WO2018228548A1 - 上行资源的授权方法、装置及系统 - Google Patents

上行资源的授权方法、装置及系统 Download PDF

Info

Publication number
WO2018228548A1
WO2018228548A1 PCT/CN2018/091572 CN2018091572W WO2018228548A1 WO 2018228548 A1 WO2018228548 A1 WO 2018228548A1 CN 2018091572 W CN2018091572 W CN 2018091572W WO 2018228548 A1 WO2018228548 A1 WO 2018228548A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink resource
resource
uplink
information
control channel
Prior art date
Application number
PCT/CN2018/091572
Other languages
English (en)
French (fr)
Inventor
刘哲
杨超斌
汪永
高全中
唐浩
汪凡
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019026642-9A priority Critical patent/BR112019026642A2/pt
Priority to RU2020101122A priority patent/RU2771047C2/ru
Priority to AU2018286295A priority patent/AU2018286295B2/en
Priority to EP18817667.1A priority patent/EP3634057B1/en
Priority to JP2019569671A priority patent/JP6963637B2/ja
Priority to KR1020197038549A priority patent/KR102374235B1/ko
Publication of WO2018228548A1 publication Critical patent/WO2018228548A1/zh
Priority to US16/713,588 priority patent/US11252755B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an uplink resource authorization method, apparatus, and system.
  • CA Carrier Aggregation
  • a terminal can support aggregation of multiple carriers, where the number of uplink carriers is not greater than the number of downlink carriers. That is to say, for one carrier, if it is configured for uplink transmission, it needs to be configured for the downlink transmission. It can be seen that the use of the uplink resource of the carrier is the use of the downlink resource bound to the carrier.
  • the uplink and downlink coverage is usually not balanced, and the uplink coverage is weaker than the downlink coverage.
  • the phenomenon of imbalance between uplink and downlink coverage is more obvious.
  • there is also an imbalance between upstream and downstream business demand and downstream business demand is often higher than upstream business demand. Therefore, it is desirable to adapt to the imbalance between uplink and downlink coverage or uplink and downlink services through uplink and downlink decoupling.
  • the use of the uplink resource is not bound to the use of the downlink resource of the carrier. In this case, there may be only uplink resources on one carrier, or only for uplink transmission.
  • the cross-carrier scheduling technique can be utilized, that is, the uplink resources of the carrier are scheduled by using other carriers.
  • the terminal needs to perform a large amount of blind detection, resulting in a large power consumption.
  • the embodiment of the present application provides a method, a device, and a system for configuring a search space, so as to reduce the number of blind detections of the terminal, thereby reducing the power consumption of the terminal.
  • a method for authorizing an uplink resource includes: receiving, by a terminal, configuration information, where the configuration information includes information of a first uplink resource and information of a second uplink resource; and the terminal searches for a downlink control channel in a search space. And obtaining, by the network device, authorization information that is sent to the terminal, where the authorization information includes at least one of authorization information of the first uplink resource, authorization information of the second uplink resource, and authorization information of a downlink resource used to carry the downlink control channel.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource, and the search space includes the second control channel when carrying the authorization information of the second uplink resource and/or the authorization information of the downlink resource.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the second uplink resource, where the search space includes the authorization information of the first uplink resource and/or the authorization information of the downlink resource.
  • the second aspect provides a method for authorizing an uplink resource, where the network device sends configuration information to the terminal, where the configuration information includes information of the first uplink resource and information of the second uplink resource; and the network device searches for the downlink control channel.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource, and the search space includes the second control channel when carrying the authorization information of the second uplink resource and/or the authorization information of the downlink resource.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the second uplink resource, where the search space includes the authorization information of the first uplink resource and/or the authorization information of the downlink resource.
  • the application provides an apparatus for authorizing an uplink resource, where the apparatus includes: a unit or a means for performing the steps of the foregoing first aspect.
  • the application provides an apparatus for authorizing an uplink resource, for a network device, including: a unit or a means for performing the foregoing steps of the second aspect.
  • the application provides an authorization device for an uplink resource, including at least one processing element and at least one storage element, wherein the at least one storage element is configured to store a program and data, when the device is used in a terminal, At least one processing element is for performing the method provided by the first aspect of the present application; when the apparatus is for a network device, the at least one processing element is for performing the method provided by the second aspect of the present application.
  • the application provides an authorization device for an uplink resource, comprising at least one processing element (or chip) for performing the method of the above first aspect or the second aspect.
  • the present application provides a program for performing the method of the above first aspect or second aspect when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the seventh aspect is provided.
  • the scheduling shared search space is equivalent to two carriers, and there are no more two control channel candidate sets.
  • the offset but directly adopts a control channel candidate set to carry the authorization information, thus reducing the number of blind detections of the terminal.
  • the number of control channel candidates in the first control channel candidate set is smaller than the number of control channel candidates in the second control channel candidate set, in the case where there is prior art cross-carrier scheduling, although there are offsets of two control channel candidate sets However, the number of control channel candidates of one of the control channel candidate sets is reduced, thus reducing the number of terminal blind detections.
  • the above first uplink resource is a supplementary uplink (SUL) resource.
  • SUL resource refers to a transmission in which only uplink resources are used for the current communication system.
  • the first uplink resource and the downlink resource used for carrying the downlink control channel are one carrier resource, and the scheduling of the first uplink resource is the carrier scheduling, and the scheduling of the second uplink resource is the cross-carrier scheduling.
  • the second uplink resource and the downlink resource used for carrying the downlink control channel are one carrier resource.
  • the scheduling of the first uplink resource is the cross-carrier scheduling, and the scheduling of the second uplink resource is the carrier scheduling.
  • the first uplink resource, the second uplink resource, and the downlink resource used for carrying the downlink control channel are one carrier resource.
  • the scheduling of the first uplink resource and the scheduling of the second uplink resource are both carriers. Scheduling, there is no cross-carrier scheduling.
  • the pairing mode of the existing uplink and downlink resources is broken, and the first uplink resource and the downlink resource of the carrier where the first uplink resource is located may be decoupled, and the second uplink resource and the second uplink resource are decoupled.
  • the downlink resources of the carrier can also be decoupled.
  • uplink resources and downlink resources of different carriers can be paired, thereby implementing more flexible carrier resource pairing.
  • the information of the uplink resource is an index or a frequency point number.
  • the information of the first uplink resource is an index of the first uplink resource
  • the information of the second uplink resource is an index of the second uplink resource.
  • the information of the first uplink resource is a frequency point number of the first uplink resource
  • the information of the second uplink resource is a frequency point number of the second uplink resource.
  • the index or frequency point indicates that the resource can reduce the amount of information transmitted on the air interface and reduce the consumption of air interface resources.
  • the terminal activates the first uplink resource and the second uplink resource at different times, that is, when the first uplink resource and the second uplink resource are different, the authorization information includes authorization information of the first uplink resource; or the authorization information includes Authorization information of the second uplink resource and/or authorization information of the downlink resource.
  • the authorization information is located in the downlink control information (DCI).
  • the DCI includes a carrier indication field, where the carrier indication field is used to indicate the first uplink resource or the second uplink resource.
  • the DCI does not include a carrier indication domain, and the authorization information is an authorization for an activated uplink resource (for example, a first uplink resource or a second uplink resource).
  • the network device can instruct the terminal to switch the uplink resource.
  • the method further includes: the network device sending, to the terminal device, a handover indication, where the handover indication is used to instruct the terminal to switch the activated uplink resource from the first uplink resource to the second uplink resource or from the second uplink resource to the first Upstream resources.
  • the terminal receives the handover indication, and switches the uplink resource according to the handover indication, for example, switching the activated uplink resource from the first uplink resource to the second uplink resource or from the second uplink resource to the first uplink resource.
  • the use of the uplink resources of the terminal can be adjusted in time to obtain better communication quality.
  • the handover indication is a carrier indication field, where the carrier indication field is used to indicate the first uplink resource or the second uplink resource, and when the uplink resource indicated by the carrier indication domain is different from the currently activated uplink resource, the terminal activates the uplink.
  • the resource is switched to the uplink resource indicated by the carrier indication field.
  • the handover method multiplexes the carrier indication domain, and only needs to change the value in the carrier indication field in the scheduling information when the handover is needed, and the handover can be completed quickly, and the RRC connection does not need to be reestablished, and no service interruption occurs.
  • the handover indication is group common scheduling information, where the group of common scheduling information includes multiple bits, and each bit corresponds to one terminal, and is used to indicate whether to switch the uplink resource of the corresponding terminal of the bit.
  • the number of bits of the set of common scheduling information can be sent by the network device to the terminal. The method can complete uplink resource switching for multiple terminals in the group at the same time, and the overall switching efficiency is high.
  • the handover indication is the medium access control layer signaling, where the medium access control layer signaling includes multiple bits, and each bit corresponds to an uplink resource, and is used to indicate whether to activate the uplink resource corresponding to the bit.
  • RRC Radio Resource Control
  • the network device may send the authorization information to the terminal at the request of the terminal or actively.
  • the terminal may activate the first uplink resource and the second uplink resource at the same time.
  • the authorization information includes at least one of authorization information of the first uplink resource, authorization information of the second uplink resource, and authorization information of the downlink resource.
  • the number of the first control channel candidate centralized control channel candidates may be predefined or may be configured by the network device to the terminal.
  • the method further includes: the network device sending, to the terminal, a configuration parameter, where the configuration parameter is used to configure the number of control channel candidate in the first control channel candidate set .
  • the terminal receives the configuration parameter from the network device, and further determines the number of the first control channel candidate centralized control channel candidate according to the configuration parameter.
  • the configuration parameter is a scaling factor, where the scaling factor is used to reflect a ratio between the number of control channel candidate in the first control channel candidate set and the number of control channel candidate in the second control channel candidate set or the second control channel candidate.
  • the first uplink resource is a low frequency resource
  • the second uplink resource is a high frequency resource
  • the downlink resource is a high frequency downlink resource.
  • the low frequency resource is a resource less than or equal to 3 GHz
  • the high frequency resource is a resource larger than 3 GHz.
  • the first uplink resource is a SUL resource.
  • FIG. 1 is a schematic diagram of a communication scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a carrier scheduling manner according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a search space of a control channel on a serving cell configured with cross-carrier scheduling
  • FIG. 4 is a schematic diagram of a method for authorizing an uplink resource according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a coverage scenario of different frequency bands according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a scheduling and search space according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another scheduling and search space according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an uplink resource switching method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a group public scheduling information according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another uplink resource switching method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of MAC layer signaling according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another uplink resource switching method according to an embodiment of the present disclosure.
  • FIG. 13 is still another schematic diagram of scheduling and searching according to an embodiment of the present application.
  • FIG. 14 is still another schematic diagram of scheduling and searching according to an embodiment of the present application.
  • FIG. 15 is still another schematic diagram of scheduling and searching according to an embodiment of the present application.
  • FIG. 16(a) is a schematic diagram showing the distribution of a control channel in a search space according to an embodiment of the present application
  • FIG. 16(b) is a schematic diagram showing another distribution of control channels in a search space according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an apparatus for authorizing an uplink resource according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a frequency domain resource processing apparatus according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device is a device that provides services for the terminal in the network, and includes, for example, a radio access network (RAN) device.
  • RAN radio access network
  • RAN devices are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (AP).
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a communication scenario according to an embodiment of the present application.
  • the terminal 110 accesses the wireless network through the network device 120 to acquire a service of an external network (such as the Internet) through the wireless network, or communicates with other terminals through the wireless network.
  • the terminal 110 initially accesses the network device 120.
  • the cell accessed by the terminal is a serving cell of the terminal, and the cell is responsible for radio resource control (RRC) communication with the terminal 110.
  • RRC radio resource control
  • the network device 120 may also configure other serving cells for the terminal. For example, when the RRC connection reconfiguration is performed, at least one serving cell may be added to the terminal 110, and the added serving cell is a secondary cell (SCell).
  • the serving cell initially accessed by the terminal 110 is a primary cell (PCell).
  • the added SCell may be a cell of the network device 120 or a cell of another network device, and no limitation is imposed herein.
  • the network device 120 may modify or release the SCell for the terminal when the RRC connection reconfiguration, in addition to adding the SCell to the terminal during the RRC connection reconfiguration.
  • the PCell is responsible for RRC communication with the terminal, and the corresponding CC is a primary component carrier (PCC).
  • the SCell may be added during RRC connection reconfiguration to provide additional radio resources for the terminal, and the CC corresponding to the SCell is a secondary component carrier (SCC).
  • SCC secondary component carrier
  • the number of downlink SCCs and uplink SCCs may be the same or different. Currently, the number of uplink CCs is not greater than the number of downlink CCs. If an uplink resource of one CC is used, the downlink resources of the CC are also used. That is to say, for a CC, if the CC is used for uplink transmission, the CC needs to be configured for downlink transmission. That is, the use of the uplink resource of the carrier is the use of the downlink resource bound to the carrier.
  • the uplink and downlink coverage is usually not balanced, and the uplink coverage is weaker than the downlink coverage.
  • uplink and downlink coverage is weaker than the downlink coverage.
  • downstream business demand is often higher than upstream business demand. Therefore, it is desirable to adapt to the imbalance between uplink and downlink coverage or uplink and downlink services through uplink and downlink decoupling.
  • the use of the uplink resource is not bound to the use of the downlink resource of the carrier. In this case, there may be only uplink resources on one carrier, or only for uplink transmission. Therefore, there is no downlink resource on the carrier to schedule the uplink resource of the carrier.
  • the cross-carrier scheduling technique can be utilized, that is, the uplink resources of the carrier are scheduled by using other carriers.
  • the terminal needs to perform a large amount of blind detection, resulting in a large power consumption.
  • FIG. 2 is a schematic diagram of a carrier scheduling manner according to an embodiment of the present application.
  • the network device 120 can configure three types of carrier scheduling modes for the terminal 110: local carrier scheduling, cross-carrier scheduling, and cross-carrier scheduling.
  • the figures are described by taking CC1, CC2 and CC3 as examples respectively.
  • the downlink control channel is used to schedule the data channel of the local carrier, where the downlink control channel is, for example, a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (enhanced physical downlink control channel). , EPDCCH), here taking the PDCCH as an example.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the data channel includes, for example, a physical uplink shared channel (PUSCH) and/or a physical downlink shared channel (PDSCH). That is, the downlink control channel of the CC1 is used to carry the uplink grant and/or the downlink grant information of the local carrier, the uplink grant information is used to indicate the PUSCH resource of the local carrier, and the downlink grant information is used to indicate the PDSCH resource of the local carrier, where the uplink
  • the authorization and/or downlink authorization information is carried in the downlink control information (DCI) carried by the downlink control channel.
  • DCI downlink control information
  • the downlink control channel of CC1 carries the DCI for scheduling the carrier, and the terminal blindly detects the downlink control of the CC1.
  • the channel obtains a DCI for scheduling the own carrier to obtain uplink grant and/or downlink grant information of the carrier.
  • the CC1 of the carrier scheduling may be referred to as an S-CC.
  • the downlink control channel is used to schedule data channels of other carriers.
  • the downlink control channel of CC2 is used to carry the uplink grant and/or downlink grant information of the carrier, and is also used to carry the uplink grant and/or downlink grant information of other carriers, where the uplink grant of the carrier and/or Or the downlink grant information is used to indicate the PUSCH and/or the PDSCH resource of the local carrier, and the uplink grant and/or the downlink grant information of the other carriers are used to indicate the PUSCH and/or the PDSCH resources of the other carriers.
  • the downlink control channel of the CC2 carries both the DCI for scheduling the local carrier, and the DCI for scheduling other carriers, and the terminal blindly detects the downlink control channel of the CC2 to obtain the DCI for scheduling the carrier and for scheduling.
  • the DCI of other carriers obtains uplink grant and/or downlink grant information for the carrier and other carriers.
  • the cross-carrier scheduled CC2 may be referred to as an X-CC.
  • the CC3 scheduled by cross-carrier has its data channel scheduling completed by other carriers (for example, by CC2), so the terminal does not blindly detect the PDCCH on the CC3.
  • the blind detection of the PDCCH by the terminal is implemented by searching the search space.
  • the search space is a set of control channel candidates, taking the set of PDCCH candidates as an example, the search space at the aggregation level L Defined as a collection of PDCCH candidates and search space
  • the control channel element (CCE) occupied by the PDCCH candidate m in the inner can pass the following formula Calculation.
  • the terminal is configured with a carrier indicator field (CIF) on the serving cell that is monitoring the PDCCH
  • CIF carrier indicator field
  • Y k is the starting CCE number of the search space
  • M (L) is the number of PDCCH candidates that need to be monitored in the search space, and the number is related to the aggregation level, for example, as shown in Table 1 below.
  • the aggregation level L is, for example, a value of the set ⁇ 1, 2, 4, 8 ⁇ , which is merely an example, and is not intended to limit the application. As the technology advances, the aggregation level may have other values.
  • the terminal is configured with cross-carrier scheduling (ie, there is CIF)
  • the cross-carrier scheduled serving cell adds an offset M (L) ⁇ n CI when calculating the search space. Therefore, the number of maximum PDCCH candidates that the terminal needs to blindly detect is also doubled.
  • the downlink control channel of the serving cell needs to carry both DCI (referred to as first DCI) for scheduling the local carrier and DCI (referred to as second DCI) for scheduling other carriers.
  • the PDCCH candidate for carrying the second DCI has an offset with respect to the PDCCH candidate for carrying the first DCI, but the number is unchanged, so the number of maximum PDCCH candidates that the terminal needs to detect blindly doubles.
  • FIG. 3 is a schematic diagram of a search space of a control channel on a serving cell configured with cross-carrier scheduling.
  • the number of PDCCH candidates for the PDCCH candidate set for carrying the first DCI and the PDCCH candidate set for carrying the second DCI is 16.
  • the number of blind detections required by the terminal reaches 64 (16). *2+16*2) times.
  • the reason why it is 16*2 is because the terminal has a specific DCI format under the specific transmission mode (TM).
  • TM specific transmission mode
  • the above search spaces are divided into a common search space and a UE-specific search space.
  • the common search space is used to transmit common control information at the cell level, such as control information related to paging, random access response, broadcast control channel (BCCH), and the like. It is the same for terminals in a cell.
  • the UE-specific search space is used to transmit control information related to downlink scheduling (DL-SCH) and/or uplink scheduling (UL-SCH), that is, control information related to downlink grants and/or uplink grants.
  • DL-SCH downlink scheduling
  • UL-SCH uplink scheduling
  • the search space in the following embodiments of the present application refers to a UE-specific search space.
  • the embodiment of the present application considers that the number of blind detections of the terminal is too large, causing waste of terminal energy, and proposes the following solution.
  • FIG. 4 is a schematic diagram of an uplink resource authorization method according to an embodiment of the present application. As shown in FIG. 4, the method includes the following steps:
  • S410 The network device sends configuration information to the terminal, where the configuration information includes information about the first uplink resource and information of the second uplink resource.
  • the configuration information is used to configure the first uplink resource and the second uplink resource for the terminal, and the terminal receives the configuration information from the network device, and determines, according to the configuration information, that the network device is configured to the first uplink resource and the second uplink resource of the terminal. .
  • the terminal may use the resource authorized in the first uplink resource to perform uplink transmission.
  • the terminal may use the resource authorized in the second uplink resource for uplink transmission.
  • the terminal When the terminal is configured with the CA of the first uplink resource and the second uplink resource, the terminal may use the first uplink resource when receiving the authorization information of the first uplink resource and the authorization information of the second uplink resource from the network device.
  • the authorized resource and the authorized resource in the second uplink resource are uplinked.
  • the network device sends a downlink control channel on the search space of the downlink control channel, where the downlink control channel includes authorization information for the terminal, where the authorization information may include authorization information of the first uplink resource, authorization information of the second uplink resource, and At least one of authorization information for carrying downlink resources of the downlink control channel.
