WO2018028532A1 - 一种控制信道传输方法、装置及系统 - Google Patents

一种控制信道传输方法、装置及系统 Download PDF

Info

Publication number
WO2018028532A1
WO2018028532A1 PCT/CN2017/096174 CN2017096174W WO2018028532A1 WO 2018028532 A1 WO2018028532 A1 WO 2018028532A1 CN 2017096174 W CN2017096174 W CN 2017096174W WO 2018028532 A1 WO2018028532 A1 WO 2018028532A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
time
frequency resource
control channel
downlink control
Prior art date
Application number
PCT/CN2017/096174
Other languages
English (en)
French (fr)
Inventor
张旭
薛丽霞
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838662.9A priority Critical patent/EP3490317B1/en
Publication of WO2018028532A1 publication Critical patent/WO2018028532A1/zh
Priority to US16/265,963 priority patent/US10887877B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to a method, a terminal device, a base station, and a communication system for data transmission.
  • a user equipment monitors a control channel at a predefined time-frequency resource, and receives or transmits data at a specified time-frequency resource location according to the indication information in the channel.
  • the user equipment needs to know the downlink control information (Downlink Control Information (DCI) configured by the evolved base station to the user equipment before receiving or transmitting the service data.
  • DCI Downlink Control Information
  • the user equipment needs to first monitor the reference signal in a fixed time-frequency resource.
  • Reference Signal, RS for example, Demodulation Reference Signal (DMRS), Beam Tracking RS (beam tracking RS), and the like.
  • each time slot is composed of 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols; for an extended cyclic prefix (Extended CP), Each slot is composed of 6 OFDM symbols, and the OFDM symbols are simply referred to as symbols below.
  • OFDM Orthogonal Frequency Division Multiplexing
  • next generation of mobile communication systems will support a wider variety of services, including wide coverage, low latency and more.
  • the requirements of these service time-frequency resources are different.
  • the design of the downlink control channel before use requires more time-frequency resource regions to be reserved, and different types of control channels are separated in the time-frequency resource region.
  • User equipment of different services is monitored for the corresponding control channel area. If the reserved time-frequency resources are too large, the spectrum utilization will be degraded. If the reserved time-frequency resources are too small, the control channel will become the bottleneck of the system. A large number of user equipments will not be able to perform data because they have not received control information. Receive and send.
  • the embodiments of the present invention provide a method, an apparatus, and a system for transmitting and receiving a downlink control channel, which solve the problem that a fixed downlink control channel cannot satisfy more types of services by transmitting or receiving a downlink control channel dynamically or semi-statically.
  • a first aspect provides a method for receiving a downlink control channel, including:
  • the user equipment acquires the first RS time-frequency resource corresponding to the first RS, where the downlink control channel includes a first downlink control channel and a second downlink control channel, where the first downlink control channel includes the first RS And the first DCI;
  • the user equipment detects the first RS in the first RS time-frequency resource, and demodulates the first DCI by using the first RS in the first DCI time-frequency resource;
  • the user equipment acquires the first RS time-frequency resource corresponding to the first RS.
  • the user equipment acquires the first RS time-frequency resource corresponding to the first RS, including:
  • the user equipment receives a set of first RS candidate time-frequency resource groups, where the candidate time-frequency resource group is a high-level signaling notification and/or indicated by a synchronization signal sequence;
  • the user equipment searches for the first RS time-frequency resource according to the first RS candidate time-frequency resource group.
  • the acquiring the first RS time-frequency resource corresponding to the first RS includes:
  • the candidate time-frequency resource group is a high-level signaling notification and/or indicated by a synchronization signal sequence and/or a third DCI;
  • the third DCI includes at least one DCI received before acquiring the first RS time-frequency resource.
  • the second downlink control channel includes a second DCI
  • the second time-frequency resource includes a second DCI time-frequency resource
  • the user equipment determines the second downlink according to the first DCI.
  • the second time-frequency resource corresponding to the control channel the user equipment determining, according to the first DCI, the second DCI time-frequency resource corresponding to the second DCI.
  • the method further includes: the user equipment detecting the second DCI at the second DCI time-frequency resource.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource, where the The second RS corresponds to the second RS time-frequency resource, and the second DCI corresponds to the second DCI time-frequency resource
  • the method further includes:
  • the user equipment detects the second RS in the second RS time-frequency resource
  • the user equipment demodulates the second DCI according to the second RS.
  • the method further includes:
  • the user equipment demodulates data corresponding to the second DCI according to the second RS.
  • the demodulating the second DCI according to the second RS includes:
  • the first DCI further includes the second RS indication information
  • the determining, by the user equipment, the second time-frequency resource corresponding to the second downlink control channel, according to the first DCI includes:
  • the user equipment determines, according to the second RS indication information, a time-frequency resource corresponding to the second RS and/or an antenna port corresponding to the second RS.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one in the subframe in a time domain. And/or third OFDM symbols.
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats
  • each of the first group of DCI formats includes a number of bits small The number of bits included in each DCI format in the second set of DCIs.
  • the foregoing embodiment of the present invention provides a method for receiving a downlink control channel, by flexibly configuring a time-frequency resource location of a reference signal in a first-level control channel, and using a first-level control channel to indicate a second-level control channel time-frequency resource region.
  • the reference signal information so that the second-level control channel obtains the frequency selective gain, and the control channel capacity is increased; not only that, the reference signal is transmitted along the control channel, so that the reference signal does not need to be transmitted without the control channel, and the reduction is minimized.
  • the time-frequency resources occupied by the system are fixed, which has the beneficial effects of forward compatibility, and also saves the energy consumption of the system. Further, according to the association relationship between the configured control signaling format and the control channel, the number of blind detections of the user equipment in the current frequency region is reduced.
  • a second aspect provides a method for transmitting a downlink control channel, including:
  • the first downlink control channel is used by the base station to indicate the time-frequency resource corresponding to the first DCI, where the first downlink control channel is included in the downlink control channel, and the first downlink control is performed.
  • the channel includes the first RS and the first DCI;
  • the base station sends the second downlink control channel to the user equipment.
  • the second downlink control channel includes a second DCI
  • the second time-frequency resource includes a second DCI time-frequency resource
  • the second time-frequency resource corresponding to the second downlink control channel Indicated by the first DCI including:
  • the second DCI time-frequency resource corresponding to the second DCI is indicated by the first DCI.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource, where the The second RS corresponds to the second RS time-frequency resource, and the second DCI corresponds to the second DCI time-frequency resource
  • the sending, by the first DCI, the second time-frequency resource corresponding to the sending the second downlink control channel includes:
  • the second DCI time-frequency resource corresponding to the second DCI is indicated by the second RS;
  • the second RS time-frequency resource corresponding to the second RS is indicated by the first DCI.
  • the second RS is further configured to demodulate data corresponding to the second DCI.
  • the first DCI further includes a second RS indication information, where the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI, including:
  • the time-frequency resource corresponding to the second RS and/or the antenna port corresponding to the second RS are indicated by the second RS indication information.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one in the subframe in a time domain. And/or third OFDM symbols.
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats, where each DCI of the first group of DCI formats includes a smaller number of bits. The number of bits included in each DCI of the second group of DCIs.
  • the foregoing embodiment of the present invention provides a method for transmitting a downlink control channel, by flexibly configuring a time-frequency resource location of a reference signal in a first-level control channel, and using a first-level control channel to indicate a second-level control channel time-frequency resource region. And reference signal information, so that the second-level control channel obtains frequency selective gain, and improves the control signal.
  • the reference signal is transmitted along the control channel, so that the reference signal does not need to be transmitted without the control channel, which minimizes the time-frequency resources that the system occupies fixedly, has the beneficial effect of forward compatibility, and also It saves the energy consumption of the system. Further, according to the association relationship between the configured control signaling format and the control channel, the number of blind detections of the user equipment in the current frequency region is reduced.
  • a third aspect provides a user equipment that receives a downlink control channel, including:
  • a receiving unit configured to receive a candidate time-frequency resource group in which the first RS time-frequency resource corresponding to the first RS is located, where the downlink control channel includes a first downlink control channel and a second downlink control channel, where the first The downlink control channel includes the first RS and the first DCI;
  • Processing unit for:
  • the receiving unit receives the candidate time-frequency resource group, including:
  • the receiving unit receives a third DCI indication, where the third DCI includes at least one DCI received before acquiring the first RS time-frequency resource.
  • the second downlink control channel includes a second DCI
  • the second time-frequency resource includes a second DCI time-frequency resource
  • the processing unit determines the second downlink according to the first DCI.
  • the second time-frequency resource corresponding to the control channel includes: the processing unit determining, according to the first DCI, the second DCI time-frequency resource corresponding to the second DCI.
  • the processing unit is further configured to detect the second DCI at the second DCI time-frequency resource.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource, where the The second RS corresponds to the second RS time-frequency resource, and the second DCI corresponds to the second DCI time-frequency resource
  • the processing unit is further configured to:
  • processing unit is further configured to:
  • the demodulating the second DCI according to the second RS includes:
  • the first DCI further includes the second RS indication information
  • the processing unit determines, according to the first DCI, the second time-frequency resource corresponding to the second downlink control channel, including:
  • the processing unit determines, according to the second RS indication information, a time-frequency resource corresponding to the second RS and/or an antenna port corresponding to the second RS.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one in the subframe in a time domain. And/or third OFDM symbols.
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats, wherein each of the first group of DCI formats includes a number of bits Less than the number of bits included in each DCI format of the second set of DCIs.
  • the foregoing embodiment of the present invention provides a user equipment that receives a downlink control channel, and the reference signal is transmitted along with the control channel, so that the reference signal does not need to be transmitted without a control channel, thereby minimizing the time-frequency resource occupied by the system.
  • the benefits of forward compatibility are also achieved, and the energy consumption of the system is also saved. Further, according to the association relationship between the configured control signaling format and the control channel, the number of blind detections of the user equipment in the current frequency region is reduced.
  • a fourth aspect provides a base station that sends a downlink control channel, including:
  • a processing unit configured to: in the first downlink control channel, use a first RS to indicate a time-frequency resource corresponding to the first DCI, where the first downlink control channel is included in the downlink control channel, where a downlink control channel includes the first RS and the first DCI;
  • a sending unit configured to send the first downlink control channel
  • the processing unit is further configured to determine that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI;
  • the sending unit is further configured to send the second downlink control channel.
  • the second downlink control channel includes a second DCI
  • the second time-frequency resource includes a second DCI time-frequency resource
  • the processing unit determines the second corresponding to the second downlink control channel.
  • the time-frequency resource is indicated by the first DCI, and includes:
  • the processing unit determines that the second DCI time-frequency resource corresponding to the second DCI is indicated by the first DCI.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource, where the The second RS corresponds to the second RS time-frequency resource, and the second DCI corresponds to the second DCI time-frequency resource
  • the processing unit determines that the second DCI time-frequency resource corresponding to the second DCI is indicated by the second RS;
  • the processing unit determines that the second RS time-frequency resource corresponding to the second RS is indicated by the first DCI.
  • the second RS is further configured to demodulate data corresponding to the second DCI.
  • the first DCI further includes the second RS indication information
  • the processing unit determines that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI, and includes:
  • the processing unit determines a time-frequency resource corresponding to the second RS and/or an antenna port corresponding to the second RS Indicated by the second RS indication information.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one in the subframe in a time domain. And/or third OFDM symbols.
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats, where each DCI of the first group of DCI formats includes a smaller number of bits. The number of bits included in each DCI of the second group of DCIs.
  • the foregoing embodiments of the present invention provide a base station that transmits a downlink control channel, by flexibly configuring a time-frequency resource location of a reference signal in a first-level control channel, and using a first-level control channel to indicate a second-level control channel time-frequency resource region. And the reference signal information, so that the second-level control channel obtains the frequency selective gain, and the control channel capacity is increased; not only that, the reference signal is transmitted along the control channel, so that the reference signal does not need to be transmitted without the control channel, and the reduction is minimized.
