WO2016114563A1 - 무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치 - Google Patents

무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치 Download PDF

Info

Publication number
WO2016114563A1
WO2016114563A1 PCT/KR2016/000313 KR2016000313W WO2016114563A1 WO 2016114563 A1 WO2016114563 A1 WO 2016114563A1 KR 2016000313 W KR2016000313 W KR 2016000313W WO 2016114563 A1 WO2016114563 A1 WO 2016114563A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
dci
control channel
scheduled
cif
Prior art date
Application number
PCT/KR2016/000313
Other languages
English (en)
French (fr)
Inventor
이승민
양석철
안준기
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/542,369 priority Critical patent/US10674519B2/en
Publication of WO2016114563A1 publication Critical patent/WO2016114563A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for monitoring downlink control information by a terminal in a wireless communication system and an apparatus using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • CA carrier aggregation
  • eCA enhanced CA
  • the maximum number of blind decodings that can be supported for detecting downlink control information for each terminal capability may be different.
  • the amount of control information to be transmitted to the terminal may vary according to the channel state, the amount of data currently required by the terminal, and the like. This variable will increase as the number of carriers that can be aggregated increases.
  • a method for monitoring downlink control information (DCI) of a user equipment (UE) in a wireless communication system receives 'control channel candidate number information' indicating the number of control channel candidates for each aggregation level (AL) of a per cell search space (SS) and receives DCI.
  • DCI downlink control information
  • the method receives 'control channel candidate number information' indicating the number of control channel candidates for each aggregation level (AL) of a per cell search space (SS) and receives DCI.
  • the control channel candidates of the first part of the existing control channel candidates are monitored, wherein the number of the control channel candidates of the first part is determined based on the control channel candidate number information.
  • the search space may be a UE-specific search space (USS).
  • USS UE-specific search space
  • the control channel candidates may be candidates of a Physical Downlink Control CHannel (PDCCH) or an Enhanced Physical Downlink Control CHannel (EPDCCH).
  • PDCH Physical Downlink Control CHannel
  • EPDCCH Enhanced Physical Downlink Control CHannel
  • the control channel candidate number information may inform the number of the first partial control channel candidates as a ratio with respect to the number of existing control channel candidates.
  • the control channel candidate number information may be provided with respect to the number of existing control channel candidates for each aggregation level (AL) of the search space for each cell.
  • AL aggregation level
  • the control channel candidate number information may consist of 2 bits.
  • the ratios sequentially indicated may be 0, 0.33, 0.66, and 1.
  • the control channel candidate number information may be received through a higher layer signal.
  • the higher layer signal may be a Radio Resource Control (RRC) message.
  • RRC Radio Resource Control
  • the terminal may be a terminal supporting the aggregation of more than five cells.
  • the terminal may monitor existing control channel candidates for each aggregation level (AL) of the search space to detect the DCI.
  • AL aggregation level
  • a terminal in another aspect, includes an RF unit for transmitting / receiving a radio signal and a processor connected to the RF unit, wherein the processor includes aggregation level of each cell in a search space (SS) per cell.
  • Receive 'control channel candidate number information' indicating the number of control channel candidates for the level (AL), and to monitor the control channel candidates of the first of the existing control channel candidates (legacy candidates) to detect the DCI,
  • the number of first control channel candidates may be determined based on the control channel candidate number information.
  • the number of blind decoding for each aggregation level of the search space can be reduced. Through this, unnecessary power consumption of the terminal can be prevented, and control channel search delay can be prevented.
  • 1 shows a structure of a radio frame in 3GPP LTE / LTE-A.
  • FIG. 2 shows an example of a resource grid for one slot.
  • 3 shows a structure of an uplink subframe.
  • FIG. 6 is an exemplary diagram illustrating monitoring of a search space (SS) and a control channel.
  • SS search space
  • FIG. 7 is a comparative example of a conventional single carrier system and a carrier aggregation system.
  • Example 9 shows an example of determining the size of scheduling information in a search space according to Example # 3-3.
  • FIG. 10 illustrates a method for reporting terminal capability information of a terminal according to an embodiment of the present invention.
  • 11 illustrates a method of operating a terminal according to rule # 17-A or example # 17-A-1 described above.
  • FIG. 13 illustrates SICC-DCI and MUCC-DCI.
  • proposal method # 14 illustrates an operation method of a terminal when the above-described proposal method # 14, proposal method # 15, proposal method # 16, proposal method # 20, proposal method # 21, proposal method # 23, and proposal method # 24 are applied. .
  • FIG. 15 illustrates an example in which the UE blindly decodes some (E) PDCCH candidates signaled among existing (E) PDCCH candidates.
  • 17 is a block diagram illustrating a base station and a terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using Evolved-UMTS Terrestrial Radio Access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A Advanced
  • LTE-A Advanced
  • 1 shows a structure of a radio frame in 3GPP LTE / LTE-A.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example. Therefore, the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • FIG. 2 shows an example of a resource grid for one slot.
  • the downlink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol indicates a specific time interval and may be called an SC-FDMA symbol according to a transmission scheme.
  • the downlink slot includes N RB resource blocks (RBs) in the frequency domain.
  • the RB includes one slot in the time domain and a plurality of consecutive subcarriers in the frequency domain in resource allocation units.
  • the number N RB of resource blocks included in the downlink slot depends on a downlink transmission bandwidth set in a cell.
  • N RB may be any one of 6 to 110.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element (RE).
  • One resource block includes 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain to include 7 ⁇ 12 resource elements, but the number of OFDM symbols and the number of subcarriers in the resource block is limited thereto. It is not.
  • the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal cyclic prifix (CP) and the number of OFDM symbols is 6 for an extended cyclic prefix (CP).
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • 3 shows a structure of an uplink subframe.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the UE may not simultaneously transmit or simultaneously transmit PUCCH and PUSCH according to configuration.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • the uplink control information transmitted on the PUCCH includes ACK / NACK, channel state information (CSI) indicating a downlink channel state, and a scheduling request (SR) that is an uplink radio resource allocation request.
  • the CSI includes a precoding matrix index (PMI) indicating a precoding matrix, a rank indicator (RI) indicating a rank value preferred by the UE, a channel quality indicator (CQI) indicating a channel state, and the like.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include CQI, PMI, ACK / NACK, RI, and the like.
  • the uplink data may consist of control information only.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP (six in the extended CP).
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (Physical Downlink Shared Channel). Becomes the data area to be allocated.
  • PDSCH refers to a channel through which a base station or node transmits data to a terminal.
  • Control channels transmitted in the control region include a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Downlink Control Channel (PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries a Control Format Indicator (CFI), which is information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI Control Format Indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • PCFICH is transmitted on the fixed PCFICH resources of the subframe.
  • the PHICH carries an acknowledgment (ACK) / not-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK acknowledgment
  • NACK not-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the PDCCH is a control channel for transmitting downlink control information (DCI).
  • DCI may be defined as resource allocation of PDSCH (also called downlink grant (DL grant)), resource allocation of physical uplink shared channel (PUSCH) (also called uplink grant (UL grant)), arbitrary A set of transmit power control commands and / or activation of Voice over Internet Protocol (VoIP) for individual terminals in the terminal group.
  • DL grant downlink grant
  • PUSCH physical uplink shared channel
  • VoIP Voice over Internet Protocol
  • the EPDCCH may be located after the existing control region in the time domain. For example, if an existing control region is transmitted in the first three OFDM symbols of the subframe, the EPDCCH may be located in OFDM symbols located after the three OFDM symbols. In the frequency domain, the existing control region and the EPDCCH may coincide or may be set differently. For example, the PDCCH is transmitted in the entire system band, whereas the EPDCCH may be transmitted only in the same frequency band as the PDSCH transmitted for a specific terminal. 5 shows an example in which the EPDCCH is transmitted only in some frequency bands of the existing control region.
  • control information for an advanced UE may be transmitted.
  • a reference signal transmitted for demodulation of the PDSCH may be transmitted.
  • FIG. 6 is an exemplary diagram illustrating monitoring of a search space (SS) and a control channel.
  • SS search space
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs. ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level (AL).
  • AL CCE aggregation level
  • blind decoding is used to detect a PDCCH.
  • the UE does not know in advance where its PDCCH is transmitted in the control region. Accordingly, the UE checks whether the PDCCH is its control channel by checking a cyclic redundancy check (CRC) error on the PDCCH received from each of the resources in which the PDCCH may exist (this is called a PDCCH candidate). This is called blind decoding.
  • CRC cyclic redundancy check
  • a plurality of PDCCHs may be transmitted in the control region within each subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • monitoring means that the UE attempts blind decoding of the PDCCH.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH, and may be referred to as a set of PDCCH candidates.
  • the UE monitors the PDCCH in the corresponding search space.
  • the search space is divided into a common search space (CSS) and a UE-specific search space (USS).
  • the common search space is a space for searching for a PDCCH having common control information.
  • the common search space includes 16 CCEs up to CCE (Control Channel Element) indexes 0 to 15, and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • the starting point of the search space is defined differently from the common search space and the terminal specific search space.
  • the starting point of the common search space is fixed regardless of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level, and / or the slot number in the radio frame. Can vary.
  • the terminal identifier eg, C-RNTI
  • the CCE aggregation level e.g, C-RNTI
  • the slot number in the radio frame can vary.
  • the terminal specific search space and the common search space may overlap.
  • a search space may be set in the same way for the EPDCCH.
  • the search space of EPDCCH is composed of ECCE.
  • CA Carrier aggregation
  • FIG. 7 is a comparative example of a conventional single carrier system and a carrier aggregation system.
  • a single carrier system supports only one carrier for uplink and downlink to a user equipment.
  • the bandwidth of the carrier may vary, but only one carrier is allocated to the terminal.
  • a carrier aggregation (CA) system a plurality of CCs (DL CC A to C, UL CC A to C) may be allocated to the UE.
  • a component carrier (CC) means a carrier used in a carrier aggregation system and may be abbreviated as a carrier. For example, three 20 MHz component carriers may be allocated to allocate a 60 MHz bandwidth to the terminal.
  • the carrier aggregation system may be divided into a continuous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which carriers aggregated are separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the system frequency band of a wireless communication system is divided into a plurality of carrier frequencies.
  • the carrier frequency means a center frequency of a cell.
  • a cell may mean a downlink frequency resource and an uplink frequency resource.
  • the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the terminal In order to transmit and receive packet data through a specific cell, the terminal must first complete configuration for the specific cell.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
  • MAC media access control
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive a control channel (PDCCH) and a data channel (PDSCH) of an activated cell in order to identify resources (which may be frequency, time, etc.) allocated thereto.
  • PDCCH control channel
  • PDSCH data channel
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the terminal may receive system information (SI) required for packet reception from the deactivated cell.
  • SI system information
  • the terminal does not monitor or receive the control channel (PDCCH) and data channel (PDSCH) of the deactivated cell in order to check the resources (may be frequency, time, etc.) allocated to them.
  • PDCH control channel
  • PDSCH data channel
  • the cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • the primary cell refers to a cell operating at a primary frequency, and is a cell in which the terminal performs an initial connection establishment procedure or connection reestablishment with the base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • the serving cell is configured as a primary cell when the carrier aggregation is not set or the terminal cannot provide carrier aggregation.
  • the term serving cell indicates a cell configured for the terminal and may be configured in plural.
  • One serving cell may be configured with one downlink component carrier or a pair of ⁇ downlink component carrier, uplink component carrier ⁇ .
  • the plurality of serving cells may be configured as a set consisting of one or a plurality of primary cells and all secondary cells.
  • a primary component carrier refers to a component carrier (CC) corresponding to a primary cell.
  • the PCC is a CC in which the terminal initially makes a connection (connection or RRC connection) with the base station among several CCs.
  • the PCC is a special CC that manages a connection (Connection or RRC Connection) for signaling regarding a plurality of CCs and manages UE context, which is connection information related to a terminal.
  • the PCC is connected to the terminal and always exists in the active state in the RRC connected mode.
  • the downlink component carrier corresponding to the primary cell is called a downlink primary component carrier (DL PCC), and the uplink component carrier corresponding to the primary cell is called an uplink major carrier (UL PCC).
  • DL PCC downlink primary component carrier
  • U PCC uplink major carrier
  • Secondary component carrier refers to a CC corresponding to the secondary cell. That is, the SCC is a CC allocated to the terminal other than the PCC, and the SCC is an extended carrier for the additional resource allocation other than the PCC and may be divided into an activated or deactivated state.
  • the downlink component carrier corresponding to the secondary cell is referred to as a DL secondary CC (DL SCC), and the uplink component carrier corresponding to the secondary cell is referred to as an uplink secondary component carrier (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC uplink secondary component carrier
  • the primary cell and the secondary cell have the following characteristics.
  • the primary cell is used for transmission of the PUCCH.
  • the primary cell is always activated, while the secondary cell is a carrier that is activated / deactivated according to specific conditions.
  • RLF Radio Link Failure
  • the primary cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access CHannel) procedure.
  • NAS non-access stratum
  • the primary cell is always configured with a pair of DL PCC and UL PCC.
  • a different CC may be configured as a primary cell for each UE.
  • the primary cell can be replaced only through a handover, cell selection / cell reselection process.
  • RRC signaling may be used to transmit system information of a dedicated secondary cell.
  • the downlink component carrier may configure one serving cell, and the downlink component carrier and the uplink component carrier may be connected to configure one serving cell.
  • the serving cell is not configured with only one uplink component carrier.
  • the activation / deactivation of the component carrier is equivalent to the concept of activation / deactivation of the serving cell.
  • activation of serving cell 1 means activation of DL CC1.
  • serving cell 2 assumes that DL CC2 and UL CC2 are configured to be configured, activation of serving cell 2 means activation of DL CC2 and UL CC2.
  • each component carrier may correspond to a serving cell.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
  • a plurality of component carriers (CCs), that is, a plurality of serving cells may be supported.
  • Such a carrier aggregation system may support non-cross carrier scheduling and cross carrier scheduling.
  • Non-cross carrier scheduling may be referred to simply applying a conventional scheduling method within a single cell to a plurality of cells.
  • the PDCCH / PDSCH is transmitted through the same CC, and the PDCCH may schedule a PUSCH transmitted through the CC which is basically linked with a specific CC.
  • Non-cross carrier scheduling may also be referred to as self scheduling.
  • Cross-carrier scheduling is a resource allocation of a PDSCH transmitted on another component carrier through a PDCCH transmitted on a specific component carrier and / or other components other than the component carrier basically linked with the specific component carrier.
  • a scheduling method for resource allocation of a PUSCH transmitted through a carrier That is, the PDCCH and the PDSCH may be transmitted through different downlink CCs, and the PUSCH may be transmitted through another uplink CC other than the uplink CC linked with the downlink CC through which the PDCCH including the UL grant is transmitted. .
  • a carrier indicator indicating a DL CC / UL CC through which a PDSCH / PUSCH for which PDCCH provides control information is transmitted is required.
  • a field including such a carrier indicator is hereinafter called a carrier indication field (CIF).
  • a carrier aggregation system supporting cross carrier scheduling may include a carrier indication field (CIF) in a conventional downlink control information (DCI) format.
  • CIF carrier indication field
  • DCI downlink control information
  • 3 bits may be extended, and the PDCCH structure may include an existing coding method, Resource allocation methods (ie, CCE-based resource mapping) can be reused.
  • search area in order to support increasing downlink and / or uplink data demand, when a large number of cells (CELLs) are set to a carrier aggregation technique (CA), an efficient search space (search area) configuration / operation method Suggest.
  • the search space search area
  • the SS may be an area in which the UE searches / searches / monitors a control channel such as a PDCCH or an EPDCCH.
  • the plurality of cells configured by the carrier aggregation technique may be configured only with a licensed band (LICENSED SPECTRUM) based cell (hereinafter, referred to as "LCELL”), or a cell based with an unlicensed band (UNLICENSED SPECTRUM) band (hereinafter, " UCELL ”) and LCELL, or UCELL only.
  • LCELL licensed band
  • UCELL unlicensed band
  • the UCELL may be a cell operated in LTE-U manner.
  • UCELL can be configured only as a secondary cell (SCELL). Or a rule may be defined such that the UCELL is "CCS (CROSS CARRIER SCHEDULING)" from the LCELL.
  • a radio resource pool (RRP) section on a UCELL is a resource that is configured aperiodically or discontinuously depending on CS (CARRIER SENSING) results, in view of UE operation and assumption, the corresponding RRP section is defined as redefining or Can be reinterpreted.
  • the RRP interval in the UCELL is a period in which the UE is supposed to perform a (time / frequency) synchronous operation for the UCELL, or a synchronization signal (eg, PSS, SSS) for this (from the base station) is transmitted and / or the UE.
  • a reference signal eg, CRS, CSI-RS
  • the control region is composed of logical CCE columns that are a plurality of CCEs.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the CCE may correspond to 9 resource element groups.
  • Resource element groups are used to define the mapping of control channels to resource elements.
  • one resource element group REG may consist of four resource elements RE.
  • the CCE column is a collection of all CCEs constituting the control region in one subframe.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the number of CCEs constituting the CCE group.
  • the number of CCEs used for PDCCH transmission is called a CCE aggregation level (L).
  • the CCE aggregation level is a CCE unit for searching for a PDCCH.
  • the size of the CCE aggregation level is defined by the number of adjacent CCEs.
  • the CCE aggregation level may be defined as CCEs equal to the number of any one of ⁇ 1, 2, 4, 8 ⁇ .
  • the following table shows an example of the format of the PDCCH according to the CCE aggregation level and the number of bits of the available PDCCH.
  • the search space S (L) k may be defined as a set of candidate PDCCHs.
  • the CCE corresponding to the candidate PDCCH m in the search space S (L) k is given as follows.
  • N CCE, k can be used for transmission of the PDCCH in the control region of subframe k.
  • the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
  • M (L) is the number of candidate PDCCHs at the CCE aggregation level L in a given search space.
  • the variable Y k is defined as follows.
  • n s is a slot number in a radio frame.
  • Floor (x) represents the largest integer among the numbers smaller than x.
  • the following table shows the aggregation level, the number of CCEs, and the number of candidate PDCCHs M (L) in the common search space and the UE-specific search space.
  • the UE has one PDCCH at aggregation levels 1, 2, 4, and 8 in all non-DRX subframes of each active serving cell. Search for a PDCCH UE-specific search space.
  • the terminal is one or more terminals at aggregation levels 1,2,4,8 for one or more active serving cells set by higher layer signals in all non-DRX subframes. Search for a UE-specific search space.
  • the terminal is configured for EPDCCH monitoring for a serving cell, the serving cell is activated, and the terminal is not configured for CIF, the terminal has an aggregation level in all non-DRX subframes that do not monitor the EPDCCH in the serving cell.
  • One, two, four, and eight monitor one PDCCH UE specific search space.
  • the UE If the UE is configured for EPDCCH monitoring for the serving cell, the serving cell is activated, and the UE is configured with CIF, the UE does not monitor the EPDCCH in the serving cell configured by the higher layer signal.
  • One or more PDCCH UE specific search spaces are monitored at aggregation levels 1,2,4,8 in the frame.
  • a common search space and a PDCCH terminal specific search space may overlap.
  • the UE in which the CIF associated with the PDCCH monitoring in the serving cell c is configured monitors the PDCCH in which the CIF is set and the CRC scrambled with the C-RNTI in the PDCCH terminal specific search space of the serving cell c.
  • the terminal in which the CIF associated with the PDCCH monitoring in the primary cell is configured monitors the PDCCH in which the CIF is set and the CRC scrambled with the SPS C-RNTI in the PDCCH terminal specific search space of the primary cell.
  • the UE may monitor the PDCCH without CIF in the common search space.
  • the terminal monitors the PDCCH without the CIF in the PDCCH terminal specific search space. If the CIF is set by the UE, the UE monitors the PDCCH having the CIF in the PDCCH UE specific search space.
  • the terminal If the terminal is configured to monitor the PDCCH having the CIF corresponding to the secondary cell in another serving cell, the terminal does not monitor the PDCCH of the secondary cell (it is not expected to be monitored).
  • the UE may monitor PDCCH candidates in the serving cell for the serving cell in which the PDCCH is monitored.
  • EPDCCH PRB sets may be configured through higher layer signals for EPDCCH monitoring of the UE.
  • the PRB pair corresponding to the EPDCCH PRB set is indicated by the higher layer signal.
  • Each EPDCCH PRB set consists of ECCEs numbered from 0 to N ECCE, p, k ⁇ 1.
  • N ECCE, p, k is the number of ECCEs in the EPDCCH PRB set p of subframe k.
  • the EPDCCH PRB set may be configured in a localized or distributed manner.
  • the UE monitors one or more EPDCCH candidates, where monitoring means attempting to decode each EPDCCH according to DCI formats to be monitored.
  • EPDCCH candidates to be monitored may be defined as EPDCCH terminal specific search spaces. For each serving cell, subframes for which the UE should monitor the EPDCCH UE specific search space may be configured by higher layer signals.
  • the UE does not monitor the EPDCCH in a specific special subframe (SPECIAL SUBFRAME), and does not monitor the EPDCCH even in a subframe instructed to decode the PMCH by a higher layer.
  • SPECIAL SUBFRAME a specific special subframe
  • the EPDCCH UE-specific search space is ES (L) k , it can be defined as a set of EPDCCH candidates. Can be expressed as:
  • n CI is the value of CIF.
  • M (L) p is the number of EPDCCH candidates for aggregation level L in the EPDCCH PRB set p of the serving cell whose EPDCCH is monitored.
  • M (L) p is the number of EPDCCH candidates for aggregation level L in the EPDCCH PRB set p of the serving cell indicated by n CI .
  • the EPDCCH candidate may not be monitored.
  • Y p, k may be defined as follows.
  • the aggregation level defining the search space and the number of EPDCCH candidates may be given as follows.
  • the aggregation level and the number of EPDCCH candidates may be defined as shown in the following table.
  • Case 1 1) monitors DCI format 2 / 2A / 2B / 2C / 2D in a normal subframe and a normal downlink CP and 2) specific special cases when the number of resource blocks in the downlink band is 25 or more.
  • DCI format 2 / 2A / 2B / 2C / 2D is monitored in the subframe and the normal downlink CP, and the number of resource blocks in the downlink band is 25 or more.
  • Case 2 includes: 1) DCI formats 1A / 1B / 1D / 1 / 2A / 2 / 2B / 2C / 2D / 0/4 are monitored in normal subframes and extended downlink CPs; 2) certain special subframes and normals.
  • DCI formats 1A / 1B / 1D / 1 / 2A / 2 / 2B / 2C / 2D / 0/4 are monitored in the downlink CP, 3) DCI format 1A / 1B / in a specific special subframe and extended downlink CP 1D / 1 / 2A / 2 / 2B / 2C / 2D / 0/4 are monitored.
  • N Xp RB is the number of PRB pairs constituting the EPDCCH PRB set p.
  • the aggregation level and the number of EPDCCH candidates may be defined as shown in the following table.
  • the aggregation level and the number of EPDCCH candidates may be defined as shown in the following table.
  • the aggregation level and the number of EPDCCH candidates may be defined as shown in the following table.
  • the aggregation level and the number of EPDCCH candidates may be defined as shown in the following table. .
  • one EPDCCH UE specific search space is monitored for each aggregation level given in Tables 3 to 12 in each of the activated serving cells configured to monitor the EPDCCH.
  • EPDCCH monitoring is set and CIF is set
  • one or more EPDCCH terminal specific search spaces may be monitored for each aggregation level given in Tables 3 to 12 in each of one or more activated serving cells set by a higher layer signal.
  • the UE in which CIF associated with EPDCCH monitoring in serving cell c is configured monitors the EPDCCH in which CIF is set and CRC scrambled with C-RNTI in the EPDCCH terminal specific search space of the serving cell c.
  • the terminal in which the CIF associated with the EPDCCH monitoring in the primary cell is configured monitors the EPDCCH in which the CIF is set and the CRC scrambled with the SPS C-RNTI in the EPDCCH terminal specific search space of the primary cell.
  • the UE may monitor the PDCCH without CIF in the common search space.
  • the terminal monitors the EPDCCH without the CIF in the EPDCCH terminal specific search space. If the terminal has a CIF is set, the terminal monitors the EPDCCH with the CIF in the EPDCCH terminal specific search space.
  • the secondary cell may not monitor the EPDCCH.
  • DCI downlink control information
  • the following schemes can efficiently search a search space (referred to as a search area or search space SS) for searching / searching a control channel (or control information) when a large number of CELL (S) is set to a carrier aggregation technique. It suggests how to configure / operate.
  • a search area or search space SS search area
  • multiple CELL (S) related search space (s) can be efficiently shared (SS SHARING) on a specific CELL.
  • the present invention can alleviate the increase in the number of blind decoding (BD) of the terminal in proportion to a large number of CELL (S) is set.
  • the first cell When the first cell transmits the scheduling information of the second cell (when the scheduling information of the second cell is transmitted through the first cell), the first cell is the scheduling cell (SCHEDULING CELL), the cell is scheduled for the second cell It may be called (SCHEDULED CELL).
  • the first and second cells may be the same cell or different cells.
  • the first and second cells correspond to the aforementioned cross carrier scheduling (CCS).
  • CCS cross carrier scheduling
  • RRP setting per UCELL appears aperiodically or discontinuously according to CS (CARRIER SENSING) result, so the probability that a large number of UCELL (S) RRP (S) is set at the same time is relatively As low.
  • a large number of UCELL (S) RRP (S) is set at the same time at a certain time point, and a lot of scheduling information related to data transmission in the corresponding UCELL (S) RRP (S) is unlikely to be transmitted at the same time. That is, the probability that the scheduling information for the UCELLs is transmitted at the same time in an SS on a specific cell, such as a scheduling cell that schedules a large number of UCELLs (S), is not very high.
  • the corresponding large number of UCELL (S) SS (S) are shared on the SS of a particular CELL (ie, the SCHEDULING CELL of a large number of UCELL (S)) through application of some (or all) of the proposed schemes below. Can be. However, even if this method is applied, BLOCKING PROBABILTY (BP) may not be high.
  • the SCHEDULING CELL (relative to cross-carrier scheduling) of the UCELL (S) may be an LCELL (and / or a PCELL and / or a (preset (or signaled)) UCELL) and / or a preset (or signaled) signal.
  • REPRESENTATIVE CELL (or PRIMARY (S) CELL of CG) may be limitedly set.
  • a particular CG may consist only of a UCELL (S) with (or without) a SCHEDULING CELL or with a combination of UCELL (S) / LCELL (S) with (or without) a SCHEDULING CELL. Can be.
  • a specific CG does not include a SCHEDULING CELL
  • a plurality of CG (S) related CELLs (S) ie, SCHEDULED CELL (S)
  • S SCHEDULED CELL
  • SS may be configured.
  • the SCHEDULING CELL is set to a REPRESENTATIVE CELL of a previously set (or signaled) CG (or PRIMARY (S) CELL of a CG)
  • the SS for the remaining CELL (S) of that CG is the corresponding REPRESENTATIVE CELL.
  • a rule may be defined such that CSS (COMMON SEARCH SPACE) is defined (exceptionally) on the REPRESENTATIVE CELL (or PRIMARY (S) CELL) of the CG described above.
  • some (or all) proposed schemes of the present invention may be extended to the SS configuration on the SCHEDULING CELL of the LCELL (S) as well as the SCHEDULING CELL of the UCELL (S).
  • SCH_CELL a SCHEDULING CELL including a plurality of CELL (S) related SSs
  • S CELL
  • SCH_CELL another cell or a cell in which a search space for monitoring DCI scheduling itself is configured
  • some (or all) proposed schemes of the present invention may include PDCCH USS (terminal specific search space: UE-SPECIFIC SEARCH SPACE) / CSS (common search space: COMMON SEARCH SPACE) (and / or EPDCCH USS / CSS). Rules may be defined to apply only to configurations.
  • some (or all) proposed schemes of the present invention may have the same system bandwidth (or do not belong to the same CG) and / or transport mode (TM) (and / or CP CONFIGURATION and / or SPECIAL SUBFRAME CONFIGURATION).
  • TM transport mode
  • / or the configuration of the EPDCCH SET rules can be defined to be limited only between the SCHEDULED CELL (S) (and / or SCH_CELL) of the number of RE (S) available for EPDCCH transmission on the PRB-PAIR.
  • a representative CIF value (and / or a representative RNTI value) for each CG may be a UE GROUP-SPECIFIC value (or UE-SPECIFIC value or CG-SPECIFIC value).
  • UE GROUP-SPECIFIC value or UE-SPECIFIC value or CG-SPECIFIC value.
  • some (or all) proposed schemes of the present invention define rules (or UCELL (S) (and /) so that they apply only to CGs containing UCELL (S) (and / or LCELL (S)).
  • Or rule is defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing LCELL (S) or UCELL (S) (or LCELL (S)
  • the rule may be defined so that it applies only to CG composed only of).
  • some (or all) proposed schemes of the present invention may be UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S) CCS CCS from a preset (or signaled) SCH_CELL.
  • a rule may be defined to apply only to (and / or to an SELL UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S))).
  • the UE may inform a representative of a cell group (CG) representative (REPRESENTATIVE) CIF (CARRIER INDICATOR FIELD) value (and / or a representative RNTI value) through predefined signaling.
  • CG cell group
  • CIF CARRIER INDICATOR FIELD
  • the representative CIF value may be provided to the terminal through higher layer signaling or physical layer signaling.
  • a UE receiving a representative CIF value (and / or a representative RNTI value) for each cell group may configure / search for a specific SCHEDULED CELL SS (and / or SCH_CELL SS) on a preset (or signaled) SCH_CELL.
  • the search space SS is configured / searched using the representative CIF value (and / or representative RNTI value) of the CG to which the corresponding SCHEDULED CELL (and / or SCH_CELL) belongs.
  • the representative CIF value may be substituted for the n CI parameter described above, and the representative RNTI value may be substituted for the n RNTI parameter.
  • the SCHEDULED CELL (S) (and / or SCH_CELL) constituting a specific CG share a common SS region on a preset (or signaled) SCH_CELL.
  • the UE uses a single (common) SS region configured based on a (pre-signed (or designated)) representative CIF value and / or a representative RNTI value.
  • the BD of the (all) configuration SCHEDULED CELL (S) (and / or SCH_CELL) related scheduling information (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT)) of the CG is performed.
  • a rule may be defined to inform a representative CIF value (and / or a representative RNTI value) for each UE GROUP through predefined signaling.
  • the signaling may be defined as higher layer signaling or physical layer signaling.
  • a UE belonging to a specific UE GROUP uses a plurality of SCHEDULED CELL (S) (and / or SCH_CELL) related SSs set to the UE by using a representative CIF value (and / or a representative RNTI value) related to the specific UE GROUP.
  • S SCHEDULED CELL
  • SCH_CELL SCHEDULED CELL
  • [Proposed Method # 1] may define a rule so that it applies only to a cell group including UCELL (S) (and / or LCELL (S)) (or UCELL (S) (and / or LCELL).
  • the rule is defined or applied only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing (S)) or UCELL (S) (or LCELL (S)).
  • the rule may be defined to apply only to CG composed only of
  • the [Proposed method # 1] may be a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) CCS CCS from a preset (or signaled) SCH_CELL (and A rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS.
  • the region may be shared (or assumed to be the same) to the remaining components SCHEDULED CELL (S) (and / or SCH_CELL) of the CG.
  • the signaling may be defined as higher layer signaling or physical layer signaling.
  • the application of these rules may be defined by the UE when configuring / searching for the remaining configuration SCHEDULED CELL (S) (and / or SCH_CELL) of the corresponding cell group (CG) (specifically signaled (or designated)). It may also be interpreted as using (or assigning) a CIF value (and / or a representative RNTI value for each CG signaled in advance) of the SCHEDULED CELL (and / or SCH_CELL).
  • the SCHEDULED CELL (S) (and / or SCH_CELL) constituting a specific CG share a common SS region on a preset (or signaled) SCH_CELL.
  • the UE may determine a CIF value of a specific SCHEDULED CELL (and / or SCH_CELL) signaled (or signaled in advance) and / or (pre-signaled CG).
  • SCHEDULED CELL (S) through the single (common) SS region configured based on the representative RNTI value, the remaining SCHEDULED CELL (S) belonging to that particular SCHEDULED CELL (and / or SCH_CELL) and the CG to which it belongs (and / or SCH_CELL).
  • (And / or SCH_CELL) (or (total) constituent SCHEDULED CELL (S) (and / or SCH_CELL) of the CG containing the particular SCHEDULED CELL (and / or SCH_CELL)) related scheduling information (ie, (UL / DL) )
  • BD will be performed for DCI FORMAT (or (UL / DL) GRANT).
  • [Proposed Method # 2] defines a rule so that it applies only to CG including UCELL (S) (and / or LCELL (S)) (or UCELL (S) (and / or LCELL ( The rule is defined or applied only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing S)) or only UCELL (S) (or LCELL (S)). Rules may be defined to apply only to the configured CG.
  • the [Proposed method # 2] may be a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) CCS CCS from a preset (or signaled) SCH_CELL (and A rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS.
  • the rule may be defined such that the [Proposed Method # 3] is limited to the cell group CG including the UCELL (S) (and / or LCELL (S)).
  • the rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing UCELL (S) (and / or LCELL (S)).
  • the rule may be defined to be limited to CG composed only of UCELL (S) (or LCELL (S)).
  • [suggested method # 3] is a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S) that is cross-carrier scheduling (CCS) from a preset (or signaled) SCH_CELL
  • CCS cross-carrier scheduling
  • a rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) that is self-scheduling (SFS)).
  • the representative CIF value for each cell group is the SS configuration / search of the SCHEDULED CELL (S) (and / or SCH_CELL) included in a specific CG.
  • (UL / DL) DCI FORMAT (or (UL / DL) GRANT) used only for hours (i.e., the representative CIF value is assigned to the n CI parameter) and informs the scheduling information of the individual SCHEDULED CELL (and / or SCH_CELL).
  • a rule may be defined such that the CIF value on the same) is set to SERVCELLINDEX of each SCHEDULED CELL (and / or SCH_CELL).
  • the CIF value of a specific SCHEDULED CELL (and / or SCH_CELL) is equal to the remaining SCHEDULED CELL () of the cell group CG (to which the specific SCHEDULED CELL (and / or SCH_CELL belongs)).
  • S) (and / or SCH_CELL) is used only for SS configuration / search (e.g., the representative CIF value is assigned to the n CI parameter) and informs scheduling information of the individual SCHEDULED CELL (and / or SCH_CELL) (UL / DL
  • a rule may be defined such that the CIF value on the DCI FORMAT (or (UL / DL) GRANT) is set to SERVCELLINDEX of each SCHEDULED CELL (and / or SCH_CELL).
  • the representative CIF value for each CG configures / searches the SS of the SCHEDULED CELL (S) (and / or SCH_CELL) of a specific CG (eg, the representative CIF value is n CI).
  • the rule is defined to be used as a CIF value on the (UL / DL) DCI FORMAT (or (UL / DL) GRANT) that informs the scheduling information of an individual SCHEDULED CELL (and / or SCH_CELL) as well as when assigning a parameter.
  • the (UL / DL) DCI FORMAT (or (UL / DL) GRANT) transmitted based on the representative CIF value may identify a group of cells (or linked) linked to the representative CIF value. It may be interpreted as scheduling information commonly applied to the constituent SCHEDULED CELL (S) (and / or SCH_CELL). That is, it may be interpreted as a form of MULTI-CARRIER SCHEDULING.
  • the CIF value of a specific SCHEDULED CELL (and / or SCH_CELL) is the remaining configuration SCHEDULED of the cell group CG (to which the specific SCHEDULED CELL (and / or SCH_CELL belongs)). Not only when configuring / searching SS of CELL (S) (and / or SCH_CELL) (i.e., assigning a representative CIF value to the n CI parameter), but also telling scheduling information of an individual SCHEDULED CELL (and / or SCH_CELL) ( A rule may be defined to be used as a CIF value on a UL / DL) DCI FORMAT (or (UL / DL) GRANT).
  • the UE may pre-configure (or signal) a specific SCHEDULED CELL SS (and / or SCH_CELL SS) using C-RNTI.
  • CRC PARITY BIT S SCRAMBLING related to configuration / navigation on SCH_CELL or scheduling information (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT)) of individual SCHEDULED CELL (and / or SCH_CELL) Will be performed.
  • the representative RNTI value for each CG is the SS configuration / search (eg, representative) of the configuration SCHEDULED CELL (S) (and / or SCH_CELL) of a specific CG.
  • CRC PARITY BIT used only for RNTI values assigned to n RNTI parameters, and associated with scheduling information (ie (UL / DL) DCI FORMAT (or (UL / DL) GRANT)) of individual SCHEDULED CELLs (and / or SCH_CELLs).
  • a rule may be defined in SCRAMBLING so that C-RNTI is used.
  • the representative RNTI value of a specific SCHEDULED CELL (and / or SCH_CELL) in the [Proposed Method # 2] is the remaining configuration SCHEDULED CELL (S) of the CG (to which the specific SCHEDULED CELL (and / or SCH_CELL) belongs).
  • (And / or SCH_CELL) is used only for SS configuration / search (i.e., a representative RNTI value can be assigned to the n RNTI parameter) and used for scheduling information of an individual SCHEDULED CELL (and / or SCH_CELL) (i.e. (UL / DL) DCI FORMAT (or (UL / DL) GRANT))
  • Related CRC PARITY BIT (S) SCRAMBLING rules can be defined to use C-RNTI.
  • the representative RNTI value for each CG configures / searches the SS of the SCHEDULED CELL (S) (and / or SCH_CELL) of a specific CG (eg, the representative RNTI value is n RNTI).
  • the CRC PARITY BIT (S) SCRAMBLING associated with the scheduling information (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT)) of the individual SCHEDULED CELL (and / or SCH_CELL). Rules can be defined to be used.
  • the representative RNTI value of a specific SCHEDULED CELL (and / or SCH_CELL) is the remaining configuration SCHEDULED CELL (S) of the CG (to which the specific SCHEDULED CELL (and / or SCH_CELL) belongs).
  • S SCHEDULED CELL
  • / or SCH_CELL scheduling information of an individual SCHEDULED CELL (and / or SCH_CELL), as well as when configuring / searching for SS (and / or SCH_CELL) (e.g., a representative RNTI value is assigned to the n RNTI parameter).
  • DCI FORMAT or (UL / DL) GRANT)
  • a rule may be defined to be used for related CRC PARITY BIT (S) SCRAMBLING.
  • the terminal may be configured for each SCHEDULED CELL ( And / or configure / search for a specific SCHEDULED CELL SS (and / or SCH_CELL SS) on a preset (or signaled) SCH_CELL using SERVCELLINDEX of SCH_CELL, or scheduling information for an individual SCHEDULED CELL (and / or SCH_CELL).
  • the scheduling information for the SCH_CELL itself (UL / DL DCI FORMAT (UL / DL GRANT equivalent)) and other cells, that is, SCHEDULED CELL Scheduling information may be transmitted.
  • the size (or length) of a number of SCHEDULED CELL (S) (and / or SCH_CELL) related (UL / DL) DCI FORMATs (or (UL / DL) GRANTs) transmitted in the search space (SS) on the SCH_CELL is: Among the SCHEDULED CELL (S) (and / or SCH_CELL), the CELL with the largest system bandwidth (referred to as "MAX_BW_CELL”) or the CELL with the smallest system bandwidth among the corresponding SCHEDULED CELL (S) (and / or SCH_CELL).
  • a rule may be defined such that a cell is set equal to the (UL / DL) DCI FORMAT (or (UL / DL) GRANT) size (or length) of “MIN_BW_CELL”).
  • the system bandwidth is less than MAX_BW_CELL, and (UL / DL) DCI FORMAT ( Or zero padding until it is equal to (UL / DL) GRANT) size (or length).
  • the number of SCHEDULED CELL (S) (and / or SCH_CELL) related (UL / DL) DCI FORMAT (or (UL / DL) GRANT) sizes (or lengths) transmitted in the SS on the SCH_CELL is the corresponding SCHEDULED.
  • Rules can be defined to be set.
  • the number of SCHEDULED CELL (S) (and / or SCH_CELL) associated (UL / DL) DCI FORMAT (or (UL / DL) GRANT) sizes (or lengths) transmitted in the SS on the SCH_CELL may be used for this purpose.
  • a rule may be defined to fit in accordance with a previously signaled (or set) system bandwidth.
  • the number of SCHEDULED CELL (S) (and / or SCH_CELL) related (UL / DL) DCI FORMAT (or (UL / DL) GRANT) sizes (or lengths) transmitted in the SS on the SCH_CELL is the corresponding SCHEDULED.
  • Example 9 shows an example of determining the size of scheduling information in a search space according to Example # 3-3.
  • DCI FORMAT (or scheduling information) for each CELL (CELL # A, CELL # B, CELL # C), as shown in FIG. 18, 'DCI FORMZT SIZE FITTING' You will receive the applied DCI FORMAT (or scheduling information). That is, DCI FORMAT for CELL # B and CELL # C is zero padded to be equal to the length of DCI FORMAT of CELL # A. As a result, since DCI FORMAT has the same length for each of CELL # A, B, and C, the UE may perform blind decoding on the premise of only DCI FORMAT having one length, thereby reducing the number of blind decoding attempts.
  • S SCHEDULED CELL
  • SCH_CELL SCHEDULED CELL related (UL / DL) DCI FORMAT (or (UL / DL) GRANT) sizes (or lengths) transmitted in the search space (SS) on the SCH_CELL.
  • SS search space
  • TM transmission mode
  • the same fitting process may be performed separately (or independently) for the (predetermined (or signaled) TM COMMON DCI FORMAT and the (predetermined (or signaled) TM DEDICATED DCI FORMAT.
  • TM COMMON DCI FORMAT may be set to DCI FORMAT 0 / 1A
  • TM DEDICATED DCI FORMAT may be set to DCI FORMAT 2C / 2D / 4 (/ 1B / 1D / 1 / 2A / 2 / 2B).
  • the DCI FORMAT of the first length is set to DCI FORMAT 0 / 1A
  • the DCI FORMAT 2C / 2D / 4 (/ 1B / 1D / 1 / 2A / 2 / 2B) is set to DCI FORMAT of the second length.
  • the first and second lengths may be predetermined or signaled.
  • the same matching process may be defined to apply only to a specific CG among the CG composed only of the UCELL (S), CG composed only of the LCELL, CG containing both the UCELL and LCELL.
  • the (Example # 3-3) is a SCHEDULED CELL (S) (with a plurality of SCHEDULED CELL (S) (and / or SCH_CELL) sharing the SS on the SCH_CELL) is set to the same transmission mode (TM) ( And / or SCH_CELL), a rule may be defined to be limitedly applied. In this case, since the transmission modes are the same but the system bandwidths are different, the number of blind decoding times can be prevented from increasing.
  • Example # 3-4 Multiple SCHEDULED CELL (S) (and / or SCH_CELL) related (UL / DL) DCI FORMAT (or (UL / DL) GRANT) blind decoding performed in search space (SS) on SCH_CELL
  • Some (or all) parameters below the previously signaled (or designated) SCHEDULED CELL (or SCH_CELL or MAX_BW_CELL or MIN_BW_CELL) are taken into account in determining the number of AL (AGGREGATION LEVEL) candidates and / or determining the number of BDs per AL. Rules may be defined to help.
  • the aggregation level, the number of blind decoding for each aggregation level, and the like may be determined.
  • a parameter of a predetermined or signaled SCHEDULED CELL, SCH_CELL, MAX_BW_CELL or MIN_BW_CELL may be considered.
  • the parameters are 1) system bandwidth, 2) transmission mode, 3) CP (CYCLIC PREFIX) setting, special subframe setting, the number of resource elements (RE) that can be used for EPDCCH transmission in the PRB pair constituting the EPDCCH ( This may be referred to as N_EPDCCH.
  • CP CONFIGURATION and / or SPECIAL SUBFRAME CONFIGURATION and / or N_EPDCCH for final determination of aggregation level candidate configuration and / or blind decoding count per aggregation level may (exceptionally) parameters of SCH_CELL be considered.
  • the representative parameters selected according to some (or all) rules below may be considered.
  • a rule may be defined such that representative parameters of CP CONFIGURATION and / or SPECIAL SUBFRAME CONFIGURATION and / or N_EPDCCH for final determination of AL candidate configuration and / or BD count per AL may be considered.
  • the largest (or small) bandwidth may be set to the representative system bandwidth value.
  • the largest (or small) number of bandwidths may be set to the representative system bandwidth value.
  • TM transmission modes
  • S SCHEDULED CELL
  • SCH_CELL transmission modes
  • the TM-DEPENDENT DCI size is the longest (or shortest).
  • TM can be set as the representative TM.
  • S SCHEDULED CELL
  • SCH_CELL the largest (or the smallest) number of TMs may be set as representative TMs.
  • CP CONFIGURATION or SPECIAL SUBFRAME
  • S SPECIAL SUBFRAME CONFIGURATION
  • N_EPDCCH S
  • CONFIGURATION or N_EPDCCH may be set as the representative CP CONFIGURATION.
  • the system signal previously signaled (or set) for this purpose and / or transmission mode and / or CP CONFIGURATION and / or SPECIAL SUBFRAME CONFIGURATION and / or configuration of a specific EPDCCH SET.
  • the rule may be defined such that RE (S) number parameters available for EPDCCH transmission on PAIR are taken into account.
  • the UE when the (example # 3-3) and / or (example # 3-4) is applied, the UE is configured in advance, based on the last derived (common) AL candidate configuration and / or BD number per AL
  • the SS on the SCH_CELL (or signaled) will perform BD for multiple SCHEDULED CELL (S) (and / or SCH_CELL) related (UL / DL) DCI FORMAT (or (UL / DL) GRANT).
  • the 'DCI TYPE INDICATOR' field may be additionally (or newly) defined on the 'SINGLE UNIFIED DL GRANT DCI FORMAT', and the corresponding 'DCI TYPE INDICATOR' field may be (transfer / 'SINGLE UNIFIED DL GRANT DCI FORMAT' will inform whether it is 'DCI FORMAT 1A (/ DCI FORMAT 0) (type)' or 'TM-DEPENDENT DCI FORMAT (type)'.
  • the terminal when the terminal finally receives the 'SINGLE UNIFIED DL GRANT DCI FORMAT' (actually), the 'DCI TYPE INDICATOR' field indicates 'DCI FORMAT 1A (/ DCI FORMAT 0) (type)'.
  • CELL related 'DCI FORMAT 0 (/ DCI FORMAT 1A) SIZE' and 'TM- to make' SINGLE UNIFIED UL GRANT DCI FORMAT ' DEPENDENT DCI FORMAT (example) DCI FORMAT 4)
  • a rule can be defined to set (or re) set SIZE 'equal to the longest (or shortest) of the two.
  • the CELL (S) set to the same cell group CG may be interpreted that all or some of the following parameters are set to the same (or shared). In other words, it can also be interpreted that all (or some) of the following parameters are set in units of CG.
  • a rule may be defined such that all (or some) parameters below are set to the same cell group only with the same CELL (S).
  • [Proposed Method # 4] is a rule defined to apply only to a CG containing UCELL (S) (and / or LCELL (S)) or UCELL (S) (and / or LCELL (S).
  • the rule may be defined to apply only to the UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on the CG including the).
  • the rule may be defined to be limited to a CG composed only of a UCELL or a LCELL only.
  • [Proposed Method # 4] is a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) cross-carrier scheduling (CCS) from a preset (or signaled) SCH_CELL.
  • the rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being self-scheduled (SFS)).
  • the control channel information (and / or SS type information) to be linked (or monitored) per cell group (CG) (or per CELL) I can tell you.
  • the signaling may be defined as higher layer signaling or physical layer signaling.
  • the control channel information may be indicated as one of PDCCH (USS and / or CSS) and EPDCCH (USS), or PDCCH (USS and / or CSS), EPDCCH SET # 0 (USS), and EPDCCH SET # 1. (USS) (when two EPDCCH SET (S) is set), or one of EPDCCH SET # 0 (USS), EPDCCH SET # 1 (USS) (when two EPDCCH SET (S) is set). Can be.
  • CG # 0 when two CG (S) s (ie, CG # 0 and CG # 1) are set, scheduling information related to SCHEDULED CELL (S) (and / or SCH_CELL # X) constituting CG # 0 (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT)) is received via a PDCCH (USS and / or CSS) on a preconfigured (or signaled) SCH_CELL # X, and the SCHEDULED constituting CG # 1.
  • S SCHEDULED CELL
  • SCH_CELL # X scheduling information related to SCHEDULED CELL (S) (and / or SCH_CELL # X) constituting CG # 0 (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT))
  • PDCCH USS and / or CSS
  • Scheduling information (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT)) related to CELL (S) (and / or SCH_CELL # Y) is the EPDCCH () on the preconfigured (or signaled) SCH_CELL # Y. May be configured to receive via USS).
  • SCH_CELL # X and SCH_CELL # Y may be set to different (or identical) CELLs.
  • SCHEDULED CELL # W (and / or SCH_CELL # A) related scheduling information ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT)
  • SCH_CELL # W and / or SCH_CELL # A
  • related scheduling information ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT
  • SCHEDULED CELL # Q Received via PDCCH (USS and / or CSS) on #A, and scheduling information related to SCHEDULED CELL # Q (and / or SCH_CELL # B) (ie, (UL / DL) DCI FORMAT (or (UL / DL) GRANT) ) May be configured to receive via EPDCCH (USS) on a preset (or signaled) SCH_CELL # B.
  • SCHEDULED CELL # W and SCHEDULED CELL # Q may belong to the same (or different) CG.
  • SCH_CELL # A and SCH_CELL # B may be set to the same (or different) CELL.
  • scheduling information related to SCHEDULED CELL (S) (and / or SCH_CELL # N) constituting a CG to which a predefined (or signaled) CELL belongs is a PDCCH (USS and / or CSS) on SCH_CELL # N (or EPDCCH (USS). ) Or EPDCCH SET # 0 (USS) or EPDCCH SET # 1 (USS).
  • the predefined (or signaled) CELL may be set to PCELL.
  • [suggested method # 5] may be applied so that when a particular SCHEDULED CELL (and / or SCH_CEL) related SS is configured / searched on a predefined (or signaled) SCH_CEL, some (or all) described above ) Proposed methods (eg, [suggested method # 1], [suggested method # 2], [suggested method # 3], [suggested method # 4]) may be applied together.
  • [Proposed Method # 5] defines a rule to be applied only to a CG including UCELL (S) (and / or LCELL (S)) (or UCELL (S) (and / or LCELL ( The rule is defined or applied only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing S)) or only UCELL (S) (or LCELL (S)). Rules may be defined to apply only to the configured CG.
  • [Proposal Method # 5] is a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) CCS CCS from a pre-set (or signaled) SCH_CELL (and The rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS.
  • a rule may be defined such that a search space associated with a cell group (CG) is partially (or all) different.
  • the CG and / or SCHEDULED CELL (S) is set (or limited) to SCHEDULED CELL (S) constituting CG to which SCH_CELL # R belongs and / or CG to which SCH_CELL # R belongs, or in advance
  • SCHEDULED CELL (S) constituting CG to which SCH_CELL # R belongs
  • a defined (or signaled) rule a CG that does not belong to SCH_CELL # R and / or a SCHEDULED CELL (S) constituting a CG that does not belong to SCH_CELL # R.
  • the SCHEDULED CELL # A (and / or SCH_CELL # R) related SS (which belongs to the same (or different) CG) on the SCH_CELL # R is configured to be configured.
  • SCHEDULED CELL # B (and / or SCH_CELL # R) related SS (which belongs to the same (or different) CG) may be configured on SCH_CELL # R.
  • [suggestion method # 6] is applied, when a specific SCHEDULED CELL (and / or SCH_CEL # R) related SS is configured / searched on a predefined (or signaled) SCH_CEL # R, as described above.
  • Some (or all) proposed methods eg, [suggested method # 1], [suggested method # 2], [suggested method # 3], [suggested method # 4], [suggested method # 5]
  • [Proposed Method # 6] defines a rule so that it applies only to CG including UCELL (S) (and / or LCELL (S)) (or UCELL (S) (and / or LCELL ( The rule is defined or applied only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing S)) or only UCELL (S) (or LCELL (S)). The rule may be defined to be applied only to the configured CG.
  • [Proposal Method # 6] may be a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) CCS CCS from a preset (or signaled) SCH_CELL (and The rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS.
  • the number of symbols constituting the control channel or the number of PRB-PAIRs may be increased through a predefined rule (or signaling).
  • the control channel may be interpreted as PDCCH or EPDCCH (or EPDCCH SET # 0, EPDCH SET # 1).
  • the CFI informs the number of OFDM symbols constituting the PDCCH and is transmitted through the PCFICH.
  • the CFI has a value of 1,2,3, and when the number of resource blocks constituting the system band is greater than 10, the CFI values sequentially represent 1,2 3 OFDM symbols. When the number of resource blocks constituting the system band is 10 or less, the CFI values sequentially indicate 2, 3, and 4 OFDM symbols.
  • [Proposed Method # 7] defines a rule so that it applies only to a CG containing UCELL (S) (and / or LCELL (S)) (or UCELL (S) (and / or LCELL (S)).
  • the rule is defined or applies only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing)) or consists only of UCELL (S) (or LCELL (S)).
  • Rules may be defined to apply only to CG.
  • [suggested method # 7] is a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) CCS CCS from a pre-set (or signaled) SCH_CELL (and / Alternatively, a rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS.
  • an additional value may be linked for each CFI value (or CFI STATE) transmitted through the PCFICH through predefined signaling to the ADVANCED UE (A-UE).
  • the existing CFI values 1, 2, 3 (, 4) in turn indicate 1, 2, 4 (, 5) OFDM symbols or 2, 3, 4 (, 5) OFDM symbols Can be linked to indicate
  • the A-UE may assume that the number of OFDM symbols corresponding to the CFI value is the number of symbols constituting the PDCCH.
  • the following table shows examples of mappings between CFI values and CFI codewords.
  • Example # 7-1 Table 14 is referred to as Example # 7-1 below.
  • Example # 7-2 Table 15 is referred to as Example # 7-2 below.
  • L-UE means an existing terminal
  • A-UE means an improved terminal.
  • Tables 14 and 15 even the same CFI codeword can be interpreted as a different CFI value for each of the L-UE and A-UE.
  • the A-UE in the case of PDCCH, the A-UE is informed of the RESERVED STATE (eg, the fourth CIF codeword in the above table) through the PCFICH, and the A-UE is configured to define the RESERVED STATE in advance (or signaling). Can be interpreted as a CFI value (eg, 4).
  • the interpretation of the remaining STATE (S) e.g., 1, 2, 3) except for the corresponding RESERVED STATE (e.g., 4) may be assumed to be the same as before.
  • the following table shows an example of this proposed technique.
  • Example # 7-3 Table 16 is referred to as Example # 7-3 below.
  • the A-UE is informed of an offset value (ie, named "OFFSET") through predefined signaling, and interpretation of the CFI value (eg, 'L') transmitted through the PCFICH.
  • the corresponding OFFSET may be added to assume the final CFI value (eg, 'L + OFFSET').
  • the following table shows an example of this proposed technique.
  • the corresponding OFFSET value shows an example set to '1' (via predefined signaling).
  • Example # 7-4 Table 17 is referred to as Example # 7-4 below.
  • control (/ scheduling) information multiplexing of the existing terminal (L-UE) and the advanced terminal (A-UE) on the corresponding subframe (MULTIPLEXING) ) can be defined to be configured independently (ie, "LA_REGION”) and an area (ie, "A_REGION”) that can only transmit control (/ scheduling) information of the A-UE.
  • LA_REGION may be configured as a (PDCCH) region based on the existing CFI value
  • A_REGION is a (PDCCH) region based on the existing CFI value in the (PDCCH) region based on the additional (or extended) CFI value Subtraction (PDCCH) region.
  • (DCI transmission related) (E) CCE / (E) REG indexing (and / or mapping) may be independently performed for each LA_REGION / A_REGION.
  • (Example # 7-2) described above is set / applied, if the CFI value indicates '1', the L-UE interprets (or considers) the CFI value as (the same) as '1'. And the A-UE interprets (or considers) the CFI value as '2' (pre-signaled).
  • the region composed of the first (OFDM) symbol and the region composed of the second (OFDM) symbol are interpreted (or considered) as LA_REGION and A_REGION, respectively.
  • (DCI transport related) E) CCE / (E) REG indexing (and / or mapping) will be performed independently.
  • Example # 7-2 described above when Example # 7-2 described above is set / applied, if the CFI value indicates '3', the L-UE interprets (or considers) that CFI value as (same) '3'. The A-UE then interprets (or considers) the CFI value as '4' (pre-signaled).
  • an area composed of first / second / third (OFDM) symbols and an area composed of fourth (OFDM) symbols are interpreted as LA_REGION and A_REGION, respectively (or Individual domains (e.g., DCI transport related) and (E) CCE / (E) REG indexing (and / or mapping) will be performed independently.
  • the first / two The area consisting of the first and third (OFDM) symbols and the area consisting of the fourth (OFDM) symbol are interpreted (or considered) as LA_REGION and A_REGION, respectively, and the individual areas are (ECI-related) (E) CCE / (E REG indexing (and / or mapping) may be performed independently.
  • the first / two The region consisting of the first / third / fourth (OFDM) symbols is (all) interpreted (or considered) as A_REGION (or LA_REGION), and (E) CCE / (E) REG indexing on that region (for DCI transmission). (And / or mapping) will be performed.
  • a rule is defined such that (L-UE / A-UE) PCFICH and / or PHICH related resource configuration / mapping is performed on LA_REGION (or PHICH related resource configuration / mapping is determined by a PHICH DURATION value signaled through PBCH).
  • Rules can be defined to be performed based on
  • the PHICH-related resource configuration / mapping of the L-UE is performed on LA_REGION
  • the PHICH-related resource configuration / mapping of the A-UE is defined to be performed on A_REGION (ie, PCFICH-related resource configuration / mapping May be performed on LA_REGION).
  • rules may be defined such that the PDCCH CSS is (exceptionally) configured on LA_REGION.
  • the CFI is transmitted to the L-UE in consideration of the difference between the CFI values assumed for the L-UE and the A-UE on the corresponding subframe (the existing CFI).
  • the (PDCCH) area based on the additional (or extended) CFI value based (PDCCH) minus the (PDCCH) area based on the existing CFI value is defined.
  • Rules may be defined to be PUNCTURING.
  • a rule may be defined to assume that only A-UE related scheduling information transmission and / or PDSCH transmission are performed on a corresponding subframe.
  • a rule may be defined to inform the L-UE of the corresponding subframe information through predefined signaling. If such a rule applies, for example, because there is no transmission of L-UE-related control (/ scheduling) information, A-UE-related (for DCI transmission) (E) CCE / (E) REG indexing (and / or mapping) And / or PCFICH and / or PHICH related resource configuration / mapping may be configured to be performed on an additionally configured (or extended) CFI value based (PDCCH) region.
  • some (or all) proposed rules described above may be defined such that SIB and / or RAR and / or PBCH and / or PAGING are not applied on a subframe in which they are received.
  • the following table shows an example of setting the number of blind decoding (BD) counts per aggregation level (AL) when one EPDCCH SET is configured with 12 PRB-PAIR (S).
  • the table shows the number of EPDCCH candidates monitored by the UE for each of Cases 1 and 2 for one distributed EPDCCH-PRB set.
  • the table shows the number of EPDCCH candidates monitored by the UE for Case 3 for one distributed EPDCCH-PRB set.
  • the table shows the number of EPDCCH candidates monitored by the UE for each of Cases 1 and 2 for one local EPDCCH-PRB set.
  • the table shows the number of EPDCCH candidates monitored by the UE for Case 3 for one local EPDCCH-PRB set.
  • the SCHEDULED CELL () having the same representative CIF value (and / or representative RNTI value) S) (and / or SCH_CEL) may be set not only to share the SS on the predefined (or signaled) SCH_CEL, but also to share the AL candidate configuration and / or the BD count per AL.
  • the SCHEDULED CELL (S) (and / or SCH_CEL) having the same representative CIF value (and / or representative RNTI value) may be interpreted as one virtual CELL.
  • the SCHEDULED CELL (S) (and / or SCH_CEL) having the same representative CIF value (and / or representative RNTI value) only share the SS, and as an independent CELL (S) Can be interpreted.
  • the rule transmits a relatively small number of (eg, 1) scheduling information ((UL / DL) DCI FORMAT (or (UL / DL) GRANT)) for each SCHEDULED CELL (from the perspective of a specific UE). This may be useful if
  • this rule may be limitedly applied when K SCHEDULED CELL (S) consists only of UCELL (S) (or LCELL (S) or a combination of UCELL (S) and LCELL (S)).
  • a rule may be defined such that [suggestion method # 8] is limited to only CELL (S) belonging to the same (and / or different) CG.
  • [Proposed Method # 8] defines a rule so that it applies only to a CG including UCELL (S) (and / or LCELL (S)) (or UCELL (S) (and / or LCELL ( The rule is defined or applied only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG containing S)) or only UCELL (S) (or LCELL (S)). The rule may be defined to be applied only to the configured CG.
  • [Proposed Method # 8] may be a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) that is CCS from a pre-configured (or signaled) SCH_CELL (and / or).
  • the rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS.
  • the corresponding SCHEDULED CELL (S) and / or SCH_CEL # T may belong to the same (or different) CG.
  • SCHEDULED UCELL # X, SCHEDULED UCELL # Y, SCHEDULING LCELL # T belong to CG # N
  • SS related to SCHEDULED UCELL # X, SCHEDULED UCELL # Y, SCHEDULING LCELL # T are SCHEDULING LCELL.
  • the SCHEDULED CELL (S) (and / or SCH_CEL) with the same representative CIF value (and / or representative RNTI value) share only the SS on the predefined (or signaled) SCH_CEL.
  • the AL candidate composition and / or the number of BDs per AL are considered to be independent (or not shared) (ie, [Suggested Method # 8]).
  • some (or all) proposed schemes are applied to SCHEDULED UCELL # X, SCHEDULED UCELL # Y, SCHEDULING LCELL # T (ie, CG #).
  • a SCHEDULED CELL (S) (and / or SCH_CEL) with the same representative CIF value (and / or representative RNTI value) will share the SS on the predefined (or signaled) SCH_CEL.