  • S430 The terminal searches for a downlink control channel of the serving cell to obtain the foregoing authorization information.
  • S440 The terminal sends uplink data on the resource authorized by the authorization information.
  • the authorization information in the embodiment of the present application may be referred to as scheduling information, and is used to schedule resources to authorize resources of the terminal by using the authorization information.
  • the uplink grant information includes an uplink grant (UL grant), and the downlink grant information includes a downlink grant (DL grant).
  • UL grant uplink grant
  • DL grant downlink grant
  • the scheduling information is carried in the DCI or in the form of DCI.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource, and the search space includes the second control channel candidate set when carrying the authorization information of the second uplink resource and/or the authorization information of the downlink resource. .
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the second uplink resource, where the search space includes the second control channel when carrying the authorization information of the first uplink resource and/or the authorization information of the downlink resource.
  • the first control channel candidate set and the second control channel candidate set are the same, or the first control channel candidate set has an offset with respect to the second control channel candidate set, and the number of the first control channel candidate centralized control channel candidate is smaller than the second The number of control channel candidate control channel candidates.
  • the authorization information of the first uplink resource and the authorization information of the second uplink resource may share a search space of the downlink control channel. That is, the search space of the downlink control channel includes the same control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource and the grant information of the second uplink resource.
  • the first uplink resource and the second uplink resource are the first uplink CC and the second uplink CC, respectively, compared with the prior art, in the case where there is cross-carrier scheduling, there is no longer the offset of the two control channel candidate sets. Instead, a control channel candidate set is directly used to carry the authorization information of the first uplink CC and the second uplink CC, thereby reducing the number of blind detections of the terminal.
  • the authorization information of the first uplink resource (or the second uplink resource) and the authorization information used to carry the downlink resource of the downlink control channel may share the search space of the downlink control channel. That is, the search space includes the same control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource (or the second uplink resource) and the grant information of the downlink resource.
  • the search space includes the same control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource (or the second uplink resource) and the grant information of the downlink resource.
  • the two situations may be combined, that is, the authorization information of the first uplink resource, the authorization information of the second uplink resource, and the authorization information used to carry the downlink resource of the downlink control channel may share the search space of the downlink control channel. That is, the search space includes the same control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource, the grant information of the second uplink resource, and the grant information of the downlink resource.
  • the search space of the downlink control channel is included when the downlink control channel carries the authorization information of the first uplink resource, and the first control channel candidate set included when the downlink control channel carries the authorization information of the second uplink resource.
  • the second control channel candidate set has an offset, and the number of control channel candidate in the first control channel candidate set is smaller than the number of control channel candidates in the second control channel candidate set.
  • the second control channel candidate included in the search space of the downlink control channel when the downlink control channel carries the authorization information of the second uplink resource and the second control channel candidate included when the downlink control channel carries the authorization information of the first uplink resource
  • the set has an offset, and the number of control channel candidates in the first control channel candidate set is smaller than the number of control channel candidates in the second control channel candidate set.
  • the first uplink resource is a supplementary uplink (SUL) resource, such as a SUL carrier or a frequency, where the SUL resource refers to a transmission in which only uplink resources are used for the current communication standard. For example, for one carrier, only uplink resources are used for transmission.
  • SUL supplementary uplink
  • carrier A is only used for uplink transmission of NR, which is not used for downlink transmission or for long term evolution ( Long term evolution (LTE)
  • LTE long term evolution
  • the downlink transmission of the communication system is not used for the downlink transmission of the NR, and the carrier A is a SUL resource.
  • the foregoing uplink resources may be used as a carrier (including a carrier in a non-CA scenario and a CC in a CA scenario) for a part of uplink transmission or a serving cell (including a serving cell in a CA scenario and a serving cell in a non-CA scenario).
  • the part of the uplink transmission may be a primary CC or a secondary CC
  • the serving cell in the CA scenario may be a PCell or an Scell.
  • the uplink resource may also be referred to as an uplink carrier.
  • the part of the carrier or serving cell used for downlink transmission can be understood as a downlink resource or a downlink carrier.
  • a frequency resource used for uplink transmission on a carrier can be understood as the uplink resource or an uplink carrier; a frequency resource used for downlink transmission can be understood as a downlink resource or a downlink.
  • Carrier For example, in a time division duplex (TDD) system, a time domain resource used for uplink transmission on a carrier can be understood as the uplink resource or an uplink carrier; a time domain resource used for downlink transmission can be understood as a downlink. Resource or downlink carrier.
  • the first uplink resource and the downlink resource of the carrier where the first uplink resource is located may be decoupled, and the downlink resource of the second uplink resource and the carrier where the second uplink resource is located may also be decoupled. That is, the uplink carrier and the downlink carrier can be independently configured.
  • the first uplink resource and the downlink resource used to carry the downlink control channel may be configured as one carrier resource.
  • the scheduling of the first uplink resource is the carrier scheduling
  • the scheduling of the second uplink resource is the cross-carrier scheduling.
  • the second uplink resource and the downlink resource used to carry the downlink control channel may be configured as one carrier resource.
  • the scheduling of the first uplink resource is the cross-carrier scheduling
  • the scheduling of the second uplink resource is the carrier scheduling.
  • the first uplink resource, the second uplink resource, and the downlink resource used to carry the control channel may be configured as one carrier resource, where the scheduling of the first uplink resource and the scheduling of the second uplink resource are both carrier scheduling, There is no cross-carrier scheduling.
  • the number of the first control channel candidate centralized control channel candidate and the second control channel candidate centralized control channel candidate may be configured by the network device to the terminal, or may be predefined.
  • the number of the second control channel candidate control channel candidate may be determined in the same manner as the prior art, and the first control channel candidate set is configured by the network device to the terminal, and the network device may send the configuration parameter to the terminal, where
  • the configuration parameter may be a scaling factor, which is used to reflect a ratio between the number of control channel candidate in the first control channel candidate set and the number of control channel candidates in the second control channel candidate set, or a control channel candidate in the second control channel candidate set. The ratio between the number and the number of control channel candidates in the first control channel candidate set.
  • the network device may send configuration information to the terminal by using high layer signaling.
  • the higher layer signaling is, for example, an RRC message.
  • the network device can send configuration information to the terminal through a system message. In this regard, this application does not limit.
  • the information of the first uplink resource and the information of the second uplink resource in the configuration information may be an index of the first uplink resource and an index of the second uplink resource.
  • the information of the first uplink resource and the information of the second uplink resource may be a frequency point number of the first uplink resource and a frequency point number of the second uplink resource.
  • the index or frequency point indicates that the resource can reduce the amount of information transmitted on the air interface and reduce the consumption of air interface resources.
  • the information of the first uplink resource and the information of the second uplink resource may be other forms, and the present application is not limited, as long as the first uplink resource and the second uplink resource can be indicated.
  • the network device configured the first uplink resource and the second uplink resource for the terminal to be configured according to the capability of the terminal. Therefore, before the step S410, the network device can receive the capability information reported by the terminal, where the capability information can be, for example, the capability of the terminal to support the uplink resource, that is, how many uplink resources can be configured by the terminal, for example, how much the terminal can support the configuration. Upstream CC. After receiving the capability information reported by the terminal, the network device can learn whether the terminal supports the configuration of multiple uplink resources according to the capability information. If the network device supports the configuration, configure the first uplink resource and the second uplink resource for the terminal. Multiple uplink resources.
  • the capability information may further include a combination of the frequency points, that is, the resources of the frequency points may be combined to be jointly configured to the terminal, and the network device configures the uplink resource for the terminal according to the combination capability of the frequency point.
  • the terminal may determine the first uplink resource and the second uplink resource according to the configuration information.
  • the terminal may select one of the uplink resources to perform communication by itself.
  • the network device instructs the terminal to activate another uplink resource to provide additional uplink resources.
  • the network device may send indication information to the terminal to instruct the terminal to activate one or all of the uplink resources for uplink transmission.
  • the network device may send the authorization information of the first uplink resource and/or the second uplink resource to the terminal, so that the terminal learns the resource that the network device authorizes to the terminal according to the authorization information, and uses the authorized resource to transmit the uplink data.
  • the network device sends the authorization information of the first uplink resource to the terminal in the first DCI, and the authorization information of the second uplink resource is carried in the second DCI and sent to the terminal.
  • the network device sends the first DCI or the second DCI through the downlink control channel of the serving cell, or both the first DCI and the second DCI.
  • the terminal may obtain the authorization resource on the first uplink resource according to the authorization information of the first uplink resource, and use the authorization resource to transmit the uplink data.
  • the terminal may obtain the authorization resource on the second uplink resource according to the authorization information of the second uplink resource, and use the authorization resource to transmit the uplink data.
  • the authorization information includes the authorization information of the first uplink resource and the authorization information of the second uplink resource
  • the terminal supports the uplink CA, and may use the authorization resource and the second resource on the first uplink resource indicated by the authorization information of the first uplink resource.
  • the authorized resource on the second uplink resource indicated by the authorization information of the uplink resource transmits the uplink data.
  • the terminal may receive the downlink data according to the resource specified by the authorization information.
  • the downlink control channel may be a PDCCH or an ePDCCH.
  • the terminal's reception of the downlink control channel is implemented by searching the search space, and the search space includes a plurality of control channel candidates, and the terminal sequentially detects the control channel candidates until the DCI is detected or until all the control channel candidates are detected.
  • the network device can notify the terminal of the number of DCIs carried by the control channel, so that the terminal can stop detecting when the corresponding number of DCIs are detected, to further reduce the number of blind detections.
  • NR Prior to the introduction of NR, mobile communication systems used spectrum resources of lower frequency bands, for example, bands below 3 GHz (including 3 GHz). NR introduces spectrum resources in higher frequency bands, for example, spectrum resources above 3 GHz. However, the higher the frequency band, the lower the wireless transmission performance, such as the greater path loss.
  • the NR network can reuse the frequency band of the existing network, such as the frequency band in the LTE network, and decouple the uplink and downlink, and only multiplex the frequency band in the uplink.
  • FIG. 5 is a schematic diagram of a coverage scenario of different frequency bands according to an embodiment of the present disclosure.
  • the NR network multiplexes the frequency band of 1.8 GHz of the LTE network on the uplink, which is hereinafter referred to as the 1.8 GHz band.
  • the frequency band in which 3.5 GHz is used on the downlink hereinafter referred to as the 3.5 GHz band.
  • the NR uplink and the LTE uplink share the same frequency band resource, which not only fully utilizes the uplink spectrum resources, but also improves the uplink coverage of the NR.
  • the 1.8 GHz band is a SUL resource
  • the 3.5 GHz band cross-carrier scheduling uplink resources of the 1.8 GHz band, or the 1.8 GHz band and the 3.5 GHz band form a carrier resource.
  • the above method can be used to reduce the number of blind detections of the terminal.
  • the scenario can be used as an example to describe the application of the above embodiment in the scenario.
  • a scenario in which only one uplink resource is activated at the same time that is, a scenario in which the first uplink resource and the second uplink resource are different are activated.
  • the terminal does not support the uplink CA
  • the first uplink resource and the second uplink resource are not activated at the same time.
  • the terminal camps on the 3.5 GHz downlink resource (or downlink carrier) of the NR and uses an uplink resource (or uplink carrier) of 1.8 GHz.
  • the uplink grant (UL grant) of the 1.8 GHz uplink resource needs to be transmitted through the control channel on the 3.5 GHz downlink resource.
  • the 3.5 GHz uplink resource and the 3.5 GHz downlink resource belong to the same carrier.
  • the 3.5 GHz uplink resource uplink grant passes the 3.5 GHz downlink resource control.
  • the channel is transmitted.
  • the carrier scheduling is used.
  • the uplink grant of the 1.8 GHz uplink resource is transmitted through the control channel on the 3.5 GHz downlink resource. In this case, cross-carrier scheduling is adopted. .
  • the 1.8 GHz uplink resource and the 3.5 GHz downlink resource belong to the same carrier resource.
  • the 1.8 GHz uplink resource uplink authorization passes through 3.5.
  • the control channel on the downlink resource of GHz is transmitted.
  • the carrier scheduling is adopted.
  • the 3.5 GHz uplink resource may belong to the same carrier resource as the 1.8 GHz uplink resource and the 3.5 GHz downlink resource.
  • the authorization for the 3.5 GHz uplink resource is also implemented by the carrier scheduling. If the 3.5 GHz uplink resource and the 3.5 GHz downlink resource do not belong to the same carrier resource, at this time, the authorization for the 3.5 GHz uplink resource is implemented by cross-carrier scheduling.
  • the terminal Since the terminal only has one uplink resource activated at a time, that is, the terminal transmits information on only one uplink resource at a time, the terminal can use the same control channel candidate set when using the 1.8 GHz uplink resource and the 3.5 GHz uplink resource.
  • the uplink information transmitted by the terminal may include at least one of the following information: information on the PUSCH, information on the PUCCH, a sounding reference signal (SRS), and a physical random access channel (PRACH). Information.
  • FIG. 6 is a schematic diagram of a scheduling and search space provided by an embodiment of the present application.
  • the dotted line represents the inactive uplink resource
  • the solid line represents the activated uplink resource
  • the solid arrow represents the scheduling
  • the dotted arrow represents that the resources on both sides of the arrow belong to one carrier resource.
  • the 3.5 GHz uplink resource is activated.
  • the control channel on the 3.5 GHz downlink resource is used to carry the authorization information of the 3.5 GHz uplink resource.
  • the 1.8 GHz uplink resource is activated
  • the 3.5 GHz uplink is activated.
  • the control channel on the resource is used to carry the authorization information of the 1.8 GHz uplink resource.
  • the control channel candidate set of the search space is the same.
  • the control channel candidate set includes 16 control channel candidates as an example.
  • the maximum number of blind detections of the terminal is only 32, which reduces the number of blind detections compared with the prior art, and saves power consumption of the terminal.
  • the network device may configure a mode for multiplexing the CIF for the terminal.
  • the CIF field may be referred to as a new carrier indicator field (NCIF).
  • the index of the 3.5 GHz uplink resource configured by the network device is “0”, and the index of the uplink resource of the 1.8 GHz is “1”, and the value of the NCIF field in the uplink authorized DCI carrying the 3.5 GHz uplink resource is “0”.
  • the value of the NCIF field in the DCI that carries the uplink grant of the 3.5 GHz uplink resource is "1".
  • the NCIF is used to indicate the first uplink resource or the second uplink resource, and the value may be the information of the first uplink resource or the information of the second uplink resource, and the terminal may determine, according to the value of the NCIF domain, that the uplink authorization is correct.
  • the first uplink resource is also the second uplink resource.
  • FIG. 7 is another schematic diagram of scheduling and search space provided by an embodiment of the present application.
  • the scheduling method and search space in FIG. 7 are the same as in FIG. 6.
  • the network device does not configure the terminal to multiplex the CIF mode, and the DCI that carries the uplink grant of the 1.8 GHz or 3.5 GHz uplink resource does not have a CIF, and the uplink grant is for the activated uplink resource.
  • currently activated is a 1.8 GHz uplink resource, which is an authorization for 1.8 GHz uplink resources.
  • the uplink resource activated by the terminal may be switched, for example, from the first uplink resource to the second uplink resource, or from the second uplink resource to the first uplink resource.
  • the above method may further include:
  • the network device sends a handover indication to the terminal, where the handover indication is used to instruct the terminal to switch the activated uplink resource from the first uplink resource to the second uplink resource or from the second uplink resource to the first uplink resource.
  • the terminal receives the handover indication and performs the following operations:
  • S460 The terminal switches the activated uplink resource from the first uplink resource to the second uplink resource or from the second uplink resource to the first uplink resource according to the handover indication.
  • the method of handover can be implemented by multiplexing the mode of the CIF domain. That is, the handover indication is the above CIF.
  • the activated uplink resource is switched to the uplink resource indicated by the CIF. For example, if the currently activated uplink resource is a 3.5 GHz uplink resource and the CIF field is "1", and the "1" is an index of the 1.8 GHz uplink resource, the terminal deactivates the 3.5 GHz uplink resource and activates the 1.8 GHz uplink resource to implement the uplink. Switching resources.
  • FIG. 8 is a schematic diagram of an uplink resource switching method according to an embodiment of the present application.
  • the 1.8 GHz uplink resource and the 3.5 GHz uplink resource are taken as an example, and the terminal completes the RRC connection establishment on the 3.5 GHz downlink resource and the 3.5 GHz uplink resource.
  • the method includes the following steps:
  • S810 The terminal reports capability information, where the capability information is used to indicate the terminal's support capability for the uplink resource.
  • the network device receives the capability information, and performs the following step S820.
  • the network device configures, by using the capability information, a first uplink resource and a second uplink resource, which are 1.8 GHz uplink resources and 3.5 GHz uplink resources, respectively.
  • the index of the 3.5 GHz uplink resource is “0”, and the index of the 1.8 GHz uplink resource is “1”.
  • the network device sends configuration information to the terminal, where the configuration information is used to configure the first uplink resource and the second uplink resource, that is, the index of the first uplink resource and the index of the second uplink resource.
  • the configuration information may be an RRC message.
  • the terminal receives the configuration information, and according to the configuration information, the terminal is configured to configure the first uplink resource and the second uplink resource.
  • S840 The network device determines to switch the uplink resource of the terminal from the second uplink resource to the first uplink resource.
  • the terminal reports a measurement report to the network device, where the measurement report indicates that the channel quality of the terminal on the 3.5 GHz uplink resource is less than or equal to a threshold, for example, reference signal received power (RSRP) on the 3.5 GHz uplink resource.
  • RSRP reference signal received power
  • the network device is determined to switch the uplink resource of the terminal from 3.5 GHz to 1.8 GHz.
  • the network device sends scheduling information to the terminal, where the scheduling information is, for example, a DCI.
  • the value of the CIF in the scheduling information is "1".
  • the scheduling information may further include a scheduling delay K1, to indicate that the terminal may transmit uplink data on the 1.8 GHz uplink resource after the time K1 after receiving the scheduling information, that is, complete the uplink resource before the scheduling delay K1.
  • the authorization information includes authorization information of the 1.8 GHz uplink resource.
  • the scheduling information may not include the scheduling delay K1, but the default or predefined terminal completes the uplink resource switching within the switching time K2 after receiving the handover indication.
  • the uplink resource switching can be completed in the handover time K3 of the RRC message configuration terminal.
  • the switching time K2 or the configuration switching time K3 may be predefined, and the scheduling information carries the scheduling delay K1.
  • K1 is greater than or equal to K2, or K1 is greater than or equal to K3.
  • S860 The terminal blindly detects the scheduling information on the downlink control channel, and performs uploading and transmitting on the resources authorized in the blind detection scheduling information.
  • the value of the CIF in the current two scheduling information changes, and the terminal switches the uplink resource.
  • the uplink resource activated before the handover is a 3.5 GHz uplink resource
  • the uplink resource activated after the handover is a 1.8 GHz uplink resource.
  • the terminal transmits at least one of the PUSCH, the PUCCH, the SRS, and the PRACH on the 3.5 GHz uplink resource. No information is transmitted or only SRS and/or PRACH are transmitted on the 1.8 GHz uplink resource.
  • the terminal transmits at least one of the PUSCH, the PUCCH, the SRS, and the PRACH on the 1.8 GHz uplink resource, and does not transmit any information or only transmits the SRS and/or the PRACH on the 3.5 GHz uplink resource.
  • the handover can be completed quickly, and there is no need to re-establish the RRC connection, and no service interruption.
  • the switching of uplink resources can also be implemented by group common scheduling information, such as group public DCI.
  • group public scheduling information means that the scheduling information is valid for all terminals in the terminal group.
  • FIG. 9 is a schematic diagram of a group public scheduling information according to an embodiment of the present application.
  • the group of common scheduling information includes multiple bits, each bit corresponding to a terminal, and the value of each bit is used to indicate whether the corresponding terminal needs to switch uplink resources.
  • the number of bits of the group of common scheduling information may be configured by the network device and sent to the terminal through RRC signaling.
  • the group common scheduling information includes 5 bits as an example, and the 5 bits correspond to the terminals 1 to 5 respectively, wherein the first bit value is “1”, indicating that the uplink resource of the terminal 1 needs to be switched.
