是说k的取值可以是10的倍数,但不能是30的倍数,这样都可以避免出现类似于上述k=5情况下的问题。可选的,k不等于100。例如,k的取值可以是10,20,40,50,70,80,110,130,140,160,170,190,200,220,230,250,260,280,290,310,320,340,350,370,380,400,410,430,440中的一个。又例如,当存在k1和k2时,k1和k2的取值可以分别为10,20,40,50,70,80,110,130,140,160,170,190,200,220,230,250,260,280,290,310,320,340,350,370,380,400,410,430,440中的一个。
作为一种示例,SSB的栅格规则可修改为N×900千赫兹,(N×900+k)千赫兹,(N×900-k)千赫兹,(N×900+g)千赫兹,(N×900-g)千赫兹,其中k与g不相等。可选的,k等于M×5,M为正整数,g等于X×10,X为正整数。例如,k的取值为5,10,15,20,25,30,35,……,445中的一个,g的取值为10,20,30,40,50,60,……,440中的一个。可选的,k等于M×5,M为正整数,g等于X×10但不等于Y×30,X和Y为正整数。 例如,k的取值为5,10,15,20,25,30,35,……,445中的一个,g的取值为10,20,40,50,70,80,100,110,130,140,160,170,190,200,220,230,250,260,280,290,310,320,340,350,370,380,400,410,430,440中的一个。当然,也可以反过来,即k等于X×10,X为正整数,g等于M×5,M为正整数,此处不做限定。
此外,与如前所述的实施例类似的,上述中的第一频率也并不限于N×900KHz,也可以是N×600KHz,或N×300KHz,当然也可以是其他值,此处不做限定。需要说明的是,现有无线通信系统中定义的第一频率为N×900KHz,随着系统的演进,该第一频率的取值也可能发生改变。类似的,在本申请实施例中也不限定第二频率和第三频率,例如,在第一频率为N×600KHz的情况下,第二频率可以为(N×600+k)KHz,第三频率可以为(N×600-k)KHz。可以理解为,第一频率等于(N×P)KHz,第二频率等于(N×P+k)KHz,第三频率等于(N×P-k)KHz,其中,P可以等于900,或者也可以取其他值,例如600或300等,本申请实施例不作限制。
在本申请实施例中,网络设备可以直接向终端设备发送SSB,如果k的取值较大,则相邻的满足同步栅格规则的频率的差值也就会比较大,对于终端设备来说也就不易混淆不同的满足同步栅格规则的频率。因此,无需指示信息,终端设备也能够较为准确地确定所检测的同步栅格的频率,从而较为准确地调整终端设备的频率,提高了终端设备的频率调整的精度,也减小了终端设备和网络设备之间的频偏。
下面结合附图介绍本申请实施例提供的设备。
图10示出了一种网络设备1000的结构示意图。该网络设备1000可以实现上文中涉及的网络设备的功能。该网络设备1000可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该网络设备1000可以包括处理器1001和收发器1002。其中,处理器1001可以用于执行图4所示的实施例中的S41、图6所示的实施例中的S61、图7所示的实施例中的S71、图8所示的实施例中的S81,还可以用于执行图9所示的实施例中的S91,和/或用于支持本文所描述的技术的其它过程。收发器1002可以用于执行图4所示的实施例中的S42、图6所示的实施例中的S62、图7所示的实施例中的S72、图8所示的实施例中的S82,还可以用于执行图9所示的实施例中的S92,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1001,用于确定SSB和指示信息,其中,所述指示信息用于指示所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率;
收发器1002,用于向终端设备发送所述SSB和所述指示信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图11示出了一种终端设备1100的结构示意图。该终端设备1100可以实现上文中涉及的终端设备的功能。该终端设备1100可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该终端设备1100可以包括处理器1101和收发器1102。其中,处理器1101可以用于执行图4所示的实施例中的S43、图6所示的实施例中的S63、图7所示的实施例中的S73、图8所示的实施例中的S83,还可以用于执行图9所示的实施例中的根据接收的SSB确定SSB的频率位置的步骤,和/或用于支持本文所描述的技术的其它过程。收发器1102可以用于执行图4所示的实施例中的S42、图6所示的实施例中 的S62、图7所示的实施例中的S72、图8所示的实施例中的S82,还可以用于执行图9所示的实施例中的S92,和/或用于支持本文所描述的技术的其它过程。
例如,收发器1102,用于从网络设备接收SSB和指示信息;
处理器1101,用于根据所述指示信息确定所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将网络设备1000或终端设备1100通过如图12A所示的通信装置1200的结构实现。该通信装置1200可以实现上文中涉及的网络设备或终端设备的功能。该通信装置1200可以包括处理器1201。