  • the time-frequency resources occupied by the system are fixed, which has the beneficial effects of forward compatibility, and also saves the energy consumption of the system.
  • a fifth aspect provides a user equipment that receives a downlink control channel, including:
  • a receiver configured to receive a candidate time-frequency resource group in which the first RS time-frequency resource corresponding to the first RS is located, where the downlink control channel includes a first downlink control channel and a second downlink control channel, where the first The downlink control channel includes the first RS and the first DCI;
  • a sixth aspect provides a base station that sends a downlink control channel, including:
  • the processor is configured to: in the first downlink control channel, use the first RS to indicate a time-frequency resource corresponding to the first DCI, where the first downlink control channel is included in the downlink control channel, where a downlink control channel includes the first RS and the first DCI;
  • a transmitter configured to send the first downlink control channel
  • the processing unit is further configured to determine that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI;
  • the transmitter is further configured to send the second downlink control channel.
  • Embodiments of the present invention provide a method and apparatus for receiving and transmitting a downlink control channel.
  • the method for transmitting and receiving a downlink control channel according to the present invention effectively solves the problem that a fixed downlink control channel cannot satisfy more types of services.
  • FIG. 1 is a flowchart of a method for transmitting a control channel according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a time-frequency resource of a control channel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of time-frequency resources for a first control channel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of time-frequency resources corresponding to a second DCI and a second RS according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems, for example, GSM, Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), general packet Wireless Service (GPRS, General Packet Radio Service), Long Term Evolution (LTE), etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a user equipment which may also be called a terminal device, a mobile terminal, a mobile terminal device, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the terminal device may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer having a mobile terminal, for example, a portable, pocket-sized, handheld, computer-built or in-vehicle mobile device, which The wireless access network exchanges languages and/or data.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • the downlink control channel referred to in the present invention refers to information related to downlink control sent by the base station to the user equipment, and is carried on the physical downlink control channel (PDCCH).
  • the downlink control channel may include: a reference signal (Reference Signal, RS), downlink control information (Downlink Control Information, DCI), a reference information RS indication, and the like.
  • the downlink control channel in the present invention includes a first downlink control channel and a second downlink control channel.
  • the first downlink control channel may include a first RS and a first DCI, respectively corresponding to the first RS time-frequency resource and the first DCI time-frequency resource.
  • the second downlink control channel may include a second RS and a second DCI, respectively corresponding to the second RS time-frequency resource and the second DCI time-frequency resource. The method for distinguishing the first DCI from the second DCI is described in detail later.
  • the time-frequency resource in the present invention refers to a resource that can be used to transmit information in the time domain and the frequency domain.
  • the OFDM symbol is segmented with a minimum granularity in the time domain; and the sub-carrier is segmented with a minimum granularity in the frequency domain.
  • the minimum granularity unit includes one OFDM symbol and one subcarrier, and this minimum granularity unit is also referred to as a resource element (RE, Resource Element). When information or signals are mapped, they are mapped in this minimum granularity unit.
  • Different information or signals will be mapped to different time-frequency resource units.
  • the user equipment or the base station learns the time-frequency resource corresponding to the information or the signal, the corresponding information or signal carried in the location may be obtained according to the location of the time-frequency resource.
  • the embodiment of the invention provides a method for transmitting a downlink control channel between a base station and a user equipment, as shown in FIG. 1 .
  • the downlink control channel includes a first downlink control channel and a second downlink control channel.
  • the method includes:
  • Step 101 The base station indicates, in the first downlink control channel, a time-frequency resource corresponding to the first DCI by using the first RS, where the first downlink control channel is included in the downlink control channel, where the first The downlink control channel includes the first RS and the first DCI.
  • Step 102 The base station sends the first downlink control channel to the user equipment.
  • Step 103 The base station determines that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource
  • the second RS corresponds to the a second RS time-frequency resource
  • the second DCI corresponds to the second DCI time-frequency resource
  • the sending of the second time-frequency resource corresponding to the second downlink control channel by the first DCI indication includes two cases:
  • Case 1 The second DCI time-frequency resource corresponding to the second DCI is indicated by the first DCI;
  • the second DCI time-frequency resource corresponding to the second DCI is indicated by the second RS, and the second RS time-frequency resource corresponding to the second RS has the first DCI indication.
  • the second RS is further configured to demodulate data corresponding to the second DCI.
  • the first DCI further includes a second RS indication information, where the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI, including:
  • the time-frequency resource corresponding to the second RS and/or the antenna port corresponding to the second RS are indicated by the second RS indication information.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one of the subframes in a time domain.
  • the third OFDM symbol is described in more detail in a subsequent step 108.
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats
  • each DCI of the first group of DCI formats includes a smaller number of bits than the first The number of bits included in each DCI of the two sets of DCI.
  • the division of the first DCI and the second DCI is described in more detail in a subsequent step 108.
  • Step 104 The base station sends the second downlink control channel to the user equipment.
  • Step 105 The user equipment acquires the first RS time-frequency resource corresponding to the first RS.
  • step 105 can be implemented by the following steps:
  • Step 105-1 The user equipment receives a set of first RS candidate time-frequency resource groups, where the candidate time-frequency resources
  • the source group is for high layer signaling notification and/or indicated by a synchronization signal sequence
  • Step 105-2 The user equipment searches for the first RS time-frequency resource according to the first RS candidate time-frequency resource group.
  • the time-frequency resource corresponding to the first downlink control channel is as shown in FIG. 2, and the time-frequency resource of the downlink control channel is composed of a plurality of control channel elements (CCEs), such as CCE0 and CCE1 in FIG. Wait.
  • CCEs control channel elements
  • Each CCE contains several resource element groups (REGs).
  • each CCE includes 9 REGs, and each REG includes multiple resource elements (REs, Resource Elements), and in LTE, the REG includes 4 REs. Therefore, each REG corresponding to the first downlink control channel includes an RE of the first RS and an RE of the first DCI.
  • the time-frequency resource location of the first RS is shown within each REG, and each REG includes 6 REs.
  • the first RS shown is mapped to two REs in the RE set ⁇ RE0, RE1, ..., RE5 ⁇ of REG4, namely RE0 and RE3.
  • the RSs in other REGs can also be located in the same time-frequency resource location.
  • the candidate time-frequency resource group of the first RS refers to a sum of time-frequency resource locations where the first RS may be located in each REG.
  • the candidate time-frequency resource group includes three sets of candidate time-frequency resources whose resource group indexes are 1, 2, and 3.
  • the time-frequency resource of the first RS is located in ⁇ RE0 ⁇ , ⁇ RE3 ⁇ , and ⁇ RE0, RE3 ⁇ in each REG.
  • the time-frequency resource location ⁇ RE0, RE3 ⁇ represents that it is necessary to jointly detect the two REs RE0 and RE3 in each REG to obtain the corresponding RS.
  • the user equipment may acquire the candidate time-frequency resource group according to the synchronization signal sequence indication.
  • the synchronization signal sequence carries the cell ID information
  • the user equipment can obtain the indication information of the time-frequency resource group according to the received cell ID information, for example:
  • Resource group index mod (cell ID, N),
  • N is the number of the time-frequency resource group index.
  • the user equipment obtains the candidate time-frequency resource group by using any one of the foregoing methods or a combination of the two methods.
  • step 105-2 the first RS is detected in the search space according to the candidate time-frequency resource group.
  • step 105-1 Since in step 105-1, the candidate time-frequency resource group in each REG is acquired. It is also necessary to determine all REGs that need to be detected in the first downlink control channel to obtain the first RS.
  • the time-frequency resource corresponding to the first downlink control channel may be divided into several time-frequency resource regions according to the CCE granularity of the first downlink control channel.
  • the user equipment searches in the first downlink control channel region according to the predefined CCE granularity.
  • the predefined CCE granularity is also referred to as an aggregation level.
  • the downlink control channel may be divided into different aggregation levels according to different transmission contents, and the aggregation level includes ⁇ 1, 2, 4, 8 ⁇ and the like.
  • Each aggregated CCE resource group is called a search space. If the configured aggregation level is ⁇ 4, 8 ⁇ , the user equipment will have the time frequency of the entire control channel.
  • the first RS and the first DCI are received on the resource according to a group of 4 CCEs and 8 CCEs.
  • the first control channel includes 8 CCEs from CCE0 to CCE7.
  • the configured aggregation level is ⁇ 4, 8 ⁇
  • the user equipment needs to search for a search space composed of a group of four CCEs and a search space composed of a group of eight CCEs.
  • the retrieval process can include the following steps:
  • the user equipment detects a search space formed by CCE0 to CCE3;
  • the user equipment detects a search space formed by CCE4 to CCE7;
  • the user equipment detects a search space formed by CCE0 to CCE8.
  • the user equipment detects candidate time-frequency resource locations in each RCG in the search space in a predefined order to determine the first RS time-frequency resource.
  • the user equipment determines the first RS time-frequency resource according to the first RS candidate time-frequency resource group indication information in the at least one search space in the first control channel.
  • the user equipment detects multiple sets of RS sequences ⁇ S1, S2, . . . , SL ⁇ in the time-frequency resource corresponding to each time-frequency resource group index of the candidate time-frequency resource group.
  • the resource group index is 1, its time-frequency resources are ⁇ RE0 ⁇ , ⁇ RE3 ⁇ , ⁇ RE0, RE3 ⁇ .
  • the user equipment receives ⁇ RE0 ⁇ , ⁇ RE3 ⁇ , ⁇ RE0, RE3 ⁇ of each REG in CCE0 to CCE3, and ⁇ RE0 ⁇ , ⁇ RE3 ⁇ , ⁇ RE0, RE3 ⁇ of each REG in CCE4 to CCE7, respectively. ; and ⁇ RE0 ⁇ , ⁇ RE3 ⁇ , ⁇ RE0, RE3 ⁇ of each REG in CCE0-CCE7, three sets of RS sequences ⁇ S1, S2, S3 ⁇ are available in each search space.
  • the user equipment performs coherent detection on the received RS sequence according to the predefined RS sequence R1. If the received multiple sets of RS sequences match the predefined RS sequence, determining that the time-frequency resource corresponding to the time-frequency resource group index is The first RS time-frequency resource is described. Take the resource group index in Table 1 as an example, and assume that the predefined RS sequence is R1. If ⁇ S1 ⁇ matches R1, in the resource group index 1, ⁇ RE0 ⁇ in each REG is the first RS time-frequency resource in the search space.
  • the predefined RS sequence may be pre-stored in the user equipment, or may be indicated by higher layer signaling.
  • the user equipment may acquire the candidate time-frequency resource group according to the third DCI indication, where the third DCI includes at least one DCI received before acquiring the first RS time-frequency resource group.
  • the third DCI is included in the last downlink control channel received by the user equipment.
  • Step 107 The user equipment detects the first RS in the first RS time-frequency resource, and demodulates the first DCI in the first time-frequency resource by using the first RS.
  • each REG of the first control channel includes only the first RS and the first DCI signals.
  • the remaining time-frequency resources in the REG are the first DCI time-frequency resources.
  • the user equipment determines the time-frequency resource of the first DCI.
  • the user equipment After determining the time-frequency resource of the first DCI, the user equipment acquires the first DCI at the time-frequency resource of the first DCI.
  • the user equipment may simultaneously detect the first RS when determining the first RS time-frequency resource.
  • Step 108 The user equipment determines, according to the first DCI, a second time-frequency resource corresponding to the second downlink control channel.
  • the second downlink control channel includes the second DCI, but does not include the RS, and the user equipment directly determines the second DCI time-frequency resource corresponding to the second DCI according to the first DCI, thereby detecting Second DCI.
  • the second time-frequency resource includes a second DCI time-frequency resource
  • the user equipment determines, according to the first DCI, the second time-frequency resource corresponding to the second downlink control channel, where The user equipment determines, according to the first DCI, the second DCI time-frequency resource corresponding to the second DCI.
  • the user equipment may further detect the second DCI time-frequency resource. Two DCI.
  • the second downlink control channel includes a second RS and a second DCI, where the user equipment determines, by the first DCI, a time-frequency resource where the second RS is located, and then receives according to the second RS.
  • Second DCI Second DCI.
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource, where the second RS corresponds to the second RS time-frequency resource, and the second DCI corresponds to the The second DCI time-frequency resource, the method further includes:
  • the user equipment demodulates the second DCI according to the second RS.
  • the second control channel may or may not include the second RS.
  • the first RS included in the first control channel may be different from the second RS.
  • the user equipment may further demodulate data corresponding to the second DCI according to the second RS.
  • the second DCI time-frequency resource is located on the first and/or second OFDM symbols of the data area, as shown in FIG. 4 .
  • the data area is all OFDM symbols except the first control channel in the downlink transmission time-frequency resource in the subframe.
