WO2018233697A1 - 一种检测下行控制信道的方法及设备 - Google Patents

一种检测下行控制信道的方法及设备 Download PDF

Info

Publication number
WO2018233697A1
WO2018233697A1 PCT/CN2018/092460 CN2018092460W WO2018233697A1 WO 2018233697 A1 WO2018233697 A1 WO 2018233697A1 CN 2018092460 W CN2018092460 W CN 2018092460W WO 2018233697 A1 WO2018233697 A1 WO 2018233697A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
activated
downlink control
system parameter
channel candidates
Prior art date
Application number
PCT/CN2018/092460
Other languages
English (en)
French (fr)
Inventor
李俊超
阿布多利贾瓦德
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018233697A1 publication Critical patent/WO2018233697A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and a device for detecting a downlink control channel.
  • Downlink Control Information has multiple formats, but the mobile device does not know in advance which format the DCI is carried by the received Physical Downlink Control Chanel (PDCCH), and does not know the DCI. Which PDCCH candidate is used for transmission, the mobile device needs to perform PDCCH blind detection on all PDCCH candidates to receive the corresponding DCI.
  • PDCCH Physical Downlink Control Chanel
  • the method of determining the total number of PDCCH candidates in the Long Term Evolution (LTE) system is not applicable to the 5th Generation (5G) New Radio (NR) system.
  • 5G 5th Generation
  • NR New Radio
  • the present application provides a method and a device for detecting a downlink control channel, which are used to provide a method for detecting a downlink control channel according to the total number of downlink control channel candidates.
  • a method of detecting a downlink control channel is provided, the method being executable by a mobile device.
  • the method includes the mobile device determining an activated BP, the activated BP belonging to one carrier.
  • the mobile device determines, according to the activated BP or the system parameter corresponding to the activated BP, the total number of downlink control channel candidates detectable by the mobile device, where the total number of downlink control channel candidates is greater than or equal to a preset threshold.
  • the mobile device detects the downlink control channel according to the total number of downlink control channel candidates.
  • the mobile device may determine the total number of downlink control channel candidates of the mobile device according to the activated BP or the set of system parameters corresponding to the activated BP, and which BPs are activated, or the activated BP corresponds to which system parameter set, and moves.
  • the device can be known, that is, the mobile device only needs to determine the total number of downlink control channel candidates according to the known information, and the method is simple and easy to implement, and solves the problem that the mobile device cannot determine the total number of downlink control channel candidates in the 5G NR system. Thereby, the problem that the mobile device detects the downlink control channel in the 5G NR system is further solved.
  • the mobile device determines, according to the activated BP or the system parameter corresponding to the activated BP, the total number of downlink control channel candidates detectable by the mobile device, including: determining, by the mobile device, the BP set corresponding to the activated BP. a mobile device, the total number of downlink control channel candidates; wherein, each BP set includes at least one BP; or, the mobile device determines the total number of downlink control channel candidates according to the system parameter set to which the system parameter corresponding to the activated BP belongs; At least one system parameter is included in each system parameter set.
  • the present application re-defines the number of downlink control channel candidates for the mobile device, and ensures that the number of downlink control channel candidates of different service types corresponding to different BP sets or different system parameter sets is unchanged, and thus does not cause an increase in the PDCCH collision probability.
  • the mobile device determines the total number of downlink control channel candidates according to the BP set corresponding to the activated BP, including: when the activated BP corresponds to one BP set, the mobile device determines the downlink control channel.
  • the total number of candidates is M, where M is a preset threshold, and M is an integer greater than zero; or, when the activated BP corresponds to multiple BP sets, the mobile device determines that the total number of downlink control channel candidates of the mobile device is less than or equal to K*M, where M is a preset threshold, K is the number of BP sets, M is an integer greater than zero, and K is an integer greater than zero.
  • the BP set may only be used to transmit one service, and the requirement may be satisfied without additionally increasing the number of downlink control channel candidates; or the BP set corresponds to the transmission of multiple services, but In the case where the number of downlink control channel candidates is not additionally increased, the requirement can also be satisfied, for example, the downlink control channel collision probability is within an acceptable range. Therefore, in this case, the total number of downlink control channel candidates detectable by the mobile device is M.
  • the preset threshold may be a total number of PDCCH candidates detectable when the mobile device blindly detects scheduling information of a service transmission.
  • the different BP sets are used to transmit different services, and the service types of the services may be different, or the service types of the services may be the same. No restrictions. Obviously, the number of required downlink control channel candidates also increases. If the number of downlink control channel candidates is not increased, the requirements of the mobile device may not be met, and the downlink control channel candidate used for scheduling the control information of each service may be reduced, thereby causing an increase in the downlink control channel collision probability. Therefore, in this case, the number of downlink control channel candidates can be increased, that is, the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M and greater than M. In this way, the number of detectable downlink control channel candidates of the mobile device is increased, so that the mobile device has enough downlink control channel candidates as much as possible, and the collision probability of the downlink control channel is reduced.
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M, including: when the activated BP When the attribute information of the BP set corresponding to the activated BP is the same, the mobile device determines that the total number of downlink control channel candidates is equal to K*M; or when the activated BP corresponds to multiple When the BP information is set, and the attribute information of the BP set corresponding to the activated BP is different, the mobile device determines that the total number of downlink control channel candidates is less than K*M.
  • the activated BPs belong to different BP sets, but the attribute information of different BP sets is the same, the requirements of the activated BPs for the number of downlink control channel candidates may be similar. In this case, it is required to add more downlink control channels.
  • the number of candidates that is, the total number of downlink control channel candidates is equal to K*M to meet the needs of the mobile device.
  • the activated BPs belong to different BP sets, but the attribute information of different BP sets is different, the activated BP may have different requirements for the number of downlink control channel candidates, for example, some BP services have more users, or The bit overhead of the scheduling signaling is large, and thus the number of downlink control channel candidates required is large, and the number of users of the BP service is small, or the bit overhead of the scheduling signaling is small, so the number of required downlink control channel candidates is smaller. less. In this case, the requirement can be satisfied without adding too many downlink control channel candidates, that is, the total number of downlink control channel candidates is less than K*M. In this way, it can meet the needs of mobile devices and save system resources.
  • the number of the downlink control channel candidates corresponding to each BP set corresponding to the activated BP includes at least one of the following: a detectable downlink corresponding to each BP set corresponding to the activated BP
  • the number of control channel candidates is the same; or the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP is determined by the mobile device according to the number of control resource sets corresponding to each BP set; or
  • the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP is the number of control channel elements included in the control resource set corresponding to each BP set or the corresponding resource block in the control resource set frequency domain.
  • the number of resource block groups is determined; or, the number of corresponding detectable downlink control channel candidates of each BP set corresponding to the activated BP is determined by the mobile device according to attribute information of each BP set.
  • the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP may be the same. Because the requirements of the number of downlink control channel candidates for each service may be similar, the fair distribution principle is used to ensure the fairness of scheduling resource allocation among services.
  • the number of services that need to be transmitted may be more, and therefore, more scheduling resources are needed, so that each BP set corresponding to the activated BP corresponds to a detectable downlink.
  • the number of control channel candidates is determined according to the number of control resource sets corresponding to each BP set. For example, if there are two services in the first BP set that need to be transmitted, and only one of the second BP sets needs to be transmitted, the number of downlink control channel candidates corresponding to the first BP set may be greater than the downlink control channel candidate corresponding to the second BP set. Quantity.
  • the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP is determined according to the number of CCEs, RBs, RBGs, or REG bundles included in the control resource set corresponding to each BP set.
  • the BP set corresponding to more CCE/RB/RBG/REG bundles can better ensure that no resource conflict occurs between the downlink control channel candidates, more downlink control channel candidates can be allocated.
  • the number of corresponding detectable downlink control channel candidates of each BP set corresponding to the activated BP is determined according to attribute information of each BP set.
  • the attribute information of the BP set includes the service type corresponding to the BP set, and the number of detectable downlink control channel candidates corresponding to the BP set corresponding to the URLLC service may be smaller than the detectable downlink control channel candidate corresponding to the BP set corresponding to the eMBB service.
  • Quantity The number of users served by the former is small, or the bit overhead of scheduling signaling is small, so the number of downlink control channel candidates required is small; while the latter serves more users, or the bit overhead of scheduling signaling is larger, thus requiring The number of downlink control channel candidates is large.
  • the manners of determining the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP may be selected according to actual conditions, and of course, other manners may be selected to determine each BP set corresponding to the activated BP.
  • the number of detectable downlink control channel candidates for example, directly determining the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP, according to the indication information sent by the network device, is not limited in the embodiment of the present invention.
  • the mobile device determines the total number of downlink control channel candidates according to the system parameter set to which the system parameter corresponding to the activated BP belongs, including: when the system parameter corresponding to the activated BP belongs to a system parameter set.
  • the mobile device determines that the total number of downlink control channel candidates is M, where M is a preset threshold, and M is an integer greater than zero; or, when the system parameter corresponding to the activated BP belongs to multiple system parameter sets,
  • the mobile device determines that the total number of downlink control channel candidates is less than or equal to K*M, where M is a preset threshold, K is the number of system parameter sets, M is an integer greater than zero, and K is an integer greater than zero.
  • a numerology set may correspond to only one service transmission, and the number of downlink control channel candidates may be increased to meet the requirement; or the system parameter set corresponds to multiple
  • the transmission of the services, but without additionally increasing the number of downlink control channel candidates, can also meet the requirements, for example, the downlink control channel collision probability is within an acceptable range. Therefore, in this case, the total number of downlink control channel candidates detectable by the mobile device is M.
  • the preset threshold may be a total number of PDCCH candidates detectable when the mobile device blindly detects scheduling information of a service transmission.
  • the number of required downlink control channel candidates also increases. If the number of downlink control channel candidates is not increased, the requirements of the mobile device may not be met, and the downlink control channel candidate used for scheduling the control information of each service may be reduced, thereby causing an increase in the downlink control channel collision probability. Therefore, in this case, the number of downlink control channel candidates can be increased, that is, the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M and greater than M. In this way, the number of detectable downlink control channel candidates of the mobile device is increased, so that the mobile device has enough downlink control channel candidate numbers as much as possible, and reduces the collision probability of the downlink control channel.
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M, including: When the system parameter corresponding to the activated BP belongs to multiple system parameter sets, and the attribute information of the system parameter set to which the system parameter corresponding to the activated BP belongs is the same, the mobile device determines the total number of downlink control channel candidates detectable by the mobile device.
  • the mobile device determines the mobile device The total number of detectable downlink control channel candidates is less than K*M.
  • the requirements of the number of downlink control channel candidates for the activated BP may be similar. In this case, it is required to add more downlink control channel candidates.
  • the number, that is, the total number of downlink control channel candidates is equal to K*M to meet the needs of the mobile device.
  • the requirements of the number of downlink control channel candidates may be different for the activated BP, for example, some BP services have more users, or The bit overhead of the scheduling signaling is large, and thus the number of downlink control channel candidates required is large, and the number of users of the BP service is small, or the bit overhead of the scheduling signaling is small, so the number of required downlink control channel candidates is smaller. less.
  • the requirement can be satisfied without increasing the number of downlink control channel candidates, that is, the total number of downlink control channel candidates is less than K*M. In this way, it can meet the needs of mobile devices and save system resources.
  • the number of the downlink control channel candidates corresponding to each system parameter set corresponding to the activated BP includes at least one of: each system parameter set to which the system parameter corresponding to the activated BP belongs