  • the AL candidate configuration and / or the BD count for each AL are also shared (ie, [Suggested Method # 8]).
  • [Proposed Method # 9] is a rule defined to apply only to a CG including UCELL (S) (and / or LCELL (S)), or UCELL (S) (and / or LCELL ( The rule may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) on CG including S)). Alternatively, the rule may be defined to be limited to CG composed only of UCELL (S) (or LCELL (S)).
  • the [proposal method # 9] may be a UCELL (S) (or LCELL (S) or UCELL (S) / LCELL () that is cross-carrier scheduled (CCS) from a preset (or signaled) SCH_CELL. S)) and / or rules may be defined to apply only to UCELL (S) (or LCELL (S) or UCELL (S) / LCELL (S)) being SFS).
  • the existing PDSCH starting position i.e., "PDSCH_SP”
  • EPDCCH starting position i.e., "EPDCCH_SP”
  • the starting OFDM symbol (located in the first slot of the subframe) of the PDSCH of each activated serving cell may be given by an index of l DataStart .
  • the UE set to transmission mode 1-9 is configured to monitor the EPDCCH in the subframe or the PDSCH is allocated by the EPDCCH received in the same serving cell, or the PDSCH is not allocated by the PDCCH / EPDCCH for a given active serving cell. If no higher layer parameter epdcch-StartSymbol-r11 is set, l DataStart is given by the epdcch-StartSymbol-r11.
  • l DataStart is given by pdsch-Start-r10, which is a higher layer parameter for the serving cell in which the PDSCH is received.
  • DataStart is given by the CFI value. If the number of resource blocks in the (downlink) system band is greater than 10, l DataStart is given a CIF value. If the number of resource blocks in the (downlink) system band is 10 or less, l DataStart is given a CFI value + 1.
  • the starting position of the EPDCCH may be given as follows.
  • the UE is configured to receive PDSCH data transmission according to transmission modes 1-9 by an upper layer signal, and if the upper layer signal epdcch-StartSymbol-r11 is configured, the start OFDM symbol of the EPDCCH is index l EPDCCHStart. Is given by Otherwise, l EPDCCHStart The starting OFDM symbol of the EPDCCH given by is determined by the CFI value.
  • EPDCCH_SP and PDSCH_SP need to be redefined in consideration of the relatively increased PDCCH region.
  • the existing EPDCCH_SP and / or PDSCH_SP may be designated as one of values from 1 (first symbol) to 4 (fourth symbol) through higher layer signaling.
  • the PDCCH region is increased (or specified) from the first symbol to the fifth symbol, since the maximum value of the existing EPDCCH_SP and / or PDSCH_SP is 4 (fourth symbol), the corresponding PDCCH region and EPDCCH are increased.
  • the problem of overlapping regions and / or PDSCH_SP regions may occur.
  • This problem can be solved through the application of the following proposed methods.
  • the following proposed methods are for the case of EPDCCH_SP related EPDCCH-STARTSYMBOL-R11 and / or for PDSCH (CELL # X) scheduled (SELF SCHEDULING (SFS)) from EPDCCH (CELL # X) on the same SERVING CELL # X.
  • a PDSCH (CELL # X) that is scheduled (CROSS CARRIER SCHEDULING (CCS)) from an EPDCCH / PDCCH (CELL # Y) on a different SERVING CELL # Y and / or (PDSCH-START-R11) is set and corresponding PDSCH
  • a TM 10 PDSCH and / or a predefined TM eg, TM 1-9, TM 10
  • PDCCH CRC SCRAMBLING is performed based on a predefined RNTI (S) (eg, P-RNTI / RA-RNTI / SI-RNTI / TEMPORARY C-RNTI, C-RNTI)
  • DCI FORMAT eg, DCI FORMAT 1C, DCI FORAMT 1A
  • Last symbol position value of the increased PDCCH region ie, "INC_PDC_LS when subframe set to monitor EPDCCH in a specific serving cell #N is EPDCCH MONITORING SF # K," in SF # K) Is greater than the EPDCCH_SP value (relative to SERVING CELL # N) (or the predefined (or signaled) threshold (eg, 4)) set via predefined signaling (or rule),
  • the rule may be defined such that the EPDCCH_SP value is assumed (or replaced) as an INC_PDC_LS value.
  • the EPDCCH_SP value may be assumed to be 5.
  • the PDSCH_SP value (or SERVING CELL # N) (or predefined) (in the case of SF # K of a particular SERVING CELL # N) is set via predefined signaling (or rules). Or greater than the signaled threshold (eg, 4)), a rule may be defined such that the corresponding PDSCH_SP value is assumed (or replaced) as an INC_PDC_LS value.
  • the PDSCH_SP value may be set through PDSCH-START-R11 or PDSCH-START-R10.
  • the INC_PDC_LS value and the PDSCH_SP value (related to the SERVING CELL # N) are set to 5 and 3 in SF # K of the SERVING CELL # N, the PDSCH_SP value may be assumed to be 5, respectively.
  • EPDCCH_SP value (or related to SERVING CELL # N) in which INC_PDC_LS value (at the point of EPDCCH MONITORING SF # K of specific SERVING CELL # N) is set through predefined signaling (or rule) Is greater than the defined (or signaled) threshold (eg, 4) and / or the INC_PDC_LS value (at SF # K of a particular SERVING CELL # N) is set via a predefined signaling (or rule).
  • predefined signaling or rule
  • the (or signaled) offset previously set in the corresponding EPDCCH_SP value and / or PDSCH_SP value
  • ST_OFFSET a value (ie, named "ST_OFFSET"
  • the final EPDCCH_SP value relative to SERVING CELL # N) (ie, '(EPDCCH_SP + ST_OFFSET)') and / or the final PDSCH_SP value (ie, '(PDSCH_SP + ST_OFFSET) Rules can be defined to calculate ').
  • the final value of INC_PDC_LS and EPDCCH_SP (related to SERVING CELL # N) in EPDCCH MONITORING SF # K of SERVING CELL # N were set to 5 and 3, respectively.
  • the EPDCCH_SP value is calculated as 5 through the operation of '(3 + 2)'.
  • a rule may be defined such that the corresponding ST_OFFSET value is (implicitly) an INC_PDC_LS value.
  • the point (INC_PDC_LS + 1) may be regarded as a virtual (VIRTUAL) first symbol of (SERVING CELL # N) SF # K, and the dictionary is based on the virtual first symbol.
  • EPDCCH_SP value (relative to SERVING CELL # N) set through signaling (or rule) defined in the and / or PDSCH_SP value (relative to SERVING CELL # N) set through predefined signaling (or rule) are applied.
  • the final EPDCCH_SP location and / or the final PDSCH_SP location are determined.
  • the EPDCCH_SP value (or previously defined) in which the INC_PDC_LS value (at the time of EPDCCH MONITORING SF # K of a specific SERVING CELL # N) is set through a predefined signaling (or rule) (or related to SERVING CELL # N) Is greater than the specified (or signaled) threshold (eg, 4) and / or the INC_PDC_LS value (at SF # K of a particular SERVING CELL # N) is set via a predefined signaling (or rule) ( If the PDSCH_SP value (or SERVING CELL # N) is greater than the predefined (or signaled) threshold (eg, 4), then the final EPDCCH_SP location and / or according to a predefined value (or signaled) The rule may be defined such that the final PDSCH_SP location is determined.
  • a UE reports to a network in a situation in which a CA can support aggregation of a plurality of cells or an increasing amount of (DL and / or UL) data demand, in which a large number of CELL (S) is set to a CA scheme.
  • UE capability information will be described.
  • Conventional CA supports aggregation of up to five cells, but future CA may support aggregation of more than five cells (eg, up to 32).
  • supporting the aggregation of more than five cells does not mean that CA always actually aggregates more than five cells. That is, the terminal may also support aggregation of five or less cells.
  • the present invention can be applied regardless of the set number of cells.
  • the terminal capability information includes not only CA CAPABILITY INFORMATION (e.g., information on the maximum number of CC carriers supported by the UE and / or CC combinations), but also (1) BD (BLIND DECODING) CAPABILITY INFORMATION, (2 ) BUFFERING CAPABILITY INFORMATION, and (3) RRM CAPABILITY INFORMATION.
  • the terminal may report the terminal capability information (independently) through a predefined signal.
  • the BD CAPABILITY INFORMATION is a number of (maximum) (USS) PDCCH (or EPDCCH) candidates (CANDIDATE) that can be blind decoded (BD) in one subframe (SF), and each CC (maximum) BD in one SF.
  • USS maximum PDCCH
  • EPDCCH EPDCCH
  • BD blind decoded
  • SF subframe
  • CC maximum CC
  • the minimum number of BDs (“MINIMUM BD NUMBER (/ CAPABILITY) PER UE CATEGORY”) that should be supported for each UE CATEGORY is defined (or irrespective of) the carrier aggregation capability (CA CAPABILITY) of (UE). Or signaling).
  • the minimum number of BDs (“MINIMUM BD NUMBER (/ CAPABILITY) PER UE CATEGORY") that should be supported per UE CATEGORY is interpreted as "UNIT BD (NUMBER)" (predefined (or signaled)).
  • CA CAPABILITY carrier aggregation capability
  • the final (total) BD times that a UE of a particular CA CAPABILITY and UE CATEGORY can support may be determined (/ defined).
  • the minimum number of BDs (and / or capabilities) that a UE must support is a supportable PEAK DATA RATE (/ SOFT CHANNEL BIT (S) reported by the UE (as base station) or according to the UE CATEGORY).
  • PEAK DATA RATE / SOFT CHANNEL BIT (S) reported by the UE (as base station) or according to the UE CATEGORY).
  • S SOFT CHANNEL BIT
  • CA CAPABILITY CA CAPABILITY
  • the RRM CAPABILITY INFORMATION may be defined as the number of CCs that can simultaneously support RRM MEASUREMENT / REPORT.
  • a rule may be defined to report the (some or all) INFORMATION (S) in PER BAND (or PER BAND PER BANDCOMBINATION) units.
  • a rule is defined to report (or signal) the (some or all) CAPABILITY INFORMATION (S), respectively, or report a (pre-set (or signaled)) CAPABILITY INFORMATION combination ( Rules may be defined.
  • FIG. 10 illustrates a method for reporting terminal capability information of a terminal according to an embodiment of the present invention.
  • the terminal reports the terminal capability information to the base station (S510).
  • the terminal capability information indicates the capability of the terminal to the base station and may include a BD CAPABILITY INFORMATION indicating a downlink control channel decoding capability per subframe (USS).
  • the UE informs the BS of the (maximum) number of times of blind decoding of a downlink control channel such as PDCCH / EPDCCH in the USS of the subframe.
  • the BD CAPABILITY INFORMATION may include a value of any one of a predetermined number of candidate values (eg, 32). That is, the terminal reports the capability to decode the (USS) downlink control channel per subframe to the network (CAPABILITY).
  • the UE may report the (maximum) number of times that the PDCCH or EPDCCH can be blind decoded in the UE specific search space (USS) of the subframe to the network.
  • the base station determines the number of control channel (EPDCCH or / and PDCCH) candidates for each aggregation level AL of the USS for each cell based on the terminal capability information (S520).
  • Information indicating the number of control channel (EPDCCH or / and PDCCH) candidates for each aggregation level AL of each USS may be referred to as control channel candidate number information.
  • the base station transmits control channel candidate number information to the terminal (S530).
  • the control channel candidate number information may inform the number of control channel (EPDCCH or / and PDCCH) candidates for each aggregation level AL of the USS for each cell.
  • the control channel candidate number information may be provided through a higher layer signal such as an RRC message. Control channel candidate number information will be described in more detail with reference to FIG. 16.
  • the base station does not receive the above-described terminal capability information from the terminal, it may be assumed that the terminal has the ability to aggregate / schedule any CC.
  • Example #A In case of a terminal type having a smaller BD CAPABILITY than a CA CAPABILITY, in order to support a large number of (DL) CELL (S) with limited BD CAPABILITY, A reduction in the total number of BDs can be considered. For example, it is possible to reduce the number of predefined (or signaled) CELL-related (E) PDCCH CANDIDATE or to perform scheduling for multiple CELL (S) and / or SF (S) with one DCI. have.
  • E CELL-related
  • Example #B When LOWER PEAK RATE (eg total number of SOFT CHANNEL BIT (S)) is considered compared to CA CAPABILITY, PDSCH to support a large number of (DL) CELL (S) with limited soft buffer size Receive-related additional (DL) soft buffer operations (HANDLING) may be considered. For example, a soft buffer sharing operation may be performed between preset (or signaled) CELL (S).
  • a particular CELL is configured (or signaled) to CROSS-CARRIER SCHEDULING (CCS) multiple CELL (S) (from one UE perspective) or PCELL / SCHEDULING CELL is the same between multiple UE (S)
  • INTRA-UE (E) PDCCH BLOCKING PROBABILTY and / or with a simple CONCATENATION of SEARCH SPACEs for multiple CELL (S) or for multiple UE (S)
  • SS sharing operations between multiple CELL (S) or multiple UE (S) may be considered.
  • CELL (S) or LCELL (S) or UCELL (S) or (UL) LCELL (S) when MASSIVE CA MODE is set in which more than 5 cells (carriers) are aggregated. If / UCELL (S)) is set above a predefined (or signaled) number, CONFIGURED CELL (S) (or CONFIGURED LCELL (S) or CONFIGURED UCELL (S) or CONFIGURED LCELL (S) / UCELL (S).
  • the ACTIVATED CELL (S) (or ACTIVATED LCELL (S) or ACTIVATED UCELL (S) or ACTIVATED LCELL (S) / UCELL (S))
  • the CROSS CARRIER SCHEDULING (CCS) scheme is set.
  • the present invention may be set to be limited in some of various situations.
  • the base station provides an information element (IE) called 'ServCellIndex' to the terminal.
  • IE information element
  • 'ServCellIndex' is a short identity used to identify a serving cell, such as a primary cell and a secondary cell, and may have an integer value of any one of 0-7. At this time, a value of 0 is applied to the primary cell and the remaining values are applied to the secondary cell.
  • 'SCellIndex' is a short ID used to identify the secondary cell and may have a value of 1-7.
  • CIF Conventional carrier indication field
  • ServCellIndex value or SCellIndex value for a particular serving cell. For example, if the ServCellIndex value of the first serving cell is 2, the CIF value indicating the first serving cell also becomes 2. Since up to 5 CCs are aggregated in the existing CA and the CIF field is composed of 3 bits, 5 CCs are aggregated in the CA and the same CIF value and ServCellIndex value (or SCellIndex value) may be used. However, in a future MASSIVE CA in which more than eight CCs can be aggregated, there is a problem in that each conventional CC cannot be properly indicated.
  • a SERVING CELL INDEX (ServCellIndex) is named “CIDX”, and a SERVING CELL INDEX (SCellIndex) is called “SCIDX”.
  • CIF SIZE is kept (or fixed) at the same value as before, CIF may be used based on the following (some or all) rules.
  • the existing CIF size means 3 BIT (S).
  • the application of [Proposed Method # 12] is interpreted that the maximum number of SCHEDULED CELL (S) cross-carrier scheduling (CCS) from one SCHEDULING CELL is limited (or limited) to 5 or 8 (or TH_N). Can be.
  • the SS configuration / location related to a specific (SCHEDULED) CELL is determined based on the CIDX (or SCIDX) of the (SCHEDULED) CELL (ie, The rule is defined so that CIDX (or SCIDX is assigned to the n CI parameter) or is determined based on the (re) mapped CIF value of the corresponding (SCHEDULED) CELL (ie, the (re) mapped of the particular (SCHEDULED) CELL)
  • the rule may be defined such that a CIF value is assigned to the n CI parameter.
  • a specific (SCHEDULED) CELL related (on MAC CONTROL ELEMENT) PHR (POWER HEADROOM REPORT) mapping order / location (and / or HARQ-ACK (on PUCCH or PUSCH)) Rules are defined based on the (SCHEDULED) CELL's (re) mapped CIF values (or / or CSI) mapping order / location) to be determined based on the (SCHEDULED) CELL's CIDX (or SCIDX) Rules may be defined).
  • this method is applied when the CONF_N set by the CA scheme is larger than the maximum number of SCHEDULED CELL (S) that 3 BIT-CIF can point to (or the maximum number of SCHEDULED CELL (S) that can be supported by CCS). Can be.
  • the SCHEDULED CELL (S) CCS from a specific SCHEDULING CELL can be efficiently indicated without changing the size of the existing CIF.
  • a CIF value related to a specific (SCHEDULED) CELL and a CIDX (or SCIDX) value of a corresponding (SCHEDULED) CELL may be different from each other.
  • (Rule 12-B) is a CIDX (or higher than the maximum number of SCHEDULED CELL (S) that 3 BIT-CIF can point to (or the maximum number of SCHEDULED CELL (S) previously supported by CCS).
  • a rule may be defined to apply (limitedly) to (SCHEDULED) CELL (S) with a value of SCIDX).
  • CIDX-TO-CIF mapping may be defined only for CIF indicating cells having a value of 8 or more as CIDX (or SCIDX).
  • the application of this rule may be interpreted as different in CIF SIZE and CDIX (or SCDIX) (or in which CDIX (or SCDIX) is larger than CIF SIZE).
  • CIF SIZE is 3 BITS and CDIX (or SCDIX) is 5 BITS.
  • Example # 12-B-1 Through a predefined signal, it may be set to which CIF value the SCHEDULED CELL (S) that is cross-carrier scheduled (CCS) from a specific SCHEDULING CELL is mapped or remapped.
  • the signal may be defined as a higher layer signal such as a physical layer signal or an RRC message.
  • CELL (S) ie, CELL of CIDX 0 (ie, PCELL), SCELL of SCIDX 1, SCELL of SCIDX 2, SCELL of SCIDX 3, SCELL of SCIDX 4, SCELL of SCIDX 5, SCIDX 6 SCELL, SCIDX 7 SCELL, SCIDX 8 SCELL, SCIDX 9 SCELL, SCIDX 10 SCELL, SCIDX 11 SCELL, SCIDX 12 SCELL, SCIDX 13 SCELL, SCIDX 14, SCIDX 15)
  • CELL (S) ie, SCHEDULED CELL (S)
  • CCS from CELL (ie, SCHEDULING CELL) of CIDX 0 is SCELL of SCIDX 1, SCELL of SCIDX 3, SCELL of SCIDX 10, SCELL of SCIDX 12
  • CELL of SCIDX 1 SCELL of SCIDX 3
  • SCELL of SCIDX 10 via CIF 1, CIF 3, and CIF 2
  • Example # 12-B-2 Through a predefined rule, it is possible to set to which CIF value the SCHEDULED CELL (S) CCS from a specific SCHEDULING CELL is (re) mapped.
  • the SCHEDULED CELL (S) CCS from one SCHEDULING CELL has a rule such that the CIF values are mapped (ascending) (re) in ascending (or descending) order of CDIX (or SCDIX (or CG INDEX)). Can be defined.
  • the CIF value of a SCHEDULING CELL is set (or (re) mapped) to a predefined (or signaled) value (eg, 0), and CDIX (S) only for SCHEDULED CELL (S) CCS from that SCHEDULING CELL.
  • the CIF values can be set (sequentially) (re) mapped in ascending (or descending) order of SCDIX (or CG INDEX).
  • the CIF values (re) mapped to the SCHEDULED CELL (S) refer to the remaining CIF values except for the SCHEDULING CELL related CIF value (e.g., 0).
  • the CIF value of a SCHEDULING CELL is set (or (re) mapped) to a predefined (or signaled) value (eg, 0) and only for the SCHEDULED CELL (S) CCS from that SCHEDULING CELL.
  • CIF values can be set to (re) map to 'CDIX (or SCDIX (or CG INDEX)) MODULO 8' or 'CDIX (or SCDIX (or CG INDEX)) MODULO 5'.
  • N MODULO M is the remainder of N divided by M.
  • a SCHEDULED CELL (S) CCS from a particular SCHEDULING CELL # X and a corresponding SCHEDULING CELL # X is (all) CIF values in ascending (or descending) order of CDIX (or SCDIX (or CG INDEX)). (Sequential) can be (re) mapped. Or CIF values can be (re) mapped to 'CDIX (or SCDIX (or CG INDEX)) MODULO 8' or 'CDIX (or SCDIX (or CG INDEX)) MODULO 5'.
  • the application of this rule may be interpreted as that the CIF value associated with SCHEDULING CELL and / or SCHEDULED CELL (S) and the (real) CIDX (or SCIDX) value associated with the SCHEDULING CELL and / or SCHEDULED CELL (S) may differ. .
  • mapping information relating to the SCHEDULING CELL and / or SCHEDULED CELL (S) is sent to (UE).
  • Rules can be defined to be delivered.
  • the information may be set to be included and transmitted together on the (existing) RRC SIGNALING informing CCS related information.
  • CIF may be used based on the following (some or all) rules.
  • the existing CIF size means 3 BIT (S).
  • the SS configuration / location related to a specific (SCHEDULED) CELL is determined based on the CIDX (or SCIDX) of the (SCHEDULED) CELL (ie, The rule is defined so that CIDX (or SCIDX) is assigned to the n CI parameter (or determined based on the (re) mapped CIF value of the corresponding (SCHEDULED) CELL (ie, the (re) mapped of the particular (SCHEDULED) CELL)
  • the rule may be defined so that the CIF value is assigned to the n CI parameter.
  • the specific (SCHEDULED) CELL-related PHR mapping order / location (on MAC CONTROL ELEMENT) and / or HARQ-ACK (on PUCCH or PUSCH) (and / or CSI) Rules may be defined to be determined based on the (SCHEDULED) CELL's CIDX (or SCIDX), or the rules may be defined based on the (SCHEDULED) CELL's (re) mapped CIF values. Can be.
  • CONF_M CELLs
  • TH_M predefined (or signaled) threshold
  • CIF SIZE is Can be assumed / set to the same value (eg, 3 BIT (S)).
  • TH_N may be set to 5 or 8.
  • a specific (SCHEDULED) CELL related CIF value may be assumed / set to be the same as the corresponding (SCHEDULED) CELL related CIDX (or SCIDX) value.
  • the application of this rule may be interpreted that the CIF SIZE and the CDIX (or SCDIX) SIZE are the same.
  • CIF SIZE may be set to 3 BITS and CDIX (or SCDIX) may be set to 3 BITS.
  • CIF SIZE can be assumed / set to 5 BIT (S).
  • SCHEDULED specific (SCHEDULED) CELL related CIF value
  • SCIDX SCIDX
  • the application of this rule may be interpreted that the CIF SIZE and the CDIX (or SCDIX) SIZE are the same.
  • CIF SIZE may be set to 5 BITS and CDIX (or SCDIX) may be set to 5 BITS.
  • the CIF size may be assumed / set as MAX ⁇ CEILING (log2 (number of SCHEDULED CELLs per SCHEDULING CELL)), 3 ⁇ for each SCHEDULING CELL.
  • MAX ⁇ X, Y ⁇ function derives a value that is relatively greater than or equal to X and Y
  • CEILING (Z) function derives a minimum integer value that is greater than or equal to Z.
  • Example # 13-B-2 If (Example # 13-B-2) is applied, the CIDX (or SCIDX) value associated with a particular (SCHEDULED) CELL and its corresponding based on (Example # 12-B-1) and / or (Example # 12-B-2).
  • SCHEDULED (Re) Mapping can be set / performed between CELL related CIF values.
  • MAX ⁇ CEILING log2 (number of SCHEDULED CELL (S) per SCHEDULING CELL # X)
  • 3 ⁇ BIT-CIF can point to in terms of specific SCHEDULING CELL # X.
  • SCHEDULED When more SCHEDULED CELL (S) is set to CCS than the number of CELL (S), it is possible to efficiently indicate the SCHEDULED CELL (S) CCS from the corresponding SCHEDULING CELL # X.
  • the application of this rule can be interpreted as a difference between CIF SIZE and CDIX (or SCDIX) SIZE (or CDIX (or SCDIX) being larger than CIF SIZE).
  • CIF SIZE may be set to 3 BITS and CDIX (or SCDIX) may be set to 5 BITS.
  • Example # 13-B-3 CIF SIZE may be assumed / set as CEILING (log2 (number of SCHEDULED CELL (S))) for each SCHEDULING CELL.
  • FIG. 13-B-3 When (Example # 13-B-3) is applied, different CIF sizes may be applied / assumed to (other) SCHEDULED CELLs (S) CCS CCed from SCHEDULING CELL (S) having different SCHEDULED CELL (S) numbers.
  • Example # 13-B-3 the specific (SCHEDULED) CELL-specific CIDX (or SCIDX) values and the corresponding (Example # 12-B-1) and / or (Example # 12-B-2) are applicable.
  • (SCHEDULED) (Re) Mapping can be set / performed between CELL related CIF values.
  • CEILING log2 (number of SCHEDULED CELL (S))
  • SCHEDULED CELL (S) in terms of a particular SCHEDULING CELL # X is more than the maximum number of SCHEDULED CELL (S) that BIT-CIF can point to.
  • the application of this rule may be interpreted as different CIF SIZE and CDIX (or SCDIX) SIZE (or CDIX (or SCDIX) is larger than CIF SIZE).
  • CIF SIZE may be set to 3 BITS and CDIX (or SCDIX) may be set to 5 BITS.
  • CIF SIZE can be assumed / set to MAX ⁇ CEILING (log2 (CONFIGURED CELL NUMBER)), 3 ⁇ or CEILING (log2 (CONFIGURED CELL NUMBER)).
  • CIF SIZE is kept (or fixed) at the same value as before, the CIF may be used based on the following (some or all) rules.
  • Existing CIF SIZE means 3 BIT (S).
  • Application of [Proposed Method # 17] may be interpreted as limiting (or limiting) 5 or 8 to the maximum number of SCHEDULED CELL (S) CCS from one SCHEDULING CELL.
  • the SS configuration / location for a particular (SCHEDULED) CELL is determined based on the CIDX (or SCIDX) of that (SCHEDULED) CELL (ie, the CIDX (or Rule may be defined such that SCIDX) is assigned to the n CI parameter.
  • the CIDX or Rule may be defined such that SCIDX
  • a rule may be defined such that the (re) mapped CIF value of a specific (SCHEDULED) CELL is assigned to the n CI parameter based on the (re) mapped CIF value of the corresponding (SCHEDULED) CELL.
  • the specific (SCHEDULED) CELL-related PHR mapping order / location (on MAC CONTROL ELEMENT) and / or HARQ-ACK (and / or CSI) mapping order (on PUCCH or PUSCH) Location may be determined based on the CIDX (or SCIDX) of the (SCHEDULED) CELL or based on the (re) mapped CIF value of the (SCHEDULED) CELL.
  • [Suggested Method # 17] may be used when MASSIVE CA MODE is set and / or CELL (S) (or LCELL (S) or UCELL (S) or (UL) LCELL (S) / UCELL (S)).
  • CONFIGURED CELL (S) (or CONFIGURED LCELL (S) or CONFIGURED UCELL (S) or CONFIGURED LCELL (S) / UCELL (S))
  • Pre-defined by the number of defined (or signaled) and / or ACTIVATED CELL (S) (or ACTIVATED LCELL (S) or ACTIVATED UCELL (S) or ACTIVATED LCELL (S) / UCELL (S))
  • the rule may be defined to be limited only when it is set above the number of (or signaled) and / or when the number of SCHEDULED CELL (S) set in one SCHEDULING CELL is above a predefined (or signaled) threshold. have.
  • MASSIVE CA MODE is not set and / or CELL (S) (or LCELL (S) or UCELL (S) or LCELL (S) / UCELL (S)) is less than the predefined (or signaled) number If set (or CONFIGURED CELL (S) (or CONFIGURED LCELL (S) or CONFIGURED UCELL (S) or CONFIGURED LCELL (S) / UCELL (S)) is set below a predefined (or signaled) number) And / or the ACTIVATED CELL (S) (or ACTIVATED LCELL (S) or ACTIVATED UCELL (S) or ACTIVATED LCELL (S) / UCELL (S)) is set below a predefined (or signaled) number and / Alternatively, when the number of SCHEDULED CELL (S) set in one SCHEDULING CELL is less than a predefined (or signaled) threshold, the existing
  • the application of this rule can be interpreted as a difference between the CIF SIZE and the CDIX (or SCDIX) SIZE (or the CDIX (or SCDIX) SIZE is larger than the CIF SIZE).
  • the CIF SIZE may be set to 3 BITS and the CDIX (or SCDIX) SIZE may be set to 5 BITS.
  • the CONF_N set by the CA technique is larger than the maximum number of (SCHEDULED) CELL (S) that can be indicated by 3 BIT-CIF (or the maximum number of SCHEDULED CELL (S) that can be supported by CCS).
  • the SCHEDULED CELL (S) CCS from a particular SCHEDULING CELL can be efficiently instructed.
  • a specific (SCHEDULED) CELL related CIF value and a corresponding (SCHEDULED) CELL related (real) CIDX (or SCIDX) value may be different.
  • Rule 17-A specifies that the CIDX (or SCIDX) value is higher than the maximum number of SCHEDULED CELL (S) that 3 BIT-CIF can point to (or the maximum number of SCHEDULED CELL (S) previously supported by CCS). (SCHEDULED) may only be applied (limitedly) to CELL (S).
  • Example # 17-A-1 Through a predefined signal, it may be set to which CIF value the SCHEDULED CELL (S), which is cross-carrier scheduled (CCS) from a specific SCHEDULING CELL, is (re) mapped.
  • the signal may be a physical layer signal or a higher layer signal (eg, RRC signaling).
  • the CIF values (re) mapped to the SCHEDULED CELL (S) may be set (or limited) to the remaining CIF values except for the (fixed) CIF value (e.g., 0) related to the SCHEDULING CELL.
  • 11 illustrates a method of operating a terminal according to rule # 17-A or example # 17-A-1 described above.
  • the base station transmits an upper layer signal indicating a mapping between ServingCellID (or SCellID) and CIF to the terminal (S610).
  • the mapping will be described in detail with reference to FIG. 12.
  • the higher layer signal may be an RRC message.
  • the upper layer signal indicating the mapping between ServingCellID (or SCellID) and CIF targets only the SCHEDULED CELL (S), and the CIF value of the SCHEDULING CELL is a predefined (or fixed or signaled) value.
  • the upper layer signal does not provide mapping of ServingCellID and CIF for cell #A, which is a scheduling cell, and is always mapped (mapped) to a predetermined or fixed CIF value (for example, 0) for cell #A. will be.
  • the upper layer signal may also inform mapping between ServingCellID and CIF value for the cell #A, but may always map a fixed value (for example, 0) for the cell #A.
  • the higher layer signal may be provided through cell #A or may be provided through a cell other than cell #A.
  • the base station transmits the DCI including the CIF (S620).
  • the terminal identifies the cell indicated by the CIF based on the mapping (S630).
  • an example of identifying a cell indicated by the CIF included in the DCI is described based on an upper layer signal indicating a mapping between the ServingCellID and the CIF, but may be applied to other cases.
  • the terminal receives downlink control information (DCI) including a carrier index field (CIF) and receives or transmits data based on the DCI in a serving cell indicated by the CIF.
  • DCI downlink control information
  • the serving cell indicated by the CIF is based on a higher layer signal indicating a mapping between a serving cell index (ServingCellID) of the serving cell and a value of the carrier index field (in the case of SCHEDULED CELL (S)).
  • S SCHEDULED CELL
  • / or in the case of a SCHEDULING CELL identified based on a (mapping) relationship between a serving cell index (ServingCellID) of a predefined (or fixed or signaled) serving cell and the value (eg, 0) of a carrier index field.
  • the CIF may consist of 3 bits and have one of values from 0 to 7, and the serving cell index may have one of values from 0 to 31.
  • the value of the CIF indicating the serving cell may be set to a value not equal to the serving cell index (ServingCellID) of the serving cell.
  • the mapping between the serving cell index (ServingCellID) of the serving cell and the value of the carrier index field is (between SCHEDULED CELL (S)) between the serving cell index (ServingCellID) of the serving cell and the value of the carrier index field.
  • the upper layer signal indicating the mapping (and / or the serving cell index (ServingCellID) of the predefined (or fixed or signaled) serving cell (in the case of a scheduling cell) and the value of the carrier index field (eg , 0).
  • a CELL ie, PCELL
  • servingCellID serving cell index of 0
  • SCELLs of serving cell indexes 1-9 are aggregated / configured in the terminal.
  • the SCELLs having the serving cell indexes 1,3,4,5,6,8,9 as well as the PCELL (ie serving cell index 0) (ie self scheduling) are cross-carrier scheduled.
  • the base station transmits an upper layer signal indicating a mapping between the serving cell ID (ServingCellID) and the CIF of the cell (SCHEDULED CELL) scheduled through the higher layer signal.
  • CIF values 1,2,3,4,5,6,7 may be mapped or remapped to serving cell indexes 1,3,4,5,6,8,9 (eg, SCHEDULED CELL (S)). It may inform the terminal.
  • a PCELL ie serving cell index 0
  • a SCHEDULING CELL a predefined (or fixed or signaled) CIF value 0 is mapped.
  • a CDIX TO CIF mapping is not provided for a PCELL that is a SCHEDULING CELL and either a fixed / predetermined value (e.g. 0) is used, or even if a CDIX TO CIF mapping is provided, it is mapped to a constant CIF value (e.g. 0). Can be.
  • the DCI when the UE receives a DCI having a CIF value of 6 from the PCELL, the DCI may be known as scheduling information for a cell having a serving cell index of 8. Accordingly, cross-carrier scheduling can be performed in a CA in which more than eight cells are aggregated without changing the size of the 3-bit CIF.
  • CELL (S) ie, CELL of CIDX 0 (ie, PCELL), SCELL of SCIDX 1, SCELL of SCIDX 2, SCELL of SCIDX 3, SCELL of SCIDX 4, SCELL of SCIDX 5, SCIDX 6 SCELL, SCIDX 7 SCELL, SCIDX 8 SCELL, SCIDX 9 SCELL, SCIDX 10 SCELL, SCIDX 11 SCELL, SCIDX 12 SCELL, SCIDX 13 SCELL, SCIDX 14, SCIDX 15)
  • CELL (S) ie, SCHEDULED CELL (S)
  • CCS from CELL (ie, SCHEDULING CELL) of CIDX 0 is SCELL of SCIDX 1, SCELL of SCIDX 3, SCELL of SCIDX 10, SCELL of SCIDX 12
  • the SCELL of SCIDX 1 SCELL of SCIDX 3, SCELL of SCIDX 10, and SCELL of SCIDX 12 (via CIF 1, CIF 3, and CIF 2
  • Example # 17-A-2 Through a predefined rule, it is possible to set to which CIF value the SCHEDULED CELL (S) CCS from a specific SCHEDULING CELL is (re) mapped.
  • a SCHEDULED CELL (S) CCS from one SCHEDULING CELL is an ascending (or descending) sequence of CDIX (or SCDIX (or CG INDEX)) CIF values (sequentially) (re) mapping (or ( A rule may be defined such that CIF values are (re) mapped) according to Example # 17-A-1).
  • the CIF value of the SCHEDULING CELL is set (or (re) mapped) to a predefined (or signaled) value (eg, 0) and only for the SCHEDULED CELL (S) CCS from that SCHEDULING CELL.
  • Ascending (or descending) CDIX (or SCDIX (or CG INDEX)) CIF values are mapped (sequentially) by (re) mapping (or (re) mapping according to (Example # 17-A-1) It can be set to).
  • the CIF values (re) mapped to the SCHEDULED CELL (S) may mean CIF values other than the SCHEDULING CELL related CIF value (e.g., 0).
  • the CIF value of the SCHEDULING CELL is set (or (re) mapped) to a predefined (or signaled) value (eg, 0), and the SCHEDULED CELL (S) is CCSed from the SCHEDULING CELL.
  • Only CIF values can be set to (re) mapped to 'CDIX (or SCDIX (or CG INDEX)) MODULO 8' or 'CDIX (or SCDIX (or CG INDEX)) MODULO 5'.
  • a SCHEDULED CELL (S) CCS from a particular SCHEDULING CELL # X and a corresponding SCHEDULING CELL # X is (all) CIF values in ascending (or descending) order of CDIX (or SCDIX (or CG INDEX)).
  • (Sequential) (re) mapping (or 'CDIX (or SCDIX (or CG INDEX)) MODULO 8' or 'CDIX (or SCDIX (or CG INDEX)) MODULO 5' Rule may be defined such that CIF values are (re) mapped according to # 17-A-1).
  • the application of this rule may be interpreted as that the CIF value associated with SCHEDULING CELL and / or SCHEDULED CELL (S) and the (real) CIDX (or SCIDX) value associated with the SCHEDULING CELL and / or SCHEDULED CELL (S) may differ. .
  • Mapping information may be delivered to the terminal.
  • the information may be included and transmitted together on the (existing) RRC SIGNALING that informs CCS related information.
  • CIF SIZE can be either "MAX ⁇ CEILING (the number of CELLs that make up PUCCH_CG (or CELL_PUCCH (or not included))), 3 ⁇ ” or “CEILING (or (or include (CELL_PUCCH that makes up PUCCH_CG) Not))) CELL number)) ".
  • the CIF SIZE is the same as before if the number of CELLs (with or without CELL_PUCCH) constituting PUCCH_CG is less than or equal to a predefined (or signaled) threshold (eg, 5 or 8).
  • a predefined (or signaled) threshold eg, 5 or 8.
  • Value eg, 3 BIT (S)
  • MAX ⁇ CEILING log2 (number of CELLs constituting PUCCH_CG)
  • CELL (with or without CELL_PUCCH) constituting PUCCH_CG If the number is greater than a predefined (or signaled) threshold (eg, 5 or 8), it may be determined as 5 BIT (S) or "CEILING (log2 (number of CELLs constituting PUCCH_CG))".
  • the (Re) mapping (CDIX (SCIDX) -TO described above) between a specific (SCHEDULED) CELL-related CIDX (or SCIDX) value and a corresponding (SCHEDULED) CELL-related CIF value.
  • the CIF MAPPING rule By further applying the CIF MAPPING rule, the SS configuration / location associated with a particular (SCHEDULED) CELL and / or the PHR mapping order / location (on MAC CONTROL ELEMENT) and / or HARQ-ACK (and / or on PUCCH or PUSCH) CSI) Mapping order / location can be managed and controlled efficiently.
  • [Suggested Method # 18] shows that MASSIVE CA MODE is set and / or SCELL (LCELL (or UCELL)) is set to CELL_PUCCH and / or CELL_PUCCH (or PUCCH_CG) is defined in advance (or Signaled) and / or CELL (S) (or LCELL (S) or UCELL (S) or (UL) LCELL (S) / UCELL (S)) defined in advance (Or CONFIGURED CELL (S) (or CONFIGURED LCELL (S) or CONFIGURED UCELL (S) or CONFIGURED LCELL (S) / UCELL (S))) is predefined (or signaled) More than the number of signaled) and / or ACTIVATED CELL (S) (or ACTIVATED LCELL (S) or ACTIVATED UCELL (S) or ACTIVATED LCELL (S) / UCELL (S))
  • MASSIVE CA MODE is not set and / or SCELL (LCELL (or UCELL)) is not set to CELL_PUCCH and / or CELL_PUCCH (or PUCCH_CG) is predefined (or signaled) If less than the number and / or CELL (S) (or LCELL (S) or UCELL (S) or (UL) LCELL (S) / UCELL (S)) (which make up PUCCH_CG) is predefined (or If less than the number (signaled) (or CONFIGURED CELL (S) (or CONFIGURED LCELL (S) or CONFIGURED UCELL (S) or CONFIGURED LCELL (S) / UCELL (S)) is predefined (or signaled) Less than the number) and / or ACTIVATED CELL (S) (or ACTIVATED LCELL (S) or ACTIVATED UCELL (S) or ACTIVATE
  • a wireless communication system supporting aggregation of a plurality of cells (carriers), downlink control information (DCI), search space (SS) for monitoring / detecting DCI, aggregation level (AL) and blind decoding in SS
  • DCI downlink control information
  • SS search space
  • a method of setting BD
  • the existing CA only supports aggregation of up to 5 cells
  • the future CA may support aggregation of up to 32 cells.
  • the present invention may be applied to a terminal supporting such a future CA.
  • a terminal supporting future CA may naturally support aggregation of five or less cells, and in this case, the present invention may be applied.
  • a preset (or signaling) A plurality of CELL (S) related scheduling information may be transmitted through one DCI (or control channel) (hereinafter, referred to as “MUCC-DCI”). That is, MUCC-DCI means one DCI including scheduling information related to a plurality of cells.
  • CELL (S) scheduled simultaneously through MUCC-DCI is set to (or limited to) the same CELL TYPE and / or TM and / or system bandwidth and / or communication type and / or CELL (S) of CG.
  • CELL TYPE means UCELL and LCELL
  • communication type means FDD and TDD.
  • SICC-DCI a DCI (or control channel) through which one CELL related scheduling information is transmitted (as in the past)
  • FIG. 13 illustrates SICC-DCI and MUCC-DCI.
  • cells #N and K represent two cells among a plurality of cells configured in the same terminal.
  • the SICC-DCI transmitted in cell #N is a DCI including scheduling information about one cell, for example, cell #N.
  • MUCC-DCI transmitted in cell #N is a DCI including scheduling information for a plurality of cells, for example, cells #N and K.
  • SICC-DCI and MUCC-DCI are both transmitted in the PDCCH region has been described, but this is not a limitation, and both are transmitted in the EPDCCH region or only MUCC-DCI (or SICC-DCI) is transmitted in the EPDCCH (or PDCCH) region. May be
  • downlink scheduling is illustrated in FIG. 12, the same is true of uplink scheduling.
  • the SICC-DCI SIZE (S) related to a plurality of (preset (or signaled)) CELL (S) targets of the MUCC-DCI is set equal to the corresponding MUCC-DCI SIZE ( Rules can be defined. That is, if cells targeted for MUCC-DCI are cells # 1, 2, and 3, the SICC-DCI for cell # 1, the SICC-DCI for cell # 2, and the SICC-DCI for cell # 3 are the MUCC. The length is set equal to -DCI.
  • the specific CELL-related SICC-DCI SIZE that is the target of the MUCC-DCI is smaller than the MUCC-DCI SIZE, zero padding may be applied (on the SICC-DCI) until it is equal to the MUCC-DCI SIZE.
  • BD blind decode
  • a plurality of CELL (S) related SICC-DCI SIZE (S) (preset (or signaled)) subject to MUCC-DCI may be used as the SICC-DCI SIZE ( S) can be adjusted to the longest or shortest one.
  • a plurality of CELL (S) -related SICC-DCI SIZE (S) s (preset (or signaled)) which are the targets of MUCC-DCI may be configured with a predetermined CELL-specific SICC-DCI SIZE or A rule may be defined to be set (or match) with a preset (or signaled) DCI SIZE.
  • the blind decoding (BD) of a plurality of CELL (S) related SICC-DCI (S) s (preset (or signaled)) that are the targets of MUCC-DCI on one subframe are required. It is possible to prevent the increase in the number of BDs.
  • [Proposal Method # 15] A plurality of CELL (S) related SICC-DCI (S) s (preset (or signaled)) which are the targets of MUCC-DCI are described in the above-described proposed methods (eg, [Proposal Method # 1]). ] [[Suggested method # 14]) may be transmitted on one common search space (or shared search space, hereinafter referred to as "SHARED SS").
  • SHARED SS shared search space
  • the SHARED SS is a CELL having a lowest (or higher) CIDX (or SCIDX) among a plurality of (preset (or signaled)) CELLs (S) that are subject to MUCC-DCI, or a previously set (or signaled) signal.
  • a specific CELL or PUCCH transmission may be set on the set CELL.
  • the SHARED SS may be configured based on a preset (or signaled) CIF value (and / or an RNTI value), not a CIDX (or SCIDX or CIF value) of the CELL in which the SHARED SS is set (as described in [Proposed Method # 1).
  • a CIF may be newly defined in a specific CELL-related SICC-DCI that is a target of the MUCC-DCI transmitted from the SHARED SS, and the CIF value may be CIDX (or SCIDX) of the specific CELL (or the above). (Re) mapped CIF value according to [suggestion method # 12] / [suggestion method # 13]).
  • the corresponding MUCC-DCI (along with ) Can be sent.
  • the corresponding MUCC-DCI is blind decoded based on a (newly) set or signaled (new) signal previously set or signaled, unlike the SICC-DCI blindly decoded based on the C-RNTI, or the C- It can be blind decoded based on RNTI.
  • the MUCC-DCI is defined in advance, not a SHARED SS to which a plurality of CELL (S) related SICC-DCI (S) s (preset (or signaled)) targeted by the MUCC-DCI are transmitted.
  • the MUCC-DCI may be an SS on a CELL having the lowest (or higher) CIDX (or SCIDX) among a plurality of (preset (or signaled)) CELL (S) targeted by the MUCC-DCI. Or, it may be transmitted in the SS on a predetermined CELL (or signaled) or SS on a CELL configured PUCCH transmission.
  • the MUCC-DCI may be transmitted in an SS on another predefined (or signaled) CELL rather than a plurality of (pre-set (or signaled)) CELL (S) targeted by the MUCC-DCI. It may be.
  • the corresponding CELL to which the MUCC-DCI is transmitted may be designated (or interpreted) as a CELL (hereinafter, referred to as "CELL # MX") dedicated to MUCC-DCI transmission.
  • the MUCC-DCI (S) transmitted from CELL # MX is a (CELL # MX) SS (S) configured based on the cell group (CG) INDEX (S) that is the target of the MUCC-DCI (S). May be transmitted over a network).
  • the proposed method # 16 considers that the MUCC-DCI (PAYLOAD) SIZE may be relatively larger than the SICC-DCI (PAYLOAD) SIZE.
  • PAYLOAD SICC-DCI
  • the proposed method # 16 it is possible to configure (adaptive) AL candidate considering the MUCC-DCI (PAYLOAD) SIZE and / or set the number of BDs per AL, and finally increase the reliability of MUCC-DCI transmission. .
  • the SICC-DCI, MUCC-DCI blind decoding related aggregation level (AL) candidate may be ( ⁇ AL 1, AL 2, AL 4, AL 8 ⁇ , ⁇ AL 4, AL 8 ⁇ ) or ( ⁇ AL 1, AL 2, AL 4, AL 8 ⁇ , ⁇ AL 2, AL 4, AL 8, AL 16 ⁇ ).
  • the former ⁇ represents the AL candidate of SICC-DCI and the latter ⁇ represents the AL candidate of MUCC-DCI. This may be interpreted that blind decoding is performed based on AL candidates whose MUCC-DCI is relatively higher than that of SICC-DCI.
  • the SICC-DCI and MUCC-DCI blind decoding related aggregation level (AL) candidates may be ( ⁇ AL 1, AL 2, AL 4, AL 8 ⁇ , ⁇ AL 1, AL 2 ⁇ ). This may be interpreted that blind decoding is performed based on AL candidates whose MUCC-DCI is relatively lower than that of SICC-DCI.
  • a relatively high number of (some or all) BDs of a predefined (or signaled) relatively low AL (S) may be used. Reallocated by the number of BDs in (S).
  • the BD number for each ALCC 1, 2, 4, 8 ⁇ related to SICC-DCI is defined as 'BD ⁇ 6, 6, 2, 2 ⁇ '
  • the BD number is reassigned.
  • the number of BDs per 'AL ⁇ 1, 2, 4, 8 ⁇ ' for MUCC-DCI is' BD ⁇ 4, 4, 4, 4 ⁇ '(i.e., the two BDs for the existing AL' 1 'are AL' 4
  • the number of BDs for the existing AL '2' is reallocated to AL '8'.
  • the MINIMUM AL value (related to MUCC-DCI detection) and / or the number of (E) REGs constituting one (E) CCE are (re) defined.
  • the MINIMUM AL value is '1'.
  • an AL set having a BD number of 'BD ⁇ 6, 6, 2, 2 ⁇ ' may be changed to 'AL ⁇ 2, 4, 8, 16 ⁇ '.
  • the number of BDs may be maintained.
  • an AL set having a BD number of 'BD ⁇ 3, 3, 1, 1 ⁇ ' may be changed to 'AL ⁇ 2, 4, 8, 16 ⁇ '. That is, when the amount of resources on the (E) PDCCH region is not sufficient to support a plurality of relatively high AL (S), it may be set to reduce the (total) BD times (half).
  • the number of (E) REGs constituting one (E) CCE may be changed from '4' to '8'.
  • [Proposal Method # 20] A plurality of preset CELL (S) s (or signaled) according to the (some or all) proposal methods (e.g., [Proposal Method # 12] to [Proposal Method # 16])
  • relevant DCI FORMAT 1A based scheduling information is transmitted via (one) MUCC-DCI (named “MUCC-DCI 1A”)
  • the respective CELL related DCI FORMAT 0 SIZE ie SICC-DCI
  • SICC-DCI the respective CELL related DCI FORMAT 0 SIZE
  • SICC-DCI May be set relatively small (via predefined rules or signaling) compared to each CELL related DCI FORMAT 1A SIZE (ie, SICC-DCI).
  • DCI FORMAT of (relatively) small size was set to ZERO-PADDING (relatively) of DCI FORMAT of (relatively) during DCI FORMAT 0 and DCI FORMAT 1A.
  • the reduction of DCI FORMAT 0 SIZE is defined by the predefined (or signaled) field (s) (e.g., the field 'FLAG FOR FORMAT0 / FORMAT1A DIFFERENTIATION', which is a field that distinguishes DCI FORMAT0 / 1A). May be omitted.
  • the UE simultaneously receives (/ detects) a specific CELL (S) related DCI FORMAT 1A (ie, SICC-DCI) and MUCC-DCI 1A to which MUCC-DCI 1A is configured (at a specific subframe time point).
  • S CELL
  • MUCC-DCI 1A ie, MUCC-DCI 1A to which MUCC-DCI 1A is configured (at a specific subframe time point).
  • 'MUCC-DCI' is a single DCI (or control channel) for DL GRANT (S) related to a plurality of CELL (S) s (not UL GRANT (S)) that are preset (or signaled). It can be used in a limited way for transmitting through. This has a BD reduction effect.
  • the MUCC-DCI transmits only a plurality of preset (or signaled) CELL (S) related UL GRANT (S) (not DL GRANT (S)) through one DCI (or control channel). It can be used in a limited way. This also has a BD reduction effect.
  • Increasing the 'CRC SIZE' may be considered as one way to reduce the 'FALSE DETECTION probability' associated with DCI FORMAT.
  • the 'CRC SIZE EXTENSION' operation can be applied only to DL GRANT (S) (not UL GRANT (S)).
  • the 'CRC SIZE EXTENSION' operation may be limitedly applied only to UL GRANT (S) (not DL GRANT (S)).
  • proposal method # 14 illustrates an operation method of a terminal when the above-described proposal method # 14, proposal method # 15, proposal method # 16, proposal method # 20, proposal method # 21, proposal method # 23, and proposal method # 24 are applied. .
  • the base station provides MUCC-DCI configuration information to the terminal (S100).
  • the MUCC-DCI configuration information may set at least one of the following.
  • the MUCC-DCI configuration information may inform a serving cell where the shared search space is located among a plurality of serving cells.
  • the base station transmits the MUCC-DCI to the terminal (S110).
  • the base station may transmit the MUCC-DCI in consideration of the cell, the search space, the aggregation level candidate configuration, the number of blind decodings, etc. configured for the terminal through the MUCC-DCI information.
  • one MUCC-DCI may include a plurality of control information for scheduling one serving cell.
  • the terminal detects / monitors the MUCC-DCI in the shared search space (SHARED SS) determined according to the MUCC-DCI configuration information (S120).
  • SHARED SS shared search space
  • S120 MUCC-DCI configuration information
  • the MUCC-DCI and SICC-DCI which is downlink control information for scheduling one serving cell, may be configured to have the same bit size. Also, for example, if MUCC-DCI is used only for the downlink grant, monitoring for uplink grant detection may be unnecessary.
  • the MUCC-DCI may be monitored in consideration of this.
  • the UE may blind decode only MUCC-DCI, which may include scheduling information related to a plurality of serving cells, in the shared search space, or may blind decode both MUCC-DCI and SICC-DCI.
  • a candidates when blind decoding MUCC-DCI and aggregation level candidates when blind decoding SICC-DCI, which is downlink control information for scheduling one serving cell may be configured differently.
  • the number of blind decoding at each aggregation level when blind decoding MUCC-DCI and the number of blind decoding at each aggregation level when blind decoding SICC-DCI may be set differently.
  • the predetermined number of blind decoding times for the MUCC-DCI may be reset / reassigned. Specific embodiments thereof have been described above (eg, proposed method # 16).
  • blind decoding may be performed on the assumption that a cyclic redundancy check (CRC) longer than SICC-DCI, which is downlink control information scheduling one serving cell, may be added to the MUCC-DCI.
  • CRC cyclic redundancy check
  • eIMTA refers to a case in which TDD UL-DL CONFIGURATIONs of the cells are different from each other when cells operating in TDD are aggregated.
  • EIMTA relative to the corresponding eIMTA CELLS (S)
  • eIMTA MODE compared to the existing in an environment in which more than 5 existing CELL (S) are set by CA technique.
  • the eIMTA DCI (relative to the corresponding eIMTA CELLS (S)) is a SS (SEARCH SPACE) on a predefined (or signaled) CELL (eg, a PCELL CSS (COMMON SEARCH SPACE) or a DL CELL (CELL_PUCCH) linked to a CELL_PUCCH. Can be transmitted via SS).
  • the following [suggested method # 19] is a case where the MASSIVE CA MODE in which more than 5 cells are aggregated is set and / or (eIMTA) CELL (S) (or (eIMTA) LCELL (S) or (eIMTA) UCELL (S) or (eIMTA) LCELL (S) / UCELL (S) is set to more than a predefined (or signaled) number (or CONFIGURED (eIMTA) CELL (S) (or CONFIGURED (eIMTA) LCELL ( S) or CONFIGURED (eIMTA) UCELL (S) or CONFIGURED (eIMTA) LCELL (S) / UCELL (S)) is set above a predefined (or signaled) number) and / or ACTIVATED (eIMTA) CELL (S) (or ACTIVATED (eIMTA) LCELL (S) or ACTIVATED (eIMTA) UC
  • eIMTA CELL (S) (or (eIMTA) LCELL (S) or (eIMTA) UCELL (S) or (eIMTA) LCELL (S) / UCELL (S)) is set below a predefined (or signaled) number (or CONFIGURED (eIMTA) CELL (S) (or CONFIGURED (eIMTA) LCELL (S) or CONFIGURED (eIMTA) UCELL (S) or CONFIGURED) (eIMTA) LCELL (S) / UCELL (S) is set below a predefined (or signaled) number) and / or ACTIVATED (eIMTA) CELL (S) (or ACTIVATED (eIMTA) LCELL (S) Or, if ACTIVATED (eIMTA) UCELL (S) or ACTIVATED (eIMTA) LCELL (S) /
  • Rules are defined such that the subframe location information for receiving the relevant eIMTA DCI is different (some or all) for each eIMTA CELL (GROUP) (hereinafter referred to as "OPTION # A”) and / or (eIMTA DCI reception).
  • a rule may be defined such that (eIMTA-) RNTI (hereinafter referred to as "OPTION # B") information used for / decoding is different (some or all).
  • / or the rule is defined such that the field location information on the eIMTA DCI (of eIMTA CELL (GROUP)) where the UPDATED UL-DL CONFIGURATION is received is (some or all) different and / or the RECONFIGURATION PERIODICITY information is (some or all) different.
  • the rules may be defined such that the rules are defined and / or the CELL and / or SS types (e.g. all or all) the eIMTA DCI receives are different.
  • eIMTA DCI reception subframe location information different from eIMTA CELL (GROUP) and (eIMTA-) RNTI information (used for eIMTA DCI reception / decoding) are set or (eIMTA) Set the eIMTA DCI receive subframe location information common to CELL (GROUP) and (eIMTA-) RNTI information (used for eIMTA DCI receive / decode) by eIMTA CELL (GROUP), or common (eIMTA CELL (GROUP between)) eIMTA RNTI information (used for eIMTA DCI reception / decoding) and eIMTA DCI reception subframe location information may be set for each eIMTA CELL (GROUP).
  • the network may determine (1) how many UL-DL CONFIGURATION INDICATORs (eg, 3 bits) can be transmitted (at the same time) via (one) eIMTA DCI (under current system bandwidth) and / Or (2) factors such as how crowded the SS (eg, DL CELL (C) SS associated with PCELL CSS or CELL_PUCCH) on a predefined (or signaled) specific CELL on which the eIMTA DCI is transmitted is considered
  • a predefined signal eg, an upper layer signal or a physical layer signal
  • Subframe The number of DL SF (SUBFRANE) cells may differ. Accordingly, in consideration of this, the number of specific CELL-related BDs for each subframe may be set independently (or differently or partially). When this method is applied, the number of BDs related to the UL SF CELL (S) may be (re) assigned to the DL SF CELL (S) at a specific time point.
  • the number of (USS) BDs may be set independently (or differently or partially) for each DCI FORMAT.
  • the number of (USS) BDs may be independently set for each of DCI FORMAT 2D (/ 4) which is a TM-DEPENDENT DCI FORMAT and DCI FORMAT 1A (/ 0) which is a FALLBACK DCI FORMAT.
  • the number of (USS) BDs for a specific DCI FORMAT (eg, DCI FORMAT 1A / 0) associated with a particular CELL (eg, SCELL) is set to 0 to allow the particular cell (eg, (USS) monitoring (or BD) may not be performed for a specific DCI FORMAT (eg, DCI FORMAT 1A / 0).
  • the adverse effects of DL DCI (FORMAT) FALSE DETECTION on the system are relatively greater than in the case of UL DCI (FORMAT) FALSE DETECTION.
  • the BD times for the DL DCI FORMAT and the UL DCI FORMAT may be set independently (or differently).
  • the base station may inform, by cell, the number of (E) PDCCH CANDIDATE of a specific AL in which a BD is actually performed in the form of 'FULL BITMAP'.
  • the base station may inform the 'number of (E) PDCCH CANDIDATE of a specific aggregation level AL' where the BD is actually performed with the 16-bit BITMAP.
  • the UE may select the first / third (E) PDCCH CANDIDATE (S) out of six (E) PDCCH CANDIDATE (S) for the aggregation level (AL) 1, Second / fourth (E) PDCCH CANDIDATE (S) of six (E) PDCCH CANDIDATE (S) for AL 2, first (E) PDCCH CANDIDATE of two (E) PDCCH CANDIDATE (S) for AL 4
  • BD can be actually performed for the second (E) PDCCH CANDIDATE out of two (E) PDCCH CANDIDATE (S) for AL 8.
  • the blind decoding (BD) in units of 'PER CELL' may inform 'the number of (E) PDCCH CANDIDATEs of a specific aggregation level (AL)' (related information).
  • the proposed method may be limitedly used to inform the number of (E) PDCCH CANDIDATE (related information) related to a specific aggregation level (AL) on (E) PDCCH USS in units of 'PER CELL'.
  • the blind decoding count (BD) for aggregation level (AL) 1 is 6, BD 6 for AL 2, BD 2 for AL 4, BD 2 for AL 8
  • the base station may inform the (number of (E) PDCCH CANDIDATE of a particular AL) (related information) through a 10-bit bitmap.
  • the first 3 bits are BD times for AL 1
  • the next 3 bits are BD times for AL 2
  • the next 2 bits are BD times for AL 4
  • the remaining 2 bits are AL.
  • the number of BDs for 8 may be indicated.
  • the base station may inform the number of (USS) PDCCH candidates or the number of (USS) EPDCCH candidates per aggregation level (AL) of each cell through an upper layer signal such as an RRC signal.
  • an upper layer signal such as an RRC signal.
  • the number of (USS) PDCCH candidates or the number of (USS) EPDCCH candidates for each aggregation level (AL) of each cell may be explicitly indicated, but the number of existing (USS) PDCCH candidates for each aggregation level (AL) of each cell or (USS) how much to reduce the number of EPDCCH candidates (by aggregation level (AL) of each cell) decrease rate value (e.g., 'ROUND (reduction rate value * number of existing (USS) (E) PDCCH candidates)') It may be implemented by informing the final application (E) PDCCH number of candidates (by aggregation level (AL)) through the calculation.
  • rate value e.g., 'ROUND (reduction rate value * number of existing (USS) (E) PDCCH candidates
  • the number of blind decoding times BD to be performed for each aggregation level AL for each cell in the USS of cell # 1 may be determined.
  • a number of times of decoding (USS) blind, N K is determined for a specific cell #X related AL #K.
  • the N K may be regarded as representing the number of existing (USS) PDCCH candidates or the number of (USS) EPDCCH candidates.
  • the base station may provide the terminal with information indicating how much to reduce the N K , which is the number of (USS) blind decoding (ie, the number of (USS) (E) PDCCH candidates) for the cell #X related AL #K.
  • the information is when the 2 bits' 00 '10% of the N K, i.e. for the AL #K (USS) (E) PDCCH candidates represent the N, 33 N of K when the 01' %, 66% of N K in case of '10', 100% of N K in case of '11' (ie, same as N K ).
  • the final number of (USS) BDs (or the number of (USS) (E) PDCCH candidates) derived is conveniently expressed as an integer (INTEGER). It can also be set as the result of applying a function such as ROUND (/ FLOOR / CEIL) to the.
  • INTEGER integer
  • ROUND / FLOOR / CEIL
  • only the number of (USS) blind decoding times for cell # X-related AL #K is not limited, and the base station may provide the 2-bit information for each aggregation level AL for each cell.
  • FIG. 15 illustrates an example in which the UE blindly decodes some (E) PDCCH candidates based on information signaled among specific cell-related existing (USS) (E) PDCCH candidates.
  • the UE starts from the first (USS) (E) PDCCH CANDIDATE among the 'K' (USS) (E) PDCCH CADIDATE (S) related to AL #M of a specific cell (sequentially (or ((USS) (E ) PDCCH CANDIDATE INDEX) in ascending order)) Pth (USS) (E) PDCCH CANDIDATE (actual) BD.
  • the base station transmits a predefined (additional) signal (for example, upper layer signal, physical layer signal) (named "ORDER_INDI") to the terminal, the specific 'AL' total 'K' It is possible to indicate in which way (/ direction) 'P' (USS) (E) PDCCH CANDIDATE (S) signaled during (USS) (E) PDCCH CADIDATE (S). There is also.
  • a predefined (additional) signal for example, upper layer signal, physical layer signal
  • ORDER_INDI additional signal
  • a total of 'K' (USS) (E) PDCCH CADIDATE (S) related to a specific AL, via ORDER_INDI (example 1 bit), are 'P' (USS) ( E) PDCCH CANDIDATE (S) is selected in ascending order of (USS) (E) PDCCH CANDIDATE INDEX (example) sequentially from the first (USS) (E) PDCCH CANDIDATE (or (USS) (E) PDCCH CANDIDATE INDEX In ascending order) Pth (USS) (E) PDCCH CANDIDATE up to (actually BD) or descending order (eg) Kth (USS) (E) PDCCH CANDIDATE in reverse order (or (USS) (E) PDCCH CANDIDATE INDEX in descending order) (K-P + 1) th (USS) (E) PDCCH CANDIDATE until (actual) BD can be indicated.
  • the terminal reports the terminal capability information to the base station (S710).
  • the terminal capability information may include 'BD CAPABILITY INFORMATION' indicating (USS) downlink control channel decoding capability (or (maximum) number) for each subframe. That is, the UE reports the capability (or (maximum) number) to decode the (USS) downlink control channel per subframe to the network.
  • the UE may report to the network the (maximum) number of times that the PDCCH and / or EPDCCH can be blind decoded in the UE-specific search space (USS) for each subframe.
  • the terminal may support the aggregation of more than five cells (carriers).
  • the base station determines the number of PDCCH (and / or EPDCCH) candidates for each AL of the USS for each cell based on the corresponding terminal capability information (S720).
  • the base station provides the control channel candidate number information to the terminal (S730).
  • the control channel candidate number information may be provided to the terminal through an upper layer signal such as an RRC message.
  • the control channel candidate number information informs the number of control channel candidates for each aggregation level AL of a per cell search space (SS).
  • the control channel candidate number information includes information indicating the number of PDCCH candidates and / or EPDCCH candidates for each aggregation level AL in a terminal specific search space (USS) of each cell (which the terminal must (actually) perform).
  • 2-bit information indicating how to reduce the number of existing (E) PDCCH candidates may be provided for each aggregation level (of a UE-specific search space USS). That is, the control channel candidate number information is a ratio of the number of first partial control channel candidates to be actually monitored by the terminal with respect to the number of existing control channel candidates for each aggregation level of the cell-specific terminal. It is to inform.
  • the ratios sequentially indicated may be 0, 0.33, 0.66, and 1. This has been described in detail.
  • the base station transmits scheduling information to the terminal (S740).
  • the base station may transmit scheduling information for each cell to the terminal based on the control channel candidate number information S730 provided to the terminal.
  • the UE In order to detect a specific cell-related DCI, the UE based on the corresponding cell-related control channel candidate number information (S730), the first P (E) PDCCH candidates among the (E) PDCCH candidates (K) related to aggregation level #M. Monitor (S750).
  • BD blind decoding
  • 4 bits may indicate the total number of (E) PDCCH CANDIDATE performed by the BD (actually). For example, if the total number of (E) PDCCH CANDIDATEs on which BD is (actually) is signaled as 10, sequentially from the first (E) PDCCH CANDIDATE of AL 1 out of (total) 16 USS (E) PDCCH CANDIDATE (S). 10 (E) PDCCH CANDIDATE (S) can be selected and (actual) BD (or (AL INDEX and / or (E) PDCCH CANDIDATE INDEX) in ascending order).
  • the terminal names the maximum number of supported BDs reported as "MAX_BDCAPA_NUM" and indicates the maximum number of BDs related to a FALSE DETECTION probability below a predefined (or signaled) threshold. Name it "MAX_FALBD_NUM”.
  • N CELL (S) is set to CA
  • the total number of BDs calculated according to the existing BD scheme / rule that is, 'N * K', where 'K' is a BD per cell according to the conventional scheme
  • the number of times eg '32 BD (S) PER (S) CELL ')
  • TOTAL_BD_NUM the number of times
  • BD may be performed according to the existing method "TOTAL_BD_NUM".
  • the following table shows the total (maximum) BD value candidates (or (E) PDCCH CANDIDATE number candidates) that each CONTROL CHANNEL STRUCTURE / CONTROL CHANNEL SET can have for each predefined (or signaling) AL TYPE.
  • first AL TYPE, second AL TYPE, third AL TYPE, fourth AL TYPE, fifth AL TYPE is defined as “AL1, AL2, AL4, AL8, N / A”, respectively (/
  • first AL TYPE, the second AL TYPE, the third AL TYPE, the fourth AL TYPE, and the fifth AL TYPE are respectively "AL1, AL2, AL4, AL8, AL16” (and / Or “AL2, AL4, AL8, AL16, AL32").
  • such a rule is the total (maximum) BD value associated with the third AL TYPE of one EPDCCH SET, with 'N' defined as '2' (/ signaled) and pre-set (/ signaled) with PDCCH (or ( E) When the number of PDCCH CANDIDATE) is set to '2', '2' (and / or '1') respectively (or the total of the third AL TYPE related to the PDCCH and the 3rd AL TYPE of the first / second EPDCCH SET set in advance (/ signaled) Maximum) BD value (or (E) PDCCH CANDIDATE number) is '2', '2/2' (and / or '1/2' and / or '2/1' and / or '1/1') If set to).
  • the corresponding 2 bits are the number / position of PDCCH / EPDCCH CANDIDATE related to the third AL TYPE where BD is (actually performed) (eg, '00', '01', '10', and '11' are respectively ' (Actual) BD does not have PDCCH / EPDCCH CANDIDATE count (/ position) ',' (Actual) BD is performed with PDCCH / EPDCCH CANDIDATE count / position is 1 / first PDCCH / EPDCCH CANDIDATE '' (actual) The number / position of PDCCH / EPDCCH CANDIDATE on which BD is performed is 1 / the second PDCCH / EPDCCH CANDIDATE '' (actual) The number / position of PDCCH / EPDCCH CANDIDATE on which BD is performed is 2 / the first and second PDCCH / EPDCCH CANDIDATE (S ')' Directly.
  • BD is (
  • Such a rule may be defined as the total (maximum) BD value for the second AL TYPE of one EPDCCH SET, with 'N' defined as '2' (/ signaled) and pre-set (/ signaled) with PDCCH (or ( E) PDCCH CANDIDATE number) may be applied when the values are set to '6' and '4', respectively.
  • the number of PDCCH / EPDCCH CANDIDATE (/ position) where (BD) BD is performed is (ascending order of (PDCCH / EPDCCH CANDIDATE INDEX) In descending order)) 'ROUND (6 * 0.33)' (or 'FLOOR (6 * 0.33)' or 'CEILING (6 * 0.33)'), 'ROUND (4 * 0.33)' (or 'FLOOR (4 *') 0.33) 'or' CEILING (4 * 0.33) ').
  • the following table 23 shows the case of (re) defining (/ (re) integrating) (or enclosing) a plurality of AL TYPE (S) preset (/ signaling) in Table 22 above as one (representative) AL TYPE An example is shown.
  • Table 23 above defines' fourth AL TYPE 'and' Fifth AL TYP'E as one (representative) AL TYPE (example) (representative) fourth AL TYPE (Table 23)) (re) (Re) integration) is shown.
  • the total (maximum) BD value (or (E) PDCCH CANDIDATE number) related to the fifth AL TYPE of Table 22 may or may not be set. Therefore, the (typical) total (specific) total (maximum) BD value (or (E) PDCCH CANDIDATE) related to the fourth AL TYPE in Table 23 is the total (maximum) related to some (or all) different AL (S) (in Table 22).
  • [Proposed Method # 27] that is, BD is performed in actual units in 'PER CELL'
  • 'N' bits are used according to 'how to tell the number / position of PDCCH / EPDCCH CANDIDATE of a specific AL' in the form of 'FULL BITMAP'), and / or 'N' bits are defined in advance (/ signaling). Used to refer to the percent value (eg) '00', 01 ',' 10 ', and' 11 'indicate' 0% ', '33%', '66% 'and' 100% 'respectively.
  • the final EPDCCH CANDIDATE number / location at which (real) BD is performed can be determined (/ selected).
  • the total (maximum) BD value (or number of EPDCCH CANDIDATE) of one (DC) SET (representative) fourth AL TYPE ((re) definition (/ (re) integration)) is related to 'AL8'.
  • two EPDCCH CANDIDATE (S) (example) AL8_EPDCCHCANDI # 1, AL8_EPDCCHCANDI # 2) and one EPDCCH CANDIDATE (S) related to AL16 (example) AL16_EPDCCHCANDI # 1).
  • a rule may be defined such that (E) PDCCH CANDIDATE (S) of a relatively high (or low) AL is located in front.
  • a rule may be defined such that (E) PDCCH CANDIDATE of a relatively low (or high) (E) PDCCH CANDIDATE INDEX is located in front. These rules can be used to (re) define the placement order between the same AL-related (E) PDCCH CANDIDATE (S).
  • the two EPDCCH SET (S) related EPDCCH CANDIDATE (S) are 'FIRSTSET_IDX # 1, FIRSTSET_IDX # 2, SECONDSET_IDX # 1, FIRSTSET_IDX # 3, FIRSTSET_IDX In the form of # 4, SECONDSET_IDX # 2, FIRSTSET_IDX # 5, FIRSTSET_IDX # 6, SECONDSET_IDX # 3 ', and by the bits of signaled (/ set)' 01 '(i.e.
  • a rule may be defined such that some (or all) of the proposed schemes described above apply only in a CROSS-CARRIER SCHEDULING (CCS) (and / or SELF-SCHEDULING (SFS)) situation.
  • a rule may be defined such that some (or all) proposed schemes described above are applied only when SCELL PUCCH TRANSMISSION MODE (not PCELL) is set.
  • the above-described proposed methods may be used when MASSIVE CA MODE is set and / or CELL (S) (or LCELL (S) or UCELL ( S) or (UL) LCELL (S) / UCELL (S) is set above a predefined (or signaled) number (or CONFIGURED CELL (S) (or CONFIGURED LCELL (S) or CONFIGURED UCELL (S)).
  • CONFIGURED LCELL (S) / UCELL (S) is set above a predefined (or signaled) number) and / or ACTIVATED CELL (S) (or ACTIVATED LCELL (S) or ACTIVATED UCELL (S)).
  • the ACTIVATED LCELL (S) / UCELL (S) is set to more than the predefined (or signaled) number and / or the number of SCHEDULED CELL (S) set to one SCHEDULING CELL is defined (or signaling)
  • the rule may be defined to be limited only in the case where the threshold is higher than the threshold.
  • the term "CG” may be interpreted as collectively referring to CELL (S) associated with a specific CELL (i.e., "CELL_PUCCH") for which PUCCH transmission is set (or allowed).
  • one CG is interpreted as indicating (with) a CELL (S) through which a UCI (based on PUCCH) is transmitted over a particular CELL_PUCCH and the corresponding CELL_PUCCH, or one CG does not include a specific CELL_PUCCH ) May be interpreted as indicating only CELL (S) through which UCI (based on PUCCH) is transmitted through the corresponding CELL_PUCCH.
  • 17 is a block diagram illustrating a base station and a terminal.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Abstract

