WO2020143490A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020143490A1
WO2020143490A1 PCT/CN2019/129460 CN2019129460W WO2020143490A1 WO 2020143490 A1 WO2020143490 A1 WO 2020143490A1 CN 2019129460 W CN2019129460 W CN 2019129460W WO 2020143490 A1 WO2020143490 A1 WO 2020143490A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
cell
default
cell group
terminal
Prior art date
Application number
PCT/CN2019/129460
Other languages
English (en)
French (fr)
Inventor
肖洁华
刘哲
唐浩
张长
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19908879.0A priority Critical patent/EP3902323A4/en
Publication of WO2020143490A1 publication Critical patent/WO2020143490A1/zh
Priority to US17/372,058 priority patent/US12021794B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/165Performing reselection for specific purposes for reducing network power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • the base station can indicate the carrier bandwidth part (BWP) for the terminal, and then the base station and the terminal transmit data through the BWP .
  • BWP carrier bandwidth part
  • carrier aggregation is introduced in NR, that is, multiple continuous or discontinuous spectrums can be aggregated and used.
  • one or more BWPs can be configured for one terminal of the serving cell.
  • the configured BWP can be a large-bandwidth BWP to improve the service transmission capability of the terminal, and the configured BWP can also be a small-bandwidth BWP, so that when the service volume is small, the terminal can reduce the amount of data processed by radio frequency processing and baseband processing. Thereby reducing terminal power consumption.
  • Embodiments of the present application provide a communication method and device, which can reduce power consumption of a terminal in a CA scenario.
  • an embodiment of the present application provides a communication method, which can be applied to a terminal or a chip in the terminal.
  • the method includes receiving information of one or more cell groups, where a cell group includes a first cell and at least a second cell.
  • the switching or deactivation state of the BWP of the second cell in the cell group is determined according to the switching or deactivation state of the carrier bandwidth portion BWP of the first cell in the cell group.
  • the BWP switching or deactivation of the second cell There is a basis. For example, when the terminal is in the energy-saving state on the first cell, the terminal is also in the energy-saving state on the second cell in the same cell group, which can further reduce the power consumption of the terminal.
  • the first cell may be referred to as a reference cell or other names, and the embodiments of the present application are not limited.
  • the switching or deactivation state of the BWP in the second cell of the cell group is determined according to the switching or deactivation state of the BWP of the first cell in the cell group, which can be specifically implemented as follows:
  • the first BWP is a non-default default BWP
  • the second BWP is a default BWP.
  • the first BWP is the default default BWP
  • the second BWP is the non-default BWP.
  • the default BWP is the activated BWP that the terminal works after the BWP fallback timer expires.
  • the default BWP you can refer to the description here.
  • the first BWP is a non-default default BWP and the second BWP is a default BWP
  • the BWP of the second cell in the same cell group also falls back from the non-default BWP to the default BWP. It can improve the robustness of terminal BWP switching.
  • the default BWP is a small bandwidth BWP
  • the BWP of the second cell in the same cell group also switches from the large bandwidth BWP to the small bandwidth BWP .
  • switching the BWP of the first cell to a small-bandwidth BWP indicates that the terminal's traffic is relatively small.
  • switching the BWP of the second cell in the same cell group to a small-bandwidth BWP can reduce the terminal's RF processing and baseband processing. The amount of tasks, thereby reducing the power consumption of the terminal.
  • the first BWP is the default default BWP and the second BWP is a non-default BWP
  • the BWP of the first cell in the cell group is switched from the default BWP to the non-default BWP
  • the BWP of the second cell in the same cell group is also switched from the default BWP to the non-default BWP. It can increase the available bandwidth resources of the terminal and improve the data transmission performance of the terminal.
  • the non-default BWP is a pre-configured BWP, or the non-default BWP used the previous time.
  • switching the BWP of the second cell from the default BWP to the non-default BWP may be implemented as: switching the BWP of the second cell from the default BWP to a pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station to the terminal through RRC signaling or other signaling. In this way, the pre-configured non-default BWP can be used for communication between the base station and the terminal.
  • switching the BWP of the second cell from the default BWP to the non-default BWP may be implemented as: switching the BWP of the second cell from the default BWP to the non-default BWP used previously.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the terminal can switch the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used previously.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • switching the BWP of the second cell in the cell group from the first BWP of the second cell to the second BWP of the second cell may be specifically implemented as:
  • the first handover instruction carrying a target non-default BWP. And switch the BWP of the second cell from the default BWP of the second cell to the target non-default BWP.
  • the second cell in the cell group can flexibly indicate the target non-default BWP that the terminal needs to switch to, so that the terminal flexibly switches to the required non-default BWP for communication.
  • determining the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group may also be implemented as follows: When the first cell is deactivated, the second cell in the cell group is deactivated.
  • the first indication message is received, and the first indication message is used to enable the deactivation of the second cell in the cell group when the first cell in the cell group is deactivated.
  • the terminal receives the deactivation instruction for the first cell from the access network device to determine whether the first cell needs to be deactivated.
  • the deactivation instruction includes: a media access control control unit MAC CE, a radio resource control RRC, or downlink control information DCI.
  • the terminal stops sending channel state information CSI.
  • the “received” deactivation instruction mentioned in the embodiment of the present application may refer to receiving and successfully parsing the deactivation instruction.
  • the switching or deactivation state of the BWP of the second cell in the cell group is determined according to the switching or deactivation state of the BWP of the first cell in the cell group, which can be specifically implemented as follows: When the BWP of a cell is switched from the non-default BWP of the first cell to the default BWP of the first cell, the second cell in the cell group is deactivated.
  • the second indication message is received from the access network device, and the second indication message is used to enable the activation of the non-default BWP of the first cell in the cell group to the default BWP, and deactivate the The second cell.
  • a BWP handover instruction is received from the access network device, and the BWP handover instruction is used to instruct to switch the BWP of the first cell from the non-default BWP of the first cell to the default BWP of the first cell.
  • the BWP switching instruction includes any one of MAC, CE, RRC, or DCI.
  • the “received” BWP switching instruction mentioned in the embodiment of the present application may refer to receiving and successfully parsing the BWP switching instruction.
  • the present application provides a communication method, which is applied to an access network device or a chip in the access network device.
  • the method includes: sending information of one or more cell groups, where a cell group includes a first cell and at least a second cell.
  • a cell group includes a first cell and at least a second cell.
  • the switching or deactivation state of the BWP of the second cell in the cell group is determined according to the switching or deactivation state of the carrier bandwidth portion BWP of the first cell in the cell group.
  • the switching or deactivation state of the BWP in the second cell of the cell group is determined according to the switching or deactivation state of the BWP of the first cell carrier bandwidth part of the cell group, which can be specifically implemented as follows: When the BWP of the first cell in the cell group is switched from the first BWP of the first cell to the second BWP of the first cell, the BWP of the second cell in the cell group is switched from the first BWP to the second BWP.
  • the first cell may be referred to as a reference cell or other names, and the embodiments of the present application are not limited.
  • the first BWP is a non-default default BWP
  • the second BWP is a default BWP
  • the first BWP is the default default BWP
  • the second BWP is the non-default BWP
  • the non-default BWP is a pre-configured BWP or the non-default BWP used last time.
  • switching the BWP of the second cell from the default BWP to the non-default BWP may be implemented as: switching the BWP of the second cell from the default BWP to a pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station to the terminal through RRC signaling or other signaling. In this way, the pre-configured non-default BWP can be used for communication between the base station and the terminal.
  • switching the BWP of the second cell from the default BWP to the non-default BWP may be implemented as: switching the BWP of the second cell from the default BWP to the non-default BWP used previously.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the BWP of the terminal in cell 2 needs to be switched to a non-default BWP, the BWP of the terminal in cell 2 can be switched from the default BWP6 to the non-default BWP5 used last time.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • switching the BWP of the second cell in the cell group from the first BWP to the second BWP may be specifically implemented as: sending a first handover instruction, the first handover instruction carries a target non-default BWP, and The BWP of the second cell in the cell group is switched from the default BWP of the second cell to the target non-default BWP.
  • the switching or deactivation state of the BWP of the second cell in the cell group is determined according to the switching or deactivation state of the BWP of the first cell in the cell group, which can be specifically implemented as follows: When the first cell is deactivated, the second cell in the cell group is deactivated.
  • a first indication message is sent to the terminal, and the first indication message is used to enable the deactivation of the second cell in the cell group when the first cell in the cell group is deactivated.
  • the access network device sends a deactivation instruction for the first cell to the terminal to indicate whether the first cell needs to be deactivated.
  • the deactivation instruction includes: a media access control control unit MAC CE, a radio resource control RRC, or downlink control information DCI.
  • the switching or deactivation state of the BWP of the second cell in the cell group is determined according to the switching or deactivation state of the BWP of the first cell in the cell group, which can be specifically implemented as follows: When the BWP of a cell is switched from the non-default BWP of the first cell to the default BWP of the first cell, the second cell in the cell group is deactivated.
  • the access network device sends a second indication message to the terminal.
  • the indication message is used to enable the first cell in the cell group to switch from the non-default BWP to the default BWP. Second district.
  • the access network device sends a BWP handover instruction to the terminal, where the BWP handover instruction is used to indicate whether the BWP of the first cell needs to be handed over from the non-default BWP of the first cell to the default BWP of the first cell .
  • the BWP switching instruction includes any one of MAC, CE, RRC, or DCI.
  • an embodiment of the present application provides a communication device.
  • the device may be a terminal, or a device capable of implementing a terminal function with a terminal, which may be matched with the terminal.
  • it may be a device in the terminal (
  • the device may include a receiving module, a determining module, and a sending module, and these modules may perform the corresponding functions performed by the terminal in any of the design examples of the first aspect, specifically:
  • the receiving module is configured to receive information of one or more cell groups, where a cell group includes a first cell and at least a second cell.
  • a determination module is used to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the carrier bandwidth portion BWP of the first cell in the cell group.
  • the BWP switching or deactivation of the second cell There is a basis. For example, when the terminal is in the energy-saving state on the first cell, the terminal is also in the energy-saving state on the second cell in the same cell group, which can further reduce the power consumption of the terminal.
  • the determining module is configured to determine the switching or deactivation state of the BWP in the second cell of the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, specifically For: if it is determined to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell, then switch the BWP of the second cell in the cell group from the first of the second cell The BWP switches to the second BWP of the second cell.
  • the first BWP is a non-default default BWP
  • the second BWP is a default BWP.
  • the first BWP is the default default BWP
  • the second BWP is the non-default BWP.
  • the determining module is specifically used to determine to switch the BWP of the first cell in the cell group from the non-default BWP of the first cell to the first
  • the BWP of the second cell in the cell group is switched from the non-default BWP of the second cell to the default BWP of the second cell.
  • the BWP of the second cell in the same cell group also falls back from the non-default BWP to the default BWP. It can improve the robustness of terminal BWP switching.
  • the default BWP is a small bandwidth BWP
  • the BWP of the second cell in the same cell group also switches from the large bandwidth BWP to the small bandwidth BWP .
  • switching the BWP of the first cell to a small-bandwidth BWP indicates that the terminal's traffic is relatively small.
  • switching the BWP of the second cell in the same cell group to a small-bandwidth BWP can reduce the terminal's RF processing and baseband processing. The amount of tasks, thereby reducing the power consumption of the terminal.
  • the determination module is specifically used to switch the BWP of the first cell in the cell group from the default BWP of the first cell to the first For the non-default BWP of the cell, the BWP of the second cell in the cell group is switched from the default BWP of the second cell to the non-default BWP of the second cell.
  • the BWP of the first cell in the cell group is switched from the default BWP to the non-default BWP
  • the BWP of the second cell in the same cell group is also switched from the default BWP to the non-default BWP. It can increase the available bandwidth resources of the terminal and improve the data transmission performance of the terminal.
  • the non-default BWP is a pre-configured BWP, or the non-default BWP used the previous time.
  • the determination module is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may specifically be: used to switch the BWP of the second cell from the default BWP to the pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station to the terminal through RRC signaling or other signaling. In this way, the pre-configured non-default BWP can be used for communication between the base station and the terminal.
  • the determining module is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may be: used to switch the BWP of the second cell from the default BWP to the non-default BWP used previously.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the terminal can switch the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used previously.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • the determining module is used to switch the BWP of the second cell in the cell group from the first BWP of the second cell to the second BWP of the second cell, which may specifically be: used to control the receiving module to receive The first handover instruction of the second cell.
  • the first handover instruction carries the target non-default BWP.
  • the second cell in the cell group can flexibly indicate the target non-default BWP that the terminal needs to switch to, so that the terminal flexibly switches to the required non-default BWP for communication.
  • the determining module is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, and may also be: If it is determined to deactivate the first cell in the cell group, then deactivate the second cell in the cell group.
  • the receiving module is further configured to receive the first indication message.
  • the first indication message is used to enable the deactivation of the second cell in the cell group when the first cell in the cell group is deactivated.
  • the receiving module is further configured to receive a deactivation instruction for the first cell from the access network device to determine whether the first cell needs to be deactivated.
  • the deactivation instruction includes: a media access control control unit MAC CE, a radio resource control RRC, or downlink control information DCI.
  • the sending module is configured to stop sending the channel state information CSI after receiving the deactivation instruction of the first cell in the cell group or after the deactivation timer of the first cell expires.
  • the “received” deactivation instruction mentioned in the embodiment of the present application may refer to receiving and successfully parsing the deactivation instruction.
  • the determining module is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, which may specifically be: It is determined that the BWP of the first cell in the cell group is switched from the non-default BWP of the first cell to the default BWP of the first cell, and then the second cell in the cell group is deactivated.
  • the receiving module is further configured to receive a second indication message from the access network device.
  • the second indication message is used to enable switching of the non-default BWP of the first cell in the cell group to the default BWP. Deactivate the second cell in the cell group.
  • the receiving module is further used to receive a BWP handover instruction from the access network device, and the BWP handover instruction is used to instruct to switch the BWP of the first cell from the non-default BWP of the first cell to the first cell Default BWP.
  • the BWP switching instruction includes any one of MAC, CE, RRC, or DCI.
  • the sending module is configured to stop sending the CSI of the second cell in the cell group after receiving the BWP switching instruction or after the BWP back-off timer of the first cell times out.
  • the “received” BWP switching instruction mentioned in the embodiment of the present application may refer to receiving and successfully parsing the BWP switching instruction.
  • the present application provides a communication device, which may be an access network device or an apparatus capable of implementing the function of an access network device with an access network device, which may be used in conjunction with the access network device
  • a communication device may be an access network device or an apparatus capable of implementing the function of an access network device with an access network device, which may be used in conjunction with the access network device
  • it may be an apparatus in an access network device (such as a chip system in an access network device).
  • the apparatus includes a sending module and a determining module, and these modules can perform the corresponding functions performed by the access network device in any of the design examples in the second aspect, specifically:
  • the sending module is used to send information of one or more cell groups, and a cell group includes a first cell and at least a second cell.
  • a determination module is used to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group.
  • the determining module is configured to determine the switching or deactivation state of the BWP in the second cell of the cell group according to the switching or deactivation state of the BWP of the first cell carrier bandwidth in the cell group, which may specifically be : Used to switch the BWP of the second cell in the cell group from the first BWP to the second if it is determined to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell BWP.
  • the first BWP is a non-default default BWP
  • the second BWP is a default BWP
  • the first BWP is the default default BWP
  • the second BWP is the non-default BWP
  • the non-default BWP is a pre-configured BWP or the non-default BWP used last time.
  • the determination module is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may be: used to switch the BWP of the second cell from the default BWP to the pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station to the terminal through RRC signaling or other signaling. In this way, the pre-configured non-default BWP can be used for communication between the base station and the terminal.
  • the determining module is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may be: used to switch the BWP of the second cell from the default BWP to the non-default BWP used previously.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the BWP of the terminal in cell 2 needs to be switched to a non-default BWP
  • the BWP of the terminal in cell 2 can be switched from the default BWP6 to the non-default BWP5 used last time.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • the determination module is used to switch the BWP of the second cell in the cell group from the first BWP to the second BWP, which may specifically be: used to control the sending module so that the sending module sends the first switching instruction .
  • the first handover instruction carries the target non-default BWP, and is used to switch the BWP of the second cell in the cell group from the default BWP of the second cell to the target non-default BWP.
  • the determining module is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, which may specifically be: If it is determined to deactivate the first cell in the cell group, then deactivate the second cell in the cell group.
  • the sending module is further configured to send a first indication message to the terminal.
  • the first indication message is used to deactivate the second cell in the cell group when the first cell in the cell group is deactivated .
  • the sending module is further configured to send a deactivation instruction for the first cell to the terminal to indicate whether the first cell needs to be deactivated.
  • the deactivation instruction includes: a media access control control unit MAC CE, a radio resource control RRC, or downlink control information DCI.
  • the determining module is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, which may specifically be: It is determined that the BWP of the first cell in the cell group is switched from the non-default BWP of the first cell to the default BWP of the first cell, and then the second cell in the cell group is deactivated.
  • the sending module is further configured to send a second indication message to the terminal, where the indication message is used to enable the non-default BWP of the first cell in the cell group to be switched to the default BWP to deactivate the cell group The second cell.
  • the sending module is further used to send a BWP handover instruction to the terminal.
  • the BWP handover instruction is used to indicate whether the BWP of the first cell needs to be switched from the non-default BWP of the first cell to the first cell. The default BWP.
  • the BWP switching instruction includes any one of MAC, CE, RRC, or DCI.
  • an embodiment of the present application further provides an apparatus, including a processor, configured to implement the function of the terminal in the method described in the first aspect above.
  • the device may be a terminal or a chip system.
  • the device may also include memory for storing instructions and/or data.
  • the memory is coupled to the processor, and the processor may execute instructions stored in the memory, which are used to implement the functions of the terminal in the method described in the first aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices. Exemplarily, the other device is an access network device.
  • the device includes:
  • the communication interface is used to receive information of one or more cell groups, where a cell group includes a first cell and at least a second cell.
  • Memory for storing instructions.
  • the processor is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the carrier bandwidth portion BWP of the first cell in the cell group.
  • the processor is configured to determine the switching or deactivation state of the BWP in the second cell of the cell group according to the switching or deactivation state of the BWP of the carrier bandwidth portion of the first cell in the cell group, including: If it is determined to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell, then switch the BWP of the second cell in the cell group from the first BWP of the second cell to the second The second BWP of the second cell.
  • first BWP and the second BWP may refer to the related descriptions in the first to fourth aspects, which will not be repeated here.
  • the non-default BWP is a pre-configured BWP or the non-default BWP used last time.
  • the processor for switching the BWP of the second cell in the cell group from the first BWP of the second cell to the second BWP of the second cell includes: receiving the second cell's The first handover instruction, which carries the target non-default BWP; the BWP of the second cell is switched from the default BWP of the second cell to the target non-default BWP.
  • determining the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group includes: if it is determined that the first cell in the cell group To deactivate, the second cell in the cell group is deactivated.
  • the communication interface is also used to stop sending channel state information CSI after the deactivation indication of the first cell in the cell group or after the deactivation timer of the first cell expires, and the deactivation indication It is used to instruct to deactivate the first cell.
  • the detailed description of the deactivation instruction can be referred to the first aspect to the fourth aspect.
  • the processor is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, including: When the BWP of the first cell in the cell group is switched from the non-default BWP of the first cell to the default BWP of the first cell, the second cell in the cell group is deactivated.
  • the communication interface is also used to receive an indication message, which is used to enable the second cell in the cell group to be deactivated when the non-default BWP of the first cell in the cell group is switched to the default BWP. .
  • the communication interface is also used to stop sending the CSI of the second cell in the cell group after receiving the BWP handover indication or after the BWP backoff timer of the first cell expires.
  • the BWP handover indication is used to The BWP of the first cell is switched from the non-default BWP of the first cell to the default BWP of the first cell.
  • the BWP handover indication includes MAC, CE, RRC, or DCI.
  • an embodiment of the present application further provides an apparatus including a processor, configured to implement the function of an access network device in the method described in the second aspect above.
  • the device may be an access network device or a chip system.
  • the device may also include a memory for storing instructions and/or data.
  • the memory is coupled to the processor, and the processor may execute instructions stored in the memory to implement the functions of the access network device in the method described in the second aspect above.