  • the number of corresponding detectable downlink control channel candidates is the same; or the number of detectable downlink control channel candidates corresponding to each system parameter set to which the system parameter corresponding to the activated BP belongs is that the mobile device corresponds to each system parameter set.
  • the number of control resource sets is determined by the number of control resource sets; or the number of detectable downlink control channel candidates corresponding to each system parameter set to which the system parameter corresponding to the activated BP belongs is a control resource corresponding to the mobile device according to each system parameter set.
  • the number of detectable downlink control channel candidates corresponding to the parameter set is the root of the mobile device. Determined according to the attribute information of each system parameter set.
  • a mobile device has the functionality to implement the mobile device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the mobile device may include a processing unit and a transceiver unit.
  • the processing unit and the transceiver unit may perform the respective functions of the methods provided by any of the above-described first aspect or any of the possible aspects of the first aspect.
  • a pass mobile device may be a mobile device in the above method design, or a functional module such as a chip disposed in the mobile device.
  • the mobile device includes a memory for storing computer executable program code, a transceiver, and a processor coupled to the memory and the transceiver.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the mobile device to perform the method performed by the mobile device in any of the possible aspects of the first aspect or the first aspect described above.
  • a fourth aspect a computer storage medium for storing the computer software instructions for the mobile device described in the second aspect or the mobile device described in the third aspect, and comprising the first aspect, or A program designed for mobile devices in any of the possible designs of the first aspect.
  • a computer program product comprising instructions for causing a computer to execute a program designed for a mobile device in any of the first aspects, or any one of the possible aspects of the first aspect, when executed on a computer.
  • the mobile device can determine the total number of downlink control channel candidates of the mobile device according to the system parameter set corresponding to the activated BP or the activated BP, and solve the problem that the mobile device cannot determine the total number of downlink control channel candidates in the 5G NR system, thereby further solving the problem.
  • the problem of the mobile device detecting the downlink control channel in the 5G NR system.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a method for detecting a downlink control channel according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a mobile device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another mobile device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another mobile device according to an embodiment of the present invention.
  • Mobile devices including devices that provide voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the mobile device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the mobile device may include a User Equipment (UE), a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and an access device.
  • Access Point AP
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, etc.
  • a mobile phone or "cellular” phone
  • a computer with a mobile device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, Global Positioning System (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS Global Positioning System
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless mobile device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the mobile device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include a next generation node B (gNB) in the 5G NR system; or the base station may also include an evolved base station in an LTE system or an evolved LTE system (LTE-Advanced, LTE-A) ( The NodeB or the eNB or the e-NodeB, the evolutional Node B), is not limited in the embodiment of the present invention.
  • gNB next generation node B
  • LTE-A evolved LTE system
  • LTE-A evolved LTE system
  • the NodeB or the eNB or the e-NodeB, the evolutional Node B is not limited in the embodiment of the present invention.
  • a downlink control channel for carrying control information includes, for example, a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH), and may also include other for transmission control.
  • PDCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • Bandwidth part refers to a part of the channel bandwidth, which can also be called “operating bandwidth” or transmission bandwidth, mini BP (BP), BP unit, BP sub
  • BP Bandwidth part
  • the band or the like may be simply referred to as BP, and may be simply referred to as BWP.
  • the name of the bandwidth portion and the abbreviation are not specifically limited.
  • BP can be a contiguous resource in the frequency domain.
  • one bandwidth portion contains consecutive or non-contiguous K (K>0) subcarriers; or, one bandwidth portion is N (N>0) non-overlapping consecutive or non-contiguous Resource Blocks (RBs) Frequency domain resources; or, a bandwidth part is a frequency domain resource in which M (M>0) non-overlapping consecutive or non-contiguous Resource Block Groups (RBGs) are located, and one RBG includes P (P> 0) consecutive RBs.
  • a bandwidth portion is associated with a particular system parameter, the numerology including at least one of a subcarrier spacing and a Cyclic Prefix (CP).
  • a BP may correspond to a numerology. Numerology includes subcarrier spacing, type of time unit or cyclic prefix (CP) type. Taking the subcarrier spacing as an example, if the mobile device supports the subcarrier spacing of 15 kHz and 30 kHz, the base station can allocate a BP with a subcarrier spacing of 15 kHz and a BP with a subcarrier spacing of 30 kHz for the mobile device, and the mobile device according to different scenarios. And business needs, you can switch to a different BP, or transfer data on two or more BPs at the same time. When the mobile device supports multiple BPs, the numerology corresponding to each BP may be the same or different.
  • the NR system supports a variety of different numerologies, and users in the NR system may need to support services corresponding to a plurality of different system parameters. Therefore, multiple BPs configured for a user may correspond to different numerologies.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the DCI has multiple formats, but the mobile device does not know in advance which format the DCI is carried by the received PDCCH, and does not know which PDCCH candidate the DCI uses for transmission. Therefore, the mobile device must perform PDCCH blind detection to receive the corresponding DCI. .
  • the mobile device does not know in advance which format the DCI is to be received by the PDCCH, and does not know which PDCCH candidate the DCI uses for transmission, the mobile device knows which state it is in, and knows that it is expected to receive in the state. To the DCI. For example, in the idle state (IDLE), the mobile device expects to receive the paging; after the random access is initiated, the mobile device expects to receive a random access response (RAR); when there is uplink data to be sent, the mobile device Expected to receive the uplink scheduling and so on.
  • IDLE idle state
  • RAR random access response
  • the mobile device knows its own search space and therefore knows which Control Channel Element (CCE) the DCI may be distributed over. For different expected information, the mobile device attempts to use the corresponding Radio Network Temporary Identity (RNTI), possible DCI format, and possible Aggregation Level (AL) to search with the mobile device.
  • RNTI Radio Network Temporary Identity
  • A Aggregation Level
  • the CCE in the space performs Cyclic Redundancy Check (CRC). If the CRC check is successful, then the mobile device knows that the DCI is what it needs, and knows the corresponding DCI format, thereby further solving the DCI content.
  • CRC Cyclic Redundancy Check
  • a mobile device can determine the total number of PDCCH candidates.
  • the manner of determining the total number of PDCCH candidates in the LTE system is not applicable to the 5G NR system. Then, the technical solution provided by the embodiment of the present invention can solve the technical problem.
  • FIG. 1 is a schematic diagram of an application scenario and an architecture diagram of an LTE system according to an embodiment of the present invention.
  • the network elements involved in FIG. 1 include a Mobility Management Entity (MME), a Serving GateWay (S-GW), a base station, and a mobile device.
  • MME Mobility Management Entity
  • S-GW Serving GateWay
  • base station a base station
  • mobile device a mobile device
  • MME is a key control node in the 3rd Generation Partnership Project (3GPP) LTE system. It belongs to the core network element and is mainly responsible for the signaling processing part, that is, the control plane function, including the connection. Incoming control, mobility management, attach and detach, session management functions, and gateway selection.
  • the S-GW is an important network element of the core network in the 3GPP LTE system, and is mainly responsible for the user plane function of user data forwarding, that is, routing and forwarding of data packets under the control of the MME.
  • the primary network element involved in the embodiment of the present invention includes a base station and a mobile device, where the base station configures a BP for the mobile device, and the mobile device can work in the BP configured by the base station.
  • NR system 5G NR system
  • next-generation mobile communication system or other similar mobile communication system.
  • an embodiment of the present invention provides a method for detecting a downlink control channel.
  • the method provided by the embodiment of the present invention is applied to the application scenario shown in FIG. 1 as an example.
  • the mobile device determines the activated BP. Among them, the activated BP belongs to the same carrier.
  • the network device may configure multiple BPs for the mobile device.
  • a configured BP corresponds to a numerology.
  • An activated BP corresponds to one or more control resource sets (CORESET), including data transmission within the BP being scheduled by a control channel located within the BP, and/or data transmission within the BP being located within another BP Control channel scheduling.
  • CORESET control resource sets
  • the network device may simultaneously configure multiple BPs for the mobile device, for example, configuring the first BP and the second BP for the mobile device at the same time, and the network device may also activate the first BP and the second BP at the same time.
  • the network device may also configure different BPs for the mobile device at different times, for example, configuring and activating the first BP for the mobile device at the first moment, and configuring and activating the second BP for the mobile device at the second moment, the first moment may be It may be located before the second moment, or the first moment may also be after the second moment.
  • the network device configures the first BP and the second BP for the mobile device.
  • the first BP is a BP configured by the network device for the mobile device when the mobile device is initially accessed.
  • the network device may send a master information block (MIB) to the mobile device, and after receiving the MIB, the mobile device may determine, according to the MIB, the first BP configured by the network device as the mobile device.
  • the mobile device can know the first BP configured by the network device for the mobile device according to the predefined information, for example, the mobile device determines the frequency domain resource of the synchronization signal by using the blind detection synchronization signal, and then determines the frequency of the first BP according to the predefined relationship. Domain resource.
  • the first BP may be activated by default.
  • the second BP may be a BP configured by the network device for the mobile device after the mobile device accesses the network.
  • the network device may send a system information block (SIB) to the mobile device, and after receiving the SIB, the mobile device may determine, according to the SIB, the second BP configured by the network device as the mobile device.
  • the network device may send radio resource control (RRC) signaling to the mobile device, and after receiving the RRC signaling, the mobile device may know, according to the RRC signaling, the second BP configured by the network device as the mobile device.
  • RRC radio resource control
  • the network device may also notify the second BP allocated to the mobile device by other signaling, for example, by using a public DCI or a specific DCI of the mobile device to notify the second BP configured for the mobile device, or the network device may also pass A predefined way to configure the second BP for the mobile device, the mobile device can determine the second BP configured by the network device for the mobile device based on the predefined information.
  • the embodiment of the present invention does not limit how the network device notifies the configured second BP.
  • the network device can activate the first BP configured for the mobile device through the public DCI, the specific DCI of the mobile device, or higher layer signaling.
  • the high layer signaling is, for example, SIB, RRC signaling, or Media Access Control (MAC) control element (Control Element, CE).
  • the BPs configured by the network device for the mobile device may belong to the same carrier or may belong to different carriers.
  • the activated BP of the mobile device may belong to the same carrier or belong to different carriers, which is not limited in the embodiment of the present invention.
  • the mobile device determines, according to the activated BP or the numerology corresponding to the activated BP, the total number of downlink control channel candidates detectable by the mobile device.
  • the total number of downlink control channel candidates is greater than or equal to a preset threshold.
  • the “detectable” means that the mobile device can perform the detection.
  • the “detection” action may not be performed here, and the mobile device only determines which downlink control channels can be used to send the downlink control information, that is, Which downlink control channels are detected on which DCI.
  • the “detection” described in the embodiment of the present invention can be understood as a blind check; the “total number of downlink control channel candidates” described in the embodiment of the present invention can be understood as the theoretical maximum value specified by the protocol.
  • the network device may configure the number of PDCCH candidates of the mobile device to be smaller than the maximum value.
  • the mobile device determines, according to the activated BP, the total number of downlink control channel candidates detectable by the mobile device, which may be implemented by: the mobile device determining, according to the BP set corresponding to the activated BP, the downlink control channel detectable by the mobile device.
  • "set" only describes part of BP or all BPs of multiple activated BPs, and the attributes of these partial BPs or all BPs have certain similarities or correlations, without emphasizing that network devices and/or mobile devices have partition sets. Actions.
  • the mobile device is configured with a plurality of BPs by the network device, the plurality of BPs being divided into a plurality of BP sets pre-defined or based on configuration, and each BP set includes a number of BPs greater than or equal to 1.
  • the “predefinedly divided into multiple sets” may be divided according to system parameters corresponding to the BP. For example, the BP corresponding to the 15 kHz and 30 kHz subcarrier spacing is divided into one BP set, and the corresponding 60 kHz subcarrier spacing is performed. The BP is divided into another BP set, or the BPs corresponding to the 15 kHz, 30 kHz, and 60 kHz subcarrier spacing are divided into one BP set.