무선통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 셀 별(per cell) 검색 공간(search space: SS)의 각 집성 레벨(aggregation level: AL)에 대한 제어 채널 후보들의 개수를 알려주는 '제어 채널 후보 개수 정보'를 수신하고, DCI를 검출하기 위해, 기존 제어 채널 후보들(legacy candidates)들 중 최초 일부의 제어 채널 후보들을 모니터링하되, 상기 최초 일부의 제어 채널 후보들의 개수는 상기 제어 채널 후보 개수 정보에 기반하여 결정되는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 단말이 하향링크 제어 정보를 모니터링하는 방법 및 이러한 방법을 이용하는 장치에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 제공한다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
기존 LTE-A에서는 최대 5개의 반송파(셀)들을 집성하여 반송파 집성(Carrier Aggregation: CA)를 제공하였으나, 장래의 무선통신 시스템에서는 최대 32개의 반송파(셀)들을 집성하는 eCA(enhanced CA)도 고려하고 있다.
이처럼 집성되는 반송파(셀)들의 개수가 많아지면, 여러가지 문제점이 있을 수 있다. 예를 들어, 제어 채널을 검색하기 위한 기존의 검색 공간(Search Space: SS) 설정 방법, 기존 검색 공간의 각 집성 레벨(Aggregation Level: AL) 별 블라인드 디코딩(Blind Decoding: BD) 횟수로는 효율적인 하향링크 제어 정보 모니터링이 어렵거나 불가능할 수 있다.
또한, 기존 단말과의 역호환성(backward compatibility)를 위해 하향링크 제어 정보에 포함되는 기존 3비트의 반송파 지시 필드(Carrier Indication Field: CIF)의 크기를 변경시키지 않는다면 기존 방식에 의하면 최대 8개의 반송파만을 지시할 수 있을 뿐이다. 따라서, 32개의 반송파(셀)들을 어떤 방식으로 지시할 것인지가 모호하다.
또한, 단말 능력 별로 하향링크 제어 정보를 검출하기 위하여 지원할 수 있는 최대 블라인드 디코딩 횟수가 다를 수 있다. 또한, 채널 상태, 단말이 현재 요구하는 데이터 량 등에 따라 단말에게 전송해야 하는 제어 정보의 양도 다를 수 있다. 이러한 변수는 집성될 수 있는 반송파의 개수가 증가함에 따라 더욱 증가하게 될 것이다.
무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치를 제공하고자 한다.
일 측면에서, 무선통신 시스템에서 단말(User Equipment: UE)의 하향링크 제어 정보(Downlink Control Information: DCI) 모니터링 방법을 제공한다. 상기 방법은 셀 별(per cell) 검색 공간(search space: SS)의 각 집성 레벨(aggregation level: AL)에 대한 제어 채널 후보들의 개수를 알려주는 '제어 채널 후보 개수 정보'를 수신하고, DCI를 검출하기 위해, 기존 제어 채널 후보들(legacy candidates)들 중 최초 일부의 제어 채널 후보들을 모니터링하되, 상기 최초 일부의 제어 채널 후보들의 개수는 상기 제어 채널 후보 개수 정보에 기반하여 결정되는 것을 특징으로 한다.
상기 검색 공간은 단말 특정 검색 공간(UE-specific Search Space: USS)일 수 있다.
상기 제어 채널 후보들은 PDCCH(Physical Downlink Control CHannel) 또는 EPDCCH(Enhanced Physical Downlink Control CHannel)의 후보들일 수 있다.
상기 제어 채널 후보 개수 정보는 상기 최초 일부의 제어 채널 후보들의 개수를 상기 기존 제어 채널 후보들의 개수에 대한 비율(ratio)로 알려주는 것일 수 있다.
상기 제어 채널 후보 개수 정보는 셀 별 검색 공간의 각 집성 레벨(aggregation level: AL) 별 기존 제어 채널 후보들의 개수에 대해 제공될 수 있다.
상기 제어 채널 후보 개수 정보는 2비트로 구성될 수 있다.
상기 2비트가 '00', '01', '10' 또는 '11'인 경우, 차례로 나타내는 비율은 0, 0.33,0.66, 1일 수 있다.
상기 제어 채널 후보 개수 정보는 상위 계층 신호를 통해 수신될 수 있다.
상기 상위 계층 신호는 RRC(Radio Resource Control) 메시지일 수 있다.
상기 단말은 5개보다 많은 셀들의 집성을 지원하는 단말일 수 있다.
상기 제어 채널 후보 개수 정보를 수신하지 못하는 경우, 상기 단말은 DCI를 검출하기 위해, 검색 공간의 각 집성 레벨(aggregation level: AL)에 대한 기존 제어 채널 후보들을 모니터링할 수 있다.
다른 측면에서 제공되는 단말은, 무선신호를 송수신하는 RF부 및 상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 셀 별(per cell) 검색 공간(search space: SS)의 각 집성 레벨(aggregation level: AL)에 대한 제어 채널 후보들의 개수를 알려주는 '제어 채널 후보 개수 정보'를 수신하고, DCI를 검출하기 위해, 기존 제어 채널 후보들(legacy candidates)들 중 최초 일부의 제어 채널 후보들을 모니터링하되, 상기 최초 일부의 제어 채널 후보들의 개수는 상기 제어 채널 후보 개수 정보에 기반하여 결정되는 것을 특징으로 한다.
5개보다 많은 반송파(셀)들의 집성을 지원하는 무선통신 시스템에서, 검색 공간의 집성 레벨 별 블라인드 디코딩 횟수를 줄일 수 있다. 이를 통해 불필요한 단말의 전력 소모를 방지하고, 제어 채널 검색 지연도 방지할 수 있다.
도 1은 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 2는 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3은 상향링크 서브프레임의 구조를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 EPDCCH를 예시한다.
도 6은 검색 공간(Search Space: SS)와 제어 채널의 모니터링을 나타낸 예시도이다.
도 7은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 8은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 예시한다.
도 9는 예시#3-3에 따라 검색 공간에서 스케줄링 정보의 크기를 결정하는 예를 나타낸다.
도 10은 본 발명의 일 실시예에 따른 단말의 단말 능력 정보 보고 방법을 예시한다.
도 11은 전술한 규칙#17-A 또는 예시 #17-A-1에 따른 단말의 동작 방법을 나타낸다.
도 12는 ServingCellID(또는 SCellID)와 CIF 간의 맵핑을 예시한다.
도 13은 SICC-DCI와 MUCC-DCI를 예시한다.
도 14는 전술한 제안 방법#14, 제안 방법#15, 제안 방법#16, 제안 방법#20, 제안 방법#21, 제안 방법#23, 제안 방법#24를 적용할 때, 단말의 동작 방법을 나타낸다.
도 15는 단말이 기존 (E)PDCCH 후보들 중에서 시그널링된 일부 (E)PDCCH 후보들만을 블라인드 디코딩하는 예를 나타낸다.
도 16은 전술한 제안 방법#28을 적용하는 예를 나타낸다.
도 17은 기지국 및 단말을 나타내는 블록도이다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA(Evolved-UMTS Terrestrial Radio Access)를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. 설명을 명확하게 하기 위해, LTE-A 시스템에 적용되는 상황을 가정하여 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 1을 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 상기 무선 프레임의 구조는 일 예에 불과하다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수는 다양하게 변경될 수 있다.
도 2는 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
슬롯은 하향링크 슬롯과 상향링크 슬롯이 있다. 하향링크 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함한다. OFDM 심벌은 특정 시간 구간을 나타내는 것이며 전송 방식에 따라 SC-FDMA 심벌이라 칭할 수도 있다. 하향링크 슬롯은 주파수 영역에서 NRB개의 자원블록(RB; Resource Block)을 포함한다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파(subcarrier)를 포함한다.
하향링크 슬롯에 포함되는 자원블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되어 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP(normal cyclic prifix)의 경우 OFDM 심벌의 수는 7이고, 확장된 CP(extended cyclic prefix)의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 3은 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단말은 설정에 따라 PUCCH와 PUSCH를 동시에 전송하지 않거나, 동시에 전송할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(diversity) 이득을 얻을 수 있다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 ACK/NACK, 하향링크 채널 상태를 나타내는 CSI(Channel State Information), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다. CSI에는 프리코딩 행렬을 지시하는 PMI(precoding matrix index), 단말이 선호하는 랭크 값을 나타내는 RI(rank indicator), 채널 상태를 나타내는 CQI(channel quality indicator) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI, ACK/NACK, RI 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개(확장 CP에서는 6개)의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. PDSCH는 기지국 또는 노드가 단말에게 데이터를 전송하는 채널을 의미한다.
제어 영역에서 전송되는 제어채널에는 PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel), PDCCH(Physical Downlink Control Channel)가 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 개수(즉, 제어영역의 크기)에 관한 정보인 CFI(Control Format Indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PCFICH는 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(acknowledgement)/ NACK(not-acknowledgement) 신호를 나른다. 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH는 하향링크 제어정보(Downlink Control Information: DCI)를 전송하는 제어 채널이다. DCI는 PDSCH의 자원 할당(이를 하향링크 그랜트(downlink grant: DL 그랜트)라고도 한다), PUSCH(physical uplink shared channel)의 자원 할당(이를 상향링크 그랜트(uplink grant: UL 그랜트)라고도 한다), 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
도 5는 EPDCCH를 예시한다.
도 5를 참조하면, EPDCCH는, 시간 영역에서 보면 기존의 제어 영역 다음에 위치할 수 있다. 예를 들어, 서브프레임의 첫 3개의 OFDM 심벌에서 기존의 제어 영역이 전송된다면 상기 3개의 OFDM 심벌 다음에 위치하는 OFDM 심벌들에 EPDCCH가 위치할 수 있다. 주파수 영역에서 보면, 기존의 제어 영역과 EPDCCH는 일치할 수도 있고 서로 다르게 설정될 수도 있다. 예컨대, PDCCH는 전 시스템 대역에서 전송되는데 반해, EPDCCH는 특정 단말에 대하여 전송되는 PDSCH와 동일한 주파수 대역에서만 전송될 수 있다. 도 5에서는 기존의 제어 영역의 일부 주파수 대역에서만 EPDCCH가 전송되는 예를 나타내었다. EPDCCH에서는 개선된 단말(advanced UE)을 위한 제어 정보가 전송될 수 있다. EPDCCH에서는 PDSCH의 복조를 위해 전송되는 참조 신호가 전송될 수 있다.
도 6은 검색 공간(Search Space: SS)와 제어 채널의 모니터링을 나타낸 예시도이다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. 하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집성 레벨(aggregation level: AL)이라 한다.
3GPP LTE/LTE-A에서는 PDCCH의 검출을 위해 블라인드 디코딩(blind decoding: BD)을 사용한다. 단말은 자신의 PDCCH가 제어영역 내에서 어느 위치에서 전송되는지 미리 알지 못한다. 따라서, 단말은 PDCCH가 존재할 수 있는 자원(이를 PDCCH 후보(candidate)라 함)들 각각에서 수신한 PDCCH에 CRC(cyclic redundancy check) 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는데, 이를 블라인드 디코딩이라 칭한다.
즉, 각 서브프레임 내 제어 영역에서는 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 PDCCH의 블라인드 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space: SS)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있으며, PDCCH 후보들의 집합이라고 할 수도 있다. 단말은 해당되는 검색 공간 내에서 PDCCH를 모니터링한다.
검색 공간은 공용 검색 공간(common search space: CSS)과 단말 특정 검색 공간(UE-specific search space: USS)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE(Control Channel Element) 인덱스 0~15까지 16개 CCE로 구성되고, {4, 8}의 CCE 집성 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집성 레벨을 갖는 PDCCH을 지원한다.
검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집성 레벨 및/또는 무선프레임내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlap) 수 있다. 도 6에서는 PDCCH에 대해 설명하였으나, EPDCCH에 대해서도 마찬가지로 검색 공간이 설정될 수 있다. EPDCCH의 검색 공간은 ECCE로 구성된다.
<반송파 집성(carrier aggregation: CA)>
이제 반송파 집성에 대해 설명한다.
도 7은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7을 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 단말에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, 단말에게 할당되는 반송파는 하나이다. 반면, 반송파 집성(carrier aggregation, CA) 시스템에서는 단말에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 요소 반송파(component carrier : CC)는 반송파 집성 시스템에서 사용되는 반송파를 의미하며 반송파로 약칭할 수 있다. 예를 들어, 단말에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 집성되는 반송파들이 연속한 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 주파수 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다.
특정 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, 단말이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
서빙 셀은 반송파 집성이 설정되지 않거나 반송파 집성을 제공할 수 없는 단말인 경우에는 프라이머리 셀로 구성된다. 반송파 집성이 설정된 경우 서빙 셀이라는 용어는 단말에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 하나의 서빙 셀은 하나의 하향링크 요소 반송파 또는 {하향링크 요소 반송파, 상향링크 요소 반송파}의 쌍으로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 집합으로 구성될 수 있다.
PCC(primary component carrier)는 프라이머리 셀에 대응하는 요소 반송파(component carrier: CC)를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기지국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 다수의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. 프라이머리 셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다.
SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다. 세컨더리 셀에 대응하는 하향링크 요소 반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 세컨더리 셀에 대응하는 상향링크 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.
프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.
첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)된다. 넷째, 프리이머리 셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, FDD 시스템의 경우 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 프라이머리 셀은 핸드오버, 셀 선택/셀 재선택 과정을 통해서만 교체될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
서빙 셀을 구성하는 요소 반송파는, 하향링크 요소 반송파가 하나의 서빙 셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙 셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙 셀이 구성되지 않는다.
요소 반송파의 활성화/비활성화는 곧 서빙 셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙 셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 DL CC1의 활성화를 의미한다. 만약, 서빙 셀2가 DL CC2와 UL CC2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 서빙 셀(cell)에 대응될 수 있다.
하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(component carrier, CC), 즉, 복수의 서빙 셀을 지원할 수 있다.
이러한 반송파 집성 시스템은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 지원할 수 있다.
도 8은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 예시한다.
비교차 반송파 스케줄링(non-cross carrier scheduling)은 종래의 단일 셀 내에서의 스케줄링 방법을 복수개의 셀들에 단순 확장하여 적용하는 것이라 할 수 있다. PDCCH에 의하여 스케줄링되는 PDSCH가 있을 때, 상기 PDCCH/PDSCH는 동일 요소 반송파를 통해 전송되며, 상기 PDCCH는 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파를 통해 전송되는 PUSCH를 스케줄링할 수 있다. 비교차 반송파 스케줄링은 셀프 스케줄링(Self Scheduling)이라 칭할 수도 있다.
교차 반송파 스케줄링(cross-carrier scheduling)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는 상기 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파 이외의 다른 요소 반송파를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향링크 CC를 통해 전송될 수 있고, UL 그랜트를 포함하는 PDCCH가 전송된 하향링크 CC와 링크된 상향링크 CC가 아닌 다른 상향링크 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송파 스케줄링을 지원하는 시스템에서는 PDCCH가 제어정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송파 지시자가 필요하다. 이러한 반송파 지시자를 포함하는 필드를 이하에서 반송파 지시 필드(carrier indication field, CIF)라 칭한다.
교차 반송파 스케줄링을 지원하는 반송파 집성 시스템은 종래의 DCI(downlink control information) 포맷에 반송파 지시 필드(CIF)를 포함할 수 있다. 교차 반송파 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.
이제 본 발명에 대해 설명한다.
본 발명에서는, 증가하는 하향링크 및/또는 상향링크의 데이터 수요량을 지원하기 위해서, 많은 개수의 셀 (CELL)들이 반송파 집성 기법 (CA)으로 설정된 경우, 효율적인 검색 공간(탐색 영역) 구성/운영 방법을 제안한다. 이하, 설명의 편의를 위해서 검색 공간(탐색 영역)을 "SS (SEARCH SPACE)"로 칭할 수 있다. SS는 PDCCH 또는 EPDCCH와 같은 제어 채널을 단말이 탐색/검색/모니터링하는 영역일 수 있다.
반송파 집성 기법으로 설정되는 복수의 셀들은 면허 대역 (LICENSED SPECTRUM) 기반의 셀(CELL, 이하, "LCELL"이라 칭할 수 있음)로만 구성되거나, 또는 비면허 (UNLICENSED SPECTRUM) 대역 기반의 셀(이하, "UCELL"이라 칭할 수 있음)과 LCELL 의 조합으로 구성되거나, 또는 UCELL로만 구성될 수 있다. UCELL은 LTE-U 방식으로 동작되는 셀일 수 있다. UCELL은 세컨더리 셀(SCELL)로만 한정적으로 설정 (CONFIGURATION) 될 수 있다. 또는 UCELL은 LCELL로부터 "CCS (CROSS CARRIER SCHEDULING)" 되도록 규칙이 정의될 수 있다.
UCELL 상의 무선자원 풀(radio resource pool: RRP) 구간이 CS (CARRIER SENSING) 결과에 의존하여 비주기적 혹은 불연속적으로 구성되는 자원임을 고려할 때, UE 동작 및 가정의 관점에서 해당 RRP 구간은 재정의 또는 재해석될 수 있다. 일례로 UCELL에서의 RRP 구간은, UE가 UCELL에 대한 (시간/주파수) 동기 동작을 수행하거나, (기지국으로부터) 이를 위한 동기 신호 (e.g., PSS, SSS)가 전송된다고 가정되는 구간 그리고/혹은 UE가 UCELL에 대한 CSI 측정 동작을 수행하거나 (기지국으로부터) 이를 위한 참조 신호 (e.g., CRS, CSI-RS)가 전송된다고 가정되는 구간 그리고/혹은 UE가 UCELL에서의 데이터 송신(/수신) 관련 DCI 검출 동작을 수행하는 구간 그리고/혹은 UE가 UCELL에서 수신되는 신호에 대해 (일시적인 혹은 임시적인) 버퍼링 동작을 수행하는 구간으로 (재)정의될 수 있다.
이하에서는 설명의 편의를 위해 3GPP LTE/LTE-A 시스템을 기반으로 제안 방식을 설명한다. 그러나, 이는 제한이 아니며, 본 발명이 적용되는 시스템의 범위는 3GPP LTE/LTE-A 시스템 외에 다른 시스템으로도 확장 가능하다.
하향링크 제어 정보가 전송되는 검색 공간(SS)의 구성 방법에 대해 다시 상세히 설명한다.
제어영역은 복수의 CCE(control channel elements)인 논리적인 CCE 열로 구성된다. CCE는 복수의 자원요소 그룹(resource element group: REG)에 대응된다. 예를 들어, CCE는 9 자원요소 그룹에 대응될 수 있다. 자원요소 그룹은 자원요소로 제어채널을 맵핑하는 것을 정의하기 위해 사용된다. 예를 들어, 하나의 자원요소 그룹(REG)은 4개의 자원요소(RE)로 구성될 수 있다. CCE 열은 하나의 서브프레임 내에서 제어영역을 구성하는 전체 CCE들의 집합이다.
제어영역 내에서는 복수의 PDCCH가 전송될 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집단(aggregation) 상으로 전송된다. CCE 집단을 구성하는 CCE의 수(Number of CCEs)에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. 이하, PDCCH 전송을 위해 사용되는 CCE의 수를 CCE 집성 레벨(aggregation level, L)이라 한다. 또한, CCE 집성 레벨은 PDCCH를 검색하기 위한 CCE 단위이다. CCE 집성 레벨의 크기는 인접하는 CCE들의 수로 정의된다. 예를 들어, CCE 집성 레벨은 {1, 2, 4, 8}중 어느 하나의 개수와 같은 CCE들로 정의될 수 있다.
다음 표는 CCE 집성 레벨에 따른 PDCCH의 포맷, 가능한 PDCCH의 비트 수의 예를 나타낸다.
[표 1]
Figure PCTKR2016000313-appb-I000001
CCE 집성 레벨 L{1,2,3,4}에서 검색 공간 S(L) k는 후보 PDCCH의 집합으로 정의될 수 있다. 검색 공간 S(L) k의 후보 PDCCH m에 대응하는 CCE는 다음과 같이 주어진다.
[식 1]
Figure PCTKR2016000313-appb-I000002
여기서, i=0,1,...,L-1, m=0,...,M(L)-1, NCCE,k는 서브프레임 k의 제어영역내에서 PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어영역은 0부터 NCCE,k-1로 넘버링된 CCE들의 집합을 포함한다. M(L)은 주어진 검색 공간에서의 CCE 집성 레벨 L에서 후보 PDCCH의 개수이다. 공용 검색 공간에서, Yk는 2개의 집성 레벨, L=4 및 L=8에 대해 0으로 셋팅된다. CCE 집성 레벨 L의 단말 특정 검색 공간에서, 변수 Yk는 다음과 같이 정의된다.
[식 2]
Figure PCTKR2016000313-appb-I000003
여기서, Y-1=nRNTI≠0, A=39827, D=65537, k=floor(ns/2), ns는 무선 프레임내의 슬롯 번호(slot number)이다. Floor(x)는 x보다 작은 수들 중에서 가장 큰 정수를 나타낸다.
다음 표는 공용 검색 공간과 단말 특정 검색 공간에서 집성 레벨과 CCE의 개수, 후보 PDCCH의 개수(M(L))를 나타낸다.
[표 2]
Figure PCTKR2016000313-appb-I000004
한편, 단말은 EPDCCH 모니터링이 설정되어 있지 않고 CIF(carrier indicator field)가 설정되어 있지 않으면, 각 활성화된 서빙 셀의 모든 non-DRX 서브프레임에서 집성 레벨 1, 2, 4, 8 각각에서 하나의 PDCCH 단말 특정 검색 공간(PDCCH UE-specific search space)를 검색한다.
EPDCCH 모니터링이 설정되어 있지 않고 CIF가 설정되어 있으면, 단말은 모든 non-DRX 서브프레임에서 상위 계층 신호에 의하여 설정된 하나 이상의 활성화된 서빙 셀에 대해 집성 레벨 1,2,4,8 각각에서 하나 이상의 단말 특정 검색 공간(UE-specific search space)를 검색한다.
단말이 서빙 셀에 대해 EPDCCH 모니터링이 설정되어 있고, 상기 서빙 셀이 활성화되어 있고 상기 단말이 CIF가 설정되어 있지 않으면, 단말은 상기 서빙 셀에서 EPDCCH를 모니터링하지 않는 모든 non-DRX 서브프레임에서 집성 레벨 1,2,4,8 각각에서 하나의 PDCCH 단말 특정 검색 공간을 모니터링한다.
단말이 서빙 셀에 대해 EPDCCH 모니터링이 설정되어 있고, 상기 서빙 셀이 활성화되어 있고 상기 단말이 CIF가 설정되어 있으면, 단말은 상위 계층 신호에 의하여 설정된 서빙 셀에서 EPDCCH를 모니터링하지 않는 모든 non-DRX 서브프레임에서 집성 레벨 1,2,4,8 각각에서 하나 이상의 PDCCH 단말 특정 검색 공간을 모니터링한다.
프라이머리 셀에서 공용 검색 공간(common search space)와 PDCCH 단말 특정 검색 공간은 겹칠 수 있다.
서빙 셀 c에서의 PDCCH 모니터링과 연관된 CIF가 설정된 단말은, CIF가 설정되고 C-RNTI로 CRC 스크램블링된 PDCCH를 상기 서빙 셀 c의 PDCCH 단말 특정 검색 공간에서 모니터링한다.
프라이머리 셀에서의 PDCCH 모니터링과 연관된 CIF가 설정된 단말은, CIF가 설정되고 SPS C-RNTI로 CRC 스크램블링된 PDCCH를 상기 프라이머리 셀의 PDCCH 단말 특정 검색 공간에서 모니터링한다.
단말은 CIF 없는 PDCCH를 공용 검색 공간에서 모니터링할 수 있다.
PDCCH가 모니터링되는 서빙 셀에 있어서, 단말이 CIF가 설정되지 않으면, 상기 단말은 PDCCH 단말 특정 검색 공간에서 CIF 가 없는 PDCCH를 모니터링한다. 단말이 CIF가 설정되어 있으면, 상기 단말은 PDCCH 단말 특정 검색 공간에서 CIF가 있는 PDCCH를 모니터링한다.
단말이, 세컨더리 셀에 대응하는 CIF를 가지는 PDCCH를 다른 서빙 셀에서 모니터링하도록 설정되면, 상기 단말은 상기 세컨더리 셀의 PDCCH는 모니터링하지 않는다(모니터링하는 것이 기대되지 않는다). PDCCH가 모니터링되는 서빙 셀을 위해 단말은 상기 서빙 셀에서 PDCCH 후보들을 모니터링할 수 있다.
다음으로, EPDCCH 할당 절차에 대해 설명한다.
각 서빙 셀에 대해, 단말의 EPDCCH 모니터링을 위해 하나 또는 2개의 EPDCCH PRB 집합들이 상위 계층 신호를 통해 설정될 수 있다. EPDCCH PRB 집합에 대응하는 PRB 쌍(pair)은 상위 계층 신호에 의하여 지시된다. 각 EPDCCH PRB 집합은 0 부터 NECCE,p,k -1 까지 넘버링된 ECCE들로 구성된다. 여기서, NECCE,p,k 는 서브프레임 k의 EPDCCH PRB 집합 p에서의 ECCE들의 개수이다. EPDCCH PRB 집합은 localized 또는 distributed 방식으로 설정될 수 있다. 단말은 하나 이상의 EPDCCH 후보들을 모니터링하는데, 여기서 모니터링이란 모니터링해야 하는 DCI 포맷들에 따라 EPDCCH 각각을 디코딩 시도하는 것을 의미한다.
모니터링해야 하는 EPDCCH 후보들은 EPDCCH 단말 특정 검색 공간으로 정의될 수 있다. 각 서빙 셀에 대해, 단말이 EPDCCH 단말 특정 검색 공간을 모니터링해야 하는 서브프레임들이 상위 계층 신호에 의하여 설정될 수 있다.
단말은 특정한 특수 서브프레임(SPECIAL SUBFRAME)에서는 EPDCCH를 모니터링하지 않으며, 상위 계층에 의하여 PMCH를 디코딩하도록 지시된 서브프레임에서도 EPDCCH를 모니터링하지 않는다.
집성 레벨 L ∈ {1,2,4,8,16,32}에서, EPDCCH 단말 특정 검색 공간을 ES(L) k라고 하면, EPDCCH 후보들의 집합으로 정의될 수 있으며 EPDCCH PRB 집합 p에 대해 다음 식과 같이 표현될 수 있다.
[식 3]
Figure PCTKR2016000313-appb-I000005
상기 식에서, i= 0,..., L-1이며, EPDCCH가 모니터링되는 서빙 셀에 대한 CIF가 설정되면 b=nCI 이고, 그렇지 않으면 b=0이다. nCI 는 CIF의 값이다. M = 0,1,...,M(L) p -1이다.
EPDCCH가 모니터링되는 서빙 셀에 대한 CIF가 설정되지 않으면, M(L) p 는 EPDCCH가 모니터링되는 서빙 셀의 EPDCCH PRB 집합 p에서 집성 레벨 L에 대한 EPDCCH 후보들의 개수이다.
그렇지 않으면, M(L) p 는 nCI 에 의하여 지시되는 서빙 셀의 EPDCCH PRB 집합 p에서 집성 레벨 L에 대한 EPDCCH 후보들의 개수이다.
단말은 EPDCCH 후보에 대응하는 ECCE가 동일 서브프레임의 PBCH, 동기화 신호(PSS, SSS)가 전송되는 주파수와 겹치는(overlap) PRB 집합에 맵핑되면, 상기 EPDCCH 후보는 모니터링하지 않을 수 있다.
Yp,k는 다음 식과 같이 정의될 수 있다.
[식 4]
Figure PCTKR2016000313-appb-I000006
Yp ,-1=nRNTI≠0 , A0= 39827, A1=39829, D=65537, k=floor(ns/2)이다.
검색 공간을 정의하는 집성 레벨과 EPDCCH 후보들의 개수는 다음과 같이 주어질 수 있다.
단말에게 분산 전송(distributed transmission)을 위한 하나의 EPDCCH PRB 집합이 설정되는 경우, 집성 레벨 및 EPDCCH 후보들의 개수는 다음 표와 같이 정의될 수 있다.
[표 3]
Figure PCTKR2016000313-appb-I000007
[표 4]
Figure PCTKR2016000313-appb-I000008
상기 표에서 Case 1은 1) 노멀 서브프레임 및 노멀 하향링크 CP에서 DCI 포맷 2/2A/2B/2C/2D를 모니터링하고, 하향링크 대역의 자원블록의 개수가 25개 이상인 경우, 2) 특정 특수 서브프레임 및 노멀 하향링크 CP에서 DCI 포맷 2/2A/2B/2C/2D를 모니터링하고, 하향링크 대역의 자원블록의 개수가 25개 이상인 경우, 3) 노멀 서브프레임 및 노멀 하향링크 CP에서 DCI 포맷 1A/1B/1D/1/2/2A/2B/2C/2D/0/4를 모니터링하는 경우, 4) 특정 특수 서브프레임 및 노멀 하향링크 CP에서 DCI 포맷 1A/1B/1D/1/2/2A/2B/2C/2D/0/4를 모니터링하는 경우 등이다.
Case 2는 1) 노멀 서브프레임 및 확장 하향링크 CP에서 DCI 포맷 1A/1B/1D/1/2A/2/2B/2C/2D/0/4들이 모니터링되는 경우, 2) 특정 특수 서브프레임 및 노멀 하향링크 CP에서 DCI 포맷 1A/1B/1D/1/2A/2/2B/2C/2D/0/4 들이 모니터링되는 경우, 3) 특정 특수 서브프레임 및 확장 하향링크 CP에서 DCI 포맷 1A/1B/1D/1/2A/2/2B/2C/2D/0/4들이 모니터링되는 경우 등이다.
그 이외의 경우는 Case 3이다.
그리고, NXp RB는 EPDCCH PRB 집합 p를 구성하는 PRB 쌍의 개수이다.
단말에게 국부적 전송(localized transmission)을 위한 하나의 EPDCCH PRB 집합이 설정되는 경우, 집성 레벨 및 EPDCCH 후보들의 개수는 다음 표와 같이 정의될 수 있다.
[표 5]
Figure PCTKR2016000313-appb-I000009
[표 6]
Figure PCTKR2016000313-appb-I000010
단말에게 분산 전송(distributed transmission)을 위한 2개의 EPDCCH PRB 집합들이 설정되는 경우, 집성 레벨 및 EPDCCH 후보들의 개수는 다음 표와 같이 정의될 수 있다.
[표 7]
Figure PCTKR2016000313-appb-I000011
[표 8]
Figure PCTKR2016000313-appb-I000012
단말에게 국부적 전송(localized transmission)을 위한 2개의 EPDCCH PRB 집합들이 설정되는 경우, 집성 레벨 및 EPDCCH 후보들의 개수는 다음 표와 같이 정의될 수 있다.
[표 9]
Figure PCTKR2016000313-appb-I000013
[표 10]
Figure PCTKR2016000313-appb-I000014
단말에게 분산 전송(distributed transmission)을 위한 하나의 EPDCCH PRB 집합 및 국부적 전송(localized transmission)을 위한 하나의 EPDCCH PRB 집합이 설정되는 경우, 집성 레벨 및 EPDCCH 후보들의 개수는 다음 표와 같이 정의될 수 있다.
[표 11]
Figure PCTKR2016000313-appb-I000015
[표 12]
Figure PCTKR2016000313-appb-I000016
단말에게 CIF가 설정되지 않으면, EPDCCH를 모니터링하도록 설정된 활성화된서빙 셀들 각각에서 상기 표들 3 내지 12에서 주어지는 집성 레벨 각각에 대해 하나의 EPDCCH 단말 특정 검색 공간을 모니터링한다.
단말은 EPDCCH 모니터링이 설정되고 CIF가 설정되면, 상위 계층 신호에 의하여 설정된 하나 이상의 활성화된 서빙 셀들 각각에서 상기 표 3 내지 12에서 주어지는 집성 레벨 각각에 대해 하나 이상의 EPDCCH 단말 특정 검색 공간을 모니터링할 수 있다.
서빙 셀 c에서의 EPDCCH 모니터링과 연관된 CIF가 설정된 단말은, CIF가 설정되고 C-RNTI로 CRC 스크램블링된 EPDCCH를 상기 서빙 셀 c의 EPDCCH 단말 특정 검색 공간에서 모니터링한다.
프라이머리 셀에서의 EPDCCH 모니터링과 연관된 CIF가 설정된 단말은, CIF가 설정되고 SPS C-RNTI로 CRC 스크램블링된 EPDCCH를 상기 프라이머리 셀의 EPDCCH 단말 특정 검색 공간에서 모니터링한다.
단말은 CIF 없는 PDCCH를 공용 검색 공간에서 모니터링할 수 있다.
EPDCCH가 모니터링되는 서빙 셀에 있어서, 단말이 CIF가 설정되지 않으면, 상기 단말은 EPDCCH 단말 특정 검색 공간에서 CIF 가 없는 EPDCCH를 모니터링한다. 단말이 CIF가 설정되어 있으면, 상기 단말은 EPDCCH 단말 특정 검색 공간에서 CIF가 있는 EPDCCH를 모니터링한다.
단말은 다른 서빙 셀에서 세컨더리 셀에 대응하는 CIF를 가지는 EPDCCH를 모니터링하도록 설정되면 상기 세컨더리 셀에서 EPDCCH를 모니터링하지 않을 수 있다.
종래, 반송파 집성에서는 최대 5개의 셀들을 집성하는 것은 전제로 하였다. 그러나, 장래의 무선통신 기술에서는 5개보다 많은 셀들 예를 들어, 최대 32개의 셀들을 집성하는 반송파 집성도 고려하고 있다. 이처럼, 셀들의 개수가 많아지면 여러가지 고려해야 할 사항이 있다. 예를 들어, 교차 반송파 스케줄링을 사용할 경우, 다른 셀들의 스케줄링 정보를 전송하는 스케줄링 셀에서 최대 32개의 셀들에 대한 하향링크 제어정보(DCI)를 전송한다면, 검색 공간을 어떻게 구성할 것인지가 문제될 수 있다.
이하의 제안 방식들은, 많은 개수의 CELL(S)이 반송파 집성 기법으로 설정된 경우, 제어 채널(또는 제어 정보)을 검색/탐색하는 검색 공간(탐색 영역 또는 search space: SS 라 칭할 수 있다)을 효율적으로 구성/운영하는 방법들을 제시한다. 해당 일부 (혹은 모든) 제안 방식들의 적용을 통해서, 다수 개의 CELL(S) 관련 검색 공간(들)을 특정 CELL 상에서 효율적으로 공유 (SS SHARING)시킬 수 있다.
또한, 본 발명은 많은 개수의 CELL(S)이 설정됨에 따라 단말의 블라인드 디코딩 (BD) 횟수가 이에 비례하여 증가되는 것을 완화시킬 수 있다.
제1 셀이 제2 셀의 스케줄링 정보를 전송하는 경우(제1 셀을 통해 제2 셀의 스케줄링 정보를 전송하는 경우), 제1 셀을 스케줄링 셀(SCHEDULING CELL), 제2 셀을 스케줄링 받는 셀(SCHEDULED CELL)이라 칭할 수 있다. 제1, 2 셀은 동일한 셀일 수도 있고, 다른 셀일 수도 있다. 제1,2 셀이 서로 다른 셀일 경우 전술한 교차 반송파 스케줄링(CCS)에 해당한다. UCELL 별 RRP 설정 여부는 (각각의 UCELL의) CS(CARRIER SENSING) 결과에 따라 비주기적 혹은 불연속적으로 나타나므로, 특정 시점에서 많은 개수의 UCELL(S) RRP(S)가 동시에 설정될 확률은 상대적으로 낮다. 다시 말해서, 특정 시점에서 많은 개수의 UCELL(S) RRP(S)이 동시에 설정되고 해당 UCELL(S) RRP(S)에서의 데이터 전송 관련한 많은 스케줄링 정보들이 동시에 전송될 확률이 낮은 것이다. 즉, 많은 개수의 UCELL(S)을 스케줄링하는 SCHEDULING CELL과 같은 특정 CELL 상의 SS에서 상기 UCELL들에 대한 스케줄링 정보가 동시에 전송될 확률은 그리 높지 않다. 따라서, 해당 많은 개수의 UCELL(S) SS(S)는, 이하의 일부 (혹은 모든) 제안 방식들의 적용을 통해서, 특정 CELL (i.e., 많은 개수의 UCELL(S)의 SCHEDULING CELL)의 SS 상에서 공유될 수 있다. 다만, 이러한 방법이 적용된다고 할지라도 BLOCKING PROBABILTY (BP)는 높지 않을 수 있다. 여기서, 일례로, UCELL(S)의 (교차 반송파 스케줄링 관련한) SCHEDULING CELL은 LCELL (그리고/혹은 PCELL 그리고/혹은 (사전에 설정된 (혹은 시그널링된)) UCELL) 그리고/혹은 사전에 설정된 (혹은 시그널링된) CELL GROUP (CG)의 대표 (REPRESENTATIVE) CELL (혹은 CG의 PRIMARY (S)CELL)로 한정적으로 설정될 수 있다. 여기서, 일례로, 특정 CG는 SCHEDULING CELL을 포함한 (혹은 포함하지 않은) UCELL(S)로만 구성되거나 혹은 SCHEDULING CELL을 포함한 (혹은 포함하지 않은) UCELL(S)/LCELL(S)의 조합으로 구성될 수 있다. 또한, 일례로, 특정 CG가 SCHEDULING CELL을 포함하지 않을 경우, 하나의 SCHEDULING CELL 상에는 사전에 설정된 (혹은 시그널링된) 다수 개의 CG(S) 관련 CELL(S) (i.e., SCHEDULED CELL(S))에 대한 SS가 구성될 수도 있다.
또한, 일례로, SCHEDULING CELL이 사전에 설정된 (혹은 시그널링된) CG의 REPRESENTATIVE CELL (혹은 CG의 PRIMARY (S)CELL)로 설정될 경우, 해당 CG의 나머지 CELL(S)에 대한 SS는 해당 REPRESENTATIVE CELL (혹은 PRIMARY (S)CELL) 상에 구성될 수 도 있다. 또한, 일례로, 상기 설명한 CG의 REPRESENTATIVE CELL (혹은 CG의 PRIMARY (S)CELL) 상에는 (예외적으로) CSS (COMMON SEARCH SPACE)가 정의되도록 규칙이 정의될 수 도 있다. 또한, 일례로, 본 발명의 일부 (혹은 모든) 제안 방식들은 UCELL(S)의 SCHEDULING CELL 뿐만 아니라 LCELL(S)의 SCHEDULING CELL 상의 SS 구성에도 확장 적용될 수 있다.
이하에서는 설명의 편의를 위해서, 다수 개의 CELL(S) 관련 SS가 구성되는 SCHEDULING CELL을 "SCH_CELL"로 명명한다. 즉, 다른 셀 또는 자신을 스케줄링하는 DCI를 모니터링하는 검색 공간이 구성되는 셀을 "SCH_CELL"이라 칭한다. 또한, 일례로, 본 발명의 일부 (혹은 모든) 제안 방식들은 PDCCH USS (단말 특정 검색 공간: UE-SPECIFIC SEARCH SPACE)/CSS(공용 검색 공간: COMMON SEARCH SPACE) (그리고/혹은 EPDCCH USS/CSS) 구성에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다. 또한, 일례로, 본 발명의 일부 (혹은 모든) 제안 방식들은 (같은 CG에 속하는 (혹은 속하지 않는)) 동일한 시스템 대역폭 그리고/혹은 전송 모드 (TM) (그리고/혹은 CP CONFIGURATION 그리고/혹은 SPECIAL SUBFRAME CONFIGURATION 그리고/혹은 EPDCCH SET의 구성 PRB-PAIR 상에서 EPDCCH 전송에 사용 가능한 RE(S) 개수)의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 간에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 또한, 일례로, 본 발명의 일부 (혹은 모든) 제안 방식들에서, CG 별 대표 CIF 값 (그리고/혹은 대표 RNTI 값)은 UE GROUP-SPECIFIC 값 (혹은 UE-SPECIFIC 값 혹은 CG-SPECIFIC 값)으로 정의될 수 가 있다. 또한, 일례로, 본 발명의 일부 (혹은 모든) 제안 방식들은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수 도 있다. 여기서, 또 다른 일례로, 본 발명의 일부 (혹은 모든) 제안 방식들은 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수도 있다.
[제안 방법#1] UE에게 사전에 정의된 시그널링을 통해서, 셀 그룹(CG) 별 대표 (REPRESENTATIVE) CIF (CARRIER INDICATOR FIELD) 값 (그리고/혹은 대표 RNTI 값)을 알려줄 수 있다. 상기 대표 CIF 값은 상위 계층 시그널링 혹은 물리 계층 시그널링을 통해 단말에게 제공될 수 있다.
또한, 일례로, 셀 그룹 별 대표 CIF 값 (그리고/혹은 대표 RNTI 값)을 수신한 UE는 특정 SCHEDULED CELL SS (그리고/혹은 SCH_CELL SS)를 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 구성/탐색할 때, 해당 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 속한 CG의 대표 CIF 값 (그리고/혹은 대표 RNTI 값)을 이용하여 검색 공간(SS)을 구성/탐색하게 된다. 여기서, 구체적인 일례로, 대표 CIF 값은 전술한 nCI 파라미터에 대입되고, 대표 RNTI 값은 nRNTI 파라미터에 대입될 수 있다.
또한, 일례로, 상기 [제안 방법#1]이 적용될 경우, 특정 CG를 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)은 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 공통된 SS 영역을 공유하게 된다. 또 다른 일례로, 상기 [제안 방법#1]가 적용될 경우, UE는 (사전에 시그널링된 (혹은 지정된)) 대표 CIF 값 그리고/혹은 대표 RNTI 값을 기반으로 구성된 단일 (공통) SS 영역을 통해, CG의 (전체) 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 스케줄링 정보들 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))에 대한 BD를 수행하게 된다. 또 다른 일례로, 사전에 정의된 시그널링을 통해서, UE GROUP 별로 대표 CIF 값 (그리고/혹은 대표 RNTI 값)을 알려주도록 규칙이 정의될 수 있다. 여기서, 일례로, 해당 시그널링은 상위 계층 시그널링 혹은 물리 계층 시그널링으로 정의될 수 있다. 구체적인 일례로, 특정 UE GROUP에 속하는 UE는 해당 특정 UE GROUP 관련 대표 CIF 값 (그리고/혹은 대표 RNTI 값)을 이용하여, 자신에게 설정된 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 SS를 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 구성/탐색 (대표 CIF 값은 nCI 파라미터에 대입되고, 대표 RNTI 값은 nRNTI 파라미터에 대입)하게 된다.
또 다른 일례로, 상기 [제안 방법#1]은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 셀 그룹에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수 도 있다. 여기서, 또 다른 일례로, 상기 [제안 방법#1]은 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
[제안 방법#2] 임의의 셀 그룹(CG)를 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 중에, 사전에 시그널링된 (혹은 지정된) 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 SS 구성/영역이, 해당 CG의 나머지 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)에도 공유 (혹은 동일하게 가정)될 수 있다.
여기서, 일례로, 해당 시그널링은 상위 계층 시그널링 혹은 물리 계층 시그널링으로 정의될 수 있다. 또한, 일례로, 이러한 규칙의 적용은 UE가 해당 셀 그룹(CG)의 나머지 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS 구성/탐색 시, (사전에 시그널링된 (혹은 지정된)) 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 CIF 값 (그리고/혹은 사전에 시그널링된 CG 별 대표 RNTI 값)을 이용 (혹은 대입)하는 것으로도 해석될 수 가 있다.
일례로, 상기 [제안 방법#2]가 적용될 경우, 특정 CG를 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)은 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 공통된 SS 영역을 공유하게 된다. 또 다른 일례로, 상기 [제안 방법#2]가 적용될 경우, UE는 (사전에 시그널링된 (혹은 지정된)) 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 CIF 값 그리고/혹은 (사전에 시그널링된 CG 별) 대표 RNTI 값을 기반으로 구성된 단일 (공통) SS 영역을 통해, 해당 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)과 (특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 속한) CG의 나머지 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) (혹은 해당 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 포함된 CG의 (전체) 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)) 관련 스케줄링 정보들 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))에 대한 BD를 수행하게 된다. 또 다른 일례로, 상기 [제안 방법#2]는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수 도 있다. 여기서, 또 다른 일례로, 상기 [제안 방법#2]는 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
[제안 방법#3] 상기 일부 혹은 모든 제안 방법들 (예를 들어, [제안 방법#1], [제안 방법#2] 중 적어도 하나)의 적용을 통해, 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 SS가 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 구성 (혹은 공유)될 때, 아래의 일부 혹은 모든 규칙이 적용될 수 있다.
또 다른 일례로, [제안 방법#3]은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 셀 그룹(CG)에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 또는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 또는 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 여기서, 또 다른 일례로, [제안 방법#3]은 사전에 설정된(혹은 시그널링된) SCH_CELL로부터 교차 반송파 스케줄링(CCS)되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 셀프 스케줄링(SFS)되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
(예시#3-1) 상기 [제안 방법#1]에서, 일례로, 셀 그룹(CG) 별 대표 CIF 값은 특정 CG에 포함된 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS 구성/탐색 시 (즉, 대표 CIF 값이 nCI 파라미터에 대입)에만 사용하고, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보를 알려주는 (UL/DL) DCI FORMAT (또는 (UL/DL) GRANT, 이하 동일) 상의 CIF 값은 각각의 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 SERVCELLINDEX로 설정되도록 규칙이 정의될 수 있다.
또한, 일례로, 상기 [제안 방법#2]에서 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 CIF 값은 (해당 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 속한) 셀 그룹(CG)의 나머지 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS 구성/탐색 시 (예컨대, 대표 CIF 값이 nCI 파라미터에 대입)에만 사용하고, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보를 알려주는 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 상의 CIF 값은 각각의 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 SERVCELLINDEX 로 설정되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 [제안 방법#1]에서, CG 별 대표 CIF 값은 특정 CG의 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS를 구성/탐색 (예컨대, 대표 CIF 값이 nCI 파라미터에 대입) 할 때뿐만 아니라, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보를 알려주는 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 상의 CIF 값으로도 이용되도록 규칙이 정의될 수도 있다. 여기서, 일례로, 이러한 제안 방법에 따라, 대표 CIF 값 기반으로 전송되는 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)는 해당 대표 CIF 값과 연동된 (혹은 링크된) 셀 그룹을 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)에게 공통적으로 적용되는 스케줄링 정보로 해석될 수 도 있다. 즉, 일종의 다중 반송파 스케줄링(MULTI-CARRIER SCHEDULING)의 형태로 해석될 수 있다.
또 다른 일례로, 상기 [제안 방법#2]에서, 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 CIF 값은 (해당 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 속한) 셀 그룹(CG)의 나머지 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS를 구성/탐색 (즉, 대표 CIF 값이 nCI 파라미터에 대입) 할 때뿐만 아니라, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보를 알려주는 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 상의 CIF 값으로도 이용되도록 규칙이 정의될 수 가 있다.