  • the device may also include a communication interface, which is used for the device to communicate with other devices. Exemplarily, the other device is a terminal.
  • the device includes:
  • the communication interface is used to send information of one or more cell groups.
  • a cell group includes a first cell and at least a second cell.
  • the memory is used to store program instructions.
  • the processor is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group.
  • the processor is configured to determine the switching or deactivation state of the BWP in the second cell of the cell group according to the switching or deactivation state of the BWP of the first cell carrier bandwidth portion of the cell group, including: If it is determined to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell, then switch the BWP of the second cell in the cell group from the first BWP to the second BWP.
  • the descriptions of the first BWP and the second BWP can refer to the descriptions of the above aspects.
  • the non-default BWP is a pre-configured BWP or the non-default BWP used last time.
  • the processor for switching the BWP of the second cell in the cell group from the first BWP to the second BWP includes: sending a first switching instruction using a communication interface, the first switching instruction carrying Target non-default BWP; switch the BWP of the second cell in the cell group from the default BWP of the second cell to the target non-default BWP.
  • the processor is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, including: Deactivate the first cell in the cell group, then deactivate the second cell in the cell group.
  • the processor is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, including: When the BWP of the first cell in the cell group is switched from the non-default BWP of the first cell to the default BWP of the first cell, the second cell in the cell group is deactivated.
  • the communication interface is also used to send an indication message, which is used to enable the second cell in the cell group to be deactivated when the non-default BWP of the first cell in the cell group is switched to the default BWP. .
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which when executed on a computer, causes the computer to execute the method of the first aspect or the second aspect.
  • a computer program product is also provided in an embodiment of the present application, including instructions that, when run on a computer, cause the computer to execute the method of the first aspect or the second aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor, and may further include a memory, for implementing the functions of the terminal or the access network device in the above method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application provides a system including the devices of the third and fourth aspects, or the devices of the fifth and sixth aspects.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a first schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a second schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a third schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a fourth schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of carrier aggregation
  • FIG. 8 is a first schematic flowchart of a BWP handover provided by an embodiment of this application.
  • FIG. 9 is a second schematic flowchart of BWP switching provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of a deactivation process provided by an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of a deactivation process provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram 3 of a BWP handover process provided by an embodiment of the present application.
  • FIG. 13 is a fourth schematic flowchart of a BWP handover provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram 1 of a communication device provided by an embodiment of the present application.
  • 15 is a second structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 16 is a third structural diagram of a communication device provided by an embodiment of the present application.
  • At least one may also be described as one or more, and the plurality may be two, three, four, or more, which is not limited in this application.
  • BWP Bandwidth part
  • a BWP includes consecutive positive integer resource units, such as consecutive positive integer subcarriers, resource blocks (RB), or resource block groups (RBG).
  • RB resource blocks
  • RBG resource block groups
  • the BWP may be a downlink BWP or an uplink BWP.
  • the uplink BWP is used by the UE to send signals to the base station
  • the downlink BWP is used by the base station to send signals to the UE.
  • the positive integers may be 1, 2, 3 or more, and this application does not limit it.
  • the base station may configure one or more BWPs for the uplink or downlink of the UE, for example, up to 4 BWPs for uplink and up to 4 BWPs for downlink. These BWPs can be called UE-specific BWPs. The number of BWP configured in the uplink and downlink may be the same or different. One or more BWPs configured by the base station for the UE may be referred to as UE-configured BWPs.
  • one or more uplink BWPs configured by the base station for the UE may be referred to as UE uplink configuration BWPs, and one or more downlinks configured by the base station for the UE
  • the BWP may be referred to as the downlink configuration BWP of the UE.
  • the numerology of the BWP can be independently configured through pre-configuration or the base station sends signaling to the UE.
  • the numerology of different BWP may be the same or different.
  • the signaling may be semi-static signaling and/or dynamic signaling.
  • the semi-static signaling may be radio resource control (radio resource control (RRC) signaling, broadcast message, system message, or MAC control element (CE).
  • RRC radio resource control
  • CE MAC control element
  • the broadcast message may include the remaining minimum system message (remaining minimum system information, RMSI).
  • RMSI remaining minimum system information
  • the dynamic signaling may be physical layer signaling.
  • the physical layer signaling may be signaling carried by the physical control channel or signaling carried by the physical data channel.
  • the physical data channel may be a downlink channel, such as a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • the physical control channel may be a physical downlink control channel (physical downlink control channel, PDCCH), an enhanced physical downlink control channel (enhanced physical downlink control channel, EPDCCH), a narrowband physical downlink control channel (narrowband physical downlink control channel, NPDCCH), or a machine type Communication physical downlink control channel (machine type communication (MTC) physical downlink control channel (MPDCCH)).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • NPDCCH narrowband physical downlink control channel
  • MTC machine type communication
  • MPDCCH machine type Communication physical downlink control channel
  • DCI downlink control information
  • the physical control channel may also be a physical sidelink control channel (physical sidelink control channel), and the signaling carried by the physical sidelink control channel may also be called sidelink control information (SCI).
  • the base station may activate only one BWP in the configuration BWP of the UE for the UE, and the UE and the base station may only send and receive data on the activated BWP.
  • the UE only sends a physical uplink control channel (PUCCH) and/or a physical uplink shared channel (PUSCH) to the base station in the activated uplink BWP, and the base station only transmits to the base station in the activated downlink BWP.
  • the UE transmits PDCCH and/or PDSCH.
  • Default BWP A type of BWP configured by the base station for the terminal.
  • the base station may configure a BWP inactivity timer (bwp-InactivityTimer) for the terminal. If the terminal detects the uplink scheduling or downlink authorization of the terminal during the running period of the timer, the uplink scheduling or downlink authorization may be Carried by PDCCH, bwp-InactivityTimer will be started or restarted; if the terminal does not detect uplink scheduling or downlink authorization while the timer is running, when the bwp-InactivityTimer times out, the UE is currently activated on BWP in this cell Will switch to default BWP.
  • bwp-InactivityTimer BWP inactivity timer
  • the initial (active) downlink BWP can be used as the default BWP.
  • the initial activation of the BWP may refer to the BWP used for data reception or transmission before the terminal device receives the dedicated BWP configuration information, and is generally configured through a system message.
  • the initial downlink activated BWP may refer to the BWP used to receive system messages.
  • the initial activation of BWP may refer to BWP used for the terminal to send a physical random access channel (PRACH) to the base station.
  • PRACH physical random access channel
  • the initial activation of BWP may include initial activation of downlink BWP (initial downlink BWP) and initial activation of uplink BWP (initial uplink BWP).
  • initial downlink BWP initial downlink BWP
  • uplink BWP initial uplink BWP
  • only the BWP is switched to the default BWP as an example, and the case where the BWP is switched to the initially activated BWP will not be repeated. Switching from activated BWP to default BWP can avoid the inconsistency between the base station and the terminal caused by the loss of the DCI of the UE, and improve the robustness of BWP switching or data scheduling.
  • the default BWP may be a small bandwidth BWP or a large bandwidth BWP.
  • the terminal may switch to the default small bandwidth BWP to work, thereby reducing power consumption.
  • Activating the BWP may refer to the BWP used for data reception or transmission after the terminal device receives the dedicated BWP configuration information.
  • the dedicated BWP configuration information may be RRC.
  • the dedicated BWP configuration information may be RRC.
  • up to 4 BWPs can be configured in a serving cell (the initial activation BWP is not included in the 4 BWPs). At any time, only one BWP can be activated.
  • the activated BWP may be called an activated BWP.
  • the bandwidth of the initially activated BWP is smaller than the bandwidth of the activated BWP.
  • the large-bandwidth BWP may be a non-default (default) BWP or a default BWP. Of course, it may also have other names. The embodiment of the present application does not limit the name.
  • the access network device can flexibly configure BWP with different bandwidths for the terminal to adapt to different service requirements and different application scenarios of the terminal. In scenarios where the terminal traffic is large, the access network device can configure the terminal with a large bandwidth BWP to provide the terminal with a higher data transmission rate.
  • Small bandwidth BWP In the embodiment of the present application, the small bandwidth BWP may also be referred to as an energy-saving BWP, etc. The embodiment of the present application does not limit the name.
  • the access network device can configure a small bandwidth BWP for the terminal, so that the task of radio frequency processing and baseband processing of the terminal can be reduced, thereby reducing the power consumption of the terminal.
  • the default BWP mentioned in the embodiment of the present application generally refers to a small-bandwidth BWP.
  • the default small-bandwidth BWP can be used to simultaneously improve the robustness of terminal BWP switching and reduce terminal power consumption.
  • BWP handover of the terminal means that the activated BWP of the terminal changes.
  • a change in the activated BWP may cause the bandwidth of the BWP to change.
  • the BWP of the terminal is switched from a large bandwidth BWP to a small bandwidth BWP.
  • activating BWP changes may cause the BWP numerology to change.
  • the change of the activated BWP may cause the change of the BWP's numerology and bandwidth.
  • BWP switching and BWP changing have the same meaning, and this embodiment of the present application does not limit this.
  • the terminal's BWP fallback refers to the terminal's BWP switching to the default (default BWP) BWP.
  • the above BWP inactivity timer (bwp-InactivityTimer) may also be called a back-off timer.
  • the way in which the terminal activates the BWP or the working BWP switches includes but is not limited to the following:
  • the access network device sends downlink control information (DCI) to the terminal.
  • DCI includes but is not limited to DCI format 0_1 (DCI format 0_1, referred to as DCI0_1) and DCI format 1_1 (DCI format 1_1, referred to as DCI1_1).
  • the DCI carries the BWP identification (ID). If the uplink (uplink, UL) or (downlink, DL) BWP indicated in DCI0_1/1_1 is different from the currently activated UL/DL BWP, then the DCP indicated BWP is set to the activated UL/DL BWP.
  • the access network device configures four BWPs for the terminal, namely BWP1 with BWP ID 1, BWP2 with BWP ID 2, BWP3 with BWP ID 3, BWP4 with BWP ID 4, and the terminal is currently working On the activated BWP1.
  • the access network device sends DCI to the terminal, and the BWP ID carried by the DCI is 3.
  • the terminal may set the BWP3 indicated by the DCI as the activated uplink or downlink BWP.
  • the DCI may also instruct the terminal to switch to the default BWP.
  • Method 2 The base station sends the MAC to the terminal, and the terminal receives the MAC and determines whether to perform BWP switching according to the MAC.
  • Method 3 The base station sends RRC signaling to the terminal, and the terminal receives RRC signaling, and determines whether to perform BWP handover according to the RRC signaling.
  • the terminal may also fall back to the default BWP.
  • Cell deactivation also called carrier deactivation: The access network device can configure multiple BWPs for each cell. There is an activated BWP in the activated state cell, so that the terminal can communicate through the activated cell or the activated BWP in the activated cell. Conversely, there is no activated BWP in the deactivated cell.
  • Carrier aggregation to aggregate and use multiple spectrums.
  • Carrier aggregation can be divided into inter-band CA (inter-band CA) and intra-band CA (intra-band CA).
  • In-band carrier aggregation can be further divided into in-band continuous carrier aggregation and in-band non-band CA Continuous carrier aggregation.
  • FIG. 7 (a) in FIG. 7 is inter-band CA.
  • inter-band CA multiple carriers aggregated (also referred to as cell in this text), that is, cell1 and cell2 belong to different frequency bands (band) .
  • 7(b) is in-band continuous carrier aggregation.
  • multiple aggregated cells such as cell1 and cell2 belong to the same band, and the spectrum of cell1 and the spectrum of cell2 are adjacent.
  • 7(c) is in-band non-continuous carrier aggregation.
  • multiple aggregated cells, such as cell1 and cell2 belong to the same band, and the spectrum of cell1 and the spectrum of cell2 are discontinuous, that is, cell1’s There are other frequencies or frequency bands between the frequency spectrum and the frequency spectrum of cell2.
  • CA carrier aggregation
  • the principle of CA technology is to aggregate two or more carrier units (CC) to support a larger transmission bandwidth.
  • One cell may include one downlink carrier unit and one uplink carrier unit, or one cell may include one downlink carrier unit and two uplink carrier units, or one cell may include only one downlink carrier unit.
  • One downlink carrier unit corresponds to one cell, and one downlink carrier unit can be equivalent to one cell.
  • the communication method provided by the embodiments of the present application can be applied to the carrier aggregation scenario. Referring to FIG. 1, it is the architecture of a communication system to which the embodiments of the present application are applicable.
  • the communication system includes an access network device, and one or more terminals that communicate with the access network device (eg, terminal 1 to terminal 6 in FIG. 1).
  • the access network device involved in the embodiments of the present application is a device deployed on a wireless access network to provide wireless communication functions.
  • the access network device may refer to a device that communicates with the wireless terminal through one or more cells on the air interface of the access network, where the device that implements the function of the access network device may be the access network device or It is a device that supports the access network device to achieve this function (such as a chip in the access network device).
  • the access network device can perform attribute management on the air interface.
  • the base station equipment can also coordinate attribute management of the air interface.
  • Access network equipment includes various forms of macro base stations, micro base stations (also known as small stations), relay equipment such as relay stations or chips of relay equipment, transmission and reception points (TRP), evolved network nodes (evolved Node B, eNB), next-generation network node (g Node B, gNB), evolved Node B (ng-eNB) connected to the next-generation core network, etc.
  • the access network equipment may be a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the access network equipment may be a baseband pool (BBU) and RRU.
  • the terminal involved in the embodiments of the present application may be a wireless terminal or a wired terminal.
  • a wireless terminal Including but not limited to in-vehicle devices, wearable devices, computing devices, chips built into computing devices or other processing devices connected to wireless modems; may also include cellular phones, personal communication services (PCS) phones , Cordless phones, session initiation protocol (SIP) phones, smart phones, smart phones, personal digital assistant (PDA) computers, tablet computers, laptop computers, wireless modems (modem), handheld device (handheld), wireless local loop (wireless local loop, WLL) station.
  • PCS personal communication services
  • SIP session initiation protocol
  • PDA personal digital assistant
  • modem modem
  • handheld device handheld
  • wireless local loop wireless local loop
  • the wireless terminal may also be a subscriber unit (SU), a subscriber station (SS), a mobile station (MB), a mobile station (mobile), a remote station (RS), a remote terminal (RS) remote terminal, RT, user terminal (UT), terminal equipment (user), user equipment (UD), user equipment (UE), wireless data card, user unit (subscriber unit), machine type communication (machine type) Communication (MTC) terminal, terminal device, customer terminal equipment (CPE), access terminal (AT), access point (AP), user agent ( user agents, UA) etc.
  • the device that realizes the function of the terminal may be a terminal, or may be an device that supports the terminal to realize the function (such as a chip in the terminal).
  • the devices mentioned above are collectively referred to as terminals.
  • the above communication system can be applied to the current long term evolution (LTE) or advanced long term evolution (LTE-Advanced) system, and can also be applied to the 5th generation (5G) currently under development In the network or other networks in the future, this embodiment of the present application does not specifically limit this.
  • LTE long term evolution
  • LTE-Advanced advanced long term evolution
  • 5G 5th generation
  • the access network device and the terminal in the above communication system may correspond to different names. Those skilled in the art can understand that the name does not limit the device itself.
  • the 5G network can also be called new radio (new radio (NR)).
  • FIG. 2 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device 200 includes at least one processor 201, a communication line 202, a memory 203, and at least one communication interface 204.
  • the memory 203 may also be included in the processor 201.
  • the processor 201 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more used to control the execution of the program program of the present application integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path to transfer information between the above components.
  • the communication interface 204 is used to communicate with other devices.
  • the communication interface may be a module, a circuit, a bus, an interface, a transceiver, or other devices that can implement a communication function, and are used to communicate with other devices.
  • the transceiver may be an independently set transmitter, which may be used to send information to other devices, or the transceiver may be an independently set receiver, which is used to The device receives the information.
  • the transceiver may also be a component that integrates the functions of sending and receiving information. The embodiments of the present application do not limit the specific implementation of the transceiver.
  • the memory 203 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), a read-only compact disc (compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Access to any other media, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store computer execution instructions for implementing the solution of the present application, and the processor 201 controls the execution.
  • the processor 201 is used to execute computer-executed instructions stored in the memory 203, thereby implementing the communication method provided by the following embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, instructions, computer programs, or other names, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 2. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 200 may further include an output device 205 and an input device 206.
  • the output device 205 communicates with the processor 201 and can display information in various ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 206 communicates with the processor 201 and can receive user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above-mentioned communication device 200 may be a general-purpose device or a dedicated device.
  • the embodiment of the present application does not limit the type of the communication device 200.
  • the terminal or the access network device may be a device with a similar structure as shown in FIG. 2.
  • an embodiment of the present application provides a communication method, referring to FIG. 3, the method includes the following steps:
  • the access network device sends information of one or more cell groups to the terminal.
  • the terminal receives information of one or more cell groups from the access network device.
  • the access network device may be configured with one or more cell groups.
  • the access network device divides different cells into different cell groups according to the service type and traffic volume of the cell.
  • a cell group (also referred to as a carrier group) includes a first cell (also referred to as a first carrier) and at least one second cell (also referred to as a second carrier).
  • the first cell in a cell group may be a primary cell (primary cell, PCell) (also called primary carrier), or the first cell may be a secondary cell (secondary cell) (also called secondary cell) Carrier).
  • the cells other than the first cell configured for the terminal in a cell group are second cells.
  • the PCell is not configured as the second cell, that is, the second cell may be the secondary cell.
  • the small bandwidth BWP or default BWP of each cell in the cell group is considered to be a BWP set or a BWP bundle (BWP bundle).
  • This BWP set may be called a second type BWP group or a second BWP Group, the specific name is not limited.
  • the BWP in the second BWP group is called the second BWP.
  • the activated BWPs on multiple cells can also be combined or regarded as a first BWP combination.
  • the BWP in the first BWP combination is called the first BWP.
  • the first BWP of the first cell is switched to the second BWP
  • the first BWP of the second cell is also switched to the second BWP at the same time, where the second BWP of the first cell and the second cell may be the default BWP on each cell.
  • the BWP of the terminal other than the second BWP is the first BWP of the terminal.
  • the communication method in the embodiment of the present application will be described below mainly by configuring a cell group and using an access network device as a base station as an example.
  • the access network device determines the BWP switching or deactivation state of the second cell in the cell group according to the BWP switching or deactivation state of the first cell in the cell group.
  • the BWP in the first cell when referring to the upper BWP of the first cell, the BWP in the first cell, or the BWP of the first cell, it refers to the BWP of the terminal in the first cell.
  • the second cell when referring to the second cell
  • the above BWP, BWP in the second cell, or BWP of the second cell refers to the BWP of the terminal in the second cell, which is described here in a unified manner, and will not be described in detail below.
  • the access network device determines the BWP handover of the second cell in the cell group according to the BWP handover in the first cell of the cell group. Alternatively, the access network device determines the deactivation state of the second cell in the cell group according to the deactivation state of the first cell in the cell group. Alternatively, the access network device determines the deactivation state of the second cell in the cell group according to the handover of the BWP of the first cell in the cell group.
  • the terminal determines the BWP switching or deactivation state of the second cell in the cell group according to the BWP switching or deactivation state of the first cell in the cell group.
  • S302 and S303 are performed simultaneously (for example, in the same subframe, slot, or symbol).
  • the terminal determines the BWP handover in the second cell in the cell group according to the BWP handover in the first cell in the cell group. Or, the terminal determines the deactivation state of the second cell in the cell group according to the deactivation state of the first cell in the cell group. Alternatively, the terminal determines the deactivation state of the second cell in the cell group according to the handover of the BWP of the first cell in the cell group.
  • S302 may include, but is not limited to, the following implementation methods:
  • the access network device determines the BWP handover of the second cell in the cell group according to the BWP handover in the first cell of the cell group.
  • S302 may be implemented as S3021. If the access network device determines to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell, the access network device switches the cell group The BWP of the middle second cell is switched from the first BWP to the second BWP. In this scenario, the working BWP or currently activated BWP of the terminal is switched from the first BWP to the second BWP.
  • the BWP in the cell may also be described as the BWP of the cell, which is described here in a unified manner.