  • the switch can also be indicated by “0”, which is not limited in this application.
  • FIG. 10 is a schematic diagram of another uplink resource switching method according to an embodiment of the present application.
  • the method includes the steps S1010 to S1040, which are similar to the steps S810 to S840 of the embodiment shown in FIG. 8, and are not described herein again. The difference is in steps S850-S860 and S1050-S1060.
  • the network device sends the group common scheduling information to the terminal, where the group common scheduling information has the structure described above, and one of the bits is used to indicate whether the terminal performs uplink resource switching.
  • the value of the bit corresponding to the terminal is set to "1".
  • S1060 The terminal switches the uplink resource.
  • the terminal may detect the group public scheduling information on a preset time unit configured by the network device.
  • the time unit is for example a time slot or a mini-time slot.
  • the switching of the uplink resource may also be implemented by media access control (MAC) layer signaling, for example, a media access control control element (MAC CE).
  • MAC media access control
  • FIG. 11 is a schematic diagram of MAC layer signaling according to an embodiment of the present application.
  • the MAC layer signaling includes a plurality of bits, each bit corresponding to an uplink resource, and the value of each bit is used to indicate whether to activate the corresponding uplink resource.
  • the MAC layer signaling includes 8 bits as an example, where there may be at least one reserved bit (R), and other bits except reserved bits respectively correspond to one uplink resource, for example, except for reserved bits from right to left.
  • the value of the bit corresponding to C1 is “1”, which is used to indicate that the 1.8 GHz uplink resource is activated, and the other bits are all “0”. ". Of course, the activation may be indicated by “0”. This application does not limit the value of other bits.
  • FIG. 12 is a schematic diagram of another uplink resource switching method according to an embodiment of the present application.
  • the method includes steps S1210 to S1240, which are similar to steps S810 to S840 of the embodiment shown in FIG. 8, and are not described herein again. The difference is in steps S850-S860 and S1250-S1260.
  • the network device sends MAC layer signaling to the terminal, where the MAC layer signaling has the structure described above, and one of the bits is used to indicate the uplink resource to be activated by the terminal.
  • the value of the bit corresponding to the uplink resource is set to "1".
  • S1260 The terminal deactivates the currently used uplink resource, activates the MAC layer signaling to indicate the activated uplink resource, and implements uplink resource switching.
  • the network device may send the authorization information to the terminal at the request of the terminal or actively.
  • the method for transmitting the authorization information and the search space for the downlink control channel carrying the authorization information are the same as those of the foregoing embodiment, and details are not described herein again.
  • Each of the above switching methods does not need to re-establish an RRC connection, and no service interruption, thereby quickly completing uplink resource switching.
  • the first uplink resource and the second uplink resource can be simultaneously activated.
  • the first uplink resource and the second uplink resource may be activated at the same time.
  • the terminal camps on the 3.5 GHz downlink resource (or downlink carrier) of the NR and uses an uplink resource (or uplink carrier) of 1.8 GHz.
  • the uplink grant (UL grant) of the 1.8 GHz uplink resource needs to be transmitted through the control channel on the 3.5 GHz downlink resource.
  • the 3.5 GHz uplink resource and the 3.5 GHz downlink resource belong to the same carrier.
  • the 3.5 GHz uplink resource uplink grant passes the 3.5 GHz downlink resource control.
  • the channel is transmitted.
  • the carrier scheduling is used.
  • the uplink grant of the 1.8 GHz uplink resource is transmitted through the control channel on the 3.5 GHz downlink resource. In this case, cross-carrier scheduling is adopted. .
  • the 1.8 GHz uplink resource and the 3.5 GHz downlink resource belong to the same carrier resource.
  • the 1.8 GHz uplink resource uplink authorization passes through 3.5.
  • the control channel on the downlink resource of GHz is transmitted.
  • the carrier scheduling is adopted.
  • the 3.5 GHz uplink resource may belong to the same carrier resource as the 1.8 GHz uplink resource and the 3.5 GHz downlink resource.
  • the authorization for the 3.5 GHz uplink resource is also implemented by the carrier scheduling. If the 3.5 GHz uplink resource does not belong to the same carrier resource as the 3.5 GHz downlink resource, the authorization for the 3.5 GHz uplink resource is implemented by cross-carrier scheduling.
  • FIG. 13 is still another schematic diagram of scheduling and searching for the present disclosure.
  • the solid line represents the activated uplink resource
  • the solid arrow represents the scheduling
  • the dotted arrow represents that the resources on both sides of the arrow belong to one carrier resource.
  • the number of control channel candidates for 1.8 GHz in Figure 13 is less than 3.5 GHz, for example reduced to 10 candidates. Because only cross-carrier uplink scheduling is configured, the CIF exists in the DCI where the uplink authorization is located, and the CIF does not exist in the DCI where the downlink authorization is located.
  • the above method for reducing the control channel candidate may also be adopted.
  • the control channel candidate is reduced to 0, the method for sharing the search space described above is consistent.
  • the number of control channel candidates for the first uplink resource may also be reduced to 0, that is, by using a shared search space.
  • FIG. 14 is still another schematic diagram of scheduling and searching for the present disclosure.
  • the solid line represents the activated uplink resource
  • the solid arrow represents the scheduling
  • the dotted arrow represents that the resources on both sides of the arrow belong to one carrier resource.
  • the figure is used for the uplink scheduling shared search space of 1.8 GHz and 3.5 GHz, which is similar to the description of FIG. 6 , except that the authorization information carried by the control channel on the 3.5 GHz downlink resource may include both 1.8 GHz uplink resources and 3.5 GHz uplink.
  • Authorization information for the resource Because only the cross-carrier uplink scheduling is configured, the CIF exists in the DCI where the uplink authorization is located, and the CIF does not exist in the DCI where the downlink authorization is located.
  • FIG. 15 is still another schematic diagram of scheduling and searching for the present disclosure.
  • the solid line represents the activated uplink resource
  • the solid line arrow represents the scheduling
  • the dotted arrow represents that the resources on both sides of the arrow belong to one carrier resource.
  • the difference from that shown in FIG. 13 is that the 3.5 GHz downlink resource and the 1.8 GHz uplink resource belong to one carrier resource, and the 3.5 GHz downlink resource cross-carriers to schedule 3.5 GHz uplink resources, and the 3.5 GHz uplink resource is scheduled to be controlled at this time.
  • the number of channel candidate sets is 10. As shown in FIG.
  • CIF 0 in the DCI where the uplink authorization is located.
  • the authorization process of the specific uplink resource is similar to the above embodiment.
  • the terminal completes the RRC connection establishment on the 3.5 GHz downlink resource and the 3.5 GHz uplink resource.
  • the network device configures the first uplink resource and the second uplink resource for the terminal according to the capability information, which are respectively 1.8 GHz uplink resources and 3.5 GHz uplink resources.
  • the index of the 3.5 GHz uplink resource is “0”, and the index of the 1.8 GHz uplink resource is “1”.
  • the network device sends the configured uplink resource information to the terminal, so that the terminal learns the configured uplink resource.
  • the network device may send the authorization information to the terminal at the request of the terminal or actively, wherein the search space of the control channel carrying the authorization information may be the shared search space in the embodiment shown in FIG. 4 or reduced for 1.8 GHz or 3.5 GHz.
  • the search space of the number of control channel candidates for uplink resource scheduling may be the search space of the number of control channel candidates for uplink resource scheduling.
  • the authorization information when only one uplink resource is activated, includes the authorization information of the activated uplink resource, that is, the authorization information of the first uplink resource or the second uplink resource.
  • the authorization information includes authorization information of the activated uplink resource, that is, the first uplink resource and / or authorization information of the second uplink resource.
  • the authorization information may further include authorization information of the downlink resource, so that the terminal performs downlink transmission.
  • the network device can determine whether to adopt the search space sharing technology according to the load. That is, the network device may determine whether to schedule the first uplink resource and the second uplink resource in the same control channel candidate set according to the load, that is, whether to use the same control channel candidate set to carry the authorization of the first uplink resource and the second uplink resource.
  • the load can be represented by the utilization of a downlink resource block (RB) or the RB resource utilization of various downlink channels, and can also be represented by the number of terminals.
  • RB downlink resource block
  • the first uplink resource and the second uplink resource are collectively scheduled by using the same control channel candidate; when the load is greater than or equal to the second preset value, different control channel candidate centralized scheduling is adopted.
  • the first uplink resource and the second uplink resource have an offset between the control channel candidate sets, and the number of control channel candidates for scheduling the control channel candidate set of the first uplink resource is smaller than the control channel candidate for scheduling the second uplink resource. The number of control channel candidates.
  • each aggregation level is used for the control of the 3.5 GHz downlink scheduling.
  • the probability that the CCEs in the channel candidates are used by other terminals is relatively low. Therefore, if the network device has a low collision probability, the control channel for 1.8 GHz uplink resource scheduling can be placed in the unused 3.5 GHz scheduling. Control channel candidate transmission.
  • FIG. 16( a ) is a schematic diagram of a control channel in a search space according to an embodiment of the present application.
  • the control channel candidates 0 to 5 for the 3.5 GHz scheduling are not used by other terminals.
  • the PDCCH for carrying 3.5 GHz uplink grant information can be transmitted on the control channel candidate 0.
  • the PDCCH carrying the 1.8 GHz uplink grant information is transmitted on one of the remaining control channel candidates, for example, on the control channel candidate 3.
  • each aggregation level is used for the control of the 3.5 GHz downlink scheduling.
  • the probability that the CCEs in the channel candidates are used by other terminals is relatively high. Therefore, if the collision probability is relatively high, the network device can transmit the control channel for the 1.8 GHz uplink resource scheduling on the offset control channel candidates.
  • FIG. 16(b) is a schematic diagram of another control channel in a search space according to an embodiment of the present application.
  • control channel candidates 0 to 5 for 3.5 GHz scheduling with aggregation level 2 may be used by other terminals.
  • the PDCCH for carrying 3.5 GHz uplink grant information may be transmitted on the control channel candidate 5, which will be used.
  • the PDCCH carrying the 1.8 GHz uplink grant information is transmitted on one control channel candidate for the 1.8 GHz control channel candidate set, for example, on the control channel candidate 1 for the 1.8 GHz control channel candidate set.
  • the number of control channel candidates for the 1.8 GHz control channel candidate set is smaller than the number of control channel candidates for the 3.5 GHz control channel candidate set, and has a certain offset.
  • FIG. 17 is a schematic diagram of an apparatus for authorizing an uplink resource according to an embodiment of the present application.
  • the apparatus 1700 is for a terminal, as shown in FIG. 17, the apparatus 1700 includes means or means for performing the steps performed by the terminal in any of the above method embodiments, and detailed descriptions regarding these steps are applicable.
  • the device 1700 includes a search unit 1710 and a communication unit 1720.
  • the communication unit 1720 is configured to control communication between the terminal and the network device, and the communication unit 1720 can receive and transmit information through an interface (for example, an air interface) between the terminal and the network device.
  • the interface here is a logical concept. In the implementation, the corresponding logical unit needs to be set to meet the protocol requirements of the corresponding interface.
  • the search unit 1710 is configured to search for a downlink control channel in the search space to obtain authorization information that is sent by the network device to the terminal, where the authorization information includes authorization information of the first uplink resource, authorization information of the second uplink resource, and an information about the downlink control channel. At least one of authorization information of the downlink resource.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the first uplink resource, and the search space includes the second control channel candidate set when carrying the authorization information of the second uplink resource and/or the authorization information of the downlink resource.
  • the search space includes a first control channel candidate set when the downlink control channel carries the authorization information of the second uplink resource, where the search space includes the second control when carrying the authorization information of the first uplink resource and/or the authorization information of the downlink resource.
  • Channel candidate set The first control channel candidate set and the second control channel candidate set are the same, or the first control channel candidate set has an offset with respect to the second control channel candidate set, and the number of the first control channel candidate centralized control channel candidate is smaller than the second The number of control channel candidate control channel candidates.
  • the description of the first uplink resource and the second uplink resource, and the information of the first uplink resource and the information of the second uplink resource are the same as those in the foregoing embodiment, and details are not described herein again.
  • the terminal may further include a switching unit 1730, where the switching unit 1730 is configured to switch the activated uplink resource from the first uplink resource to the second uplink resource or from the second uplink resource, when the communication unit 1720 receives the handover indication. Switch to the first uplink resource.
  • each unit of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • the search unit 1710 may be a separately set processing element, or may be integrated in a certain chip of the terminal, or may be stored in a memory of the terminal in the form of a program, and is called and executed by a processing element of the terminal. The function of the unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above communication unit is a unit for controlling communication, and can receive information transmitted by the network device or send information to the network device through the transceiver device of the terminal, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 18 is a schematic diagram of a frequency domain resource processing apparatus according to an embodiment of the present application.
  • the apparatus 1800 is for a network device, as shown in FIG. 18, the apparatus 1800 comprising means or means for performing the various steps performed by the network device in any of the above method embodiments, and with respect to the detailed description of these steps Both can be applied to the embodiment of the device.
  • the apparatus includes a generating unit 1810 and a communication unit 1820.
  • the communication unit 1820 is configured to control communication with the network device, and may receive and send a message through an interface (eg, an air interface) between the network device and the terminal.
  • the interface here is a logical concept. In the implementation, the corresponding logical unit needs to be set to meet the protocol requirements of the corresponding interface.
  • the generating unit 1810 is configured to generate configuration information and authorization information carried on the downlink control channel, where the content of the configuration information, and the configured configuration manners of the first uplink resource and the second uplink resource are the same as the above embodiment, where No longer.
  • the communication unit 1820 controls the sending of the configuration information and the authorization information generated by the generating unit 1810, for example, for transmitting the configuration information to the terminal, and for transmitting the downlink control channel on the search space of the downlink control channel, where the downlink control channel is included in the terminal Authorization information.
  • the description of the first uplink resource and the second uplink resource, and the information of the first uplink resource and the information of the second uplink resource are the same as those in the foregoing embodiment, and details are not described herein again.
  • the communication unit 1820 is further configured to control transmission of information sent by other network devices to the terminal in the above embodiments. For example, it controls the transmission of the handover indication and the transmission of the configuration parameters.
  • the descriptions of the handover indication and the configuration parameters are the same as those in the above embodiment, and are not described herein again.
  • each unit of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • the generating unit 1810 may be a separately set processing element, or may be implemented in one chip of the network device, or may be stored in a memory of the network device in the form of a program, and a processing element of the network device. Call and execute the function of the unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present application. It can be the network device in the above embodiment, and is used to implement the operation of the network device in the above embodiment.
  • the network device includes an antenna 1910, a radio frequency device 1920, and a baseband device 1930.
  • the antenna 1910 is coupled to the radio frequency device 1920.
  • the radio frequency device 1920 receives the information transmitted by the terminal through the antenna 1910, and transmits the information transmitted by the terminal to the baseband device 1930 for processing.
  • the baseband device 1930 processes the information of the terminal and transmits it to the radio frequency device 1920.
  • the radio frequency device 1920 processes the information of the terminal and sends it to the terminal via the antenna 1910.
  • the baseband device 1930 can include a baseband board.
  • the network device can include a plurality of baseband boards, and a plurality of processing elements can be integrated on the baseband board to achieve the desired functionality.
  • the processing device of the above frequency domain resources may be located in the baseband device 1930.
  • the various units shown in FIG. 18 are implemented in the form of a processing element scheduling program, for example, the baseband device 1930 includes a processing element 1931 and a storage element 1932, Processing component 1931 invokes a program stored by storage component 1932 to perform the method performed by the network device in the above method embodiments.
  • the baseband device 1930 may further include an interface 1933 for interacting with the radio frequency device 1920, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the various units shown in FIG. 18 may be one or more processing elements configured to implement a method performed by a net-connected device, the processing elements being disposed on a baseband device 1930, where the processing elements may be An integrated circuit, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, and the like. These integrated circuits can be integrated to form a chip.
  • the various units shown in FIG. 18 may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 1930 includes a SOC chip for implementing the above method.
  • the processing component 1931 and the storage component 1932 may be integrated into the chip, and the method executed by the internet device or the function of each unit shown in FIG. 18 may be implemented by the processing component 1931 in the form of a stored program of the storage component 1932; or, the chip may be Integrating at least one integrated circuit for implementing a method executed by the on-line device or a function of each unit shown in FIG. 18; or, in combination with the above implementation manner, the function of the part of the unit is realized by the form of the processing element calling program, and the function of the part unit It is realized in the form of an integrated circuit.
  • the above processing device for the frequency domain resources of the network device comprises at least one processing element and a storage element, wherein at least one processing element is used to perform the method performed by the network device provided by the above method embodiment.
  • the processing element may perform some or all of the steps performed by the network device in the above method embodiment in a manner of executing the program stored in the storage element in the first manner; or in a second manner: through hardware in the processor component
  • the integrated logic circuit performs some or all of the steps performed by the network device in the foregoing method embodiment in combination with the instructions; of course, some or all of the steps performed by the network device in the foregoing method embodiment may be performed in combination with the first mode and the second mode. .
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 20 is a schematic structural diagram of a terminal according to an embodiment of the present application. It can be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment.
  • the terminal includes an antenna, a radio frequency device 2010, and a baseband device 2020.
  • the antenna is connected to the radio frequency device 2010.
  • the radio frequency device 2010 receives the information sent by the network device through the antenna, and sends the information sent by the network device to the baseband device 2020 for processing.
  • the baseband device 2020 processes the information of the terminal and sends the information to the radio frequency device 2010.
  • the radio frequency device 2010 processes the information of the terminal and sends the information to the network device through the antenna.
  • the baseband device can include a modem subsystem for effecting processing of the various communication protocol layers of the data.
  • a central processing subsystem may also be included for implementing processing of the terminal operating system and the application layer.
  • other subsystems such as a multimedia subsystem, a peripheral subsystem, etc., may be included, wherein the multimedia subsystem is used to implement control of the terminal camera, screen display, etc., and the peripheral subsystem is used to implement connection with other devices.
  • the modem subsystem can be a separately set chip.
  • the processing device of the above frequency domain resources can be implemented on the modem subsystem.
  • the various units shown in FIG. 17 are implemented in the form of a processing element scheduler, such as a subsystem of baseband apparatus 2020, such as a modem subsystem, including processing element 2021 and storage element 2022, processing element 2021
  • the program stored by the storage element 2022 is invoked to perform the method performed by the terminal in the above method embodiment.
  • the baseband device 2020 can also include an interface 2023 for interacting with the radio frequency device 2010.
  • the various units shown in FIG. 17 may be one or more processing elements configured to implement the methods performed by the above terminals, the processing elements being disposed on a subsystem of the baseband device 2020, such as a modulation solution.
  • the processing elements herein may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, and the like. These integrated circuits can be integrated to form a chip.
  • the various units shown in FIG. 17 can be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 2020 includes a SOC chip for implementing the above method.
  • the processing element 2021 and the storage element 2022 may be integrated in the chip, and the method executed by the above terminal or the function of each unit shown in FIG. 17 may be implemented by the processing element 2021 in the form of a stored program of the storage element 2022; or, the chip may be integrated
  • At least one integrated circuit is used to implement the above method of executing the terminal or the functions of the respective units shown in FIG. 17; or, in combination with the above implementation manner, the functions of the partial units are implemented by the processing component calling program, and the functions of some units are integrated.
  • the form of the circuit is implemented.
  • the above processing means for the frequency domain resources of the terminal comprises at least one processing element and a storage element, wherein at least one of the processing elements is used to perform the method of terminal execution provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the terminal in the above method embodiment in a manner of executing the program stored in the storage element in a first manner; or in a second manner: through integration of hardware in the processor element
  • the logic circuit performs some or all of the steps performed by the terminal in the foregoing method embodiment in combination with the instruction; of course, some or all of the steps performed by the terminal in the foregoing method embodiment may be performed in combination with the first mode and the second mode.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