또 다른 일례로, 상기 [제안 방법#1] 그리고/혹은 [제안 방법#2]에서, 셀 그룹(CG) 별 대표 RNTI 값이 설정되지 않을 경우 (예컨대, 대표 CIF 값이 설정된 경우 또는 사전에 시그널링되거나 지정된 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 CIF 값이 이용(혹은 대입)되는 경우), 단말은 C-RNTI를 이용하여 특정 SCHEDULED CELL SS (그리고/혹은 SCH_CELL SS)를 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 구성/탐색하거나, 혹은 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) 관련 CRC PARITY BIT(S) SCRAMBLING를 수행하게 된다.
(예시#3-2) 상기 [제안 방법#1]에서, 일례로, CG 별 대표 RNTI 값은 특정 CG의 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS 구성/탐색 시 (예컨대, 대표 RNTI 값이 nRNTI 파라미터에 대입)에만 사용하고, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보 (즉, (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) 관련 CRC PARITY BIT(S) SCRAMBLING에는 C-RNTI가 이용되도록 규칙이 정의될 수 있다.
또한, 일례로, 상기 [제안 방법#2]에서 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 대표 RNTI 값은 (해당 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 속한) CG의 나머지 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS 구성/탐색 시 (즉, 대표 RNTI 값이 nRNTI 파라미터에 대입될 수 있음)에만 사용하고, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보 (즉, (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) 관련 CRC PARITY BIT(S) SCRAMBLING에는 C-RNTI가 이용되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 [제안 방법#1]에서, CG 별 대표 RNTI 값은 특정 CG의 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS를 구성/탐색 (예컨대, 대표 RNTI 값이 nRNTI 파라미터에 대입) 할 때뿐만 아니라, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보 (즉, (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) 관련 CRC PARITY BIT(S) SCRAMBLING에도 이용되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 [제안 방법#2]에서, 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 대표 RNTI 값은 (해당 특정 SCHEDULED CELL (그리고/혹은 SCH_CELL)이 속한) CG의 나머지 구성 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 SS를 구성/탐색 (예컨대, 대표 RNTI 값이 nRNTI 파라미터에 대입) 할 때뿐만 아니라, 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보 (즉, (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) 관련 CRC PARITY BIT(S) SCRAMBLING에도 이용되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 [제안 방법#1] 그리고/혹은 [제안 방법#2]에서, CG 별 대표 CIF 값이 설정되지 않을 경우 (즉, 대표 RNTI 값만 설정된 경우), 단말은 각각의 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 SERVCELLINDEX를 이용하여 특정 SCHEDULED CELL SS (그리고/혹은 SCH_CELL SS)를 사전에 설정된 (혹은 시그널링된) SCH_CELL 상에서 구성/탐색하거나, 혹은 개별 SCHEDULED CELL (그리고/혹은 SCH_CELL)의 스케줄링 정보를 알려주는 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 상의 CIF 값을 설정하게 된다.
(예시#3-3) 전술한 바와 같이, SCH_CELL 의 검색 공간(SS)에서는 SCH_CELL 자신에 대한 스케줄링 정보(UL/DL DCI FORMAT(동등한 의미로 UL/DL GRANT))와 다른 셀 즉, SCHEDULED CELL에 대한 스케줄링 정보가 전송될 수 있다. SCH_CELL 상의 검색 공간(SS)에서 전송되는, 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)들의 크기(혹은 길이)는, 해당 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 중에서 시스템 대역폭이 가장 큰 CELL (이 셀을 "MAX_BW_CELL"이라 칭한다) 또는 해당 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 중에 시스템 대역폭이 가장 작은 CELL (이 셀을 "MIN_BW_CELL"라 칭함))의 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)와 동일하게 설정되도록 규칙이 정의될 수 있다.
구체적인 일례로, MAX_BW_CELL 보다 시스템 대역폭이 상대적으로 작은 SCHEDULED CELL (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)의 경우, MAX_BW_CELL 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)와 동일해질 때까지 제로 패딩 (ZERO PADDING)이 적용되게 된다.
또 다른 일례로, SCH_CELL 상의 SS에서 전송되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)는, 해당 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 중에 사전에 시그널링된 (혹은 지정된) SCHEDULED CELL (혹은 SCH_CELL)의 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)와 동일하게 설정되도록 규칙이 정의될 수 있다.
또 다른 일례로, SCH_CELL 상의 SS에서 전송되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)는, 이러한 용도로 사전에 시그널링된 (혹은 설정된) 시스템 대역폭에 따라 맞추도록 규칙이 정의될 수 있다.
또 다른 일례로, SCH_CELL 상의 SS에서 전송되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)는, 해당 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이) 중에 가장 긴 (혹은 짧은) 것과 동일하게 설정되도록 (혹은 맞추도록) 규칙이 정의 될 수 있다.
도 9는 예시#3-3에 따라 검색 공간에서 스케줄링 정보의 크기를 결정하는 예를 나타낸다.
도 9에서는, 사전에 설정되거나 시그널링된 3 개의 CELL(S) (CELL#A, CELL#B, CELL#C)이 상기 일부 혹은 모든 제안 방법들([제안 방법#1], [제안 방법#2], (예시#3-1), (예시#3-2), (예시#3-3))에 따라, SEARCH SPACE (SS)를 공유 (SHARING)하는 상황을 가정하였다.
공유된 SS는 CELL#A 상에서 구성/설정되었다고 가정하였으며, 또한, 'CELL#A 관련 (DL/UL) DCI FORMAT SIZE > CELL#B 관련 (DL/UL) DCI FORMAT SIZE > CELL#C 관련 (DL/UL) DCI FORMAT SIZE'의 관계를 가진다고 가정 (즉, 'CELL#B 관련 DCI FORMAT SIZE'와 'CELL#C 관련 DCI FORMAT SIZE'가 가장 큰 값을 가지는 'CELL#A 관련 DCI FORMAT SIZE'에 FITTING됨)된다.
단말이 최종적으로 각각의 CELL (CELL#A, CELL#B, CELL#C)에 대한 (INDIVISUAL) DCI FORMAT (혹은 스케줄링 정보)을 (실제로) 수신할 때, 도 18과 같이 'DCI FORMZT SIZE FITTING'이 적용된 DCI FORMAT (혹은 스케줄링 정보)을 받게 된다. 즉, CELL#B,CELL#C에 대한 DCI FORMAT은 CELL#A의 DCI FORMAT의 길이와 동일하도록 ZERO PADDING된다. 결과적으로 CELL#A,B,C 각각에 대한 DCI FORMAT의 길이가 동일하게 되므로, 단말은 하나의 길이를 가지는 DCI FORMAT만을 전제로 블라인드 디코딩을 수행하면 되므로, 블라인드 디코딩 시도 횟수를 줄일 수 있게 된다.
또 다른 일례로, SCH_CELL 상의 검색 공간(SS)에서 전송되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)는, 사전에 시그널링된 (혹은 지정된) 시스템 대역폭과 전송 모드(TRANSMISSION MODE: TM)에 따라 결정될 수 있다.
또 다른 일례로, 상기 설명한, SCH_CELL 상의 SS에서 전송되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)를 동일하게 맞추는 과정은 (사전에 지정된 (혹은 시그널링된) TM COMMON DCI FORMAT과 (사전에 지정된 (혹은 시그널링된) TM DEDICATED DCI FORMAT에 대해 별도로 (혹은 독립적으로) 수행될 수 있다. 여기서, 일례로, TM COMMON DCI FORMAT은 DCI FORMAT 0/1A로 설정될 수 있으며, TM DEDICATED DCI FORMAT은 DCI FORMAT 2C/2D/4(/1B/1D/1/2A/2/2B)로 설정될 수 있다. 즉, SCH_CELL상의 검색 공간에서 DCI FORMAT 0/1A에 대해서는 제1 길이의 DCI FORMAT으로, DCI FORMAT 2C/2D/4(/1B/1D/1/2A/2/2B)는 제2 길이의 DCI FORMAT으로 맞추는 것이다. 상기 제1, 2 길이는 사전에 정해지거나 시그널링될 수 있다.
또 다른 일례로, 상기 설명한, SCH_CELL 상의 SS에서 전송되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 크기 (혹은 길이)를 동일하게 맞추는 과정은 UCELL(S)로만 구성된 CG, LCELL로만 구성된 CG, UCELL 및 LCELL이 모두 포함된 CG들 중에서 특정 CG에만 적용되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 (예시#3-3)은 (SCH_CELL 상의 SS를 공유하는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 중에) 동일한 전송 모드(TM)가 설정된 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 간에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 이 경우, 전송 모드는 동일하나 시스템 대역폭이 상이함으로써, 블라인드 디코딩 횟수가 증가되는 것을 방지할 수 있다.
(예시#3-4) SCH_CELL 상의 검색 공간(SS)에서 수행되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) 블라인드 디코딩 (BD)을 위한, AL (AGGREGATION LEVEL) 후보 구성 그리고/혹은 AL 별 BD 횟수 결정에, 사전에 시그널링된 (혹은 지정된) SCHEDULED CELL (혹은 SCH_CELL 혹은 MAX_BW_CELL 혹은 MIN_BW_CELL)의 아래 일부 (혹은 모든) 파라미터들이 고려되도록 규칙이 정의될 수 도 있다. 즉, SCH_CELL 상의 검색 공간에서 스케줄링 정보의 블라인드 디코딩을 위해 집성 레벨, 집성 레벨 별 블라인드 디코딩 횟수 등을 결정할 수 있다. 이 경우, 미리 정해지거나 또는 시그널링된 SCHEDULED CELL, SCH_CELL, MAX_BW_CELL 또는 MIN_BW_CELL의 파라미터가 고려될 수 있다. 여기서, 상기 파라미터는 1) 시스템 대역폭, 2) 전송 모드, 3) CP(CYCLIC PREFIX) 설정, 특수 서브프레임 설정, EPDCCH를 구성하는 PRB 쌍에서 EPDCCH 전송에 사용될 수 있는 자원요소(RE)의 개수(이를 N_EPDCCH라 표시) 등일 수 있다.
여기서, 일례로, 집성 레벨 후보 구성 그리고/혹은 집성 레벨 별 블라인드 디코딩 횟수의 최종 결정을 위한, CP CONFIGURATION 그리고/혹은 SPECIAL SUBFRAME CONFIGURATION 그리고/혹은 N_EPDCCH는 (예외적으로) SCH_CELL의 파라미터들이 고려될 수 있다.
또 다른 일례로, SCH_CELL 상의 SS에서 수행되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) BD를 위한, AL 후보 구성 그리고/혹은 AL 별 BD 횟수 결정에, 아래의 일부 (혹은 모든) 규칙에 따라 선정된 대표 파라미터들이 고려되도록 정의될 수 있다. 여기서, 일례로, AL 후보 구성 그리고/혹은 AL 별 BD 횟수의 최종 결정을 위한, CP CONFIGURATION 그리고/혹은 SPECIAL SUBFRAME CONFIGURATION 그리고/혹은 N_EPDCCH의 대표 파라미터들은 SCH_CELL의 파라미터들이 고려되도록 규칙이 정의될 수 도 있다.
일례로, SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 시스템 대역폭들 중에, 가장 큰 (혹은 작은) 대역폭이 대표 시스템 대역폭 값으로 설정될 수 있다. 또 다른 일례로, SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 시스템 대역폭들 중에, 가장 많은 (혹은 적은) 개수의 대역폭이 대표 시스템 대역폭 값으로 설정될 수 있다.
일례로, SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 전송 모드(TM)들 중에, 상기 대표 시스템 대역폭 값 적용 (혹은 가정) 하에, TM-DEPENDENT DCI 크기 (혹은 길이)가 가장 긴 (혹은 짧은) TM이 대표 TM으로 설정될 수 있다. 또 다른 일례로, SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 TM(S) 중에, 가장 많은 (혹은 적은) 개수의 TM이 대표 TM으로 설정될 수 있다.
일례로, SCHEDULED CELL(S) (그리고/혹은 SCH_CELL)의 CP CONFIGURATION(S) (혹은 SPECIAL SUBFRAME CONFIGURATION(S) 혹은 N_EPDCCH(S)) 중에, 가장 많은 (혹은 적은) 개수의 CP CONFIGURATION (혹은 SPECIAL SUBFRAME CONFIGURATION 혹은 N_EPDCCH)이 대표 CP CONFIGURATION으로 설정될 수 있다.
또 다른 일례로, SCH_CELL 상의 SS(S)에서 수행되는 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT) BD를 위한, AL 후보 구성 그리고/혹은 AL 별 BD 횟수 결정에, 이러한 용도로 사전에 시그널링된 (혹은 설정된) 시스템 대역폭 그리고/혹은 전송 모드 그리고/혹은 CP CONFIGURATION 그리고/혹은 SPECIAL SUBFRAME CONFIGURATION 그리고/혹은 특정 EPDCCH SET의 구성 PRB-PAIR 상에서 EPDCCH 전송에 사용 가능한 RE(S) 개수 파라미터들이 고려되도록 규칙이 정의될 수 있다. 일례로, 상기 (예시#3-3) 그리고/혹은 (예시#3-4)가 적용될 경우, UE는 최종 도출된 (공통된) AL 후보 구성 그리고/혹은 AL 별 BD 횟수를 기반으로, 사전에 설정된 (혹은 시그널링된) SCH_CELL 상의 SS에서 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL) 관련 (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)에 대한 BD를 수행하게 된다.
[제안 방법#22] ('SS SHARED' 혹은 'NON-SS SHARED') CELL 별로 'SINGLE UNIFIED DL GRANT DCI FORMAT'을 만들기 위해, CELL 관련 'DCI FORMAT 1A(/DCI FORMAT 0) SIZE'와 'TM-DEPENDENT DCI FORMAT (예) DCI FORMAT 2C/2D) SIZE'를 둘 중에 가장 긴 (혹은 짧은) 것과 동일하게 (재)설정할 수 있다. 이를 통해 블라인드 디코딩 횟수를 줄일 수 있다. 즉, 검색 공간에서 하나의 공통된 길이의 DCI FORMAT을 사용하되, 그 길이는 DCI FORMAT 0/1A, 전송 모드에 따라 길이가 달라지는 DCI FORMAT들 중 가장 길거나 또는 가장 짧은 DCI FORMAT에 따라 결정하는 것이다.
여기서, 일례로, 이러한 규칙이 적용될 경우, 'SINGLE UNIFIED DL GRANT DCI FORMAT' 상에 'DCI TYPE INDICATOR' 필드가 추가적으로 (혹은 새롭게) 정의될 수 가 있으며, 해당 'DCI TYPE INDICATOR' 필드는 (전송/수신된) 'SINGLE UNIFIED DL GRANT DCI FORMAT'가 'DCI FORMAT 1A(/DCI FORMAT 0) (타입)'와 'TM-DEPENDENT DCI FORMAT (타입)' 중에 어떤 것인지를 알려주는 역할을 수행하게 된다. 여기서, 구체적인 일례로, 단말이 최종적으로 'SINGLE UNIFIED DL GRANT DCI FORMAT'을 (실제로) 수신할 때, 만약 'DCI TYPE INDICATOR' 필드가 'DCI FORMAT 1A(/DCI FORMAT 0) (타입)'을 가리킨다면, 'TM-DEPENDENT DCI FORMAT'에 'DCI FORMZT SIZE FITTING'된 'DCI FORMAT 1A(/DCI FORMAT 0)'을 (실제로) 수신 ('TM-DEPENDENT DCI FORMAT SIZE > DCI FORMAT 1A(/DCI FORMAT 0)' 상황을 가정)'하게 되며, 이 때 'SINGLE UNIFIED DL GRANT DCI FORMAT'내 해당 DCI FORMAT 1A(/DCI FORMAT 0)에 대응되는 스케줄링 정보 필드를 제외한 나머지 부분은 사전에 정의된 (혹은 시그널링된) 값 (예) '0')의 비트로 패딩된다.
또 다른 일례로, ('SS SHARED' 혹은 'NON-SS SHARED') CELL 별로 'SINGLE UNIFIED UL GRANT DCI FORMAT'을 만들기 위해, CELL 관련 'DCI FORMAT 0(/DCI FORMAT 1A) SIZE'와 'TM-DEPENDENT DCI FORMAT (예) DCI FORMAT 4) SIZE'를 둘 중에 가장 긴 (혹은 짧은) 것과 동일하게 (재)설정하도록 (혹은 맞추도록) 규칙이 정의될 수 있다.
[제안 방법#4] 일례로, 같은 셀 그룹(CG)으로 설정되는 CELL(S)은 아래의 모든 혹은 일부 파라미터들이 동일하게 설정 (혹은 공유) 되는 것으로 해석될 수 있다. 다시 말해서, CG 단위로 아래의 모든 (혹은 일부) 파라미터들이 설정되는 것으로도 해석 가능하다.
또 다른 일례로, 아래의 모든 (혹은 일부) 파라미터들이 동일한 CELL(S)만이 같은 셀 그룹으로 설정되도록 규칙이 정의될 수도 있다.
또 다른 일례로, [제안 방법#4]는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의되거나 또는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 또는 UCELL로만 또는 LCELL로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의될 수도 있다.
또 다른 일례로, [제안 방법#4]는 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 교차 반송파 스케줄링(CCS)되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 셀프 스케줄링(SFS)되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
[제안 방법#4]에서의 파라미터는 다음과 같다.
1) TM 그리고/혹은 시스템 대역폭 그리고/혹은 CP CONFIGURATION 그리고/혹은 SPECIAL SUBFRAME CONFIGURATION (그리고/혹은 N_EPDCCH)
2) CSI REQUEST FIELD의 값 (혹은 STATE) 별로 연동된 APERIODIC CSI (A-CSI) REPORTING 관련 SERVING CELL(S) SET 그리고/혹은 CSI PROCESS(ES) SET
3) PERIOIDC CSI (P-CSI) REPORTING CONFIGURATION
4) ((E)PDCCH) USS (그리고/혹은 CSS)
[제안 방법#5] 일례로, 단말에게 사전에 정의된 시그널링을 통해서, 셀 그룹(CG) 별로 (혹은 CELL 별로) 연동된 (혹은 모니터링해야 하는) 제어 채널 정보 (그리고/혹은 SS 타입 정보)를 알려줄 수 있다. 여기서, 일례로, 해당 시그널링은 상위 계층 시그널링 혹은 물리 계층 시그널링으로 정의될 수 있다. 또한, 일례로, 해당 제어 채널 정보는 PDCCH (USS 그리고/혹은 CSS), EPDCCH (USS) 중에 하나로 지시되거나, 혹은 PDCCH (USS 그리고/혹은 CSS), EPDCCH SET#0 (USS), EPDCCH SET#1 (USS) (2 개의 EPDCCH SET(S) 설정된 경우) 중에 하나로 지시되거나, 혹은 EPDCCH SET#0 (USS), EPDCCH SET#1 (USS) (2 개의 EPDCCH SET(S) 설정된 경우) 중에 하나로 지시될 수 있다.
구체적인 일례로, 2 개의 CG(S) (i.e., CG#0, CG#1)가 설정된 경우, CG#0을 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL#X) 관련 스케줄링 정보 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))는 사전에 설정된 (혹은 시그널링된) SCH_CELL#X 상의 PDCCH (USS 그리고/혹은 CSS)를 통해서 수신하고, CG#1을 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL#Y) 관련 스케줄링 정보 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))는 사전에 설정된 (혹은 시그널링된) SCH_CELL#Y 상의 EPDCCH (USS)를 통해서 수신하도록 설정될 수 있다.
여기서, 일례로, SCH_CELL#X와 SCH_CELL#Y는 상이한 (혹은 동일한) CELL로 설정될 수 있다. 또 다른 일례로, SCHEDULED CELL#W (그리고/혹은 SCH_CELL#A) 관련 스케줄링 정보 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))는 사전에 설정된 (혹은 시그널링된) SCH_CELL#A 상의 PDCCH (USS 그리고/혹은 CSS)를 통해서 수신하고, SCHEDULED CELL#Q (그리고/혹은 SCH_CELL#B) 관련 스케줄링 정보 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))는 사전에 설정된 (혹은 시그널링된) SCH_CELL#B 상의 EPDCCH (USS)를 통해서 수신하도록 설정될 수 있다. 여기서, 일례로, SCHEDULED CELL#W와 SCHEDULED CELL#Q는 동일한 (혹은 상이한) CG에 속해 있을 수 있다. 또한, 일례로, SCH_CELL#A와 SCH_CELL#B는 동일한 (혹은 상이한) CELL로 설정될 수 있다. 또 다른 일례로, 사전에 정의된 (혹은 시그널링된) CELL이 속한 CG를 구성하는 SCHEDULED CELL(S) (그리고/혹은 SCH_CELL#N) 관련 스케줄링 정보 (i.e., (UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) (혹은 사전에 정의된 (혹은 시그널링된) SCHEDULED CELL (그리고/혹은 SCH_CELL#N) 관련 스케줄링 정보)는 SCH_CELL#N 상의 PDCCH (USS 그리고/혹은 CSS) (혹은 EPDCCH (USS) 혹은 EPDCCH SET#0 (USS) 혹은 EPDCCH SET#1 (USS))를 통해서 수신하도록 설정될 수 있다. 여기서, 일례로, 사전에 정의된 (혹은 시그널링된) CELL은 PCELL로 설정될 수 있다.
상기 [제안 방법#5]의 일부 규칙 적용을 통해서, 일례로 SCH_CELL의 특정 제어 채널 (그리고/혹은 SS) 상에, 해당 SCH_CELL과 연동된 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL) 관련 모든 스케줄링 정보 전송들이 지나치게 집중되는 것을 완화 시킬 수 있다.
또한, 일례로, [제안 방법#5]이 적용되어, 특정 SCHEDULED CELL (그리고/혹은 SCH_CEL) 관련 SS가 사전에 정의된 (혹은 시그널링된) SCH_CEL 상에서 구성/탐색될 경우, 상기 설명한 일부 (혹은 모든) 제안 방법들 (e.g., [제안 방법#1], [제안 방법#2], [제안 방법#3], [제안 방법#4])이 함께 적용될 수 있다. 또 다른 일례로, 상기 [제안 방법#5]는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수도 있다. 여기서, 또 다른 일례로, 상기 [제안 방법#5]는 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수도 있다.
[제안 방법#6] 일례로, 사전에 정의된 규칙 (혹은 시그널링)을 통해, 서브프레임 별로 SCH_CELL#R 상에 구성되는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL#R) 관련 검색 공간(SS) 혹은 셀 그룹(CG) 관련 검색 공간이 일부 (혹은 모두) 상이하도록 규칙이 정의될 수 있다.
여기서, 일례로, 해당 CG 그리고/혹은 SCHEDULED CELL(S)은 SCH_CELL#R이 속한 CG 그리고/혹은 SCH_CELL#R이 속한 CG를 구성하는 SCHEDULED CELL(S)로 설정 (혹은 한정) 되거나, 혹은 사전에 정의된 (혹은 시그널링된) 규칙에 따라 SCH_CELL#R이 속하지 않은 CG 그리고/혹은 SCH_CELL#R이 속하지 않은 CG를 구성하는 SCHEDULED CELL(S)로 설정될 수 있다. 구체적인 일례로, 서브프레임 #N(SF#N) 시점에서는 SCH_CELL#R 상에 (동일 (혹은 상이한) CG에 속하는) SCHEDULED CELL#A (그리고/혹은 SCH_CELL#R) 관련 SS가 구성되는 것으로 설정되고, 서브프레임 #M(SF#M) 시점에서는 SCH_CELL#R 상에 (동일 (혹은 상이한) CG에 속하는) SCHEDULED CELL#B (그리고/혹은 SCH_CELL#R) 관련 SS가 구성되는 것으로 설정될 수 있다. 또한, 일례로, [제안 방법#6]이 적용되어, 특정 SCHEDULED CELL (그리고/혹은 SCH_CEL#R) 관련 SS가 사전에 정의된 (혹은 시그널링된) SCH_CEL#R 상에서 구성/탐색될 경우, 상기 설명한 일부 (혹은 모든) 제안 방법들 (e.g., [제안 방법#1], [제안 방법#2], [제안 방법#3], [제안 방법#4], [제안 방법#5])이 함께 적용될 수 있다.
또 다른 일례로, 상기 [제안 방법#6]은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수 있다. 여기서, 또 다른 일례로, 상기 [제안 방법#6]은 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
[제안 방법#7] 일례로, 사전에 정의된 규칙 (혹은 시그널링)을 통해, 제어 채널을 구성하는 심벌의 개수 혹은 PRB-PAIR의 개수를 증가시켜 줄 수 있다. 여기서, 일례로, 제어 채널은 PDCCH 혹은 EPDCCH (혹은 EPDCCH SET#0, EPDCH SET#1)로 해석될 수 있다.
제안 방법에 대한 구체적인 설명을 하기 전에, 기존의 CFI 값 별 CFI CODE WORD(S) 맵핑에 대한 일례는 아래 표와 같다.
[표 13]
Figure PCTKR2016000313-appb-I000017
CFI는 PDCCH를 구성하는 OFDM 심벌의 개수를 알려주는 것으로 PCFICH를 통해전송된다. CFI는 1,2,3의 값을 가지며, 시스템 대역을 구성하는 자원 블록의 개수가 10개보다 큰 경우에는 상기 CFI 값이 차례로 1,2 3 OFDM 심벌들을 나타낸다. 시스템 대역을 구성하는 자원 블록의 개수가 10개 이하인 경우에는 상기 CFI 값이 차례로 2, 3, 4 OFDM 심벌들을 나타낸다.
또 다른 일례로, [제안 방법#7]은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수 도 있다. 여기서, 또 다른 일례로, [제안 방법#7]은 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
구체적인 일례로, PDCCH의 경우, ADVANCED UE (A-UE)에게 사전에 정의된 시그널링을 통해, PCFICH을 통해 전송되는 CFI 값 (혹은 CFI STATE) 별로 추가적인 값을 링크시켜줄 수 있다. 여기서, 해당 규칙 적용에 대한 일례로, 기존 CFI 값 1, 2, 3 (,4)가 차례로 1, 2, 4 (,5) OFDM 심벌을 지시하거나 또는 2, 3, 4 (,5) OFDM 심벌을 지시하도록 링크 시켜줄 수 있다. 이러한 경우, 일례로, A-UE는 CFI 값에 대응되는 OFDM 심벌 개수가 PDCCH를 구성하는 심벌 개수라고 가정할 수 있다.
다음 표는 CFI 값과 CFI 코드워드 간의 맵핑들의 예를 나타낸다.
[표 14]
Figure PCTKR2016000313-appb-I000018
상기 표 14를 이하 예시#7-1이라 한다.
[표 15]
Figure PCTKR2016000313-appb-I000019
상기 표 15를 이하 예시#7-2이라 한다.
L-UE는 기존 단말, A-UE는 개선된 단말을 의미한다. 상기 표 14, 15에서 보듯이, 동일한 CFI 코드워드라고 하더라도 L-UE와 A-UE 각각 다른 CFI 값으로 해석할 수 있다.
또 다른 일례로, PDCCH의 경우, A-UE에게 PCFICH를 통해 RESERVED STATE (예컨대, 상기 표에서 4번째 CIF 코드워드)를 알려주고, A-UE로 하여금, 해당 RESERVED STATE을 사전에 정의된 (혹은 시그널링된) CFI 값 (e.g., 4)으로 해석하도록 설정할 수도 있다. 여기서, 일례로, 해당 RESERVED STATE (e.g., 4)를 제외한 나머지 STATE(S) (e.g., 1, 2, 3)에 대한 해석은 기존과 동일하게 가정될 수 있다. 다음 표는 이러한 제안 기법이 적용된 일례를 보여준다.
[표 16]
Figure PCTKR2016000313-appb-I000020
상기 표 16를 이하 예시#7-3이라 한다.
또 다른 일례로, PDCCH의 경우, A-UE에게 사전에 정의된 시그널링을 통해 오프셋 값 (i.e., "OFFSET"로 명명)을 알려주고, PCFICH을 통해 전송되는 CFI 값 (e.g., 'L')의 해석 시에, 해당 OFFSET을 더해서 최종 CFI 값 (e.g., 'L+OFFSET')을 가정하도록 할 수도 있다.
다음 표는 이러한 제안 기법이 적용된 일례를 보여준다. 여기서, 해당 OFFSET 값은 (사전에 정의된 시그널링을 통해) '1'로 설정된 예를 보여준다.
[표 17]
Figure PCTKR2016000313-appb-I000021
상기 표 17을 이하 예시#7-4라 한다.
또 다른 일례로, 상기 설명한 일부 (혹은 모든) 제안 규칙들이 적용될 경우, 해당 서브프레임 상에, 기존 단말(L-UE)와 개선된 단말(A-UE)의 제어(/스케줄링) 정보 다중화 (MULTIPLEXING)가 가능한 영역 (i.e., "LA_REGION"로 명영)과 A-UE의 제어(/스케줄링) 정보 전송만이 가능한 영역 (i.e., "A_REGION"로 명명)이 독립적으로 구성되도록 정의될 수 있다.
여기서, 일례로, LA_REGION은 기존 CFI 값 기반의 (PDCCH) 영역으로 구성될 수 있으며, A_REGION은 추가적으로 설정된 (혹은 확장된) CFI 값 기반의 (PDCCH) 영역에서 기존 CFI 값 기반의 (PDCCH) 영역을 뺀 나머지 (PDCCH) 영역으로 구성될 수 있다.
여기서, 일례로, (DCI 전송 관련) (E)CCE/(E)REG 인덱싱 (그리고/혹은 맵핑)은 LA_REGION/A_REGION 별로 독립적으로 수행될 수 있다. 구체적인 일례로, 상기 설명한 (예시#7-2)가 설정/적용된 경우, 만약 CFI 값이 '1'을 가리킨다면, L-UE는 해당 CFI 값을 (동일하게) '1'로 해석 (혹은 간주)하고, A-UE는 해당 CFI 값을 (사전에 시그널링된) '2'로 해석 (혹은 간주)하게 된다. 이러한 상황 하에서, 일례로, 상기 설명한 제안 방법이 적용될 경우, 첫 번째 (OFDM) 심볼로 구성된 영역과 두 번째 (OFDM) 심볼로 구성된 영역은 각각 LA_REGION, A_REGION으로 해석 (혹은 간주)되고, 개별 영역은 (DCI 전송 관련) (E)CCE/(E)REG 인덱싱 (그리고/혹은 맵핑)이 독립적으로 수행되게 된다.
또 다른 일례로, 상기 설명한 예시#7-2가 설정/적용된 경우, 만약 CFI 값이 '3'을 가리킨다면, L-UE는 해당 CFI 값을 (동일하게) '3'로 해석 (혹은 간주)하고, A-UE는 해당 CFI 값을 (사전에 시그널링된) '4'로 해석 (혹은 간주)하게 된다. 이러한 상황 하에서, 일례로, 상기 설명한 제안 방법이 적용될 경우, 첫 번째/두 번째/세 번째 (OFDM) 심볼들로 구성된 영역과 네 번째 (OFDM) 심볼로 구성된 영역은 각각 LA_REGION, A_REGION으로 해석 (혹은 간주)되고, 개별 영역은 (DCI 전송 관련) (E)CCE/(E)REG 인덱싱 (그리고/혹은 맵핑)이 독립적으로 수행되게 된다.
또 다른 일례로, A-UE에게 전송되는 CFI 값이 RESERVED STATE를 가리키고 사전에 정의된 규칙 (혹은 시그널링)을 통해 해당 RESERVED STATE가 '4'로 해석 (혹은 간주)되도록 설정된 경우, 첫 번째/두 번째/세 번째 (OFDM) 심볼들로 구성된 영역과 네 번째 (OFDM) 심볼로 구성된 영역은 각각 LA_REGION, A_REGION으로 해석 (혹은 간주)되고, 개별 영역은 (DCI 전송 관련) (E)CCE/(E)REG 인덱싱 (그리고/혹은 맵핑)이 독립적으로 수행되게 된다.
또 다른 일례로, A-UE에게 전송되는 CFI 값이 RESERVED STATE를 가리키고 사전에 정의된 규칙 (혹은 시그널링)을 통해 해당 RESERVED STATE가 '4'로 해석 (혹은 간주)되도록 설정된 경우, 첫 번째/두 번째/세 번째/네 번째 (OFDM) 심볼들로 구성된 영역은 (모두) A_REGION (혹은 LA_REGION)으로 해석 (혹은 간주)되고, 해당 영역 상에서 (DCI 전송 관련) (E)CCE/(E)REG 인덱싱 (그리고/혹은 맵핑)이 수행되게 된다.
또한, 일례로, (L-UE/A-UE) PCFICH 그리고/혹은 PHICH 관련 자원 구성/맵핑은 LA_REGION 상에서 수행되도록 규칙이 정의 (혹은 PHICH 관련 자원 구성/맵핑은 PBCH를 통해 시그널링되는 PHICH DURATION 값을 기반으로 수행되도록 규칙이 정의) 될 수 있다. 여기서, 또 다른 일례로, L-UE의 PHICH 관련 자원 구성/맵핑은 LA_REGION 상에서 수행되고, A-UE의 PHICH 관련 자원 구성/맵핑은 A_REGION 상에서 수행되도록 규칙이 정의 (i.e., PCFICH 관련 자원 구성/맵핑은 LA_REGION 상에서 수행됨) 될 수 있다. 또 다른 일례로, PDCCH CSS는 (예외적으로) LA_REGION 상에서 구성되도록 규칙이 정의될 수 있다. 또 다른 일례로, 상기 설명한 일부 (혹은 모든) 제안 규칙들이 적용될 경우, 해당 서브프레임 상에서 L-UE와 A-UE가 가정하게 되는 CFI 값이 상이한 것을 고려하여, L-UE에게 전송되는 (기존 CFI 값 (i.e., PDSCH STARTING SYMBOL 위치) 기반의) PDSCH 영역 중에, 추가적으로 설정된 (혹은 확장된) CFI 값 기반의 (PDCCH) 영역에서 기존 CFI 값 기반의 (PDCCH) 영역을 뺀 나머지 (PDCCH) 영역이 펑처링(PUNCTURING)되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 설명한 일부 (혹은 모든) 제안 규칙들이 적용될 경우, 해당 서브프레임 상에는 A-UE 관련 스케줄링 정보 전송 그리고/혹은 PDSCH 전송만이 수행되는 것으로 가정되도록 규칙이 정의될 수 있다. 여기서, 일례로, 해당 서브프레임 정보는 사전에 정의된 시그널링을 통해서, L-UE에게 알려주도록 규칙이 정의될 수 있다. 이러한 규칙이 적용될 경우, 일례로, (L-UE 관련 제어(/스케줄링) 정보 전송이 없기 때문에) A-UE 관련 (DCI 전송 관련) (E)CCE/(E)REG 인덱싱 (그리고/혹은 맵핑) 그리고/혹은 PCFICH 그리고/혹은 PHICH 관련 자원 구성/맵핑은 추가적으로 설정된 (혹은 확장된) CFI 값 기반의 (PDCCH) 영역 상에서 수행되도록 설정될 수 있다. 또 다른 일례로, 상기 설명한 일부 (혹은 모든) 제안 규칙들은, SIB 그리고/혹은 RAR 그리고/혹은 PBCH 그리고/혹은 PAGING이 수신되는 서브프레임 상에서 적용되지 않도록 규칙이 정의될 수 있다.
다음 표들은 하나의 EPDCCH SET이 12 PRB-PAIR(S)로 구성될 경우, 집성 레벨(AL) 별 블라인드 디코딩(BD) 횟수 설정에 대한 예시를 보여준다.
[표 18]
Figure PCTKR2016000313-appb-I000022
상기 표는 하나의 분산 EPDCCH-PRB 집합에 대하여 Case 1, 2 각각에 대하여 단말에 의하여 모니터링되는 EPDCCH 후보들의 개수를 나타낸다.
[표 19]
Figure PCTKR2016000313-appb-I000023
상기 표는 하나의 분산 EPDCCH-PRB 집합에 대하여 Case 3에 대하여 단말에 의하여 모니터링되는 EPDCCH 후보들의 개수를 나타낸다.
[표 20]
Figure PCTKR2016000313-appb-I000024
상기 표는 하나의 국부적 EPDCCH-PRB 집합에 대하여 Case 1, 2 각각에 대하여 단말에 의하여 모니터링되는 EPDCCH 후보들의 개수를 나타낸다.
[표 21]
Figure PCTKR2016000313-appb-I000025
상기 표는 하나의 국부적 EPDCCH-PRB 집합에 대하여 Case 3에 대하여 단말에 의하여 모니터링되는 EPDCCH 후보들의 개수를 나타낸다.
[제안 방법#8] 일례로, 상기 설명한 일부 (모든) 제안 방식들 (e.g., [제안 방법#1~#7]) 상에서, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL)은, 사전에 정의된 (혹은 시그널링된) SCH_CEL 상의 SS를 공유할 뿐만 아니라, AL 후보 구성 그리고/혹은 AL 별 BD 횟수도 공유하는 것으로 설정될 수 있다.
여기서, 일례로, 해당 방식이 적용될 경우, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL)은 하나의 가상적인 CELL로 해석될 수 있다.
일례로, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 K개의 SCHEDULED CELL(S)의 경우 (e.g., 동일한 (DL/UL) TM(S)/USS 가정), 해당 CELL(S) 관련 스케줄링 정보 ((UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))에 대한 BD를 수행할 때, '{AL, BD} = {1, 6*K}, {2, 6*K}, {4, 2*K}, {8, 2*K}'가 아닌 '{AL, BD} = {1, 6}, {2, 6}, {4, 2}, {8, 2}' (혹은 '{AL, BD} = {1, 3}, {2, 3}, {4, 1}, {8, 1}' (e.g., AL 별 BD 횟수가 반으로 축소 (BD (NUMBER) REDUCTION)된 경우로 해석 가능) 혹은 '{AL, BD} = {1, 6}, {2, 6}, {4, 1 (혹은 0)}, {8, 1 (혹은 0)}' (e.g., 상대적으로 높은 AL 별 BD 횟수가 줄어든 경우로 해석 가능) 혹은 '{AL, BD} = {1, 1 (혹은 0)}, {2, 1 (혹은 0)}, {4, 2}, {8, 2}' (e.g., 상대적으로 낮은 AL 별 BD 횟수가 줄어든 경우로 해석 가능))를 적용하게 된다.
또 다른 일례로, 상기 설명한 일부 (모든) 제안 방식들 (e.g., [제안 방법#1~#7]) 상에서, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL)은, 사전에 정의된 (혹은 시그널링된) SCH_CEL 상의 SS만을 공유하고, AL 후보 구성 그리고/혹은 AL 별 BD 횟수는 독립적인 것 (혹은 공유하지 않는 것)으로 간주 (혹은 설정) 될 수 있다. 여기서, 일례로, 해당 방식이 적용될 경우, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL)은 SS만을 공유할 뿐이고, 독립적인 CELL(S)로 해석될 수 있다.
일례로, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 K개의 SCHEDULED CELL(S)의 경우 (e.g., 동일한 (DL/UL) TM(S)/USS 가정), 해당 CELL(S) 관련 스케줄링 정보 ((UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))에 대한 BD를 수행할 때, '{AL, BD} = {1, 6*K}, {2, 6*K}, {4, 2*K}, {8, 2*K}' (혹은 '{AL, BD} = {1, 3*K}, {2, 3*K}, {4, 1*K}, {8, 1*K}' (e.g., AL 별 BD 횟수가 반으로 축소된 경우로 해석 가능) 혹은 '{AL, BD} = {1, 6*K}, {2, 6*K}, {4, 1*K (혹은 0)}, {8, 1*K (혹은 0)}' (e.g., 상대적으로 높은 AL 별 BD 횟수가 줄어든 경우로 해석 가능) 혹은 '{AL, BD} = {1, 1*K (혹은 0)}, {2, 1*K (혹은 0)}, {4, 2*K}, {8, 2*K}' (e.g., 상대적으로 낮은 AL 별 BD 횟수가 줄어든 경우로 해석 가능))를 적용하게 된다.
또 다른 일례로, 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 K개의 SCHEDULED CELL(S)의 경우 (e.g., 동일한 (DL/UL) TM(S)/USS 가정), 해당 CELL(S) 관련 스케줄링 정보 ((UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))에 대한 BD를 수행할 때, '{AL, BD} = {1, 1*K}, {2, 1*K}, {4, 1*K}, {8, 1*K}'를 적용하도록 설정될 수 있다. 여기서, 일례로, 해당 규칙은 (특정 UE의 관점에서) SCHEDULED CELL 별로 상대적으로 적은 개수 (e.g., 1)의 스케줄링 정보 ((UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT))가 전송되는 경우에 유용할 수 있다.
또한, 일례로, 이러한 규칙은 K개의 SCHEDULED CELL(S)이 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)과 LCELL(S)의 조합)로만 구성된 경우에 한정적으로 적용될 수 있다. 추가적인 일례로, [제안 방법#8]은 동일한 (그리고/혹은 상이한) CG에 속하는 CELL(S) 간에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
또 다른 일례로, 상기 [제안 방법#8]은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의 (혹은 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의 혹은 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의) 될 수 있다.
또 다른 일례로, 상기 [제안 방법#8]은 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 CCS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
[제안 방법#9] 일례로, 상기 설명한 일부 (모든) 제안 방식들 (e.g., [제안 방법#1~#8]) 상에서, 다수 개의 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL#T) 관련 SS가 사전에 설정된 (혹은 시그널링된) SCH_CELL#T 상에서 구성 (혹은 공유) 될 때, CELL 타입에 따라, 스케줄링 정보 ((UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) BD를 위한, AL 후보 구성 그리고/혹은 AL 별 BD 횟수가 일부 (혹은 모두) 상이하게 설정 (혹은 가정) 되도록 규칙이 정의될 수 있다.
여기서, 일례로, 해당 SCHEDULED CELL(S) 그리고/혹은 SCH_CEL#T는 동일한 (혹은 상이한) CG에 속할 수 있다. 제안 방식 적용에 대한 구체적인 일례로, CG#N에 SCHEDULED UCELL#X, SCHEDULED UCELL#Y, SCHEDULING LCELL#T가 속하고, SCHEDULED UCELL#X, SCHEDULED UCELL#Y, SCHEDULING LCELL#T 관련 SS가 SCHEDULING LCELL#T 상에서 공유 (/구성) 될 때, SCHEDULED UCELL#X와 SCHEDULED UCELL#Y를 위해서는 '{AL, BD} = {1, 3}, {2, 3}, {4, 1}, {8, 1}' (e.g., LCELL에 비해 AL 별 BD 횟수가 반으로 축소된 경우로 해석 가능) (혹은 '{AL, BD} = {1, 6}, {2, 6}, {4, 0}, {8, 0}' (e.g., LCELL에 비해 상대적으로 높은 AL(S)에 대한 BD가 수행되지 않는 경우로 해석 가능) 혹은 '{AL, BD} = {1, 0}, {2, 0}, {4, 2}, {8, 2}' (e.g., LCELL에 비해 상대적으로 낮은 AL(S)에 대한 BD가 수행되지 않는 경우로 해석 가능))로 설정되고, SCHEDULING LCELL#T를 위해서는 '{AL, BD} = {1, 6}, {2, 6}, {4, 2}, {8, 2}'로 설정될 수 있다.
여기서, 일례로, 해당 예시에서는 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL)이, 사전에 정의된 (혹은 시그널링된) SCH_CEL 상의 SS만을 공유하고, AL 후보 구성 그리고/혹은 AL 별 BD 횟수는 독립적인 것 (혹은 공유하지 않는 것)으로 간주하는 경우를 가정 (i.e., [제안 방법#8] 참조) 하였다.
또 다른 일례로, 상기 일부 (혹은 모든) 제안 방식들 (e.g., [제안 방법#1~#8])이 적용되어, SCHEDULED UCELL#X, SCHEDULED UCELL#Y, SCHEDULING LCELL#T (i.e., CG#N) 관련 SS가 SCHEDULING LCELL#T 상에서 공유(/구성)되고 해당 CELL(S)의 스케줄링 정보 ((UL/DL) DCI FORMAT (혹은 (UL/DL) GRANT)) BD를 위한 AL 후보 구성 그리고/혹은 AL 별 BD 횟수가 '{AL, BD} = {1, 6}, {2, 6}, {4, 2}, {8, 2}'로 공유 (혹은 설정)되는 경우, SCHEDULED UCELL#X와 SCHEDULED UCELL#Y를 위해서는 '{AL, BD} = {1, 2}, {2, 2}, {4, 1}, {8, 1}' (e.g., LCELL에 비해 전체 BD 횟수가 상대적으로 작게 설정된 경우로 해석 가능)로 설정되고, SCHEDULING LCELL#T를 위해서는 '{AL, BD} = {1, 4}, {2, 4}, {4, 1}, {8, 1}'로 설정 (i.e., 전체 AL 별 BD 횟수는 '{AL, BD} = {1, 6}, {2, 6}, {4, 2}, {8, 2}'로 유지) 될 수 있다. 여기서, 일례로, 해당 예시에서는 동일한 대표 CIF 값 (그리고/혹은 대표 RNTI 값)를 가지는 SCHEDULED CELL(S) (그리고/혹은 SCH_CEL)이, 사전에 정의된 (혹은 시그널링된) SCH_CEL 상의 SS를 공유할 뿐만 아니라, AL 후보 구성 그리고/혹은 AL 별 BD 횟수도 공유하는 경우를 가정 (i.e., [제안 방법#8] 참조) 하였다.
또 다른 일례로, 상기 [제안 방법#9]는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG에만 한정적으로 적용되도록 규칙이 정의되거나 또는 UCELL(S) (그리고/혹은 LCELL(S))이 포함된 CG 상의 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S))에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 또는 UCELL(S) (혹은 LCELL(S))로만 구성된 CG에만 한정적으로 적용되도록 규칙이 정의될 수 있다. 여기서, 또 다른 일례로, 상기 [제안 방법#9]는 사전에 설정된 (혹은 시그널링된) SCH_CELL로부터 교차 반송파 스케줄링(CCS)되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)) (그리고/혹은 SFS되는 UCELL(S) (혹은 LCELL(S) 혹은 UCELL(S)/LCELL(S)))에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
기존의 PDSCH 시작 위치(STARTING POSITION) (i.e., "PDSCH_SP"로 명명)과 EPDCCH 시작 위치(STARTING POSITION) (i.e., "EPDCCH_SP"로 명명)은 다음과 같이 정의될 수 있다.
각 활성화된 서빙 셀의 PDSCH의 시작 OFDM 심벌(서브프레임의 첫번째 슬롯에위치함)은 lDataStart라는 인덱스에 의하여 주어질 수 있다.
전송 모드 1-9로 설정된 단말은 주어진 활성화된 서빙 셀에 대해, PDSCH가 동일 서빙 셀에서 수신한 EPDCCH에 의하여 할당되거나, 또는 서브프레임에서 EPDCCH를 모니터링하도록 설정되고 PDSCH가 PDCCH/EPDCCH에 의하여 할당되지 않은 경우에서 상위 계층 파라미터인 epdcch-StartSymbol-r11이 설정되어 있다면, lDataStart는 상기 epdcch-StartSymbol-r11에 의하여 주어진다.
그렇지 않고 만약, PDSCH 및 해당 PDCCH/EPDCCH가 서로 다른 서빙 셀에서 수신되면, lDataStart는 PDSCH가 수신되는 서빙 셀에 대한 상위 계층 파라미터인 pdsch-Start-r10에 의하여 주어진다.
그 이외의 경우에는 lDataStart는 CFI 값에 의하여 주어진다. (하향링크) 시스템 대역의 자원 블록의 개수가 10보다 크면 lDataStart는 CIF값으로 주어지고, (하향링크) 시스템 대역의 자원 블록의 개수가 10 이하이면 lDataStart는 CFI 값 + 1로 주어진다.
EPDCCH의 시작 위치는 다음과 같이 주어질 수 있다.
서빙 셀에서 단말이 상위 계층 신호에 의하여 전송 모드 1-9에 따른 PDSCH 데이터 전송을 수신하도록 설정되어 있고, 상위 계층 신호 epdcch-StartSymbol-r11이 설정되어 있다면, EPDCCH의 시작 OFDM 심벌은 인덱스 lEPDCCHStart 에 의해 주어진다. 그렇지 않으면, lEPDCCHStart 에 의해 주어지는 EPDCCH의 시작 OFDM 심벌은 CFI 값에 의하여 결정된다.
일례로, 상기 설명한 제안 방법 (e.g., [제안 방법#7])이 적용되어, PDCCH를 구성하는 심벌 개수가 증가될 경우, 상대적으로 증가된 PDCCH 영역을 고려하여, EPDCCH_SP와 PDSCH_SP가 재정의될 필요가 있다. 다시 말해서, 기존 EPDCCH_SP 그리고/혹은 PDSCH_SP는 상위 계층 시그널링을 통해, 1 (첫 번째 심벌)부터 4 (네 번째 심벌)까지의 값들 중에 하나로 지정될 수 있다. 하지만, 만약 PDCCH 영역이 첫 번째 심벌부터 다섯 번째 심벌까지의 영역으로 증가 (혹은 지정)된다면, 기존 EPDCCH_SP 그리고/혹은 PDSCH_SP의 최대값은 4 (네 번째 심벌)이기 때문에, 해당 증가된 PDCCH 영역과 EPDCCH 영역 그리고/혹은 PDSCH_SP 영역이 겹치는 문제가 발생할 수 있다. 이러한 문제는 아래의 제안 방법들의 적용을 통해서 해결될 수 있다. 일례로, 아래 제안 방법들은 EPDCCH_SP 관련 EPDCCH-STARTSYMBOL-R11가 설정된 경우 그리고/혹은 동일 SERVING CELL#X 상의 EPDCCH (CELL#X)로부터 스케줄링 (SELF SCHEDULING (SFS))되는 PDSCH (CELL#X)의 경우 그리고/혹은 상이한 SERVING CELL#Y 상의 EPDCCH/PDCCH (CELL#Y)로부터 스케줄링 (CROSS CARRIER SCHEDULING (CCS))되는 PDSCH (CELL#X)의 경우 그리고/혹은 (PDSCH-START-R11가 설정되고 해당 PDSCH-START-R11가 {1, 2, 3, 4} 중에 하나를 가리킬 때) TM 10 PDSCH를 스케줄링하는 EPDCCH SET의 경우 그리고/혹은 사전에 정의된 TM (e.g., TM 1~9, TM 10)이 설정된 경우 그리고/혹은 사전에 정의된 RNTI(S) (e.g., P-RNTI/RA-RNTI/SI-RNTI/TEMPORARY C-RNTI, C-RNTI) 기반으로 PDCCH CRC SCRAMBLING이 수행되는 경우 그리고/혹은 사전에 정의된 DCI FORMAT (e.g., DCI FORMAT 1C, DCI FORAMT 1A)을 통해 PDSCH가 스케줄링되는 경우 그리고/혹은 MBSFN SF의 경우 그리고/혹은 SPECIAL SF (혹은 TDD SF#1 혹은 SF#6)의 경우 그리고/혹은 사전에 정의된 제어 채널 (e.g., PDCCH, EPDCCH)로부터 PDSCH가 스케줄링되는 경우 그리고/혹은 SFS (혹은 CCS) 기반으로 PDSCH가 스케줄링되는 경우 그리고/혹은 사전에 정의된 CELL (e.g., PCELL, SCELL, LCELL, UCELL) 상에서 (E)PDCCH/PDSCH가 전송되는 경우에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
[제안 방법#10] (특정 SERVING CELL#N에서 EPDCCH를 모니터링하도록 설정된 서브프레임을 EPDCCH MONITORING SF#K라고 할 때, 상기 SF#K에서) 증가된 PDCCH 영역의 마지막 심벌 위치 값 (i.e., "INC_PDC_LS"로 명명)이 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) EPDCCH_SP 값 (혹은 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 4)) 보다 큰 경우, 해당 EPDCCH_SP 값은 INC_PDC_LS 값으로 가정 (혹은 대체) 되도록 규칙이 정의될 수 있다.
일례로, 만약 SERVING CELL#N의 EPDCCH MONITORING SF#K에서 INC_PDC_LS 값과 (SERVING CELL#N 관련) EPDCCH_SP 값이 각각 5, 3로 설정되어 있었다면, EPDCCH_SP 값은 5로 가정될 수 있다.
또 다른 일례로, (특정 SERVING CELL#N의 SF#K 시점에서) INC_PDC_LS 값이 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) PDSCH_SP 값 (혹은 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 4)) 보다 큰 경우, 해당 PDSCH_SP 값은 INC_PDC_LS 값으로 가정 (혹은 대체) 되도록 규칙이 정의될 수 있다.
여기서, 일례로, PDSCH_SP 값은 PDSCH-START-R11 혹은 PDSCH-START-R10를 통해 설정될 수 있다. 구체적인 일례로, 만약 SERVING CELL#N의 SF#K에서 INC_PDC_LS 값과 (SERVING CELL#N 관련) PDSCH_SP 값이 각각 5, 3로 설정되어 있었다면, PDSCH_SP 값은 5로 가정될 수 있다.