  • the second RS time-frequency resource frequency domain subcarrier overlaps with the subcarrier of the data channel time-frequency resource corresponding to the second RS. Therefore, after receiving the second RS, the user equipment performs channel estimation on the time-frequency resources of the data channel corresponding to the second DCI and the second DCI. The user equipment can obtain the channel status on each RE in the data area according to the channel estimation.
  • the data area includes a second DCI time-frequency resource and a time-frequency resource corresponding to the data channel.
  • the channel state on each RE includes the channel fading size experienced on the RE.
  • the user equipment may compensate all REs of the data area according to the estimated channel state, and improve signal quality received on the RE, so that the user equipment can correctly demodulate the received signal.
  • the determining, by the user equipment, the second time-frequency resource corresponding to the second downlink control channel according to the first DCI may include: performing, by the user equipment, channel estimation based on the second RS, The channel estimation result demodulates the second DCI.
  • the channel estimation is to estimate, by using the second RS, a channel state of a second DCI time-frequency resource corresponding to the second DCI.
  • the user equipment can compare the received RS sequence with the received second RS sequence to obtain a fading condition after the second RS experiences the channel, thereby estimating the second DCI time-frequency resource.
  • Channel fading The user equipment compensates the received second DCI signal according to the channel fading condition, and restores the quality of the second DCI signal, so that the user equipment can correctly demodulate the second DCI.
  • the first DCI may further include second RS indication information, where the user equipment is Determining, by the first DCI, the second time-frequency resource corresponding to the second downlink control channel, the user equipment determining, according to the second RS indication information, a time-frequency resource corresponding to the second RS, and/or the The antenna port corresponding to the second RS.
  • the antenna port of the second RS includes ⁇ 1, 2 ⁇ , and the time-frequency resources corresponding to different antenna ports are as shown in FIG. 4.
  • the user equipment receives the antenna port information of the second RS in the second RS indication information, and the user equipment receives the second RS on the time-frequency resource corresponding to the received antenna port number according to the received antenna port number. .
  • the first time-frequency resource includes a first OFDM symbol in a subframe in a time domain
  • the second time-frequency resource includes the subframe in a time domain.
  • the second and/or third OFDM symbol is the first OFDM symbol in a subframe in a time domain
  • one subframe in the time domain may include 12 or 14 OFDM symbols, where the first OFDM symbol is occupied by the first time-frequency resource corresponding to the first control channel in the time domain. resource of. That is, the first OFDM symbol in the time domain is used to transmit the first control channel.
  • the first control channel may occupy one or more sub-bands.
  • the time-frequency resources of the second control channel may be included in the time-frequency resources of the transmitted data. Specifically, it can be divided into the following cases:
  • the second OFDM symbol is used to transmit the second RS in the second control channel, and the other information and data in the second control channel are transmitted from the third OFDM symbol.
  • the second DCI occupies all data area OFDM symbols of the specified frequency domain resource location, and can be used to transmit more control information.
  • Case 1 it is mainly for services that require fast demodulation and decoding, for example, low-latency and high-reliability services.
  • the user equipment needs to demodulate the received data while receiving downlink data to meet the presentation requirements;
  • case 2 it is mainly for services of wide coverage type, for example, machine type communication (Maching type communcations).
  • Maching type communcations For wide coverage type services, DCI needs to be transmitted/received through more OFDM symbols to meet reliability requirements.
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats
  • the first group and the second group are configured according to a DCI format. Divide.
  • the first group of DCI formats includes at least: the second time-frequency resource indication information, the second DCI time-frequency resource indication information, and the second RS indication information.
  • the second group of DCI formats includes at least downlink data resource allocation information and uplink scheduling information.
  • the format of the first group of DCIs corresponds to case one
  • the second group of DCI formats corresponds to case two.
  • each of the first group of DCI formats includes a Payload Size that is smaller than a number of bits included in each DCI format of the second group of DCIs.
  • a Payload Size that is smaller than a number of bits included in each DCI format of the second group of DCIs.
  • different DCI bearers have different formats, as shown in Table 2 below.
  • the first DCI includes a maximum of 46 bits
  • the second DCI includes a minimum of 54 bits.
  • the first RS may correspond to a first beam
  • the second RS may correspond to a second beam
  • Case 1 The first beam is the same as the second beam.
  • the user equipment may obtain a channel state of the time-frequency resource of the beam in the first control channel according to the first beam corresponding to the first RS, and demodulate the first DCI according to the channel state estimated by the first RS.
  • the second DCI and the corresponding data may be estimated according to the channel state of the first DCI. Perform demodulation.
  • the user equipment can only demodulate the first DCI according to the first RS, and demodulate the second DCI according to the second RS.
  • the order of the steps in the respective embodiments is not limited, and the interdependencies between the steps are not limited unless otherwise specified.
  • the relationship of steps 103 to 104 performed by the base station to steps 105 to 108 performed by the user equipment is not limited.
  • the user equipment may perform step 105 to acquire the first RS time-frequency resource corresponding to the first RS.
  • Embodiment 1 of the present invention performs demodulation by using different reference signals through two-stage control channel transmission modes.
  • the control channel capacity is improved; not only that, the reference signal is transmitted along the control channel, so that the reference signal does not need to be transmitted without the control channel, which minimizes the time-frequency resource occupied by the system, and has the advantage of forward compatibility. The effect, but also saves the energy consumption of the system. Further, according to the association relationship between the configured control signaling format and the control channel, the number of blind detections of the user equipment in the current frequency region is reduced.
  • FIG. 5 is a schematic illustration of a user equipment in accordance with one embodiment of the present invention.
  • the user equipment 500 of FIG. 5 includes a receiving unit 501 and a processing unit 502.
  • the receiving unit 501 is configured to receive a candidate time-frequency resource group in which the first RS time-frequency resource corresponding to the first RS is located, where the downlink control channel includes a first downlink control channel and a second downlink control channel, where One down The control channel includes the first RS and the first DCI.
  • the receiving unit 501 receives the candidate time-frequency resource group, including: the receiving unit 501 receives the high-level signaling notification; and/or the receiving unit 501 receives the synchronization signal sequence indication; and/or the receiving unit 501 receives the third DCI indication.
  • the third DCI includes at least one DCI received before acquiring the first RS time-frequency resource.
  • Processing unit 502 configured to:
  • the second downlink control channel includes a second DCI
  • the second time-frequency resource includes a second DCI time-frequency resource.
  • the processing unit 502 is further configured to detect the second DCI in the second DCI time-frequency resource.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource
  • the second RS corresponds to The second RS time-frequency resource
  • the second DCI is corresponding to the second DCI time-frequency resource
  • the processing unit 502 is further configured to:
  • processing unit 502 is further configured to:
  • the processing unit 502 demodulates the second DCI according to the second RS, including: performing channel estimation based on the second RS, and demodulating the second DCI according to the channel estimation result. .
  • the first DCI further includes the second RS indication information
  • the processing unit 502 determines, according to the first DCI, the second time-frequency resource corresponding to the second downlink control channel, where: the processing unit 502 is configured according to The second RS indication information determines a time-frequency resource corresponding to the second RS and/or an antenna port corresponding to the second RS.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one of the subframes in a time domain.
  • the third OFDM symbol is the first OFDM symbol in one subframe in a time domain
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats, where each DCI format of the first group of DCI formats includes a smaller number of bits than the The number of bits included in each DCI format in the second set of DCI.
  • the processing unit 502 in the user equipment 500 can perform all the steps performed by the user equipment except the 105-1 in step 105 in the first embodiment of the present invention.
  • the second embodiment of the present invention provides a user equipment, by flexibly configuring a time-frequency resource location of a reference signal in a first-level control channel, and using a first-level control channel to indicate a second-level control channel time-frequency resource region and reference signal information. So that the second-level control channel obtains the frequency selective gain and improves the control channel capacity; not only that, the reference signal is transmitted along the control channel, so that the reference signal does not need to be transmitted without the control channel, and the maximum
  • the reduction of the time-frequency resources occupied by the system has the beneficial effects of forward compatibility, and also saves the energy consumption of the system. Further, according to the association relationship between the configured control signaling format and the control channel, the number of blind detections of the user equipment in the current frequency region is reduced.
  • Embodiment 3 of the present invention further provides a user equipment.
  • FIG. 6 is a schematic structural diagram of a user equipment according to Embodiment 3 of the present invention.
  • the user equipment 600 can include a receiver 601 and a processor 602.
  • the receiver 601 can implement the function of the receiving unit 501 in the second embodiment
  • the processor 602 can implement the function of the processing unit 502 in the second embodiment.
  • the user equipment 600 may further include a memory 603, which may be used to store code and the like when the processor 602 executes.
  • the processor 602 can be a CPU, and can also be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the base station 700 of FIG. 7 includes a processing unit 701 and a transmitting unit 702.
  • the processing unit 701 is configured to: in the first downlink control channel, indicate, by using the first RS, a time-frequency resource corresponding to the first DCI, where the first downlink control channel is included in the downlink control channel,
  • the first downlink control channel includes the first RS and the first DCI.
  • the sending unit 702 is configured to send the first downlink control channel.
  • the processing unit 701 is further configured to determine that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI.
  • the sending unit 702 is further configured to send the second downlink control channel.
  • the second downlink control channel includes a second DCI
  • the second time-frequency resource includes a second DCI time-frequency resource
  • the processing unit 701 determines that the second time-frequency resource corresponding to the second downlink control channel is determined by
  • the first DCI indication includes:
  • the processing unit 701 determines that the second DCI time-frequency resource corresponding to the second DCI is indicated by the first DCI.
  • the second downlink control channel includes a second RS and a second DCI
  • the second time-frequency resource includes a second RS time-frequency resource and a second DCI time-frequency resource
  • the second RS corresponds to The second RS time-frequency resource
  • the second DCI corresponds to the second DCI time-frequency resource
  • the processing unit 701 determines that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI, and includes:
  • the processing unit 701 determines that the second DCI time-frequency resource corresponding to the second DCI is indicated by the second RS;
  • the processing unit 701 determines that the second RS time-frequency resource corresponding to the second RS is indicated by the first DCI.
  • the second RS is further configured to demodulate data corresponding to the second DCI.
  • the first DCI further includes the second RS indication information
  • the processing unit 701 determines that the second time-frequency resource corresponding to the second downlink control channel is indicated by the first DCI, and includes:
  • the processing unit 701 determines a time-frequency resource corresponding to the second RS and/or an antenna port corresponding to the second RS Indicated by the second RS indication information.
  • the first time-frequency resource includes a first OFDM symbol in one subframe in a time domain
  • the second time-frequency resource includes a second one of the subframes in a time domain.
  • the third OFDM symbol is the first OFDM symbol in one subframe in a time domain
  • the first DCI corresponds to a first group of DCI formats
  • the second DCI corresponds to a second group of DCI formats, where each DCI of the first group of DCI formats includes a smaller number of bits than the first The number of bits included in each DCI of the two sets of DCI.
  • the processing unit 701 in the user equipment 700 may perform step 101 and step 103 performed by the base station in the first embodiment of the present invention.
  • Embodiment 4 of the present invention provides a base station, by flexibly configuring a time-frequency resource location of a reference signal in a first-level control channel, and using a first-level control channel to indicate a second-level control channel time-frequency resource region and reference signal information,
  • the second-level control channel is obtained with frequency selective gain, which improves the control channel capacity; not only that, the reference signal is transmitted along the control channel, so that the reference signal does not need to be transmitted without the control channel, thereby minimizing the fixed occupation of the system.
  • Time-frequency resources with the beneficial effects of forward compatibility, and also save the system's energy consumption. Further, according to the association relationship between the configured control signaling format and the control channel, the number of blind detections of the user equipment in the current frequency region is reduced.
  • Embodiment 5 of the present invention further provides a base station.
  • FIG. 8 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • the base station 800 can include a processor 801 and a transmitter 802.
  • the processor 801 can implement the functions of the processing unit 701 in the fourth embodiment
  • the transmitter 802 can implement the functions of the processing unit 702 in the fourth embodiment.
  • the base station 800 may further include a memory 803, where the memory 803 may be used to store codes and the like when the processor 801 is executed.
  • the processor 801 can be a CPU, and can also be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明的实施例提供一种下行控制信道的交流方法、装置及系统。其中,下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行控制信道包括所述第一RS和第一DCI。用户设备接收下行控制信道的方法,包括:获取第一RS对应的第一RS时频资源;根据所述第一RS时频资源确定指示所述第一DCI对应的第一DCI时频资源;在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;以及根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。