  • S303 can be implemented as S3031. If the terminal determines to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell, the terminal changes the BWP of the second cell in the cell group Switch from the first BWP to the second BWP.
  • S3031 and S3021 may be executed simultaneously (for example, in the same subframe, slot, or symbol).
  • the first BWP is a large-bandwidth BWP or non-default BWP
  • the second BWP is a small-bandwidth BWP or default BWP
  • the first BWP is a small-bandwidth BWP or default BWP
  • the second BWP is a large-bandwidth BWP or non-default BWP.
  • the second BWP is a small-bandwidth BWP.
  • S3021 may be implemented as follows: when the access network device determines that the BWP of the first cell needs to be switched from the large bandwidth BWP to the small bandwidth BWP, the access network device also switches the BWP of the second cell in the cell group from the large bandwidth BWP to the small Bandwidth BWP.
  • cell 1 is the first cell in the cell group
  • cell 2 is the second cell in the cell group. If it is determined to switch the BWP of cell 1 to the small bandwidth BWP3 of cell 1, correspondingly, The BWP of cell 2 is switched to the small bandwidth BWP6 of cell 2.
  • the terminal determines that the BWP of the first cell needs to be switched from the large bandwidth BWP to the small bandwidth BWP, the terminal also switches the BWP of the second cell in the cell group from the large bandwidth BWP to the small bandwidth BWP.
  • the access network device or terminal switches the BWP of the first cell from the first BWP of the first cell to the second BWP of the first cell in at least one of the following ways, where the first BWP may be a large-bandwidth BWP.
  • the second BWP may be a small bandwidth BWP, such as default BWP; exemplary, the first BWP may also be a small bandwidth BWP, and the second BWP is a large bandwidth BWP; or, exemplary, the first BWP and the second BWP
  • numerology is a parameter used by the communication system.
  • Communication systems eg 5G
  • numerology can be defined by one or more of the following parameter information: but not limited to: subcarrier spacing, cyclic prefix (CP), time unit, bandwidth, etc.
  • numerology can be defined by subcarrier spacing and CP.
  • the subcarrier spacing may be an integer greater than or equal to 0. For example, it may be 15 kHz (kilohertz), 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, or the like. Different subcarrier spacing can be an integer multiple of 2. Of course, it can be set to other values.
  • CP information may include CP length and/or CP type.
  • the CP may be a normal CP (normal CP, NCP), or an extended CP (extended CP, ECP).
  • the time unit is used to represent the time unit in the time domain. For example, it can be a sampling point, a symbol, a mini-slot, a time slot, a subframe, or a radio frame.
  • the time unit information may include the type, length, or structure of the time unit.
  • the bandwidth can be a continuous resource in the frequency domain.
  • Bandwidth may sometimes be called a bandwidth part (BWP), carrier bandwidth part (carrier bandwidth) part, subband bandwidth (subband) bandwidth, narrowband (narrowband) bandwidth, or other names. Be limited.
  • a BWP contains continuous K (K is a positive integer) subcarriers; or, a BWP is a frequency domain resource where N non-overlapping continuous resource blocks (RBs) are located, and the subcarrier spacing of the RB can be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz, or other values; or, one BWP is the frequency domain resource where M non-overlapping continuous resource block groups (resources block groups, RBGs) are located, and one RBG includes P consecutive RB, the subcarrier spacing of the RB can be 15kHz, 30kHz, 60kHz, 120kHz, 240kHz, 480kHz or other values, such as an integer multiple of 2. Among them, P is a positive integer.
  • Method 1 When the BWP fallback timer of the first cell in the cell group expires, the terminal determines that the BWP of the first cell needs to be switched from a large-bandwidth BWP to a small-bandwidth BWP.
  • Method 2 The base station sends DCI to the terminal, and the terminal receives the DCI on the large-bandwidth BWP of the first cell. If the BWP ID carried by the DCI is the ID of the small-bandwidth BWP, the terminal determines that the BWP of the first cell needs to be changed from the large-bandwidth BWP Switch to small bandwidth BWP.
  • the terminal or the base station can also determine whether the BWP of the first cell needs to be switched from a large-bandwidth BWP to a small-bandwidth BWP in other ways.
  • the base station indicates whether the terminal needs to switch the BWP of the first cell from RRC signaling or MAC.
  • the large-bandwidth BWP is switched to the small-bandwidth BWP, which is not limited in the embodiment of the present application.
  • the terminal does not detect the BWP on the first cell (such as cell 1).
  • the terminal switches the BWP of the first cell (cell 1) to a small bandwidth BWP, and at the same time, the terminal also switches the BWP of the second cell (such as cell 2) in the cell group from the non-default BWP to the default BWP.
  • the BWP fallback timer of the cell can be stopped.
  • the small bandwidth BWP of the first cell can be used for communication between the terminal and the base station. It can be seen that, compared to the solution of FIG. 8, the terminal can start the BWP handover process of the second cell ahead of time T, so that the time that the terminal works on the small bandwidth BWP of the second cell has increased, which can reduce the power consumption of the terminal.
  • the terminal Take BCI switching through DCI as an example.
  • the terminal receives DCI from the base station and the DCI instructs to switch the BWP of cell 1 to a small bandwidth BWP
  • the terminal switches the BWP of cell 1 to a small bandwidth BWP
  • the terminal switches the BWP of the second cell (such as cell 2) in the cell group Also switch from non-default BWP to default BWP.
  • the terminal when the terminal receives the MAC from the base station and the MAC instructs to switch the BWP of cell 1 to a small bandwidth BWP, the terminal switches the BWP of cell 1 to a small bandwidth BWP, and at the same time, the terminal will The BWP of the second cell (such as cell 2) in the cell group is also switched from the non-default BWP to the default BWP.
  • the terminal when the terminal receives RRC signaling from the base station and the RRC signaling instructs to switch the BWP of the cell 1 to the small bandwidth BWP, the terminal switches the BWP of the cell 1 to the small bandwidth BWP.
  • the terminal switches the BWP of the second cell (such as cell 2) in the cell group from the non-default BWP to the default BWP.
  • the BWP of the second cell in the same cell group is switched from the large bandwidth BWP to the small bandwidth BWP
  • the BWP of the second cell in the same cell group is also switched from the large bandwidth BWP to the small bandwidth BWP.
  • switching the BWP of the first cell to a small-bandwidth BWP indicates that the terminal's traffic is relatively small.
  • switching the BWP of the second cell in the same cell group to a small-bandwidth BWP can reduce the terminal's RF processing and baseband processing. The amount of tasks, thereby reducing the power consumption of the terminal.
  • the second BWP is the default BWP.
  • S3021 may be implemented as follows: when the access network device determines that the BWP of the first cell needs to be switched from the non-default BWP to the default BWP, the access network device also switches the BWP of the second cell in the cell group from the non-default BWP to the default BWP .
  • cell 1 is the first cell in the cell group
  • cell 2 is the second cell in the cell group. If it is determined to switch the BWP of cell 1 to the default BWP3 of cell 1, correspondingly, change The BWP of cell 2 is switched to the default BWP6 of cell 2.
  • the access network device only needs to instruct to switch the BWP of the first cell from the currently activated BWP (non-default BWP) to the default BWP, which also means to instruct the BWP of the second cell in the cell group from the currently activated BWP (non-default BWP) Switch to default BWP without additional signaling.
  • the indication information sent by the access network device may be referred to as first indication information.
  • the first indication information instructs the first cell to perform BWP handover.
  • the sending method of the first indication information includes the DCI, MAC, CE, and RRC described above. There is no restriction on which method.
  • the terminal When the terminal receives the first indication information sent by the access network device, it also switches the BWP of the second cell from the currently activated BWP (non-default BWP) to the default BWP, without requiring the access network device to send additional signaling .
  • the activated BWP bandwidth of the first cell is greater than the default BWP bandwidth and the activated BWP bandwidth of the second cell is greater than the default BWP bandwidth
  • this embodiment can speed up the BWP switching timing of the second cell and save power consumption for the terminal.
  • the signaling overhead of the access network equipment can be saved.
  • the terminal determines that the BWP of the first cell needs to be switched from the non-default BWP to the default BWP, the terminal also switches the BWP of the second cell in the cell group from the non-default BWP to the default BWP.
  • the base station indicates whether the terminal needs to switch the BWP of the first cell from the non-default BWP to the default BWP through RRC signaling, MAC, CE, or BWP fallback timer, or DCI. This embodiment of the present application does not limit this.
  • the second BWP is a large bandwidth BWP.
  • S3021 may be implemented as follows: when the access network device determines that the BWP of the first cell needs to be switched from the small bandwidth BWP to the large bandwidth BWP, the access network device also switches the BWP of the second cell in the cell group from the small bandwidth BWP to the large bandwidth BWP .
  • the terminal when the terminal receives the indication information sent by the base station, if the indication information indicates that the terminal needs to switch the BWP of the first cell from the small bandwidth BWP to the large bandwidth BWP, the terminal also switches the BWP of the second cell in the cell group from the small bandwidth BWP Maximum bandwidth BWP.
  • the base station sends DCI for the first cell to the terminal.
  • the terminal can determine whether to switch the BWP of the first cell to a large-bandwidth BWP according to the BWP ID in the DCI.
  • the terminal or the base station may also adopt other methods to determine whether to switch the BWP of the first cell to a large-bandwidth BWP, which will not be repeated here.
  • switching the BWP of the second cell from the small bandwidth BWP to the large bandwidth BWP may be implemented as: switching the BWP of the second cell from the small bandwidth BWP to the pre-configured large bandwidth BWP.
  • the pre-configured large-bandwidth BWP may be pre-configured by the base station through RRC signaling or other signaling to the terminal, or may be a protocol pre-configured BWP, for example, may be the first activated BWP configured by the base station for the UE, or may be dedicated to the terminal Any one of BWP, etc. For example, referring to FIG.
  • the terminal currently works on the small bandwidth BWP3 of the cell 1, and if the BWP of the cell 1 needs to be switched to the large bandwidth BWP, the terminal can switch the BWP of the cell 1 from the BWP3 to the pre-configured large bandwidth BWP1 .
  • the base station switches the BWP of cell 1 from the small bandwidth BWP3 to the pre-configured large bandwidth BWP1. In this way, the BWP1 of cell 1 can be used for communication between the base station and the terminal.
  • switching the BWP of the second cell from the small bandwidth BWP to the large bandwidth BWP may also be implemented as: switching the BWP of the second cell from the small bandwidth BWP to the previously used large bandwidth BWP.
  • the terminal currently works on the small bandwidth BWP6 of the cell 2, and before that, the terminal works on the large bandwidth BWP5 of the cell 2.
  • the terminal can switch the BWP of the cell 2 from the small bandwidth BWP6 to the previously used large bandwidth BWP5.
  • the base station switches the BWP of the cell 2 from the small bandwidth BWP6 to the large bandwidth BWP5 used in the previous communication with the terminal.
  • switching the BWP of the second cell from the small bandwidth BWP to the large bandwidth BWP may also be implemented as follows: the access network device sends a first handover indication for the second cell in the cell group to the terminal, and the first handover indication carries Target large bandwidth BWP.
  • the terminal receives the first handover instruction from the second cell of the cell group, and according to the first handover instruction, switches the BWP of the second cell from the small bandwidth BWP to the target large bandwidth BWP.
  • the base station also switches the BWP of the second cell from the small bandwidth BWP to the large bandwidth BWP.
  • the first switching indication may be DCI
  • the DCI carries the identifier of the BWP to be switched to, that is, the BWP ID of the target large-bandwidth BWP.
  • the second cell in the cell group can flexibly indicate the target large bandwidth BWP that the terminal needs to switch to, so that the terminal flexibly switches to the required large bandwidth BWP for communication.
  • the BWP of the first cell in the cell group is switched from the small bandwidth BWP to the large bandwidth BWP
  • the BWP of the second cell in the same cell group is also switched from the small bandwidth BWP to the large bandwidth BWP.
  • the BWP of the first cell is switched to A large-bandwidth BWP indicates that the terminal has a large service volume.
  • switching the BWP of the second cell in the same cell group to a large-bandwidth BWP can increase the available bandwidth resources of the terminal and improve the data transmission performance of the terminal.
  • the second BWP is the non-default BWP.
  • S3021 may be implemented as follows: when the access network device determines that the BWP of the first cell needs to be switched from the default BWP to the non-default BWP, the access network device also switches the BWP of the second cell in the cell group from the default BWP to the non-default BWP .
  • the terminal determines that the BWP of the first cell needs to be switched from the default BWP to the non-default BWP, the terminal also switches the BWP of the second cell in the cell group from the default BWP to the non-default BWP.
  • the base station sends the downlink authorized DCI for the physical downlink shared channel (PDSCH) transmission of the first cell or the uplink scheduling DCI for the physical uplink shared channel (physical uplink shared channel, PUSCH) transmission to the terminal.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the terminal or the base station may also adopt other methods to determine whether to switch the BWP of the first cell to a non-default BWP, which will not be repeated here.
  • switching the BWP of the second cell from the default BWP to the non-default BWP may be implemented as: switching the BWP of the second cell from the default BWP to a pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station through RRC signaling or other signaling to the terminal, or may be a protocol pre-configured BWP, for example, may be the first activated BWP configured by the base station for the UE, or may be dedicated to the terminal Any one of BWP, etc.
  • the pre-configured non-default BWP may be pre-configured by the base station through RRC signaling or other signaling to the terminal, or may be a protocol pre-configured BWP, for example, may be the first activated BWP configured by the base station for the UE, or may be dedicated to the terminal Any one of BWP, etc. For example, referring to FIG.
  • the terminal currently works on the default BWP3 of cell 1, and if the BWP of cell 1 needs to be switched to a non-default BWP, the terminal may switch the BWP of cell 1 from BWP3 to a pre-configured non-default BWP1.
  • the base station switches the BWP of cell 1 from the default BWP3 to the pre-configured non-default BWP1. In this way, non-default BWP1 can be used for communication between the base station and the terminal.
  • switching the BWP of the second cell from the default BWP to the non-default BWP may also be implemented as: switching the BWP of the second cell from the default BWP to the previously used non-default BWP.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the terminal can switch the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used previously.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • switching the BWP of the terminal in the second cell from the default BWP to the non-default BWP may also be implemented as follows: the access network device sends a first handover indication for the second cell in the cell group to the terminal, the first handover Indicates to carry the target non-default BWP.
  • the terminal receives the first handover instruction from the second cell of the cell group, and according to the first handover instruction, switches the BWP of the second cell from the default BWP to the target non-default BWP.
  • the base station also switches the BWP of the second cell from the default BWP to the target non-default BWP of the terminal in the second cell.
  • the first switching indication may be DCI
  • the DCI carries the identifier of the BWP to be switched to, that is, the BWP ID of the target non-default BWP.
  • the second cell in the cell group can flexibly indicate the target non-default BWP that the terminal needs to switch to, so that the terminal flexibly switches to the required non-default BWP for communication.
  • the BWP of the first cell in the cell group is switched from the default BWP to the non-default BWP
  • the BWP of the second cell in the same cell group is also switched from the default BWP to the non-default BWP.
  • the access network device determines the deactivation state of the second cell in the cell group according to the deactivation state of the first cell in the cell group.
  • S302 may also be implemented as S3022. If the access network device determines to deactivate the first cell in the cell group, the access network device deactivates the second cell in the cell group.
  • S303 can be implemented as S3032. If the terminal determines to deactivate the first cell in the cell group, the terminal deactivates the second cell in the cell group.
  • S3032 and S3022 are executed simultaneously (for example, in the same subframe, slot, or symbol).
  • the access network device sends the first indication message to the terminal.
  • the terminal receives the first indication message from the access network device, and the indication message is used to enable the deactivation of the second cell in the cell group when the first cell in the cell group is deactivated.
  • the access network device may send a deactivation instruction to the terminal to indicate whether to deactivate the first cell.
  • Deactivation instructions include, but are not limited to, media access control control unit (medium access control element (MAC) CE), radio resource control (radio resource control (RRC), DCI).
  • MAC media access control control unit
  • RRC radio resource control
  • DCI digital signal processor
  • Method 1 The access network device configures a deactivation timer (scell deactivation timer) for the terminal.
  • a deactivation timer for the terminal.
  • the terminal determines that the first cell needs to be deactivated.
  • the terminal sends a first deactivation message to the access network device, so that the access network device learns that the first cell needs to be deactivated.
  • Manner 2 The base station sends DCI for the first cell to the terminal.
  • the terminal receives the DCI for the first cell, and determines that the first cell needs to be deactivated according to the DCI.
  • Method 3 The base station sends the MAC for the first cell to the terminal, and the terminal receives the MAC for the first cell, and determines that the first cell needs to be deactivated according to the MAC.
  • Manner 4 The base station sends RRC signaling for the first cell to the terminal.
  • the terminal receives RRC signaling for the first cell, and determines that the first cell needs to be deactivated according to the RRC signaling.
  • the terminal After receiving the deactivation instruction of the first cell in the cell group or the deactivation timer of the first cell from the access network device, the first cell and the second cell in the cell group are deactivated.
  • the access network device determines to deactivate the second cell in the cell group. Specifically, after sending the deactivation instruction for the first cell in the cell group to the terminal, the access network device sends a deactivation instruction for the second cell in the cell group to the terminal to notify the terminal that the second cell in the cell group needs to be deactivated activation.
  • the terminal determines to deactivate the first cell in the cell group. Specifically, after receiving the deactivation instruction for the first cell in the cell group from the access network device, the terminal receives the deactivation instruction for the second cell in the cell group from the access network device to determine that the cell group needs to be deactivated The second cell is deactivated.
  • the terminal may also stop sending channel state information (CSI) for the first cell and/or CSI for the second cell.
  • CSI channel state information
  • the terminal receiving the deactivation instruction from the access network device may refer to that the terminal receives from the access network device and successfully parses the deactivation instruction.
  • Case 1 Corresponding to the above method 1, that is, the above deactivation instruction is that the deactivation timer times out.
  • the terminal stops sending CSI for the first cell and/or CSI for the second cell in the time slot where the deactivation timer expires.
  • the deactivation indication is DCI. Since DCI does not need to be carried by PDSCH, the terminal does not need PDSCH processing after receiving DCI, and DCI usually does not need to go through layer 2 (RLC layer) and layer 3 (RRC layer) processing, so it can be considered that the terminal receives DCI After that, DCI can be resolved in a short time.
  • the access network device sends DCI to the terminal, and the terminal stops sending CSI in the time slot when the DCI is received from the access network device.
  • the deactivation instruction is MAC CE.
  • the terminal receives the MAC from the access network device, it successfully resolves the MAC time slot and stops sending CSI.
  • the time slot at which the terminal successfully parses the MAC CE and stops sending CSI satisfies the following relationship:
  • n1 is the time slot at which the terminal stops sending CSI
  • n is the time slot at which the access network device sends MAC CE
  • N is the PDSCH processing time.
  • the unit of this processing time is orthogonal frequency division multiplexing (orthogonal frequency division multiplexing) multiplexing (OFDM) symbols
  • 14 is the number of OFDM symbols contained in a slot
  • T sf is the absolute time length of one subframe on the cell (or carrier) where the MAC CE is located
  • 0.5 is the layer 2 of the MAC CE ( Layer 2) processing time
  • the unit is ms. Round up symbol. Referring to FIG.
  • the access network device sends a deactivation instruction (that is, MAC CE) to the terminal, and the terminal receives and parses the MAC CE.
  • the terminal may report CSI to the access network device through the first cell and the second cell, respectively.
  • the terminal stops reporting CSI.
  • the time slot at which the terminal stops reporting CSI is the same as the time slot at which deactivation of the first cell is started.
  • the time slot at which the terminal stops reporting CSI and the time slot at which the deactivation of the second cell starts is Same time slot.
  • the terminal stops reporting CSI after deactivation is completed.
  • the terminal can stop reporting CSI in time.
  • the deactivation indication is RRC signaling.
  • the terminal receives RRC signaling from the access network device, that is, the slot that successfully parses the RRC signaling stops sending CSI.
  • the terminal successfully parses RRC signaling and stops sending CSI time slots that satisfy the following relationship:
  • n2 is the time slot at which the terminal stops sending CSI
  • n is the time slot at which the access network device sends RRC signaling
  • N is the PDSCH processing time.