[제안 방법#11] (특정 SERVING CELL#N의 EPDCCH MONITORING SF#K 시점에서) INC_PDC_LS 값이 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) EPDCCH_SP 값 (혹은 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 4)) 보다 큰 경우 그리고/혹은 (특정 SERVING CELL#N의 SF#K 시점에서) INC_PDC_LS 값이 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) PDSCH_SP 값 (혹은 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 4)) 보다 큰 경우, 해당 EPDCCH_SP 값 그리고/혹은 PDSCH_SP 값에 사전에 설정된 (혹은 시그널링된) 오프셋 값 (i.e., "ST_OFFSET"로 명명)을 적용하여, (SERVING CELL#N 관련) 최종 EPDCCH_SP 값 (i.e., '(EPDCCH_SP+ST_OFFSET)') 그리고/혹은 최종 PDSCH_SP 값 (i.e., '(PDSCH_SP+ST_OFFSET)')을 계산하도록 규칙이 정의될 수 있다.
일례로, ST_OFFSET이 2로 설정된 (혹은 시그널링된) 경우, 만약 SERVING CELL#N의 EPDCCH MONITORING SF#K에서 INC_PDC_LS 값과 (SERVING CELL#N 관련) EPDCCH_SP 값이 각각 5, 3로 설정되어 있었다면, 최종 EPDCCH_SP 값은 '(3+2)'의 연산을 통해 5로 계산된다. 또한, 일례로, 해당 ST_OFFSET 값이 (암묵적으로) INC_PDC_LS 값으로 가정되도록 규칙이 정의될 수 있다. 여기서, 일례로, 이러한 규칙이 적용될 경우, (INC_PDC_LS+1) 지점이 (SERVING CELL#N) SF#K의 가상적인 (VIRTUAL) 첫번째 심벌로 간주될 수 있으며, 해당 가상적인 첫번째 심벌을 기준으로 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) EPDCCH_SP 값 그리고/혹은 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) PDSCH_SP 값이 적용되어, 최종 EPDCCH_SP 위치 그리고/혹은 최종 PDSCH_SP 위치가 결정된다. 또한, 일례로, (특정 SERVING CELL#N의 EPDCCH MONITORING SF#K 시점에서) INC_PDC_LS 값이 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) EPDCCH_SP 값 (혹은 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 4)) 보다 큰 경우 그리고/혹은 (특정 SERVING CELL#N의 SF#K 시점에서) INC_PDC_LS 값이 사전에 정의된 시그널링 (혹은 규칙)을 통해 설정되는 (SERVING CELL#N 관련) PDSCH_SP 값 (혹은 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 4)) 보다 큰 경우, 사전에 정의된 (혹은 시그널링된) 특정 값에 따라 최종 EPDCCH_SP 위치 그리고/혹은 최종 PDSCH_SP 위치가 결정되도록 규칙이 정의될 수 있다.
이하에서는, 복수의 셀들의 집성을 지원할 수 있는 CA 상황 또는 증가하는 (DL 그리고/혹은 UL) 데이터 수요량을 지원하기 위해서, 많은 개수의 CELL(S)이 CA 기법으로 설정된 상황에서 단말이 네트워크로 보고하는 단말 능력 정보(UE CAPABILITY INFORMATION)에 대해 설명한다. 종래 CA에서는 최대 5개의 셀들의 집성을 지원하였으나, 장래 CA에서는 5개보다 많은 셀들(예컨대 최대 32개)의 집성을 지원할 수 있다. 여기서, 5개보다 많은 셀들의 집성을 지원한다는 의미는 CA 시 항상 5개보다 많은 셀들을 실제로 집성한다는 것을 의미하지는 않는다. 즉, 단말은 5개 이하의 셀들의 집성도 지원할 수 있다. 본 발명은 설정된 셀들의 개수에는 무관하게 적용될 수 있다.
단말 능력 정보는, CA CAPABILITY INFORMATION (예컨대, 단말이 반송파 집성을 지원하는 최대 CC (COMPONENT CARRIER)의 개수 및/또는 CC 조합 등에 대한 정보)뿐만 아니라 (1) BD (BLIND DECODING) CAPABILITY INFORMATION, (2) BUFFERING CAPABILITY INFORMATION, (3) RRM CAPABILITY INFORMATION 중 적어도 하나를 포함할 수 있다. 단말은 단말 능력 정보를 사전에 정의된 시그널을 통해서 (독립적으로) 보고할 수 있다.
상기 BD CAPABILITY INFORMATION은 하나의 서브프레임(SF)에서 블라인드 디코딩(BD) 가능한 (최대) (USS) PDCCH(또는 EPDCCH) 후보(CANDIDATE) 개수, 하나의 SF에서의 CC 별 (최대) (USS) BD 수를 임의의 특정 값으로 가정할 때에 블라인드 디코딩을 지원할 수 있는 CC 개수 중 적어도 하나를 포함할 수 있다.
여기서, 일례로, UE CATEGORY 별로 최소한 지원해야 하는 BD 횟수 ("MINIMUM BD NUMBER(/CAPABILITY) PER UE CATEGORY")는 (UE의) 반송파 집성 능력(CA CAPABILITY)와 독립적으로 (혹은 상관없이) 정의 (혹은 시그널링)될 수 있다. 또 다른 일례로, UE CATEGORY 별로 최소한 지원해야 하는 BD 횟수 ("MINIMUM BD NUMBER(/CAPABILITY) PER UE CATEGORY")가 (사전에 정의된 (혹은 시그널링된)) "UNIT BD (NUMBER)"로 해석(/정의)될 수 있으며, 사전에 정의된 (UE의) CA CAPABILITY와 "UNIT BD (NUMBER)" 간의 관계 (그리고/혹은 함수 (예) 'UNIT BD (NUMBER) X CA CAPABILITY') 그리고/혹은 규칙)에 따라, 특정 CA CAPABILITY와 UE CATEGORY의 UE가 (하나의 SF (및 USS)에서) 지원할 수 있는 최종 (전체) BD 횟수가 결정(/정의)될 수 있다.
또 다른 일례로, UE가 지원해야 하는 최소한의 BD 개수 (그리고/혹은 능력)는 (UE가 (기지국으로) 보고한 혹은 UE의 UE CATEGORY에 따른) 지원 가능한 PEAK DATA RATE(/SOFT CHANNEL BIT(S)의 전체 개수) (그리고/혹은 BUFFER CAPABILITY 그리고/혹은 CA CAPABILITY)에 비례적으로 정의(/설정)될 수 있다.
또한, 일례로, RRM CAPABILITY INFORMATION은 동시에 RRM MEASUREMENT/REPORT를 지원 (MANAGE)할 수 있는 CC 개수로 정의될 수 있다. 또한, 일례로, 상기 (일부 혹은 모든) INFORMATION(S)은 PER BAND (혹은 PER BAND PER BANDCOMBINATION) 단위로 보고하도록 규칙이 정의될 수 있다. 또한, 일례로, UE로 하여금, 상기 (일부 혹은 모든) CAPABILITY INFORMATION(S)을 각각 보고 (혹은 시그널링)하도록 규칙이 정의되거나, 혹은 (사전에 설정된 (혹은 시그널링된)) CAPABILITY INFORMATION 조합을 보고 (혹은 시그널링)하도록 규칙이 정의될 수 있다.
도 10은 본 발명의 일 실시예에 따른 단말의 단말 능력 정보 보고 방법을 예시한다.
도 10을 참조하면, 단말은 기지국에게 단말 능력 정보를 보고한다(S510). 전술한 바와 같이, 단말 능력 정보는 단말의 능력을 기지국에게 알려주는 것으로, 서브프레임 별 (USS) 하향링크 제어 채널 디코딩 능력을 나타내는 BD CAPABILITY INFORMATION을 포함할 수 있다. 단말 능력 정보를 통해 단말은 기지국에게 서브프레임의 USS에서 PDCCH/EPDCCH와 같은 하향링크 제어 채널을 블라인드 디코딩할 수 있는 (최대) 횟수를 알려주는 것이다. BD CAPABILITY INFORMATION은 미리 정해진 개수의 후보값(예컨대, 32개)들 중 어느 하나의 값을 포함할 수 있다. 즉, 단말은 네트워크에게 서브프레임 별로 (USS) 하향링크 제어 채널을 디코딩할 수 있는 능력(CAPABILITY)을 보고하는 것이다. 예를 들어, 단말은 서브프레임의 단말 특정 검색 공간(USS)에서 PDCCH 또는 EPDCCH를 블라인드 디코딩할 수 있는 (최대) 횟수를 네트워크에게 보고할 수 있다.
기지국은 단말 능력 정보에 기반하여 셀 별 USS의 각 집성 레벨(AL)에 대한 제어 채널(EPDCCH 또는/및 PDCCH) 후보들의 개수를 결정한다(S520). 셀 별 USS의 각 집성 레벨(AL)에 대한 제어 채널(EPDCCH 또는/및 PDCCH) 후보들의 개수를 나타내는 정보를 제어 채널 후보 개수 정보라 칭할 수 있다.
기지국은 상기 단말에게 제어 채널 후보 개수 정보를 전송한다(S530). 전술한 바와 같이, 제어 채널 후보 개수 정보는 셀 별 USS의 각 집성 레벨(AL)에 대한 제어 채널(EPDCCH 또는/및 PDCCH) 후보들의 개수를 알려줄 수 있다. 예를 들어, 제어 채널 후보 개수 정보는 RRC 메시지와 같은 상위 계층 신호를 통해 제공될 수 있다. 제어 채널 후보 개수 정보에 대해서는 도 16에서 보다 상세히 설명한다. 한편, 일례로, 기지국은 단말로부터 전술한 단말 능력 정보를 수신하지 못한 경우, 상기 단말이 임의의 CC들을 집성/스케줄링하여도 무방한 능력을 가지고 있다고 가정할 수 있다.
(예시#A) CA CAPABILITY 보다 BD CAPABILITY가 작은 단말 타입의 경우, 제한된 BD CAPABILITY로 많은 수의 (DL) CELL(S)을 지원하기 위해서, (특정 SF 시점에서의) (E)PDCCH 수신을 위한 전체 BD 개수의 감소를 고려할 수 있다. 예를 들어, 사전에 정의된 (혹은 시그널링된) CELL 관련 (E)PDCCH CANDIDATE 개수를 감소시키거나, 하나의 DCI로 다수 개의 CELL(S) 그리고/혹은 SF(S)에 대한 스케줄링을 수행할 수 있다.
(예시#B) CA CAPABILITY 대비 LOWER PEAK RATE (e.g., SOFT CHANNEL BIT(S)의 전체 개수)가 고려되는 경우, 제한된 소프트 버퍼 크기로 많은 수의 (DL) CELL(S)을 지원하기 위해서, PDSCH 수신 관련 추가적인 (DL) 소프트 버퍼 운영 (HANDLING)이 고려될 수 있다. 예를 들어, 사전에 설정된 (혹은 시그널링된) CELL(S) 간에 소프트 버퍼 공유 동작을 할 수 있다.
(예시#C) (하나의 UE 관점에서) 특정 CELL이 다수 개의 CELL(S)을 CROSS-CARRIER SCHEDULING (CCS)하도록 설정 (혹은 시그널링)되거나 혹은 다수의 UE(S) 간에 PCELL/SCHEDULING CELL이 동일하게 설정된 (혹은 시그널링된)경우, (다수 개의 CELL(S) 혹은 다수의 UE(S) 관련) SEARCH SPACE (SS)들의 단순한 연접(CONCATENATION)으로, INTRA-UE (E)PDCCH BLOCKING PROBABILTY 그리고/혹은 INTER-UE (E)PDCCH BLOCKING PROBABILTY이 높아지는 것을 완화시키기 위해, (다수 개의 CELL(S) 혹은 다수의 UE(S) 간에) SS 공유 동작이 고려될 수 있다.
이하에서는, 증가하는 하향링크/상향링크 데이터 수요량을 지원하기 위해서, 많은 개수의 CELL(S)이 CA 기법으로 설정된 경우, CIF (CARRIER INDICATOR FIELD)를 효율적으로 정의/운영하는 방법을 제안한다.
여기서, 일례로, 하기 제안 규칙들은 5개보다 많은 셀(반송파)가 집성되는MASSIVE CA MODE가 설정된 경우, CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 (UL) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우, CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우, ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우, 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 이상인 경우, CROSS CARRIER SCHEDULING (CCS) 기법이 설정된 경우와 같이 다양한 상황들 중 일부 상황에서만 한정적으로 적용되도록 설정될 수 도 있다.
제안 방식에 대한 구체적인 설명을 하기 전에, 기존 CA 상황 하에서 CELL 별 (SERVING) CELL INDEX를 지정하는 방법, SCELL 별 (SERVING) CELL INDEX를 지정하는 방법에 대해 설명한다.
기지국은 단말에게 'ServCellIndex'라는 정보 요소(information element:IE)를 제공한다. 'ServCellIndex'는 프라이머리 셀, 세컨더리 셀과 같은 서빙 셀을 식별하는데 사용되는 짧은 아이디(identity)이며 0-7 중 어느 하나의 정수 값을 가질 수 있다. 이 때, 0값은 프라이머리 셀에 적용되고, 나머지 값들은 세컨더리 셀에 적용된다.
'SCellIndex'는 세컨더리 셀을 식별하는데 사용되는 짧은 아이디로 1-7 중 하나의 값을 가질 수 있다.
종래 반송파 지시 필드(CARRIER INDICATION FIELD: CIF)는 특정 서빙 셀에 대한 ServCellIndex 값 또는 SCellIndex 값과 동일하게 설정되었다. 예를 들어, 제1 서빙 셀의 ServCellIndex 값이 2라면, 상기 제1 서빙 셀을 지시하는 CIF값 역시 2가 된다. 기존 CA에서는 최대 5개의 CC들이 집성되었고 CIF 필드가 3비트로 구성되었으므로, CA에서 5개의 CC들이 집성되고 CIF 값과 ServCellIndex 값(또는 SCellIndex 값)을 동일하게 사용하여도 무방하였다. 그러나, 8개 보다 많은 CC들이 집성될 수 있는 장래의 MASSIVE CA에서는 이러한 종래의 방법으로는 각 CC를 제대로 지시할 수 없는 문제가 있다.
이하, 설명의 편의를 위해서, CELL 별 (SERVING) CELL INDEX(ServCellIndex)를 "CIDX"로 명명하고, SCELL 별 (SERVING) CELL INDEX(SCellIndex)를 "SCIDX"이라 칭한다.
[제안 방법#12] CIF SIZE가 기존과 동일한 값으로 유지 (혹은 고정)되는 경우, 아래의 (일부 혹은 모든) 규칙을 기반으로, CIF가 사용될 수 있다. 여기서, 일례로, 기존 CIF SIZE는 3 BIT(S)를 의미한다. 또한, 일례로, [제안 방법#12]의 적용은 하나의 SCHEDULING CELL로부터 교차 반송파 스케줄링(CCS)되는 최대 SCHEDULED CELL(S) 개수가 5 혹은 8 (혹은 TH_N)로 한정 (혹은 제한)되는 것으로 해석될 수 있다.
또한, 일례로, [제안 방법#12]가 적용될 경우, 특정 (SCHEDULED) CELL 관련 SS 구성/위치는 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)을 기반으로 결정 (i.e., 특정 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)가 nCI 파라미터에 대입됨) 되도록 규칙이 정의되거나 또는 해당 (SCHEDULED) CELL의 (재)맵핑된 CIF 값을 기반으로 결정 (i.e., 특정 (SCHEDULED) CELL의 (재)맵핑된 CIF 값이 nCI 파라미터에 대입됨) 되도록 규칙이 정의될 수 있다.
또한, 일례로, [제안 방법#12]가 적용될 경우, 특정 (SCHEDULED) CELL 관련 (MAC CONTROL ELEMENT 상의) PHR(POWER HEADROOM REPORT) 맵핑 순서/위치 (그리고/혹은 (PUCCH 혹은 PUSCH 상의) HARQ-ACK (그리고/혹은 CSI) 맵핑 순서/위치)는 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)을 기반으로 결정되도록 규칙이 정의 (혹은 해당 (SCHEDULED) CELL의 (재)맵핑된 CIF 값을 기반으로 결정되도록 규칙이 정의) 될 수 있다.
(규칙#12-A) 단말에게 설정된 CELL 개수(이를 이하에서"CONF_N"라 칭한다)가 사전에 정의된 (혹은 시그널링된) 임계값 (이를 이하에서, "TH_N"라 칭한다) 이하인 경우, 특정 (SCHEDULED) CELL 관련 CIF 값은 해당 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 동일하게 가정/설정될 수 있다. 예를 들어, TH_N는 5 혹은 8로 설정될 수 있다. 또한, 일례로, 이러한 규칙은 CIF SIZE와 CDIX (혹은 SCDIX)의 SIZE가 동일한 경우 적용할 수 있다. 이 때, CIF SIZE는 3 BITS이고 CDIX (혹은 SCDIX)는 3 BITS로 설정될 수 있다.
(규칙#12-B) CONF_N가 TH_N 보다 큰 경우, 아래의 (일부 혹은 모든) 방법을 기반으로, 특정 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 해당 (SCHEDULED) CELL 관련 CIF 값 간에 (재)맵핑 (CDIX (SCIDX)-TO-CIF MAPPING)이 설정/수행될 수 있다.
일례로, 3 BIT-CIF가 가리킬 수 있는 최대 (SCHEDULED) CELL(S) 개수 (혹은 기존에 CCS로 지원 가능한 최대 SCHEDULED CELL(S) 개수)보다 CA 기법으로 설정된 CONF_N가 큰 경우에 이러한 방법이 적용될 수 있다. 이를 통해, 기존 CIF의 SIZE 변경 없이 특정 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)가 효율적으로 지시될 수 있다. 다시 말해서, 이러한 방법이 적용될 경우, 특정 (SCHEDULED) CELL 관련 CIF 값과 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX) 값이 서로 상이할 수 있다.
또한, 일례로, (규칙 12-B)는 3 BIT-CIF가 가리킬 수 있는 최대 (SCHEDULED) CELL(S) 개수 (혹은 기존에 CCS로 지원 가능한 최대 SCHEDULED CELL(S) 개수)보다 높은 CIDX (혹은 SCIDX) 값을 가지는 (SCHEDULED) CELL(S)에만 (한정적으로) 적용되도록 규칙이 정의될 수도 있다. 예를 들어, 8 이상의 값을 CIDX(또는 SCIDX)로 가지는 셀들을 지시하는 CIF에 대해서만 CIDX-TO-CIF 맵핑이 정의될 수도 있다.
또한, 일례로, 이러한 규칙의 적용은 CIF SIZE와 CDIX (혹은 SCDIX)가 상이한 것 (혹은 CDIX (혹은 SCDIX)가 CIF SIZE보다 큰 것)으로 해석될 수 있다. 일례로, CIF SIZE는 3 BITS이고 CDIX (혹은 SCDIX)는 5 BITS인 경우이다.
(예시#12-B-1) 사전에 정의된 시그널을 통해서, 특정 SCHEDULING CELL로부터 교차 반송파 스케줄링(CCS)되는 SCHEDULED CELL(S)이 어떠한 CIF 값에 맵핑 또는 재맵핑되는지가 설정될 수 있다. 여기서, 일례로, 해당 시그널은 물리 계층 시그널 혹은 RRC 메시지와 같은 상위 계층 시그널로 정의될 수 있다.
구체적인 일례로, 16 개의 CELL(S) (i.e., CIDX 0의 CELL (i.e., PCELL), SCIDX 1의 SCELL, SCIDX 2의 SCELL, SCIDX 3의 SCELL, SCIDX 4의 SCELL, SCIDX 5의 SCELL, SCIDX 6의 SCELL, SCIDX 7의 SCELL, SCIDX 8의 SCELL, SCIDX 9의 SCELL, SCIDX 10의 SCELL, SCIDX 11의 SCELL, SCIDX 12의 SCELL, SCIDX 13의 SCELL, SCIDX 14, SCIDX 15의 SCELL)이 CA 기법으로 설정된 경우, 만약 CIDX 0의 CELL (i.e., SCHEDULING CELL)로부터 CCS되는 CELL(S) (i.e., SCHEDULED CELL(S))이 SCIDX 1의 SCELL, SCIDX 3의 SCELL, SCIDX 10의 SCELL, SCIDX 12의 SCELL로 설정된다면, (사전에 정의된 시그널을 통해) (SCIDX 1의 SCELL, SCIDX 3의 SCELL,) SCIDX 10의 SCELL, SCIDX 12의 SCELL을 각각 (CIF 1, CIF 3,) CIF 2, CIF 4에 (재)맵핑시켜줄 수 있다. 다시 말해서, 일례로, SCIDX 10의 SCHEDULED SCELL, SCIDX 12의 SCHEDULED SCELL의 CIF 값들을 CIF 10, CIF 12가 아닌 CIF 2, CIF 4에 (재)맵핑시켜줌으로써, 기존 CIF SIZE (i.e., 3 BITS)의 변경 없이, CIDX 0의 SCHEDULING CELL로부터 CCS되는 SCIDX 10의 SCHEDULED SCELL, SCIDX 12의 SCHEDULED SCELL을 효과적으로 지시 가능하다.
(예시#12-B-2) 사전에 정의된 규칙을 통해서, 특정 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)이 어떠한 CIF 값에 (재)맵핑되는지가 설정될 수 있다. 구체적인 일례로, 하나의 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)은 CDIX (혹은 SCDIX (혹은 CG INDEX))의 오름 차순 (혹은 내림 차순)으로 CIF 값들이 (순차적으로) (재)맵핑되도록 규칙이 정의될 수 있다.
일례로, SCHEDULING CELL의 CIF 값은 사전에 정의된 (혹은 시그널링된) 값 (e.g., 0)으로 설정 (혹은 (재)맵핑)되고, 해당 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)에 대해서만 CDIX (혹은 SCDIX (혹은 CG INDEX))의 오름 차순 (혹은 내림 차순)으로 CIF 값들이 (순차적으로) (재)맵핑되도록 설정될 수 있다. 여기서, 일례로, SCHEDULED CELL(S)에 (재)맵핑되는 CIF 값들은 SCHEDULING CELL 관련 CIF 값 (e.g., 0)을 제외한 나머지 CIF 값들을 의미한다.
또 다른 일례로, SCHEDULING CELL의 CIF 값은 사전에 정의된 (혹은 시그널링된) 값 (e.g., 0)으로 설정 (혹은 (재)맵핑)되고, 해당 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)에 대해서만 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 8' 혹은 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 5'으로 CIF 값들이 (재)맵핑되도록 설정될 수 있다. N MODULO M은 N을 M으로 나눈 나머지를 의미한다.
또 다른 일례로, 특정 SCHEDULING CELL#X와 해당 SCHEDULING CELL#X로부터 CCS되는 SCHEDULED CELL(S)은 (모두) CDIX (혹은 SCDIX (혹은 CG INDEX))의 오름 차순 (혹은 내림 차순)으로 CIF 값들이 (순차적으로) (재)맵핑될 수 있다. 또는 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 8' 혹은 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 5'으로 CIF 값들이 (재)맵핑될 수 있다.
이러한 규칙의 적용은 SCHEDULING CELL 그리고/혹은 SCHEDULED CELL(S) 관련 CIF 값과 해당 SCHEDULING CELL 그리고/혹은 SCHEDULED CELL(S) 관련 (실제) CIDX (혹은 SCIDX) 값이 상이할 수 있는 것으로 해석될 수 있다.
(예시#12-B-3) 사전에 정의된 시그널을 통해서, SCHEDULING CELL 그리고/혹은 SCHEDULED CELL(S) 관련 "CDIX (혹은 SCDIX)-TO-CIF VALUE" (재)맵핑 정보가 (UE에게) 전달되도록 규칙이 정의될 수 있다. 여기서, 일례로, 해당 정보는 CCS 관련 정보를 알려주는 (기존) RRC SIGNALING 상에 함께 포함되어 전송되도록 설정될 수 있다.
[제안 방법#13] CIF SIZE가 기존과 동일한 값으로 유지 (혹은 고정)되지 않는 경우, 아래의 (일부 혹은 모든) 규칙을 기반으로, CIF가 사용될 수 있다. 여기서, 일례로, 기존 CIF SIZE는 3 BIT(S)를 의미한다. 또한, 일례로, [제안 방법#13]이 적용될 경우, 특정 (SCHEDULED) CELL 관련 SS 구성/위치는 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)을 기반으로 결정 (즉, 특정 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)가 nCI 파라미터에 대입됨) 되도록 규칙이 정의 (혹은 해당 (SCHEDULED) CELL의 (재)맵핑된 CIF 값을 기반으로 결정 (i.e., 특정 (SCHEDULED) CELL의 (재)맵핑된 CIF 값이 nCI 파라미터에 대입됨) 되도록 규칙이 정의) 될 수 있다.
또한, 일례로, [제안 방법#13]가 적용될 경우, 특정 (SCHEDULED) CELL 관련 (MAC CONTROL ELEMENT 상의) PHR 맵핑 순서/위치 (그리고/혹은 (PUCCH 혹은 PUSCH 상의) HARQ-ACK (그리고/혹은 CSI) 맵핑 순서/위치)는 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)을 기반으로 결정되도록 규칙이 정의되거나 또는 해당 (SCHEDULED) CELL의 (재)맵핑된 CIF 값을 기반으로 결정되도록 규칙이 정의될 수 있다.
(규칙#13-A) 단말에게 설정된 CELL 개수 (이하, "CONF_M"로 명명)가 사전에 정의된 (혹은 시그널링된) 임계값 (이하, "TH_M"로 명명) 이하인 경우, CIF SIZE는 기존과 동일한 값 (e.g., 3 BIT(S))으로 가정/설정될 수 있다.
여기서, 일례로, TH_N는 5 혹은 8로 설정될 수 있다. 또한, 일례로, (규칙#13-A)이 적용될 경우에 특정 (SCHEDULED) CELL 관련 CIF 값은 해당 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 동일하게 가정/설정될 수 있다.
또한, 일례로, 이러한 규칙의 적용은 CIF SIZE와 CDIX (혹은 SCDIX)의 SIZE가 동일한 것으로 해석될 수 있다. 여기서, 일례로, CIF SIZE는 3 BITS이고 CDIX (혹은 SCDIX)는 3 BITS로 설정될 수 있다.
(규칙#13-B) CONF_N가 TH_N 보다 큰 경우, 아래의 (일부 혹은 모든) 방법을 기반으로, CIF SIZE 그리고/혹은 특정 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 해당 (SCHEDULED) CELL 관련 CIF 값 간의 (맵핑) 관계가 가정/설정될 수 있다.
(예시#13-B-1) CIF SIZE는 5 BIT(S)로 가정/설정될 수 있다. 여기서, 일례로, 이러한 방법이 적용될 경우에 특정 (SCHEDULED) CELL 관련 CIF 값은 해당 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 동일하게 가정/설정될 수 있다.
또한, 일례로, 이러한 규칙의 적용은 CIF SIZE와 CDIX (혹은 SCDIX) SIZE가 동일한 것으로 해석될 수 있다. 여기서, 일례로, CIF SIZE는 5 BITS이고 CDIX (혹은 SCDIX)는 5 BITS로 설정될 수 있다.
(예시#13-B-2) CIF SIZE는 SCHEDULING CELL 별로 MAX{CEILING(log2(SCHEDULING CELL 별 SCHEDULED CELL(S) 개수)), 3}로 가정/설정될 수 있다. 여기서, MAX {X, Y} 함수는 X와 Y 중에 상대적으로 크거나 같은 값을 도출하며, 또한, CEILING (Z) 함수는 Z 보다 크거나 같은 최소 정수 값을 도출한다.
(예시#13-B-2)이 적용될 경우, 상이한 SCHEDULED CELL(S) 개수를 가지는 SCHEDULING CELL(S)로부터 CCS되는 (다른) SCHEDULED CELL(S)는 상이한 CIF SIZE가 적용/가정될 수 있다.
(예시#13-B-2)이 적용될 경우, (예시#12-B-1) 그리고/혹은 (예시#12-B-2) 기반으로 특정 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 해당 (SCHEDULED) CELL 관련 CIF 값 간에 (재)맵핑이 설정/수행될 수 있다. 여기서, 일례로, 이러한 규칙의 적용을 통해서, 특정 SCHEDULING CELL#X의 관점에서 MAX{CEILING(log2(SCHEDULING CELL#X 별 SCHEDULED CELL(S) 개수)), 3} BIT-CIF가 가리킬 수 있는 최대 (SCHEDULED) CELL(S) 개수 보다 더 많은 SCHEDULED CELL(S)이 CCS로 설정된 경우에, 해당 SCHEDULING CELL#X로부터 CCS되는 SCHEDULED CELL(S)를 효율적으로 지시할 수 있다. 이러한 규칙의 적용은 CIF SIZE와 CDIX (혹은 SCDIX) SIZE가 상이한 것 (혹은 CDIX (혹은 SCDIX)가 CIF SIZE보다 큰 것)으로 해석될 수 있다. 여기서, 일례로, CIF SIZE는 3 BITS이고 CDIX (혹은 SCDIX)는 5 BITS로 설정될 수 있다.
(예시#13-B-3) CIF SIZE는 SCHEDULING CELL 별로 CEILING(log2(SCHEDULED CELL(S) 개수))로 가정/설정될 수 있다. (예시#13-B-3)이 적용될 경우, 상이한 SCHEDULED CELL(S) 개수를 가지는 SCHEDULING CELL(S)로부터 CCS되는 (다른) SCHEDULED CELL(S)는 상이한 CIF SIZE가 적용/가정될 수 있다.
(예시#13-B-3)이 적용될 경우, (예시#12-B-1) 그리고/혹은 (예시#12-B-2) 기반으로 특정 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 해당 (SCHEDULED) CELL 관련 CIF 값 간에 (재)맵핑이 설정/수행될 수 있다. 여기서, 일례로, 이러한 규칙의 적용을 통해서, 특정 SCHEDULING CELL#X의 관점에서 CEILING(log2(SCHEDULED CELL(S) 개수)) BIT-CIF가 가리킬 수 있는 최대 (SCHEDULED) CELL(S) 개수 보다 더 많은 SCHEDULED CELL(S)이 CCS로 설정된 경우에, 해당 SCHEDULING CELL#X로부터 CCS되는 SCHEDULED CELL(S)를 효율적으로 지시할 수 있다.
또한, 일례로, 이러한 규칙의 적용은 CIF SIZE와 CDIX (혹은 SCDIX) SIZE가 상이한 것 (혹은 CDIX (혹은 SCDIX)가 CIF SIZE보다 큰 것)으로 해석될 수 있다. 여기서, 일례로, CIF SIZE는 3 BITS이고 CDIX (혹은 SCDIX)는 5 BITS로 설정될 수 있다.
(예시#13-B-4) CIF SIZE는 MAX{CEILING(log2(CONFIGURED CELL 개수)), 3} 혹은 CEILING(log2(CONFIGURED CELL 개수))로 가정/설정될 수 있다.
[제안 방법#17] CIF SIZE가 기존과 동일한 값으로 유지 (혹은 고정)되는 경우, 아래의 (일부 혹은 모든) 규칙을 기반으로, CIF가 사용될 수 있다. 기존 CIF SIZE는 3 BIT(S)를 의미한다.
[제안 방법#17]의 적용은 하나의 SCHEDULING CELL로부터 CCS되는 최대 SCHEDULED CELL(S) 개수가 5 혹은 8로 한정 (혹은 제한)되는 것으로 해석될 수 있다.
또한, [제안 방법#17]가 적용될 경우, 특정 (SCHEDULED) CELL 관련 SS 구성/위치는 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)을 기반으로 결정 (즉, 특정 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)가 nCI 파라미터에 대입됨) 되도록 규칙이 정의될 수 있다. 또는 해당 (SCHEDULED) CELL의 (재)맵핑된 CIF 값을 기반으로 결정 (즉, 특정 (SCHEDULED) CELL의 (재)맵핑된 CIF 값이 nCI 파라미터에 대입됨) 되도록 규칙이 정의될 수 있다.
또한, [제안 방법#17]가 적용될 경우, 특정 (SCHEDULED) CELL 관련 (MAC CONTROL ELEMENT 상의) PHR 맵핑 순서/위치 (그리고/혹은 (PUCCH 혹은 PUSCH 상의) HARQ-ACK (그리고/혹은 CSI) 맵핑 순서/위치)는 해당 (SCHEDULED) CELL의 CIDX (혹은 SCIDX)을 기반으로 결정되거나 또는 해당 (SCHEDULED) CELL의 (재)맵핑된 CIF 값을 기반으로 결정될 수 있다. 또한, 일례로, [제안 방법#17]은 MASSIVE CA MODE가 설정된 경우 그리고/혹은 CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 (UL) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 (혹은 CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우) 그리고/혹은 ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 그리고/혹은 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 이상인 경우에서만 한정적으로 적용되도록 규칙이 정의될 수 있다.
MASSIVE CA MODE가 설정되지 않은 경우 그리고/혹은 CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 (혹은 CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우) 그리고/혹은 ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 그리고/혹은 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 미만인 경우에서는 기존 (REL-12 LTE) 동작이 적용될 수 있다.
(규칙#17-A) (CONFIGURED CELL(S) 개수 (이하, "CONF_N"로 명명)에 상관없이) 아래의 (일부 혹은 모든) 방법을 기반으로, 특정 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 해당 (SCHEDULED) CELL 관련 CIF 값 간에 (재)맵핑 (CDIX (SCIDX)-TO-CIF MAPPING)이 설정/수행될 수 있다.
이러한 규칙의 적용은 CIF SIZE와 CDIX (혹은 SCDIX) SIZE가 상이한 것 (혹은 CDIX (혹은 SCDIX) SIZE가 CIF SIZE보다 큰 것)으로 해석될 수 있다. 여기서, 일례로, CIF SIZE는 3 BITS이고 CDIX (혹은 SCDIX) SIZE는 5 BITS로 설정될 수 있다.
또한, 일례로, 3 BIT-CIF가 가리킬 수 있는 최대 (SCHEDULED) CELL(S) 개수 (혹은 기존에 CCS로 지원 가능한 최대 SCHEDULED CELL(S) 개수)보다 CA 기법으로 설정된 CONF_N가 큰 경우에 이러한 방법이 적용됨으로써, (기존 CIF SIZE 변경 없이) 특정 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)가 효율적으로 지시될 수 있다. 다시 말해서, 이러한 방법이 적용될 경우, 특정 (SCHEDULED) CELL 관련 CIF 값과 해당 (SCHEDULED) CELL 관련 (실제) CIDX (혹은 SCIDX) 값이 상이할 수 있다. 또한, (규칙 17-A)는 3 BIT-CIF가 가리킬 수 있는 최대 (SCHEDULED) CELL(S) 개수 (혹은 기존에 CCS로 지원 가능한 최대 SCHEDULED CELL(S) 개수)보다 높은 CIDX (혹은 SCIDX) 값을 가지는 (SCHEDULED) CELL(S)에만 (한정적으로) 적용될 수도 있다.
(예시#17-A-1) 사전에 정의된 시그널을 통해서, 특정 SCHEDULING CELL로부터 교차 반송파 스케줄링(CCS)되는 SCHEDULED CELL(S)이 어떠한 CIF 값에 (재)맵핑되는지가 설정될 수 있다. 여기서, 일례로, 해당 시그널은 물리 계층 시그널 혹은 상위 계층 시그널 (예를 들어서, RRC 시그널링)일 수 있다. 여기서, 일례로, SCHEDULED CELL(S)에 (재)맵핑되는 CIF 값들은 SCHEDULING CELL 관련 (고정된) CIF 값 (e.g., 0)을 제외한 나머지 CIF 값으로 설정 (혹은 한정)될 수 도 있다.
도 11은 전술한 규칙#17-A 또는 예시 #17-A-1에 따른 단말의 동작 방법을 나타낸다.
도 11을 참조하면, 기지국은 ServingCellID(또는 SCellID)와 CIF 간의 맵핑을 알려주는 상위 계층 신호를 단말에게 전송한다(S610). 상기 맵핑에 대해서는 도 12를 참조하여 상세히 설명한다. 상기 상위 계층 신호는 RRC 메시지일 수 있다.
여기서, 일례로, ServingCellID(또는 SCellID)와 CIF 간의 맵핑을 알려주는 상위 계층 신호는 SCHEDULED CELL(S)만을 대상으로 하며, SCHEDULING CELL의 CIF 값은 사전에 정의된 (혹은 고정된 혹은 시그널링된) 값 (e.g., 0)으로 설정 (혹은 맵핑) 될 수 도 있다. 즉, 셀 #A가 다른 셀들의 스케줄링 정보를 전송하는 스케줄링 셀이고, 셀 #B, C가 상기 셀 #A의 스케줄링 정보에 의하여 스케줄링을 받는 셀들일 경우, 상기 ServingCellID와 CIF의 맵핑은 상기 셀 #B,C의 ServingCellID와 CIF 값 간의 맵핑만을 알려줄 수 있다. 즉, 상기 상위 계층 신호는 스케줄링 셀인 셀 #A에 대해서는 ServingCellID와 CIF의 맵핑을 제공하지 않으며, 셀 #A에 대해서는 항상 미리 정해지거나 고정된 CIF 값(예를 들어, 0)이 할당(맵핑)되는 것이다.
또는 상기 상위 계층 신호는 상기 셀 #A에 대한 ServingCellID와 CIF 값 간의 맵핑도 알려주되, 상기 셀 #A에 대해서는 항상 고정된 값(예를 들어, 0)을 맵핑할 수도 있다.
상기 상위 계층 신호는 셀 #A를 통해 제공될 수도 있고, 셀 #A가 아닌 다른 셀을 통해 제공될 수도 있다.
기지국은 CIF를 포함하는 DCI를 전송한다(S620).
단말은 상기 맵핑에 기반하여 CIF 가 지시하는 셀을 식별한다(S630).
도 11에서는 ServingCellID와 CIF 간의 맵핑을 알려주는 상위 계층 신호에 기반하여 DCI에 포함된 CIF가 지시하는 셀을 식별하는 예를 설명하였지만, 다른 경우에도 적용될 수 있다.
단말은 반송파 인덱스 필드(Carrier Index Field: CIF)를 포함하는 하향링크 제어 정보(Downlink Control Information: DCI)를 수신하고 상기 CIF가 지시하는 서빙 셀에서 상기 DCI에 기반하여 데이터를 수신 또는 전송한다. 이 때, 상기 CIF가 지시하는 서빙 셀은, (SCHEDULED CELL(S)의 경우에는) 상기 서빙 셀의 서빙 셀 인덱스(ServingCellID)와 상기 반송파 인덱스 필드의 값 간의 맵핑을 알려주는 상위 계층 신호에 기반하여 식별될 수 있다. 그리고/혹은 SCHEDULING CELL의 경우에는 사전에 정의된 (혹은 고정된 혹은 시그널링된) 서빙 셀의 서빙 셀 인덱스(ServingCellID)와 반송파 인덱스 필드의 값 (e.g., 0) 간의 (맵핑) 관계에 기반하여 식별되는 것) 이다. 일례로, 전술한 바와 같이 상기 CIF는 3비트로 구성되어 0-7까지의 값들 중 하나를 가지고, 서빙 셀 인덱스는 0-31까지의 값들 중 하나를 가질 수 있다.
일례로, 단말에게는 5개보다 많은 서빙 셀들이 할당될 수 있다. 이 때, 상기 맵핑에 의하여, 상기 서빙 셀을 지시하는 상기 CIF의 값은 상기 서빙 셀의 서빙 셀 인덱스(ServingCellID)와 동일하지 않은 값으로 설정될 수 있다. 여기서, 일례로, 서빙 셀의 서빙 셀 인덱스(ServingCellID)와 반송파 인덱스 필드의 값 간의 맵핑은, (SCHEDULED CELL(S)의 경우에는) 서빙 셀의 서빙 셀 인덱스(ServingCellID)와 반송파 인덱스 필드의 값 간의 맵핑을 알려주는 상위 계층 신호에 의해서 설정 (그리고/혹은 (SCHEDULING CELL의 경우에는) 사전에 정의된 (혹은 고정된 혹은 시그널링된) 서빙 셀의 서빙 셀 인덱스(ServingCellID)와 반송파 인덱스 필드의 값 (e.g., 0) 간의 (맵핑) 관계에 의해서 설정)될 수 있다.
도 12는 ServingCellID(또는 SCellID)와 CIF 간의 맵핑을 예시한다.
도 12를 참조하면, 단말에게 서빙 셀 인덱스(ServingCellID로 표시) 0의 CELL (즉, PCELL)과 서빙 셀 인덱스 1-9의 SCELL들이 집성/설정되어 있는 상황이다. 또한, PCELL 상에서, PCELL (즉, 서빙 셀 인덱스 0) (즉, 셀프 스케줄링)뿐만 아니라, 서빙 셀 인덱스 1,3,4,5,6,8,9을 가지는 SCELL들이 교차 반송파 스케줄링되는 상황이다.
이 경우, 기지국은 상위 계층 신호를 통해 스케줄링되는 셀(SCHEDULED CELL)의 서빙 셀 ID(ServingCellID)와 CIF 간의 맵핑을 알려주는 상위 계층 신호를 전송하는 것이다. 예컨대, CIF값 1,2,3,4,5,6,7이 차례로 서빙 셀 인덱스 1,3,4,5,6,8,9 (e.g., SCHEDULED CELL(S))에 맵핑 또는 재맵핑됨을 단말에게 알려줄 수 있다. 여기서, 일례로, SCHEDULING CELL인 PCELL (즉, 서빙 셀 인덱스 0)에 대해서는, 사전에 정의된 (혹은 고정된 혹은 시그널링된) CIF 값 0이 맵핑된다. 즉, SCHEDULING CELL인 PCELL에 대해서는 CDIX TO CIF 맵핑이 제공되지 않고 미리 고정된/미리 정해진 값(예컨대, 0)을 사용하거나, CDIX TO CIF 맵핑이 제공되더라도 일정한 CIF 값(예컨대, 0)에 맵핑될 수 있다.
예컨대, 단말이 CIF값 6을 가지는 DCI를 PCELL에서 수신하면, 상기 DCI는 서빙 셀 인덱스 8을 가지는 셀에 대한 스케줄링 정보임을 알 수 있다. 따라서, 3비트의 CIF의 크기를 변경하지 않고도 8개 보다 많은 셀들이 집성된 CA에서 교차 반송파 스케줄링을 수행할 수 있게 된다.
구체적인 일례로, 16 개의 CELL(S) (i.e., CIDX 0의 CELL (i.e., PCELL), SCIDX 1의 SCELL, SCIDX 2의 SCELL, SCIDX 3의 SCELL, SCIDX 4의 SCELL, SCIDX 5의 SCELL, SCIDX 6의 SCELL, SCIDX 7의 SCELL, SCIDX 8의 SCELL, SCIDX 9의 SCELL, SCIDX 10의 SCELL, SCIDX 11의 SCELL, SCIDX 12의 SCELL, SCIDX 13의 SCELL, SCIDX 14, SCIDX 15의 SCELL)이 CA 기법으로 설정된 경우, 만약 CIDX 0의 CELL (i.e., SCHEDULING CELL)로부터 CCS되는 CELL(S) (i.e., SCHEDULED CELL(S))이 SCIDX 1의 SCELL, SCIDX 3의 SCELL, SCIDX 10의 SCELL, SCIDX 12의 SCELL로 설정된다면, (사전에 정의된 시그널을 통해) (SCIDX 1의 SCELL, SCIDX 3의 SCELL,) SCIDX 10의 SCELL, SCIDX 12의 SCELL을 각각 (CIF 1, CIF 3,) CIF 2, CIF 4에 (재)맵핑시켜줄 수 가 있다. 다시 말해서, 일례로, SCIDX 10의 SCHEDULED SCELL, SCIDX 12의 SCHEDULED SCELL의 CIF 값들을 CIF 10, CIF 12가 아닌 CIF 2, CIF 4에 (재)맵핑시켜줌으로써, 기존 CIF SIZE (i.e., 3 BITS)의 변경 없이, CIDX 0의 SCHEDULING CELL로부터 CCS되는 SCIDX 10의 SCHEDULED SCELL, SCIDX 12의 SCHEDULED SCELL을 효과적으로 지시 가능하다.
(예시#17-A-2) 사전에 정의된 규칙을 통해서, 특정 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)이 어떠한 CIF 값에 (재)맵핑되는지가 설정될 수 있다. 구체적인 일례로, 하나의 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)은 CDIX (혹은 SCDIX (혹은 CG INDEX))의 오름 차순 (혹은 내림 차순)으로 CIF 값들이 (순차적으로) (재)맵핑 (혹은 (예시#17-A-1)에 따라 CIF 값들이 (재)맵핑) 되도록 규칙이 정의될 수 있다. 여기서, 일례로, SCHEDULING CELL의 CIF 값은 사전에 정의된 (혹은 시그널링된) 값 (e.g., 0)으로 설정 (혹은 (재)맵핑)되고, 해당 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)에 대해서만 CDIX (혹은 SCDIX (혹은 CG INDEX))의 오름 차순 (혹은 내림 차순)으로 CIF 값들이 (순차적으로) (재)맵핑 (혹은 (예시#17-A-1)에 따라 CIF 값들이 (재)맵핑) 되도록 설정될 수 있다.
일례로, SCHEDULED CELL(S)에 (재)맵핑되는 CIF 값들은 SCHEDULING CELL 관련 CIF 값 (e.g., 0)을 제외한 나머지 CIF 값들을 의미할 수 있다. 여기서, 또 다른 일례로, SCHEDULING CELL의 CIF 값은 사전에 정의된 (혹은 시그널링된) 값 (e.g., 0)으로 설정 (혹은 (재)맵핑)되고, 해당 SCHEDULING CELL로부터 CCS되는 SCHEDULED CELL(S)에 대해서만 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 8' 혹은 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 5'으로 CIF 값들이 (재)맵핑되도록 설정될 수 있다.
또 다른 일례로, 특정 SCHEDULING CELL#X와 해당 SCHEDULING CELL#X로부터 CCS되는 SCHEDULED CELL(S)은 (모두) CDIX (혹은 SCDIX (혹은 CG INDEX))의 오름 차순 (혹은 내림 차순)으로 CIF 값들이 (순차적으로) (재)맵핑 (혹은 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 8' 혹은 'CDIX (혹은 SCDIX (혹은 CG INDEX)) MODULO 5'으로 CIF 값들이 (재)맵핑 혹은 (예시#17-A-1)에 따라 CIF 값들이 (재)맵핑) 되도록 규칙이 정의될 수 있다.
이러한 규칙의 적용은 SCHEDULING CELL 그리고/혹은 SCHEDULED CELL(S) 관련 CIF 값과 해당 SCHEDULING CELL 그리고/혹은 SCHEDULED CELL(S) 관련 (실제) CIDX (혹은 SCIDX) 값이 상이할 수 있는 것으로 해석될 수 있다.
(예시#17-A-3) 미리 정의된 시그널 (예를 들어서, RRC 시그널)을 통해서, SCHEDULING CELL 그리고/혹은 SCHEDULED CELL(S) 관련 "CDIX (혹은 SCDIX)-TO-CIF VALUE" (재)맵핑 정보가 단말에게 전달될 수 있다. 일례로, 해당 정보는 CCS 관련 정보를 알려주는 (기존) RRC SIGNALING 상에 함께 포함되어 전송될 수 있다.
[제안 방법#18] PUCCH 전송이 설정된 (혹은 허용된) 특정 CELL (이하, "CELL_PUCCH"로 명명)과 연동된 (CELL_PUCCH을 포함한 (혹은 포함하지 않은)) CELL(S) 집합(CG)을 "PUCCH_CG"라고 명명할 때, 해당 PUCCH_CG를 구성하는 CELL 개수에 따라, 해당 PUCCH_CG 구성 CELL(S) 간에 설정되는 CCS 관련 CIF SIZE가 변경될 수 있다.
CIF SIZE는 "MAX{CEILING(log2(PUCCH_CG를 구성하는 (CELL_PUCCH을 포함한 (혹은 포함하지 않은)) CELL 개수)), 3}"또는 "CEILING(log2(PUCCH_CG를 구성하는 (CELL_PUCCH을 포함한 (혹은 포함하지 않은)) CELL 개수))"로 결정될 수 있다.
전자(FORMER) 규칙이 적용된 경우에 대한 일례로, 특정 PUCCH_CG#X가 (CELL_PUCCH을 포함하여 (혹은 포함하지 않고)) 8 개의 CELL(S)로 구성된다면 해당 PUCCH_CG#X 구성 CELL(S) 간에 설정되는 CCS 관련 CIF SIZE는 3 BIT(S)로 결정되고, 특정 PUCCH_CG#Y가 (CELL_PUCCH을 포함하여 (혹은 포함하지 않고)) 24 개의 CELL(S)로 구성된다면 해당 PUCCH_CG#Y 구성 CELL(S) 간에 설정되는 CCS 관련 CIF SIZE는 5 BIT(S)로 결정될 수 있다.
또 다른 일례로, CIF SIZE는 PUCCH_CG를 구성하는 (CELL_PUCCH을 포함한 (혹은 포함하지 않은)) CELL 개수가 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 5 혹은 8) 이하인 경우에는 기존과 동일한 값 (e.g., 3 BIT(S)) 혹은 "MAX{CEILING(log2(PUCCH_CG를 구성하는 CELL 개수)), 3}"로 결정되고, PUCCH_CG를 구성하는 (CELL_PUCCH을 포함한 (혹은 포함하지 않은)) CELL 개수가 사전에 정의된 (혹은 시그널링된) 임계값 (e.g., 5 혹은 8) 보다 큰 경우에는 5 BIT(S) 혹은 "CEILING(log2(PUCCH_CG를 구성하는 CELL 개수))"로 결정될 수 있다.
또한, 일례로, [제안 방법#18]이 적용될 경우, 특정 (SCHEDULED) CELL 관련 CIDX (혹은 SCIDX) 값과 해당 (SCHEDULED) CELL 관련 CIF 값 간에 상기 설명한 (재)맵핑 (CDIX (SCIDX)-TO-CIF MAPPING) 규칙을 추가적으로 적용함으로써, 특정 (SCHEDULED) CELL 관련 SS 구성/위치 그리고/혹은 (MAC CONTROL ELEMENT 상의) PHR 맵핑 순서/위치 그리고/혹은 (PUCCH 혹은 PUSCH 상의) HARQ-ACK (그리고/혹은 CSI) 맵핑 순서/위치를 효율적으로 관리/제어할 수 있다.
또 다른 일례로, [제안 방법#18]은 MASSIVE CA MODE가 설정된 경우 그리고/혹은 (LCELL (혹은 UCELL)인) SCELL이 CELL_PUCCH로 설정된 경우 그리고/혹은 CELL_PUCCH (혹은 PUCCH_CG)이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 그리고/혹은 (PUCCH_CG를 구성하는) CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 (UL) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 (혹은 CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우) 그리고/혹은 (PUCCH_CG를 구성하는) ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 그리고/혹은 (PUCCH_CG를 구성하는) 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 이상인 경우 (그리고/혹은 PUCCH_CG 구성 CELL(S) 간에만 CCS이 한정적으로 설정될 경우)에서만 한정적으로 적용될 수도 있다.
여기서, 일례로, MASSIVE CA MODE가 설정되지 않은 경우 그리고/혹은 (LCELL (혹은 UCELL)인) SCELL이 CELL_PUCCH로 설정되지 않은 경우 그리고/혹은 CELL_PUCCH (혹은 PUCCH_CG)이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 그리고/혹은 (PUCCH_CG를 구성하는) CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 (UL) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 (혹은 CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우) 그리고/혹은 (PUCCH_CG를 구성하는) ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 그리고/혹은 (PUCCH_CG를 구성하는) 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 미만인 경우 (그리고/혹은 상이한 PUCCH_CG 구성 CELL(S) 간에도 CCS이 설정/허용될 경우)에서는 기존 (REL-12 LTE) 동작이 적용될 수도 있다.
이하에서는, 복수의 셀(반송파)들의 집성을 지원하는 무선통신 시스템에서, 하향링크 제어정보(DCI), DCI를 모니터링/검출하는 검색 공간(SS), SS에서의 집성 레벨(AL)과 블라인드 디코딩(BD)을 설정하는 방법에 대해 설명한다. 예를 들어, 기존 CA에서는 최대 5개의 셀들의 집성만을 지원하였으나, 장래의 CA에서는 최대 32개의 셀들의 집성을 지원할 수 있는데, 이러한 장래의 CA를 지원하는 단말에 대해 본 발명이 적용될 수 있다. 다만, 장래의 CA를 지원하는 단말이라도 5개 이하의 셀들의 집성 역시 당연히 지원할 수 있으며 이 경우에도 본 발명이 적용될 수 있다.
일례로, 많은 개수의 CELL(S)이 CA 기법으로 설정된 환경 하에서, 해당 CELL(S) 관련 (하향링크/상향링크) 스케줄링 정보 전송들의 오버헤드 (OVERHAED)를 줄이기 위해서, 사전에 설정된 (혹은 시그널링된) 복수 개의 CELL(S) 관련 스케줄링 정보들이 하나의 DCI (혹은 제어 채널) (이하, "MUCC-DCI"로 명명)를 통해서 전송될 수 있다. 즉, MUCC-DCI는 복수의 셀들 관련한 스케줄링 정보들이 포함된 하나의 DCI를 의미한다.
여기서, 일례로, MUCC-DCI를 통해서 동시에 스케줄링되는 CELL(S)은 동일한 CELL TYPE 그리고/혹은 TM 그리고/혹은 시스템 대역폭 그리고/혹은 통신 타입 그리고/혹은 CG의 CELL(S)로 설정 (혹은 한정)될 수 있다. 여기서, 일례로, CELL TYPE은 UCELL, LCELL을 의미하며, 또한, 통신 타입은 FDD, TDD를 의미한다. 이하에서는 설명의 편의를 위해서, (기존과 동일하게) 하나의 CELL 관련 스케줄링 정보가 전송되는 DCI (혹은 제어 채널)를 "SICC-DCI"로 명명한다.
도 13은 SICC-DCI와 MUCC-DCI를 예시한다.
도 13을 참조하면, 셀 #N,K는 동일 단말에게 설정된 복수의 셀들 중 2개의 셀들을 나타낸다. 셀 #N에서 전송되는 SICC-DCI는 하나의 셀 예컨대, 셀 #N에 관한 스케줄링 정보를 포함하는 DCI이다. 반면, 셀 #N에서 전송되는 MUCC-DCI는 복수의 셀 예컨대, 셀 #N, K에 대한 스케줄링 정보를 포함하는 DCI이다. 도 13에서는 SICC-DCI, MUCC-DCI가 모두 PDCCH 영역에서 전송되는 예를 설명하였으나 이는 제한이 아니며 모두 EPDCCH 영역에서 전송되거나 또는 MUCC-DCI (혹은 SICC-DCI)만 EPDCCH (혹은 PDCCH) 영역에서 전송될 수도 있다. 또한, 도 12에서는 하향링크 스케줄링을 예시하였으나, 상향링크 스케줄링에서도 마찬가지이다.
이하에서는 SICC-DCI/MUCC-DCI의 길이 (SIZE) 그리고/혹은 SICC-DCI/MUCC-DCI가 전송되는 검색 공간(SS)을 결정/설정하는 방법들에 대해 설명한다.
[제안 방법#14] MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S)에 관련된 SICC-DCI SIZE(S)는 해당 MUCC-DCI SIZE와 동일하게 설정되도록 (혹은 맞추도록) 규칙이 정의될 수 있다. 즉, MUCC-DCI의 대상이 되는 셀들이 셀#1,2,3이라면, 상기 셀#1에 대한 SICC-DCI, 셀#2에 대한 SICC-DCI 및 셀#3에 대한 SICC-DCI는 상기 MUCC-DCI와 길이가 동일하게 설정되는 것이다. 만약 MUCC-DCI의 대상이 되는 특정 CELL 관련 SICC-DCI SIZE가 MUCC-DCI SIZE보다 작다면, 해당 MUCC-DCI SIZE와 동일해질 때까지 (SICC-DCI에) 제로 패딩이 적용될 수 있다. 이러한 방법의 적용을 통해, 단말이 하나의 서브프레임 상에서 MUCC-DCI와 SICC-DCI를 동시에 블라인드 디코딩 (BD) 해야 할 때, BD 횟수 증가를 방지할 수 있다.
또한, 일례로, MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 관련 SICC-DCI SIZE(S)는 해당 복수 개의 CELL(S) 관련 SICC-DCI SIZE(S) 중에 가장 긴 것 또는 가장 짧은 것에 맞추도록 할 수 있다. 또는 MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 관련 SICC-DCI SIZE(S)는, 사전에 설정된 (혹은 시그널링된) 특정 CELL 관련 SICC-DCI SIZE 혹은 사전에 설정된 (혹은 시그널링된) DCI SIZE과 동일하게 설정되도록 (혹은 맞추도록) 규칙이 정의될 수 있다. 이러한 방법의 적용을 통해서, 하나의 서브프레임 상에서 MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 관련 SICC-DCI(S)의 블라인드 디코딩 (BD)에 요구되는 BD 횟수 증가를 방지할 수 있다.