其中,在该通信装置1200用于实现图4所示的实施例中的网络设备的功能时,处理器1201可以用于执行图4所示的实施例中的S41,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图6所示的实施例中的网络设备的功能时,处理器1201可以用于执行图6所示的实施例中的S61,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图7所示的实施例中的网络设备的功能时,处理器1201可以用于执行图7所示的实施例中的S71,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图8所示的实施例中的网络设备的功能时,处理器1201可以用于执行图8所示的实施例中的S81,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图9所示的实施例中的网络设备的功能时,处理器1201可以用于执行图9所示的实施例中的S91,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图4所示的实施例中的终端设备的功能时,处理器1201可以用于执行图4所示的实施例中的S43,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图6所示的实施例中的终端设备的功能时,处理器1201可以用于执行图6所示的实施例中的S63,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图7所示的实施例中的终端设备的功能时,处理器1201可以用于执行图7所示的实施例中的S73,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图8所示的实施例中的终端设备的功能时,处理器1201可以用于执行图8所示的实施例中的S83,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图9所示的实施例中的终端设备的功能时,处理器1201可以用于执行图9所示的实施例中的根据接收的SSB确定SSB的频率位置的步骤,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置1200可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置600可被设置于本申请实施例的网络设备或通信设备中,以使得该网络设备或通信设备实现本申请实施例提供的传输消息的方法。
在一种可选实现方式中,该通信装置1200可以包括收发组件,用于与网络设备进行通信。例如,在该通信装置1200用于实现图4所示的实施例中的网络设备或终端设备的 功能时,收发组件可以用于执行图4所示的实施例中的S42,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图6所示的实施例中的网络设备或终端设备的功能时,收发组件可以用于执行图6所示的实施例中的S62,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图7所示的实施例中的网络设备或终端设备的功能时,收发组件可以用于执行图7所示的实施例中的S72,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图8所示的实施例中的网络设备或终端设备的功能时,收发组件可以用于执行图8所示的实施例中的S82,和/或用于支持本文所描述的技术的其它过程。在该通信装置1200用于实现图9所示的实施例中的网络设备或终端设备的功能时,收发组件可以用于执行图9所示的实施例中的S92,和/或用于支持本文所描述的技术的其它过程。
在一种可选实现方式中,该通信装置1200还可以包括存储器1202,可参考图12B,其中,存储器1202用于存储计算机程序或指令,处理器1201用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述网络设备或终端设备的功能程序。当网络设备的功能程序被处理器1201译码并执行时,可使得网络设备实现本申请实施例图4所示的实施例、图6所示的实施例、图7所示的实施例、图8所示的实施例或图9所示的实施例所提供的信号发送方法中网络设备的功能。当终端设备的功能程序被处理器1201译码并执行时,可使得终端设备实现本申请实施例的图4所示的实施例、图6所示的实施例、图7所示的实施例、图8所示的实施例或图9所示的实施例所提供的信号接收方法中终端设备的功能。
在另一种可选实现方式中,这些网络设备或终端设备的功能程序存储在通信装置1200外部的存储器中。当网络设备的功能程序被处理器1201译码并执行时,存储器1202中临时存放上述网络设备的功能程序的部分或全部内容。当终端设备的功能程序被处理器1201译码并执行时,存储器1202中临时存放上述终端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些网络设备或终端设备的功能程序被设置于存储在通信装置1200内部的存储器1202中。当通信装置1200内部的存储器1202中存储有网络设备的功能程序时,通信装置1200可被设置在本申请实施例的网络设备中。当通信装置1200内部的存储器1202中存储有终端设备的功能程序时,通信装置1200可被设置在本申请实施例的终端设备中。
在又一种可选实现方式中,这些网络设备的功能程序的部分内容存储在通信装置1200外部的存储器中,这些网络设备的功能程序的其他部分内容存储在通信装置1200内部的存储器1202中。或,这些终端设备的功能程序的部分内容存储在通信装置1200外部的存储器中,这些终端设备的功能程序的其他部分内容存储在通信装置1200内部的存储器1602中。
在本申请实施例中,网络设备1000、终端设备1100及通信装置1200对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图10所示的实施例提供的网络设备1000还可以通过其他形式实现。例如该网络设备包括处理模块和收发模块。例如处理模块可通过处理器1001实现,收发模块可通过收发器1002实现。其中,处理模块可以用于执行图4所示的实施例中的S41、图6所示 的实施例中的S61、图7所示的实施例中的S71、图8所示的实施例中的S81,还可以用于执行图9所示的实施例中的S91,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S42、图6所示的实施例中的S62、图7所示的实施例中的S72、图8所示的实施例中的S82,还可以用于执行图9所示的实施例中的S92,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于确定SSB和指示信息,其中,所述指示信息用于指示所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率;