  • the unit of this processing time is orthogonal frequency division multiplexing (orthogonal frequency multiplexing) Division multiplexing (OFDM) symbol
  • 14 is the number of OFDM symbols contained in 1 slot
  • T sf is the absolute time length of one subframe on the cell (or carrier) where MAC CE is located
  • t layer2 , 3 are MAC CE
  • the processing time of layer 2 (layer 2) and layer 3 (layer 3) is in ms. Round up symbol.
  • the terminal can stop reporting the CSI after receiving the deactivation instruction, that is, the time slot of the deactivation instruction is successfully parsed, without having to wait for the deactivation to take effect, and then stop reporting the CSI.
  • the deactivation instruction after the deactivation instruction is successfully parsed, The cell is not deactivated immediately, and it is necessary to wait for the deactivation to take effect before stopping reporting the CSI.
  • the power consumption of the terminal is further reduced.
  • the handover of the BWP of the first cell in the cell group determines the deactivation state of the second cell in the cell group.
  • S302 may also be implemented as S3023. If the access network device determines to switch the BWP of the first cell in the cell group from the non-default BWP of the first cell to the default BWP of the first cell, the access network The device deactivates the second cell in the cell group.
  • S303 may be implemented as S3033. If the terminal determines to switch the BWP of the first cell in the cell group from the non-default BWP of the first cell to the default BWP of the first cell, the terminal deactivates the second cell in the cell group.
  • S3023 and S3033 are executed simultaneously (for example, in the same subframe, slot, or symbol, etc.).
  • the access network device sends a second indication message to the terminal.
  • the terminal receives a second indication message from the access network device.
  • the second indication message is used to enable the second cell in the cell group to be deactivated when the non-default BWP of the first cell in the cell group is switched to the default BWP.
  • the indication message includes a 1-bit indicator.
  • the indicator is 0, when the non-default BWP of the first cell in the cell group is not switched to the default BWP, the second cell in the cell group is deactivated, that is, When the BWP of the first cell in the cell group is switched from the non-default BWP to the default BWP, the second cell in the cell group is not deactivated.
  • the indicator is 1, when the non-default BWP of the first cell in the cell group is enabled to be switched to the default BWP, the second cell in the cell group is deactivated.
  • the indication message includes a 2-bit indicator, where one bit is used to enable the BWP back-off timer of the first cell to expire and deactivate the second cell in the cell group, and the other bit is used to enable the slave
  • the first cell receives the DCI
  • the DCI indicates to switch the first cell to the default BWP
  • the second cell in the cell group is deactivated.
  • the indication message includes the indicator 01, 0 means that the BWP back-off timer in the first cell is disabled when the first cell is disabled, and the second cell in the cell group is deactivated, 1 means that the DCI is received when the first cell is received, and When the DCI instructs to switch the first cell to the default BWP, the second cell in the cell group is deactivated.
  • the information configured by the access network device for the terminal is as follows:
  • the indication information may also include indicators of other bit numbers for enabling different functions, so as to associate the BWP handover of the first cell in the cell group with the deactivation state of the second cell in the cell group.
  • the access network device may send a BWP switching instruction to the terminal to indicate whether to switch the BWP of the first cell from the non-default BWP to the default BWP.
  • the BWP switching instruction includes but is not limited to MAC CE, RRC signaling, DCI, or the BWP back-off timer expires.
  • the terminal determines whether to switch the BWP of the first cell to the default BWP according to the BWP switching instruction received from the access network device. For details, refer to the description above, and details are not described here.
  • the terminal After receiving the BWP switching instruction of the first cell in the cell group from the access network device, the BWP of the first cell is switched from the non-default BWP to the default BWP, and the second cell in the same cell go activate.
  • the terminal may also stop sending CSI for the second cell in the cell group.
  • Case 1 In the case where the above BWP handover instruction is that the BWP back-off timer expires, the terminal stops sending CSI for the second cell in the cell group in the time slot where the BWP back-off timer expires.
  • Case 2 In the case where the BWP handover instruction is DCI, the terminal stops sending CSI for the second cell in the cell group in the time slot when the DCI is received from the access network device.
  • Case 3 In the case where the BWP handover instruction is MAC CE, the terminal stops receiving the CSI for the second cell in the cell group after receiving the MAC CE from the access network device, that is, successfully parses the MAC CE slot.
  • the time slot at which the terminal successfully parses the MAC CE and stops sending CSI can be expressed by formula (1).
  • Case 4 In the case where the BWP handover indication is RRC signaling, the terminal receives RRC signaling from the access network device, that is, the slot that successfully parses the RRC signaling stops sending CSI for the second cell in the cell group.
  • the time slot at which the terminal successfully parses RRC signaling and stops sending CSI can be expressed by formula (2).
  • the terminal can stop reporting the CSI after receiving the BWP switching instruction, that is, the time slot in which the BWP switching instruction is successfully parsed, which further reduces the power consumption of the terminal.
  • the terminal receives information of one or more cell groups. For a cell group, the terminal determines the BWP switching or deactivation state of the second cell in the cell group according to the BWP switching or deactivation state of the first cell in the cell group.
  • the BWP switching or deactivation of the second cell is somewhat effective in accordance with. This means that when the terminal is in the energy-saving state on the first cell, the terminal is also in the energy-saving state on the second cell in the same cell group, which can further reduce the power consumption of the terminal.
  • the access network device uses the second cell go activate.
  • the terminal deactivates the second cell.
  • the first timer is a timer with a shorter timing duration among the BWP fallback timer and the deactivation timer.
  • the timing duration of the BWP fallback timer is 2 ms
  • the timing duration of the deactivation timer is 5 ms.
  • the information that the access network equipment configures to the terminal is as follows:
  • the first cell in the cell group is a secondary cell
  • the second cell in the cell group when the second cell in the cell group is deactivated, all cells in the cell group may be deactivated, further reducing the terminal Power consumption.
  • the methods provided by the embodiments of the present application are introduced from the perspective of the access network device, the terminal, and the interaction between the access network device and the terminal.
  • the access network device and the terminal may include a hardware structure and/or a software module, and the above-mentioned various functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module Features. Whether one of the above functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • the device 1300 may be a terminal, or a device capable of supporting the terminal to realize the function of a terminal device, for example, may be a device in the terminal (such as a chip system in the terminal), and the device 1300 may include a receiving module 1310 and a determining module 1320 And a sending module 1330, these modules can perform the corresponding functions performed by the terminal in the foregoing embodiments, specifically:
  • the receiving module 1310 is configured to receive information of one or more cell groups, where a cell group includes a first cell and at least a second cell.
  • the determining module 1320 is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the carrier bandwidth portion BWP of the first cell in the cell group. In this way, by configuring the cell group and associating the BWP switching or deactivation state of the first cell in the cell group with the BWP switching or deactivation state of the second cell in the cell group, the BWP switching or deactivation of the second cell There is a basis. For example, when the terminal is in the energy-saving state on the first cell, the terminal is also in the energy-saving state on the second cell in the same cell group, which can further reduce the power consumption of the terminal.
  • the determining module 1320 is configured to determine the switching or deactivation state of the BWP in the second cell of the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, specifically It may be: if it is determined to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell, then change the BWP of the second cell in the cell group from the second cell A BWP is switched to the second BWP of the second cell.
  • the first BWP is a non-default default BWP
  • the second BWP is a default BWP.
  • the first BWP is the default default BWP
  • the second BWP is the non-default BWP.
  • the determining module 1320 is specifically used to determine to switch the BWP of the first cell in the cell group from the non-default BWP of the first cell to the second For the default BWP of a cell, the BWP of the second cell in the cell group is switched from the non-default BWP of the second cell to the default BWP of the second cell.
  • the BWP of the second cell in the same cell group also falls back from the non-default BWP to the default BWP. It can improve the robustness of terminal BWP switching.
  • the default BWP is a small bandwidth BWP
  • the BWP of the second cell in the same cell group also switches from the large bandwidth BWP to the small bandwidth BWP .
  • switching the BWP of the first cell to a small-bandwidth BWP indicates that the terminal's traffic is relatively small.
  • switching the BWP of the second cell in the same cell group to a small-bandwidth BWP can reduce the terminal's RF processing and baseband processing. The amount of tasks, thereby reducing the power consumption of the terminal.
  • the determining module 1320 is specifically configured to switch the BWP of the first cell in the cell group from the default BWP of the first cell to the first For a non-default BWP of a cell, the BWP of the second cell in the cell group is switched from the default BWP of the second cell to the non-default BWP of the second cell.
  • the BWP of the first cell in the cell group is switched from the default BWP to the non-default BWP
  • the BWP of the second cell in the same cell group is also switched from the default BWP to the non-default BWP. It can increase the available bandwidth resources of the terminal and improve the data transmission performance of the terminal.
  • the non-default BWP is a pre-configured BWP, or the non-default BWP used the previous time.
  • the determination module 1320 is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may specifically be: used to switch the BWP of the second cell from the default BWP to the pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station to the terminal through RRC signaling or other signaling. In this way, the pre-configured non-default BWP can be used for communication between the base station and the terminal.
  • the determination module 1320 is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may be: used to switch the BWP of the second cell from the default BWP to the non-default BWP used previously.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the terminal can switch the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used previously.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • the determining module 1320 is used to switch the BWP of the second cell in the cell group from the first BWP of the second cell to the second BWP of the second cell, which may specifically be: used to control the receiving module 1310 Receive the first handover instruction of the second cell, where the first handover instruction carries the target non-default BWP. And for switching the BWP of the second cell from the default BWP of the second cell to the target non-default BWP.
  • the second cell in the cell group can flexibly indicate the target non-default BWP that the terminal needs to switch to, so that the terminal flexibly switches to the required non-default BWP for communication.
  • the determining module 1320 is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, and may also be: If it is determined to deactivate the first cell in the cell group, then deactivate the second cell in the cell group.
  • the receiving module 1310 is further configured to receive a first indication message.
  • the first indication message is used to deactivate the second cell in the cell group when the first cell in the cell group is deactivated.
  • the receiving module 1310 is further configured to receive a deactivation instruction for the first cell from the access network device to determine whether the first cell needs to be deactivated.
  • the deactivation instruction includes: a media access control control unit MAC CE, a radio resource control RRC, or downlink control information DCI.
  • the sending module 1330 is configured to stop sending the channel state information CSI after receiving the deactivation instruction of the first cell in the cell group or after the deactivation timer of the first cell expires.
  • the “received” deactivation instruction mentioned in the embodiment of the present application may refer to receiving and successfully parsing the deactivation instruction.
  • the determining module 1320 is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, which may specifically be: After determining to switch the BWP of the first cell in the cell group from the non-default BWP of the first cell to the default BWP of the first cell, the second cell in the cell group is deactivated.
  • the receiving module 1310 is further configured to receive a second indication message from the access network device.
  • the second indication message is used to enable switching of the non-default BWP of the first cell in the cell group to the default BWP To deactivate the second cell in the cell group.
  • the receiving module 1310 is further used to receive a BWP handover instruction from the access network device, and the BWP handover instruction is used to instruct to switch the BWP of the first cell from the non-default BWP of the first cell to the first cell Default BWP.
  • the BWP switching instruction includes any one of MAC, CE, RRC, or DCI.
  • the sending module 1330 is configured to stop sending the CSI of the second cell in the cell group after receiving the BWP switching instruction or after the BWP backoff timer of the first cell expires.
  • the “received” BWP switching instruction mentioned in the embodiment of the present application may refer to receiving and successfully parsing the BWP switching instruction.
  • the device 1400 may be an access network device.
  • the device may support the access network device to implement the function of the access network device.
  • it may be an access network device.
  • the device in (for example, the chip system in the access network equipment, etc.).
  • the apparatus 1400 includes a sending module 1420 and a determining module 1410, and these modules can perform corresponding functions performed by the access network device in the foregoing embodiments, specifically:
  • the sending module 1420 is configured to send information of one or more cell groups.
  • a cell group includes a first cell and at least a second cell.
  • the determining module 1410 is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the carrier bandwidth portion BWP of the first cell in the cell group.
  • the determining module 1410 is configured to determine the switching or deactivation state of the BWP in the second cell of the cell group according to the switching or deactivation state of the BWP of the first cell carrier bandwidth in the cell group, which may specifically Is: used to switch the BWP of the second cell in the cell group from the first BWP to the second BWP if it is determined to switch the BWP of the first cell in the cell group from the first BWP of the first cell to the second BWP of the first cell Two BWP.
  • the first BWP is a non-default default BWP
  • the second BWP is a default BWP
  • the first BWP is the default default BWP
  • the second BWP is the non-default BWP
  • the non-default BWP is a pre-configured BWP or the non-default BWP used last time.
  • the determination module 1410 is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may be: used to switch the BWP of the second cell from the default BWP to the pre-configured non-default BWP.
  • the pre-configured non-default BWP may be pre-configured by the base station to the terminal through RRC signaling or other signaling. In this way, the pre-configured non-default BWP can be used for communication between the base station and the terminal.
  • the determining module 1410 is used to switch the BWP of the second cell from the default BWP to the non-default BWP, which may be: used to switch the BWP of the second cell from the default BWP to the non-default BWP used previously.
  • the terminal currently works on the default BWP6, and before that, the terminal works on the non-default BWP5.
  • the BWP of the terminal in cell 2 needs to be switched to a non-default BWP
  • the BWP of the terminal in cell 2 can be switched from the default BWP6 to the non-default BWP5 used last time.
  • the base station switches the BWP of the terminal in cell 2 from the default BWP6 to the non-default BWP5 used in the previous communication with the terminal.
  • the determination module 1410 is used to switch the BWP of the second cell in the cell group from the first BWP to the second BWP, which may specifically be: used to control the sending module 1420 so that the sending module 1420 sends the first A handover instruction, the first handover instruction carries the target non-default BWP, and is used to switch the BWP of the second cell in the cell group from the default BWP of the second cell to the target non-default BWP.
  • the determining module 1410 is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, which may specifically be: If it is determined to deactivate the first cell in the cell group, then deactivate the second cell in the cell group.
  • the sending module 1420 is further configured to send a first indication message to the terminal.
  • the first indication message is used to deactivate the second cell in the cell group when the first cell in the cell group is deactivated. Community.
  • the sending module 1420 is further configured to send a deactivation instruction for the first cell to the terminal to indicate whether the first cell needs to be deactivated.
  • the deactivation instruction includes: a media access control control unit MAC CE, a radio resource control RRC, or downlink control information DCI.
  • the determining module 1410 is configured to determine the switching or deactivation state of the BWP of the second cell in the cell group according to the switching or deactivation state of the BWP of the first cell in the cell group, which may specifically be: After determining to switch the BWP of the first cell in the cell group from the non-default BWP of the first cell to the default BWP of the first cell, the second cell in the cell group is deactivated.
  • the sending module 1420 is further configured to send a second indication message to the terminal, where the indication message is used to deactivate the cell group when the non-default BWP of the first cell in the cell group is switched to the default BWP In the second cell.
  • the sending module 1420 is also used to send a BWP handover instruction to the terminal.
  • the BWP handover instruction is used to indicate whether the BWP of the first cell needs to be switched from the non-default BWP of the first cell to the first cell Default BWP.
  • the BWP switching instruction includes any one of MAC, CE, RRC, or DCI.
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another way of dividing.
  • the functional modules in the embodiments of the present application may be integrated into one process In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the device 1500 may be a terminal or a device capable of supporting the terminal to realize the function of the terminal, for example, may be a device in the terminal.
  • the device 1500 may be a chip system in the terminal.
  • the apparatus 1500 may also be an access network device, or an apparatus capable of supporting the access network device to realize the function of the access network device, for example, an apparatus in the access network device.
  • the device 1500 is a chip system in an access network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1500 When the device 1500 is used to implement the terminal function, the device 1500 includes at least one processor 1520, which is used to implement the actions performed by the determination module in the terminal in the foregoing embodiment.
  • the processor may execute S303 in FIG. 3, S3031 in FIG. 4, and the like, and other actions of the terminal in the embodiment of the present application.
  • At least one processor 1520 in the apparatus 1500 is used to implement the action performed by the determination module in the access network device in the foregoing embodiment.
  • the processor may execute S302 in FIG. 3, S3021 in FIG. 4, and the like, and other actions of the access network device in the embodiment of the present application.
  • the device 1500 may further include at least one memory 1530 for storing program instructions and/or data.
  • the memory 1530 and the processor 1520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, which may be in electrical, mechanical, or other forms, used for information interaction between devices, units, or modules.
  • the processor 1520 may cooperate with the memory 1530.
  • the processor 1520 may execute program instructions stored in the memory 1530. At least one of the at least one memory may be included in the processor.
  • the device 1500 may further include a communication interface 1510 for communicating with other devices through a transmission medium, so that the device used in the device 1500 can communicate with other devices.
  • the communication interface may be a transceiver with a function of sending and receiving data, a transmitter with a function of sending data, a receiver with a function of receiving data, or a circuit with a function of sending and receiving data, or, it may be realized Other devices with transceiver functions.
  • the communication interface may be a module, a circuit, a bus, or other forms of interfaces, which are not limited in the embodiments of the present application.
  • the other device may be an access network device.
  • the processor 1520 uses the communication interface 1510 to send and receive data, and is used to implement the method executed by the terminal in the embodiments corresponding to FIG. 3 to FIG. 6. For example, it is used to execute S301 in FIG. 3 and FIG. 4.
  • the apparatus 1500 When the apparatus 1500 is used to implement the functions of the above-mentioned access network device, for example, the other device may be a terminal.
  • the processor 1520 uses the communication interface 1510 to send and receive data, and is used to implement the method performed by the access network device in the embodiments corresponding to FIG. 3 to FIG. 6. For example, it is used to execute S301 in FIG. 3 and FIG. 4.
  • the specific connection medium between the communication interface 1510, the processor 1520, and the memory 1530 is not limited.
  • the memory 1530, the processor 1520, and the communication interface 1510 are connected by a bus 1540.