一种上行资源的授权方法,包括:终端从网络设备接收配置信息,该配置信息包括第一和第二上行资源的信息;终端在搜索空间搜索下行控制信道以获得授权信息。搜索空间在下行控制信道承载第一(或第二)上行资源的授权信息时包括第一控制信道候选集,在承载第二(或第一)上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集。第一控制信道候选集和第二控制信道候选集相同,或者,第一控制信道候选集相对于第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。该方法通过搜索空间共享或者降低承载上行资源的授权信息时控制信道候选的数量减少终端盲检测的次数。

Description

上行资源的授权方法、装置及系统
本申请要求于2017年06月16日提交中国专利局、申请号为201710459797.5、申请名称为“上行资源的授权方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,特别涉及上行资源的授权方法、装置及系统。
背景技术
随着智能终端用户的不断增长,用户业务量和数据吞吐量不断增加,频谱资源的需求也日益增加。然而,无线频谱资源短缺,很难找到连续的大带宽资源供移动通信采用,因此,引入了载波聚合(Carrier Aggregation,CA)技术,把多个连续或不连续的频谱资源(例如,载波)聚合使用,以满足移动通信对于大带宽的需求,同时也提高了零散频谱的利用率。
目前,在CA技术中,终端可以支持多个载波的聚合,其中,上行载波的数量不大于下行载波的数量。也就是说,对于一个载波,如果配置其用于上行传输,则需要配置该载波还用于下行传输。可见,即载波的上行资源的使用是绑定该载波的下行资源的使用的。
然而,受限于终端发射功率,上下行覆盖通常并不平衡,上行覆盖要弱于下行覆盖。随着高频段的引入,上下行覆盖不平衡的现象更加明显。此外,从业务的角度来看,上下行业务需求也存在着不平衡,下行业务需求往往高于上行业务需求。因此,希望通过上下行解耦来适应上下行覆盖或上下行业务的不平衡。当上下行解耦时,对于一个载波,其上行资源的使用不再与该载波的下行资源的使用绑定,此时,可能存在一个载波上只存在上行资源,或者说只用于上行传输。因此,该载波上没有下行资源来调度该载波的上行资源。这时,可以利用跨载波调度技术,即利用其它载波来调度该载波的上行资源。此时,终端的需要进行大量的盲检测,导致耗电量较大。
发明内容
本申请实施例提供搜索空间的配置方法、装置及系统,以期降低终端的盲检测次数,进而降低终端的耗电量。
第一方面,提供一种上行资源的授权方法,包括:终端从网络设备接收配置信息,该配置信息包括第一上行资源的信息和第二上行资源的信息;终端在搜索空间搜索下行控制信道以获得网络设备发送给终端的授权信息,该授权信息包括第一上行资源的授权信息、第二上行资源的授权信息、和用于承载下行控制信道的下行资源的授权信息中的至少一个。其中,搜索空间在下行控制信道承载第一上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第二上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道 候选集;或者,搜索空间在下行控制信道承载第二上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第一上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集。且第一控制信道候选集和第二控制信道候选集相同,或者,第一控制信道候选集相对于第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。
第二方面,提供一种上行资源的授权方法,包括:网络设备向终端发送配置信息,该配置信息包括第一上行资源的信息和第二上行资源的信息;网络设备在下行控制信道的搜索空间上发送下行控制信道,该下行控制信道包括给终端的授权信息,该授权信息包括第一上行资源的授权信息、第二上行资源的授权信息、和用于承载下行控制信道的下行资源的授权信息中的至少一个。其中,搜索空间在下行控制信道承载第一上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第二上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集;或者,搜索空间在下行控制信道承载第二上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第一上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集。且第一控制信道候选集和第二控制信道候选集相同,或者第一控制信道候选集相对于第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。
第三方面,本申请提供一种上行资源的授权装置,用于终端,包括:包括用于执行以上第一方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种上行资源的授权装置,用于网络设备,包括:包括用于执行以上第二方面各个步骤的单元或手段(means)。
第五方面,本申请提供一种上行资源的授权装置,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,当该装置用于终端时,所述至少一个处理元件用于执行本申请第一方面种提供的方法;当该装置用于网络设备时,所述至少一个处理元件用于执行本申请第二方面种提供的方法。
第六方面,本申请提供一种上行资源的授权装置,包括用于执行以上第一方面或第二方面的方法的至少一个处理元件(或芯片)。
第七方面,本申请提供一种程序,该程序在被处理器执行时用于执行以上第一方面或第二方面的方法。
第八方面,提供一种程序产品,例如计算机可读存储介质,包括第七方面的程序。
在第一控制信道候选集和第二控制信道候选集相同时,在存在现有技术的跨载波调度的情况下,相当于两个载波的调度共享搜索空间,不再存在两个控制信道候选集的偏移,而是直接采用一个控制信道候选集来承载授权信息,因此降低了终端盲检测的次数。
在第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量时,在存在现有技术的跨载波调度的情况下,虽然存在两个控制信道候选集的偏移,但其中一个控制信道候选集的控制信道候选的数量减少,因此降低了终端盲检测的次数。
以上第一上行资源为增补上行(SUL)资源。SUL资源是指仅有上行资源用于当前通信制式的传输。
可选的,第一上行资源和用于承载下行控制信道的下行资源为一个载波资源,此时对 第一上行资源的调度为本载波调度,对第二上行资源的调度为跨载波调度。
可选的,第二上行资源和用于承载下行控制信道的下行资源为一个载波资源,此时对第一上行资源的调度为跨载波调度,对第二上行资源的调度为本载波调度。
可选的,第一上行资源、第二上行资源和用于承载下行控制信道的下行资源为一个载波资源,此时,对第一上行资源的调度和对第二上行资源的调度均为本载波调度,不存在跨载波调度。
在以上三种载波资源的组合中,打破了现有上下行资源的配对方式,第一上行资源和该第一上行资源所在载波的下行资源可以解耦,第二上行资源和该第二上行资源所在载波的下行资源也可以解耦。且可以让不同载波的上行资源和下行资源配对,从而实现更加灵活的载波资源配对。
可选的,上行资源的信息为索引或频点号。例如,第一上行资源的信息为第一上行资源的索引,第二上行资源的信息为第二上行资源的索引。或者,第一上行资源的信息为第一上行资源的频点号,第二上行资源的信息为第二上行资源的频点号。采用索引或频点号的方式指示资源可以减少空口上传输的信息的数量,减少空口资源消耗。
可选的,终端在不同时间激活第一上行资源和第二上行资源,即第一上行资源和第二上行资源不同时被激活时,授权信息包括第一上行资源的授权信息;或者授权信息包括第二上行资源的授权信息和/或下行资源的授权信息。
授权信息位于下行控制信息(DCI)中,当第一上行资源和第二上行资源不同时被激活时,该DCI包括载波指示域,该载波指示域用于指示第一上行资源或第二上行资源。在另一种实现方式中,该DCI不包括载波指示域,该授权信息是对激活的上行资源(例如,第一上行资源或第二上行资源)的授权。
可选的,网络设备可以指示终端切换上行资源。此时,以上方法还包括:网络设备向终端设备发送切换指示,该切换指示用于指示终端将激活的上行资源从第一上行资源切换到第二上行资源或者从第二上行资源切换到第一上行资源。相应的,终端接收该切换指示,并根据该切换指示切换上行资源,例如将激活的上行资源从第一上行资源切换到第二上行资源或者从第二上行资源切换到第一上行资源。此时,可以在终端移动时,及时调整终端上行资源的使用,以获得更好的通信质量。
可选的,切换指示为载波指示域,该载波指示域用于指示第一上行资源或第二上行资源,当载波指示域指示的上行资源与当前激活的上行资源不同时,终端将激活的上行资源切换到载波指示域指示的上行资源。该切换方法复用载波指示域,且只需要切换的时候调度信息中载波指示域中的值发生改变,就可以快速完成切换,且不需要重新建立RRC连接,没有业务中断。
可选的,切换指示为组公共调度信息,该组公共调度信息包括多个位,每个位对应一个终端,用于指示是否切换该位对应终端的上行资源。在一种实现中,该组公共调度信息的位数可以由网络设备发送给终端。该方法可以同时对组内多个终端完成上行资源切换,整体切换效率较高。
可选的,切换指示为媒体接入控制层信令,该媒体接入控制层信令包括多个位,每个位对应一个上行资源,用于指示是否激活该位对应的上行资源。
以上每个切换方法都不需要重新建立无线资源控制(RRC)连接,没有业务中断,从 而快速完成上行资源切换。
在切换前和切换后,网络设备可以应终端的请求或主动向终端发送授权信息。
可选的,终端可以同时激活第一上行资源和第二上行资源,此时,授权信息包括第一上行资源的授权信息、第二上行资源的授权信息和下行资源的授权信息中的至少一个。
第一控制信道候选集中控制信道候选的数量可以是预定义的,也可以由网络设备配置给终端。当第一控制信道候选集中控制信道候选的数量由网络设备配置给终端时,以上方法还包括:网络设备向终端发送配置参数,该配置参数用于配置第一控制信道候选集中控制信道候选的数量。相应的,终端从网络设备接收配置参数,进而根据该配置参数确定第一控制信道候选集中控制信道候选的数量。
可选的,该配置参数为比例因子,该比例因子用于反映第一控制信道候选集中控制信道候选的数量与第二控制信道候选集中控制信道候选的数量之间的比例或者第二控制信道候选集中控制信道候选的数量与第一控制信道候选集中控制信道候选的数量之间的比例。
可选的,第一上行资源为低频资源,第二上行资源为高频资源,下行资源为高频下行资源。其中低频资源为小于或等于3GHz的资源,高频资源为大于3GHz的资源。此时,第一上行资源为SUL资源。
附图说明
图1为本申请实施例提供的一种通信场景的示意图;
图2为本申请实施例提供的一种载波调度方式的示意图;
图3为现有的一种配置了跨载波调度的服务小区上的控制信道的搜索空间的示意图;
图4为本申请实施例提供的一种上行资源的授权方法的示意图;
图5为本申请实施例提供的一种不同频段的覆盖场景的示意图;
图6为本申请实施例提供的一种调度和搜索空间示意图;
图7为本申请实施例提供的另一种调度和搜索空间示意图;
图8为本申请实施例提供的一种上行资源切换方法的示意图;
图9为本申请实施例提供的一种组公共调度信息的示意图;
图10为本申请实施例提供的另一种上行资源切换方法的示意图;
图11为本申请实施例提供的一种MAC层信令的示意图;
图12为本申请实施例提供的另一种上行资源切换方法的示意图;
图13为本申请实施例提供的又一种调度和搜索空示意图;
图14为本申请实施例提供的又一种调度和搜索空示意图;
图15为本申请实施例提供的又一种调度和搜索空示意图;
图16(a)为本申请实施例提供的一种控制信道在一种搜索空间中的分布示意图;
图16(b)为本申请实施例提供的另一种控制信道在一种搜索空间中的分布示意图;
图17为本申请实施例提供的一种上行资源的授权装置的示意图;
图18为本申请实施例提供的一种频域资源的处理装置的示意图;
图19为本申请实施例提供的一种网设备的结构示意图;
图20为本申请实施例提供的一种终端的结构示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备是网络中为终端提供服务的设备,例如包括无线接入网(radio access network,RAN)设备。目前,一些RAN设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参考图1,其为本申请实施例提供的一种通信场景的示意图。如图1所示,终端110通过网络设备120接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。终端110初始接入网络设备120,此时终端接入的小区为终端的服务小区(serving cell),该小区负责与终端110之间的无线资源控制(radio resource control,RRC)通信。
在CA技术中,网络设备120还可以为终端配置其它服务小区,例如,在RRC连接重配置时,可以为终端110添加至少一个服务小区,添加的服务小区为辅小区(SCell),此时,终端110初始接入的服务小区为主小区(PCell)。添加的SCell可以为该网络设备120的小区,也可以为其它网络设备的小区,在此不做任何限制。此外,网络设备120除了在RRC连接重配置时为终端添加SCell,还可以在RRC连接重配置时为终端修改或释放SCell。
PCell负责与终端之间的RRC通信,对应的CC为主成员载波(PCC)。SCell可以在RRC连接重配置时添加,以为终端提供额外的无线资源,SCell对应的CC为辅成员载波(SCC)。下行SCC和上行SCC的数量可以相同也可以不同。目前,上行CC的数量不大于下行CC的数量,如果一个CC的上行资源被使用,则该CC的下行资源也被使用。也就是说,对于一个 CC,如果该CC用于上行传输,则需要配置该CC还用于下行传输。即载波的上行资源的使用是绑定该载波的下行资源的使用的。
然而,受限于终端发射功率,上下行覆盖通常并不平衡,上行覆盖要弱于下行覆盖。此外,从业务的角度来看,上下行业务需求也存在着不平衡,下行业务需求往往高于上行业务需求。因此,希望通过上下行解耦来适应上下行覆盖或上下行业务的不平衡。当上下行解耦时,对于一个载波,其上行资源的使用不再与该载波的下行资源的使用绑定,此时,可能存在一个载波上只存在上行资源,或者说只用于上行传输。因此,该载波上没有下行资源来调度该载波的上行资源。这时,可以利用跨载波调度技术,即利用其它载波来调度该载波的上行资源。此时,终端的需要进行大量的盲检测,导致耗电量较大。
下面结合图2描述跨载波调度,其中图2为本申请实施例提供的一种载波调度方式的示意图。如图2所示,网络设备120可以为终端110配置3种载波调度方式:本载波调度、跨载波调度、被跨载波调度。图中分别以CC1、CC2和CC3为例进行描述。本载波调度的CC1上,下行控制信道用于调度本载波的数据信道,其中下行控制信道例如为物理下行控制信道(physical downlink control channel,PDCCH)或增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH),在此以PDCCH为例。数据信道例如包括物理上行共享信道(physical uplink shared channel,PUSCH)和/或物理下行共享信道(physical downlink shared channel,PDSCH)。也就是说,CC1的下行控制信道用于承载本载波的上行授权和/或下行授权信息,上行授权信息用于指示本载波的PUSCH资源,下行授权信息用于指示本载波的PDSCH资源,其中上行授权和/或下行授权信息携带于下行控制信道承载的下行控制信息(downlink control information,DCI)中,此时CC1的下行控制信道上承载用于调度本载波的DCI,终端盲检测CC1的下行控制信道以获得用于调度本载波的DCI,以获得本载波的上行授权和/或下行授权信息。该本载波调度的CC1可以称为S-CC。跨载波调度的CC2上,下行控制信道用于调度其它载波的数据信道。也就是说,CC2的下行控制信道上既用于承载本载波的上行授权和/或下行授权信息,还用于承载其它载波的上行授权和/或下行授权信息,其中本载波的上行授权和/或下行授权信息用于指示本载波的PUSCH和/或PDSCH资源,其它载波的上行授权和/或下行授权信息用于指示其它载波的PUSCH和/或PDSCH资源。此时,CC2的下行控制信道上既承载用于调度本载波的DCI,还承载用于调度其它载波的DCI,终端盲检测CC2的下行控制信道以获得用于调度本载波的DCI以及用于调度其它载波的DCI,进而获得本载波和其它载波的上行授权和/或下行授权信息。该跨载波调度的CC2可以称为X-CC。被跨载波调度的CC3,其数据信道的调度由其它载波(例如由CC2)完成,因此终端不在该CC3上盲检测PDCCH。
终端对PDCCH的盲检测是通过对搜索空间的搜索来实现的。搜索空间是控制信道候选的集合,以PDCCH候选的集合为例,在聚合级别L上的搜索空间
Figure PCTCN2018091572-appb-000001
定义为PDCCH候选的集合,且搜索空间
Figure PCTCN2018091572-appb-000002
内的PDCCH候选m所占用的控制信道元素(control channel element,CCE)可以通过如下公式
Figure PCTCN2018091572-appb-000003
计算。如果终端在正在监听PDCCH的服务小区上配置了载波指示域(carrier indicator field,CIF),该CIF域的存在表明跨载波调度的存在,即该服务小区跨载波调度其它服务小区,则m′=m+M (L)·n CI,其中n CI为CIF的值;如 果该服务小区上没有配置CIF,则m′=m。
其中,Y k是指搜索空间的起始CCE编号,N CCE,k是指子帧k的CCE总数,i=0,L,L-1,且m=0,L,M (L)-1。M (L)为搜索空间内需要监听的PDCCH候选的数量,该数量与聚合级别有关,例如如下表1。聚合级别L例如取值于集合{1,2,4,8},在此仅为举例,并非用以限制本申请,随着技术的发展,聚合级别可能还有其它取值。
表1
Figure PCTCN2018091572-appb-000004
可见,如果终端配置了跨载波调度(即存在CIF),则跨载波调度的服务小区在计算搜索空间时添加了偏移量M (L)·n CI。因此,终端需要盲检测的最大PDCCH候选的数量也翻了一倍。例如对于图2中的CC2,服务小区的下行控制信道既需要承载用于调度本载波的DCI(称为第一DCI),还需要承载用于调度其它载波的DCI(称为第二DCI)。用于承载第二DCI的PDCCH候选相对于用于承载第一DCI的PDCCH候选具有偏移,但数量不变,因此终端需要盲检测的最大PDCCH候选的数量翻了一倍。请参考图3,其为现有的一种配置了跨载波调度的服务小区上的控制信道的搜索空间的示意图。如图3所示,以用于承载第一DCI的PDCCH候选集和用于承载第二DCI的PDCCH候选集的PDCCH候选数量为16为例,此时终端最多需要盲检测的次数达到64(16*2+16*2)次。之所以为16*2是因为终端在特定传输模式(TM)下,可能的DCI格式(format)有两种,在一种DCI格式下检测不到DCI时,需要回退(fall back)到另一个DCI格式进行盲检测。
以上搜索空间分为公共搜索空间(common search space)和UE特定的搜索空间(UE-specific search space)。公共搜索空间空间用于传输小区级别的公共控制信息,例如与寻呼(paging)、随机接入响应(random access response)、广播控制信道(broadcast control channel,BCCH)等相关的控制信息,该信息对小区内的终端来说都是一样的。UE特定的搜索空间用于传输与下行调度(DL-SCH)和/或上行调度(UL-SCH)等相关的控制信息,即与下行授权和/或上行授权有关的控制信息。本申请以下实施例中的搜索空间是指UE特定的搜索空间。