[제안 방법#15] MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 관련 SICC-DCI(S)는 상기 설명한 제안 방법들 (e.g., [제안 방법#1]~[제안 방법#14])에 따라 정의된 하나의 공통된 검색 공간(또는 공유된 검색 공간, 이하, "SHARED SS"로 명명) 상에서 전송될 수 있다.
해당 SHARED SS는 MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 중에 가장 낮은 (혹은 높은) CIDX (혹은 SCIDX)를 가지는 CELL 또는 사전에 설정된 (혹은 시그널링된) 특정 CELL이나 PUCCH 전송이 설정된 CELL 상에 설정될 수 있다.
또는, SHARED SS는, 상기 SHARED SS가 설정되는 CELL의 CIDX (혹은 SCIDX 혹은 CIF 값)이 아닌 사전에 설정된(혹은 시그널링된) CIF 값(그리고/혹은 RNTI 값)을 기반으로 구성(전술한 [제안 방법#1]참조) 될 수 있다.
또한, 일례로, 해당 SHARED SS에서 전송되는 MUCC-DCI의 대상이 되는 특정 CELL 관련 SICC-DCI에는 CIF가 새롭게 정의될 수 있으며, 또한, 해당 CIF 값은 특정 CELL의 CIDX (혹은 SCIDX) (혹은 상기 [제안 방법#12]/[제안 방법#13]에 따라 (재)맵핑된 CIF 값)으로 정의될 수 있다.
또한, 일례로, MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 관련 SICC-DCI(S)가 전송되는 SHARED SS 상에, 해당 MUCC-DCI도 (함께) 전송될 수 있다.
여기서, 일례로, 해당 MUCC-DCI는 C-RNTI 기반으로 블라인드 디코딩되는 SICC-DCI와 달리, 사전에 (새롭게) 설정되거나 시그널링된 RNTI 값을 기반으로 블라인드 디코딩되거나 또는 SICC-DCI와 동일하게 C-RNTI 기반으로 블라인드 디코딩 될 수 있다.
또한, 일례로, MUCC-DCI는 MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 관련 SICC-DCI(S)가 전송되는 SHARED SS가 아닌, 사전에 정의된 (혹은 시그널링된) 다른 CELL 상의 SS에서 전송되거나, 또는 해당 SHARED SS가 설정된 CELL 상에서 상기 CELL의 CIDX (혹은 SCIDX 혹은 CIF 값)가 아닌, 사전에 (새롭게) 설정된(혹은 시그널링된) CIF 값(그리고/혹은 RNTI 값)을 기반으로 구성된 SS에서 전송될 수도 있다.
또한, 일례로, MUCC-DCI는 MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S) 중에 가장 낮은 (혹은 높은) CIDX (혹은 SCIDX)를 가지는 CELL 상의 SS (혹은 사전에 설정된 (혹은 시그널링된) 특정 CELL 상의 SS 혹은 PUCCH 전송이 설정된 CELL 상의 SS)에서 전송될 수 있다.
또한, 일례로, MUCC-DCI는 MUCC-DCI의 대상이 되는 (사전에 설정된 (혹은 시그널링된)) 복수 개의 CELL(S)이 아닌 사전에 정의된 (혹은 시그널링된) 다른 CELL 상의 SS에서 전송될 수도 있다.
여기서, 또 다른 일례로, MUCC-DCI가 전송되는 해당 다른 CELL은 MUCC-DCI 전송 전용의 CELL (이하, "CELL#MX"로 명명)로 지정 (혹은 해석) 될 수 있다. 또한, 일례로, CELL#MX에서 전송되는 MUCC-DCI(S)는 해당 MUCC-DCI(S)의 대상이 되는 셀 그룹(CG) INDEX(S)를 기반으로 구성된 (CELL#MX) SS(S) 상에서 전송될 수 도 있다.
[제안 방법#16] ((전술한 [제안 방법#12]~[제안 방법#15]에 따라) 하나의 서브프레임 상에서 수행되는) MUCC-DCI, SICC-DCI 블라인드 디코딩 관련 집성 레벨(AL) 후보 구성 그리고/혹은 AL 별 블라인드 디코딩(BD) 횟수가 상이하게 설정될 수 있다.
상기 제안 방법#16은 일반적으로 SICC-DCI (PAYLOAD) SIZE보다 MUCC-DCI (PAYLOAD) SIZE가 상대적으로 클 수 있다는 것을 고려한 것이다. 상기 제안 방법#16의 적용을 통해, MUCC-DCI (PAYLOAD) SIZE를 고려한 (적응적인) AL 후보 구성 그리고/혹은 AL 별 BD 횟수 설정이 가능하며, 최종적으로 MUCC-DCI 전송의 신뢰도를 높일 수 있다.
구체적인 일례로, SICC-DCI, MUCC-DCI 블라인드 디코딩 관련 집성 레벨(AL) 후보는 ({AL 1, AL 2, AL 4, AL 8}, {AL 4, AL 8}) 또는 ({AL 1, AL 2, AL 4, AL 8}, {AL 2, AL 4, AL 8, AL 16})일 수 있다. ({}, {}) 표기에서 전자의 {}는 SICC-DCI의 AL후보, 후자의 {}는 MUCC-DCI의 AL 후보를 나타낸다. 이는 MUCC-DCI가 SICC-DCI에 비해 상대적으로 높은 AL 후보들 기반으로 블라인드 디코딩이 수행되는 것으로 해석할 수 있다. 또는 SICC-DCI, MUCC-DCI 블라인드 디코딩 관련 집성 레벨(AL) 후보는, ({AL 1, AL 2, AL 4, AL 8}, {AL 1, AL 2})일 수 있다. 이는 MUCC-DCI가 SICC-DCI에 비해 상대적으로 낮은 AL 후보들 기반으로 블라인드 디코딩이 수행되는 것으로 해석할 수 있다.
또 다른 일례로, MUCC-DCI의 블라인드 디코딩을 위해서, (SICC-DCI에 비해) 사전에 정의된 (혹은 시그널링된) 상대적으로 낮은 AL(S)의 (일부 혹은 모든) BD 횟수를 상대적으로 높은 AL(S)의 BD 횟수로 재할당할 수 있다.
구체적인 일례로, SICC-DCI 관련 'AL {1, 2, 4, 8}' 별 BD 횟수가 'BD {6, 6, 2, 2}'로 정의된 상황하에서, BD 횟수를 재할당할 경우, MUCC-DCI 관련 'AL {1, 2, 4, 8}' 별 BD 횟수는 'BD {4, 4, 4, 4}' (즉, 기존 AL '1'에 대한 2 번의 BD 횟수가 AL '4'로 재할당되고, 기존 AL '2'에 대한 2 번의 BD 횟수가 AL '8'로 재할당된 것임)로 변경될 수 있다. 또는 'AL {1, 2, 4, 8}' 별 BD 횟수는 'BD {2, 6, 6, 2}' (즉, 기존 AL '1'의 4 번의 BD 횟수가 AL '4'로 재할당된 것임) 또는 'BD {0, 6, 6, 4}' (즉, 기존 AL '1'의 전체 6 번의 BD 횟수 중에 4 번의 BD 횟수는 AL '4'로 재할당되고, 기존 2 번의 BD 횟수는 AL '8'로 재할당된 것임)로 변경될 수 있다.
또 다른 일례로, MUCC-DCI의 신뢰도 높은 송/수신을 위해, (MUCC-DCI 검출 관련) MINIMUM AL 값 그리고/혹은 하나의 (E)CCE를 구성하는 (E)REG 개수 등이 (재)정의될 수 있다. 구체적인 일례로, 'AL {1, 2, 4, 8}' 별 BD 횟수가 'BD {6, 6, 2, 2}'로 정의된 상황하에서, 상기 규칙이 적용될 경우, MINIMUM AL 값이 '1'에서 '2'로 증가됨으로써, 'BD {6, 6, 2, 2}'의 BD 횟수를 가지는 AL 집합이 'AL {2, 4, 8, 16}'로 변경될 수 있다. (E)PDCCH 영역 상의 자원 양이 상대적으로 높은 복수 개의 AL(S)을 지원하기에 충분한 경우, (전체) BD 횟수가 유지되도록 설정될 수도 있다. 또는'BD {3, 3, 1, 1}'의 BD 횟수를 가지는 AL 집합이 'AL {2, 4, 8, 16}'로 변경될 수 있다. 즉, (E)PDCCH 영역 상의 자원 양이 상대적으로 높은 복수 개의 AL(S)을 지원하기에 충분하지 않는 경우, (전체) BD 횟수를 (반으로) 줄이도록 설정될 수 도 있다.
또 다른 일례로, 상기 규칙이 적용될 경우, 하나의 (E)CCE를 구성하는 (E)REG 개수가 '4'에서 '8'로 변경될 수 있다.
[제안 방법#20] (상기 (일부 혹은 모든) 제안 방법들 (예컨대, [제안 방법#12]~[제안 방법#16])에 따라) 사전에 설정된 (혹은 시그널링된) 복수 개의 CELL(S) 관련 DCI FORMAT 1A 기반의 스케줄링 정보들이 (하나의) MUCC-DCI (이를, "MUCC-DCI 1A"로 명명)를 통해 전송될 경우, 해당 각각의 CELL 관련 DCI FORMAT 0 SIZE (즉, SICC-DCI)는 각각의 CELL 관련 DCI FORMAT 1A SIZE (i.e., SICC-DCI)에 비해, (사전에 정의된 규칙 혹은 시그널링을 통해) 상대적으로 작게 설정될 수 있다.
반면, 기존 LTE 시스템의 경우, 특정 CELL 관련 (동일 SS에서 전송되는) DCI FORMAT 0 SIZE와 DCI FORMAT 1A SIZE는 항상 동일하였다. 즉, DCI FORMAT 0와 DCI FORMAT 1A 중에 (상대적으로) 작은 SIZE의 DCI FORMAT이 (상대적으로) 큰 SIZE의 DCI FORMAT에 ZERO-PADDING을 통해서 맞추었다.
상기 제안 방식의 적용을 통해, MUCC-DCI 1A가 설정된 복수 개의 CELL(S) 관련 DCI FORMAT 0 FALSE DETECTION 확률들을 낮출 수 있다. 여기서, 일례로, DCI FORMAT 0 SIZE의 축소는 사전에 정의된 (혹은 시그널링된) 필드(들) (예를 들어, DCI FORMAT0/1A를 구분하는 필드인'FLAG FOR FORMAT0/FORMAT1A DIFFERENTIATION' 필드)의 생략으로 이루어질 수 있다.
[제안 방법#21] (상기 [제안 방법#20]이 적용될 경우 (혹은 [제안 방법#20]의 적용 여부와 상관없이)) 만약 단말이 MUCC-DCI 1A가 설정된 특정 CELL(S)에 관련된 DCI FORMAT 1A (즉, SICC-DCI)를 수신(/검출)한다면, 해당 수신(/검출)된 DCI FORMAT 1A (즉, SICC-DCI)을 잘못된 검출(FALSE DETECTION)로 간주할 수 있다.
또 다른 일례로, 만약 단말이 (특정 서브프레임 시점에서) MUCC-DCI 1A가 설정된 특정 CELL(S) 관련 DCI FORMAT 1A (i.e., SICC-DCI)와 MUCC-DCI 1A를 동시에 수신(/검출)한다면, 해당 수신(/검출)된 DCI FORMAT 1A (i.e., SICC-DCI) (그리고/혹은 MUCC-DCI 1A)을 FALSE DETECTION으로 간주하고, MUCC-DCI 1A와 DCI FORMAT 1A를 모두 버리도록(DISCARD) 규칙이 정의되거나 또는 DCI FORMAT 1A만을 DISCARD하고 MUCC-DCI 1A는 유효한 것으로 간주하거나 또는 MUCC-DCI 1A만을 DISCARD하고 DCI FORMAT 1A는 유효한 것으로 간주할 수 있다.
[제안 방법#23] 'MUCC-DCI'는 사전에 설정된 (혹은 시그널링된) 복수 개의 CELL(S) 관련 (UL GRANT(S)가 아닌) DL GRANT(S)만을 하나의 DCI (혹은 제어 채널)를 통해서 전송하는 용도로 한정적으로 이용될 수 있다. 이는 BD 감소 효과가 있다.
또 다른 일례로, MUCC-DCI는 사전에 설정된 (혹은 시그널링된) 복수 개의 CELL(S) 관련 (DL GRANT(S)가 아닌) UL GRANT(S)만을 하나의 DCI (혹은 제어 채널)를 통해서 전송하는 용도로 한정적으로 이용될 수 있다. 이 역시 BD 감소 효과가 있다.
[제안 방법#24] DCI FORMAT (수신) 관련 'FALSE DETECTION 확률'을 줄이기 위한 한 가지 방법으로 'CRC SIZE'를 늘리는 것이 고려될 수 있다. 해당 'CRC SIZE EXTENSION' 동작은 (UL GRANT(S)가 아닌) DL GRANT(S)에만 한정적으로 적용될 수 있다. 또는 'CRC SIZE EXTENSION' 동작은 (DL GRANT(S)가 아닌) UL GRANT(S)에만 한정적으로 적용될 수 있다.
도 14는 전술한 제안 방법#14, 제안 방법#15, 제안 방법#16, 제안 방법#20, 제안 방법#21, 제안 방법#23, 제안 방법#24를 적용할 때, 단말의 동작 방법을 나타낸다.
도 14를 참조하면, 기지국은 단말에게 MUCC-DCI 설정 정보를 제공한다(S100). 예를 들어, MUCC-DCI 설정 정보는 다음 중 적어도 하나를 설정할 수 있다.
1) MUCC-DCI의 대상이 되는 복수 개의 셀들과 관련된 SICC-DCI의 크기를 해당 MUCC-DCI의 크기와 동일하게 설정(제안 방법#14 참조),
2)MUCC-DCI가 전송될 수 있는 셀 및 검색 공간을 설정(제안 방법#15 참조),
3) 하나의 서브프레임 상에서 수행되는 MUCC-DCI, SICC-DCI에 대한 블라인드 디코딩 관련 집성 레벨 후보 구성 및/또는 집성 레벨 별 블라인드 디코딩 횟수 설정(제안 방법#16 참조).
예를 들어, MUCC-DCI 설정 정보는 복수의 서빙 셀들 중에서 상기 공유 검색 공간이 위치하는 서빙 셀을 알려줄 수 있다.
기지국은 단말에게 MUCC-DCI를 전송한다(S110). 기지국은 MUCC-DCI 정보를 통해 단말에게 설정한 셀, 검색 공간, 집성 레벨 후보 구성, 블라인드 디코딩 횟수 설정 등을 고려하여 MUCC-DCI를 전송할 수 있다. 전술한 바와 같이, MUCC-DCI 하나에는 하나의 서빙 셀을 스케줄링하는 제어 정보를 복수 개 포함할 수 있다.
단말은 MUCC-DCI 설정 정보에 따라 결정된 공유된 검색 공간(SHARED SS)에서 MUCC-DCI를 검출/모니터링한다(S120). MUCC-DCI 검출/모니터링 시 고려해야 하는 규칙/설정에 대해서는 제안 방법#20, 21, 23, 24에서 이미 설명한 바 있다.
예컨대, 공유 검색 공간에서, MUCC-DCI와 하나의 서빙 셀을 스케줄링하는 하향링크 제어 정보인 SICC-DCI는 동일한 비트 사이즈를 가지도록 설정될 수 있다. 또한, 예컨대, MUCC-DCI가 하향링크 그랜트에만 사용된다면 상향링크 그랜트 검출을 위한 모니터링은 불필요할 수 있다.
또한, MUCC-DCI의 CRC 크기가 기존 SICC-DCI에 비해 증가된다면 이를 고려하여 MUCC-DCI를 모니터링할 수 있다. 또한, 단말은 상기 공유 검색 공간에서, 복수의 서빙 셀들에 관련된 스케줄링 정보들을 포함할 수 있는 MUCC-DCI만을 블라인드 디코딩할 수도 있고, MUCC-DCI 및 SICC-DCI를 모두 블라인드 디코딩할 수도 있다.
MUCC-DCI를 블라인드 디코딩할 때 집성 레벨(Aggregation Level: AL) 후보들과, 하나의 서빙 셀을 스케줄링하는 하향링크 제어 정보인 SICC-DCI를 블라인드 디코딩할 때 집성 레벨 후보들은 서로 다르게 설정될 수 있다. MUCC-DCI를 블라인드 디코딩할 때 각 집성 레벨에서의 블라인드 디코딩 횟수와, SICC-DCI를 블라인드 디코딩할 때 각 집성 레벨에서의 블라인드 디코딩 횟수는 서로 다르게 설정될 수 있다. 각 집성 레벨에 있어서, MUCC-DCI에 대하여 미리 정해진 블라인드 디코딩 횟수는 재설정/재할당될 수 있다. 이에 대한 구체적인 실시예에 대해서는 전술한 바 있다(예컨대, 제안 방법#16). 또한, MUCC-DCI에는 하나의 서빙 셀을 스케줄링하는 하향링크 제어 정보인 SICC-DCI보다 더 긴 CRC(cyclic redundancy check)가 부가될 수 있음을 전제로 블라인드 디코딩을 수행할 수 있다.
이하에서는 eIMTA DCI를 효율적으로 전송하는 방법에 대해 설명한다. eIMTA는 TDD로 동작하는 셀들이 집성된 상황에서 각 셀의 TDD UL-DL CONFIGURATION이 서로 다른 경우를 의미한다. 기존 5개보다 더 많은 개수의 CELL(S)이 CA 기법으로 설정된 환경 하에서, (기존에 비해) 상대적으로 많은 CELL(S)이 eIMTA MODE로 동작될 경우, (해당 eIMTA CELLS(S) 관련) eIMTA DCI를 효율적으로 전송되는 방법이 필요하다.
일례로, (해당 eIMTA CELLS(S) 관련) eIMTA DCI는 사전에 정의된 (혹은 시그널링된) CELL 상의 SS (SEARCH SPACE) (e.g., PCELL CSS (COMMON SEARCH SPACE) 혹은 CELL_PUCCH과 연동된 DL CELL (C)SS)를 통해서 전송될 수 있다.
일례로, 하기 방법의 적용을 통해서, (1) 한정된 개수의 UL-DL CONFIGURATION INDICATOR (e.g., 3 비트)들만이 (하나의) eIMTA DCI를 통해서 전송될 수 있는 문제 그리고/혹은 (2) eIMTA DCI가 전송되는 사전에 정의된 (혹은 시그널링된) 특정 CELL 상의 SS (e.g., PCELL CSS 혹은 CELL_PUCCH과 연동된 DL CELL (C)SS)의 혼잡 (CONGESTION) 문제 등을 완화 시킬 수 있다.
또한, 일례로, 하기 [제안 방법#19]는 5보다 많은 셀들이 집성되는 MASSIVE CA MODE가 설정된 경우 그리고/혹은 (eIMTA) CELL(S) (혹은 (eIMTA) LCELL(S) 혹은 (eIMTA) UCELL(S) 혹은 (eIMTA) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 (혹은 CONFIGURED (eIMTA) CELL(S) (혹은 CONFIGURED (eIMTA) LCELL(S) 혹은 CONFIGURED (eIMTA) UCELL(S) 혹은 CONFIGURED (eIMTA) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우) 그리고/혹은 ACTIVATED (eIMTA) CELL(S) (혹은 ACTIVATED (eIMTA) LCELL(S) 혹은 ACTIVATED (eIMTA) UCELL(S) 혹은 ACTIVATED (eIMTA) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우에서만 한정적으로 적용될 수도 있다.
여기서, 일례로, MASSIVE CA MODE가 설정되지 않은 경우 그리고/혹은 (eIMTA) CELL(S) (혹은 (eIMTA) LCELL(S) 혹은 (eIMTA) UCELL(S) 혹은 (eIMTA) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 (혹은 CONFIGURED (eIMTA) CELL(S) (혹은 CONFIGURED (eIMTA) LCELL(S) 혹은 CONFIGURED (eIMTA) UCELL(S) 혹은 CONFIGURED (eIMTA) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우) 그리고/혹은 ACTIVATED (eIMTA) CELL(S) (혹은 ACTIVATED (eIMTA) LCELL(S) 혹은 ACTIVATED (eIMTA) UCELL(S) 혹은 ACTIVATED (eIMTA) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우에서는 기존 (REL-12 LTE) 동작이 적용되도록 규칙이 정의될 수 있다.
[제안 방법#19] eIMTA CELL (GROUP) 별로 관련 eIMTA DCI가 수신되는 서브프레임 위치 정보가 (일부 혹은 모두) 상이하도록 규칙이 정의되거나(이하, "OPTION#A") 그리고/혹은 (eIMTA DCI 수신/디코딩에 사용되는) (eIMTA-)RNTI (이하, "OPTION#B")정보가 (일부 혹은 모두) 상이하도록 규칙이 정의될 수 있다. 그리고/혹은 (eIMTA CELL (GROUP)의) UPDATED UL-DL CONFIGURATION이 수신되는 eIMTA DCI 상의 필드 위치 정보가 (일부 혹은 모두) 상이하도록 규칙이 정의되거나 그리고/혹은 RECONFIGURATION PERIODICITY 정보가 (일부 혹은 모두) 상이하도록 규칙이 정의 그리고/혹은 eIMTA DCI가 수신되는 CELL 그리고/혹은 SS 종류가 (일부 혹은 모두) 상이하도록 규칙이 정의될 수 도 있다.
여기서, 이러한 규칙이 적용된 경우에 대한 일례로, eIMTA CELL (GROUP) 별로 상이한 eIMTA DCI 수신 서브프레임 위치 정보와 상이한 (eIMTA DCI 수신/디코딩에 사용되는) (eIMTA-)RNTI 정보를 설정해주거나 혹은 (eIMTA CELL (GROUP 간에) 공통된 eIMTA DCI 수신 서브프레임 위치 정보와 eIMTA CELL (GROUP) 별로 상이한 (eIMTA DCI 수신/디코딩에 사용되는) (eIMTA-)RNTI 정보를 설정해주거나 혹은 (eIMTA CELL (GROUP 간에) 공통된 (eIMTA DCI 수신/디코딩에 사용되는) eIMTA RNTI 정보와 eIMTA CELL (GROUP) 별로 상이한 eIMTA DCI 수신 서브프레임 위치 정보를 설정해줄 수 있다.
또 다른 일례로, 네트워크 (혹은 기지국)은 (1) (현재 시스템 대역폭 하에서) (하나의) eIMTA DCI를 통해서 몇 개의 UL-DL CONFIGURATION INDICATOR (e.g., 3 비트)들이 (동시에) 전송될 수 있는지 그리고/혹은 (2) eIMTA DCI가 전송되는 사전에 정의된 (혹은 시그널링된) 특정 CELL 상의 SS (e.g., PCELL CSS 혹은 CELL_PUCCH과 연동된 DL CELL (C)SS)가 어느 정도 혼잡한지 등의 요소들을 고려하여, OPTION#A 규칙과 OPTION#B 규칙 중에 적용되는 하나의 규칙을, 사전에 정의된 시그널 (e.g., 상위 계층 시그널 혹은 물리 계층 시그널)을 통해서 단말에게 알려 (CONFIGURABILITY) 줄 수 있다.
이하에서는, 상기 (일부 혹은 모든) 제안 방법들 기반의 CELL 별 (최대) BD (BLIND DECODING) 횟수를 효율적으로 설정(/시그널링)하는 방법들에 대해 설명한다.
[제안 방법#25] 서로 다른 TDD UL-DL CONFIGURATION(S)이 설정된 TDD CELL들이 CA로 설정되었을 때 (혹은 TDD CELL(S)과 FDD CELL(S)이 CA로 설정되었을 때), 서브프레임 별로 'DL SF (SUBFRANE) CELL 개수'가 다를 수 있다. 따라서, 이를 고려하여, 서브프레임 별로 특정 CELL 관련 BD 횟수가 독립적으로 (혹은 (일부 혹은 모두) 상이하게) 설정될 수 있다. 이러한 방법이 적용될 경우, 특정 시점에서 UL SF CELL(S) 관련 BD 횟수를 DL SF CELL(S)에게 (재)할당시킬 수 있다.
[제안 방법#26] (특정 CELL (예를 들어, SCELL)의 경우) DCI FORMAT 별로 (USS) BD 횟수가 독립적으로 (혹은 (일부 혹은 모두) 상이하게) 설정될 수 있다. 예를 들어, TM-DEPENDENT DCI FORMAT인 DCI FORMAT 2D(/4)와 FALLBACK DCI FORMAT인 DCI FORMAT 1A(/0) 각각에 대해 (USS) BD 횟수가 독립적으로 설정될 수 있다. 일례로, 극단적으로, 특정 CELL (예를 들어, SCELL) 관련 특정 DCI FORMAT (예를 들어, DCI FORMAT 1A/0)에 대한 (USS) BD 횟수를 0으로 설정하여 상기 특정 셀 (예를 들어, SCELL) 관련 특정 DCI FORMAT (예를 들어, DCI FORMAT 1A/0)에 대해서는 (USS) 모니터링 (혹은 BD)을 하지 않을 수도 있다.
여기서, 일례로, 이러한 방법이 적용될 경우, 상대적으로 큰 페이로드 크기(/사이즈)의 DCI FORMAT에 상대적으로 많은 BD 횟수를 할당함으로써, 전송 기회를 높여주거나 BLOCKING PROBABILITY를 낮춰줄 수 있다. 이는 신뢰도 높은 전송을 위해서 페이로드 크기가 큰 DCI FORMAT 전송에 상대적으로 높은 AL (AGGREGATION LEVEL)이 사용될 가능성이 높다는 것을 고려한 것이다.
또 다른 일례로, DL DCI (FORMAT) FALSE DETECTION이 시스템에 주는 악영향 (예컨대, LARGE SIZE PUCCH FORMAT TX (TRANSMISSION) 유발)이 UL DCI (FORMAT) FALSE DETECTION의 경우에 비해 상대적으로 크므로, 특정 CELL의 경우 DL DCI FORMAT와 UL DCI FORMAT을 위한 BD 횟수가 독립적으로 (혹은 (일부 혹은 모두) 상이하게) 설정될 수 있다.
[제안 방법#27] 기지국은 셀 별로, BD가 실제 수행되는 '특정 AL의 (E)PDCCH CANDIDATE 개수/위치'를 'FULL BITMAP' 형태로 알려줄 수 있다.
예를 들어, 특정 CELL의 USS에 대해 집성 레벨(AL) 1에 대해 블라인드 디코딩횟수(BD) 6, AL 2에 대해 BD 6, AL 4에 대해 BD 2, AL 8에 대해 BD 2라고 가정해 보자. 그리고, AL 1,2,4,8 에 대해 차례로 (E)PDCCH CANDIDATE의 개수가 6,6,2,2라고 가정해 보자. 이 경우, 기지국은 16 비트의 BITMAP으로 BD가 실제로 수행되는 '특정 집성 레벨(AL)의 (E)PDCCH CANDIDATE 개수/위치'를 알려줄 수 있다.
예를 들어, '101000 010100 10 01'의 BITMAP이 시그널링된다면, 단말은 집성 레벨(AL) 1에 대한 총 6개의 (E)PDCCH CANDIDATE(S) 중에 첫번째/세번째 (E)PDCCH CANDIDATE(S), AL 2에 대한 총 6개의 (E)PDCCH CANDIDATE(S) 중에 두번째/네번째 (E)PDCCH CANDIDATE(S), AL 4에 대한 총 2개의 (E)PDCCH CANDIDATE(S) 중에 첫번째 (E)PDCCH CANDIDATE, AL 8에 대한 총 2개의 (E)PDCCH CANDIDATE(S) 중에 두번째 (E)PDCCH CANDIDATE에 대해서 BD를 실제로 수행할 수 있다.
[제안 방법#28] 'PER CELL' 단위로 블라인드 디코딩(BD)이 (실제) 수행되는 '특정 집성 레벨(AL)의 (E)PDCCH CANDIDATE 개수' (관련 정보)를 알려줄 수 있다.
예를 들어, 이러한 제안 방법은 'PER CELL' 단위로 (E)PDCCH USS 상의 특정 집성 레벨(AL) 관련 (E)PDCCH CANDIDATE 개수 (관련 정보)를 알려주기 위한 용도로 한정적으로 사용될 수 도 있다. 예를 들어, 특정 CELL의 USS에 있어서, 집성 레벨(AL) 1에 대해 블라인드 디코딩 횟수(BD)가 6, AL 2에 대해 BD 6, AL 4에 대해 BD 2, AL 8에 대해 BD 2인 경우를 가정해 보자. 이 경우, 기지국은 10 비트 비트맵을 통해 '(특정 CELL 관련) 특정 AL의 (E)PDCCH CANDIDATE 개수' (관련 정보)를 알려줄 수 있다. 예를 들어, 상기 10비트 비트맵에서 최초 3 비트는 AL 1에 대한 BD 횟수, 그 다음 3 비트는 AL 2에 대한 BD 횟수, 그 다음 2 비트는 AL 4에 대한 BD 횟수, 나머지 2 비트는 AL 8에 대한 BD 횟수를 나타낼 수 있다.
상기 비트맵을 이용하여 알려주는 것은 예시에 불과하다. 즉, 기지국은 RRC 시그널과 같은 상위 계층 신호를 통해 각 셀의 집성레벨(AL) 별 (USS) PDCCH 후보 개수 또는 (USS) EPDCCH 후보 개수를 알려줄 수도 있다. 이 때, 각 셀의 집성레벨(AL) 별 (USS) PDCCH 후보 개수 또는 (USS) EPDCCH 후보 개수를 명시적으로 알려줄 수도 있지만, 각 셀의 집성레벨(AL) 별 기존 (USS) PDCCH 후보 개수 또는 (USS) EPDCCH 후보 개수를 얼마나 줄일 것인지를 (각 셀의 집성레벨(AL) 별) 감소 비율값 (예를 들어서, 'ROUND(감소 비율값 *기존 (USS) (E)PDCCH 후보 개수)'의 계산을 통해서 (집성 레벨(AL) 별) 최종 적용 (E)PDCCH 후보 개수를 도출할 수 있음)을 알려줌으로써 구현될 수 도 있다.
예를 들어, 단말에게 8개의 셀들(셀 #1-8)이 집성되고 교차 반송파 스케줄링이 설정되어 하나의 셀(셀 #1)을 통해 8개의 셀들에 대한 스케줄링 정보들이 전송된다고 가정해 보자. 이 경우, 셀 #1의 USS에서 셀 별로 각각의 집성 레벨(AL)에 대해 수행되어야 하는 (USS) 블라인드 디코딩 횟수(BD)가 정해질 수 있다. 예컨대, 특정 셀 #X 관련 AL #K에 대해 NK라는 (USS) 블라인드 디코딩 횟수가 정해진다고 가정해보자. 상기 NK는 기존 (USS) PDCCH 후보 개수 또는 (USS) EPDCCH 후보 개수를 나타내는 것으로 볼 수 있다.
그런데, 단말이 (UE CAPABILITY로 보고한) (서브프레임 별) 최대 지원 (혹은 수행) 할 수 있는 (USS) 블라인드 디코딩 횟수 (BD) 제한으로 인해서, 일부 셀 관련 일부 (USS) 블라인드 디코딩 횟수 (BD)를 감소시킬 필요가 있을 수 있다. 이와 같은 경우, 일례로, 상기 [제안 방법#28]이 적용된다면, 셀 별 전송 모드 (Transmission mode) (예를 들어, DCI의 패이로드 사이즈에 영향을 줌) 그리고/혹은 (제어) 채널 상태 등을 고려한, 최적의 (셀 별) (E)PDCCH USS 상의 특정 집성 레벨(AL) 별 (E)PDCCH CANDIDATE 개수 (관련 정보) 설정이 가능해진다.
이러한 경우, 기지국은 상기 셀 #X 관련 AL #K대한 (USS) 블라인드 디코딩 횟수(즉, (USS) (E)PDCCH 후보들의 개수)인 NK를 얼마나 줄일 것인지를 알려주는 정보를 단말에게 제공할 수 있다. 예를 들어, 상기 정보는 2비트로 구성되어 '00'일 때는 NK 의 0%, 즉 AL #K에 대해서는 (USS) (E)PDCCH 후보가 없음을 나타냄,'01'일 때는 NK 의 33%, '10'일 때는 NK 의 66%, '11'일 때는 NK 의 100% (즉, NK 와 동일)와 같이 알려줄 수 있다. 최종 도출되는 (USS) BD 횟수(또는 (USS) (E)PDCCH 후보들의 개수)는 정수(INTEGER)로 나타내는 것이 편리하므로, '감소 비율값 *기존 (USS) (E)PDCCH 후보 개수'값에 대해 ROUND(/FLOOR/CEIL) 등의 함수를 적용한 결과 값으로 정할 수도 있다. 이 예시에서는 셀 #X 관련 AL #K대한 (USS) 블라인드 디코딩 횟수에 대해서만 설명하였으나 이는 제한이 아니며, 기지국은 셀 별로 각각의 집성 레벨(AL)에 대하여 상기 2비트 정보를 제공할 수 있다.
도 15는 단말이 특정 셀 관련 기존 (USS) (E)PDCCH 후보들 중에서 시그널링된 정보를 기반으로 일부 (E)PDCCH 후보들만을 블라인드 디코딩하는 예를 나타낸다.
도 15를 참조하면, 특정 셀 관련 집성 레벨(AL) #M에 대해, 기존 (USS) (E)PDCCH 후보들의 개수가 K개 인데 BD가 실제 수행되어야 하는 (USS) (E)PDCCH CANDIDATE 개수가 'P'로 도출 (혹은 시그널링)된 경우이다. 예컨대, 기지국은 2비트 정보로 특정 셀의 집성 레벨(AL) #M 관련 (USS) (E)PDCCH CANDIDATE 개수인 K를 33% 에 해당하게 감소시킬 수 있으며, 이 때, ROUND(K*0.33)=P일 수 있다.
이 경우, 단말은 특정 셀의 AL #M 관련 총 'K'개의 (USS) (E)PDCCH CADIDATE(S) 중에 첫번째 (USS) (E)PDCCH CANDIDATE 부터 (순차적으로 (혹은 ((USS) (E)PDCCH CANDIDATE INDEX) 오름 차순으로)) P번째 (USS) (E)PDCCH CANDIDATE 까지를 (실제) BD하게 된다.
여기서, 또 다른 일례로, 기지국은 단말에게 사전에 정의된 (추가적인) 시그널 (예를 들어, 상위 계층 시그널, 물리 계층 시그널) ("ORDER_INDI"로 명명)을 전달함으로써, 특정 AL 관련 총 'K'개의 (USS) (E)PDCCH CADIDATE(S) 중에 시그널링된 (해당 특정 AL 관련) 'P'개의 (USS) (E)PDCCH CANDIDATE(S)가 어떤 방식(/방향)으로 선정되는 것인지를 알려줄 수 도 있다.
구체적인 일례로, ORDER_INDI (예) 1 비트)를 통해서, 특정 AL 관련 총 'K'개의 (USS) (E)PDCCH CADIDATE(S) 중에 시그널링된 (해당 특정 AL 관련) 'P'개의 (USS) (E)PDCCH CANDIDATE(S)가 (USS) (E)PDCCH CANDIDATE INDEX의 오름 차순으로 선정되는 것 (예) 첫번째 (USS) (E)PDCCH CANDIDATE 부터 순차적으로 (혹은 (USS) (E)PDCCH CANDIDATE INDEX 오름 차순으로) P번째 (USS) (E)PDCCH CANDIDATE 까지를 (실제) BD하게 됨)인지, 아니면 내림 차순으로 선정되는 것 (예) K번째 (USS) (E)PDCCH CANDIDATE 부터 역순으로 (혹은 (USS) (E)PDCCH CANDIDATE INDEX 내림 차순으로) (K-P+1)번째 (USS) (E)PDCCH CANDIDATE 까지를 (실제) BD하게 됨)인지를 알려줄 수 있다.
또 다른 일례로, (BD가 (실제) 수행되어야 하는) 'AL 4' 그리고/혹은 'AL 8' 관련 (USS) (E)PDCCH CANDIDATE(S) 개수 정보를 알려줄 때, 예외적으로, ([제안 방법#27] 기반의) '(FULL) BITMAP' 형태가 사용될 수도 있다. 이를 통해서, (관련) 비트맵의 크기(예) 2 비트)에 변화 없이, (BD가 (실제) 수행되어야 하는) 'AL 4' 그리고/혹은 'AL 8'의 (USS) (E)PDCCH CANDIDATE 개수/위치를 자세하게 (혹은 구체적으로) 알려줄 수 있다.
도 16은 전술한 제안 방법#28을 적용하는 예를 나타낸다.
도 16을 참조하면, 단말은 기지국에게 단말 능력 정보를 보고한다(S710). 전술한 바와 같이, 단말 능력 정보는 서브프레임 별 (USS) 하향링크 제어 채널 디코딩 능력 (혹은 (최대) 개수)을 나타내는 'BD CAPABILITY INFORMATION'을 포함할 수 있다. 즉, 단말은 네트워크에게 서브프레임 별로 (USS) 하향링크 제어 채널을 디코딩할 수 있는 능력(CAPABILITY) (혹은 (최대) 개수)을 보고하는 것이다. 예를 들어, 단말은 서브프레임 별 단말 특정 검색 공간(USS)에서 PDCCH 그리고/혹은 EPDCCH를 블라인드 디코딩할 수 있는 (최대) 횟수를 네트워크에게 보고할 수 있다. 여기서, 일례로, 단말은 5개 보다 많은 셀(반송파)들의 집성을 지원할 수 있다.
기지국은 해당 단말 능력 정보에 기반하여 셀 별 USS의 각 AL에 대한 PDCCH(및/또는 EPDCCH) 후보들의 개수를 결정한다(S720).
기지국은 단말에게 제어 채널 후보 개수 정보를 제공한다(S730).
제어 채널 후보 개수 정보는 RRC 메시지와 같은 상위 계층 신호를 통해 단말에게 제공될 수 있다. 전술한 바와 같이, 제어 채널 후보 개수 정보는 셀 별(per cell) 검색 공간(search space: SS)의 각 집성 레벨(aggregation level: AL)에 대한 제어 채널 후보들의 개수를 알려준다.
예컨대, 제어 채널 후보 개수 정보는 (단말이 (실제로) 수행해야 하는) 각 셀들의 단말 특정 검색 공간(USS)에서 각 집성 레벨(AL)에 대한 PDCCH 후보들 및/또는 EPDCCH 후보들의 개수를 알려주는 정보로, 기존 (E)PDCCH 후보들의 개수를 얼마나 줄일 것인지를 알려주는 2 비트 정보가 (셀 별 단말 특정 검색 공간(USS)의) 각 집성 레벨 별로 제공될 수 있다. 즉, 제어 채널 후보 개수 정보는, 단말이 실제로 모니터링해야 하는 최초 일부의 제어 채널 후보들의 개수를 셀 별 (단말 특정) 검색 공간의 각 집성 레벨 별 기존 제어 채널 후보들의 개수에 대한 비율(ratio)로 알려주는 것이다. 상기 2비트가 '00', '01', '10' 또는 '11'인 경우, 차례로 나타내는 비율은 0, 0.33,0.66, 1일 수 있다. 이에 대해서는 상세히 기술한 바 있다.
본 예에서는 특정 셀의 집성 레벨 #M에 대해 기존 (USS) (E)PDCCH 후보들의 개수가 K개 일 때, (상기 설명한 방법들을 기반으로) 해당 셀 관련 (USS) (E)PDCCH 후보 개수 정보가 P(K>P)로 도출 (혹은 시그널링)되었다고 가정하자.
기지국은 상기 단말에게 스케줄링 정보를 전송한다(S740). 기지국은 단말에게제공한 제어 채널 후보 개수 정보 (S730)를 기반으로, 각각의 셀에 대한 스케줄링 정보를 상기 단말에게 전송할 수 있다.
단말은 특정 셀 관련 DCI를 검출하기 위해, 해당 셀 관련 제어 채널 후보 개수 정보 (S730)에 기반하여, 집성 레벨 #M 관련 기존 (E)PDCCH 후보들(K개) 중에서 최초 P개의 (E)PDCCH 후보들을 모니터링한다(S750).
[제안 방법#29] 'PER CELL' 단위로 (집성 레벨 구분 없이) BD가 (실제) 수행되는 총 (E)PDCCH CANDIDATE 개수를 알려줄 수 있다.
여기서, 구체적인 일례로, 특정 CELL의 USS에 대해 AL 1에 대해 블라인드 디코딩 횟수(BD)가 6, AL 2에 대해 BD가 6, AL 4에 대해 BD가 2, AL 8에 대해 BD가 2라고 가정해 보자. 이 경우, 4 비트 (비트맵)로 BD가 (실제) 수행되는 총 (E)PDCCH CANDIDATE 개수를 알려줄 수 있다. 예컨대, BD가 (실제) 수행되는 총 (E)PDCCH CANDIDATE 개수가 10개로 시그널링되었을 경우, (전체) 16개의 USS (E)PDCCH CANDIDATE(S) 중에, AL 1의 첫번째 (E)PDCCH CANDIDATE 부터 순차적으로 (혹은 (AL INDEX 그리고/혹은 (E)PDCCH CANDIDATE INDEX) 오름 차순으로) 10 개의 (E)PDCCH CANDIDATE(S)를 선택 및 (실제) BD할 수 있다.
[제안 방법#30] 단말은 보고한, 지원 가능한 최대 BD 횟수를 "MAX_BDCAPA_NUM"로 명명하고, 사전에 정의된 (혹은 시그널링된) 임계값 미만의 FALSE DETECTION (발생) 확률 관련 (최대) BD 횟수를 "MAX_FALBD_NUM"로 명명하자. 일례로, N개의 CELL(S)이 CA로 설정된 상황에서, 기존 BD 방식/규칙에 따라 산출되는 전체 BD 횟수 (즉, 'N*K', 여기서, 'K'는 기존 방식에 따른 CELL 당 BD 횟수 (예) '32 BD(S) PER (S)CELL'))를 "TOTAL_BD_NUM"로 명명할 때, 아래의 (일부 혹은 모든) 규칙들이 적용될 수 있다.
(규칙#30-1) 'MAX_BDCAPA_NUM >= TOTAL_BD_NUM'와 'MAX_FALBD_NUM >= TOTAL_BD_NUM'를 동시에 만족하는 CA (즉, N)에 대해서는 별도의 "CELL 별 BD 횟수' (재)설정(/시그널링) 없이, 기존 방식에 따른 "TOTAL_BD_NUM'"에 따라 BD를 수행할 수 있다.
(규칙#30-2) 'MAX_BDCAPA_NUM < TOTAL_BD_NUM' 혹은 'MAX_FALBD_NUM < TOTAL_BD_NUM'가 되는 CA (즉, N)에 대해서는 새롭게 시그널링(/정의)된 상기 'CELL 별 BD 횟수' (재)설정에 따라 BD를 수행할 수 있다.
[제안 방법#31] 일례로, 서로 다른 CONTROL CHANNEL STRUCTURE/CONTROL CHANNEL SET (예) PDCCH와 EPDCCH (SET#1/2))의 동일 그리고/혹은 상이한 집성 레벨(AL) ("AL TYPE"로 명명)에 대한 BD 값 (혹은 (E)PDCCH CANDIDATE 개수) 시그널링(/설정)을 위해서, 각각의 AL TYPE 별로 사전에 설정(/시그널링)된 제한된 'N'개 (예) 2 개)의 비트들이 사용될 수 있다 (OPTION#31-A). 즉, 각각의 AL TYPE 별로 해당 AL TYPE의 BD 값 (혹은 (E)PDCCH CANDIDATE 개수)를 할당하기 위해 'N'개 (예) 2 개) 비트들이 사용될 수 있다.
다음 표는 사전에 정의(또는 시그널링)된 AL TYPE 별로 각각의 CONTROL CHANNEL STRUCTURE/CONTROL CHANNEL SET이 가질 수 있는 총 (최대) BD 값 후보들 (혹은 (E)PDCCH CANDIDATE 개수 후보들)을 나타낸다.
[표 22]
Figure PCTKR2016000313-appb-I000026
여기서, 일례로, PDCCH의 경우에 "첫번째 AL TYPE, 두번째 AL TYPE, 세번째 AL TYPE, 네번째 AL TYPE, 다섯번째 AL TYPE"은 각각 "AL1, AL2, AL4, AL8, N/A"로 정의(/해석)될 수 가 있으며, 또한, EPDCCH의 경우에 "첫번째 AL TYPE, 두번째 AL TYPE, 세번째 AL TYPE, 네번째 AL TYPE, 다섯번째 AL TYPE"은 각각 "AL1, AL2, AL4, AL8, AL16" (그리고/혹은 "AL2, AL4, AL8, AL16, AL32")로 정의(/해석)될 수 있다. 상기 설명한 (OPTION#31-A)가 적용될 경우, 일례로, 만약 (UE가 설정 받은) 서로 다른 CONTROL CHANNEL STRUCTURE/CONTROL CHANNEL SET (예) PDCCH와 EPDCCH (SET#1/2)) 관련 총 (최대) PDCCH/EPDCCH CANDIDATE 개수 (혹은 BD 값)가 상기 (특정) AL TYPE 내 모든 AL(S)에 대해서 'N' 이하가 된다면, (해당 (특정) AL TYPE 내에서) 'N'개의 비트들은 [제안 방법#27] (즉, 'PER CELL' 단위로 BD가 (실제) 수행되는 '특정 AL의 PDCCH/EPDCCH CANDIDATE 개수/위치'를 'FULL BITMAP' 형태로 알려주는 방법)에 따라 해석될 수 있다.
여기서, 일례로, 이러한 규칙은 'N'이 '2'로 정의(/시그널링)되고 PDCCH와 사전에 설정(/시그널링)된 하나의 EPDCCH SET의 세번째 AL TYPE 관련 총 (최대) BD 값 (혹은 (E)PDCCH CANDIDATE 개수)이 각각 '2', '2' (그리고/혹은 '1')로 설정된 경우 (혹은 PDCCH와 사전에 설정(/시그널링)된 첫번째/두번째 EPDCCH SET의 세번째 AL TYPE 관련 총 (최대) BD 값 (혹은 (E)PDCCH CANDIDATE 개수)이 각각 '2', '2/2' (그리고/혹은 '1/2' 그리고/혹은 '2/1' 그리고/혹은 '1/1')로 설정된 경우)에 적용될 수 있다.
이와 같은 경우, 일례로, 해당 2 비트들은 BD가 (실제) 수행되는 세번째 AL TYPE 관련 PDCCH/EPDCCH CANDIDATE 개수/위치 (예) '00', '01', '10', '11'은 각각 '(실제) BD가 수행되는 PDCCH/EPDCCH CANDIDATE 개수(/위치)가 없음', '(실제) BD가 수행되는 PDCCH/EPDCCH CANDIDATE 개수/위치는 1개/첫번째 PDCCH/EPDCCH CANDIDATE임' '(실제) BD가 수행되는 PDCCH/EPDCCH CANDIDATE 개수/위치는 1개/두번째 PDCCH/EPDCCH CANDIDATE임' '(실제) BD가 수행되는 PDCCH/EPDCCH CANDIDATE 개수/위치는 2개/첫번째와 두번째 PDCCH/EPDCCH CANDIDATE(S)임')를 직접적으로 알려주게 된다.
반면에, 일례로, 만약 (UE가 설정 받은) 서로 다른 CONTROL CHANNEL STRUCTURE/CONTROL CHANNEL SET (예) PDCCH와 EPDCCH (SET#1/2)) 관련 총 (최대) PDCCH/EPDCCH CANDIDATE 개수 (혹은 BD 값) ("PDCCH_MAXBDNUM", "EPDCCH_MAXBDNUM"로 명명)가 상기 (특정) AL TYPE 내 최소한 하나의 AL (혹은 모든 AL(S))에 대해서 'N' 초과가 된다면, (해당 (특정) AL TYPE 내에서) 'N'개의 비트들은 사전에 정의(/시그널링)된 퍼센트 값을 가리키는 용도로 사용 (예) '00', 01’, '10', '11'은 각각 '0%', '33%', '66%', '100%'을 가리키도록 설정될 수 있음) 될 수 있다. 여기서, 일례로, 이러한 규칙은 'N'이 '2'로 정의(/시그널링)되고 PDCCH와 사전에 설정(/시그널링)된 하나의 EPDCCH SET의 두번째 AL TYPE 관련 총 (최대) BD 값 (혹은 (E)PDCCH CANDIDATE 개수)이 각각 '6', '4'로 설정된 경우에 적용될 수 있다.
이와 같은 경우, 일례로, 만약 해당 2 비트들이 '01'로 시그널링(/설정) 된다면, (실제) BD가 수행되는 PDCCH/EPDCCH CANDIDATE 개수(/위치)는 (PDCCH/EPDCCH CANDIDATE INDEX의 오름차순 (혹은 내림 차순)으로) 각각 'ROUND(6*0.33)' (혹은 'FLOOR(6*0.33)' 혹은 'CEILING(6*0.33)'), 'ROUND(4*0.33)' (혹은 'FLOOR(4*0.33)' 혹은 'CEILING(4*0.33)')가 된다.
또 다른 일례로, 상기 설명한 (OPTION#31-A)가 적용될 경우, 일례로, 만약 (UE가 설정 받은) 서로 다른 CONTROL CHANNEL STRUCTURE/CONTROL CHANNEL SET (예) PDCCH와 EPDCCH (SET#1/2)) 관련 총 (최대) PDCCH/EPDCCH CANDIDATE 개수 (혹은 BD 값)가 상기 (특정) AL TYPE 내 일부 AL(S)에 대해서 'N' 이하가 된다면, (해당 (특정) AL TYPE 내의) 일부 AL(S)에 대해서만 'N'개의 비트들을 [제안 방법#27] (즉, 'PER CELL' 단위로 BD가 (실제) 수행되는 '특정 AL의 PDCCH/EPDCCH CANDIDATE 개수/위치'를 'FULL BITMAP' 형태로 알려주는 방법)에 따라 해석하도록 설정 (예) (해당 (특정) AL TYPE 내의) 나머지 AL(S)에 대해서는 'N'개의 비트들을 사전에 정의(/시그널링)된 퍼센트 값을 가리키는 용도로 사용함) 될 수 도 있다.
다음 표 23 상기 표 22에서 사전에 설정(/시그널링)된 복수 개의 AL TYPE(S)을 하나의 (대표) AL TYPE으로 (재)정의(/(재)통합)한 (혹은 묶은) 경우에 대한 일례를 나타낸다.
[표 23]
Figure PCTKR2016000313-appb-I000027
상기 표 23은 상기 표 22에서 '네번째 AL TYPE'과 '다섯번째 AL TYP'E을 하나의 (대표) AL TYPE (예) (대표) 네번째 AL TYPE (표 23))으로 (재)정의(/(재)통합)한 경우를 나타낸다. 여기서, 일례로, 표 22의 다섯번째 AL TYPE 관련 총 (최대) BD 값 (혹은 (E)PDCCH CANDIDATE 개수)는 설정되거나 혹은 설정되지 않을 수 있다. 따라서, 표 23의 (대표) 네번째 AL TYPE 관련 (특정) 총 (최대) BD 값 (혹은 (E)PDCCH CANDIDATE 개수)은 (표 22에서) 일부 (혹은 전부) 상이한 AL(S) 관련 총 (최대) BD 값들 (혹은 (E)PDCCH CANDIDATE 개수들)의 합으로 구성 (CASE#31-1)되거나, 혹은 동일한 AL(S) 관련 총 (최대) BD 값들 (혹은 (E)PDCCH CANDIDATE 개수들)의 합으로 구성 (CASE#31-2)될 수 있다.
여기서, 일례로, (CASE#32-1) (그리고/혹은 (CASE#32-2))의 경우에, [제안 방법#27] (즉, 'PER CELL' 단위로 BD가 (실제) 수행되는 '특정 AL의 PDCCH/EPDCCH CANDIDATE 개수/위치'를 'FULL BITMAP' 형태로 알려주는 방법)에 따라 'N'개의 비트들이 사용되거나, 그리고/혹은 'N'개의 비트들이 사전에 정의(/시그널링)된 퍼센트 값을 가리키는 용도로 사용 (예) '00', 01', '10', '11'은 각각 '0%', '33%', '66%', '100%'을 가리키도록 설정될 수 있음)될 때, 아래의 (일부 혹은 모든) 인터리빙 규칙이 적용된 후에, (실제) BD가 수행되는 최종 EPDCCH CANDIDATE 개수/위치가 결정(/선정)될 수 있다.
이하에서는 설명의 편의를 위해서, ((재)정의(/(재)통합)된) 하나의 EPDCCH SET 관련 (대표) 네번째 AL TYPE의 총 (최대) BD 값 (혹은 EPDCCH CANDIDATE 개수)이 'AL8 관련 2 개의 EPDCCH CANDIDATE(S) (예) AL8_EPDCCHCANDI#1, AL8_EPDCCHCANDI#2)'와 'AL16 관련 1 개의 EPDCCH CANDIDATE(S) (예) AL16_EPDCCHCANDI#1)'로 구성된 경우를 가정한다.
(규칙#31-1) 일례로, 상대적으로 높은 (혹은 낮은) AL의 (E)PDCCH CANDIDATE(S)가 앞쪽에 위치하도록 규칙이 정의될 수 있다.
(규칙#31-2) 일례로, 상대적으로 낮은 (혹은 높은) (E)PDCCH CANDIDATE INDEX의 (E)PDCCH CANDIDATE가 앞쪽에 위치하도록 규칙이 정의될 수 있다. 이러한 규칙은 동일한 AL 관련 (E)PDCCH CANDIDATE(S) 간에 배치 순서를 (재)정의하기 위해서 사용될 수 있다. 상기 가정한 예시 상황에서, (규칙#31-1) 그리고/혹은 (규칙#31-2) 기반의 인터리빙 규칙(들)이 적용될 경우, 'AL16_EPDCCHCANDI#1, AL8_EPDCCHCANDI#1, AL8_EPDCCHCANDI#2 (즉, 상대적으로 높은 AL의 (E)PDCCH CANDIDATE(S)와 상대적으로 낮은 (E)PDCCH CANDIDATE INDEX의 (E)PDCCH CANDIDATE가 앞쪽에 위치하도록 설정된 경우)' (혹은 'AL8_EPDCCHCANDI#1, AL8_EPDCCHCANDI#2, AL16_EPDCCHCANDI#1' (즉, 상대적으로 낮은 AL의 (E)PDCCH CANDIDATE(S)와 상대적으로 낮은 (E)PDCCH CANDIDATE INDEX의 (E)PDCCH CANDIDATE가 앞쪽에 위치하도록 설정된 경우))의 형태로 섞이게 된다.
[제안 방법#32] 만약 ([제안 방법#31]이 적용될 경우) 두 개의 EPDCCH SET(S)이 설정되고, 'N'개 (예) 2 개)의 비트들이 가리키는 사전에 정의(/시그널링)된 퍼센트 값 (예) '00', 01', '10', '11'은 각각 '0%', '33%', '66%', '100%'을 가리키도록 설정될 수 있음)이 두 개의 EPDCCH SET(S) 관련 총 (최대) BD 값 (혹은 EPDCCH CANDIDATE 개수) 합에 적용된다면, 아래 (일부 혹은 모든) 규칙에 따라 EPDCCH CANDIDATE(S)을 인터리빙 한 후에, (실제) BD가 수행되는 최종 EPDCCH CANDIDATE 개수/위치가 결정(/선정)될 수 있다.
이하에서는 설명의 편의를 위해서, 첫번째/두번째 EPDCCH SET의 총 (최대) BD 값 (혹은 EPDCCH CANDIDATE 개수)이 각각 '6 (예) FIRSTSET_IDX#1, FIRSTSET_IDX#2, FIRSTSET_IDX#3, FIRSTSET_IDX#4, FIRSTSET_IDX#5, FIRSTSET_IDX#6), '3 (예) SECONDSET_IDX#1, SECONDSET_IDX#2, SECONDSET_IDX#3)'으로 설정되고, 'N = 2'의 비트들이 '01'로 시그널링(/설정)된 상황을 가정한다.
(규칙#32-1) 상대적으로 큰 '총 (최대) BD 값 (혹은 EPDCCH CANDIDATE 개수) ("LARGER_BDNUM"로 명명)'를 가지는 EPDCCH SET 관련 EPDCCH CANDIDATE(S) 사이에, 상대적으로 작은 '총 (최대) BD 값 (혹은 EPDCCH CANDIDATE 개수) ("SMALLER_BDNUM"로 명명)'를 가지는 EPDCCH SET 관련 EPDCCH CANDIDATE(S)가 'FLOOR(LARGER_BDNUM/SMALLER_BDNUM)'(혹은 'FLOOR(LARGER_BDNUM/SMALLER_BDNUM)'혹은 'CEILING(LARGER_BDNUM/SMALLER_BDNUM)')의 오프셋(/간격) (혹은 사전에 시그널링(/설정)된 오프셋(/간격))을 가지고 삽입되도록 정의될 수 있다.
여기서, 일례로, 상기 가정한 예시 상황에서 이러한 인터리빙 규칙이 적용될 경우, 두 개의 EPDCCH SET(S) 관련 EPDCCH CANDIDATE(S)는 'FIRSTSET_IDX#1, FIRSTSET_IDX#2, SECONDSET_IDX#1, FIRSTSET_IDX#3, FIRSTSET_IDX#4, SECONDSET_IDX#2, FIRSTSET_IDX#5, FIRSTSET_IDX#6, SECONDSET_IDX#3'의 형태로 섞이게 되며, 시그널링(/설정)된 '01' (즉, '33%')의 비트들에 의해, (실제) BD가 수행되는 최종 EPDCCH CANDIDATE 개수/위치는 'ROUND(9*0.33)(=3)'/'FIRSTSET_IDX#1, FIRSTSET_IDX#2, SECONDSET_IDX#1' (혹은 'FLOOR(9*0.33)(=2)'/'FIRSTSET_IDX#1, FIRSTSET_IDX#2' 혹은 'CEILING(9*0.33)(=3)'/'FIRSTSET_IDX#1, FIRSTSET_IDX#2, SECONDSET_IDX#1')가 된다.
상기 가정한 예시 상황에서 이러한 인터리빙 규칙이 적용될 경우, 두 개의 EPDCCH SET(S) 관련 EPDCCH CANDIDATE(S)는 'SECONDSET_IDX#1, FIRSTSET_IDX#1, FIRSTSET_IDX#2, SECONDSET_IDX#2, FIRSTSET_IDX#3, FIRSTSET_IDX#4, SECONDSET_IDX#3, FIRSTSET_IDX#5, FIRSTSET_IDX#6'의 형태로 섞이게 되며, 시그널링(/설정)된 '01' (즉, '33%')의 비트들에 의해, (실제) BD가 수행되는 최종 EPDCCH CANDIDATE 개수/위치는 'ROUND(9*0.33)(=3)'/'SECONDSET_IDX#1, FIRSTSET_IDX#1, FIRSTSET_IDX#2' (혹은 'FLOOR(9*0.33)(=2)'/'SECONDSET_IDX#1, FIRSTSET_IDX#1' 혹은 'CEILING(9*0.33)(=3)'/'SECONDSET_IDX#1, FIRSTSET_IDX#1, FIRSTSET_IDX#2')가 된다.
상기 설명한 제안 방식에 대한 실시예들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백하다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수도 있다.
또 다른 일례로, 상기 설명한 일부 (혹은 모든) 제안 방식들은 CROSS-CARRIER SCHEDULING (CCS) (그리고/혹은 SELF-SCHEDULING (SFS)) 상황에서만 한정적으로 적용되도록 규칙이 정의될 수 있다.
또한, 일례로, 상기 설명한 일부 (혹은 모든) 제안 방식들은 (PCELL이 아닌) SCELL PUCCH TRANSMISSION MODE가 설정된 경우에만 한정적으로 적용되도록 규칙이 정의될 수 있다.
또한, 일례로, 상기 설명한 일부 (혹은 모든) 제안 방식들은 LCELL(S)과 LCELL(S) (혹은 LCELL(S)과 UCELL(S) 혹은 UCELL(S)과 UCELL(S)) 간에도 확장 적용될 수 있다. 또한, 일례로, 상기 설명한 제안 방식들 (e.g., (MAXIMUM) BD (NUMBER) REDUCTION 방법, SS SHARING 방법)은 MASSIVE CA MODE가 설정된 경우 그리고/혹은 CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 (UL) LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 (혹은 CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우) 그리고/혹은 ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 이상으로 설정된 경우 그리고/혹은 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 이상인 경우에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
여기서, 일례로, MASSIVE CA MODE가 설정되지 않은 경우 그리고/혹은 CELL(S) (혹은 LCELL(S) 혹은 UCELL(S) 혹은 LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 (혹은 CONFIGURED CELL(S) (혹은 CONFIGURED LCELL(S) 혹은 CONFIGURED UCELL(S) 혹은 CONFIGURED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우) 그리고/혹은 ACTIVATED CELL(S) (혹은 ACTIVATED LCELL(S) 혹은 ACTIVATED UCELL(S) 혹은 ACTIVATED LCELL(S)/UCELL(S))이 사전에 정의된 (혹은 시그널링된) 개수 미만으로 설정된 경우 그리고/혹은 하나의 SCHEDULING CELL에 설정된 SCHEDULED CELL(S) 개수가 사전에 정의된 (혹은 시그널링된) 임계값 미만인 경우에서는 기존 (REL-12 LTE) 동작이 적용되도록 규칙이 정의될 수 있다.
또한, 일례로, 본 발명에서 "CG" 라는 용어는 PUCCH 전송이 설정된 (혹은 허용된) 특정 CELL (i.e., "CELL_PUCCH"로 명명)과 연동된 CELL(S)들을 통칭하는 것으로 해석될 수 있다. 여기서, 일례로, 하나의 CG는 특정 CELL_PUCCH과 해당 CELL_PUCCH를 통해 (PUCCH 기반의) UCI가 전송되는 CELL(S)을 (함께) 가리키는 것으로 해석되거나, 혹은 하나의 CG는 (특정 CELL_PUCCH를 포함하지 않고) 해당 CELL_PUCCH를 통해 (PUCCH 기반의) UCI가 전송되는 CELL(S)만을 가리키는 것으로 해석될 수 있다.
도 17은 기지국 및 단말을 나타내는 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.