收发模块,用于向终端设备发送所述SSB和所述指示信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图11所示的实施例提供的终端设备1100还可以通过其他形式实现。例如该终端设备包括处理模块和收发模块。例如处理模块可通过处理器1101实现,收发模块可通过收发器1102实现。其中,处理模块可以用于执行图4所示的实施例中的S43、图6所示的实施例中的S63、图7所示的实施例中的S73、图8所示的实施例中的S83,还可以用于执行图9所示的实施例中的根据接收的SSB确定SSB的频率位置的步骤,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S42、图6所示的实施例中的S62、图7所示的实施例中的S72、图8所示的实施例中的S82,还可以用于执行图9所示的实施例中的S92,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块,用于从网络设备接收SSB和指示信息;
处理模块,用于根据所述指示信息确定所述SSB的频率位置为频率集合中的一个,所述频率集合包括第一频率和第二频率,或者包括第一频率、第二频率以及第三频率。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的网络设备1000、终端设备1100及通信装置1200可用于执行图4所示的实施例、图6所示的实施例、图7所示的实施例、图8所示的实施例或图9所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种信号发送方法,其特征在于,包括:
    网络设备确定同步信号/物理广播信道块SSB,所述SSB的频率位置为(N×600+k)千赫兹,其中,N为正整数,k等于50或250;
    所述网络设备向终端设备发送所述SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述N为大于零的奇数或者偶数。
  3. 根据权利要求2所述的方法,其特征在于,当所述N为偶数时,所述SSB的频率位置为(T×1200+k)千赫兹,其中T=N/2。
  4. 一种信号接收方法,其特征在于,包括:
    终端设备从网络设备接收SSB,所述SSB的频率位置为(N×600+k)千赫兹,其中,N为正整数,k等于50或250。
  5. 根据权利要求4所述的方法,其特征在于,所述N为大于零的奇数或者偶数。
  6. 根据权利要求5所述的方法,其特征在于,当所述N为偶数时,所述SSB的频率位置为(T×1200+k)千赫兹,其中T=N/2。
  7. 一种网络设备,其特征在于,包括:
    处理模块,用于确定同步信号/物理广播信道块SSB,所述SSB的频率位置为(N×600+k)千赫兹,其中,N为正整数,k等于50或250;
    发送模块,用于向终端设备发送所述SSB。
  8. 根据权利要求7所述的网络设备,其特征在于,所述N为大于零的奇数或者偶数。
  9. 根据权利要求8所述的网络设备,其特征在于,当所述N为偶数时,所述SSB的频率位置为(T×1200+k)千赫兹,其中T=N/2。
  10. 一种终端设备,其特征在于,包括:
    收发模块,用于从网络设备接收SSB,所述SSB的频率位置为(N×600+k)千赫兹,其中,N为正整数,k等于50或250。
  11. 根据权利要求10所述的终端设备,其特征在于,所述N为大于零的奇数或者偶数。
  12. 根据权利要求11所述的终端设备,其特征在于,当所述N为偶数时,所述SSB的频率位置为(T×1200+k)千赫兹,其中T=N/2。
  13. 一种通信装置,其特征在于,包括:处理器和收发组件;
    所述处理器用于确定同步信号/物理广播信道块SSB,所述SSB的频率位置为(N×600+k)千赫兹,其中,N为正整数,k等于50或250;
    所述收发组件用于向终端设备发送所述SSB。
  14. 一种通信装置,其特征在于,包括:处理器和收发组件;
    所述处理器用于指示收发组件从网络设备接收SSB,所述SSB的频率位置为(N×600+k)千赫兹,其中,N为正整数,k等于50或250。
  15. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的方法。
  16. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的方法。
PCT/CN2018/121593 2017-12-18 2018-12-17 一种信号发送、接收方法及设备 WO2019120179A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112020012076-6A BR112020012076A2 (pt) 2017-12-18 2018-12-17 método de envio de sinal, método de recebimento de sinal, e dispositivo
EP23166677.7A EP4231731A3 (en) 2017-12-18 2018-12-17 Signal sending method, signal receiving method, and device
EP18892744.6A EP3726894B1 (en) 2017-12-18 2018-12-17 Signal sending and receiving method and device
US16/903,936 US11452053B2 (en) 2017-12-18 2020-06-17 Signal sending method, signal receiving method, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711366520 2017-12-18
CN201711366520.4 2017-12-18
CN201810032355.7 2018-01-12
CN201810032355.7A CN109936430B (zh) 2017-12-18 2018-01-12 一种信号发送、接收方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/903,936 Continuation US11452053B2 (en) 2017-12-18 2020-06-17 Signal sending method, signal receiving method, and device