  • the bus is shown by a thick line in FIG. 16, and the connection mode between other components is only for schematic illustration. , Not to limit.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only a thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may be implemented or Perform the disclosed methods, steps, and logical block diagrams in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function, which is used to store program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wire (e.g. Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL for short) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, digital video disc (DVD)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,涉及通信技术领域,能够降低终端功耗。该方法包括:接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区,对于一个小区组,根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。本申请实施例提供的方法可以应用于载波聚合场景中。

Description

通信方法及装置
本申请要求于2019年01月11日提交国家知识产权局、申请号为201910028870.2、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在第5代移动通信(the 5th Generation,5G)新空口(new radio,NR)中,基站可以为终端指示载波带宽部分(carrier bandwidth part,BWP),进而基站和终端之间通过该BWP传输数据。
为了进一步提升5G系统的吞吐量,NR中引入了载波聚合(carrier aggregation,CA),即可以将多个连续或不连续的频谱进行聚合使用。对于每一服务小区(cell)来说,可以为该服务小区的一个终端配置一个或多个BWP。其中,配置的BWP可以为大带宽BWP,用于提升终端的业务传输能力,配置的BWP也可以为小带宽BWP,以使得在业务量较小时,终端可以降低射频处理和基带处理的数据量,从而降低终端功耗。
在CA场景下,随着终端业务需求量的不断提升,终端所需处理的数据不断增多,功耗较大,因此,亟待提出一种在CA场景下降低终端功耗的方法。
发明内容
本申请实施例提供一种通信方法及装置,能够在CA场景下降低终端的功耗。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端或终端中的芯片。该方法包括:接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区。对于一个小区组,根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。如此,通过配置小区组,并将小区组中第一小区的BWP切换或去激活状态与小区组中第二小区的BWP切换或去激活状态进行关联,使得对第二小区的BWP切换或去激活有所依据。例如,当终端在第一小区上处于节能状态时,终端在同一小区组中的第二小区上也处于节能状态,能够进一步降低终端功耗。
在本申请实施例中,第一小区可以称为参考小区或者其它名称,本申请实施例不做限制。
在一种可能的设计中,根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,具体可以实现为如下步骤:
若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP。
其中,第一BWP为非默认default BWP,第二BWP为默认BWP。或者,第一BWP为默认default BWP,第二BWP为非默认BWP。
可选的,默认BWP为BWP回退定时器超时后终端工作的激活BWP。下文在提及默认BWP时,均可以参见这里的描述。
可选的,若第一BWP为非默认default BWP,第二BWP为默认BWP,若确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则将小区组中第二小区的BWP从第二小区的非默认BWP切换至第二小区的默认BWP。
如此,随着小区组中第一小区的BWP从非默认BWP回退至默认BWP,同一小区组中第二小区的BWP也从非默认BWP回退至默认BWP。能够提升终端BWP切换的鲁棒性。此外,当默认BWP为小带宽BWP时,随着小区组中第一小区的BWP从大带宽BWP切换至小带宽BWP,同一小区组中第二小区的BWP也从大带宽BWP切换至小带宽BWP。通常,将第一小区的BWP切换至小带宽BWP,说明终端的业务量较小,此时,将同一小区组中第二小区的BWP也切换至小带宽BWP,能够降低终端射频处理和基带处理的任务量,进而降低终端的功耗。
可选的,若第一BWP为默认default BWP,第二BWP为非默认BWP,若确定将小区组中第一小区的BWP从第一小区的默认BWP切换至第一小区的非默认BWP,则将小区组中第二小区的BWP从第二小区的默认BWP切换至第二小区的非默认BWP。
如此,随着小区组中第一小区的BWP从默认BWP切换至非默认BWP,同一小区组中第二小区的BWP也从默认BWP切换至非默认BWP。能够增加终端的可用带宽资源,提升终端的数据传输性能。
在一种可能的设计中,非默认BWP是预配置的BWP,或者前一次使用的非默认BWP。
相应的,将第二小区的BWP从默认BWP切换至非默认BWP,可以实现为:将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端。如此,基站和终端之间可以使用预配置的非默认BWP进行通信。
或者,将第二小区的BWP从默认BWP切换至非默认BWP,可以实现为:将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则终端可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
在一种可能的设计中,将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP,具体可以实现为:
接收第二小区的第一切换指示,第一切换指示携带目标非默认BWP。并将第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。如此,通过小区组中的第二小区可以灵活指示终端所需切换至的目标非默认BWP,使得终端灵活的切换至所需非默认BWP上进行通信。
在一种可能的设计中,根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,还可以实现为:若确定将小区组中第一小区去激活,则将小区组中的第二小区去激活。
在一种可能的设计中,接收第一指示消息,第一指示消息用于使能将小区组中第一小 区去激活时,去激活小区组中的第二小区。
在一种可能的设计中,终端从接入网设备接收针对第一小区的去激活指示,以确定是否需将第一小区去激活。
可选的,去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
可选的,终端接收到小区组中第一小区的去激活指示后,或者是第一小区的去激活定时器超时后,停止发送信道状态信息CSI。
其中,本申请实施例中提及的“接收到”去激活指示,可以指接收并成功解析去激活指示。
在一种可能的设计中,根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以实现为:确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,从接入网设备接收第二指示消息,第二指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在在一种可能的设计中,从接入网设备接收BWP切换指示,BWP切换指示用于指示将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
可选的,BWP切换指示包括:MAC CE、RRC、或DCI中的任意一个。
在一种可能的设计中,接收到BWP切换指示后,或者是第一小区的BWP回退定时器超时后,停止发送小区组中第二小区的信道状态信息CSI。
其中,本申请实施例中提及的“接收到”BWP切换指示,可以指接收并成功解析BWP切换指示。
第二方面,本申请提供一种通信方法,该方法应用于接入网设备或者接入网设备中的芯片。该方法包括:发送一个或多个小区组的信息,一个小区组中包括一个第一小区和至少一个第二小区。对于一个小区组,根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。
在一种可能的设计中,根据小区组中第一小区载波带宽部分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,具体可以实现为:若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第一BWP切换至第二BWP。
在本申请实施例中,第一小区可以称为参考小区或者其它名称,本申请实施例不做限制。
在一种可能的设计中,第一BWP为非默认default BWP,第二BWP为默认BWP。
在一种可能的设计中,第一BWP为默认default BWP,第二BWP为非默认BWP。
在一种可能的设计中,非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
相应的,将第二小区的BWP从默认BWP切换至非默认BWP,可以实现为:将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端。如此,基站和终端之间可以使用预配置的非默认BWP进行通信。
或者,将第二小区的BWP从默认BWP切换至非默认BWP,可以实现为:将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
在一种可能的设计中,将小区组中第二小区的BWP从第一BWP切换至第二BWP,具体可以实现为:发送第一切换指示,第一切换指示携带目标非默认BWP,并将小区组中第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。
在一种可能的设计中,根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以实现为:若确定将小区组中第一小区去激活,则将小区组中第二小区去激活。
在一种可能的设计中,向终端发送第一指示消息,第一指示消息用于使能将小区组中第一小区去激活时,去激活小区组中的第二小区。
在一种可能的设计中,接入网设备向终端发送针对第一小区的去激活指示,以指示是否需将第一小区去激活。
可选的,去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
在一种可能的设计中,根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以实现为:确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,接入网设备向终端发送第二指示消息,指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在在一种可能的设计中,接入网设备向终端发送BWP切换指示,BWP切换指示用于指示是否需将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
可选的,BWP切换指示包括:MAC CE、RRC、或DCI中的任意一个。
第三方面,本申请实施例提供了一种通信装置,该装置可以是终端,也可以是能够和支持终端实现终端的功能的装置,其可以和终端匹配使用,例如可以是终端中的装置(比如是终端中的芯片),该装置可以包括接收模块、确定模块和发送模块,这些模块可以执行上述第一方面任一种设计示例中的终端所执行的相应功能,具体的:
接收模块,用于接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区。针对一个小区组,确定模块,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。如此,通过配置小区组,并将小区组中第一小区的BWP切换或去激活状态与小区组中第二小区的BWP切换或去激活状态进行关联,使得对第二小区的BWP切换或去激活有所依据。例如,当终端在第一小区上处于节能状态时,终端在同一小区组中的第二小区上也处于节能状态,能够进一步降低终端功耗。
在一种可能的设计中,确定模块,用于根据小区组中第一小区的载波带宽部分BWP 的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,具体可以为:用于若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP。
其中,第一BWP为非默认default BWP,第二BWP为默认BWP。或者,第一BWP为默认default BWP,第二BWP为非默认BWP。
可选的,若第一BWP为非默认default BWP,第二BWP为默认BWP,确定模块,具体用于若确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则将小区组中第二小区的BWP从第二小区的非默认BWP切换至第二小区的默认BWP。
如此,随着小区组中第一小区的BWP从非默认BWP回退至默认BWP,同一小区组中第二小区的BWP也从非默认BWP回退至默认BWP。能够提升终端BWP切换的鲁棒性。此外,当默认BWP为小带宽BWP时,随着小区组中第一小区的BWP从大带宽BWP切换至小带宽BWP,同一小区组中第二小区的BWP也从大带宽BWP切换至小带宽BWP。通常,将第一小区的BWP切换至小带宽BWP,说明终端的业务量较小,此时,将同一小区组中第二小区的BWP也切换至小带宽BWP,能够降低终端射频处理和基带处理的任务量,进而降低终端的功耗。
可选的,若第一BWP为默认default BWP,第二BWP为非默认BWP,确定模块,具体用于,若确定将小区组中第一小区的BWP从第一小区的默认BWP切换至第一小区的非默认BWP,则将小区组中第二小区的BWP从第二小区的默认BWP切换至第二小区的非默认BWP。
如此,随着小区组中第一小区的BWP从默认BWP切换至非默认BWP,同一小区组中第二小区的BWP也从默认BWP切换至非默认BWP。能够增加终端的可用带宽资源,提升终端的数据传输性能。
在一种可能的设计中,非默认BWP是预配置的BWP,或者前一次使用的非默认BWP。
相应的,确定模块,用于将第二小区的BWP从默认BWP切换至非默认BWP,具体可以为:用于将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端。如此,基站和终端之间可以使用预配置的非默认BWP进行通信。
或者,确定模块,用于将第二小区的BWP从默认BWP切换至非默认BWP,可以为:用于将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则终端可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
在一种可能的设计中,确定模块,用于将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP,具体可以为:用于控制接收模块接收第二小区的第一切换指示,第一切换指示携带目标非默认BWP。以及用于将第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。如此,通过小区组中的第二小区可以灵活指示终端所需切换至的目标非默认BWP,使得终端灵活的切换至所需非默认BWP上进行通信。
在一种可能的设计中,确定模块,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,还可以为:用于若确定将小区组中第一小区去激活,则将小区组中的第二小区去激活。
在一种可能的设计中,接收模块,还用于接收第一指示消息,第一指示消息用于使能将小区组中第一小区去激活时,去激活小区组中的第二小区。
在一种可能的设计中,接收模块,还用于从接入网设备接收针对第一小区的去激活指示,以确定是否需将第一小区去激活。
可选的,去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
在一种可能的设计中,发送模块,用于在接收到小区组中第一小区的去激活指示后,或者是第一小区的去激活定时器超时后,停止发送信道状态信息CSI。
其中,本申请实施例中提及的“接收到”去激活指示,可以指接收并成功解析去激活指示。
在一种可能的设计中,确定模块,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以为:用于确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,接收模块,还用于从接入网设备接收第二指示消息,第二指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在在一种可能的设计中,接收模块,还用于从接入网设备接收BWP切换指示,BWP切换指示用于指示将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
可选的,BWP切换指示包括:MAC CE、RRC、或DCI中的任意一个。
在一种可能的设计中,发送模块,用于在接收到BWP切换指示后,或者是第一小区的BWP回退定时器超时后,停止发送小区组中第二小区的CSI。
其中,本申请实施例中提及的“接收到”BWP切换指示,可以指接收并成功解析BWP切换指示。
第四方面,本申请提供一种通信装置,该装置可以为接入网设备,也可以是能够和支持接入网设备实现接入网设备的功能的装置,其可以和接入网设备匹配使用,例如可以是接入网设备中的装置(比如是接入网设备中的芯片系统等)。该装置包括发送模块和确定模块,这些模块可以执行上述第二方面任一种设计示例中的接入网设备所执行的相应功能,具体的:
发送模块,用于发送一个或多个小区组的信息,一个小区组中包括一个第一小区和至少一个第二小区。对于一个小区组,确定模块,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。
在一种可能的设计中,确定模块,用于根据小区组中第一小区载波带宽部分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,具体可以为:用于若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二 BWP,则将小区组中第二小区的BWP从第一BWP切换至第二BWP。
在一种可能的设计中,第一BWP为非默认default BWP,第二BWP为默认BWP。
在一种可能的设计中,第一BWP为默认default BWP,第二BWP为非默认BWP。
在一种可能的设计中,非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
相应的,确定模块,用于将第二小区的BWP从默认BWP切换至非默认BWP,可以为:用于将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端。如此,基站和终端之间可以使用预配置的非默认BWP进行通信。
或者,确定模块,用于将第二小区的BWP从默认BWP切换至非默认BWP,可以为:用于将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
在一种可能的设计中,确定模块,用于将小区组中第二小区的BWP从第一BWP切换至第二BWP,具体可以为:用于控制发送模块,使得发送模块发送第一切换指示,第一切换指示携带目标非默认BWP,以及用于将小区组中第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。
在一种可能的设计中,确定模块,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以为:用于若确定将小区组中第一小区去激活,则将小区组中第二小区去激活。
在一种可能的设计中,发送模块,还用于向终端发送第一指示消息,第一指示消息用于使能将小区组中第一小区去激活时,去激活小区组中的第二小区。
在一种可能的设计中,发送模块,还用于向终端发送针对第一小区的去激活指示,以指示是否需将第一小区去激活。
可选的,去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
在一种可能的设计中,确定模块,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以为:用于确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,发送模块,还用于向终端发送第二指示消息,指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在在一种可能的设计中,发送模块,还用于向终端发送BWP切换指示,BWP切换指示用于指示是否需将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
可选的,BWP切换指示包括:MAC CE、RRC、或DCI中的任意一个。
第五方面,本申请实施例还提供了一种装置,包括处理器,用于实现上述第一方面描述的方法中终端的功能。该装置可以是终端,也可以是芯片系统等。该装置还可以包括存 储器,用于存储指令和/或数据。存储器与处理器耦合,处理器可以执行存储器中存储的指令,用于实现上述第一方面描述的方法中终端的功能。该装置还可以包括通信接口,通信接口用于该装置与其它设备进行通信。示例性地,该其它设备为接入网设备。
在一种可能的设计中,该装置包括:
通信接口,用于接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区。
存储器,用于存储指令。
对于一个小区组,处理器,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。
在一种可能的设计中,处理器,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,包括:若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP。
在一种可能的设计中,第一BWP和第二BWP可以参见第一至第四方面中的相关描述,这里不再赘述。
在一种可能的设计中,非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
在一种可能的设计中,处理器,用于将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP,包括:利用通信接口接收第二小区的第一切换指示,第一切换指示携带目标非默认BWP;将第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。
在一种可能的设计中,根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,包括:若确定将小区组中第一小区去激活,则将小区组中的第二小区去激活。
在一种可能的设计中,通信接口,还用于接收到小区组中第一小区的去激活指示后或者是第一小区的去激活定时器超时后,停止发送信道状态信息CSI,去激活指示用于指示将第一小区去激活。
在一种可能的设计中,去激活指示的详细描述可参见第一方面至第四方面。
在一种可能的设计中,处理器,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,包括:用于确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,通信接口,还用于接收指示消息,指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在一种可能的设计中,通信接口,还用于接收到BWP切换指示后或者是第一小区的BWP回退定时器超时后,停止发送小区组中第二小区的CSI,BWP切换指示用于将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
在一种可能的设计中,BWP切换指示包括:MAC CE、RRC、或DCI。
第六方面,本申请实施例还提供了一种装置,该装置包括处理器,用于实现上述第二方面描述的方法中接入网设备的功能。该装置可以是接入网设备,也可以是芯片系统等。 该装置还可以包括存储器,用于存储指令和/或数据。存储器与处理器耦合,处理器可以执行存储器中存储的指令,用于实现上述第二方面描述的方法中接入网设备的功能。该装置还可以包括通信接口,通信接口用于该装置与其它设备进行通信。示例性地,该其它设备为终端。
在一种可能的设计中,该装置包括:
通信接口,用于发送一个或多个小区组的信息,一个小区组中包括一个第一小区和至少一个第二小区。
存储器,用于存储程序指令。
针对一个小区组,处理器,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。
在一种可能的设计中,处理器,用于根据小区组中第一小区载波带宽部分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,包括:用于若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第一BWP切换至第二BWP。
在一种可能的设计中,第一BWP和第二BWP的描述可参见上述各个方面的描述。
在一种可能的设计中,非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
在一种可能的设计中,处理器,用于将小区组中第二小区的BWP从第一BWP切换至第二BWP,包括:用于利用通信接口发送第一切换指示,第一切换指示携带目标非默认BWP;将小区组中第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。
在一种可能的设计中,处理器,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,包括:用于若确定将小区组中第一小区去激活,则将小区组中第二小区去激活。