  • it may be a grouping according to the service performed in the BP, for example, dividing the BPs of the same service type of the performed service into one BP set.
  • how to divide the BP set can be a protocol pre-defined, and the mobile device and the network device can follow.
  • the network device may be used to divide the BP set, which is not limited in the embodiment of the present invention.
  • the mobile device determines, according to the BP set corresponding to the activated BP, the total number of downlink control channel candidates detectable by the mobile device, including but not limited to the following manners:
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is M, where M is a preset threshold, and M is an integer greater than 0;
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M, where M is a preset threshold, and K is a BP set.
  • M is a preset threshold
  • K is a BP set.
  • the number, M and K are all integers greater than zero.
  • the BP set may only correspond to the transmission of one service, and no additional downlink control channel candidates need to be added.
  • the quantity can also meet the demand; or the BP set corresponds to the transmission of multiple services, but can also meet the requirement without additionally increasing the number of downlink control channel candidates, for example, the downlink control channel collision probability is within an acceptable range. Therefore, in this case, the total number of downlink control channel candidates detectable by the mobile device is M.
  • the preset threshold may be the total number of PDCCH candidates that can be detected when the mobile device blindly detects the scheduling information of a service transmission.
  • the preset threshold is 16.
  • the preset threshold may take other values, which is not limited in the embodiment of the present invention.
  • the activated BP of the mobile device corresponds to multiple BP sets, different BP sets are used to transmit different services, and the service types of the services may be different, or the service types of the services may be the same,
  • the embodiment of the invention is not limited.
  • the number of required downlink control channel candidates also increases. If the number of downlink control channel candidates is not increased, the requirements of the mobile device may not be met, and the downlink control channel candidate used for scheduling the control information of each service may be reduced, thereby causing an increase in the downlink control channel collision probability. Therefore, in this case, the number of downlink control channel candidates can be increased, that is, the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M and greater than M. In this way, the number of detectable downlink control channel candidates of the mobile device is increased, so that the mobile device has enough downlink control channel candidate numbers as much as possible, and reduces the collision probability of the downlink control channel.
  • the mobile device determines the number of downlink control channel candidates corresponding to each BP, and the downlink control channel candidates corresponding to the BPs.
  • the number satisfies: the sum of the number of downlink control channel candidates corresponding to N 1 BP is M, and the sum of the number of downlink control channel candidates corresponding to N 2 BPs is M, ..., N K BP downlink control channel candidates
  • the sum of the numbers is M; wherein N 1 , N 2 , ..., N K are integers greater than or equal to 1, and the N 1 , N 2 , ..., N K BPs are different from each other.
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M, Then, further, it is used to determine when the total number of downlink control channel candidates detectable by the mobile device is less than K*M and when it is equal to K*M.
  • the total number of downlink control channel candidates detectable by the mobile device increases linearly. For example, when the activated BP of the mobile device corresponds to multiple BP sets, and the attribute information of the BP set corresponding to the activated BP of the mobile device is the same, the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is equal to K* M.
  • M is for a specific scheduling of a mobile device, and if it is a common scheduling information in a common search space (CSS), it is additionally calculated, and does not increase with the number of BP sets. increase.
  • M is for enhanced mobile broadband (eMBB) services for slot-based scheduling.
  • eMBB enhanced mobile broadband
  • the attribute information of the BP set may include any one or more of a numerology set, a scheduling time granularity, a DCI format type, and a service type of the performed service.
  • the scheduling time granularity may be slot-based or symbol-based, or may be based on other time units.
  • the activated BPs belong to different BP sets, but the attribute information of different BP sets is the same, the requirements of the activated BPs for the number of downlink control channel candidates may be similar. In this case, it is required to add more downlink control channels.
  • the number of candidates that is, the total number of downlink control channel candidates is equal to K*M to meet the needs of the mobile device.
  • the total number of downlink control channel candidates detectable by the mobile device increases non-linearly. For example, when the activated BP of the mobile device corresponds to multiple BP sets, and the attribute information of the BP set corresponding to the activated BP of the mobile device is different, the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than K. *M.
  • the activated BPs may have different requirements for the number of downlink control channel candidates, for example, some BP services have more users, or The bit overhead of the scheduling signaling is large, and thus the number of downlink control channel candidates required is large, and the number of users of the BP service is small, or the bit overhead of the scheduling signaling is small, so the number of required downlink control channel candidates is smaller. less.
  • the requirement can be satisfied without increasing the number of downlink control channel candidates, that is, the total number of downlink control channel candidates is less than K*M. In this way, it can meet the needs of mobile devices and save system resources.
  • each BP set may also correspond to the number of detectable downlink control channel candidates, and may also be interpreted as the number of detectable downlink control channel candidates in the control resource set corresponding to each BP set.
  • the mobile device may determine, according to the predefined information, the number of detectable downlink control channel candidates corresponding to each BP set, or may determine, according to the information sent by the network device, the detectable corresponding to each BP set. The number of downlink control channel candidates.
  • the predefined information includes but is not limited to the following:
  • the first type of predefined information the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP is the same. That is, the principle of even distribution, so that each BP set corresponds to the same number of downlink control channels. Applicable to a scenario in which one BP set corresponds to one service, and multiple services corresponding to multiple BP sets have the same service type, for example, multiple BP sets of mobile devices correspond to eMBB services. Because the requirements of the number of downlink control channel candidates for each service may be similar, the fair distribution principle is used to ensure the fairness of scheduling resource allocation among services.
  • the second type of predefined information the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP is determined by the mobile device according to the number of control resource sets corresponding to each BP set.
  • the number of services that need to be transmitted may be more, so more scheduling resources are needed. For example, if there are two services in the first BP set that need to be transmitted, and only one of the second BP sets needs to be transmitted, the number of downlink control channel candidates corresponding to the first BP set may be greater than the downlink control channel candidate corresponding to the second BP set. Quantity.
  • the third type of pre-defined information the number of detectable downlink control channel candidates corresponding to each BP set corresponding to the activated BP is a CCE, a resource block (resource block, RB) included by the mobile device according to the control resource set corresponding to each BP set. ), the number of resource block groups (RBGs), or resource element group bundles (REG bundles).
  • the BP set corresponding to more CCE/RB/RBG/REG bundles can better ensure that no resource conflict occurs between the downlink control channels, more downlink control channels can be allocated.
  • the fourth type of predefined information the number of corresponding detectable downlink control channel candidates for each BP set corresponding to the activated BP is determined by the mobile device according to the attribute information of each BP set.
  • the attribute information of the BP set has been introduced in the foregoing.
  • the attribute information of the BP set includes the service type corresponding to the BP set, and the number of detectable downlink control channel candidates corresponding to the BP set corresponding to the Ultra Reliable Low Latency Communication (URLLC) service may be smaller than the corresponding The number of detectable downlink control channel candidates corresponding to the BP set of the eMBB service.
  • URLLC Ultra Reliable Low Latency Communication
  • the number of users served by the former is small, or the bit overhead of scheduling signaling is small, so the number of downlink control channel candidates required is small; while the latter serves more users, or the bit overhead of scheduling signaling is larger, thus requiring The number of downlink control channel candidates is large.
  • the network device may send indication information to the mobile device, where the indication information may be used to indicate the activated BP corresponding to the mobile device.
  • the BP set corresponds to the number of detectable downlink control channel candidates.
  • the indication result may be the same as the indication result of any one of the above predefined information, or may be different from the indication result of any one of the predefined information.
  • the sending, by the network device, the indication information may include: the network device sends the dynamic signaling, that is, the network device sends the physical layer signaling, where the physical layer signaling carries the indication information, the physical layer signaling
  • the network device may send the semi-static signaling, that is, the network device sends the high-level signaling, where the high-layer signaling carries the indication information, and the high-level signaling may be a broadcast signal.
  • Command system message, Radio Resource Control (RRC) signaling or Media Access Control (MAC) layer signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the mobile device determines the total number of downlink control channel candidates detectable by the mobile device according to the activated BP.
  • the embodiment of the present invention further provides that the mobile device determines the downlink detectable by the mobile device according to the numerology corresponding to the activated BP.
  • the total number of control channel candidates is described below.
  • the mobile device determines, according to the numerology corresponding to the activated BP, the total number of downlink control channel candidates that can be detected by the mobile device, and may be implemented by: the mobile device determining, according to the numerology set to which the numerology corresponding to the activated BP belongs. The total number of downlink control channel candidates that can be detected.
  • each numerology set includes at least one numerology.
  • the "set" herein only describes a part of the numerology or all the numerology of all the numerology corresponding to the plurality of activated BPs, and the attributes of the BP corresponding to the part of the numerology or the all of the numerology have certain similarities or correlations. Without emphasizing that network devices and/or mobile devices have actions to divide the set.
  • a plurality of numerologies are divided into a plurality of sets pre-defined or based on configuration, and each numerology set includes a number of numerologies greater than or equal to 1.
  • the numerology corresponding to the subcarrier spacing of 15 kHz and 30 kHz is divided into a numerology set
  • the numerology corresponding to the subcarrier spacing of 60 kHz is divided into another numerology set
  • the numerology of the corresponding subcarrier spacing is 15 kHz, 30 kHz, and 60 kHz.
  • the mobile device determines the total number of downlink control channel candidates detectable by the mobile device according to the numerology set to which the numerology corresponding to the activated BP belongs, including but not limited to the following manners:
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is M, where M is a preset threshold; where M is an integer greater than 0. ;
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M, where M is a preset threshold, and K is a numerology The number of collections. Wherein M and K are integers greater than zero.
  • a numerology set may only correspond to one service transmission, and the number of downlink control channel candidates may be increased to meet the requirement; or the numerology set corresponds to multiple
  • the transmission of the service, but without additionally increasing the number of downlink control channel candidates, can also meet the demand, for example, the downlink control channel collision probability is within an acceptable range. Therefore, in this case, the total number of downlink control channel candidates detectable by the mobile device is M.
  • the preset threshold may be the total number of PDCCH candidates that can be detected when the mobile device blindly checks the scheduling information of a service transmission. For example, according to the calculation mode of the LTE system, the preset threshold is 16.
  • the preset threshold may take other values, which is not limited in the embodiment of the present invention.
  • the number of required downlink control channel candidates also increases. If the number of downlink control channel candidates is not increased, the requirements of the mobile device may not be met, and the downlink control channel candidate used for scheduling the control information of each service may be reduced, thereby causing an increase in the downlink control channel collision probability. Therefore, in this case, the number of downlink control channel candidates can be increased, that is, the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*M and greater than M. In this way, the number of detectable downlink control channel candidates of the mobile device is increased, so that the mobile device has enough downlink control channel candidate numbers as much as possible, and reduces the collision probability of the downlink control channel.
  • N 1 th BP has the same numerology corresponding to the number of candidates for the downlink control channel and the M, N 2 that have the same numerology corresponding downlink BP to the number of control channel candidates sum of M, ising, N K
  • the sum of the number of downlink control channel candidates corresponding to the BPs having the same numerology is M; wherein N 1 , N 2 , ..., N K are integers greater than or equal to 1, and the N 1 , N 2 , ... ..., N K BPs are different from each other.
  • the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is less than or equal to K*. M, then further described below, is used to determine when the total number of downlink control channel candidates detectable by the mobile device is less than K*M and when it is equal to K*M.