Description

一种控制信道传输方法、装置及系统
本申请要求于2016年08月12日提交中国专利局、申请号为201610670186.0、申请名称为“一种控制信道传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无线通信领域,并且更具体地,涉及数据传输的方法、终端设备、基站和通信系统。
背景技术
当前移动通信系统中,用户设备(User Equipment,UE)在预定义的时频资源监测控制信道,并根据信道中的指示信息,在指定时频资源位置上接收或发送数据。用户设备在接收或发送业务数据之前,需要获知演进基站配置给该用户设备的下行控制信息(Downlink Control Information,DCI),为解调上述DCI,用户设备需要先在固定的时频资源监测参考信号(Reference Signal,RS),例如,解调参考信号(Demodulation RS,DMRS),波束追踪RS(beam tracking RS)等。
在当前的长期演进(Long Term Evolution,LTE)系统中,一个子帧的时长为1毫秒(ms),每个子帧又被分为两个0.5ms的时隙(slot)。对于普通循环前缀(Normal cyclic prefix,normal CP),每个时隙由7个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组成;对于长循环前缀(Extended cyclic prefix,extended CP),每个时隙由6个OFDM符号组成,以下将OFDM符号简称为符号。
下一代移动通信系统将支持更多种类的业务,包括广覆盖,低时延等。这些业务时频资源的需求不同,如沿用之前的下行控制信道的设计,需要预留更多的时频资源区域,将不同类型的控制信道在时频资源区域进行分开。令不同业务的用户设备,对相应的控制信道区域进行监测。如果预留的时频资源过大,将造成频谱利用率下降;而如果预留的时频资源过小,控制信道将成为系统的瓶颈,大量用户设备将因为没有接收到控制信息,无法进行数据的接收和发送。
发明内容
本发明的实施例提供一种下行控制信道的发送及接收方法、装置及系统,通过动态/半静态的发送或接收下行控制信道,解决了固定下行控制信道无法满足更多种类业务的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种接收下行控制信道的方法,包括:
用户设备获取第一RS对应的第一RS时频资源,其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行控制信道包括所述第一RS和第一DCI;
所述用户设备根据所述第一RS时频资源确定所述第一DCI对应的第一DCI时频 资源;
所述用户设备在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;
所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
用户设备获取所述第一RS对应的所述第一RS时频资源。
在一个可能的设计中,用户设备获取第一RS对应的第一RS时频资源,包括:
用户设备接收一组第一RS候选时频资源组,其中,所述候选时频资源组为高层信令通知和/或由同步信号序列指示;
用户设备根据该第一RS候选时频资源组搜索所述第一RS时频资源。
在一个可能的设计中,所述获取所述第一RS对应的第一RS时频资源,包括:
从一组候选时频资源组中搜索所述第一RS时频资源,其中,所述候选时频资源组为高层信令通知和/或由同步信号序列指示和/或第三DCI指示;
所述第三DCI包括在获取第一RS时频资源前接收到的至少一个DCI。
在一个可能的设计中,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:所述用户设备根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源。
在一个可能的设计中,所述方法还包括:所述用户设备在所述第二DCI时频资源检测所述第二DCI。
在一个可能的设计中,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,所述方法还包括:
所述用户设备根据所述第二时频资源确定所述第二RS对应的时频资源;
所述用户设备在所述第二RS时频资源检测所述第二RS;
所述用户设备根据所述第二RS对所述第二DCI进行解调。
在一个可能的设计中,所述方法还包括:
所述用户设备根据所述第二RS对所述第二DCI对应的数据进行解调。
在一个可能的设计中,所述根据所述第二RS对所述第二DCI进行解调,包括:
基于所述第二RS进行信道估计,根据所述信道估计结果对所述第二DCI进行解调。
在一个可能的设计中,所述第一DCI还包括第二RS指示信息,所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:
所述用户设备根据所述第二RS指示信息确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口。
在一个可能的设计中,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
在一个可能的设计中,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI格式包括的比特数均小 于所述第二组DCI中每一个DCI格式包括的比特数。
本发明的上述实施例提供一种接收下行控制信道的方法,通过灵活配置第一级控制信道中参考信号的时频资源位置,并利用第一级控制信道指示第二级控制信道时频资源区域和参考信号信息,使得第二级控制信道获得频率选择性增益,提高了控制信道容量;不仅如此,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。进一步的,根据配置的控制信令格式与控制信道的关联关系,减小了用户设备在此时频区域的盲检次数。
第二方面,提供一种发送下行控制信道的方法,其特征在于,包括:
基站在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI;
所述基站向用户设备发送所述第一下行控制信道;
所述基站确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示;
所述基站向所述用户设备发送所述第二下行控制信道。
在一个可能的设计中,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
所述第二DCI对应的所述第二DCI时频资源由所述第一DCI指示。
在一个可能的设计中,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,
所述发送所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
所述第二DCI对应的所述第二DCI时频资源由所述第二RS指示;
所述第二RS对应的所述第二RS时频资源由所述第一DCI指示。
在一个可能的设计中,所述第二RS还用于对所述第二DCI对应的数据进行解调。
在一个可能的设计中,所述第一DCI还包括第二RS指示信息,所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
所述第二RS对应的时频资源和/或所述第二RS对应的天线口由所述第二RS指示信息指示。
在一个可能的设计中,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
在一个可能的设计中,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI包括的比特数均小于所述第二组DCI中每一个DCI包括的比特数。
本发明的上述实施例提供一种发送下行控制信道的方法,通过灵活配置第一级控制信道中参考信号的时频资源位置,并利用第一级控制信道指示第二级控制信道时频资源区域和参考信号信息,使得第二级控制信道获得频率选择性增益,提高了控制信 道容量;不仅如此,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。进一步的,根据配置的控制信令格式与控制信道的关联关系,减少了用户设备在此时频区域的盲检次数。
第三方面,提供一种接收下行控制信道的用户设备,包括:
接收单元,用于接收第一RS对应的第一RS时频资源所在的候选时频资源组,其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行控制信道包括所述第一RS和第一DCI;和
处理单元,用于:
根据所述候选时频资源组确定所述第一RS时频资源;
根据所述第一RS时频资源确定指示所述第一DCI对应的第一DCI时频资源;
在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;
根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
在一个可能的设计中,所述接收单元接收所述候选时频资源组,包括:
所述接收单元接收高层信令通知;和/或
所述接收单元接收同步信号序列指示;和/或
所述接收单元接收第三DCI指示,其中,所述第三DCI包括在获取第一RS时频资源前接收到的至少一个DCI。
在一个可能的设计中,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述处理单元根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:所述处理单元根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源。
在一个可能的设计中,所述处理单元还用于在所述第二DCI时频资源检测所述第二DCI。
在一个可能的设计中,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,所述处理单元还用于:
根据所述第二时频资源确定所述第二RS对应的时频资源;
在所述第二RS时频资源检测所述第二RS;
根据所述第二RS对所述第二DCI进行解调。
在一个可能的设计中,所述处理单元还用于:
根据所述第二RS对所述第二DCI对应的数据进行解调。
在一个可能的设计中,所述根据所述第二RS对所述第二DCI进行解调,包括:
基于所述第二RS进行信道估计,根据所述信道估计结果对所述第二DCI进行解调。
在一个可能的设计中,所述第一DCI还包括第二RS指示信息,所述处理单元根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:
所述处理单元根据所述第二RS指示信息确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口。
在一个可能的设计中,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
在一个可能的设计中,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI格式包括的比特数均小于所述第二组DCI中每一个DCI格式包括的比特数。
本发明的上述实施例提供一种接收下行控制信道的用户设备,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。进一步的,根据配置的控制信令格式与控制信道的关联关系,减少了用户设备在此时频区域的盲检次数。
第四方面,提供一种发送下行控制信道的基站,包括:
处理单元,用于在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI;
发送单元,用于发送所述第一下行控制信道;
所述处理单元还用于确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示;
所述发送单元还用于发送所述第二下行控制信道。
在一个可能的设计中,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述处理单元确定第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
所述处理单元确定所述第二DCI对应的所述第二DCI时频资源由所述第一DCI指示。
在一个可能的设计中,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,
所述处理单元确定第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
所述处理单元确定所述第二DCI对应的所述第二DCI时频资源由所述第二RS指示;
所述处理单元确定所述第二RS对应的所述第二RS时频资源由所述第一DCI指示。
在一个可能的设计中,所述第二RS还用于对所述第二DCI对应的数据进行解调。
在一个可能的设计中,所述第一DCI还包括第二RS指示信息,所述处理单元确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
所述处理单元确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口 由所述第二RS指示信息指示。