在一种可能的设计中,处理器,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,包括:用于确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,通信接口,还用于发送指示消息,指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
第七方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面的方法。
第八方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述方法中终端或接入网设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种系统,系统包括第三方面和第四方面的装置,或者包括第五方面和第六方面的装置。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的通信设备的结构示意图;
图3为本申请实施例提供的通信方法的流程示意图一;
图4为本申请实施例提供的通信方法的流程示意图二;
图5为本申请实施例提供的通信方法的流程示意图三;
图6为本申请实施例提供的通信方法的流程示意图四;
图7为载波聚合的示意图;
图8为本申请实施例提供的BWP切换的流程示意图一;
图9为本申请实施例提供的BWP切换的流程示意图二;
图10为本申请实施例提供的去激活的流程示意图一;
图11为本申请实施例提供的去激活的流程示意图二;
图12为本申请实施例提供的BWP切换的流程示意图三;
图13为本申请实施例提供的BWP切换的流程示意图四;
图14为本申请实施例提供的通信装置的结构示意图一;
图15为本申请实施例提供的通信装置的结构示意图二;
图16为本申请实施例提供的通信装置的结构示意图三。
具体实施方式
本申请实施例的说明书以及附图中的术语“第一”、“第二”、“第三”、“A”、“B”、“C”、“D”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序(比如大小顺序,先后顺序)。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。本申请实施例中提及的“/”可表示“或者”的含义。
在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
首先,对本申请实施例涉及的技术术语进行介绍:
带宽部分(bandwidth part,BWP):也可以称为载波带宽部分(carrier bandwidth part)。在频域,一个BWP中包括连续正整数个资源单元,比如包括连续正整数个子载波、资源块(resource block,RB)、或者资源块组(RB group,RBG)。其中,一个RB中包括正整数个子载波,例如12个;一个RBG中包括正整数个RB,例如4个或8个等。BWP可以是下行BWP或上行BWP。其中,上行BWP用于UE向基站发送信号,下行BWP用于基站向UE发送信号。在本申请实施例中,正整数个可以是1个、2个、3个或者更多个,本申请不做限制。
在一个小区中,基站可以为UE的上行或下行配置一个或多个BWP,例如上行最多4个BWP,下行最多4个BWP。这些BWP可以称为UE的专用BWP。上行和下行配置的BWP的数量可以相同,也可以不同。基站为UE配置的一个或多个BWP可以称为UE的配置BWP,例如,基站为UE配置的一个或多个上行BWP可以称为UE的上行配置BWP,基站为UE配置的一个或多个下行BWP可以称为UE的下行配置BWP。针对每个BWP,可以通过预配置或者基站为UE发送信令的方式,独立配置该BWP的numerology。不同BWP的numerology可能相同,也可能不同。
在本申请实施例中,在本申请实施例中,信令可以是半静态信令和/或动态信令。半静态信令可以是无线资源控制(radio resource control,RRC)信令、广播消息、系统消息、或MAC控制元素(control element,CE)。其中,广播消息可以包括剩余最小系统消息(remaining minimum system information,RMSI)。动态信令可以是物理层信令。物理层信令可以是物理控制信道携带的信令或者物理数据信道携带的信令。其中,物理数据信道可以是下行信道,例如物理下行共享信道(physical downlink shared channel,PDSCH)。物理控制信道可以是物理下行控制信道(physical downlink control channel,PDCCH)、增强物理下行控制信道(enhanced physical downlink control channel,EPDCCH)、窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)或机器类通信物理下行控制信道(machine type communication(MTC)physical downlink control channel,MPDCCH)。其中,PDCCH或EPDCCH携带的信令还可以称为下行控制信息(downlink control information,DCI)。物理控制信道还可以是物理边链路控制信道(physical sidelink control channel),物理边链路控制信道携带的信令还可以称为边链路控制信息(sidelink control information,SCI)。
在上行和/或下行,基站可以为UE仅激活该UE的配置BWP中的一个BWP,UE和基站可以仅在激活的BWP上进行数据的收发。例如,UE仅在激活的上行BWP中向基站发送物理上行控制信道(physical uplink control channel,PUCCH)和/或物理上行共享信道(physical uplink shared channel,PUSCH),基站仅在激活的下行BWP中向UE发送PDCCH和/或PDSCH。
默认BWP(default BWP):基站为终端配置的一种BWP。在一个小区中,基站可以为终端配置一个BWP不活跃定时器(bwp-InactivityTimer),若在定时器的运行期间内终端检测到了该终端的上行调度或下行授权,该上行调度或下行授权可以是由PDCCH携带的,则会启动或重启bwp-InactivityTimer;若在定时器运行的期间内终端没有检测到上行调度或下行授权,则当bwp-InactivityTimer超时的时候,UE在这个小区上当前激活的BWP会切换到default BWP。当基站没有给终端配置default BWP时,初始(initial)激活下行BWP可以被用作default BWP。其中,初始激活BWP可指终端设备在接收专用BWP配置信息前,用于数据接收或发送的BWP,一般通过系统消息进行配置。或者,初始下行激活BWP可指用于接收系统消息的BWP。或者,初始激活BWP可指用于终端向基站发送物理随机接入信道(physical random access channel,PRACH)的BWP等。初始激活BWP可以包括初始激活下行BWP(initial downlink BWP)和初始激活上行BWP(initial uplink BWP)等。为描述简单,本发明中只以BWP切换到default BWP为例,对于BWP切换到初始激活BWP的情况不再赘述。从激活BWP切换到default BWP,可以避免UE的DCI丢失而造成的基 站和终端理解不一致的问题,提升了BWP切换或数据调度的鲁棒性。其中,默认BWP可以为小带宽BWP,也可以为大带宽BWP。可选的,当默认BWP为一个小带宽的BWP时,终端可以通过切换到默认的小带宽BWP上工作,从而降低功耗。
激活BWP可以是指终端设备在接收专用BWP配置信息之后,用于做数据接收或发送的BWP,比如专用BWP配置信息可为RRC等。对于一个终端,在一个服务小区中最多可以配置4个BWP(4个BWP中不包括初始激活BWP),在任一时刻,仅能激活一个BWP,该激活的BWP可称为激活BWP。示例的,初始激活BWP的带宽小于激活BWP的带宽。
大带宽BWP:在本申请实施例中,大带宽BWP可以是非默认(default)BWP,也可以是默认BWP,当然,也可以有其他名称,本申请实施例对该名称不进行限制。接入网设备可以灵活的为终端配置不同带宽的BWP,以适应终端的不同业务需求和不同应用场景。在终端业务量较大的场景中,接入网设备可以为终端配置大带宽BWP,从而为终端提供较高的数据传输速率。
小带宽BWP:在本申请实施例中,小带宽BWP也可称为节能BWP等,本申请实施例对该名称不进行限制。在终端业务量较小的场景中,接入网设备可以为终端配置小带宽BWP,如此,可以降低终端的射频处理和基带处理的任务量,从而降低终端的功耗。
本申请实施例所提及的默认BWP通常是指小带宽的BWP,默认的小带宽BWP可以同时用于提升终端BWP切换的鲁棒性和降低终端功耗。
BWP切换:终端的BWP切换指的是终端的激活BWP发生改变。可选的,激活BWP发生改变可以引起BWP的带宽大小发生改变,比如,终端的BWP由大带宽BWP切换至小带宽BWP。或者,激活BWP发生改变可以引起BWP的numerology发生改变。或者,激活BWP发生改变可以引起BWP的numerology和带宽大小均发生改变。BWP切换和BWP改变含义相同,本申请实施例对此不进行限制。
BWP回退(fallback):终端的BWP回退指的是终端的BWP切换至默认(default BWP)BWP。上文的BWP不活跃定时器(bwp-InactivityTimer),也可以称为回退定时器。
可选的,在BWP切换场景中,终端的激活BWP或工作BWP发生切换的方式包括但不限于如下几种:
方式1:接入网设备向终端发送下行控制信息(downlink control information,DCI),DCI包括但不限于DCI格式0_1(DCI format 0_1,简称DCI0_1)和DCI格式1_1(DCI format 1_1,简称DCI1_1)。DCI中携带BWP标识(ID)。如果DCI0_1/1_1中指示的上行链路(uplink,UL)或者(downlink,DL)BWP不同于当前激活的UL/DL BWP,则将DCI指示的BWP设置为激活的UL/DL BWP。比如,在一个小区上,接入网设备为终端配置4个BWP,即BWP ID为1的BWP1,BWP ID为2的BWP2,BWP ID为3的BWP3,BWP ID为4的BWP4,终端当前工作在激活的BWP1上。接入网设备向终端发送DCI,DCI携带的BWP ID为3。如此,终端在接收到该DCI后,可以将DCI指示的BWP3设置为激活的上行或下行BWP。
需要说明的是,当DCI指示的BWP为默认BWP时,通过DCI还可指示终端切换到默认BWP上。
方式2:基站向终端发送MAC CE,终端接收MAC CE,并根据MAC CE确定是否进行BWP切换。
方式3:基站向终端发送RRC信令,终端接收RRC信令,并根据RRC信令确定是否进行BWP切换。
当然,当终端接收到的DCI所指示的BWP为默认BWP时,终端也可回退至默认BWP。
小区去激活(又称载波去激活):接入网设备可以为每一小区配置多个BWP。激活状态的小区中存在激活BWP,如此,终端可通过激活的小区或激活小区中的激活BWP进行通信。反之,去激活状态的小区中不存在激活的BWP。
载波聚合:即将多个频谱进行聚合使用。载波聚合(carrier aggregation,CA)可以分为带间载波聚合(inter-band CA)和带内载波聚合(intra-band CA),带内载波聚合又可分为带内连续载波聚合和带内非连续载波聚合。参见图7,图7中(a)为inter-band CA,在inter-band CA中,聚合的多个载波(在本文中也可称为小区cell),即cell1和cell2属于不同频段(band)。图7中(b)为带内连续载波聚合,该载波聚合方式中,聚合的多个小区,比如cell1和cell2属于同一band,并且cell1的频谱和cell2的频谱相邻。图7中(c)为带内非连续载波聚合,在该载波聚合方式中,聚合的多个小区,比如cell1和cell2属于同一band,并且,cell1的频谱和cell2的频谱不连续,即cell1的频谱和cell2的频谱之间存在其他频率或频段。
在通信系统中,为了提高数据传输速率,提出了载波聚合(carrier aggregation,CA)技术。CA技术的原理是将两个或更多个载波单元(component carrier,CC)聚合在一起以支持更大的传输带宽。1个小区可以包括一个下行载波单元和一个上行载波单元,或者1个小区可以包括一个下行载波单元和两个上行载波单元,或者1个小区可以只包括一个下行载波单元。一个下行载波单元对应于一个小区,可以将1个下行载波单元等同于1个小区。本申请实施例提供的通信方法可以应用于载波聚合的场景。参见图1,为本申请实施例所适用的通信系统的架构。该通信系统包括接入网设备、以及与接入网设备通信的一个或多个终端(例如图1中的终端1至终端6)。
其中,本申请实施例所涉及的接入网设备是一种部署在无线接入网用以提供无线通信功能的装置。可选的,接入网设备可以指接入网的空中接口上通过一个或多个小区与无线终端通信的设备,其中,实现接入网设备的功能的装置可以是接入网设备,也可以是支持接入网设备实现该功能的装置(比如接入网设备中的芯片)。可选的,接入网设备可对空中接口进行属性管理。基站设备还可协调对空中接口的属性管理。接入网设备包括各种形式的宏基站,微基站(也称为小站),诸如中继站的中继设备或中继设备的芯片,发送接收点(transmission reception point,TRP),演进型网络节点(evolved Node B,eNB),下一代网络节点(g Node B,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等。或者,在分布式基站场景下,接入网设备可以是基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access Netowrk,CRAN)场景下,接入网设备可以是基带池(BBU pool)和RRU。
可选的,本申请实施例中所涉及到的终端可以是无线终端,也可以是有线终端。包括但不限于车载设备、可穿戴设备、计算设备、计算设备内置的芯片或连接到无线调制解调器的其它处理设备;还可以包括蜂窝电话(cellular phone)、个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、智能电话(smart phone)、个人数字助理(personal digital assistant,PDA)电 脑、平板型电脑、膝上型电脑(laptop computer)、无线调制解调器(modem)、手持设备(handheld)、无线本地环路(wireless local loop,WLL)站。无线终端还可以为用户单元(subscriber unit,SU)、用户站(subscriber station,SS)、移动站(mobile station,MB)、移动台(mobile)、远程站(remote station,RS)、远程终端(remote terminal,RT)、用户终端(user terminal,UT)、终端设备(user device,UD)、用户设备(user equipment,UE)、无线数据卡、用户单元(subscriber unit)、机器类型通信(machine type communication,MTC)终端(terminal)、终端设备(terminal device)、客户终端设备(customer premise equipment,CPE)、接入终端(access terminal,AT)、接入点(access Point,AP)、用户代理(user agent,UA)等。在本申请实施例中,实现终端的功能的装置可以是终端,也可以是支持终端实现该功能的装置(比如终端中的芯片)。为方便描述,本申请中,上面提到的设备统称为终端。
需要说明的是,本申请实施例中的术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”等。
上述通信系统可以应用于目前的长期演进(long term evolution,LTE)或者高级的长期演进(LTE Advanced,LTE-A)系统中,也可以应用于目前正在制定的第五代(5th generation,5G)网络或者未来的其它网络中,本申请实施例对此不作具体限定。其中,在不同的网络中,上述通信系统中的接入网设备和终端可能对应不同的名字,本领域技术人员可以理解的是,名字对设备本身不构成限定。其中,5G网络还可以称为新无线(new radio,NR)。
可选的,本申请实施例中的终端、接入网设备可以通过不同的设备实现。例如,本申请实施例中的终端、接入网设备可通过图2中的通信设备来实现。图2所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备200包括至少一个处理器201,通信线路202,存储器203以及至少一个通信接口204。其中,存储器203还可以包括于处理器201中。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,在上述组件之间传送信息。
通信接口204,用于与其他设备通信。在本申请实施例中,通信接口可以是模块、电路、总线、接口、收发器或者其它能实现通信功能的装置,用于与其他设备通信。可选的,当通信接口是收发器时,该收发器可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通 用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储用于实现本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码、指令、计算机程序或者其它名称,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备200可以包括多个处理器,例如图2中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备200可以是一个通用设备或者是一个专用设备,本申请实施例不限定通信设备200的类型。终端或者接入网设备可以为具有图2类似结构的设备。
在一种可能的实现中,当如图8所示,在某一个小区(假设为小区1)的BWP切换期间,若存在其他小区(假设为小区2)也需切换BWP,则在小区1完成BWP切换后,才会开始小区2的BWP切换流程。可见,当小区2的BWP回退定时器(bwp-InactivityTimer)超时后,由于小区2并未及时从大带宽BWP切换至小带宽BWP,导致终端继续工作在大带宽BWP上,其射频处理和基带处理的任务量较多,功耗较大。
为了解决上述技术问题,本申请实施例提供一种通信方法,参见图3,该方法包括如下步骤:
S301、接入网设备向终端发送一个或多个小区组的信息。
相应的,终端从接入网设备接收一个或多个小区组的信息。
作为一种可能的实现方式,接入网设备可以配置一个或多个小区组,示例性的,接入网设备根据小区的业务类型和业务量等将不同小区划分进不同的小区组。
其中,一个小区组(也可称为一个载波组)中包括一个第一小区(也可称为第一载波)和至少一个第二小区(也可称为第二载波)。示例性地,一个小区组中的第一小区可以为主小区(primary cell,PCell)(也可称为主载波),或者,第一小区可以为辅小区(secondary cell)(也可称为辅载波)。一个小区组中为终端配置的除第一小区外的小区为第二小区。可选地,PCell不被配置为第二小区,即第二小区可以为辅小区。
可选的,小区组中各个小区的小带宽BWP或default BWP构成或者被认为是一个BWP集合或一个BWP组合(BWP bundle),这个BWP集合可以称为一个第二类型的BWP组或者第二BWP组,具体的名字不做限制。第二BWP组中的BWP称为第二BWP。示例的,还可以将多个小区上的激活BWP组合成或者看做一个第一BWP组合,第一BWP组合中的BWP称为第一BWP,当第一小区的第一BWP切换到第二BWP时,第二小区的第一BWP也同时切换到第二BWP,其中第一小区和第二小区的第二BWP可以是各小区上的default BWP。在一个小区中,针对一个终端,该终端的BWP中除第二BWP以外的BWP为该终端的第一BWP。
如下主要以配置一个小区组,且接入网设备为基站为例对本申请实施例的通信方法进行说明。对其他小区组的配置以及相关通信方法可参见本申请实施例中一个小区组的配置以及通信方法的描述。
S302、接入网设备根据一个小区组中第一小区的BWP的切换或去激活状态确定该小区组中第二小区的BWP的切换或去激活状态。
本申请实施例中,当提及第一小区的上BWP、第一小区中的BWP或第一小区的BWP时,指的是终端在第一小区的BWP,类似的,当提及第二小区上的BWP、第二小区中的BWP或第二小区的BWP时,指的是终端在第二小区的BWP,在此统一说明,下文不再赘述。
具体的,接入网设备根据一个小区组中第一小区中的BWP的切换确定该小区组中第二小区的BWP的切换。或者,接入网设备根据一个小区组中第一小区的去激活状态确定该小区组中第二小区的去激活状态。或者,接入网设备根据一个小区组中第一小区的BWP的切换确定该小区组中第二小区的去激活状态。
S303、终端根据该小区组中第一小区的BWP切换或去激活状态确定小区组中第二小区的BWP切换或去激活状态。
需要说明的是,本申请实施例并不对S302和S303的执行先后进行限制。作为一种可能的实现方式,同时(例如在相同的子帧、时隙、或符号中)执行S302和S303。
具体的,终端根据该小区组中第一小区中的BWP的切换确定该小区组中第二小区中的BWP的切换。或者,终端根据该小区组中第一小区的去激活状态确定该小区组中第二小区的去激活状态。或者,终端根据该小区组中第一小区的BWP的切换确定该小区组中第二小区的去激活状态。
在本申请实施例中,S302可以包括但不限于如下几种实现方式:
参见图4,在一种实现方式中,接入网设备根据该小区组中第一小区中的BWP的切换确定该小区组中第二小区的BWP的切换。具体的,S302可以实现为S3021、若接入网设备确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则接入网设备将小区组中第二小区的BWP从第一BWP切换至第二BWP。该场景中,终端的工作BWP或当前激活BWP从第一BWP切换至第二BWP。在本申请实施例中,小区中的BWP还可以描述为小区的BWP,在此统一说明。
相应的,S303可以实现为S3031、若终端确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则终端将小区组中第二小区的BWP从第一BWP切换至第二BWP。
可选的,S3031和S3021可以同时(例如在相同的子帧、时隙、或符号中)执行。
其中,第一BWP为大带宽BWP或非default BWP,第二BWP为小带宽BWP或者default BWP;或者,第一BWP为小带宽BWP或default BWP,第二BWP为大带宽BWP或非default BWP。
若第一BWP为大带宽BWP,第二BWP为小带宽BWP。S3021可以实现为:当接入网设备确定需将第一小区的BWP从大带宽BWP切换至小带宽BWP时,接入网设备将小区组中第二小区的BWP也从大带宽BWP切换至小带宽BWP。示例性的,参见图12,小区1为小区组中的第一小区,小区2为小区组中的第二小区,若确定将小区1的BWP切换至小区1的小带宽BWP3,则相应的,将小区2的BWP切换至小区2的小带宽BWP6。
相应的,若终端确定需将第一小区的BWP从大带宽BWP切换至小带宽BWP,终端将小区组中第二小区的BWP也从大带宽BWP切换至小带宽BWP。
其中,接入网设备或终端通过如下至少一种方式将第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,其中第一BWP可以是大带宽的BWP,第二BWP可以是小带宽的BWP,如default BWP;示例性的,第一BWP还可以是小带宽的BWP,第二BWP是大带宽的BWP;或者,示例性的,第一BWP和第二BWP在带宽、发送或接收参数(例如numerology)上至少有一个不同,这里不做限制:
其中,numerology为通信系统所采用的参数。通信系统(例如5G)可以支持多种numerologies。numerology可以通过但不限于以下参数信息中的一个或多个定义:子载波间隔,循环前缀(cyclic prefix,CP)、时间单位、带宽等。例如,numerology可以由子载波间隔和CP来定义。
子载波间隔可以为大于等于0的整数。例如,可以为15kHz(千赫兹)、30kHz、60kHz、120kHz、240kHz、480kHz等。不同子载波间隔可以为2的整数倍。当然也可以设计为其他的值。
CP信息可以包括CP长度和/或CP类型。例如,CP可以为正常CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。
时间单位用于表示时域内的时间单元,例如可以为采样点,符号,微时隙,时隙,子帧,或者无线帧等等。时间单位信息可以包括时间单位的类型,长度,或者结构等。
带宽(bandwidth)可以为频域上一段连续的资源。带宽有时可称为带宽部分(bandwidth part,BWP),载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband)带宽、或者其他的名称,本申请实施例对其名称并不做限定。例如,一个BWP包含连续的K(K为正整数)个子载波;或者,一个BWP为N个不重叠的连续的资源块(resource block,RB)所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M个不重叠的连续的资源块组(resource block group,RBG)所在的频域资源,一个RBG包括P个连续的RB,该RB的子载波间隔可以为15kHz、30kHz、60kHz、120kHz、240kHz、480kHz或其他值,例如为2的整数倍。其中,P为正整数。
方式1:当小区组中第一小区的BWP回退定时器超时,终端确定需将第一小区的BWP从大带宽BWP切换至小带宽BWP。
方式2:基站向终端发送DCI,终端在第一小区的大带宽BWP上接收DCI,若该DCI携带的BWP ID为小带宽BWP的ID,则终端确定需将第一小区的BWP从大带宽BWP切换至小带宽BWP。
当然,终端或基站还可以通过其他方式判断是否需将第一小区的BWP从大带宽BWP切换至小带宽BWP,比如,基站通过RRC信令或MAC CE指示终端是否需将第一小区的BWP从大带宽BWP切换至小带宽BWP,本申请实施例对此不进行限制。
以设置BWP回退定时器方式将第一小区的BWP切换至小带宽BWP为例,参见图9,在BWP回退定时器超时时段内,终端未检测到第一小区(比如小区1)上的DCI调度,则终端将第一小区(小区1)的BWP切换至小带宽BWP,同时,终端将小区组中第二小区(比如小区2)的BWP也从非默认的BWP切换至默认的BWP。此时可以停止该小区的BWP回退定时器。如此,终端和基站之间可使用第一小区的小带宽BWP进行通信。可见,相比于图8的方案,终端可以提前时间T开始第二小区的BWP切换流程,使得终端工作在第二小区的小带宽BWP上的时间有所增加,可以降低终端功耗。