  • the total number of downlink control channel candidates detectable by the mobile device increases linearly. For example, when the numerology corresponding to the activated BP of the mobile device belongs to multiple numerology sets, and the attribute information of the numerology set corresponding to the activated BP of the mobile device is the same, the mobile device determines that the total number of downlink control channel candidates detectable by the mobile device is equal to K*M.
  • M is for a specific scheduling of a mobile device, and if it is a common scheduling information in a common search space, it is additionally calculated and does not increase as the number of numerology sets increases.
  • M is for slot-based scheduled eMBB services.
  • the attribute information of the numerology set may include any one or more of a service type, a scheduling time granularity, and a DCI format type corresponding to the numerology set.
  • the scheduling time granularity may be slot-based or symbol-based, or may be based on other time units.
  • the activated BPs belong to different sets of numerology, the attribute information of different numerology sets is the same, for example, multiple BP sets of mobile devices correspond to eMBB services. Because the requirements of the number of downlink control channel candidates for the activated BP may be similar, it is required to increase the number of downlink control channel candidates, that is, the total number of downlink control channel candidates is equal to K*M to meet the needs of mobile devices. .
  • the total number of downlink control channel candidates detectable by the mobile device increases non-linearly. For example, when the numerology corresponding to the activated BP of the mobile device belongs to multiple numerology sets, and the attribute information of the numerology set corresponding to the activated BP of the mobile device is different, the mobile device determines the total number of downlink control channel candidates detectable by the mobile device. Less than K*M.
  • the activated BPs may have different requirements for the number of downlink control channel candidates, for example, some BP services have more users, or The bit overhead of the scheduling signaling is large, and thus the number of downlink control channel candidates required is large, and the number of users of the BP service is small, or the bit overhead of the scheduling signaling is small, so the number of required downlink control channel candidates is smaller. less.
  • the requirement can be satisfied without increasing the number of downlink control channel candidates, that is, the total number of downlink control channel candidates is less than K*M. In this way, it can meet the needs of mobile devices and save system resources.
  • the following row control channel is an example of the PDCCH.
  • the 5G NR system supports multiple numerologies, and the same mobile device may need to simultaneously detect data and scheduling information corresponding to multiple different numerologies. Then, if the total number of PDCCH candidates does not change with respect to the LTE system, the number of PDCCH candidates allocated to each numerology is reduced, and the probability that different mobile devices select the same PDCCH candidate increases, thereby increasing the PDCCH. Probability of conflict.
  • the total number of PDCCH candidates can be increased, so that the number of PDCCH candidates allocated to each numerology is correspondingly increased, or the PDCCH of each numerology is not reduced as much as possible in the embodiment of the present invention.
  • the number of candidates thereby reducing the PDCCH collision probability.
  • each numerology set may also correspond to the number of detectable downlink control channel candidates, or may be interpreted as the number of detectable downlink control channel candidates in the control resource set corresponding to each numerology set.
  • the mobile device may determine the number of detectable downlink control channel candidates corresponding to each numerology set according to the predefined information, or determine the detectable corresponding to each numerology set according to the information sent by the network device. The number of downlink control channel candidates.
  • the predefined information includes but is not limited to the following:
  • the first type of predefined information the number of detectable downlink control channel candidates corresponding to each numerology set to which the numerology corresponding to the activated BP belongs is the same. That is, the principle of even distribution, so that each collection of numerology corresponds to the same number of downlink control channels. Applicable to a scenario in which a BP set corresponds to one service, and a plurality of services corresponding to multiple BP sets have the same service type, for example, two BP sets of the mobile device correspond to eMBB services. Because the requirements of the number of downlink control channel candidates for each service may be similar, the fair distribution principle is used to ensure the fairness of scheduling resource allocation among services.
  • the second type of pre-defined information the number of detectable downlink control channel candidates corresponding to each numerology set to which the numerology set corresponding to the activated BP belongs is determined by the mobile device according to the number of control resource sets corresponding to each numerology set.
  • the number of services that need to be transmitted may be more, so more scheduling resources are needed. For example, if there are two services in the first numerology set that need to be transmitted, and only one service in the second numerology set needs to be transmitted, the number of downlink control channel candidates corresponding to the first numerology set may be more than the downlink control channel candidate corresponding to the second numerology set. Quantity.
  • the third pre-defined information the number of detectable downlink control channel candidates corresponding to each numerology set to which the numerology corresponding to the activated BP belongs is the CCE, RB, RBG included by the mobile device according to the control resource set corresponding to each numerology set. Or the number of REG bundles is determined. In this method, because the BP set corresponding to more CCE/RB/RBG/REG bundles can better ensure that no resource conflict occurs between the downlink control channels, more downlink control channels can be allocated.
  • the fourth type of pre-defined information the number of corresponding detectable downlink control channel candidates of each numerology set to which the numerology corresponding to the activated BP belongs is determined by the mobile device according to the attribute information of each numerology set.
  • the attribute information of the numerology collection has been introduced in the foregoing.
  • the attribute information of the numerology set includes the service type corresponding to the numerology set, and the number of detectable downlink control channel candidates corresponding to the numerology set of the URLLC service may be smaller than the detectable downlink control channel candidate corresponding to the numerology set of the eMBB service. Quantity.
  • Some numerology aggregation services have a large number of users, or the bit overhead of scheduling signaling is large, so the number of downlink control channel candidates required is large, and some numerology aggregation services have fewer users, or bits of scheduling signaling. The overhead is small, and thus the number of downlink control channel candidates required is small.
  • the network device may send indication information to the mobile device, where the indication information may be used to indicate the activated BP corresponding to the mobile device.
  • the numerology set to which the numerology belongs corresponds to the number of detectable downlink control channel candidates.
  • the indication result may be the same as the indication result of any one of the above predefined information, or may be different from the indication result of any one of the predefined information.
  • the sending, by the network device, the indication information may include: the network device sends the dynamic signaling, that is, the network device sends the physical layer signaling, where the physical layer signaling carries the indication information, the physical layer signaling
  • the network device may send the semi-static signaling, that is, the network device sends the high-level signaling, where the high-layer signaling carries the indication information, and the high-level signaling may be a broadcast signal. Order, system message, RRC signaling or MAC layer signaling.
  • the mobile device detects the downlink control channel according to the determined total number of downlink control channel candidates.
  • the mobile device can directly detect the downlink control channel according to the determined total number of downlink control channel candidates. Or, because the total number of downlink control channel candidates determined in the embodiment of the present invention is the maximum number of theoretical downlink control channel candidates, in actual applications, the network device may also configure the number of downlink control channel candidates of the mobile device to be less than or equal to the number of downlink control channel candidates. The maximum value, if the network device configures this, the mobile device can also detect the downlink control channel according to the number of downlink control channel candidates configured by the network device.
  • the mobile device can detect the downlink control channel, thereby completing the detection of the DCI. It can be seen that the mobile device detecting the downlink control channel can be understood as detecting the DCI or as receiving the DCI, so S23 in FIG. 2 illustrates that the network device transmits the DCI, so that the mobile device can receive the DCI (or the downlink control channel).
  • the network device is a DCI transmitted through a downlink control channel, and the mobile device obtains DCI by detecting a downlink control channel.
  • the embodiment of the present invention re-defines the method for determining the number of downlink control channel candidates for the mobile device in the scenario where the multiple numerology sets coexist in the 5G NR system.
  • the following control channel is the PDCCH, which is equivalent to redefining the PDCCH blind detection.
  • the number of PDCCH candidates for different service types corresponding to different numerology sets is kept as constant, and the PDCCH collision probability does not increase.
  • FIG. 3 is a schematic diagram of a mobile device 300 according to an embodiment of the present invention.
  • the mobile device 300 can be applied to the scenario shown in FIG. 1 for performing the method provided by the embodiment shown in FIG. 2.
  • the mobile device 300 includes a processing unit 301 and a transceiver unit 302.
  • the processing unit 301 and the transceiver unit 302 are specifically configured to perform other processing than the information transmission and reception of the mobile device in the embodiment shown in FIG. 2, and the transceiver unit 302 is specifically configured to execute the foregoing embodiment shown in FIG. Transceiver processing of the mobile device.
  • the processing unit 301 is configured to determine an activated BP; wherein the activated BP belongs to one carrier.
  • the processing unit 301 is further configured to determine, according to the activated BP or the numerology set corresponding to the activated BP, the total number of downlink control channel candidates detectable by the mobile device, where the total number of downlink control channel candidates detectable by the mobile device is greater than or equal to a preset threshold.
  • the transceiver unit 302 is configured to detect the downlink control channel according to the determined total number of downlink control channel candidates.
  • the transceiver function of the mobile device 300 can be implemented by a transceiver
  • the processing unit 301 can be implemented by a processor
  • the transceiver unit 302 can be implemented by a transceiver.
  • mobile device 400 can include a processor 401, a transceiver 402, and a memory 403.
  • the memory 403 may be used to store a program/code pre-installed when the mobile device 400 is shipped from the factory, or may store a code or the like for execution of the processor 401.
  • the mobile device 400 may correspond to the mobile device in the embodiment shown in FIG. 2 according to an embodiment of the present invention, wherein the transceiver 402 is configured to perform the mobile device as shown in FIG.
  • the various information in the embodiment is transceived, for example, the downlink control channel is detected, and the processor 401 is configured to perform other processing than the information transmission and reception of the mobile device in the embodiment shown in FIG. 2. I will not repeat them here.
  • FIG. 5 provides a schematic structural diagram of a mobile device.
  • the mobile device can be used in the scenario shown in FIG. 1 to perform the method provided by the embodiment shown in FIG. 2.
  • Figure 5 shows only the main components of the mobile device.
  • the mobile device 50 includes a processor, a memory, a control circuit, an antenna, and input and output devices.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit and the antenna together may also be called a transceiver, and are mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves, and receiving signaling indications and/or reference signals sent by the base station, for performing the mobile device in the embodiment shown in FIG. 2 above.
  • the various information sent and received can be transmitted and received.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire mobile device, executing the software program, and processing the data of the software program, for example, for supporting the mobile device to perform the transmission and reception in addition to the information in the embodiment shown in FIG. Other actions.
  • Memory is primarily used to store software programs and data.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 5 shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire mobile device.
  • the processor in FIG. 5 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • a mobile device may include multiple baseband processors to accommodate different network standards, and the mobile device may include multiple central processors to enhance its processing capabilities, and various components of the mobile device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the transceiver circuit having the transceiving function can be regarded as the transceiving unit 501 of the mobile device 50, and the processor having the processing function is regarded as the processing unit 502 of the mobile device 50.
  • the mobile device 50 includes a transceiver unit 501 and a processing unit 502.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 501 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 501 is regarded as a sending unit, that is, the transceiver unit 501 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a read-only memory (read) -only memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
  • bus interface which may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus interface can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the various illustrative logic units and circuits described in the embodiments of the present invention may be implemented by a general purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), or a field-programmable gate array.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be disposed in an ASIC, and the ASIC can be disposed in the mobile device. Alternatively, the processor and the storage medium may also be disposed in different components in the mobile device.
  • the size of the sequence number of each process does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present invention.
  • the implementation process constitutes any qualification.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种检测下行控制信道的方法及设备,用于提供一种确定PDCCH候选总数的方法。该方法包括:移动设备确定激活的带宽部分BP;所述激活的BP属于一个载波;所述移动设备根据激活的BP或激活的BP对应的系统参数确定所述移动设备可检测的下行控制信道候选总数;其中,所述下行控制信道候选总数大于或等于预设阈值;所述移动设备根据所述下行控制信道候选总数检测下行控制信道。