在一个可能的设计中,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
在一个可能的设计中,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI包括的比特数均小于所述第二组DCI中每一个DCI包括的比特数。
本发明的上述实施例提供一种发送下行控制信道的基站,通过灵活配置第一级控制信道中参考信号的时频资源位置,并利用第一级控制信道指示第二级控制信道时频资源区域和参考信号信息,使得第二级控制信道获得频率选择性增益,提高了控制信道容量;不仅如此,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。
第五方面,提供一种接收下行控制信道的用户设备,包括:
接收器,用于接收第一RS对应的第一RS时频资源所在的候选时频资源组,其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行控制信道包括所述第一RS和第一DCI;和
处理器,用于:
根据所述候选时频资源组确定所述第一RS时频资源;
根据所述第一RS时频资源确定指示所述第一DCI对应的第一DCI时频资源;
在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;
根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
第六方面,提供一种发送下行控制信道的基站,包括:
处理器,用于在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI;
发送器,用于发送所述第一下行控制信道;
所述处理单元还用于确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示;
所述发送器还用于发送所述第二下行控制信道。
本发明的实施例提供一种下行控制信道的接收和发送方法与装置。本发明所述的下行控制信道的发送和接收方法,有效地解决了固定下行控制信道无法满足更多种类业务的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供一种传输控制信道的方法流程图;
图2为本发明实施例提供一种控制信道时频资源示意图;
图3为本发明实施例提供一种对第一控制信道时频资源示意图;
图4为本发明实施例提供一种第二DCI和第二RS所对应的时频资源示意图;
图5为本发明实施例提供一种用户设备的结构示意图;
图6为本发明实施例提供另一种用户设备的结构示意图;
图7为本发明实施例提供一种基站的结构示意图;
图8为本发明实施例提供另一种基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
本发明的技术方案,可以应用于各种通信系统,例如:GSM,码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)等。
用户设备,也可称作终端设备(Terminal Device),移动终端(Mobile Terminal)、移动终端设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本发明并不限定。
为了使本发明更加清楚明白,先作如下简单说明:
本发明中所指的下行控制信道,指的是基站向用户设备发送的与下行控制相关的信息,承载于物理下行控制信道(Physical Downlink Control channel,PDCCH)之上。该下行控制信道可包括:参考信号(Reference Signal,RS),下行控制信息(Downlink Control Information,DCI),参考信息RS指示等。
本发明中的下行控制信道,包括第一下行控制信道和第二下行控制信道。其中,第一下行控制信道可包括第一RS和第一DCI,分别对应于第一RS时频资源和第一DCI时频资源。第二下行控制信道可包括第二RS和第二DCI,分别对应于第二RS时频资源和第二DCI时频资源。第一DCI与第二DCI的区分方式详见后续介绍。
本发明中的时频资源,是指在时域和频域上可用于传输信息的资源。为了充分利 用所述资源,在时域上以最小粒度为一个OFDM符号进行分割;在频域上以最小粒度为一个子载波进行分割。最小粒度单位包括一个OFDM符号和一个子载波,这个最小粒度单位也被称为资源单元(RE,Resource Element)。信息或信号在进行资源映射时,会按照这个最小粒度单位进行映射。
不同的信息或信号将分别映射到不同的时频资源单元上。当用户设备或基站获知某信息或信号对应的时频资源时,可根据该时频资源的位置,得到该位置上承载的相应信息或信号。
本发明实施例提供一种基站与用户设备之间传输下行控制信道的方法,如图1所示。其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道。
该方法包括:
步骤101、基站在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI。
步骤102、基站向用户设备发送所述第一下行控制信道。
步骤103、所述基站确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示。
可选的,第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,
发送第二下行控制信道对应的第二时频资源由所述第一DCI指示包括两种情况:
情况一、所述第二DCI对应的所述第二DCI时频资源由所述第一DCI指示;
情况二、所述第二DCI对应的所述第二DCI时频资源由所述第二RS指示;所述第二RS对应的所述第二RS时频资源有所述第一DCI指示。
在该种情况下,该第二RS还用于对所述第二DCI对应的数据进行解调。
可选的,在步骤103中,所述第一DCI还包括第二RS指示信息,所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
所述第二RS对应的时频资源和/或所述第二RS对应的天线端口由所述第二RS指示信息指示。
可选的,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。该部分在后续步骤108中会进行更为详尽的描述。
可选的,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI包括的比特数均小于所述第二组DCI中每一个DCI包括的比特数。关于第一DCI与第二DCI的划分在后续步骤108中进行更为详尽的描述。
步骤104、所述基站向所述用户设备发送所述第二下行控制信道。
步骤105、用户设备获取所述第一RS对应的所述第一RS时频资源。
可选的,该步骤105可通过如下步骤实现:
步骤105-1、用户设备接收一组第一RS候选时频资源组,其中,所述候选时频资 源组为高层信令通知和/或由同步信号序列指示;
步骤105-2、用户设备根据该第一RS候选时频资源组搜索所述第一RS时频资源。
所述第一下行控制信道所对应的时频资源如图2所示,下行控制信道的时频资源由若干个控制信道单元(CCE,Control Channel Element)构成,例如图2中的CCE0和CCE1等。每个CCE中包含若干个资源单元组(REG,Resource Element Group)。在LTE中,每个CCE包括9个REG,而每个REG中包括多个资源单元(RE,Resource Element),在LTE中REG包括4个RE。因此,在所述第一下行控制信道所对应的每个REG包括所述第一RS的RE和所述第一DCI的RE。
如图2所示,所示第一RS的时频资源位置位于每一个REG内,而且每个REG包括6个RE。所示第一RS映射于REG4的RE集合{RE0,RE1,…,RE5}中的2个RE上,即RE0和RE3。同理,其他的REG内的RS也可以位于同样的时频资源位置。
可选的,第一RS的候选时频资源组指在每个REG内第一RS可能位于的时频资源位置的总和。
如表1所示,候选时频资源组包括资源组索引为1、2、3的3组候选时频资源。以候选时频资源索引为1为例,第一RS的时频资源位于每个REG中的{RE0},{RE3},和{RE0,RE3}。时频资源位置{RE0,RE3}代表需要共同检测每个REG中的RE0和RE3这两个RE,才可得到相应的RS。
表1.候选时频资源组
资源组索引  REG内资源单元位置
1  {RE0},{RE3},{RE0,RE3}
2  {RE1},{RE4},{RE1,RE4}
3  {RE2},{RE5},{RE2,RE5}
如步骤105-1所述,用户设备可根据同步信号序列指示获取候选时频资源组。
例如,同步信号序列承载了小区ID信息,用户设备根据接收到的小区ID信息,可以获得时频资源组的指示信息,例如:
资源组索引=mod(小区ID,N),
其中,N为所述时频资源组索引的个数。
可选的,用户设备通过以上任意一种方式或两种方式的结合获取到候选时频资源组。
在步骤105-2中,根据所述候选时频资源组,在搜索空间内检测第一RS。
由于在步骤105-1中,获取到的是每个REG中的候选时频资源组。还需确定第一下行控制信道中需要检测的全部REG,才能得到所述第一RS。
可根据第一下行控制信道的CCE粒度,将第一下行控制信道所对应的时频资源划分为若干个时频资源区域。用户设备根据预定义的CCE粒度在第一下行控制信道区域进行搜索。
所述预定义的CCE粒度也被称为聚合等级,例如,下行控制信道可以根据传输内容的不同分为不同的聚合等级,聚合等级包括{1,2,4,8}等。每一个聚合的CCE资源组被称为一个搜索空间。若配置的聚合等级为{4,8},用户设备会在整个控制信道的时频 资源上按照4个CCE为一组和8个CCE为一组对第一RS和第一DCI进行接收。
以图3为例,第一控制信道包括从CCE0至CCE7在内的8个CCE。当检测第一RS时,假设配置的聚合等级为{4,8},用户设备需要对4个CCE为一组构成的搜索空间和8个CCE为一组构成的搜素空间进行检索。检索过程可包括如下步骤:
在S201,第一次检测时,用户设备检测CCE0至CCE3构成的搜索空间;
在S202,第二次检测时,用户设备检测CCE4至CCE7构成的搜索空间;
在S203,第三次检测时,用户设备检测CCE0至CCE8构成的搜索空间。
应当理解的是,以上检测步骤不限制先后顺序。可选的,用户设备按照预先定义的顺序对搜索空间中的每个RCG中的候选时频资源位置进行检测,以确定第一RS时频资源。
换言之,用户设备在第一控制信道中的至少一个搜索空间内,根据上述第一RS候选时频资源组指示信息,确定第一RS时频资源。
可选的,用户设备在候选时频资源组的每个时频资源组索引对应的时频资源检测到多组RS序列{S1,S2,…,SL}。以表1中的资源组索引取1为例,当资源组索引为1时,其时频资源为{RE0},{RE3},{RE0,RE3}。
则用户设备分别接收CCE0至CCE3中的每个REG的{RE0},{RE3},{RE0,RE3};CCE4至CCE7中的每个REG的{RE0},{RE3},{RE0,RE3};以及CCE0-CCE7中的每个REG的{RE0},{RE3},{RE0,RE3},在每一个搜索空间均可得到3组RS序列{S1,S2,S3}。
用户设备根据预定义的RS序列R1对接收到的RS序列进行相干检测,如果接收到的多组RS序列与预定义的RS序列匹配,则确定该时频资源组索引对应的时频资源为所述第一RS时频资源。仍以表1中的资源组索引取1为例,并假设预定义的RS序列为R1。若{S1}与R1匹配,则该资源组索引1中,每个REG中{RE0}为该搜索空间中的第一RS时频资源。
所述预定义的RS序列可以是预先存储在用户设备中的,也可以是由高层信令指示的。
或者,用户设备可根据第三DCI指示获取所述候选时频资源组,所述第三DCI包括在获取第一RS时频资源组前接收到的至少一个DCI。例如,在接收该下行控制信道之前,用户设备接收的上一个下行控制信道中,包括第三DCI。
步骤107、用户设备在第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一时频资源解调所述第一DCI。
由于在第一控制信道的每个REG中,仅包括第一RS和第一DCI两种信号。在确定第一RS的时频资源后,该REG中其余的时频资源即为第一DCI时频资源。根据上述方法,用户设备确定了第一DCI的时频资源。
用户设备在确定第一DCI的时频资源后,在所述第一DCI的时频资源获取所述第一DCI。
如步骤106所述,用户设备在确定第一RS时频资源时,可同时检测所述第一RS。
步骤108、所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
可选的,在第一种情况中,所述第二下行控制信道包括第二DCI,但不包括RS,用户设备根据第一DCI直接确定第二DCI对应的第二DCI时频资源,从而检测第二DCI。
具体的,所述第二时频资源包括第二DCI时频资源,所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:所述用户设备根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源。
可选的,在所述用户设备根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源之后,用户设备还可以在所述第二DCI时频资源检测所述第二DCI。