Claims (12)

  1. 무선통신 시스템에서 단말(User Equipment: UE)의 하향링크 제어 정보(Downlink Control Information: DCI) 모니터링 방법에 있어서,
    셀 별(per cell) 검색 공간(search space: SS)의 각 집성 레벨(aggregation level: AL)에 대한 제어 채널 후보들의 개수를 알려주는 '제어 채널 후보 개수 정보'를 수신하고, 및
    DCI를 검출하기 위해, 기존 제어 채널 후보들(legacy candidates)들 중 최초 일부의 제어 채널 후보들을 모니터링하되,
    상기 최초 일부의 제어 채널 후보들의 개수는 상기 제어 채널 후보 개수 정보에 기반하여 결정되는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 검색 공간은 단말 특정 검색 공간(UE-specific Search Space: USS)인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 제어 채널 후보들은 PDCCH(Physical Downlink Control CHannel) 또는 EPDCCH(Enhanced Physical Downlink Control CHannel)의 후보들인 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 제어 채널 후보 개수 정보는
    상기 최초 일부의 제어 채널 후보들의 개수를 상기 기존 제어 채널 후보들의 개수에 대한 비율(ratio)로 알려주는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서, 상기 제어 채널 후보 개수 정보는
    셀 별 검색 공간의 각 집성 레벨(aggregation level: AL) 별 기존 제어 채널 후보들의 개수에 대해 제공되는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서, 상기 제어 채널 후보 개수 정보는 2비트로 구성되는 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서, 상기 2비트가 '00', '01', '10' 또는 '11'인 경우, 차례로 나타내는 비율은 0, 0.33,0.66, 1인 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서, 상기 제어 채널 후보 개수 정보는 상위 계층 신호를 통해 수신되는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서, 상기 상위 계층 신호는 RRC(Radio Resource Control) 메시지인 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서, 상기 단말은 5개보다 많은 셀들의 집성을 지원하는 단말인 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서, 상기 제어 채널 후보 개수 정보를 수신하지 못하는 경우, 상기 단말은 DCI를 검출하기 위해, 검색 공간의 각 집성 레벨(aggregation level: AL)에 대한 기존 제어 채널 후보들을 모니터링하는 것을 특징으로 하는 방법.
  12. 단말은,
    무선신호를 송수신하는 RF부; 및
    상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는
    셀 별(per cell) 검색 공간(search space: SS)의 각 집성 레벨(aggregation level: AL)에 대한 제어 채널 후보들의 개수를 알려주는 '제어 채널 후보 개수 정보'를 수신하고,
    DCI를 검출하기 위해, 기존 제어 채널 후보들(legacy candidates)들 중 최초 일부의 제어 채널 후보들을 모니터링하되,
    상기 최초 일부의 제어 채널 후보들의 개수는 상기 제어 채널 후보 개수 정보에 기반하여 결정되는 것을 특징으로 하는 단말.
PCT/KR2016/000313 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치 WO2016114563A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/542,369 US10674519B2 (en) 2015-01-12 2016-01-12 Method for monitoring downlink control information wireless communication system, and device therefor