Description

一种检测下行控制信道的方法及设备
本申请要求在2017年6月23日提交中国专利局、申请号为201710487513.3、申请名称为“一种检测下行控制信道的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种检测下行控制信道的方法及设备。
背景技术
下行控制信息(Downlink Control Information,DCI)有多种格式,但移动设备事先并不知道接收的物理下行控制信道(Physical Downlink Control Chanel,PDCCH)携带的是哪种格式的DCI,也不知道该DCI使用哪个PDCCH候选进行传输,所以移动设备需要在所有的PDCCH候选上进行PDCCH盲检,以接收对应的DCI。
然而,长期演进(Long Term Evolution,LTE)系统中确定PDCCH候选总数的方式并不适用于第五代(5th Generation,5G)新无线(New Radio,NR)系统。
发明内容
本申请提供一种检测下行控制信道的方法及设备,用于提供一种根据下行控制信道候选总数检测下行控制信道的方法。
第一方面,提供一种检测下行控制信道的方法,该方法可由移动设备执行。该方法包括:移动设备确定激活的BP,激活的BP属于一个载波。移动设备根据激活的BP或激活的BP对应的系统参数确定移动设备可检测的下行控制信道候选总数,其中,该下行控制信道候选总数大于或等于预设阈值。移动设备根据所述下行控制信道候选总数检测下行控制信道。
应理解,移动设备根据激活的BP或激活的BP对应的系统参数集合就可以确定该移动设备的下行控制信道候选总数,而哪些BP被激活,或激活的BP对应于何种系统参数集合,移动设备是可以知晓的,即,移动设备只需根据已知的信息确定下行控制信道候选总数即可,方式较为简单,易于实现,解决了5G NR系统中移动设备无法确定下行控制信道候选总数的问题,从而进一步解决了在5G NR系统中移动设备检测下行控制信道的问题。
在一个可能的设计中,移动设备根据所述激活的BP或激活的BP对应的系统参数确定移动设备可检测的下行控制信道候选总数,包括:移动设备根据所述激活的BP对应的BP集合确定移动设备该下行控制信道候选总数;其中,每个BP集合中包括至少一个BP;或,移动设备根据所述激活的BP对应的系统参数所属的系统参数集合确定该下行控制信道候选总数;其中,每个系统参数集合中包括至少一个系统参数。
本申请重新定义了移动设备的下行控制信道候选数量,尽量保证不同的BP集合或不同的系统参数集合对应的不同业务类型的下行控制信道候选数量不变,进而不会造成PDCCH冲突概率的上升。
在一个可能的设计中,移动设备根据所述激活的BP对应的BP集合确定该下行控制信道候选总数,包括:当所述激活的BP对应于一个BP集合时,则移动设备确定该下行控制 信道候选总数为M,其中M为预设阈值,M为大于零的整数;或,当所述激活的BP对应于多个BP集合时,则移动设备确定移动设备该下行控制信道候选总数小于或等于K*M,其中M为预设阈值,K为BP集合的数量,M为大于零的整数,K为大于零的整数。
如果激活的BP对应于一个BP集合,那么,该BP集合可能只用于传输一个业务,则无需额外再增加下行控制信道候选数量也能够满足需求;或者该BP集合对应多个业务的传输,但在不额外增加下行控制信道候选数量的情况下,也能够满足需求,例如下行控制信道冲突概率在可接受范围内。所以在这种情况下,移动设备可检测的下行控制信道候选总数为M。其中,预设阈值可以是移动设备盲检一个业务传输的调度信息时可检测的PDCCH候选总数。
而如果激活的BP对应于多个BP集合,则不同的BP集合用于传输不同的业务,且这些业务的业务类型可能是不同的,或者这些业务的业务类型可能是相同的,本发明实施例不作限制。显然,需要的下行控制信道候选数量也随之增加。如果不额外增加下行控制信道候选数量可能就无法满足移动设备的需求,很可能会导致用于调度每个业务的控制信息可用的下行控制信道候选减少,从而导致下行控制信道冲突概率增加。因此在这种情况下,可以增加下行控制信道候选数量,即,移动设备可检测的下行控制信道候选总数小于或等于K*M,且大于M。通过这种方式,增加了移动设备的可检测的下行控制信道候选数量,使得移动设备尽量有足够的下行控制信道候选,减小下行控制信道的冲突概率。
在一个可能的设计中,当所述激活的BP对应于多个BP集合时,则移动设备确定移动设备可检测的下行控制信道候选总数小于或等于K*M,包括:当所述激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息均相同时,移动设备确定该下行控制信道候选总数等于K*M;或,当所述激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息不同时,移动设备确定该下行控制信道候选总数小于K*M。
例如,虽然激活的BP属于不同的BP集合,但是不同的BP集合的属性信息相同,那么激活的BP对于下行控制信道候选数量的要求可能是差不多的,此时就要求增加比较多的下行控制信道候选数量,即,令下行控制信道候选总数等于K*M,以满足移动设备的需求。
或者,虽然激活的BP属于不同的BP集合,但是不同的BP集合的属性信息不同,那么激活的BP对于下行控制信道候选数量的要求可能会不同,例如有的BP服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多,而有的BP服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少。在这种情况下,可无需增加过多的下行控制信道候选就可以满足需求,即,令下行控制信道候选总数小于K*M。通过这种方式,既能够满足移动设备的需求,也能够节省系统资源。
在一个可能的设计中,所述激活的BP对应的每个BP集合对应的所述下行控制信道候选数量包括以下至少一项:所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量相同;或,所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是移动设备根据每个BP集合对应的控制资源集合的数量确定的;或,所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是移动设备根据每个BP集合对应的控制资源集合包括的控制信道元素数量或控制资源集合频域上对应的资源块或资源块组的数量确定的;或,所述激活的BP对应的每个BP集合的对应的可检测的下行控 制信道候选数量是移动设备根据每个BP集合的属性信息确定的。
例如,一个BP集合对应一个业务,并且多个BP集合对应的多个业务的业务类型相同,则可以使得激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量相同。因为各个业务对于下行控制信道候选数量的要求可能是差不多的,采用平均分配原则,可以保证各个业务之间调度资源分配的公平性。
或者,对于对应较多控制资源集合的BP集合,其中需要传输的业务个数可能较多,因此需要较多的调度资源,就可以使得激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量根据每个BP集合对应的控制资源集合的数量来确定。例如,第一BP集合中有两个业务需要传输,第二BP集合中只有一个业务需要传输,则第一BP集合对应的下行控制信道候选数量可以多于第二BP集合对应的下行控制信道候选数量。
或者,激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是根据每个BP集合对应的控制资源集合包括的CCE、RB、RBG、或REG bundle的数量确定的。在这种方法下,因为对应较多CCE/RB/RBG/REG bundle的BP集合能够更好地保证下行控制信道候选之间不产生资源冲突,因此可以分配较多的下行控制信道候选。
或者,激活的BP对应的每个BP集合的对应的可检测的下行控制信道候选数量是根据每个BP集合的属性信息确定的。例如BP集合的属性信息包括BP集合对应的业务类型,则对应于URLLC业务的BP集合对应的可检测的下行控制信道候选数量可能小于对应于eMBB业务的BP集合对应的可检测的下行控制信道候选数量。前者服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少;而后者服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多。
如上的几种确定激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量的方式可根据实际情况选择,当然还可以选择其他方式来确定激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量,例如直接根据网络设备发送的指示信息来确定激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量,本发明实施例不做限制。
在一个可能的设计中,移动设备根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数,包括:当所述激活的BP对应的系统参数属于一个系统参数集合时,则移动设备确定所述下行控制信道候选总数为M,其中M为预设阈值,M为大于零的整数;或,当所述激活的BP对应的系统参数属于多个系统参数集合时,则移动设备确定所述下行控制信道候选总数小于或等于K*M,其中M为预设阈值,K为系统参数集合的数量,M为大于零的整数,K为大于零的整数。
如果移动设备的激活的BP对应的numerology属于一个numerology集合,那么,一个numerology集合可能只对应一个业务的传输,则无需额外再增加下行控制信道候选数量也能够满足需求;或者该系统参数集合对应多个业务的传输,但在不额外增加下行控制信道候选数量的情况下,也能够满足需求,例如下行控制信道冲突概率在可接受范围内。所以在这种情况下,移动设备可检测的下行控制信道候选总数为M。其中,预设阈值可以是移动设备盲检一个业务传输的调度信息时可检测的PDCCH候选总数。在这种情况下,无需在现在的移动设备已有的PDCCH候选总数的基础上再额外增加下行控制信道候选数量就能够满足使用需求,不会增加PDCCH冲突概率,从而在满足需求的同时也能节省系统资源,也能不增加移动设备盲检控制信道的开销。
而如果移动设备的激活的BP对应的numerology属于多个numerology集合,不同的numerology集合对应不同业务的传输,且这些业务的业务类型可能是不同的。显然,需要的下行控制信道候选数量也随之增加。如果不额外增加下行控制信道候选数量可能就无法满足移动设备的需求,很可能会导致用于调度每个业务的控制信息可用的下行控制信道候选减少,从而导致下行控制信道冲突概率增加。因此在这种情况下,可以增加下行控制信道候选数量,即,移动设备可检测的下行控制信道候选总数小于或等于K*M,且大于M。通过这种方式,增加了移动设备的可检测的下行控制信道候选数量,使得移动设备尽量有足够的下行控制信道候选数量,减小下行控制信道的冲突概率。
在一个可能的设计中,当所述激活的BP对应的系统参数属于多个系统参数集合时,则移动设备确定移动设备可检测的下行控制信道候选总数小于或等于K*M,包括:当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息均相同时,移动设备确定移动设备可检测的下行控制信道候选总数等于K*M;或,当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息不同时,移动设备确定移动设备可检测的下行控制信道候选总数小于K*M。
如果激活的BP属于不同的numerology集合,但是不同的numerology集合的属性信息相同,则,激活的BP对于下行控制信道候选数量的要求可能是差不多的,此时就要求增加比较多的下行控制信道候选数量,即,令下行控制信道候选总数等于K*M,以满足移动设备的需求。
或者,虽然激活的BP属于不同的numerology集合,但是不同的numerology集合的属性信息不同,那么激活的BP对于下行控制信道候选数量的要求可能会不同,例如有的BP服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多,而有的BP服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少。在这种情况下,可无需增加过多的下行控制信道候选数量就可以满足需求,即,令下行控制信道候选总数小于K*M。通过这种方式,既能够满足移动设备的需求,也能够节省系统资源。
在一个可能的设计中,所述激活的BP对应的每个系统参数集合对应的所述下行控制信道候选数量包括以下至少一项:所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量相同;或,所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是移动设备根据每个系统参数集合对应的控制资源集合的数量确定的;或,所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是移动设备根据每个系统参数集合对应的控制资源集合包括的控制信道元素数量或每个系统参数集合对应的控制资源集合频域上对应的资源块或资源块组的数量确定的;或,所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是移动设备根据每个系统参数集合的属性信息确定的。
第二方面,提供一种移动设备。该移动设备具有实现上述方法设计中的移动设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,移动设备的具体结构可包括处理单元及收发单元。处理单元及 收发单元可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第三方面,提供一种通移动设备。该移动设备可以为上述方法设计中的移动设备,或者为设置在移动设备中的芯片等功能模块。该移动设备包括:存储器,用于存储计算机可执行程序代码;收发机,以及处理器,处理器与存储器、收发机耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,所述指令使移动设备执行上述第一方面或第一方面的任意一种可能的设计中移动设备所执行的方法。
第四方面,提供一种计算机存储介质,用于存储为上述第二方面所描述的移动设备或第三方面所描述的移动设备所用的计算机软件指令,并包含用于执行上述第一方面、或第一方面的任意一种可能的设计中为移动设备所设计的程序。
第五方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面、或第一方面的任意一种可能的设计中为移动设备所设计的程序。
移动设备根据激活的BP或激活的BP对应的系统参数集合就可以确定该移动设备的下行控制信道候选总数,解决了5G NR系统中移动设备无法确定下行控制信道候选总数的问题,从而进一步解决了在5G NR系统中移动设备检测下行控制信道的问题。
附图说明
图1为本发明实施例的一种应用场景示意图;
图2为本发明实施例提供的一种检测下行控制信道的方法的示意图;
图3为本发明实施例提供的一种移动设备的结构示意图;
图4为本发明实施例提供的另一种移动设备的结构示意图;
图5为本发明实施例提供的另一种移动设备的结构示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步地详细描述。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)移动设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该移动设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该移动设备可以包括用户设备(User Equipment,UE)、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程移动设备(Remote Terminal)、接入移动设备(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动移动设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算 能力有限的设备等。例如包括条码、射频识别(Radio Frequency Identification,RFID)、传感器、全球定位系统(Global Positioning System,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线移动设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为移动设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括5G NR系统中的下一代节点B(next generation node B,gNB);或者基站也可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),,本发明实施例并不限定。
3)下行控制信道,用于承载控制信息。本文不限制下行控制信道究竟包括哪些信道,例如包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强的物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH),还可包括其他用于传输控制信息的下行控制信道。