另外可选的,在第二种情况下,所述第二下行控制信道包括第二RS和第二DCI,用户设备由第一DCI确定第二RS所在的时频资源,然后根据第二RS接收第二DCI。
具体的,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,所述方法还包括:
所述用户设备根据所述第二时频资源确定所述第二RS对应的时频资源;
所述用户设备根据所述第二RS对所述第二DCI进行解调。
由以上两种情况可知,第二控制信道可以包含第二RS,也可以不包含第二RS。当第二控制信道包含第二RS时,第一控制信道包含的第一RS与所述第二RS可不同。
可选的,在以上任意一种情况中,用户设备还可根据所述第二RS对所述第二DCI对应的数据进行解调。
可选的,所述第二DCI时频资源位于数据区域的第一和/或第二个OFDM符号上,如图4所示。所述数据区域为子帧内下行传输时频资源内除第一控制信道的全部OFDM符号。
如图4所示,所述第二RS时频资源频域子载波与所述第二RS所对应的数据信道时频资源的子载波存在重叠。因此,用户设备在接收第二RS后,对第二DCI和所述第二DCI对应的数据信道的时频资源,进行信道估计。用户设备根据信道估计,可获得所述数据区域内每个RE上的信道状态。所述数据区域包括第二DCI时频资源和数据信道所对应的时频资源。所述每个RE上的信道状态包括所述RE上经历的信道衰落大小。
用户设备可根据所述估计的信道状态,对所述数据区域所有RE进行补偿,提高在所述RE上接收到的信号质量,使得用户设备可以正确解调所述接收到的信号。
可选的,在步骤108中,用户设备根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源,可包括:用户设备基于所述第二RS进行信道估计,基于所述信道估计结果对所述第二DCI进行解调。
所述信道估计为利用第二RS对所述第二DCI对应的第二DCI时频资源的信道状态进行估计。根据已知的参考信号序列用户设备可根据已知的RS序列,与接收到的第二RS序列进行对比,获得第二RS经历过信道后的衰落情况,从而估计出第二DCI时频资源的信道衰落情况。用户设备根据所述信道衰落情况对接收到的第二DCI信号进行补偿,恢复第二DCI信号的质量,使得用户设备可以正确解调第二DCI。
可选的,在步骤108中,第一DCI还可包括第二RS指示信息,用户设备根据所 述第一DCI确定所述第二下行控制信道对应的第二时频资源,包括:所述用户设备根据所述第二RS指示信息确定所述第二RS对应的时频资源和/或所述第二RS对应的天线端口。
例如,第二RS的天线端口包括{1,2},不同天线端口对应的时频资源如图4所示。用户设备接收所述第二RS指示信息中包括第二RS的天线端口信息,用户设备根据接收到的天线端口号,在所述接收到的天线端口号所对应的时频资源上接收第二RS。
可选的,在本实施例中,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
具体的,如前文所述,时域上的一个子帧可包括12个或14个OFDM符号,其中,第一个OFDM符号为第一控制信道所对应的第一时频资源在时域上占用的资源。也即,时域上的第一个OFDM符号用来发送第一控制信道。可选地,频域上,第一控制信道可以占用一个或多个子频带。
第二控制信道的时频资源可以包含在传送数据的时频资源中。具体可分以下情况:
情况一,第二个OFDM符号用来传送第二控制信道中的第二RS,从第三个OFDM符号起,传输第二控制信道中的其他信息以及数据。
情况二,所述第二DCI占用指定频域资源位置的全部数据区域OFDM符号,可用于传输更多的控制信息。
对于情况一,主要针对需要快速解调和译码的业务,例如,低延时和高可靠业务,用户设备需要在接收下行数据的同时对接收到的数据进行解调,满足演示要求;
对于情况二,主要针对广覆盖类的业务,例如,机器类型通信(Maching type communcations),对于广覆盖类型业务,需要通过更多的OFDM符号对DCI进行发送/接收,满足可靠性要求。
可选的,在本实施例中,所述第一DCI对应第一组DCI格式(Format),所述第二DCI对应第二组DCI格式,该第一组和第二组根据DCI格式的功能进行划分。
所述第一组DCI格式中至少包括:所述第二时频资源指示信息,所述第二DCI时频资源指示信息,所述第二RS指示信息;。
所述第二组DCI格式中至少包括:下行数据资源分配信息,上行调度信息。
另外可选的,所述第一组DCI的格式对应情况一,第二组DCI格式对应情况二。
可选的,所述第一组DCI格式中每一个DCI格式包括的比特数(Payload Size)均小于所述第二组DCI中每一个DCI格式包括的比特数。例如,以20MHz,FDD(Frequency Division Duplexing)系统而言,不同DCI承载的格式不同,如下表2所示。
由表2可知,第一DCI包括的比特数最大为46,第二DCI包括的比特数最小为54。
表2
DCI Format Payload Size(Bits)  Type
Format 0 44  第一DCI
Format 1  55  第一DCI
Format 1A 44  第一DCI
Format 1B 46  第一DCI
Format 1C 31  第一DCI
Format 1D 46  第一DCI
Format 2  67  第二DCI
Format 2A 64  第二DCI
Format 2B 64  第二DCI
Format 2C 66  第二DCI
Format 3  44  第一DCI
Format 3A 44  第一DCI
Format 4  54  第二DCI
可选的,所述第一RS可对应第一波束,所述第二RS可对应第二波束。
情况一、所述第一波束与第二波束相同。
用户设备可根据第一RS对应的第一波束获得所述波束在第一控制信道时频资源的信道状态,并根据第一RS估计的信道状态对第一DCI进行解调。
如第一RS估计的信道状态所对应的时频资源,包括第二DCI和第二DCI所对应数据的时频资源,则第二DCI和所对应的数据均可根据第一DCI估计的信道状态进行解调。
情况二、所述第一波束与第二波束不同
此种情况下用户设备仅能根据所述第一RS对第一DCI进行解调,根据所述第二RS对第二DCI进行解调。
需要说明的是,本发明所有实施例中,若无特殊说明,并不限制各实施例中各步骤之间的先后顺序,也不限定各步骤之间的相互依赖关系。例如,不限定基站所执行的步骤103至步骤104与用户设备所执行的步骤105至步骤108的关系。具体的例如,在步骤102,基站发送了第一下行控制信道之后,用户设备可执行步骤105,获取第一RS对应的第一RS时频资源。
本发明的实施例一通过两级控制信道传输方式,分别使用不同的参考信号进行解调。通过灵活配置第一级控制信道中参考信号的时频资源位置,并利用第一级控制信道指示第二级控制信道时频资源区域和参考信号信息,使得第二级控制信道获得频率选择性增益,提高了控制信道容量;不仅如此,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。进一步的,根据配置的控制信令格式与控制信道的关联关系,减少了用户设备在此时频区域的盲检次数。
图5是根据本发明一个实施例的用户设备的示意图。图5的用户设备500包括接收单元501和处理单元502。
接收单元501,用于接收第一RS对应的第一RS时频资源所在的候选时频资源组,其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行 控制信道包括所述第一RS和第一DCI。
可选的,接收单元501接收所述候选时频资源组,包括:接收单元501接收高层信令通知;和/或接收单元501接收同步信号序列指示;和/或接收单元501接收第三DCI指示,其中,所述第三DCI包括在获取第一RS时频资源前接收到的至少一个DCI。
处理单元502,用于:
根据所述候选时频资源组确定所述第一RS时频资源;
根据所述第一RS时频资源确定指示所述第一DCI对应的第一DCI时频资源;
在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;
根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
可选的,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源。处理单元502根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:处理单元502根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源。
可选的,处理单元502还用于在所述第二DCI时频资源检测所述第二DCI。
可选的,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,处理单元502还用于:
根据所述第二时频资源确定所述第二RS对应的时频资源;
在所述第二RS时频资源检测所述第二RS;
根据所述第二RS对所述第二DCI进行解调。
可选的,处理单元502还用于:
根据所述第二RS对所述第二DCI对应的数据进行解调。
可选的,处理单元502根据所述第二RS对所述第二DCI进行解调,包括:基于所述第二RS进行信道估计,根据所述信道估计结果对所述第二DCI进行解调。
可选的,所述第一DCI还包括第二RS指示信息,处理单元502根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:处理单元502根据所述第二RS指示信息确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口。
可选的,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
可选的,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI格式包括的比特数均小于所述第二组DCI中每一个DCI格式包括的比特数。
另外可选的,用户设备500中的处理单元502可以执行本发明实施例一中除步骤105中的105-1外用户设备执行的全部步骤。
本发明的实施例二提供一种用户设备,通过灵活配置第一级控制信道中参考信号的时频资源位置,并利用第一级控制信道指示第二级控制信道时频资源区域和参考信号信息,使得第二级控制信道获得频率选择性增益,提高了控制信道容量;不仅如此,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大 化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。进一步的,根据配置的控制信令格式与控制信道的关联关系,减少了用户设备在此时频区域的盲检次数。
本发明实施例三还提供一种用户设备。图6为本发明实施例三提供的一种用户设备的结构示意图。如图6所示,该用户设备600可包括:接收器601和处理器602。可选的,该接收器601可实现实施例二中接收单元501的功能,处理器602可实现实施例二中处理单元502的功能。
可选的,用户设备600还可以包括存储器603,存储器603可以用于存储处理器602执行时的代码等。
可选的,处理器602可以为CPU,还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
图7是根据本发明一个实施例的基站的示意图。图7的基站700包括处理单元701和发送单元702。
处理单元701,用于在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI。
发送单元702,用于发送所述第一下行控制信道。
处理单元701还用于确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示。
发送单元702还用于发送所述第二下行控制信道。
可选的,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,处理单元701确定第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
处理单元701确定所述第二DCI对应的所述第二DCI时频资源由所述第一DCI指示。
可选的,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,
处理单元701确定第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
处理单元701确定所述第二DCI对应的所述第二DCI时频资源由所述第二RS指示;以及
处理单元701确定所述第二RS对应的所述第二RS时频资源由所述第一DCI指示。
可选的,所述第二RS还用于对所述第二DCI对应的数据进行解调。
可选的,所述第一DCI还包括第二RS指示信息,处理单元701确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
处理单元701确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口 由所述第二RS指示信息指示。
可选的,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