本申请实施例考虑到终端盲检测的次数过大,引起终端能量浪费的问题,提出以下解决方案。
请参考图4,其为本申请实施例提供的一种上行资源的授权方法的示意图。如图4所示,该方法包括如下步骤:
S410:网络设备向终端发送配置信息,该配置信息包括第一上行资源的信息和第二上行资源的信息。
可见,该配置信息用于为终端配置第一上行资源和第二上行资源,终端从网络设备接收该配置信息,并根据该配置信息确定网络设备配置给该终端第一上行资源和第二上行资源。如此,当终端从网络设备收到第一上行资源的授权信息时,便可以使用该第一上行资源中授权的资源进行上行传输。当终端从网络设备受到第二上行资源的授权信息时,便可以使用该第二上行资源中授权的资源进行上行传输。当终端被配置了第一上行资源和第二上行资源的CA时,终端可以在从网络设备收到第一上行资源的授权信息和第二上行资源的授权信息时,使用第一上行资源中的授权资源和第二上行资源中的授权资源进行上行传输。
S420:网络设备在下行控制信道的搜索空间上发送下行控制信道,该下行控制信道包括给终端的授权信息,该授权信息可以包括第一上行资源的授权信息、第二上行资源的授权信息、和用于承载下行控制信道的下行资源的授权信息中的至少一个。
S430:终端搜索服务小区的下行控制信道以获得以上授权信息。
S440:终端在授权信息授权的资源上发送上行数据。
本申请实施例中的授权信息又可以称为调度信息,用于调度资源,以通过该授权信息对终端进行资源的授权。其中上行授权信息包括上行授权(UL grant),下行授权信息包括下行授权(DL grant)。通常调度信息携带于DCI中或者说以DCI的形式实现。
搜索空间在下行控制信道承载第一上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第二上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集。或者,搜索空间在下行控制信道承载第二上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第一上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集。
第一控制信道候选集和第二控制信道候选集相同,或者,第一控制信道候选集相对于第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。
在一种实现中,第一上行资源的授权信息和第二上行资源的授权信息可以共享下行控制信道的搜索空间。即下行控制信道的搜索空间在下行控制信道承载第一上行资源的授权信息时和承载第二上行资源的授权信息时包括相同的控制信道候选集。当第一上行资源和第二上行资源分别为第一上行CC和第二上行CC时,相对于现有技术,在存在跨载波调度的情况下,不再存在两个控制信道候选集的偏移,而是直接采用一个控制信道候选集来承载第一上行CC和第二上行CC的授权信息,因此降低了终端盲检测的次数。
在另一种实现中,第一上行资源(或第二上行资源)的授权信息和用于承载下行控制信道下行资源的授权信息可以共享下行控制信道的搜索空间。即搜索空间在下行控制信道承载第一上行资源(或第二上行资源)的授权信息时和承载下行资源的授权信息时包括相同的控制信道候选集。当第一上行资源和下行资源属于不同的CC时,相对于现有技术,在存在跨载波调度的情况下,不再存在两个控制信道候选集的偏移,而是直接采用一个控制信道候选集来承载第一上行CC和下行CC的授权信息,因此降低了终端盲检测的次数。
当然这两种情况可以结合,即第一上行资源的授权信息、第二上行资源的授权信息和用于承载下行控制信道下行资源的授权信息可以共享下行控制信道的搜索空间。即搜索空间在下行控制信道承载第一上行资源的授权信息时、承载第二上行资源的授权信息时,以及承载下行资源的授权信息时包括相同的控制信道候选集。
在另一种实现中,下行控制信道的搜索空间在下行控制信道承载第一上行资源的授权信息 时包括的第一控制信道候选集相对于下行控制信道承载第二上行资源的授权信息时包括的第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。或者,下行控制信道的搜索空间在下行控制信道承载第二上行资源的授权信息时包括的第一控制信道候选集相对于下行控制信道承载第一上行资源的授权信息时包括的第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。相对于现有技术,在存在跨载波调度的情况下,虽然存在两个控制信道候选集的偏移,但其中一个控制信道候选集的控制信道候选的数量减少,因此降低了终端盲检测的次数。
以上第一上行资源为增补上行(supplementary uplink,SUL)资源,例如SUL载波或频率(frequency),其中SUL资源是指仅有上行资源用于当前通信制式的传输。例如,对于一个载波,仅有上行资源用于传输。例如,在第五代(5G)移动通信系统,又称为新无线(New Radio,NR)通信系统中,载波A仅用于NR的上行传输,该载波不用于下行传输或者用于长期演进(long term evolution,LTE)通信系统的下行传输而不用于NR的下行传输,则该载波A为SUL资源。
以上上行资源可以理解为载波(包括非CA场景下的载波和CA场景下的CC)用于上行传输的部分或服务小区(包括CA场景下的服务小区和非CA场景下的服务小区)用于上行传输的部分。其中CA场景下的CC可以为主CC或辅CC,CA场景下的服务小区可以为PCell或Scell。该上行资源也可以称为上行载波。相应的,载波或服务小区用于下行传输的部分可以理解为下行资源或下行载波。例如,在频分双工(frequency division duplex,FDD)系统中,载波上用于上行传输的频率资源可以理解为该上行资源或上行载波;用于下行传输的频率资源可以理解为下行资源或下行载波。在再如,在时分双工(time division duplex,TDD)系统中,载波上用于上行传输的时域资源可以理解为该上行资源或上行载波;用于下行传输的时域资源可以理解为下行资源或下行载波。
在一种实现中,第一上行资源和该第一上行资源所在载波的下行资源可以解耦,第二上行资源和该第二上行资源所在载波的下行资源也可以解耦。即,上行载波和下行载波可以独立配置。第一上行资源和用于承载下行控制信道的下行资源可以配置为一个载波资源,此时对第一上行资源的调度为本载波调度,对第二上行资源的调度为跨载波调度。或者,第二上行资源和用于承载下行控制信道的下行资源可以配置为一个载波资源,此时对第一上行资源的调度为跨载波调度,对第二上行资源的调度为本载波调度。或者,第一上行资源、第二上行资源和用于承载控制信道的下行资源可以配置为一个载波资源,这时对第一上行资源的调度和对第二上行资源的调度均为本载波调度,不存在跨载波调度。
可选的,第一控制信道候选集中控制信道候选的数量与所述第二控制信道候选集中控制信道候选的数量可以由网络设备配置给终端,也可以是预定义的。或者,第二控制信道候选集中控制信道候选的数量可以采用与现有技术相同的方式确定,而第一控制信道候选集由网络设备配置给终端,具体可以由网络设备向终端发送配置参数,该配置参数可以为比例因子,用于反映第一控制信道候选集中控制信道候选的数量与第二控制信道候选集中控制信道候选的数量之间的比例,或者是第二控制信道候选集中控制信道候选的数量与第一控制信道候选集中控制信道候选的数量之间的比例。
在以上步骤S410中,网络设备可以通过高层信令向终端发送配置信息。该高层信令例如 为RRC消息。或者,网络设备可以通过系统消息向终端发送配置信息。对此,本申请不做限制。
此外,配置信息中第一上行资源的信息和第二上行资源的信息可以为第一上行资源的索引(index)和第二上行资源的索引。或者,第一上行资源的信息和第二上行资源的信息可以为第一上行资源的频点号和第二上行资源的频点号。采用索引或频点号的方式指示资源可以减少空口上传输的信息的数量,减少空口资源消耗。第一上行资源的信息和第二上行资源的信息还可以为其它形式,本申请不做限制,只要能指示出第一上行资源和第二上行资源即可。
网络设备为终端配置第一上行资源和第二上行资源可以根据终端的能力进行配置。因此,在该步骤S410之前,网络设备可以接收终端上报的能力信息,该能力信息例如可以为终端对上行资源的支持能力,也就是说终端可以支持配置多少个上行资源,例如终端可以支持配置多少个上行CC。网络设备接收终端上报的能力信息之后,可以根据该能力信息,获知终端是否支持配置多个上行资源,在支持的情况下,为终端配置第一上行资源和第二上行资源,当然还可以配置更多上行资源。可选的,该能力信息还可以包括频点的组合能力,即哪些频点的资源可以组合,以共同配置给终端,进而网络设备根据该频点的组合能力,为终端配置上行资源。
终端接收到网络设备发送的配置信息之后,可以根据该配置信息确定第一上行资源和第二上行资源。可选的,终端可以自己选择激活其中一个上行资源进行通信,在支持上行CA的情况下,网络设备指示终端将另一个上行资源激活以提供额外的上行资源。或者,网络设备可以向终端发送指示信息,用于指示终端激活其中一个或全部上行资源进行上行传输。而后,网络设备可以向终端发送第一上行资源和/或第二上行资源的授权信息,以便终端根据该授权信息获知网络设备授权给终端的资源,并利用授权的资源传输上行数据。
在以上步骤S420-S440中,网络设备将第一上行资源的授权信息承载于第一DCI中发送给终端,将第二上行资源的授权信息承载于第二DCI中发送给终端。此时,网络设备通过服务小区的下行控制信道发送第一DCI或第二DCI,或者既发送第一DCI又发送第二DCI。当授权信息仅包括第一上行资源的授权信息时,终端可以根据该第一上行资源的授权信息获得第一上行资源上的授权资源,并利用该授权资源传输上行数据。当授权信息仅包括第二上行资源的授权信息时,终端可以根据该第二上行资源的授权信息获得第二上行资源上的授权资源,并利用该授权资源传输上行数据。当授权信息既包括第一上行资源的授权信息又包括第二上行资源的授权信息时,终端支持上行CA,可以利用第一上行资源的授权信息指示的第一上行资源上的授权资源和第二上行资源的授权信息指示的第二上行资源上的授权资源传输上行数据。
此外,当授权信息包括下行资源的授权信息时,终端可以根据在该授权信息指定的资源上接收下行数据。
下行控制信道可以为PDCCH或ePDCCH。终端对下行控制信道的接收是通过对搜索空间的搜索实现的,搜索空间包括多个控制信道候选,终端依次检测控制信道候选,直到检测到DCI为止或者直到检测完所有的控制信道候选为止。当控制信道承载多个DCI时,网络设备可以通知终端该控制信道承载的DCI的数量,这样终端可以在检测到相应数量的DCI时,停止检测,以进一步减少盲检测的次数。
在NR引入之前,移动通信系统使用较低频段的频谱资源,例如,3GHz以下(包括3GHz)的频段。NR引入了更高频段的频谱资源,例如,3GHz以上的频谱资源。但是,频段越高,其无线传输性能相对较低,例如路径损耗更大。为了提升NR网络的上行覆盖能力,NR网络 可以复用现有网络的频段,例如LTE网络中的频段,且上下行解耦,仅在上行复用该频段。
下面以该频段为1.8GHz频点所在的频段为例,结合图5进行描述。其中,图5为本申请实施例提供的一种不同频段的覆盖场景的示意图。如图5所示,NR网络在上行上复用LTE网络的1.8GHz所在的频段,以下称为1.8GHz频段。在下行上使用3.5GHz所在的频段,以下简称为3.5GHz频段。NR上行和LTE上行共享同一个频段资源,既充分利用了上行频谱资源,同时也可以提高NR的上行覆盖。此时,该1.8GHz频段为SUL资源,3.5GHz频段跨载波调度1.8GHz频段的上行资源,或者1.8GHz频段与3.5GHz频段组成一个载波资源。此时,便可以采用以上方法,来降低终端盲检测的次数,下面便可以该场景为例,来描述以上实施例在该场景中的应用。
首先,描述同一时刻只有一个上行资源被激活的场景,即第一上行资源和第二上行资源不同时被激活的场景。例如当终端不支持上行CA时,该第一上行资源和第二上行资源不会被同时激活。
终端驻留在NR的3.5GHz的下行资源(或下行载波)上,且使用1.8GHz的上行资源(或上行载波)。此时,1.8GHz的上行资源的上行授权(UL grant)需要通过3.5GHz的下行资源上的控制信道进行传输。
在传统载波设计中,3.5GHz的上行资源和3.5GHz的下行资源属于同一个载波,当终端在3.5GHz的上行覆盖区域时,3.5GHz的上行资源的上行授权通过3.5GHz的下行资源上的控制信道进行传输,此时,采用本载波调度。当终端运动到的上行覆盖区域之外时,切换到1.8GHz的上行覆盖区域时,1.8GHz的上行资源的上行授权通过3.5GHz的下行资源上的控制信道进行传输,此时,采用跨载波调度。
在一种上下行解耦的载波设计中,1.8GHz的上行资源和3.5GHz的下行资源属于同一个载波资源,当终端在1.8GHz的上行覆盖区域时,1.8GHz的上行资源的上行授权通过3.5GHz的下行资源上的控制信道进行传输,此时,采用本载波调度。至于3.5GHz的上行资源可以和1.8GHz的上行资源和3.5GHz的下行资源属于同一载波资源,此时,对3.5GHz上行资源的授权也通过本载波调度实现。如果3.5GHz的上行资源和3.5GHz的下行资源不属于同一载波资源,则此时,对3.5GHz上行资源的授权通过跨载波调度实现。
由于终端在一个时刻只有一个上行资源被激活,即终端在一个时刻只在一个上行资源上传输信息,则终端在使用1.8GHz的上行资源和3.5GHz的上行资源时可以使用同一个控制信道候选集承载1.8GHz的上行资源和3.5GHz的上行资源的上行信息。终端传输的上行信息可以包括以下信息中的至少一个:PUSCH上的信息,PUCCH上的信息,探测参考信号(sounding reference signal,SRS)和物理随机接入信道(physical random access channel,PRACH))上的信息。
请参考图6,其为本申请实施例提供的一种调度和搜索空间示意图。如图6所示,虚线代表未激活的上行资源,实线代表激活的上行资源,实线箭头代表调度,虚线箭头代表箭头两侧的资源属于一个载波资源。在左侧的框中,3.5GHz上行资源被激活,3.5GHz下行资源上的控制信道用于承载3.5GHz上行资源的授权信息;在右侧的框中,1.8GHz上行资源被激活,3.5GHz下行资源上的控制信道用于承载1.8GHz上行资源的授权信息。且无论3.5GHz下行资源上的控制信道承载哪个上行资源的授权信息,搜索空间的控制信道候选集是相同的。同样以控制信道候选集包括16个控制信道候选为例,此时终端最大的盲检测次数仅为32,相对于现有技术 减少了盲检测次数,节省了终端的耗电量。
网络设备可以为终端配置复用CIF的一种模式,为了与现有CIF做区分,该CIF域可以称为新载波指示域(new carrier indicator field,NCIF)。令网络设备配置的3.5GHz上行资源的索引为“0”,1.8GHz的上行资源的索引为“1”,那么承载3.5GHz上行资源的上行授权的DCI中的NCIF域的值为“0”,承载3.5GHz上行资源的上行授权的DCI中的NCIF域的值为“1”。可见,NCIF用于指示第一上行资源或第二上行资源,其取值可以为第一上行资源的信息或第二上行资源的信息,进而终端可以根据该NCIF域的取值确定上行授权是对第一上行资源还是第二上行资源。
请参考图7,其为本申请实施例提供的另一种调度和搜索空间示意图。图7中的调度方式和搜索空间与图6相同。区别在于,网络设备没有给终端配置复用CIF的模式,那么承载1.8GHz或3.5GHz上行资源的上行授权的DCI中没有CIF,且该上行授权是针对激活的上行资源的。例如,当前激活的是1.8GHz上行资源,该上行授权是1.8GHz上行资源的授权。
终端激活的上行资源可以切换,例如从第一上行资源切换到第二上行资源,或者从第二上行资源切换到第一上行资源。请继续参考图4,以上方法还可以包括:
S450:网络设备向终端发送切换指示,该切换指示用于指示终端将激活的上行资源从第一上行资源切换到第二上行资源或者从第二上行资源切换到第一上行资源。
终端接收该切换指示,执行以下操作:
S460:终端根据切换指示,将激活的上行资源从第一上行资源切换到第二上行资源或者从第二上行资源切换到第一上行资源。
切换的方法可以通过以上复用CIF域的模式来实现。即该切换指示为以上CIF,当CIF指示的上行资源与当前激活的上行资源不同时,激活的上行资源被切换为CIF指示的上行资源。例如,当前激活的上行资源为3.5GHz上行资源,CIF域为“1”,且“1”为1.8GHz上行资源的索引,则终端去激活3.5GHz上行资源,激活1.8GHz上行资源,以实现上行资源的切换。
请参考图8,其为本申请实施例提供的一种上行资源切换方法的示意图。在该实施例中,以1.8GHz上行资源和3.5GHz上行资源为例进行描述,且终端在3.5GHz下行资源和3.5GHz上行资源上完成RRC连接建立。如图8所示,该方法包括如下步骤:
S810:终端上报能力信息,该能力信息用于指示终端对上行资源的支持能力。
网络设备接收该能力信息,执行以下步骤S820。
S820:网络设备根据该能力信息,为终端配置第一上行资源和第二上行资源,分别为1.8GHz上行资源和3.5GHz上行资源。其中,3.5GHz上行资源的索引为“0”,1.8GHz上行资源的索引为“1”。
S830:网络设备向终端发送配置信息,该配置信息用于为终端配置第一上行资源和第二上行资源,即包括第一上行资源的索引和第二上行资源的索引。该配置信息可以为RRC消息。
终端接收该配置信息,根据该配置信息获知终端被配置了第一上行资源和第二上行资源。
S840:网络设备确定将终端的上行资源从第二上行资源切换到第一上行资源。
例如,终端向网络设备上报测量报告,该测量报告显示终端在3.5GHz上行资源上的信道质量小于或等于阈值,例如,在3.5GHz上行资源上的参考信号接收功率(reference signal received power,RSRP)小于或等于RSRP阈值,则说明终端即将移动到3.5GHz上行资源的覆盖范围外,则网络设备确定将终端的上行资源从3.5GHz切换到1.8GHz。
再如,网络设备测量得到终端的上行数据的速率小于速率阈值,则说明终端即将移动到3.5GHz上行资源的覆盖范围外,则网络设备确定将终端的上行资源从3.5GHz切换到1.8GHz。
S850:网络设备向终端发送调度信息,该调度信息例如为DCI。该调度信息中的CIF的取值为“1”。
可选的,调度信息还可以包括调度时延K1,以指示终端在收到该调度信息后的时间K1后,可以在1.8GHz上行资源上传输上行数据,即在调度时延K1之前完成上行资源切换。切换后,授权信息包括1.8GHz上行资源的授权信息。
可选的,调度信息还可以不包括调度时延K1,而是默认或预定义终端在收到切换指示后的切换时间K2内完成上行资源切换。或者,可以通过RRC消息配置终端的切换时间K3内完成上行资源切换。
此外,还可以预定义切换时间K2或配置切换时间K3,且在调度信息中携带调度时延K1,此时,K1大于或等于K2,或者,K1大于或等于K3。
S860:终端在下行控制信道盲检测调度信息,并在盲检测的调度信息中授权的资源上进行上传传输。当前后两次调度信息中的CIF的值发生了变化,终端切换上行资源。
例如,切换前激活的上行资源为3.5GHz上行资源,切换后激活的上行资源为1.8GHz上行资源,则切换前,终端在3.5GHz上行资源上传输PUSCH,PUCCH,SRS,和PRACH中的至少一个,在1.8GHz上行资源上不传输任何信息或者只传输SRS和/或PRACH。切换后,终端在1.8GHz上行资源上传输PUSCH,PUCCH,SRS,和PRACH中的至少一个,在3.5GHz上行资源上不传输任何信息或者只传输SRS和/或PRACH。
在以上切换方法中,只需要切换的时候调度信息中CIF中的值发生改变,就可以快速完成切换,且不需要重新建立RRC连接,没有业务中断。
上行资源的切换还可以通过组公共(group common)调度信息来实现,例如组公共DCI。所谓组公共调度信息是指该调度信息对终端组内的所有终端都有效。请参考图9,其为本申请实施例提供的一种组公共调度信息的示意图。如图9所示,该组公共调度信息包括多位(bit),每位对应一个终端,每位的取值用于指示对应的终端是否需要切换上行资源。其中,该组公共调度信息的位数可以由网络设备配置并通过RRC信令发送给终端。在此,以组公共调度信息包括5bit为例,该5bit分别对应终端1~5,其中第一位取值为“1”,则指示终端1的上行资源需要切换。当然,也可以以“0”来指示切换,本申请不做限制。