4)带宽部分(Bandwidth part,BP),是指信道带宽中的一部分,也可以叫做“工作带宽(operating bandwidth)”或者传输带宽,迷你BP(mini BP)、BP单元(BP Unit)、BP子带等,可以简称为BP,也可以简称为BWP,本发明实施例中不对带宽部分的名称以及简称进行具体限定。BP可以是频域上的一段连续的资源。例如,一个带宽部分包含连续或非连续的K(K>0)个子载波;或者,一个带宽部分为N(N>0)个不重叠的连续或非连续的资源块(Resource Block,RB)所在的频域资源;或者,一个带宽部分为M(M>0)个不重叠的连续或非连续的资源块组(Resource Block Group,RBG)所在的频域资源,其中一个RBG包括P(P>0)个连续的RB。一个带宽部分与一个特定的系统参数(numerology)相关,所述numerology包括子载波间隔和循环前缀(Cyclic Prefix,CP)中的至少一种。
5)本发明实施例所述的“numerology”,是指空口(air interface)中的一系列物理层参数,具体实现时,可选的,一个BP可以对应一个numerology。numerology包括子载波间隔,时间单位的类型或循环前缀(cyclic prefix,CP)类型等。以子载波间隔为例,若移动设备支持子载波间隔15kHz和30kHz,则基站可以为移动设备分配一个子载波间隔为15KHz的BP,和一个子载波间隔为30KHz的BP,移动设备根据不同的场景和业务需求,可以切换到不同的BP上,或者同时在两个或更多BP上传输数据。当移动设备支持多个BP时,每个BP对应的numerology可以相同也可以不同。
其中,NR系统支持多种不同的numerology,NR系统中的用户可能需要支持对应于多种不同系统参数的业务。因此,为用户配置的多个BP可能会对应于不同的numerology。
6)本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本发明实施例涉及的一些概念,下面介绍一下本发明实施例的技术背景。
DCI有多种格式,但移动设备事先并不知道接收的PDCCH携带的是哪种格式的DCI, 也不知道该DCI使用哪个PDCCH候选进行传输,所以移动设备必须进行PDCCH盲检以接收对应的DCI。
虽然移动设备事先并不知道要接收的PDCCH携带的是哪种格式的DCI,也不知道该DCI使用哪个PDCCH候选进行传输,但移动设备知道自己处于何种状态,以及知道在该状态下期待收到的DCI。例如在空闲态(IDLE)时移动设备期待收到寻呼;在发起随机接入后移动设备期待收到的是随机接入响应(Random Access Response,RAR);在有上行数据待发送时移动设备期待收到的是上行调度等。
同时,移动设备知道自己的搜索空间,因此知道DCI可能分布在哪些控制信道元素(Control Channel Element,CCE)上。对于不同的期望信息,移动设备会尝试使用相应的无线网络临时标识(Radio Network Temporary Identity,RNTI)、可能的DCI格式、以及可能的聚合等级(Aggregation Level,AL)去与属于该移动设备的搜索空间内的CCE做循环冗余校验(Cyclic Redundancy Check,CRC)。如果CRC校验成功,那么移动设备就知道该DCI是自己需要的,也就知道了相应的DCI格式,从而进一步解出DCI内容。
在LTE系统中,移动设备可以确定PDCCH候选总数。然而LTE系统中的确定PDCCH候选总数的方式并不适用于5G NR系统。那么本发明实施例提供的技术方案就能够解决该技术问题。
下面再介绍一下本发明实施例的应用场景。请参见图1,为本发明实施例的一种应用场景示意图,也是LTE系统的架构图。图1中涉及的网元包括移动性管理实体(Mobility Management Entity,MME)、服务网关(Serving GateWay,S-GW)、基站、以及移动设备。
MME/S-GW:MME是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)LTE系统中的关键控制节点,属于核心网网元,主要负责信令处理部分,即控制面功能,包括接入控制、移动性管理、附着与去附着、会话管理功能以及网关选择等功能。S-GW是3GPP LTE系统中核心网的重要网元,主要负责用户数据转发的用户面功能,即在MME的控制下进行数据包的路由和转发。
其中,本发明实施例涉及的主要网元包括其中的基站和移动设备,基站为移动设备配置BP,移动设备可以工作在基站所配置的BP。对于基站和移动设备的一些介绍可参考前文,不多赘述。
本文所提供的技术方案可以应用于5G NR系统(下文简称NR系统),还可以应用于下一代移动通信系统或其他类似的移动通信系统。
下面结合附图介绍本发明实施例提供的技术方案。
请参见图2,本发明一实施例提供一种检测下行控制信道的方法,在下文的介绍过程中,均以本发明实施例提供的方法应用于图1所示的应用场景为例。
S21、移动设备确定激活的BP。其中,激活的BP属于同一个载波。
本发明实施例中,网络设备可以为移动设备配置多个BP。其中,一个配置的BP对应一个numerology。一个激活的BP对应一个或多个控制资源集合(CORESET),包括该BP内的数据传输被位于该BP内的控制信道调度,和/或,该BP内的数据传输被位于另一BP内的控制信道调度。
网络设备可能同时为移动设备配置多个BP,例如同时为移动设备配置第一BP和第二BP,且网络设备也可以同时激活第一BP和第二BP。或者,网络设备也可以在不同时刻为移动设备配置不同的BP,例如在第一时刻为移动设备配置并激活第一BP,在第二时刻为 移动设备配置并激活第二BP,第一时刻可以位于第二时刻之前,或者第一时刻也可以位于第二时刻之后。
例如,网络设备为移动设备配置了第一BP和第二BP。其中,第一BP是移动设备在初始接入时网络设备为移动设备配置的BP。则,网络设备可以向移动设备发送主信息块(Master Information Block,MIB),移动设备接收MIB后,就可以根据MIB确定网络设备为移动设备配置的第一BP。或者,移动设备根据预定义信息就可以知道网络设备为移动设备配置的第一BP,例如移动设备通过盲检同步信号确定同步信号的频域资源,再根据预定义的关系确定第一BP的频域资源。其中,如果第一BP是移动设备在初始接入时网络设备为移动设备配置的BP,那么第一BP可以是默认激活的。
第二BP可以是移动设备在接入网络之后网络设备为移动设备配置的BP。例如,网络设备可以向移动设备发送系统信息块(System Information Block,SIB),移动设备接收SIB后,就可以根据SIB确定网络设备为移动设备配置的第二BP。或者,网络设备可以向移动设备发送无线资源控制(Radio Resource Control,RRC)信令,移动设备接收RRC信令后,根据该RRC信令就可以知道网络设备为移动设备配置的第二BP。或者,网络设备也可以通过其他的信令来通知为移动设备分配的第二BP,例如通过公共DCI或移动设备的特定的DCI来通知为移动设备配置的第二BP,或者网络设备也可以通过预定义的方式来为移动设备配置第二BP,则移动设备根据预定义信息就能够确定网络设备为移动设备配置的第二BP。本发明实施例对于网络设备如何通知配置的第二BP不做限制。在这种情况下,网络设备可以通过公共DCI、移动设备的特定的DCI或高层信令来激活为移动设备配置的第一BP。其中,高层信令例如为SIB、RRC信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)。
实际上,网络设备为移动设备配置的BP可以属于同一个载波,也可以属于不同的载波。同样的,移动设备的激活的BP也是可以属于同一个载波,或者属于不同的载波,本发明实施例不做限制。
S22、移动设备根据激活的BP或激活的BP对应的numerology确定移动设备可检测的下行控制信道候选总数。其中,该下行控制信道候选总数大于或等于预设阈值。
其中,“可检测的”,是指能够供移动设备进行检测的,这里的“检测”这一动作可能还未执行,移动设备只是确定了哪些下行控制信道能够用来发送下行控制信息,即需要在哪些下行控制信道上检测DCI。另外,本发明实施例中所述的“检测”,可理解为盲检;本发明实施例中所述的“下行控制信道候选总数”,可以理解为协议规定的理论上的最大值,实际中网络设备为了降低移动设备盲检开销,可以配置移动设备的PDCCH候选数小于该最大值。
在本发明实施例中,移动设备根据激活的BP确定移动设备可检测的下行控制信道候选总数,可以通过以下方式实现:移动设备根据激活的BP对应的BP集合确定移动设备可检测的下行控制信道候选总数,其中,每个BP集合中包括至少一个BP。其中,“集合”只是描述多个激活的BP中的部分BP或全部BP,这些部分BP或全部BP的属性具有一定的相似性或相关性,而不强调网络设备和/或移动设备有划分集合的动作。
移动设备被网络设备配置了多个BP,该多个BP被预定义地或基于配置地分为多个BP集合,各BP集合包括的BP的数量大于或等于1。其中,所述“被预定义地分成多个集合”,可以是根据BP对应的系统参数进行的划分,例如将对应15kHz、30kHz子载波间隔的BP分 为一个BP集合,将对应60kHz子载波间隔的BP分为另一个BP集合,或者将对应15kHz、30kHz和60kHz子载波间隔的BP各分为一个BP集合。或者也可以是根据BP中进行的业务所进行的分组,例如将所进行业务的业务类型相同的BP分到一个BP集合中。具体如何划分BP集合,可以是协议预定义,移动设备和网络设备遵循即可。或者也可以是网络设备来划分BP集合,本发明实施例不做限制。
在本发明实施例中,移动设备根据激活的BP对应的BP集合确定移动设备可检测的下行控制信道候选总数,包括但不限于以下几种方式:
1、当移动设备的激活的BP对应于一个BP集合时,则移动设备确定移动设备可检测的下行控制信道候选总数为M,其中M为预设阈值,M为大于0的整数;
2、当移动设备的激活的BP对应于多个BP集合时,则移动设备确定移动设备可检测的下行控制信道候选总数小于或等于K*M,其中M为预设阈值,K为BP集合的数量,M和K均为大于0的整数。
如果移动设备的激活的BP对应于一个BP集合,且如果该BP集合中包括的BP对应的系统参数相同,那么,该BP集合可能只对应一个业务的传输,则无需额外再增加下行控制信道候选数量也能够满足需求;或者该BP集合对应多个业务的传输,但在不额外增加下行控制信道候选数量的情况下,也能够满足需求,例如下行控制信道冲突概率在可接受范围内。所以在这种情况下,移动设备可检测的下行控制信道候选总数为M。其中,预设阈值可以是移动设备盲检一个业务传输的调度信息时可检测的PDCCH候选总数,例如按照LTE系统的计算方式,该预设阈值为16。当然,预设阈值也可以取其他值,本发明实施例不做限制。这里是想强调,在第1种方式下,无需在现在的移动设备已有的PDCCH候选总数的基础上再额外增加下行控制信道候选数量就能够满足使用需求,不会增加PDCCH冲突概率,从而在满足需求的同时也能节省系统资源,也能不增加移动设备盲检控制信道的开销。
而如果移动设备的激活的BP对应于多个BP集合,则不同的BP集合用于传输不同的业务,且这些业务的业务类型可能是不同的,或者这些业务的业务类型可能是相同的,本发明实施例不作限制。显然,需要的下行控制信道候选数量也随之增加。如果不额外增加下行控制信道候选数量可能就无法满足移动设备的需求,很可能会导致用于调度每个业务的控制信息可用的下行控制信道候选减少,从而导致下行控制信道冲突概率增加。因此在这种情况下,可以增加下行控制信道候选数量,即,移动设备可检测的下行控制信道候选总数小于或等于K*M,且大于M。通过这种方式,增加了移动设备的可检测的下行控制信道候选数量,使得移动设备尽量有足够的下行控制信道候选数量,减小下行控制信道的冲突概率。
以下行控制信道候选总数等于K*M为例,上述划分集合的另一种可行的表述方式是:移动设备确定每个BP对应的下行控制信道候选个数,这些BP对应的下行控制信道候选个数满足:N 1个BP对应的下行控制信道候选个数之和为M,N 2个BP对应的下行控制信道候选个数之和为M,……,N K个BP对应的下行控制信道候选个数之和为M;其中,N 1、N 2、……、N K均为大于等于1的整数,且所述N 1、N 2、……、N K个BP之间互不相同。
进一步的,前文在第2种方式中只是介绍了,当移动设备的激活的BP对应于多个BP集合时,则移动设备确定移动设备可检测的下行控制信道候选总数小于或等于K*M,那么下面就进一步介绍,用于确定移动设备可检测的下行控制信道候选总数何时小于K*M,又 何时等于K*M。
作为一种示例,移动设备可检测的下行控制信道候选总数呈线性增长。例如,当移动设备的激活的BP对应于多个BP集合,且移动设备的激活的BP对应的BP集合的属性信息均相同时,移动设备确定移动设备可检测的下行控制信道候选总数等于K*M。
在本发明实施例中需明确,M是针对移动设备的特定调度而言的,如果是公共搜索空间(CSS)中的公共调度信息,会额外计算,且不会随着BP集合数量的增加而增加。一种示例是,M是针对slot-based调度的增强的移动宽带(Enhanced Mobile Broad Band,eMBB)业务而言的。
在本发明实施例中,BP集合的属性信息可以包括BP集合对应的numerology集合(numerology)、调度时间粒度、DCI格式类型、以及所进行的业务的业务类型中的任意一种或几种。其中,调度时间粒度可以是基于时隙(slot-based)或者基于符号(symbol-based),也可能基于其他的时间单位。
即,虽然激活的BP属于不同的BP集合,但是不同的BP集合的属性信息相同,那么激活的BP对于下行控制信道候选数量的要求可能是差不多的,此时就要求增加比较多的下行控制信道候选数量,即,令下行控制信道候选总数等于K*M,以满足移动设备的需求。
作为另一种示例,移动设备可检测的下行控制信道候选总数呈非线性增长。例如,当移动设备的激活的BP对应于多个BP集合,且移动设备的激活的BP对应的BP集合的属性信息不同时,移动设备确定所述移动设备可检测的下行控制信道候选总数小于K*M。
即,虽然激活的BP属于不同的BP集合,但是不同的BP集合的属性信息不同,那么激活的BP对于下行控制信道候选数量的要求可能会不同,例如有的BP服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多,而有的BP服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少。在这种情况下,可无需增加过多的下行控制信道候选数量就可以满足需求,即,令下行控制信道候选总数小于K*M。通过这种方式,既能够满足移动设备的需求,也能够节省系统资源。
另外,既然涉及到了BP集合,那么每个BP集合也可以对应可检测的下行控制信道候选数量,也可以解释为:每个BP集合对应的控制资源集合中的可检测的下行控制信道候选数量。在本发明实施例中,移动设备可以根据预定义信息确定每个BP集合对应的可检测的下行控制信道候选数量,或者,也可以根据网络设备发送的信息确定每个BP集合对应的可检测的下行控制信道候选数量。
在本发明实施例中,预定义信息包括但不限于以下几种:
第一种预定义信息:激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量相同。即平均分配原则,使得每个BP集合都对应相同数量的下行控制信道。适用于一个BP集合对应一个业务,并且多个BP集合对应的多个业务的业务类型相同的场景,例如移动设备的多个BP集合均对应eMBB业务。因为各个业务对于下行控制信道候选数量的要求可能是差不多的,采用平均分配原则,可以保证各个业务之间调度资源分配的公平性。
第二种预定义信息:激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是移动设备根据每个BP集合对应的控制资源集合的数量确定的。在这种方法下,对于对应较多控制资源集合的BP集合,其中需要传输的业务个数可能较多,因此需要较多 的调度资源。例如,第一BP集合中有两个业务需要传输,第二BP集合中只有一个业务需要传输,则第一BP集合对应的下行控制信道候选数量可以多于第二BP集合对应的下行控制信道候选数量。
第三种预定义信息:激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是移动设备根据每个BP集合对应的控制资源集合包括的CCE、资源块(resource Block,RB)、资源块组(resource block group,RBG)、或资源单元组绑定(resource element group bundle,REG bundle)的数量确定的。在这种方法下,因为对应较多CCE/RB/RBG/REG bundle的BP集合能够更好地保证下行控制信道之间不产生资源冲突,因此可以分配较多的下行控制信道。
第四种预定义信息:激活的BP对应的每个BP集合的对应的可检测的下行控制信道候选数量是移动设备根据每个BP集合的属性信息确定的。其中,BP集合的属性信息在前文已有介绍。例如BP集合的属性信息包括BP集合对应的业务类型,则对应于超可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务的BP集合对应的可检测的下行控制信道候选数量可能小于对应于eMBB业务的BP集合对应的可检测的下行控制信道候选数量。前者服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少;而后者服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多。
如果移动设备根据网络设备发送的信息确定每个BP集合对应的可检测的下行控制信道候选数量,那么网络设备可以向移动设备发送指示信息,该指示信息可用于指示该移动设备的激活的BP对应的BP集合对应的可检测的下行控制信道候选数量。在这种情况下,指示结果可以与如上任意一种预定义信息的指示结果相同,或者也可能与任何一种预定义信息的指示结果都不同。在一些可能的实现方式中,该网络设备发送指示信息,可以包括:该网络设备发送动态信令,即网络设备发送物理层信令,该物理层信令携带该指示信息,该物理层信令可以是公共下行控制信息或UE特定下行控制信息;或,该网络设备发送半静态信令,即该网络设备发送高层信令,该高层信令携带该指示信息,该高层信令可以是广播信令、系统消息、无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)层信令等。