可选的,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI包括的比特数均小于所述第二组DCI中每一个DCI包括的比特数。
另外可选的,用户设备700中的处理单元701可以执行本发明实施例一中基站执行的步骤101和步骤103。
本发明的实施例四提供一种基站,通过灵活配置第一级控制信道中参考信号的时频资源位置,并利用第一级控制信道指示第二级控制信道时频资源区域和参考信号信息,使得第二级控制信道获得频率选择性增益,提高了控制信道容量;不仅如此,参考信号随控制信道传输,使得参考信号在没有控制信道的情况下也无需传输,最大化减少了系统固定占用的时频资源,具有前向兼容特性的有益效果,而且也节省了系统的能量消耗。进一步的,根据配置的控制信令格式与控制信道的关联关系,减少了用户设备在此时频区域的盲检次数。
本发明实施例五还提供一种基站。图8为本发明实施例五提供的一种基站的结构示意图。如图8所示,该基站800可包括:处理器801和发送器802。可选的,该处理器801可实现实施例四中处理单元701的功能,发送器802可实现实施例四中处理单元702的功能。
可选的,基站800还可以包括存储器803,存储器803可以用于存储处理器801执行时的代码等。
可选的,处理器801可以为CPU,还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种接收下行控制信道的方法,其特征在于,包括:
    用户设备获取第一RS对应的第一RS时频资源,其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行控制信道包括所述第一RS和第一DCI;
    所述用户设备根据所述第一RS时频资源确定所述第一DCI对应的第一DCI时频资源;
    所述用户设备在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;
    所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述第一RS对应的第一RS时频资源,包括:
    从一组候选时频资源组中搜索所述第一RS时频资源,其中,所述候选时频资源组为高层信令通知和/或由同步信号序列指示和/或第三DCI指示;
    所述第三DCI包括在获取第一RS时频资源前接收到的至少一个DCI。
  3. 根据权利要求1所述的方法,其特征在于,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:所述用户设备根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:所述用户设备在所述第二DCI时频资源检测所述第二DCI。
  5. 根据权利要求1所述的方法,其特征在于,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,所述方法还包括:
    所述用户设备根据所述第二时频资源确定所述第二RS对应的时频资源;
    所述用户设备在所述第二RS时频资源检测所述第二RS;
    所述用户设备根据所述第二RS对所述第二DCI进行解调。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述用户设备根据所述第二RS对所述第二DCI对应的数据进行解调。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述第二RS对所述第二DCI进行解调,包括:
    基于所述第二RS进行信道估计,根据所述信道估计结果对所述第二DCI进行解调。
  8. 根据权利要求1所述的方法,其特征在于,所述第一DCI还包括第二RS指示信息,所述用户设备根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:
    所述用户设备根据所述第二RS指示信息确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI格式包括的比特数均小于所述第二组DCI中每一个DCI格式包括的比特数。
  11. 一种发送下行控制信道的方法,其特征在于,包括:
    基站在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI;
    所述基站向用户设备发送所述第一下行控制信道;
    所述基站确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示;
    所述基站向所述用户设备发送所述第二下行控制信道。
  12. 根据权利要求11所述的方法,其特征在于,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
    所述第二DCI对应的所述第二DCI时频资源由所述第一DCI指示。
  13. 根据权利要求11所述的方法,其特征在于,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,
    所述发送所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
    所述第二DCI对应的所述第二DCI时频资源由所述第二RS指示;
    所述第二RS对应的所述第二RS时频资源由所述第一DCI指示。
  14. 根据权利要求13所述的方法,其特征在于,所述第二RS还用于对所述第二DCI对应的数据进行解调。
  15. 根据权利要求11所述的方法,其特征在于,所述第一DCI还包括第二RS指示信息,所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
    所述第二RS对应的时频资源和/或所述第二RS对应的天线口由所述第二RS指示信息指示。
  16. 根据权利要求11至15任一项所述的方法,其特征在于,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI包括的比特数均小于所述第二组DCI中每一个DCI包括的比特数。
  18. 一种接收下行控制信道的用户设备,其特征在于,包括:
    接收单元,用于接收第一RS对应的第一RS时频资源所在的候选时频资源组,其中,所述下行控制信道包括第一下行控制信道和第二下行控制信道,所述第一下行控 制信道包括所述第一RS和第一DCI;和
    处理单元,用于:
    根据所述候选时频资源组确定所述第一RS时频资源;
    根据所述第一RS时频资源确定指示所述第一DCI对应的第一DCI时频资源;
    在所述第一RS时频资源检测所述第一RS,并利用所述第一RS在所述第一DCI时频资源解调所述第一DCI;
    根据所述第一DCI确定所述第二下行控制信道对应的第二时频资源。
  19. 根据权利要求18所述的用户设备,其特征在于,所述接收单元接收所述候选时频资源组,包括:
    所述接收单元接收高层信令通知;和/或
    所述接收单元接收同步信号序列指示;和/或
    所述接收单元接收第三DCI指示,其中,所述第三DCI包括在获取第一RS时频资源前接收到的至少一个DCI。
  20. 根据权利要求18所述的用户设备,其特征在于,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述处理单元根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:所述处理单元根据所述第一DCI确定所述第二DCI对应的所述第二DCI时频资源。
  21. 根据权利要求20所述的用户设备,其特征在于,所述处理单元还用于在所述第二DCI时频资源检测所述第二DCI。
  22. 根据权利要求18所述的用户设备,其特征在于,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,所述处理单元还用于:
    根据所述第二时频资源确定所述第二RS对应的时频资源;
    在所述第二RS时频资源检测所述第二RS;
    根据所述第二RS对所述第二DCI进行解调。
  23. 根据权利要求22所述的用户设备,其特征在于,所述处理单元还用于:
    根据所述第二RS对所述第二DCI对应的数据进行解调。
  24. 根据权利要求22所述的用户设备,其特征在于,所述根据所述第二RS对所述第二DCI进行解调,包括:
    基于所述第二RS进行信道估计,根据所述信道估计结果对所述第二DCI进行解调。
  25. 根据权利要求18所述的用户设备,其特征在于,所述第一DCI还包括第二RS指示信息,所述处理单元根据所述第一DCI确定所述第二下行控制信道对应的所述第二时频资源,包括:
    所述处理单元根据所述第二RS指示信息确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口。
  26. 根据权利要求18至25任一项所述的用户设备,其特征在于,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括 所述子帧中的第二个和/或第三个OFDM符号。
  27. 根据权利要求18至26任一项所述的用户设备,其特征在于,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI格式包括的比特数均小于所述第二组DCI中每一个DCI格式包括的比特数。
  28. 一种发送下行控制信道的基站,其特征在于,包括:
    处理单元,用于在第一下行控制信道中,用第一RS指示第一DCI对应的时频资源,其中,所述第一下行控制信道包含于所述下行控制信道中,所述第一下行控制信道包括所述第一RS和所述第一DCI;
    发送单元,用于发送所述第一下行控制信道;
    所述处理单元还用于确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示;
    所述发送单元还用于发送所述第二下行控制信道。
  29. 根据权利要求28所述的基站,其特征在于,所述第二下行控制信道包括第二DCI,所述第二时频资源包括第二DCI时频资源,所述处理单元确定第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
    所述处理单元确定所述第二DCI对应的所述第二DCI时频资源由所述第一DCI指示。
  30. 根据权利要求28所述的基站,其特征在于,所述第二下行控制信道包括第二RS和第二DCI,所述第二时频资源包括第二RS时频资源和第二DCI时频资源,其中,所述第二RS对应所述第二RS时频资源,所述第二DCI对应所述第二DCI时频资源,
    所述处理单元确定第二下行控制信道对应的所述第二时频资源由所述第一DCI指示,包括:
    所述处理单元确定所述第二DCI对应的所述第二DCI时频资源由所述第二RS指示;
    所述处理单元确定所述第二RS对应的所述第二RS时频资源由所述第一DCI指示。
  31. 根据权利要求30所述的基站,其特征在于,所述第二RS还用于对所述第二DCI对应的数据进行解调。
  32. 根据权利要求28所述的基站,其特征在于,所述第一DCI还包括第二RS指示信息,所述处理单元确定所述第二下行控制信道对应的第二时频资源由所述第一DCI指示,包括:
    所述处理单元确定所述第二RS对应的时频资源和/或所述第二RS对应的天线口由所述第二RS指示信息指示。
  33. 根据权利要求28至32任一项所述的基站,其特征在于,所述第一时频资源在时域上包括一个子帧中的第一个OFDM符号,所述第二时频资源在时域上包括所述子帧中的第二个和/或第三个OFDM符号。
  34. 根据权利要求28至33任一项所述的基站,其特征在于,所述第一DCI对应第一组DCI格式,所述第二DCI对应第二组DCI格式,其中,所述第一组DCI格式中每一个DCI包括的比特数均小于所述第二组DCI中每一个DCI包括的比特数。
PCT/CN2017/096174 2016-08-12 2017-08-07 一种控制信道传输方法、装置及系统 WO2018028532A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838662.9A EP3490317B1 (en) 2016-08-12 2017-08-07 Control channel transmission method, device and system
US16/265,963 US10887877B2 (en) 2016-08-12 2019-02-01 Method and apparatus for transmitting control channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610670186.0A CN107734685B (zh) 2016-08-12 2016-08-12 一种控制信道传输方法、装置及系统
CN201610670186.0 2016-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/265,963 Continuation US10887877B2 (en) 2016-08-12 2019-02-01 Method and apparatus for transmitting control channel