请参考图10,其为本申请实施例提供的另一种上行资源切换方法的示意图。该方法包括步骤S1010~S1040,与图8所示实施例的步骤S810~S840类似,在此不再赘述。区别在于步骤S850-S860和S1050-S1060。
S1050:网络设备向终端发送组公共调度信息,其中组公共调度信息具有以上描述的结构,且其中一个位用于指示该终端是否进行上行资源切换。将该终端对应的位的值设为“1”。
S1060:终端切换上行资源。
可选的,终端可以在预设的或网络设备配置的时间单元上检测组公共调度信息。该时间单元例如为时隙或mini-时隙。
上行资源的切换还可以通过媒体接入控制(media access control,MAC)层信令来实现,该MAC层信令例如为MAC控制元素(media access control control element,MAC CE)。请参考图11,其为本申请实施例提供的一种MAC层信令的示意图。如图11所示,该MAC层信 令包括多位(bit),每位对应一个上行资源,每位的取值用于指示是否激活对应的上行资源。在此以该MAC层信令包括8bit为例,其中可以有至少一个预留位(R),预留位之外的其它位分别对应一个上行资源,例如从右向左除预留位以外,分别对应上行资源C1~C7,其中C1代表1.8GHz上行资源,则C1对应的位的取值为“1”,用于指示激活该1.8GHz上行资源,此时其它位的取值均为“0”。当然也可以以“0”来指示激活,本申请不做限制,此时其它位的取值为“1”。
请参考图12,其为本申请实施例提供的另一种上行资源切换方法的示意图。该方法包括步骤S1210~S1240,与图8所示实施例的步骤S810~S840类似,在此不再赘述。区别在于步骤S850-S860和S1250-S1260。
S1250:网络设备向终端发送MAC层信令,其中MAC层信令具有以上描述的结构,且其中一个位用于指示该终端待激活的上行资源。将该上行资源对应的位的值设为“1”。
S1260:终端去激活当前使用的上行资源,激活MAC层信令指示激活的上行资源,实现上行资源切换。
在切换前和切换后,网络设备可以应终端的请求或主动向终端发送授权信息。授权信息的发送方法以及承载授权信息的下行控制信道的搜索空间同以上实施例的描述,在此不再赘述。
以上每个切换方法都不需要重新建立RRC连接,没有业务中断,从而快速完成上行资源切换。
接下来,描述第一上行资源和第二上行资源可以被同时被激活的场景。例如当终端支持上行CA时,该第一上行资源和第二上行资源可以被同时激活。
终端驻留在NR的3.5GHz的下行资源(或下行载波)上,且使用1.8GHz的上行资源(或上行载波)。此时,1.8GHz的上行资源的上行授权(UL grant)需要通过3.5GHz的下行资源上的控制信道进行传输。
在传统载波设计中,3.5GHz的上行资源和3.5GHz的下行资源属于同一个载波,当终端在3.5GHz的上行覆盖区域时,3.5GHz的上行资源的上行授权通过3.5GHz的下行资源上的控制信道进行传输,此时,采用本载波调度。当终端运动到的上行覆盖区域之外时,切换到1.8GHz的上行覆盖区域时,1.8GHz的上行资源的上行授权通过3.5GHz的下行资源上的控制信道进行传输,此时,采用跨载波调度。
在一种上下行解耦的载波设计中,1.8GHz的上行资源和3.5GHz的下行资源属于同一个载波资源,当终端在1.8GHz的上行覆盖区域时,1.8GHz的上行资源的上行授权通过3.5GHz的下行资源上的控制信道进行传输,此时,采用本载波调度。至于3.5GHz的上行资源可以和1.8GHz的上行资源和3.5GHz的下行资源属于同一载波资源,此时,对3.5GHz上行资源的授权也通过本载波调度实现。如果3.5GHz的上行资源也可以和3.5GHz的下行资源不属于同一载波资源,则此时,对3.5GHz上行资源的授权通过跨载波调度实现。
由于1.8GHz不用于下行传输或者1.8GHz的下行资源给LTE使用,即1.8GHz为SUL资源,不存在1.8GHz下行资源的跨载波调度,因此可以在跨载波调度搜索空间的配置中降低控制信道候选的数量,从而减少终端盲检测的次数。请参考图13,其为本申请实施例提供的又一种调度和搜索空示意图。如图13所示,实线代表激活的上行资源,实线箭头代表调度,虚线箭头代表箭头两侧的资源属于一个载波资源。图13中用于1.8GHz的控制信道候选的数量比3.5GHz少,例如降低为10个候选。由于只配置跨载波上行调度,因此上行授权所在的DCI 中存在CIF,下行授权所在的DCI中不存在CIF。
对于以上同一时刻只有一个上行资源被激活的场景,也可以采用以上降低控制信道候选的方法,当控制信道候选降为0时,则与以上描述的搜索空间共享的方法一致。
对于本场景中,第一上行资源和第二上行资源可以被同时被激活的场景,用于第一上行资源的控制信道候选的数量也可以降低为0,即采用共享搜索空间的方法来实现。
请参考图14,其为本申请实施例提供的又一种调度和搜索空示意图。如图14所示,实线代表激活的上行资源,实线箭头代表调度,虚线箭头代表箭头两侧的资源属于一个载波资源。图中用于1.8GHz和3.5GHz的上行调度共享搜索空间,其与图6的描述类似,区别在于3.5GHz下行资源上的控制信道承载的授权信息可以既包括1.8GHz上行资源还包括3.5GHz上行资源的授权信息。由于只配置跨载波上行调度,因此上行授权所在的DCI中存在CIF,下行授权所在的DCI中不存在CIF。
请参考图15,其为本申请实施例提供的又一种调度和搜索空示意图。如图15所示,实线代表激活的上行资源,实线箭头代表调度,虚线箭头代表箭头两侧的资源属于一个载波资源。其与图13所示的区别在于,3.5GHz的下行资源和1.8GHz的上行资源属于一个载波资源,3.5GHz的下行资源跨载波调度3.5GHz的上行资源,此时调度3.5GHz的上行资源的控制信道候选集的数量为10。如图15所示,由于基站没有重新配置3.5GHz上行资源和1.8GHz上行资源的index信息,所以,3.5GHz下行资源的控制信道在本载波调度1.8GHz上行资源时,上行授权所在的DCI中CIF=1;3.5GHz下行资源的控制信道在跨载波调度3.5GHz上行资源时,上行授权所在的DCI中CIF=0。当基站重新配置3.5GHz上行资源的index=1和1.8GHz上行资源的index=0后,3.5GHz下行资源的控制信道在本载波调度1.8GHz上行资源时,上行授权所在的DCI中CIF=1;3.5GHz下行资源的控制信道在跨载波调度3.5GHz上行资源时,上行授权所在的DCI中CIF=0。
具体的上行资源的授权过程与以上实施例类似。例如,终端在3.5GHz下行资源和3.5GHz上行资源上完成RRC连接建立。网络设备收到终端上报的能力信息后,根据该能力信息为终端配置第一上行资源和第二上行资源,分别为1.8GHz上行资源和3.5GHz上行资源。其中,3.5GHz上行资源的索引为“0”,1.8GHz上行资源的索引为“1”。网络设备将配置的上行资源的信息发送给终端,以便终端获知被配置的上行资源。之后,网络设备可以应终端的请求或者主动向终端发送授权信息,其中承载授权信息的控制信道的搜索空间可以为图4所示实施例中的共享搜索空间或者降低了用于1.8GHz或3.5GHz上行资源调度的控制信道候选数量的搜索空间。具体可以参照以上实施例,在此不再详述。
可见,当终端在一个时刻只有一个上行资源被激活时,授权信息包括该激活的上行资源的的授权信息,即第一上行资源或第二上行资源的授权信息。当终端在一个时刻由多个上行资源被激活时,即第一上行资源和第二上行资源可以同时被激活时,该授权信息包括该激活的上行资源的的授权信息,即第一上行资源和/或第二上行资源的授权信息。此外,授权信息还可以包括下行资源的授权信息,以便于终端进行下行传输。
在以上实施例中,在多个上行资源可以同时被激活时,例如第一上行资源和第二上行资源可以被同时激活时,网络设备可以根据负载来确定是否采用搜索空间共享技术。也就是说网络设备可以根据负载来确定是否在同一个控制信道候选集中调度第一上行资源和第二上行资源,即是否采用相同的控制信道候选集承载第一上行资源和第二上行资源的授权信息。该负载可以 通过下行资源块(resource block,RB)的利用率或各种下行信道的RB资源利用率来体现,还可以通过终端数量来体现。当负载小于或等于第一预设值时,采用同一个控制信道候选集中调度第一上行资源和第二上行资源;当负载大于或等于第二预设值时,采用不同的控制信道候选集中调度第一上行资源和第二上行资源,控制信道候选集之间具有偏移,用于调度第一上行资源的控制信道候选集的控制信道候选的数量小于用于调度第二上行资源的控制信道候选集的控制信道候选的数量。
当网络设备发现服务小区(例如3.5GHz下行资源对应的服务小区)的负载较小,例如服务的终端数量较少或下行资源利用率比较低时,每个聚合级别用于3.5GHz下行调度的控制信道候选中的CCE被其它终端使用的概率比较低,因此网络设备在冲突概率比较低的情况下,可以将用于1.8GHz上行资源调度的控制信道放在未被使用的用于3.5GHz调度的控制信道候选上传输。请参考图16(a),其为本申请实施例提供的一种控制信道在搜索空间中的分布示意图。聚合级别为2的6个用于3.5GHz调度的控制信道候选0~5没有被其它终端使用,此时,可以将用于承载3.5GHz上行授权信息的PDCCH在控制信道候选0上传输,将用于承载1.8GHz上行授权信息的PDCCH在剩余的控制信道候选中的一个控制信道候选上传输,例如在控制信道候选3上传输。
当网络设备发现服务小区(例如3.5GHz下行资源对应的服务小区)的负载较大,例如服务的终端数量较多或下行资源利用率比较高时,每个聚合级别用于3.5GHz下行调度的控制信道候选中的CCE被其它终端使用的概率比较高,因此网络设备在冲突概率比较高的情况下,可以将用于1.8GHz上行资源调度的控制信道放在有偏移的控制信道候选上传输。请参考图16(b),其为本申请实施例提供的另一种控制信道在搜索空间中的分布示意图。聚合级别为2的6个用于3.5GHz调度的控制信道候选0~5可能被其它终端使用,此时,可以将用于承载3.5GHz上行授权信息的PDCCH在控制信道候选5上传输,将用于承载1.8GHz上行授权信息的PDCCH在用于1.8GHz的控制信道候选集中的一个控制信道候选上传输,例如在用于1.8GHz的控制信道候选集的控制信道候选1上传输。其中,用于1.8GHz的控制信道候选集的控制信道候选的数量小于用于3.5GHz的控制信道候选集的控制信道候选的数量,且具有一定的偏移。
以上方法可以对应的装置中实现,下面结合附图进行描述。
请参考图17,其为本申请实施例提供的一种上行资源的授权装置的示意图。该装置1700用于终端,如图17所示,该装置1700包括执行以上任一方法实施例中终端所执行的各个步骤的单元或手段(means),且关于这些步骤中的详细描述都可以适用于本装置实施例。例如,该装置1700包括搜索单元1710和通信单元1720。通信单元1720用于控制终端与网络设备之间的通信,该通信单元1720可以通过终端与网络设备之间的接口(例如,空口)接收和发送信息。这里的接口是逻辑概念,在实现上需要设置对应的逻辑单元,满足相应接口的协议要求。
搜索单元1710用于在搜索空间搜索下行控制信道以获得网络设备发送给终端的授权信息,该授权信息包括第一上行资源的授权信息、第二上行资源的授权信息和用于承载下行控制信道的下行资源的授权信息中的至少一个。搜索空间在下行控制信道承载第一上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第二上行资源的授权信息和/或下行资源的授权信息时包括第二控制信道候选集,或者,搜索空间在下行控制信道承载第二上行资源的授权信息时包括第一控制信道候选集,搜索空间在承载第一上行资源的授权信息和/或下行资源的授 权信息时包括第二控制信道候选集。第一控制信道候选集和第二控制信道候选集相同,或者,第一控制信道候选集相对于第二控制信道候选集具有偏移,且第一控制信道候选集中控制信道候选的数量小于第二控制信道候选集中控制信道候选的数量。
关于搜索空间,第一上行资源和第二上行资源,以及第一上行资源的信息和第二上行资源的信息的描述同以上实施例,在此不再赘述。
可选的,该终端还可以包括切换单元1730,当通信单元1720接收到切换指示时,切换单元1730用于将激活的上行资源从第一上行资源切换到第二上行资源或者从第二上行资源切换到第一上行资源。
关于切换指示的描述,同以上实施例,在此不再赘述。
应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,搜索单元1710可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序的形式存储于终端的存储器中,由终端的某一个处理元件调用并执行该单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上通信单元是一种控制通信的单元,可以通过终端的收发装置,例如天线和射频装置接收网络设备发送的信息或向网络设备发送信息。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参考图18,其为本申请实施例提供的一种频域资源的处理装置的示意图。该装置1800用于网络设备,如图18所示,该装置1800包括执行以上任一方法实施例中网络设备的所执行的各个步骤的单元或手段(means),且关于这些步骤中的详细描述都可以适用于本装置实施例。该装置包括生成单元1810和通信单元1820。其中,通信单元1820用于控制与网络设备之间的通信,可以通过网络设备与终端之间的接口(例如,空口)接收和发送消息。这里的接口是逻辑概念,在实现上需要设置对应的逻辑单元,满足相应接口的协议要求。
生成单元1810用于生成配置信息和下行控制信道上承载的授权信息,其中关于该配置信息的内容,以及所配置的第一上行资源和第二上行资源的配置方法,同以上实施例,在此不再赘述。通信单元1820控制生成单元1810生成的配置信息和授权信息的发送,例如用于向终端发送配置信息,且用于在下行控制信道的搜索空间上发送下行控制信道,该下行控制信道包括给终端的授权信息。
关于搜索空间,第一上行资源和第二上行资源,以及第一上行资源的信息和第二上行资源的信息的描述同以上实施例,在此不再赘述。
此外,通信单元1820还用于控制以上实施例中其它网络设备发送给终端的信息的发送。例如,控制切换指示的发送,配置参数的发送。关于切换指示和配置参数的描述同以上实施例,在此不再赘述。
应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,生成单元1810可以为单独设立的处理元件,也可以集成在网络设备的某一个芯片中实现,此外,也可以以程序的形式存储于网络设备的存储器中,由网络设备的某一个处理元件调用并执行该单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参考图19,其为本申请实施例提供的一种网络设备的结构示意图。其可以为以上实施例中的网设备,用于实现以上实施例中网设备的操作。如图19所示,该网设备包括:天线1910、射频装置1920、基带装置1930。天线1910与射频装置1920连接。在上行方向上,射频装置1920通过天线1910接收终端发送的信息,将终端发送的信息发送给基带装置1930进行处理。在下行方向上,基带装置1930对终端的信息进行处理,并发送给射频装置1920,射频装置1920对终端的信息进行处理后经过天线1910发送给终端。
基带装置1930可以包括基带板,通常网设备可以包括多个基带板,基带板上可以集成多个处理元件,以实现所需要的功能。例如,以上频域资源的处理装置可以位于基带装置1930,在一种实现中,图18所示的各个单元通过处理元件调度程序的形式实现,例如基带装置1930包括处理元件1931和存储元件1932,处理元件1931调用存储元件1932存储的程序,以执行以上方法实施例中网设备执行的方法。此外,该基带装置1930还可以包括接口1933,用于与射频装置1920交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,图18所示的各个单元可以是被配置成实施以上网设备执行的方法的一个或多个处理元件,这些处理元件设置于基带装置1930上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图18所示的各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置1930包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件1931和存储元件1932,由处理元件1931调用存储元件1932的存储的程序的形式实现以 上网设备执行的方法或图18所示各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上网设备执行的方法或图18所示各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上用于网设备的频域资源的处理装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的网设备执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中网设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中网设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例中网设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图20,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图20所示,该终端包括:天线、射频装置2010、基带装置2020。天线与射频装置2010连接。在下行方向上,射频装置2010通过天线接收网络设备发送的信息,将网络设备发送的信息发送给基带装置2020进行处理。在上行方向上,基带装置2020对终端的信息进行处理,并发送给射频装置2010,射频装置2010对终端的信息进行处理后经过天线发送给网络设备。
基带装置可以包括调制解调子系统,用于实现对数据各通信协议层的处理。还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理。此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片,可选的,以上频域资源的处理装置便可以在该调制解调子系统上实现。
在一种实现中,图17所示的各个单元通过处理元件调度程序的形式实现,例如基带装置2020的某个子系统,例如调制解调子系统,包括处理元件2021和存储元件2022,处理元件2021调用存储元件2022存储的程序,以执行以上方法实施例中终端执行的方法。此外,该基带装置2020还可以包括接口2023,用于与射频装置2010交互信息。
在另一种实现中,图17所示的各个单元可以是被配置成实施以上终端执行的方法的一个或多个处理元件,这些处理元件设置于基带装置2020的某个子系统上,例如调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图17所示的各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置2020包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件2021和存储元件2022,由处理元件2021调用存储元件2022的存储的程序的形式实现以上终端执行的方法或图17所示各个单元的功能;或者,该芯片内可以集成至少一个集成电路, 用于实现以上终端执行的方法或图17所示各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上用于终端的频域资源的处理装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的终端执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例中终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (54)