如上介绍的是移动设备根据激活的BP确定移动设备可检测的下行控制信道候选总数,本发明实施例还提供另一种方式,即移动设备根据激活的BP对应的numerology确定移动设备可检测的下行控制信道候选总数,下面进行介绍。
在本发明实施例中,移动设备根据激活的BP对应的numerology确定移动设备可检测的下行控制信道候选总数,可以通过以下方式实现:移动设备根据激活的BP对应的numerology所属的numerology集合确定移动设备可检测的下行控制信道候选总数。其中,每个numerology集合中包括至少一个numerology。同样的,这里的“集合”也只是描述多个激活的BP对应的所有numerology中的部分numerology或全部numerology,对应所述部分numerology或所述全部numerology的BP的属性具有一定的相似性或相关性,而不强调网络设备和/或移动设备有划分集合的动作。
例如,多个numerology被预定义地或基于配置地划分为多个集合,各numerology集合包括的numerology的个数大于或等于1。例如将对应子载波间隔为15kHz、30kHz的numerology分为一个numerology集合,将对应子载波间隔为60kHz的numerology分为另一个 numerology集合,或者将对应子载波间隔为15kHz、30kHz和60kHz的numerology各分为一个numerology集合。
在本发明实施例中,移动设备根据激活的BP对应的numerology所属的numerology集合确定移动设备可检测的下行控制信道候选总数,包括但不限于以下几种方式:
a、当移动设备的激活的BP对应的numerology属于一个numerology集合时,则移动设备确定移动设备可检测的下行控制信道候选总数为M,其中M为预设阈值;其中,M为大于0的整数;
b、当移动设备的激活的BP对应的numerology属于多个numerology集合时,则移动设备确定移动设备可检测的下行控制信道候选总数小于或等于K*M,其中M为预设阈值,K为numerology集合的数量。其中,M和K均为大于0的整数。
如果移动设备的激活的BP对应的numerology属于一个numerology集合,那么,一个numerology集合可能只对应一个业务的传输,则无需额外再增加下行控制信道候选数量也能够满足需求;或者该numerology集合对应多个业务的传输,但在不额外增加下行控制信道候选数量的情况下,也能够满足需求,例如下行控制信道冲突概率在可接受范围内。所以在这种情况下,移动设备可检测的下行控制信道候选总数为M。其中,预设阈值可以是移动设备盲检一个业务传输的调度信息时可检测的PDCCH候选总数,例如按照LTE系统的计算方式,则该预设阈值为16。当然,预设阈值也可以取其他值,本发明实施例不做限制。这里是想强调,在第a种方式下,无需在现在的移动设备已有的PDCCH候选总数的基础上再额外增加下行控制信道候选数量就能够满足使用需求,不会增加PDCCH冲突概率,从而在满足需求的同时也能节省系统资源,也能不增加移动设备盲检控制信道的开销。
而如果移动设备的激活的BP对应的numerology属于多个numerology集合,不同的numerology集合对应不同业务的传输,且这些业务的业务类型可能是不同的。显然,需要的下行控制信道候选数量也随之增加。如果不额外增加下行控制信道候选数量可能就无法满足移动设备的需求,很可能会导致用于调度每个业务的控制信息可用的下行控制信道候选减少,从而导致下行控制信道冲突概率增加。因此在这种情况下,可以增加下行控制信道候选数量,即,移动设备可检测的下行控制信道候选总数小于或等于K*M,且大于M。通过这种方式,增加了移动设备的可检测的下行控制信道候选数量,使得移动设备尽量有足够的下行控制信道候选数量,减小下行控制信道的冲突概率。
以下行控制信道候选总数等于K*M为例,上述划分集合的另一种可行的表述方式是:移动设备确定每个BP对应的下行控制信道候选个数,这些BP对应的下行控制信道候选个数满足:N 1个具有相同numerology的BP对应的下行控制信道候选个数之和为M,N 2个具有相同numerology的BP对应的下行控制信道候选个数之和为M,……,N K个具有相同numerology的BP对应的下行控制信道候选个数之和为M;其中,N 1、N 2、……、N K均为大于等于1的整数,且所述N 1、N 2、……、N K个BP之间互不相同。
进一步的,前文在第b种方式中只是介绍了,当移动设备的激活的BP对应的numerology属于多个numerology集合时,则移动设备确定移动设备可检测的下行控制信道候选总数小于或等于K*M,那么下面就进一步介绍,用于确定移动设备可检测的下行控制信道候选总数何时小于K*M,又何时等于K*M。
作为一种示例,移动设备可检测的下行控制信道候选总数呈线性增长。例如,当移动设备的激活的BP对应的numerology属于多个numerology集合,且移动设备的激活的BP 对应的numerology集合的属性信息均相同时,移动设备确定移动设备可检测的下行控制信道候选总数等于K*M。
在本发明实施例中需明确,M是针对移动设备的特定调度而言的,如果是公共搜索空间中的公共调度信息,会额外计算,且不会随着numerology集合数量的增加而增加。一种示例是,M是针对slot-based调度的eMBB业务而言的。
在本发明实施例中,numerology集合的属性信息可以包括numerology集合对应的业务类型、调度时间粒度、以及DCI格式类型中的任意一种或几种。其中,调度时间粒度可以是slot-based或者symbol-based,也可能基于其他的时间单位。
即,虽然激活的BP属于不同的numerology集合,但是不同的numerology集合的属性信息相同,例如移动设备的多个BP集合均对应eMBB业务。因为激活的BP对于下行控制信道候选数量的要求可能是差不多的,此时就要求增加比较多的下行控制信道候选数量,即,令下行控制信道候选总数等于K*M,以满足移动设备的需求。
作为另一种示例,移动设备可检测的下行控制信道候选总数呈非线性增长。例如,当移动设备的激活的BP对应的numerology属于多个numerology集合,且移动设备的激活的BP对应的numerology集合的属性信息不同时,移动设备确定所述移动设备可检测的下行控制信道候选总数小于K*M。
即,虽然激活的BP属于不同的numerology集合,但是不同的numerology集合的属性信息不同,那么激活的BP对于下行控制信道候选数量的要求可能会不同,例如有的BP服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多,而有的BP服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少。在这种情况下,可无需增加过多的下行控制信道候选数量就可以满足需求,即,令下行控制信道候选总数小于K*M。通过这种方式,既能够满足移动设备的需求,也能够节省系统资源。
以下行控制信道是PDCCH为例。在LTE系统中只有一种numerology,即15kHz。然而,5G NR系统中支持多种numerology,而同一个移动设备可能需要同时检测对应多种不同numerology的数据和调度信息。那么,在PDCCH候选总量相对于LTE系统不发生变化的情况下,分配到每个numerology的PDCCH候选数量就减少了,则不同的移动设备选择同一个PDCCH候选的几率增大,从而增加了PDCCH冲突概率。而采用本发明实施例提供的技术方案后,可以增加PDCCH候选总数,从而分配到每个numerology的PDCCH候选数量也就相应增加,或者说,本发明实施例尽量不减少分配到每个numerology的PDCCH候选数量,从而减小了PDCCH冲突概率。
另外,既然涉及到了numerology集合,那么每个numerology集合也可以对应可检测的下行控制信道候选数量,也可以解释为:每个numerology集合对应的控制资源集合中的可检测的下行控制信道候选数量。在本发明实施例中,移动设备可以根据预定义信息确定每个numerology集合对应的可检测的下行控制信道候选数量,或者,也可以根据网络设备发送的信息确定每个numerology集合对应的可检测的下行控制信道候选数量。
在本发明实施例中,预定义信息包括但不限于以下几种:
第一种预定义信息:激活的BP对应的numerology所属的每个numerology集合对应的可检测的下行控制信道候选数量相同。即平均分配原则,使得每个numerology集合都对应相同数量的下行控制信道。适用于一个BP集合对应一个业务,并且多个BP集合对应的多 个业务的业务类型相同的场景,例如移动设备的两个BP集合均对应eMBB业务。因为各个业务对于下行控制信道候选数量的要求可能是差不多的,采用平均分配原则,可以保证各个业务之间调度资源分配的公平性。
第二种预定义信息:激活的BP对应的numerology集合所属的每个numerology集合对应的可检测的下行控制信道候选数量是移动设备根据每个numerology集合对应的控制资源集合的数量确定的。在这种方法下,对于对应较多控制资源集合的BP集合,其中需要传输的业务个数可能较多,因此需要较多的调度资源。例如,第一numerology集合中有两个业务需要传输,第二numerology集合中只有一个业务需要传输,则第一numerology集合对应的下行控制信道候选数量可以多于第二numerology集合对应的下行控制信道候选数量。
第三种预定义信息:激活的BP对应的numerology所属的每个numerology集合对应的可检测的下行控制信道候选数量是移动设备根据每个numerology集合对应的控制资源集合包括的CCE、RB、RBG、或REG bundle的数量确定的。在这种方法下,因为对应较多CCE/RB/RBG/REG bundle的BP集合能够更好地保证下行控制信道之间不产生资源冲突,因此可以分配较多的下行控制信道。
第四种预定义信息:激活的BP对应的numerology所属的每个numerology集合的对应的可检测的下行控制信道候选数量是移动设备根据每个numerology集合的属性信息确定的。其中,numerology集合的属性信息在前文已有介绍。例如numerology集合的属性信息包括numerology集合对应的业务类型,则对应于URLLC业务的numerology集合对应的可检测的下行控制信道候选数量可能小于对应于eMBB业务的numerology集合对应的可检测的下行控制信道候选数量。有的numerology集合服务的用户数较多、或者调度信令的比特开销较大,因而要求的下行控制信道候选数量较多,而有的numerology集合服务的用户数较少、或者调度信令的比特开销较小,因而要求的下行控制信道候选数量较少。
如果移动设备根据网络设备发送的信息确定每个numerology集合对应的可检测的下行控制信道候选数量,那么网络设备可以向移动设备发送指示信息,该指示信息可用于指示该移动设备的激活的BP对应的numerology所属的numerology集合对应的可检测的下行控制信道候选数量。在这种情况下,指示结果可以与如上任意一种预定义信息的指示结果相同,或者也可能与任何一种预定义信息的指示结果都不同。在一些可能的实现方式中,该网络设备发送指示信息,可以包括:该网络设备发送动态信令,即网络设备发送物理层信令,该物理层信令携带该指示信息,该物理层信令可以是公共下行控制信息或UE特定下行控制信息;或,该网络设备发送半静态信令,即该网络设备发送高层信令,该高层信令携带该指示信息,该高层信令可以是广播信令、系统消息、RRC信令或MAC层信令等。
S23、移动设备根据确定的下行控制信道候选总数检测下行控制信道。
需注意的是,移动设备可以直接根据确定的下行控制信道候选总数来检测下行控制信道。或者,因为本发明实施例中确定的下行控制信道候选总数是理论上的下行控制信道候选数量的最大值,在实际应用中,网络设备也可以配置移动设备的下行控制信道候选数量小于或等于该最大值,如果网络设备对此进行了配置,则移动设备也可以根据网络设备所配置的下行控制信道候选数量来检测下行控制信道。
在确定下行控制信道候选总数后,移动设备就可以检测下行控制信道,从而完成对DCI的检测。可以看到,移动设备检测下行控制信道可以理解为检测DCI,或者理解为接收DCI, 所以在图2里面的S23示意的是,网络设备发送DCI,从而移动设备可以接收DCI(或者下行控制信道),其中,网络设备是通过下行控制信道发送的DCI,移动设备通过检测下行控制信道上获得DCI。
本发明实施例针对5G NR系统中多种numerology集合共存的场景,重新定义了移动设备的下行控制信道候选数量确定方法,以下行控制信道是PDCCH为例,也就相当于重新定义了PDCCH盲检次数,尽量保证不同的numerology集合对应的不同业务类型的PDCCH候选数量不变,进而不会造成PDCCH冲突概率的上升。
下面结合附图对与上述各方法实施例对应的装置进行描述。
图3是本发明实施例提供的一种移动设备300的示意图。该移动设备300可以应用于图1所示的场景中,用于执行图2所示的实施例提供的方法。如图4所示,该移动设备300包括处理单元301和收发单元302。该处理单元301及收发单元302具体用于执行上述图2所示的实施例中所述移动设备除了信息收发之外的其它处理,该收发单元302具体用于执行上述图2所示的实施例中所述移动设备的收发处理。
例如,处理单元301,用于确定激活的BP;其中,激活的BP属于一个载波。处理单元301还用于根据激活的BP或激活的BP对应的numerology集合确定移动设备可检测的下行控制信道候选总数,其中,移动设备可检测的下行控制信道候选总数大于或等于预设阈值。收发单元302,用于根据确定的下行控制信道候选总数检测下行控制信道。
具体内容参见上述图2所示的实施例中的具体说明,此处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本发明实施例中,移动设备300的收发功能可以由收发机实现,处理单元301可以由处理器实现,收发单元302可以由收发机实现。如图4所示,移动设备400可以包括处理器401、收发机402和存储器403。其中,存储器403可以用于存储移动设备400出厂时预装的程序/代码,也可以存储用于处理器401执行时的代码等。
应理解,根据本发明实施例的移动设备400可对应于根据本发明实施例的图2所示的实施例中的移动设备,其中收发机402用于执行中所述移动设备执行图2所示的实施例中的各种信息收发,例如检测下行控制信道,处理器401用于执行图2所示的实施例中所述移动设备除了信息收发以外的其它处理。在此不再赘述。
图5提供了一种移动设备的结构示意图。该移动设备可以用于图1所示的场景中,执行图2所示的实施例提供的方法。为了便于说明,图5仅示出了移动设备的主要部件。如图5所示,移动设备50包括处理器、存储器、控制电路、天线以及输入输出装置。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号,接收基站发送的信令指示和/或参考信号,用于执行上述图2所示的实施例中所述移动设备执行的各种信息收发,具体可参照上面相关部分的描述。处理器主要用于对通信协议以及通信数据进行处理,以及对整个移动设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持移动设备执行图2所示的实施例中除了信息收发以外的动作。存储器主要用于存储软件程序和数据。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当移动设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的 指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到移动设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图5仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个移动设备进行控制,执行软件程序,处理软件程序的数据。图5中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,移动设备可以包括多个基带处理器以适应不同的网络制式,移动设备可以包括多个中央处理器以增强其处理能力,移动设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本发明实施例中,可以将具有收发功能的天线和收发电路视为移动设备50的收发单元501,将具有处理功能的处理器视为移动设备50的处理单元502。如图5所示,移动设备50包括收发单元501和处理单元502。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元501中用于实现接收功能的器件视为接收单元,将收发单元501中用于实现发送功能的器件视为发送单元,即收发单元501包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本发明实施例中,收发机可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网收发机,蜂窝网络收发机或其组合。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图4中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口 还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本领域技术人员还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于移动设备中。可选地,处理器和存储媒介也可以设置于移动设备中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统 实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。