Publications (1)

Publication Number Publication Date
WO2018028532A1 true WO2018028532A1 (zh) 2018-02-15

Family

ID=61161773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096174 WO2018028532A1 (zh) 2016-08-12 2017-08-07 一种控制信道传输方法、装置及系统

Country Status (4)

Country Link
US (1) US10887877B2 (zh)
EP (1) EP3490317B1 (zh)
CN (1) CN107734685B (zh)
WO (1) WO2018028532A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819899B (zh) * 2018-02-28 2022-04-22 华为技术有限公司 下行传输资源的分配方法和装置
CN110557836B (zh) 2018-06-04 2022-05-13 大唐移动通信设备有限公司 一种配置传输带宽的方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594513A (zh) * 2012-03-20 2012-07-18 电信科学技术研究院 一种增强的下行控制信道的传输方法及装置
CN103563319A (zh) * 2011-04-01 2014-02-05 英特尔公司 Lte-a系统中传送物理下行链路控制信道(pdcch)的增强型节点b和方法
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
CN104955111A (zh) * 2014-03-31 2015-09-30 上海朗帛通信技术有限公司 一种非授权频带上的传输方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441996B2 (en) * 2009-04-02 2013-05-14 Lg Electronics Inc. Method and apparatus for monitoring control channel in multiple carrier system
CN104081709B (zh) * 2012-01-27 2017-09-08 交互数字专利控股公司 用于在基于多载波和/或准校准网络中提供ePDCCH的装置和/或方法
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
US9735933B2 (en) * 2012-07-09 2017-08-15 Lg Electronics Inc. Method for receiving or transmitting downlink signal in wireless communication system and device therefor
US9538518B2 (en) * 2012-08-28 2017-01-03 Lg Electronics Inc. Method for detecting downlink control channel in wireless communication system and apparatus for same
CN108476110B (zh) * 2015-12-31 2021-10-08 Idac控股公司 用于动态管理参考信号的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563319A (zh) * 2011-04-01 2014-02-05 英特尔公司 Lte-a系统中传送物理下行链路控制信道(pdcch)的增强型节点b和方法
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
CN102594513A (zh) * 2012-03-20 2012-07-18 电信科学技术研究院 一种增强的下行控制信道的传输方法及装置
CN104955111A (zh) * 2014-03-31 2015-09-30 上海朗帛通信技术有限公司 一种非授权频带上的传输方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussions on DCI and sPDCCH for Latency Reduction", 3GPP TSG RAN WG1 MEETING #85 R1-164542, 27 May 2016 (2016-05-27), XP23091968 *
QUALCOMM INCORPORATED: "Multiplexing of Different DCI Messages for e-PDCCH", 3GPPTSG RAN WG1 #68 R1-120562, 10 February 2012 (2012-02-10), XP050563000 *
See also references of EP3490317A4 *

Also Published As

Publication number Publication date
CN107734685B (zh) 2021-08-20
US10887877B2 (en) 2021-01-05
US20190174468A1 (en) 2019-06-06
CN107734685A (zh) 2018-02-23
EP3490317B1 (en) 2020-09-23
EP3490317A4 (en) 2019-06-26
EP3490317A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US11825491B2 (en) Method for monitoring PDCCH, terminal and network device
US11825503B2 (en) Channel quality indicator reporting
US11751206B2 (en) Method and apparatus for sending and receiving downlink control information
JP6739551B2 (ja) ダウンリンク制御情報送信方法および装置
CN108347778B (zh) 通信方法及装置
WO2018171667A1 (zh) 一种信道传输方法及网络设备
CN111148242B (zh) 信息传输方法及装置
US20190261332A1 (en) Control Information Detection Method, Control Information Sending Method, And Device
US11088778B2 (en) Information transmission method and apparatus
WO2019029425A1 (zh) 信息上报及信息处理方法、终端及网络设备
WO2019122518A1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
WO2018028565A1 (zh) 通信方法和设备
US11258557B2 (en) Transmission method and device
EP3573274B1 (en) Communication method and network device
US10270576B2 (en) Information transmission method, user equipment, and base station
US20140211712A1 (en) Method for transmitting downlink control information, method for blind detection, base station and terminal equipment
WO2018205874A1 (zh) 传输方法、终端和网络设备
WO2019242639A1 (en) Method and apparatus for enhancing time domain-resource allocation framework in mobile communications
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2018028532A1 (zh) 一种控制信道传输方法、装置及系统
WO2019192456A1 (zh) 配置信息指示方法及通信装置
WO2018196657A1 (zh) 一种干扰消除方法、用户设备及网络设备
WO2021244374A1 (zh) 干扰抑制合并方法、资源指示方法及通信装置
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统
CN111756509B (zh) 一种传输公共信号块的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838662

Country of ref document: EP

Effective date: 20190222