以通过DCI进行BWP切换为例。终端从基站接收DCI,且DCI指示将小区1的BWP切换至小带宽BWP时,终端将小区1的BWP切换至小带宽BWP,同时,终端将小区组中第二小区(比如小区2)的BWP也从非默认的BWP切换至默认的BWP。
以通过MAC CE进行BWP切换为例,终端从基站接收MAC CE,且MAC CE指示将小区1的BWP切换至小带宽BWP时,则终端将小区1的BWP切换至小带宽BWP,同时,终端将小区组中第二小区(比如小区2)的BWP也从非默认的BWP切换至默认的BWP。
以通过RRC信令进行BWP切换为例,终端从基站接收RRC信令,且RRC信令指示将小区1的BWP切换至小带宽BWP时,则终端将小区1的BWP切换至小带宽BWP,同时,终端将小区组中第二小区(比如小区2)的BWP也从非默认的BWP切换至默认的BWP。
如此,随着小区组中第一小区的BWP从大带宽BWP切换至小带宽BWP,同一小区组中第二小区的BWP也从大带宽BWP切换至小带宽BWP。通常,将第一小区的BWP切换至小带宽BWP,说明终端的业务量较小,此时,将同一小区组中第二小区的BWP也切换至小带宽BWP,能够降低终端射频处理和基带处理的任务量,进而降低终端的功耗。
若第一BWP为非默认BWP,第二BWP为默认BWP。S3021可以实现为:当接入网设备确定需将第一小区的BWP从非默认BWP切换至默认BWP时,接入网设备将小区组中第二小区的BWP也从非默认BWP切换至默认BWP。示例性的,参见图12,小区1为小区组中的第一小区,小区2为小区组中的第二小区,若确定将小区1的BWP切换至小区1的默认BWP3,则相应的,将小区2的BWP切换至小区2的默认BWP6。接入网设备只需要指示将第一小区的BWP从当前激活的BWP(非default BWP)切换到default BWP,也意味着指示了将小区组内第二小区的BWP从当前激活的BWP(非default BWP)切换到default BWP,而不需要额外的信令通知。接入网设备发送的指示信息可以称为第一指示信息,该第一指示信息指示第一小区进行BWP 切换,第一指示信息的发送方式包括上文中描述的DCI、MAC CE和RRC,具体使用哪种方式不做限定。当终端收到接入网设备发送的第一指示信息时,也将第二小区的BWP从当前激活的BWP(非default BWP)切换到default BWP,而不需要接入网设备发送额外的信令。当第一小区的激活BWP带宽大于default BWP带宽,第二小区的激活BWP带宽大于default BWP带宽时,本实施例可以加快第二小区BWP切换时机,为终端节省功率消耗。此外还可以节省接入网设备的信令开销。
相应的,若终端确定需将第一小区的BWP从非默认BWP切换至默认BWP,终端将小区组中第二小区的BWP也从非默认BWP切换至默认BWP。
其中,终端或基站判断是否需将第一小区的BWP从非默认BWP切换至默认BWP的具体实现方式,可参见上文描述。比如,基站通过RRC信令,或MAC CE,或BWP回退定时器,或DCI指示终端是否需将第一小区的BWP从非默认BWP切换至默认BWP,本申请实施例对此不进行限制。
若第一BWP为小带宽BWP,第二BWP为大带宽BWP。S3021可以实现为:当接入网设备确定需将第一小区的BWP从小带宽BWP切换至大带宽BWP时,接入网设备将小区组中第二小区的BWP也从小带宽BWP切换至大带宽BWP。
相应的,当终端接收到基站发送的指示信息,若指示信息指示终端需将第一小区的BWP从小带宽BWP切换至大带宽BWP,则终端将小区组中第二小区的BWP也从小带宽BWP切换至大带宽BWP。
其中,基站向终端发送针对第一小区的DCI,如此,终端从基站接收针对第一小区的DCI后,可根据DCI中的BWP ID确定是否将第一小区的BWP切换至大带宽BWP。当然,终端或基站还可以采取其他方式判断是否将第一小区的BWP切换至大带宽BWP,这里不再赘述。
可选的,将第二小区的BWP从小带宽BWP切换至大带宽BWP,可以实现为:将第二小区的BWP从小带宽BWP切换至预配置的大带宽BWP上。该预配置的大带宽BWP可以由基站通过RRC信令或其他信令预先配置给终端,也可以是协议预配置的BWP,比如可以是基站为UE配置的第一激活BWP、可以是终端的专用BWP中的任一个BWP等。比如,参见图13,终端当前工作在小区1的小带宽BWP3上,若需将小区1的BWP切换至大带宽BWP,则终端可以将小区1的BWP从BWP3切换至预配置的大带宽BWP1上。相应的,基站将小区1的BWP从小带宽BWP3切换至预配置的大带宽BWP1上。如此,基站和终端之间可以使用小区1的BWP1进行通信。
可选的,将第二小区的BWP从小带宽BWP切换至大带宽BWP,还可以实现为:将第二小区的BWP从小带宽BWP切换至前一次使用的大带宽BWP上。比如,参见图13,终端当前工作在小区2的小带宽BWP6上,在此之前,终端工作在小区2的大带宽BWP5上。若需将小区2的BWP切换至大带宽BWP,则终端可以将小区2的BWP从小带宽BWP6切换至前一次使用的大带宽BWP5。相应的,基站将小区2的BWP从小带宽BWP6切换至与终端前一次通信时使用的大带宽BWP5。
可选的,将第二小区的BWP从小带宽BWP切换至大带宽BWP,还可以实现为:接入网设备向终端发送针对小区组中第二小区的第一切换指示,该第一切换指示携带目标大带宽BWP。如此,终端从小区组的第二小区接收第一切换指示,并根据第一切 换指示,将该第二小区的BWP从小带宽BWP切换至目标大带宽BWP上。相应的,基站也将该第二小区的BWP从小带宽BWP切换至大带宽BWP。示例性的,第一切换指示可以为DCI,DCI携带需切换至的BWP的标识,即目标大带宽BWP的BWP ID。如此,通过小区组中的第二小区可以灵活指示终端所需切换至的目标大带宽BWP,使得终端灵活的切换至所需大带宽BWP上进行通信。
如此,随着小区组中第一小区的BWP从小带宽BWP切换至大带宽BWP,同一小区组中第二小区的BWP也从小带宽BWP切换至大带宽BWP,通常,将第一小区的BWP切换至大带宽BWP,说明终端的业务量较大,此时,将同一小区组中第二小区的BWP也切换至大带宽BWP,能够增加终端的可用带宽资源,提升终端的数据传输性能。
若第一BWP为默认BWP,第二BWP为非默认BWP。S3021可以实现为:当接入网设备确定需将第一小区的BWP从默认BWP切换至非默认BWP时,接入网设备将小区组中第二小区的BWP也从默认BWP切换至非默认BWP。
相应的,若终端确定需将第一小区的BWP从默认BWP切换至非默认BWP,则终端将小区组中第二小区的BWP也从默认BWP切换至非默认BWP。
其中,基站向终端发送针对第一小区的物理下行共享信道(physical downlink shared channel,PDSCH)传输的下行授权DCI或物理上行共享信道(physical uplink shared channel,PUSCH)传输的上行调度DCI,如此,终端从基站接收针对第一小区的DCI后,可根据DCI中的BWP ID确定是否将第一小区的BWP切换至非默认BWP。当然,终端或基站还可以采取其他方式判断是否将第一小区的BWP切换至非默认BWP,这里不再赘述。
可选的,将第二小区的BWP从默认BWP切换至非默认BWP,可以实现为:将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端,也可以是协议预配置的BWP,比如可以是基站为UE配置的第一激活BWP、可以是终端的专用BWP中的任一个BWP等。比如,参见图13,终端当前工作在小区1的默认BWP3上,若需将小区1的BWP切换至非默认BWP,则终端可以将小区1的BWP从BWP3切换至预配置的非默认BWP1上。相应的,基站将小区1的BWP从默认BWP3切换至预配置的非默认BWP1上。如此,基站和终端之间可以使用非默认BWP1进行通信。
可选的,将第二小区的BWP从默认BWP切换至非默认BWP,还可以实现为:将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则终端可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
可选的,将终端在第二小区的BWP从默认BWP切换至非默认BWP,还可以实现为:接入网设备向终端发送针对小区组中第二小区的第一切换指示,该第一切换指示携带目标非默认BWP。如此,终端从小区组的第二小区接收第一切换指示,并根据第一切换指示,将该第二小区的BWP从默认BWP切换至目标非默认BWP上。相应 的,基站也将该第二小区的BWP从默认BWP切换至终端在该第二小区的目标非默认BWP。示例性的,第一切换指示可以为DCI,DCI携带需切换至的BWP的标识,即目标非默认BWP的BWP ID。如此,小区组中的第二小区可以灵活指示终端所需切换至的目标非默认BWP,使得终端灵活的切换至所需非默认BWP上进行通信。
如此,随着小区组中第一小区的BWP从默认BWP切换至非默认BWP,同一小区组中第二小区的BWP也从默认BWP切换至非默认BWP。
参见图5,在另一种可能的实现方式中,接入网设备根据该小区组中第一小区的去激活状态确定该小区组中第二小区的去激活状态。具体的,S302还可以实现为S3022、若接入网设备确定将小区组中第一小区去激活,则接入网设备将小区组中的第二小区去激活。
相应的,S303可以实现为S3032、若终端确定将小区组中第一小区去激活,则终端将小区组中的第二小区去激活。
可选的,S3032和S3022同时(例如,在相同的子帧、时隙、或符号)执行。
可选的,接入网设备向终端发送第一指示消息。相应的,终端从接入网设备接收第一指示消息,指示消息用于使能将小区组中第一小区去激活时,去激活小区组中的第二小区。
可选的,接入网设备可以向终端发送去激活指示,以指示是否将第一小区去激活。去激活指示包括但不限于媒体接入控制的控制单元(medium access control control element,MAC CE)、无线资源控制(radio resource control,RRC)、DCI。具体的,终端或接入网设备判断是否将第一小区去激活,可以实现为如下至少一种方式:
方式1:接入网设备为终端配置去激活定时器(scell deactivation timer),如此,当小区组中第一小区的去激活定时器超时,即去激活定时器的时间段内,UE不能检测到针对于第一小区的上行调度DCI或下行授权DCI,终端确定需将第一小区去激活。可选的,终端向接入网设备发送第一去激活消息,以使得接入网设备获知需将第一小区去激活。
方式2:基站向终端发送针对第一小区的DCI,终端接收针对第一小区的DCI,并根据DCI确定需将第一小区去激活。
方式3:基站向终端发送针对第一小区的MAC CE,终端接收针对第一小区的MAC CE,并根据MAC CE确定需将第一小区去激活。
方式4:基站向终端发送针对第一小区的RRC信令,终端接收针对第一小区的RRC信令,并根据RRC信令确定需将第一小区去激活。
对于终端来说,在从接入网设备接收到小区组中第一小区的去激活指示或第一小区的去激活定时器超时后,去激活第一小区和小区组中的第二小区。
可选的,若接入网设备确定将小区组中第一小区去激活,则接入网设备确定将小区组中的第二小区去激活。具体的,接入网设备向终端发送针对小区组中第一小区的去激活指示后,向终端发送针对小区组中第二小区的去激活指示,以通知终端需将小区组中第二小区去激活。
相应的,若终端确定将小区组中第一小区去激活,则终端确定将小区组中的第二小区去激活。具体的,终端在从接入网设备接收到针对小区组中第一小区的去激活指 示后,从接入网设备接收针对小区组中第二小区的去激活指示,以确定需将小区组中第二小区去激活。
可选的,终端还可以在接收到第一小区的去激活指示后,停止发送针对第一小区的信道状态信息(channel state information,CSI)和/或针对第二小区的CSI。在本申请实施例中,终端从接入网设备接收到去激活指示,可以指终端从接入网设备接收,并成功解析去激活指示。
停止发送CSI的时机存在如下4种情况:
情况1:对应于上述方式1,即上述去激活指示为去激活定时器超时。终端在去激活定时器超时的时隙停止发送针对第一小区的CSI和/或针对第二小区的CSI。
情况2:对应于上述方式2,即去激活指示为DCI。由于DCI无需通过PDSCH承载,所以,终端在接收到DCI后,无需PDSCH处理,并且,DCI通常也无需经过层2(RLC层)、层3(RRC层)处理,因此,可以认为终端接收到DCI后,能够在较短时间内解析出DCI。相应的,接入网设备向终端发送DCI,终端在从接入网设备接收到DCI的时隙停止发送CSI。
情况3:对应于上述方式3,即去激活指示为MAC CE。终端在从接入网设备接收到MAC CE,即成功解析MAC CE的时隙停止发送CSI。示例性的,终端成功解析MAC CE、停止发送CSI的时隙满足如下关系:
Figure PCTCN2019129460-appb-000001
上述公式中,n1为终端停止发送CSI的时隙,n为接入网设备发送MAC CE的时隙,N为PDSCH的处理时间,该处理时间的单位为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,14为1个时隙(slot)包含的OFDM符号数目,T sf为MAC CE所在小区(或载波)上的一个子帧的绝对时间长度,0.5为MAC CE的层2(layer 2)的处理时间,其单位为ms。
Figure PCTCN2019129460-appb-000002
为向上取整符号。参见图11,接入网设备向终端发送去激活指示(即MAC CE),终端接收并解析MAC CE,此过程中,终端可分别通过第一小区和第二小区向接入网设备上报CSI。在解析成功MAC CE的时隙,终端停止上报CSI。可选的,终端停止上报CSI的时隙与开始执行第一小区去激活的时隙为同一时隙,可选的,终端停止上报CSI的时隙与开始执行第二小区去激活的时隙为同一时隙。当然,由于终端处理机制的不同,执行第一小区去激活的时刻和执行第二小区去激活的时刻可能稍有不同,本申请实施例对此不进行限制。可见,相比于上述方法中(参见图10)需完成去激活后,终端才停止上报CSI,本申请实施例中,终端能够及时停止上报CSI。
情况4:对应于上述方式4,即去激活指示为RRC信令。终端在从接入网设备接收到RRC信令,即成功解析RRC信令的时隙停止发送CSI。示例性的,终端成功解析RRC信令,并停止发送CSI的时隙满足如下关系:
Figure PCTCN2019129460-appb-000003
上述公式中,n2为终端停止发送CSI的时隙,n为接入网设备发送RRC信令的时隙,N为PDSCH的处理时间,该处理时间的单位为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,14为1个时隙(slot)包含的OFDM符号数目,T sf为MAC CE所在小区(或载波)上的一个子帧的绝对时间长度,t layer2,3为MAC CE的层2(layer 2) 和层3(layer 3)的处理时间,其单位为ms。
Figure PCTCN2019129460-appb-000004
为向上取整符号。
如此,终端可以在接收到去激活指示,即成功解析去激活指示的时隙就停止上报CSI,无需等待去激活生效之后再停止上报CSI,与上述可能的实现中在成功解析去激活指示后,并未立即将小区去激活,还需等待去激活生效后才停止上报CSI相比,本申请实施例中,由于缩短了终端上报CSI的时长,使得终端的功耗进一步降低。
作为另一种可能的实现方式,该小区组中第一小区的BWP的切换确定该小区组中第二小区的去激活状态。具体的,参见图6,S302还可以实现为S3023、若接入网设备确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则接入网设备去激活小区组中的第二小区。
相应的,S303可以实现为S3033、若终端确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则终端去激活小区组中的第二小区。
可选的,S3023和S3033同时(例如,在相同的子帧、时隙、或符号等)执行。
可选的,接入网设备向终端发送第二指示消息。相应的,终端从接入网设备接收第二指示消息,第二指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
示例性的,指示消息包括1bit的指示符,当指示符为0时,不使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区,即当小区组中第一小区的BWP从非默认BWP切换至默认BWP时,不对小区组中的第二小区进行去激活。当指示符为1,使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
示例性的,指示消息包括2bit的指示符,其中一个bit用于使能当第一小区的BWP回退定时器超时,将小区组中第二小区去激活,另一个bit用于使能当从第一小区接收到DCI,且DCI指示将第一小区切换至默认BWP时,去激活小区组中第二小区。比如,指示消息包括指示符01,0代表不使能当第一小区的BWP回退定时器超时,将小区组中第二小区去激活,1代表使能当从第一小区接收到DCI,且DCI指示将第一小区切换至默认BWP时,去激活小区组中第二小区。
示例性的,当指示符用于使能当第一小区的BWP回退定时器超时,将小区组中第二小区去激活,接入网设备为终端配置的信息如下:
Figure PCTCN2019129460-appb-000005
Figure PCTCN2019129460-appb-000006
当然,指示信息还可以包括其他bit位数的指示符,用于使能不同的功能,从而将小区组中第一小区的BWP切换和该小区组中第二小区的去激活状态进行关联。
可选的,接入网设备可以向终端发送BWP切换指示,以指示是否将第一小区的BWP从非默认BWP切换至默认BWP。BWP切换指示包括但不限于MAC CE、RRC信令、DCI或者是BWP回退定时器超时。具体的,终端根据从接入网设备接收的BWP切换指示判断是否将第一小区的BWP切换至默认BWP的具体实现,可以参见上文描述,这里不再赘述。
对于终端来说,在从接入网设备接收到小区组中第一小区的BWP切换指示后,将第一小区的BWP从非默认BWP切换至默认BWP,并且,将同一小区中的第二小区去激活。可选的,终端在从接入网设备接收到第一小区的BWP切换指示后,还可以停止发送针对小区组中第二小区的CSI。
其中,终端停止发送CSI的时机存在如下4种情况:
情况1:在上述BWP切换指示为BWP回退定时器超时的情形中,终端在BWP回退定时器超时的时隙停止发送针对小区组中第二小区的CSI。
情况2:在BWP切换指示为DCI的情形中,终端在从接入网设备接收到DCI的时隙停止发送针对小区组中第二小区的CSI。
情况3:在BWP切换指示为MAC CE的情形中,终端在从接入网设备接收到MAC CE,即成功解析MAC CE的时隙停止发送针对小区组中第二小区的CSI。示例性的,终端成功解析MAC CE、停止发送CSI的时隙可以用公式(1)表示。
情况4:在BWP切换指示为RRC信令的情形中,终端在从接入网设备接收到RRC信令,即成功解析RRC信令的时隙停止发送针对小区组中第二小区的CSI。示例性的,终端成功解析RRC信令、停止发送CSI的时隙可用公式(2)表示。
如此,终端可以在接收到BWP切换指示,即成功解析BWP切换指示的时隙就停止上报CSI,使得终端的功耗进一步降低。
本申请实施例提供的通信方法,终端接收一个或多个小区组的信息。其中,对于一个小区组,终端根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。通过配置小区组,并将小区组中第一小区的BWP切换或去激活状态与小区组中第二小区的BWP切换或去激活状态进行关联,使得对第二小区的BWP切换或去激活有所依据。这就意味着,当终端在第一小区上处于节能状态时,终端在同一小区组中的第二小区上也处于节能状态,能够进一步降低终端功耗。
在另一种可能的实现方式中,若小区组中第二小区的第一定时器超时,且在超时时段内,该第二小区上不存在DCI调度,则接入网设备将该第二小区去激活。相应的,终端将该第二小区去激活。
其中,第一定时器为BWP回退定时器和去激活定时器中定时时长较短的定时器。比如,BWP回退定时器的定时时长为2ms,去激活定时器的定时时长为5ms。当BWP回退定时器超时后,若未检测到第二小区上的DCI调度,接入网设备将第二小区去激活。相应的,终端将第二小区去激活。
接入网设备向终端配置的信息如下:
Figure PCTCN2019129460-appb-000007
在另一种可能的实现方式中,在小区组中第一小区为辅小区的情况下,小区组中第二小区被去激活时,可以将该小区组中的全部小区去激活,进一步降低终端功耗。
上述本申请提供的实施例中,分别从接入网设备、终端、以及接入网设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,接入网设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
参见图14,为本申请实施例提供的一种装置的结构示意图。该装置1300可以是终端,也可以是能够支持终端实现终端设备的功能的装置,例如可以是终端中的装置(比如是终端中的芯片系统),该装置1300可以包括接收模块1310、确定模块1320和发送模块1330,这些模块可以执行上述各个实施例中终端所执行的相应功能,具体的:
接收模块1310,用于接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区。针对一个小区组,确定模块1320,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态。如此,通过配置小区组,并将小区组中第一小区的BWP切换或去激活状态与小区组中第二小区的BWP切换或去激活状态进行关联,使得对第二小区的BWP切换或去激活有所依据。例如,当终端在第一小区上处于节能状态时,终端在同一小区组中的第二小区上也处于节能状态,能够进一步降低终端功耗。
在一种可能的设计中,确定模块1320,用于根据小区组中第一小区的载波带宽部 分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,具体可以为:用于若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP。
其中,第一BWP为非默认default BWP,第二BWP为默认BWP。或者,第一BWP为默认default BWP,第二BWP为非默认BWP。
可选的,若第一BWP为非默认default BWP,第二BWP为默认BWP,确定模块1320,具体用于若确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则将小区组中第二小区的BWP从第二小区的非默认BWP切换至第二小区的默认BWP。
如此,随着小区组中第一小区的BWP从非默认BWP回退至默认BWP,同一小区组中第二小区的BWP也从非默认BWP回退至默认BWP。能够提升终端BWP切换的鲁棒性。此外,当默认BWP为小带宽BWP时,随着小区组中第一小区的BWP从大带宽BWP切换至小带宽BWP,同一小区组中第二小区的BWP也从大带宽BWP切换至小带宽BWP。通常,将第一小区的BWP切换至小带宽BWP,说明终端的业务量较小,此时,将同一小区组中第二小区的BWP也切换至小带宽BWP,能够降低终端射频处理和基带处理的任务量,进而降低终端的功耗。
可选的,若第一BWP为默认default BWP,第二BWP为非默认BWP,确定模块1320,具体用于,若确定将小区组中第一小区的BWP从第一小区的默认BWP切换至第一小区的非默认BWP,则将小区组中第二小区的BWP从第二小区的默认BWP切换至第二小区的非默认BWP。
如此,随着小区组中第一小区的BWP从默认BWP切换至非默认BWP,同一小区组中第二小区的BWP也从默认BWP切换至非默认BWP。能够增加终端的可用带宽资源,提升终端的数据传输性能。
在一种可能的设计中,非默认BWP是预配置的BWP,或者前一次使用的非默认BWP。
相应的,确定模块1320,用于将第二小区的BWP从默认BWP切换至非默认BWP,具体可以为:用于将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端。如此,基站和终端之间可以使用预配置的非默认BWP进行通信。
或者,确定模块1320,用于将第二小区的BWP从默认BWP切换至非默认BWP,可以为:用于将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则终端可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
在一种可能的设计中,确定模块1320,用于将小区组中第二小区的BWP从第二小区的第一BWP切换至第二小区的第二BWP,具体可以为:用于控制接收模块1310接收第二小区的第一切换指示,第一切换指示携带目标非默认BWP。以及用于将第二 小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。如此,通过小区组中的第二小区可以灵活指示终端所需切换至的目标非默认BWP,使得终端灵活的切换至所需非默认BWP上进行通信。
在一种可能的设计中,确定模块1320,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,还可以为:用于若确定将小区组中第一小区去激活,则将小区组中的第二小区去激活。
在一种可能的设计中,接收模块1310,还用于接收第一指示消息,第一指示消息用于使能将小区组中第一小区去激活时,去激活小区组中的第二小区。
在一种可能的设计中,接收模块1310,还用于从接入网设备接收针对第一小区的去激活指示,以确定是否需将第一小区去激活。
可选的,去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
在一种可能的设计中,发送模块1330,用于在接收到小区组中第一小区的去激活指示后,或者是第一小区的去激活定时器超时后,停止发送信道状态信息CSI。
其中,本申请实施例中提及的“接收到”去激活指示,可以指接收并成功解析去激活指示。
在一种可能的设计中,确定模块1320,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以为:用于确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,接收模块1310,还用于从接入网设备接收第二指示消息,第二指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在一种可能的设计中,接收模块1310,还用于从接入网设备接收BWP切换指示,BWP切换指示用于指示将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
可选的,BWP切换指示包括:MAC CE、RRC、或DCI中的任意一个。