Claims (25)

  1. 一种检测下行控制信道的方法,其特征在于,包括:
    移动设备确定激活的带宽部分BP;所述激活的BP属于一个载波;
    所述移动设备根据激活的BP或激活的BP对应的系统参数确定所述移动设备可检测的下行控制信道候选总数;其中,所述下行控制信道候选总数大于或等于预设阈值;
    所述移动设备根据所述下行控制信道候选总数检测下行控制信道。
  2. 如权利要求1所述的方法,其特征在于,所述移动设备根据激活的BP或激活的BP对应的系统参数确定所述移动设备可检测的下行控制信道候选总数,包括:
    所述移动设备根据所述激活的BP对应的BP集合确定所述下行控制信道候选总数;其中,每个BP集合中包括至少一个BP;或
    所述移动设备根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数;其中,每个系统参数集合中包括至少一个系统参数。
  3. 如权利要求2所述的方法,其特征在于,所述移动设备根据所述激活的BP对应的BP集合确定所述下行控制信道候选总数,包括:
    当所述激活的BP对应于一个BP集合时,则所述移动设备确定所述下行控制信道候选总数为M,其中M为所述预设阈值,M为大于零的整数;或
    当所述激活的BP对应于多个BP集合时,则所述移动设备确定所述下行控制信道候选总数小于或等于K*M,其中M为所述预设阈值,K为BP集合的数量,M为大于零的整数,K为大于零的整数。
  4. 如权利要求3所述的方法,其特征在于,当所述激活的BP对应于多个BP集合时,则所述移动设备确定所述下行控制信道候选总数小于或等于K*M,包括:
    当激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息均相同时,所述移动设备确定所述下行控制信道候选总数等于K*M;或
    当激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息不同时,所述移动设备确定下行控制信道候选总数小于K*M。
  5. 如权利要求2-4任一所述的方法,其特征在于,所述激活的BP对应的每个BP集合对应的所述下行控制信道候选数量包括以下至少一项:
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量相同;或
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是所述移动设备根据所述每个BP集合对应的控制资源集合的数量确定的;或
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是所述移动设备根据所述每个BP集合对应的控制资源集合包括的控制信道元素数量或控制资源集合频域上对应的资源块或资源块组的数量确定的;或
    所述激活的BP对应的每个BP集合的对应的可检测的下行控制信道候选数量是所述移动设备根据所述每个BP集合的属性信息确定的。
  6. 如权利要求2所述的方法,其特征在于,所述移动设备根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数,包括:
    当所述激活的BP对应的系统参数属于一个系统参数集合时,则所述移动设备确定所述下行控制信道候选总数为M,其中M为所述预设阈值,M为大于零的整数;或
    当所述激活的BP对应的系统参数属于多个系统参数集合时,则所述移动设备确定所 述下行控制信道候选总数小于或等于K*M,其中M为所述预设阈值,K为所述系统参数集合的数量,M为大于零的整数,K为大于零的整数。
  7. 如权利要求6所述的方法,其特征在于,当所述激活的BP对应的系统参数属于多个系统参数集合时,则所述移动设备确定所述下行控制信道候选总数小于或等于K*M,包括:
    当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息均相同时,所述移动设备确定所述下行控制信道候选总数等于K*M;或
    当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息不同时,所述移动设备确定所述下行控制信道候选总数小于K*M。
  8. 如权利要求2-4任一所述的方法,其特征在于,所述激活的BP对应的每个系统参数集合对应的所述下行控制信道候选数量包括以下至少一项:
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量相同;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述移动设备根据所述每个系统参数集合对应的控制资源集合的数量确定的;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述移动设备根据所述每个系统参数集合对应的控制资源集合包括的控制信道元素数量或所述每个系统参数集合对应的控制资源集合频域上对应的资源块或资源块组的数量确定的;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述移动设备根据所述每个系统参数集合的属性信息确定的。
  9. 一种移动设备,其特征在于,包括:
    处理器,用于确定激活的带宽部分BP;所述激活的BP属于一个载波;
    所述处理器,还用于根据激活的BP或激活的BP对应的系统参数确定所述移动设备可检测的下行控制信道候选总数;其中,所述下行控制信道候选总数大于或等于预设阈值;
    收发机,用于根据所述下行控制信道候选总数检测下行控制信道。
  10. 如权利要求9所述的移动设备,其特征在于,所述处理器用于根据所述激活的BP或激活的BP对应的系统参数确定所述的下行控制信道候选总数,包括:
    所述处理器用于根据所述激活的BP对应的BP集合确定所述下行控制信道候选总数;其中,每个BP集合中包括至少一个BP;或
    所述处理器用于根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数;其中,每个系统参数集合中包括至少一个系统参数。
  11. 如权利要求10所述的移动设备,其特征在于,所述处理器用于根据所述激活的BP对应的BP集合确定所述下行控制信道候选总数,包括:
    所述处理器用于当激活的BP对应于一个BP集合时,确定所述下行控制信道候选总数为M,其中M为所述预设阈值,M为大于零的整数;或
    所述处理器用于当激活的BP对应于多个BP集合时,确定所述下行控制信道候选总数 小于或等于K*M,其中M为所述预设阈值,K为BP集合的数量,M为大于零的整数,K为大于零的整数。
  12. 如权利要求11所述的移动设备,其特征在于,所述处理器用于当所述激活的BP对应于多个BP集合时,确定所述下行控制信道候选总数小于或等于K*M,包括:
    所述处理器用于当所述激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息均相同时,确定所述下行控制信道候选总数等于K*M;或
    所述处理器用于当所述激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息不同时,确定所述下行控制信道候选总数小于K*M。
  13. 如权利要求10-12任一所述的移动设备,其特征在于,所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量包括以下至少一项:
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量相同;或
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是所述处理器根据所述每个BP集合对应的控制资源集合的数量确定的;或
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是所述处理器根据所述每个BP集合对应的控制资源集合包括的控制信道元素数量或控制资源集合频域上对应的资源块或资源块组的数量确定的;或
    所述激活的BP对应的每个BP集合的对应的可检测的下行控制信道候选数量是所述处理器根据所述每个BP集合的属性信息确定的。
  14. 如权利要求10所述的移动设备,其特征在于,所述处理器用于根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数,包括:
    所述处理器用于当所述激活的BP对应的系统参数属于一个系统参数集合时,确定所述移动设备所述下行控制信道候选总数为M,其中M为所述预设阈值,M为大于零的整数;或
    所述处理器用于当所述移动设备的激活的BP对应的系统参数属于多个系统参数集合时,确定所述移动设备所述下行控制信道候选总数小于或等于K*M,其中M为所述预设阈值,K为所述系统参数集合的数量,M为大于零的整数,K为大于零的整数。
  15. 如权利要求14所述的移动设备,其特征在于,所述处理器用于当所述激活的BP对应的系统参数属于多个系统参数集合时,确定所述移动设备所述下行控制信道候选总数小于或等于K*M,包括:
    所述处理器用于当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息均相同时,确定所述下行控制信道候选总数等于K*M;或
    所述处理器用于当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息不同时,确定所述下行控制信道候选总数小于K*M。
  16. 如权利要求10-12任一所述的移动设备,其特征在于,所述激活的BP对应的每个系统参数集合对应的可检测的下行控制信道候选数量包括以下至少一项:
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量相同;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信 道候选数量是所述处理器根据所述每个系统参数集合对应的控制资源集合的数量确定的;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述处理器根据所述每个系统参数集合对应的控制资源集合包括的控制信道元素数量或所述每个系统参数集合对应的控制资源集合频域上对应的资源块或资源块组的数量确定的;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述处理器根据所述每个系统参数集合的属性信息确定的。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令在移动设备上运行时,使得所述移动设备执行如权利要求1~8所述的方法。
  18. 一种装置,其特征在于,包括:
    处理单元,用于确定激活的带宽部分BP;所述激活的BP属于一个载波;
    所述处理单元,还用于根据激活的BP或激活的BP对应的系统参数确定所述移动设备可检测的下行控制信道候选总数;其中,所述下行控制信道候选总数大于或等于预设阈值;
    收发单元,用于根据所述下行控制信道候选总数检测下行控制信道。
  19. 如权利要求18所述的装置,其特征在于,所述处理单元用于根据所述激活的BP或激活的BP对应的系统参数确定所述的下行控制信道候选总数,包括:
    所述处理单元用于根据所述激活的BP对应的BP集合确定所述下行控制信道候选总数;其中,每个BP集合中包括至少一个BP;或
    所述处理单元用于根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数;其中,每个系统参数集合中包括至少一个系统参数。
  20. 如权利要求19所述的装置,其特征在于,所述处理单元用于根据所述激活的BP对应的BP集合确定所述下行控制信道候选总数,包括:
    所述处理单元用于当激活的BP对应于一个BP集合时,确定所述下行控制信道候选总数为M,其中M为所述预设阈值,M为大于零的整数;或
    所述处理单元用于当激活的BP对应于多个BP集合时,确定所述下行控制信道候选总数小于或等于K*M,其中M为所述预设阈值,K为BP集合的数量,M为大于零的整数,K为大于零的整数。
  21. 如权利要求20所述的装置,其特征在于,所述处理单元用于当所述激活的BP对应于多个BP集合时,确定所述下行控制信道候选总数小于或等于K*M,包括:
    所述处理单元用于当所述激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息均相同时,确定所述下行控制信道候选总数等于K*M;或
    所述处理单元用于当所述激活的BP对应于多个BP集合,且所述激活的BP对应的BP集合的属性信息不同时,确定所述下行控制信道候选总数小于K*M。
  22. 如权利要求19-21任一所述的装置,其特征在于,所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量包括以下至少一项:
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量相同;或
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是所述处理单元根据所述每个BP集合对应的控制资源集合的数量确定的;或
    所述激活的BP对应的每个BP集合对应的可检测的下行控制信道候选数量是所述处理 单元根据所述每个BP集合对应的控制资源集合包括的控制信道元素数量或控制资源集合频域上对应的资源块或资源块组的数量确定的;或
    所述激活的BP对应的每个BP集合的对应的可检测的下行控制信道候选数量是所述处理单元根据所述每个BP集合的属性信息确定的。
  23. 如权利要求19所述的装置,其特征在于,所述处理单元用于根据所述激活的BP对应的系统参数所属的系统参数集合确定所述下行控制信道候选总数,包括:
    所述处理单元用于当所述激活的BP对应的系统参数属于一个系统参数集合时,确定所述移动设备所述下行控制信道候选总数为M,其中M为所述预设阈值,M为大于零的整数;或
    所述处理单元用于当所述移动设备的激活的BP对应的系统参数属于多个系统参数集合时,确定所述移动设备所述下行控制信道候选总数小于或等于K*M,其中M为所述预设阈值,K为所述系统参数集合的数量,M为大于零的整数,K为大于零的整数。
  24. 如权利要求23所述的装置,其特征在于,所述处理单元用于当所述激活的BP对应的系统参数属于多个系统参数集合时,确定所述移动设备所述下行控制信道候选总数小于或等于K*M,包括:
    所述处理单元用于当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息均相同时,确定所述下行控制信道候选总数等于K*M;或
    所述处理单元用于当所述激活的BP对应的系统参数属于多个系统参数集合,且所述激活的BP对应的系统参数所属的系统参数集合的属性信息不同时,确定所述下行控制信道候选总数小于K*M。
  25. 如权利要求19-21任一所述的装置,其特征在于,所述激活的BP对应的每个系统参数集合对应的可检测的下行控制信道候选数量包括以下至少一项:
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量相同;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述处理单元根据所述每个系统参数集合对应的控制资源集合的数量确定的;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述处理单元根据所述每个系统参数集合对应的控制资源集合包括的控制信道元素数量或所述每个系统参数集合对应的控制资源集合频域上对应的资源块或资源块组的数量确定的;或
    所述激活的BP对应的系统参数所属的每个系统参数集合对应的可检测的下行控制信道候选数量是所述处理单元根据所述每个系统参数集合的属性信息确定的。
PCT/CN2018/092460 2017-06-23 2018-06-22 一种检测下行控制信道的方法及设备 WO2018233697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710487513.3 2017-06-23
CN201710487513.3A CN109121210B (zh) 2017-06-23 2017-06-23 一种检测下行控制信道的方法及设备

Publications (1)

Publication Number Publication Date
WO2018233697A1 true WO2018233697A1 (zh) 2018-12-27

Family

ID=64733420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092460 WO2018233697A1 (zh) 2017-06-23 2018-06-22 一种检测下行控制信道的方法及设备

Country Status (2)

Country Link
CN (1) CN109121210B (zh)
WO (1) WO2018233697A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107053A1 (en) * 2012-01-20 2013-07-25 Nokia Siemens Networks Oy Enhanced channel state information reporting for downlink control channel
CN103312483A (zh) * 2012-03-14 2013-09-18 华为终端有限公司 控制信息发送和接收方法、基站和用户设备
CN106788931A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 通信系统中信息传输的方法及基站、用户设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2016114563A1 (ko) * 2015-01-12 2016-07-21 엘지전자 주식회사 무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107053A1 (en) * 2012-01-20 2013-07-25 Nokia Siemens Networks Oy Enhanced channel state information reporting for downlink control channel
CN103312483A (zh) * 2012-03-14 2013-09-18 华为终端有限公司 控制信息发送和接收方法、基站和用户设备
CN106788931A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 通信系统中信息传输的方法及基站、用户设备

Also Published As

Publication number Publication date
CN109121210A (zh) 2019-01-01
CN109121210B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
US20210250159A1 (en) Resource configuration method and apparatus
US11924141B2 (en) Communication method, network device, and terminal device
WO2018171667A1 (zh) 一种信道传输方法及网络设备
CN109152029B (zh) 一种通信方法、网络设备及用户设备
CN109151955B (zh) 一种通信方法及设备
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
WO2020156559A1 (zh) 一种数据传输方法、网络设备和终端设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN111436085B (zh) 通信方法及装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
US20220167194A1 (en) Communication Method and Communications Apparatus
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
WO2020221130A1 (zh) 节能参数的发送方法、接收方法及设备
JP2023512807A (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
WO2018171394A1 (zh) 无授权传输方法、用户终端和基站
US20220039075A1 (en) Communication method and apparatus
CN110831130B (zh) 数据传输方法及装置
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
EP3661286A1 (en) Communication method, terminal device and network device
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
WO2019223558A1 (zh) 一种通信方法、装置及系统
WO2019056974A1 (zh) 上行链路调度方式确定方法、用户设备和基站
US11363594B2 (en) Time-domain resource determination method and apparatus, and computer storage medium
WO2021056595A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820074

Country of ref document: EP

Kind code of ref document: A1