Publications (1)

Publication Number Publication Date
WO2019120179A1 true WO2019120179A1 (zh) 2019-06-27

Family

ID=66984335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121593 WO2019120179A1 (zh) 2017-12-18 2018-12-17 一种信号发送、接收方法及设备

Country Status (5)

Country Link
US (1) US11452053B2 (zh)
EP (2) EP4231731A3 (zh)
CN (2) CN110365461B (zh)
BR (1) BR112020012076A2 (zh)
WO (1) WO2019120179A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200245230A1 (en) * 2018-02-14 2020-07-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Indication method, detection method and related device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352364B1 (ko) * 2017-06-15 2022-01-18 주식회사 아이티엘 Nr 시스템에서 광대역 동작 방법 및 장치
CN110365461B (zh) * 2017-12-18 2020-08-07 华为技术有限公司 一种信号发送、接收方法及设备
CN111836380B (zh) * 2019-08-15 2022-08-02 维沃移动通信有限公司 同步信号块的接收方法、发送方法、终端和网络侧设备
US11533144B2 (en) * 2019-08-15 2022-12-20 Qualcomm Incorporated Indication of time-frequency synchronization signal block (SSB) locations of neighboring transmission-reception points for positioning reference signal puncturing purposes
CN113258977B (zh) * 2020-02-10 2022-08-09 华为技术有限公司 一种通信的方法及装置
CN111935831B (zh) * 2020-07-14 2023-04-11 RealMe重庆移动通信有限公司 频段分配方法、装置、存储介质、网络设备以及终端
CN112040523B (zh) * 2020-09-08 2023-09-19 Oppo广东移动通信有限公司 信道测量方法、装置、终端及存储介质
CN116746244A (zh) * 2020-12-30 2023-09-12 Oppo广东移动通信有限公司 信息确定方法、信息传输方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823496A (zh) * 2012-11-04 2015-08-05 Lg电子株式会社 在无线通信系统中发送/接收同步信号的方法及其设备
CN106538019A (zh) * 2016-11-04 2017-03-22 北京小米移动软件有限公司 信号接收方法及装置
CN106792791A (zh) * 2016-05-31 2017-05-31 展讯通信(上海)有限公司 用户设备及时间频率同步方法
US20170359791A1 (en) * 2016-06-09 2017-12-14 Samsung Electronics Co., Ltd Method and apparatus for measurement reference signal and synchronization