  1. 一种上行资源的授权方法,包括:
    终端从网络设备接收配置信息,所述配置信息包括第一上行资源的信息和第二上行资源的信息;
    所述终端在搜索空间搜索下行控制信道以获得所述网络设备发送给所述终端的授权信息,所述授权信息包括所述第一上行资源的授权信息、或包括所述第二上行资源的授权信息、或包括所述第一上行资源的授权信息和所述第二上行资源的授权信息,
    其中,所述终端在获得所述第一上行资源的授权信息时和在获得所述第二上行资源的授权信息时,所搜索的所述搜索空间的控制信道候选集相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一上行资源为增补上行SUL资源。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述终端在所述搜索空间搜索下行控制信道以获得所述网络设备发送给所述终端的下行资源的授权信息,所述下行资源用于承载所述下行控制信道,其中所述终端通过搜索所述相同的控制信道候选集获取所述下行资源的授权信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一上行资源和所述下行资源为一个载波资源;或者,
    所述第二上行资源和所述下行资源为一个载波资源;或者,
    所述第一上行资源、所述第二上行资源和所述下行资源为一个载波资源。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一上行资源的信息为所述第一上行资源的索引,所述第二上行资源的信息为所述第二上行资源的索引;或者,
    所述第一上行资源的信息为所述第一上行资源的频点号,所述第二上行资源的信息为所述第二上行资源的频点号。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述授权信息位于下行控制信息DCI中,所述DCI包括载波指示域,所述载波指示域用于指示第一上行资源或第二上行资源。
  7. 根据权利要求6所述的方法,当所述载波指示域指示所述第一上行资源时,所述授权信息包括所述第一上行资源的授权信息;或,
    当所述载波指示域指示所述第二上行资源时,所述授权信息包括所述第二上行资源的授权信息。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述终端在不同时间激活所述第一上行资源和所述第二上行资源,所述授权信息位于下行控制信息DCI中,且所述DCI不包括载波指示域,所述授权信息是对激活的第一上行资源或第二上行资源的授权。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述终端从所述网络设备接收切换指示,所述切换指示用于指示所述终端将激活的上行资源从所述第一上行资源切换到所述第二上行资源或者从所述第二上行资源切换到所述第一上行资源;
    所述终端根据所述切换指示,将激活的上行资源从所述第一上行资源切换到所述第二 上行资源或者从所述第二上行资源切换到所述第一上行资源。
  10. 根据权利要求9所述的方法,其特征在于,所述切换指示为载波指示域,所述载波指示域用于指示所述第一上行资源或所述第二上行资源,当所述载波指示域指示的上行资源与当前激活的上行资源不同时,所述终端将激活的上行资源切换到所述载波指示域指示的上行资源;或者,
    所述切换指示为组公共调度信息,所述组公共调度信息包括多个位,每个位对应一个终端,用于指示是否切换该位对应终端的上行资源;或者,
    所述切换指示为媒体接入控制层信令,所述媒体接入控制层信令包括多个位,每个位对应一个上行资源,用于指示是否激活该位对应的上行资源。
  11. 根据权利要求1至7任一项所述的方法,其特征在于,所述终端同时激活所述第一上行资源和所述第二上行资源。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述控制信道候选集中控制信道候选的数量是预定义的或者由所述网络设备配置给所述终端的。
  13. 一种上行资源的授权方法,包括:
    网络设备向终端发送配置信息,该配置信息包括第一上行资源的信息和第二上行资源的信息;
    所述网络设备在下行控制信道的搜索空间上发送下行控制信道,所述下行控制信道包括给所述终端的授权信息,所述授权信息包括所述第一上行资源的授权信息、或包括所述第二上行资源的授权信息、或包括所述第一上行资源的授权信息和所述第二上行资源的授权信息,其中,
    所述网络设备在发送包括所述第一上行资源的授权信息的控制信道时和在发送包括所述第二上行资源的授权信息的控制信道时所采用的所述搜索空间的控制信道候选集相同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一上行资源为增补上行SUL资源。
  15. 根据权利要求13或14所述的方法,其特征在于,还包括:
    所述网络设备向所述终端发送包括下行资源的授权信息的控制信道,所述下行资源用于承载所述下行控制信道,其中所述网设备通过所述相同的控制信道候选集发送包括所述下行资源的授权信息的控制信道。
  16. 根据权利要求15所述的方法,其特征在于,所述第一上行资源和用于承载所述下行控制信道的下行资源为一个载波资源;或者,
    所述第二上行资源和所述下行资源为一个载波资源;或者,
    所述第一上行资源、所述第二上行资源和所述下行资源为一个载波资源。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述第一上行资源的信息为所述第一上行资源的索引,所述第二上行资源的信息为所述第二上行资源的索引;或者,
    所述第一上行资源的信息为所述第一上行资源的频点号,所述第二上行资源的信息为所述第二上行资源的频点号。
  18. 根据权利要求13至17任一项所述的方法,其特征在于,所述授权信息位于下行控制信息DCI中,所述DCI包括载波指示域,所述载波指示域用于指示第一上行资源或第 二上行资源。
  19. 根据权利要求18所述的方法,其特征在于,当所述载波指示域指示所述第一上行资源时,所述授权信息包括所述第一上行资源的授权信息;或,
    当所述载波指示域指示所述第二上行资源时,所述授权信息包括所述第二上行资源的授权信息。
  20. 根据权利要求13至19任一项所述的方法,其特征在于,所述第一上行资源和所述第二上行资源在不同时间被激活,所述授权信息位于下行控制信息DCI中,且所述DCI不包括载波指示域,所述授权信息是对激活的第一上行资源或第二上行资源的授权。
  21. 根据权利要求20所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送切换指示,所述切换指示用于指示所述终端将激活的上行资源从所述第一上行资源切换到所述第二上行资源或者从所述第二上行资源切换到所述第一上行资源。
  22. 根据权利要求21所述的方法,其特征在于,所述切换指示为载波指示域,所述载波指示域用于指示所述第一上行资源或所述第二上行资源;或者,
    所述切换指示为组公共调度信息,所述组公共调度信息包括多个位,每个位对应一个终端,用于指示是否切换该位对应终端的上行资源;或者,
    所述切换指示为媒体接入控制层信令,所述媒体接入控制层信令包括多个位,每个位对应一个上行资源,用于指示是否激活该位对应的上行资源。
  23. 根据权利要求13至19任一项所述的方法,其特征在于,所述第一上行资源和所述第二上行资源被同时激活。
  24. 根据权利要求13至23任一项所述的方法,其特征在于,所述第一控制信道候选集中控制信道候选的数量是预定义的或者由所述网络设备配置给所述终端的。
  25. 一种上行资源的授权装置,包括:
    通信单元,用于从网络设备接收配置信息,所述配置信息包括第一上行资源的信息和第二上行资源的信息;
    搜索单元,用于在搜索空间搜索下行控制信道以获得所述网络设备发送给所述装置的授权信息,所述授权信息包括所述第一上行资源的授权信息、或包括所述第二上行资源的授权信息、或包括所述第一上行资源的授权信息和所述第二上行资源的授权信息,
    其中,所述装置在获得所述第一上行资源的授权信息时和在获得所述第二上行资源的授权信息时,所搜索的所述搜索空间的控制信道候选集相同。
  26. 根据权利要求25所述的装置,其特征在于,所述第一上行资源为增补上行SUL资源。
  27. 根据权利要求25或26所述的装置,其特征在于,所述搜索单元还用于:
    在所述搜索空间搜索下行控制信道以获得所述网络设备发送给所述装置的下行资源的授权信息,所述下行资源用于承载所述下行控制信道,其中所述装置通过搜索所述相同的控制信道候选集获取所述下行资源的授权信息。
  28. 根据权利要求27所述的装置,其特征在于,所述第一上行资源和所述下行资源为一个载波资源;或者,
    所述第二上行资源和所述下行资源为一个载波资源;或者,
    所述第一上行资源、所述第二上行资源和所述下行资源为一个载波资源。
  29. 根据权利要求25至28任一项所述的装置,其特征在于,所述第一上行资源的信息为所述第一上行资源的索引,所述第二上行资源的信息为所述第二上行资源的索引;或者,
    所述第一上行资源的信息为所述第一上行资源的频点号,所述第二上行资源的信息为所述第二上行资源的频点号。
  30. 根据权利要求25至29任一项所述的装置,其特征在于,所述授权信息位于下行控制信息DCI中,所述DCI包括载波指示域,所述载波指示域用于指示第一上行资源或第二上行资源。
  31. 根据权利要求30所述的装置,当所述载波指示域指示所述第一上行资源时,所述授权信息包括所述第一上行资源的授权信息;或,
    当所述载波指示域指示所述第二上行资源时,所述授权信息包括所述第二上行资源的授权信息。
  32. 根据权利要求25至31任一项所述的装置,其特征在于,所述装置在不同时间激活所述第一上行资源和所述第二上行资源,所述授权信息位于下行控制信息DCI中,且所述DCI不包括载波指示域,所述授权信息是对激活的第一上行资源或第二上行资源的授权。
  33. 根据权利要求32所述的装置,其特征在于,所述通信单元还用于:从所述网络设备接收切换指示,所述切换指示用于指示所述装置将激活的上行资源从所述第一上行资源切换到所述第二上行资源或者从所述第二上行资源切换到所述第一上行资源;
    所述装置还包括:
    切换单元,用于根据所述切换指示,将激活的上行资源从所述第一上行资源切换到所述第二上行资源或者从所述第二上行资源切换到所述第一上行资源。
  34. 根据权利要求33所述的装置,其特征在于,所述切换指示为载波指示域,所述载波指示域用于指示所述第一上行资源或所述第二上行资源,当所述载波指示域指示的上行资源与当前激活的上行资源不同时,所述装置将激活的上行资源切换到所述载波指示域指示的上行资源;或者,
    所述切换指示为组公共调度信息,所述组公共调度信息包括多个位,每个位对应一个终端,用于指示是否切换该位对应终端的上行资源;或者,
    所述切换指示为媒体接入控制层信令,所述媒体接入控制层信令包括多个位,每个位对应一个上行资源,用于指示是否激活该位对应的上行资源。
  35. 根据权利要求25至31任一项所述的装置,其特征在于,所述装置激活所述第一上行资源和所述第二上行资源。
  36. 根据权利要求25至35任一项所述的装置,其特征在于,所述控制信道候选集中控制信道候选的数量是预定义的或者由所述网络设备配置给所述装置的。
  37. 一种上行资源的授权装置,用于终端,包括处理元件和存储元件,其中所述存储元件用于存储程序,所述处理元件用于调用所述程序以执行如权利要求1至12任一项所述的方法。
  38. 一种终端,其特征在于,包括如权利要求25至37任一项所述的装置。
  39. 一种上行资源的授权装置,包括:
    生成单元,用于生成配置信息,该配置信息包括第一上行资源的信息和第二上行资源的信息;
    通信单元,用于向终端发送所述配置信息;
    所述生成单元还用于生成下行控制信道上承载的授权信息;
    所述通信单元还用于在下行控制信道的搜索空间上发送下行控制信道,所述下行控制信道包括给所述终端的授权信息,所述授权信息包括所述第一上行资源的授权信息、或包括所述第二上行资源的授权信息、或包括所述第一上行资源的授权信息和所述第二上行资源的授权信息,其中,
    所述装置在发送包括所述第一上行资源的授权信息的控制信道时和在发送包括所述第二上行资源的授权信息的控制信道时所采用的所述搜索空间的控制信道候选集相同。
  40. 根据权利要求39所述的装置,其特征在于,所述第一上行资源为增补上行SUL资源。
  41. 根据权利要求39或40所述的装置,其特征在于,所述通信单元还用于:
    向所述终端发送包括下行资源的授权信息的控制信道,所述下行资源用于承载所述下行控制信道,其中所述装置通过所述相同的控制信道候选集发送包括所述下行资源的授权信息的控制信道。
  42. 根据权利要求41所述的装置,其特征在于,所述第一上行资源和用于承载所述下行控制信道的下行资源为一个载波资源;或者,
    所述第二上行资源和所述下行资源为一个载波资源;或者,
    所述第一上行资源、所述第二上行资源和所述下行资源为一个载波资源。
  43. 根据权利要求39至42任一项所述的装置,其特征在于,所述第一上行资源的信息为所述第一上行资源的索引,所述第二上行资源的信息为所述第二上行资源的索引;或者,
    所述第一上行资源的信息为所述第一上行资源的频点号,所述第二上行资源的信息为所述第二上行资源的频点号。
  44. 根据权利要求39至43任一项所述的装置,其特征在于,所述授权信息位于下行控制信息DCI中,所述DCI包括载波指示域,所述载波指示域用于指示第一上行资源或第二上行资源。
  45. 根据权利要求44所述的装置,其特征在于,当所述载波指示域指示所述第一上行资源时,所述授权信息包括所述第一上行资源的授权信息;或,
    当所述载波指示域指示所述第二上行资源时,所述授权信息包括所述第二上行资源的授权信息。
  46. 根据权利要求39至45任一项所述的装置,其特征在于,所述第一上行资源和所述第二上行资源在不同时间被激活,所述授权信息位于下行控制信息DCI中,且所述DCI不包括载波指示域,所述授权信息是对激活的第一上行资源或第二上行资源的授权。
  47. 根据权利要求46所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送切换指示,所述切换指示用于指示所述终端将激活的上行资源从所述第一上行资源切换到所述第二上行资源或者从所述第二上行资源切换到所述第一上行资源。
  48. 根据权利要求47所述的装置,其特征在于,所述切换指示为载波指示域,所述载波指示域用于指示所述第一上行资源或所述第二上行资源;或者,
    所述切换指示为组公共调度信息,所述组公共调度信息包括多个位,每个位对应一个 终端,用于指示是否切换该位对应终端的上行资源;或者,
    所述切换指示为媒体接入控制层信令,所述媒体接入控制层信令包括多个位,每个位对应一个上行资源,用于指示是否激活该位对应的上行资源。
  49. 根据权利要求39至45任一项所述的装置,其特征在于,所述第一上行资源和所述第二上行资源被同时激活。
  50. 根据权利要求39至49任一项所述的装置,其特征在于,所述第一控制信道候选集中控制信道候选的数量是预定义的或者由所述装置配置给所述终端的。
  51. 一种上行资源的授权装置,用于网络设备,包括处理元件和存储元件,其中所述存储元件用于存储程序,所述处理元件用于调用所述程序以执行如权利要求13至24任一项所述的方法。
  52. 一种网络设备,其特征在于,包括如权利要求39至51任一项所述的装置。
  53. 一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时,用于实现如权利要求1至12任一项所述的方法。
  54. 一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时,用于实现如权利要求13至24任一项所述的方法。
PCT/CN2018/091572 2017-06-16 2018-06-15 上行资源的授权方法、装置及系统 WO2018228548A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019026642-9A BR112019026642A2 (pt) 2017-06-16 2018-06-15 método e aparelho para conceder recursos de enlace ascendente, terminal, dispositivo de rede e meio de armazenamento de computador
RU2020101122A RU2771047C2 (ru) 2017-06-16 2018-06-15 Система, устройство и способ предоставления ресурса восходящей линии связи
AU2018286295A AU2018286295B2 (en) 2017-06-16 2018-06-15 Uplink resource grant method and apparatus, and system
EP18817667.1A EP3634057B1 (en) 2017-06-16 2018-06-15 Uplink resource authorization method, device and system
JP2019569671A JP6963637B2 (ja) 2017-06-16 2018-06-15 上りリンクリソース許可方法および上りリンクリソース許可装置、ならびにシステム
KR1020197038549A KR102374235B1 (ko) 2017-06-16 2018-06-15 업 링크 자원 승인 방법, 장치 및 시스템
US16/713,588 US11252755B2 (en) 2017-06-16 2019-12-13 Uplink resource grant methods and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459797.5A CN109152036A (zh) 2017-06-16 2017-06-16 上行资源的授权方法、装置及系统
CN201710459797.5 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/713,588 Continuation US11252755B2 (en) 2017-06-16 2019-12-13 Uplink resource grant methods and apparatus