在一种可能的设计中,发送模块1330,用于在接收到BWP切换指示后,或者是第一小区的BWP回退定时器超时后,停止发送小区组中第二小区的CSI。
其中,本申请实施例中提及的“接收到”BWP切换指示,可以指接收并成功解析BWP切换指示。
参见图15,为本申请提供的通信装置的一种结构示意图,该装置1400可以为接入网设备,该装置能够支持接入网设备实现接入网设备的功能,例如可以是接入网设备中的装置(比如是接入网设备中的芯片系统等)。该装置1400包括发送模块1420和确定模块1410,这些模块可以执行上述各个实施例中接入网设备所执行的相应功能,具体的:
发送模块1420,用于发送一个或多个小区组的信息,一个小区组中包括一个第一小区和至少一个第二小区。对于一个小区组,确定模块1410,用于根据小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定小区组中第二小区的BWP的切换 或去激活状态。
在一种可能的设计中,确定模块1410,用于根据小区组中第一小区载波带宽部分BWP的切换或去激活状态确定小区组中的第二小区中BWP的切换或去激活状态,具体可以为:用于若确定将小区组中第一小区的BWP从第一小区的第一BWP切换至第一小区的第二BWP,则将小区组中第二小区的BWP从第一BWP切换至第二BWP。
在一种可能的设计中,第一BWP为非默认default BWP,第二BWP为默认BWP。
在一种可能的设计中,第一BWP为默认default BWP,第二BWP为非默认BWP。
在一种可能的设计中,非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
相应的,确定模块1410,用于将第二小区的BWP从默认BWP切换至非默认BWP,可以为:用于将第二小区的BWP从默认BWP切换至预配置的非默认BWP上。该预配置的非默认BWP可以由基站通过RRC信令或其他信令预先配置给终端。如此,基站和终端之间可以使用预配置的非默认BWP进行通信。
或者,确定模块1410,用于将第二小区的BWP从默认BWP切换至非默认BWP,可以为:用于将第二小区的BWP从默认BWP切换至前一次使用的非默认BWP上。比如,参见图13,终端当前工作在默认BWP6上,在此之前,终端工作在非默认BWP5上。若需将终端在小区2的BWP切换至非默认BWP,则可以将终端在小区2的BWP从默认BWP6切换至前一次使用的非默认BWP5。相应的,基站将终端在小区2的BWP从默认BWP6切换至与终端前一次通信时使用的非默认BWP5。
在一种可能的设计中,确定模块1410,用于将小区组中第二小区的BWP从第一BWP切换至第二BWP,具体可以为:用于控制发送模块1420,使得发送模块1420发送第一切换指示,第一切换指示携带目标非默认BWP,以及用于将小区组中第二小区的BWP从第二小区的默认BWP切换至目标非默认BWP上。
在一种可能的设计中,确定模块1410,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以为:用于若确定将小区组中第一小区去激活,则将小区组中第二小区去激活。
在一种可能的设计中,发送模块1420,还用于向终端发送第一指示消息,第一指示消息用于使能将小区组中第一小区去激活时,去激活小区组中的第二小区。
在一种可能的设计中,发送模块1420,还用于向终端发送针对第一小区的去激活指示,以指示是否需将第一小区去激活。
可选的,去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
在一种可能的设计中,确定模块1410,用于根据小区组中第一小区的BWP的切换或去激活状态确定小区组中第二小区的BWP的切换或去激活状态,具体可以为:用于确定将小区组中第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP,则去激活小区组中的第二小区。
在一种可能的设计中,发送模块1420,还用于向终端发送第二指示消息,指示消息用于使能将小区组中第一小区的非默认BWP切换至默认BWP时,去激活小区组中的第二小区。
在在一种可能的设计中,发送模块1420,还用于向终端发送BWP切换指示,BWP切换指示用于指示是否需将第一小区的BWP从第一小区的非默认BWP切换至第一小区的默认BWP。
可选的,BWP切换指示包括:MAC CE、RRC、或DCI中的任意一个。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
参见图16所示,为本申请提供的通信装置的一种结构示意图,用于实现上述方法中终端或接入网设备的功能。该装置1500可以是终端,也可以是能够支持终端实现终端的功能的装置,例如可以是终端中的装置。其中,该装置1500可以为终端中的芯片系统。该装置1500也可以是接入网设备,也可以是能够支持接入网设备实现接入网设备的功能的装置,例如可以是接入网设备中的装置。比如,该装置1500为接入网设备中的芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
当装置1500用于实现终端功能时,该装置1500包括至少一个处理器1520,用于实现上述实施例中终端中确定模块执行的动作。示例性地,处理器可以执行图3中的S303,图4中的S3031等,以及本申请实施例中终端的其他动作。
当装置1500用于实现接入网设备的功能时,该装置1500中的至少一个处理器1520,用于实现上述实施例中接入网设备中确定模块执行的动作。示例性地,处理器可以执行图3中的S302,图4中的S3021等,以及本申请实施例中接入网设备的其他动作。
装置1500还可以包括至少一个存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1520可能和存储器1530协同操作。处理器1520可能执行存储器1530中存储的程序指令。至少一个存储器中的至少一个可以包括于处理器中。
装置1500还可以包括通信接口1510,用于通过传输介质和其它设备进行通信,从而用于装置1500中的装置可以和其它设备进行通信。通信接口可以是具有收发数据功能的收发器,还可以是具有发送数据功能的发送器,还可以是具有接收数据功能的接收器,或者,可以是具有收发数据功能的电路,或者,是能够实现收发功能的其他装置。通信接口可以是模块、电路、总线或其它形式的接口,本申请实施例不做限制。
当装置1500用于实现上述终端的功能时,示例性地,该其它设备可以是接入网设备。处理器1520利用通信接口1510收发数据,并用于实现图3~图6对应的实施例中终端所执行的方法。比如,用于执行图3、图4中的S301等。
当装置1500用于实现上述接入网设备的功能时,示例性地,该其它设备可以是终端。处理器1520利用通信接口1510收发数据,并用于实现图3~图6对应的实施例中接入网设备所执行的方法。比如,用于执行图3、图4中的S301等。
本申请实施例中不限定上述通信接口1510、处理器1520以及存储器1530之间的 具体连接介质。本申请实施例在图16中以存储器1530、处理器1520以及通信接口1510之间通过总线1540连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区;
    对于一个所述小区组,根据所述小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态。
  2. 根据权利要求1所述的通信方法,其特征在于,根据所述小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定所述小区组中的第二小区中BWP的切换或去激活状态,包括:
    若确定将所述小区组中所述第一小区的BWP从所述第一小区的第一BWP切换至所述第一小区的第二BWP,则将所述小区组中第二小区的BWP从所述第二小区的第一BWP切换至所述第二小区的第二BWP。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第一BWP为非默认default BWP,所述第二BWP为默认BWP,所述默认BWP为BWP回退定时器超时后终端工作的激活BWP。
  4. 根据权利要求2所述的通信方法,其特征在于,所述第一BWP为默认default BWP,所述第二BWP为非默认BWP。
  5. 根据权利要求4所述的通信方法,其特征在于,所述非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
  6. 根据权利要求4所述的通信方法,其特征在于,将所述小区组中第二小区的BWP从所述第二小区的第一BWP切换至所述第二小区的第二BWP,包括:
    接收所述第二小区的第一切换指示,所述第一切换指示携带目标非默认BWP;
    将所述第二小区的BWP从所述第二小区的默认BWP切换至所述目标非默认BWP上。
  7. 根据权利要求1所述的通信方法,其特征在于,根据所述小区组中第一小区的BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态,包括:
    若确定将所述小区组中所述第一小区去激活,则将所述小区组中的第二小区去激活。
  8. 根据权利要求7所述的通信方法,其特征在于,所述方法还包括:
    接收到所述小区组中所述第一小区的去激活指示后或者是所述第一小区的去激活定时器超时后,停止发送信道状态信息CSI,所述去激活指示用于指示将所述第一小区去激活。
  9. 根据权利要求8所述的通信方法,其特征在于,所述去激活指示包括:媒体接入控制的控制单元MAC CE、无线资源控制RRC、或者下行控制信息DCI。
  10. 根据权利要求1所述的通信方法,其特征在于,根据所述小区组中第一小区的BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态,包括:
    确定将所述小区组中所述第一小区的BWP从所述第一小区的非默认BWP切换至 所述第一小区的默认BWP,则去激活所述小区组中的第二小区。
  11. 根据权利要求10所述的通信方法,其特征在于,所述方法还包括:
    接收指示消息,所述指示消息用于使能将所述小区组中所述第一小区的非默认BWP切换至默认BWP时,去激活所述小区组中的第二小区。
  12. 根据权利要求10或11所述的通信方法,其特征在于,所述方法还包括:
    接收到BWP切换指示后或者是所述第一小区的BWP回退定时器超时后,停止发送所述小区组中第二小区的信道状态信息CSI,所述BWP切换指示用于将所述第一小区的BWP从所述第一小区的非默认BWP切换至所述第一小区的默认BWP。
  13. 根据权利要求12所述的通信方法,其特征在于,
    所述BWP切换指示包括:MAC CE、RRC、或DCI。
  14. 一种通信方法,其特征在于,包括:
    发送一个或多个小区组的信息,一个小区组中包括一个第一小区和至少一个第二小区;
    对于一个所述小区组,根据所述小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态。
  15. 根据权利要求14所述的通信方法,其特征在于,根据所述小区组中第一小区载波带宽部分BWP的切换或去激活状态确定所述小区组中的第二小区中BWP的切换或去激活状态,包括:
    若确定将所述小区组中所述第一小区的BWP从所述第一小区的第一BWP切换至所述第一小区的第二BWP,则将所述小区组中第二小区的BWP从第一BWP切换至第二BWP。
  16. 根据权利要求15所述的通信方法,其特征在于,所述第一BWP为非默认default BWP,所述第二BWP为默认BWP,所述默认BWP为BWP回退定时器超时后终端工作的激活BWP。
  17. 根据权利要求15所述的通信方法,其特征在于,所述第一BWP为默认default BWP,所述第二BWP为非默认BWP。
  18. 根据权利要求17所述的通信方法,其特征在于,所述非默认BWP是预配置的BWP或者前一次使用的非默认BWP。
  19. 根据权利要求17所述的通信方法,其特征在于,将所述小区组中第二小区的BWP从第一BWP切换至第二BWP,包括:
    发送第一切换指示,所述第一切换指示携带目标非默认BWP;
    将所述小区组中第二小区的BWP从所述第二小区的默认BWP切换至所述目标非默认BWP上。
  20. 根据权利要求14所述的通信方法,其特征在于,根据所述小区组中第一小区的BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态,包括:
    若确定将所述小区组中所述第一小区去激活,则将所述小区组中第二小区去激活。
  21. 根据权利要求14所述的通信方法,其特征在于,根据所述小区组中第一小区的BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态, 包括:
    确定将所述小区组中所述第一小区的BWP从所述第一小区的非默认BWP切换至所述第一小区的默认BWP,则去激活所述小区组中的第二小区。
  22. 根据权利要求21所述的通信方法,其特征在于,所述方法还包括:
    发送指示消息,所述指示消息用于使能将所述小区组中所述第一小区的非默认BWP切换至默认BWP时,去激活所述小区组中的第二小区。
  23. 一种通信装置,其特征在于,用于实现如权利要求1至13中任一项所述的通信方法。
  24. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使所述装置执行权利要求1至13中任一项所述的通信方法。
  25. 一种通信装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口接收一个或多个小区组的信息,其中,一个小区组中包括一个第一小区和至少一个第二小区;
    对于一个所述小区组,所述处理器用于根据所述小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态。
  26. 一种通信装置,其特征在于,用于实现如权利要求14至22中任一项所述的通信方法。
  27. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使所述装置执行权利要求14至22中任一项所述的通信方法。
  28. 一种通信装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口发送一个或多个小区组的信息,一个小区组中包括一个第一小区和至少一个第二小区;
    对于一个所述小区组,所述处理器用于根据所述小区组中第一小区的载波带宽部分BWP的切换或去激活状态确定所述小区组中第二小区的BWP的切换或去激活状态。
  29. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至13中任一项所述的通信方法,或者,使得计算机执行权利要求14至22中任一项所述的通信方法。
  30. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至13中任一项所述的通信方法,或者,使得计算机执行权利要求14至22中任一项所述的通信方法。
  31. 一种通信系统,包括权利要求23至25任一项所述的通信装置,和权利要求26至28任一项所述的通信装置。
PCT/CN2019/129460 2019-01-11 2019-12-27 通信方法及装置 WO2020143490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19908879.0A EP3902323A4 (en) 2019-01-11 2019-12-27 COMMUNICATION METHOD AND DEVICE
US17/372,058 US12021794B2 (en) 2019-01-11 2021-07-09 Communications method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028870.2 2019-01-11
CN201910028870.2A CN111436085B (zh) 2019-01-11 2019-01-11 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/372,058 Continuation US12021794B2 (en) 2019-01-11 2021-07-09 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143490A1 true WO2020143490A1 (zh) 2020-07-16

Family

ID=71520930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129460 WO2020143490A1 (zh) 2019-01-11 2019-12-27 通信方法及装置

Country Status (4)

Country Link
US (1) US12021794B2 (zh)
EP (1) EP3902323A4 (zh)
CN (1) CN111436085B (zh)
WO (1) WO2020143490A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294141B (zh) * 2018-12-10 2021-09-07 华为技术有限公司 无线通信方法及装置
CN111757552B (zh) * 2019-03-28 2023-11-21 苹果公司 用于快速载波聚合和双连接配置的辅助信息
US11770773B2 (en) * 2021-04-09 2023-09-26 Qualcomm Incorporated Duty cycle configuration for power saving
CN114175724A (zh) * 2021-11-05 2022-03-11 北京小米移动软件有限公司 Bwp回退方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121621A1 (en) * 2016-12-27 2018-07-05 Chou, Chie-Ming Method for signaling bandwidth part (bwp) indicators and radio communication equipment using the same
CN109076620A (zh) * 2018-08-03 2018-12-21 北京小米移动软件有限公司 随机接入控制方法和随机接入控制装置
CN110012554A (zh) * 2018-01-04 2019-07-12 维沃移动通信有限公司 一种无线链路恢复方法及终端
CN110166193A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 一种系统信息接收的方法及终端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932908B (zh) * 2011-08-12 2016-03-23 上海贝尔股份有限公司 控制用户设备在从小区组中的从小区上的上行传输的方法
US9356744B2 (en) 2014-02-06 2016-05-31 Mediatek Inc. Method for deactivated secondary cell measurement and communications apparatus utilizing the same
KR20150123679A (ko) * 2014-04-24 2015-11-04 한양대학교 산학협력단 디스커버리 신호의 송수신 방법 및 장치
CN105991212A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 小区去激活方法及终端
CN105589506B (zh) 2016-02-29 2017-10-17 华为技术有限公司 功率跟踪方法、装置及光伏发电系统
US11470616B2 (en) * 2017-05-04 2022-10-11 Samsung Electronics Co., Ltd. Bandwidth part configurations for single carrier wideband operations
US10505803B2 (en) * 2017-06-15 2019-12-10 Mediatek Inc. Power-efficient operation for wider bandwidth
CN109152019A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 资源映射的方法和装置
CN117042160A (zh) * 2017-10-24 2023-11-10 Lg电子株式会社 基站和由基站执行的方法
PL3714655T3 (pl) * 2017-11-22 2023-07-10 FG Innovation Company Limited Operacje nieciągłego odbioru pomiędzy wieloma częściami szerokości pasma
CA3043817A1 (en) * 2018-05-21 2019-11-21 Comcast Cable Communications, Llc Random access procedures using multiple active bandwidth parts
US20210250987A1 (en) * 2018-06-14 2021-08-12 Beijing Xiaomi Mobile Sofeware Co., Ltd. Timer control method, device, electronic apparatus, and computer readable storage medium
EP3817472A4 (en) * 2018-06-27 2022-03-02 Beijing Xiaomi Mobile Software Co., Ltd. DOWNLINK BANDWIDTH PARTIAL ADJUSTMENT METHOD, ELECTRONIC DEVICE AND COMPUTER READABLE STORAGE MEDIUM
JP7197581B2 (ja) * 2018-07-06 2022-12-27 株式会社Nttドコモ 端末及び基地局
US10834647B2 (en) * 2018-08-07 2020-11-10 Ofinno, Llc Beam failure recovery procedure in carrier aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121621A1 (en) * 2016-12-27 2018-07-05 Chou, Chie-Ming Method for signaling bandwidth part (bwp) indicators and radio communication equipment using the same
CN110012554A (zh) * 2018-01-04 2019-07-12 维沃移动通信有限公司 一种无线链路恢复方法及终端
CN110166193A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 一种系统信息接收的方法及终端
CN109076620A (zh) * 2018-08-03 2018-12-21 北京小米移动软件有限公司 随机接入控制方法和随机接入控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902323A4

Also Published As

Publication number Publication date
US12021794B2 (en) 2024-06-25
US20210336755A1 (en) 2021-10-28
EP3902323A4 (en) 2022-02-23
CN111436085A (zh) 2020-07-21
EP3902323A1 (en) 2021-10-27
CN111436085B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
US11398885B2 (en) Signal transmission method and apparatus
CN111345050B (zh) 对无线通信设备能力的临时处理
US11985688B2 (en) Transmission direction configuration method, device, and system
WO2020143490A1 (zh) 通信方法及装置
WO2018228548A1 (zh) 上行资源的授权方法、装置及系统
WO2018228416A1 (zh) 一种通信方法、网络设备及终端设备
US11032142B2 (en) Switching method, base station and terminal
WO2020125433A1 (zh) 一种通信方法及装置
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2018210254A1 (zh) 频域资源的处理方法、装置及系统
WO2019128680A1 (zh) 一种确定bwp状态的方法、设备及系统
US11936596B2 (en) Bandwidth part processing method and apparatus
WO2020052536A1 (zh) 一种通信方法及装置
US20230388066A1 (en) Direct Current (DC) Location Reporting for Intra-Band Uplink Carrier Aggregation (CA)
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
JP7480417B2 (ja) 補助情報送信方法、受信方法、装置、端末及びネットワーク側機器
WO2019214523A1 (zh) 一种通信方法及装置
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2019223558A1 (zh) 一种通信方法、装置及系统
WO2023216837A1 (zh) 数据传输方法及装置
WO2021208981A1 (zh) 一种目标信息发送方法、接收方法和装置
WO2018233697A1 (zh) 一种检测下行控制信道的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908879

Country of ref document: EP

Effective date: 20210719