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821275B1 (ko) * 2006-01-04 2008-04-11 한국전자통신연구원 하향링크 신호를 생성하는 방법, 그리고 셀 탐색을수행하는 방법
JP4732967B2 (ja) * 2006-06-19 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ 基地局装置
TWI556227B (zh) * 2009-05-27 2016-11-01 杜比國際公司 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體
TWI442718B (zh) * 2010-11-05 2014-06-21 Ind Tech Res Inst 光通訊系統及其方法與其反射式光網路裝置
US9955442B2 (en) * 2012-03-20 2018-04-24 Qualcomm Incorporated Synchronization channel design for new carrier type
EP3349522B1 (en) * 2015-09-30 2021-09-22 Huawei Technologies Co., Ltd. Radio access method, ue, and base station
EP3367601B1 (en) * 2015-10-19 2022-03-09 LG Electronics Inc. Method and user equipment for receiving downlink signals, and method and base station for transmitting downlink signals
CN106330334B (zh) * 2016-08-19 2019-01-01 北京邮电大学 一种拍频干扰消除的ssb-oofdm链路实现方法和系统
WO2018089941A1 (en) * 2016-11-11 2018-05-17 Motorola Mobility Llc Determining a location of a frequency-domain resource block
US10250380B2 (en) * 2016-12-12 2019-04-02 Qualcomm Incorporated Techniques for unified synchronization channel design in new radio
US10880031B2 (en) * 2017-03-17 2020-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
BR112019019607A2 (pt) * 2017-03-24 2020-04-22 Ericsson Telefon Ab L M método para sincronização em um sistema de comunicação sem fio, dispositivo sem fio, dispositivo terminal, meio de armazenamento lido por computador e sistema de comunicações
CN112601251B (zh) * 2017-06-15 2023-06-27 Oppo广东移动通信有限公司 无线资源管理测量的方法和设备
KR102352364B1 (ko) * 2017-06-15 2022-01-18 주식회사 아이티엘 Nr 시스템에서 광대역 동작 방법 및 장치
CN109391426B (zh) * 2017-08-11 2021-11-16 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
EP4117357A1 (en) * 2017-08-11 2023-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for synchronization
CN109728892B (zh) * 2017-08-11 2020-02-14 华为技术有限公司 一种物理资源块prb网格的指示方法及设备
BR112020011708A2 (pt) * 2017-12-13 2020-11-17 Ntt Docomo, Inc. terminal, método de radiocomunicação para um terminal e estação base
CN110365461B (zh) * 2017-12-18 2020-08-07 华为技术有限公司 一种信号发送、接收方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823496A (zh) * 2012-11-04 2015-08-05 Lg电子株式会社 在无线通信系统中发送/接收同步信号的方法及其设备
CN106792791A (zh) * 2016-05-31 2017-05-31 展讯通信(上海)有限公司 用户设备及时间频率同步方法
US20170359791A1 (en) * 2016-06-09 2017-12-14 Samsung Electronics Co., Ltd Method and apparatus for measurement reference signal and synchronization
CN106538019A (zh) * 2016-11-04 2017-03-22 北京小米移动软件有限公司 信号接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP, 3GPP TS 38. 211 V1.3.0, 15 December 2017 (2017-12-15), XP055621515 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200245230A1 (en) * 2018-02-14 2020-07-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Indication method, detection method and related device
US11039376B2 (en) * 2018-02-14 2021-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Indication method, detection method and related device

Also Published As

Publication number Publication date
CN109936430B (zh) 2024-04-12
CN110365461B (zh) 2020-08-07
CN109936430A (zh) 2019-06-25
EP3726894A4 (en) 2020-12-02
US20200322905A1 (en) 2020-10-08
EP3726894B1 (en) 2023-04-26
BR112020012076A2 (pt) 2020-11-24
EP4231731A3 (en) 2023-10-18
US11452053B2 (en) 2022-09-20
CN110365461A (zh) 2019-10-22
EP4231731A2 (en) 2023-08-23
EP3726894A1 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
EP3668216B1 (en) Method for monitoring pdcch, network device, and terminal
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
US20210250159A1 (en) Resource configuration method and apparatus
WO2018210243A1 (zh) 一种通信方法和装置
WO2015106715A1 (zh) 信号传输方法和装置
EP2744248A1 (en) Method and device for reporting capability of terminal device
JP6783378B2 (ja) 信号送信方法、ネットワークデバイス、及び端末デバイス
WO2020147731A1 (zh) 一种通信方法及装置
JP2016538777A (ja) 同期信号を伝送するシステムおよび方法
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2021032017A1 (zh) 通信方法和装置
CN109392182B (zh) 一种信息发送、信息接收方法及装置
CN109475003B (zh) 一种信号发送、信号接收方法及装置
US20220400470A1 (en) Terminal device, base station apparatus, and communication method
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020143490A1 (zh) 通信方法及装置
TW201826747A (zh) 資源映射的方法和通訊設備
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2019047553A1 (zh) 一种时隙格式指示方法、设备及系统
WO2023051458A1 (zh) 通信方法及装置
WO2019214586A1 (zh) 通信方法和通信装置
CN114365547A (zh) 一种系统信息的传输方法和通信装置
WO2018028532A1 (zh) 一种控制信道传输方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018892744

Country of ref document: EP

Effective date: 20200714

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020012076

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020012076

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200616