Publications (1)

Publication Number Publication Date
WO2018228548A1 true WO2018228548A1 (zh) 2018-12-20

Family

ID=64658973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091572 WO2018228548A1 (zh) 2017-06-16 2018-06-15 上行资源的授权方法、装置及系统

Country Status (9)

Country Link
US (1) US11252755B2 (zh)
EP (1) EP3634057B1 (zh)
JP (1) JP6963637B2 (zh)
KR (1) KR102374235B1 (zh)
CN (2) CN111278137B (zh)
AU (1) AU2018286295B2 (zh)
BR (1) BR112019026642A2 (zh)
RU (1) RU2771047C2 (zh)
WO (1) WO2018228548A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019080008A1 (zh) * 2017-10-25 2019-05-02 北京小米移动软件有限公司 增补上行载波配置方法及装置和调度资源分配方法及装置
WO2019093835A1 (en) * 2017-11-09 2019-05-16 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication in wireless communication system
WO2020164137A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种通信方法及装置
CN111278172B (zh) * 2019-03-27 2022-08-02 维沃移动通信有限公司 指示方法、终端设备和网络侧设备
JP7449959B2 (ja) * 2019-03-28 2024-03-14 富士通株式会社 システム情報要求の送信方法、装置及びシステム
AU2020203964B2 (en) * 2019-04-04 2021-10-21 Samsung Electronics Co., Ltd. Electronic device for reporting communication quality measurement result and method of operating the electronic device
US11483822B2 (en) * 2019-10-01 2022-10-25 Qualcomm Incorporated Scheduling application delay
EP4185036A4 (en) * 2020-07-14 2024-04-17 Beijing Xiaomi Mobile Software Co Ltd METHOD AND DEVICE FOR SWITCHING ACTIVATED RESOURCES, COMMUNICATIONS DEVICE AND STORAGE MEDIUM
CN114071726A (zh) * 2020-07-30 2022-02-18 华为技术有限公司 一种通信方法及装置
CN114070521B (zh) * 2020-08-07 2023-03-31 中国移动通信有限公司研究院 控制信道的传输方法、装置、相关设备及存储介质
WO2022027671A1 (en) * 2020-08-07 2022-02-10 Zte Corporation Method, device and computer program product for wireless communication
CN116033570A (zh) * 2021-10-22 2023-04-28 华为技术有限公司 通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076088A1 (en) * 2010-09-28 2012-03-29 Nokia Siemens Networks Oy Carrier Indicator Field Usage and Configuration in Carrier Aggregation
CN103609186A (zh) * 2011-06-02 2014-02-26 美国博通公司 在载波聚合的无线数据传输中跨载波调度的灵活的禁用/启用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277529A (zh) * 2008-03-26 2008-10-01 中兴通讯股份有限公司 一种指示上行资源指示信令所对应的上行子帧的方法
US8670376B2 (en) * 2008-08-12 2014-03-11 Qualcomm Incorporated Multi-carrier grant design
JP5301727B2 (ja) 2009-04-27 2013-09-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) キャリアアグリゲーションを用いる無線通信システムにおけるランダムアクセスのための資源割り当て方法及び装置
ES2731835T3 (es) * 2009-10-30 2019-11-19 Blackberry Ltd Conmutación de conjunto de información de control de enlace descendente al usar agregación de portadora
US9042840B2 (en) * 2009-11-02 2015-05-26 Qualcomm Incorporated Cross-carrier/cross-subframe indication in a multi-carrier wireless network
US8634374B2 (en) * 2009-12-17 2014-01-21 Lg Electronics Inc. Apparatus and method of avoiding control channel blocking
CN102083229B (zh) * 2010-02-11 2013-11-20 电信科学技术研究院 非竞争随机接入的调度及前导码发送方法、系统和设备
US9877290B2 (en) * 2010-04-22 2018-01-23 Sharp Kabushiki Kaisha Communication method and system for physical uplink control channel resource assignment, and base station, user equipment and integrated circuit therein
CN102347919B (zh) * 2010-08-05 2014-02-26 普天信息技术研究院有限公司 一种盲检测方法
TWI615043B (zh) * 2011-02-07 2018-02-11 內數位專利控股公司 在免頻譜執照中操作補充胞元方法及裝置
US9042277B2 (en) * 2011-04-11 2015-05-26 Qualcomm Incorporated Transmission of control information for FDD-TDD carrier aggregation
RU2581614C2 (ru) * 2011-08-12 2016-04-20 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Устройство передачи, устройство приема, способ передачи и способ приема
EP2557839A1 (en) * 2011-08-12 2013-02-13 Panasonic Corporation Channel quality information reporting in protected subframes
US9510338B2 (en) * 2012-05-03 2016-11-29 Lg Electronics Inc. Data transmission method and data transmission device
WO2014203392A1 (ja) * 2013-06-21 2014-12-24 シャープ株式会社 端末、基地局、通信システムおよび通信方法
KR101792167B1 (ko) * 2014-01-29 2017-10-31 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 장치 및 시스템
CN107113097B (zh) * 2014-12-31 2020-11-20 Lg 电子株式会社 在无线通信系统中发送ack/nack的方法和设备
KR102368198B1 (ko) * 2015-05-13 2022-02-28 삼성전자 주식회사 이동 통신 시스템에서의 피드백 방법 및 장치
US10602537B2 (en) * 2015-11-02 2020-03-24 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076088A1 (en) * 2010-09-28 2012-03-29 Nokia Siemens Networks Oy Carrier Indicator Field Usage and Configuration in Carrier Aggregation
CN103609186A (zh) * 2011-06-02 2014-02-26 美国博通公司 在载波聚合的无线数据传输中跨载波调度的灵活的禁用/启用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGDONG OPPO MOBILE TELECOM: "PDCCH CORESET configuration and UE procedure on NR-PDCCH", 3GPP TSG-RAN WG1 MEETING #89 R1-1707703, no. R1-1707703, 14 May 2017 (2017-05-14), Hangzhou, China, XP051272909 *
QUALCOMM INCORPORATED: " PDCCH control resource set and search space", 3GPP TSG-RAN WG1 MEETING #89 R1-1708610, no. R1-1708610, 7 May 2017 (2017-05-07), Hangzhou, China, XP051263246 *
See also references of EP3634057A4

Also Published As

Publication number Publication date
BR112019026642A2 (pt) 2020-06-30
AU2018286295B2 (en) 2021-07-08
JP2020523916A (ja) 2020-08-06
RU2020101122A (ru) 2021-07-16
RU2020101122A3 (zh) 2021-10-29
CN109152036A (zh) 2019-01-04
EP3634057A1 (en) 2020-04-08
CN111278137A (zh) 2020-06-12
KR20200012943A (ko) 2020-02-05
EP3634057B1 (en) 2021-08-04
EP3634057A4 (en) 2020-06-17
CN111278137B (zh) 2021-01-05
AU2018286295A1 (en) 2020-01-30
US11252755B2 (en) 2022-02-15
US20200120708A1 (en) 2020-04-16
JP6963637B2 (ja) 2021-11-10
KR102374235B1 (ko) 2022-03-14
RU2771047C2 (ru) 2022-04-25

Similar Documents

Publication Publication Date Title
WO2018228548A1 (zh) 上行资源的授权方法、装置及系统
EP3706353B1 (en) Carrier switching method, device and system for multi-carrier communication
WO2019096206A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
EP3328141B1 (en) Electronic device for wireless communications and wireless communications method
EP3143816B1 (en) Assignment of component carriers in dual connectivity operation
WO2014101671A1 (zh) 一种信息传输的方法、系统和设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN112399630B (zh) 一种通信方法及装置
WO2020143490A1 (zh) 通信方法及装置
WO2021249287A1 (zh) 信息传输方法、装置及存储介质
WO2019062746A1 (zh) 通信方法、装置和系统
CN113950856A (zh) 一种通信方法、通信装置和系统
JP2024507648A (ja) ページングアーリーインジケーション技術
EP3603277B1 (en) Inter-radio access technology spectrum sharing
WO2021159331A1 (en) Methods and apparatus for support of reduced capability devices in wireless communication
CN117460007A (zh) 一种小区状态切换方法及装置
TWI652921B (zh) 用戶設備及虛擬載波的操作方法
RU2690778C1 (ru) Способы установления соответствия cif и обслуживающих сот
JP2024502356A (ja) サイドリンクにおける不連続受信の構成
CN116349162A (zh) 跨载波调度方法、终端设备和接入网设备
CN114342512A (zh) 终端以及通信方法
WO2023143269A1 (zh) 一种通信方法及装置
WO2022077209A1 (en) Scheduling restriction enhancements for lte and 5g nr dynamic spectrum sharing
WO2024032208A1 (zh) 一种通信的方法和装置
EP4152875A1 (en) Access method and apparatus, electronic device, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026642

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197038549

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018817667

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 2018286295

Country of ref document: AU

Date of ref document: 20180615

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019026642

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191213