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
US201562102109P 2015-01-12 2015-01-12
US62/102,109 2015-01-12
US201562112739P 2015-02-06 2015-02-06
US62/112,739 2015-02-06
US201562114080P 2015-02-10 2015-02-10
US62/114,080 2015-02-10
US201562115159P 2015-02-12 2015-02-12
US62/115,159 2015-02-12
US201562145499P 2015-04-09 2015-04-09
US62/145,499 2015-04-09
US201562148705P 2015-04-16 2015-04-16
US62/148,705 2015-04-16
US201562165949P 2015-05-23 2015-05-23
US62/165,949 2015-05-23
US201562204956P 2015-08-13 2015-08-13
US62/204,956 2015-08-13
US201562232430P 2015-09-24 2015-09-24
US62/232,430 2015-09-24
US201562241121P 2015-10-13 2015-10-13
US62/241,121 2015-10-13
US201562251665P 2015-11-05 2015-11-05
US62/251,665 2015-11-05

Publications (1)

Publication Number Publication Date
WO2016114563A1 true WO2016114563A1 (ko) 2016-07-21

Family

ID=56406055

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2016/000310 WO2016114561A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 동작 방법 및 장치
PCT/KR2016/000308 WO2016114560A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 단말 능력 정보 전송 방법 및 장치
PCT/KR2016/000313 WO2016114563A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치
PCT/KR2016/000312 WO2016114562A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 하향링크 제어 정보 수신 방법 및 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/000310 WO2016114561A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 동작 방법 및 장치
PCT/KR2016/000308 WO2016114560A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 단말 능력 정보 전송 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000312 WO2016114562A1 (ko) 2015-01-12 2016-01-12 무선 통신 시스템에서 단말의 하향링크 제어 정보 수신 방법 및 장치

Country Status (6)

Country Link
US (7) US10433318B2 (ko)
EP (2) EP3247061B1 (ko)
JP (2) JP2018506246A (ko)
KR (2) KR102053228B1 (ko)
CN (1) CN107113603B (ko)
WO (4) WO2016114561A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067499A (zh) * 2017-06-13 2018-12-21 维沃移动通信有限公司 一种下行控制信息的发送方法、接收方法及相关设备
EP3684126A4 (en) * 2017-09-15 2021-06-02 Sharp Kabushiki Kaisha TERMINAL DEVICE AND COMMUNICATION PROCEDURES
US11316615B2 (en) 2017-02-05 2022-04-26 Lg Electronics Inc. Method of transmitting uplink control information by user equipment in wireless communication system and device for supporting same
RU2776255C2 (ru) * 2017-09-15 2022-07-15 Шарп Кабусики Кайся Терминальное устройство и способ связи

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506246A (ja) 2015-01-12 2018-03-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末の端末能力情報送信方法及び装置
US11064480B2 (en) * 2015-01-29 2021-07-13 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
KR102423756B1 (ko) 2015-01-29 2022-07-21 삼성전자주식회사 셀 집적 시스템에서 하향 제어 채널 정보 송신 방법 및 장치
US20180026736A1 (en) * 2015-02-20 2018-01-25 Nec Corporation Wireless communication system, base station device, mobile station device, and wireless communication control method
CN106211025B (zh) * 2015-03-18 2021-07-09 北京三星通信技术研究有限公司 基于d2d广播通信的网络中建立中继连接的方法和设备
CN107432017B (zh) * 2015-04-09 2022-01-04 株式会社Ntt都科摩 用户终端、无线通信系统以及无线通信方法
EP3295595A1 (en) * 2015-05-15 2018-03-21 Telefonaktiebolaget LM Ericsson (publ) Methods to map cif and serving cells
US11496872B2 (en) * 2015-11-06 2022-11-08 Qualcomm Incorporated Search spaces and grants in eMTC
CN105682244B (zh) * 2016-03-25 2018-01-09 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
AU2017263585C1 (en) * 2016-05-10 2022-01-13 Ntt Docomo, Inc. User terminal and radio communication method
CN117061067A (zh) * 2016-06-20 2023-11-14 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备
CN109565861B (zh) 2016-08-11 2021-03-23 三星电子株式会社 下一代蜂窝网络中的数据传输的方法和装置
CN109644487B (zh) * 2016-08-30 2022-05-24 Lg电子株式会社 无线通信系统中发送下行链路控制信息的方法和使用该方法的装置
US11304190B2 (en) * 2016-11-08 2022-04-12 Qualcomm Incorporated Search space design and use
US11523376B2 (en) 2017-01-05 2022-12-06 Huawei Technologies Co., Ltd. Method for downlink control channel design
US11601820B2 (en) * 2017-01-27 2023-03-07 Qualcomm Incorporated Broadcast control channel for shared spectrum
CN108809505B (zh) * 2017-05-05 2019-12-24 维沃移动通信有限公司 下行控制信息的传输方法、终端及网络侧设备
CN109121159B (zh) * 2017-06-22 2021-04-23 维沃移动通信有限公司 盲检能力上报方法、盲检配置、盲检方法、终端及基站
CN109121210B (zh) * 2017-06-23 2021-01-29 华为技术有限公司 一种检测下行控制信道的方法及设备
WO2019010711A1 (zh) * 2017-07-14 2019-01-17 深圳前海达闼云端智能科技有限公司 用于终端能力上报的方法和装置
KR102443452B1 (ko) 2017-07-17 2022-09-15 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보를 전송하는 방법 및 장치
EP3657874A4 (en) * 2017-07-21 2021-03-03 Ntt Docomo, Inc. USER TERMINAL, AND WIRELESS COMMUNICATIONS PROCESS
JP2019033418A (ja) * 2017-08-09 2019-02-28 シャープ株式会社 端末装置、および、方法
CN116318599A (zh) * 2017-08-11 2023-06-23 苹果公司 确定和传递无线电信网络中的控制信息
CN109391967B (zh) * 2017-08-11 2021-04-06 维沃移动通信有限公司 一种信息上报及信息处理方法、终端及网络设备
JP2019047412A (ja) * 2017-09-06 2019-03-22 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
KR102512852B1 (ko) 2017-09-08 2023-03-24 삼성전자 주식회사 무선 통신 시스템에서 상향링크 제어 신호를 전송하기 위한 장치 및 방법
CN113037432A (zh) 2017-09-08 2021-06-25 华为技术有限公司 通信方法、终端设备和网络设备
CN111095841B (zh) * 2017-09-11 2021-10-15 中兴通讯股份有限公司 用于控制信道信息传输的方法和装置
EP4099607B1 (en) * 2017-10-02 2023-12-27 Telefonaktiebolaget LM Ericsson (publ) Pdcch monitoring periodicity
CN111818650B (zh) * 2017-10-20 2022-01-11 华为技术有限公司 下行控制信息的传输、盲检测次数的获取方法和装置
US10652069B2 (en) * 2017-10-26 2020-05-12 Qualcomm Incorporated Resource element group mapping for a downlink control channel
US10945251B2 (en) * 2017-11-15 2021-03-09 Sharp Kabushiki Kaisha User equipments, base stations and methods
US10812295B2 (en) * 2017-11-17 2020-10-20 Qualcomm Incorporated Search space set hashing under channel estimation capability
WO2019112209A1 (ko) * 2017-12-08 2019-06-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
CN110166191B (zh) * 2018-02-11 2021-01-08 维沃移动通信有限公司 一种搜索空间的监听信息的确定方法及装置
CN110149181B (zh) * 2018-02-12 2022-02-01 维沃移动通信有限公司 搜索空间信道估计数的分配方法和终端设备
US11297674B2 (en) * 2018-02-14 2022-04-05 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment
WO2019182423A1 (en) 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting downlink control information in wireless communication system
US10973016B2 (en) 2018-03-23 2021-04-06 Samsung Electronics Co., Ltd Method and apparatus for transmitting downlink control information in wireless communication system
CN110351010B (zh) 2018-04-03 2021-04-30 电信科学技术研究院有限公司 一种信道盲检方法、信号传输方法和相关设备
WO2019196066A1 (en) * 2018-04-12 2019-10-17 Nokia Shanghai Bell Co., Ltd. Random access response for bwp
CN112491520B (zh) * 2018-05-11 2023-11-10 华为技术有限公司 参数确定的方法、监控方法、通信装置
CN110557222B (zh) 2018-05-31 2020-07-14 展讯通信(上海)有限公司 下行控制信息的传输控制方法及装置、存储介质、基站、终端
CN110581755B (zh) * 2018-06-11 2022-07-26 大唐移动通信设备有限公司 一种下行控制信道检测方法、终端和网络侧设备
SG11202012387YA (en) * 2018-06-12 2021-01-28 Beijing Xiaomi Mobile Software Co Ltd Method and appratus for transmitting mtc downlink control information, base station and user equipment
SG11202012051VA (en) 2018-06-14 2021-01-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Information transmission method and apparatus, terminal device, and network device
WO2020032693A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 스케줄링 정보의 모니터링 방법 및 상기 방법을 이용하는 장치
WO2020053943A1 (ja) * 2018-09-10 2020-03-19 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10924250B2 (en) 2018-09-13 2021-02-16 Samsung Electronics Co., Ltd. UE operation with reduced power consumption
CN113170336A (zh) * 2018-10-30 2021-07-23 Oppo广东移动通信有限公司 一种盲检次数的确定方法及装置、终端
CN111278004B (zh) * 2019-01-08 2021-06-08 维沃移动通信有限公司 物理下行控制信道候选的位置确定方法、终端、介质及网络设备
EP3984272A4 (en) * 2019-06-17 2023-01-11 Qualcomm Incorporated LOW COMPLEXITY PHYSICAL DOWNLINK CONTROL CHANNELS AND RELATED SIGNALING
US11425724B2 (en) * 2019-07-12 2022-08-23 Qualcomm Incorporated Carrier aggregation for narrowband internet of things user equipment
CN113099483B (zh) * 2019-12-23 2023-07-07 维沃移动通信有限公司 小区拥塞的处理方法、终端及网络侧设备
US11956074B2 (en) 2020-01-02 2024-04-09 Qualcomm Incorporated Physical downlink control channel (PDCCH) parameters for multiple cell groups
JP7420835B2 (ja) * 2020-01-10 2024-01-23 株式会社Nttドコモ 端末及び通信方法
WO2021142704A1 (en) * 2020-01-16 2021-07-22 Qualcomm Incorporated Monitoring for a combination downlink control information (dci) for scheduling transmissions in multiple cells
CN111901885A (zh) * 2020-01-20 2020-11-06 中兴通讯股份有限公司 一种信息调度方法、装置、设备和存储介质
US20230050473A1 (en) * 2020-01-30 2023-02-16 Ntt Docomo, Inc. Terminal, radio communication method, and base station
EP4106463A4 (en) * 2020-02-10 2023-11-08 Beijing Xiaomi Mobile Software Co., Ltd. TRANSMISSION PROGRAMMING METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM
US11646847B2 (en) 2020-02-10 2023-05-09 Samsung Electronics Co., Ltd. Method and apparatus for reduced PDCCH monitoring
CN111294960B (zh) * 2020-02-12 2023-04-21 北京紫光展锐通信技术有限公司 识别下行控制信息的方法及设备
KR20210103319A (ko) 2020-02-13 2021-08-23 삼성전자주식회사 무선 통신 시스템에서 기본 빔 설정 방법 및 장치
CN113473611A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 资源调度方法、装置及ue
US11792812B2 (en) * 2020-04-02 2023-10-17 Qualcomm Incorporated Search space configurations for multi-component carrier scheduling
WO2021206414A1 (en) * 2020-04-10 2021-10-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving downlink control information in wireless communication system
CN113543318A (zh) * 2020-04-15 2021-10-22 大唐移动通信设备有限公司 一种载波确定及指示方法、设备、装置、介质
JP7395772B2 (ja) * 2020-05-04 2023-12-11 フラウンホーファー-ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ ワイヤレス通信ネットワークにおける物理ダウンリンク制御チャネルの信頼性および性能を強化するための方法および装置
CN115552939A (zh) * 2020-05-14 2022-12-30 苹果公司 报告物理下行链路控制信道盲解码能力
WO2021256584A1 (ko) * 2020-06-18 2021-12-23 엘지전자 주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
US11765716B2 (en) * 2020-07-16 2023-09-19 Samsung Electronics Co., Ltd. Scheduling on a cell from different cells
CN113973320B (zh) * 2020-07-23 2024-03-26 维沃移动通信有限公司 信息传输方法、装置及通信设备
KR102471617B1 (ko) * 2020-10-19 2022-11-28 주식회사 엘지유플러스 무선통신 시스템에서의 무선자원 스케줄링 방법 및 장치
US11950218B2 (en) 2021-05-14 2024-04-02 Cisco Technology, Inc. Auto-configuration of hybrid cells supporting shared cell and unique cell operating modes for user equipment in virtualized radio access network architectures
US11882611B2 (en) 2021-05-17 2024-01-23 Cisco Technology, Inc. Dual-connectivity support for user equipment in a hybrid cell virtualized radio access network architecture
US11871271B2 (en) 2021-05-17 2024-01-09 Cisco Technology, Inc. Dynamic switching for user equipment between unique cell and shared cell operating modes based on application traffic
US20230057605A1 (en) * 2021-07-30 2023-02-23 Samsung Electronics Co., Ltd. Pdcch monitoring for multi-cell scheduling
WO2023211210A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 신호를 모니터링하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110134305A (ko) * 2010-06-08 2011-12-14 한국전자통신연구원 다중 캐리어 무선 통신 시스템에서의 송수신 방법 및 장치
KR20130021393A (ko) * 2010-04-30 2013-03-05 리서치 인 모션 리미티드 캐리어 집성을 위한 제어 채널 공유 시스템 및 방법
WO2014027810A1 (ko) * 2012-08-11 2014-02-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2014065585A1 (ko) * 2012-10-23 2014-05-01 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 이를 위한 장치
KR20140088180A (ko) * 2011-11-04 2014-07-09 퀄컴 인코포레이티드 무선 통신 네트워크에서 e-pdcch 에 대한 검색 공간 설계

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913473B1 (ko) 2008-03-20 2009-08-25 엘지전자 주식회사 무선 통신 시스템에서 pdcch 모니터링 방법
KR101654061B1 (ko) 2009-04-10 2016-09-05 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
US9296785B2 (en) * 2009-04-17 2016-03-29 Wake Forest University Health Sciences IL-13 receptor binding peptides
US8724571B2 (en) 2009-04-20 2014-05-13 Lg Electronics Inc. Carrier construction for effective control channel decoding
WO2010134755A2 (ko) 2009-05-19 2010-11-25 엘지전자 주식회사 제어 정보를 전송하는 방법 및 장치
HUE060448T2 (hu) * 2009-06-02 2023-02-28 Blackberry Ltd Rendszer és eljárás vakdekódolás csökkentésére vivõaggregációhoz és keresési terek véletlen generálásához a vivõindex, RNTI, és alkeret index függvényében
KR20120112367A (ko) * 2009-12-07 2012-10-11 엘지전자 주식회사 복수의 콤포넌트 반송파를 지원하는 무선 통신 시스템에서 신호 송수신 방법 및 장치
KR101769371B1 (ko) 2010-01-11 2017-08-30 엘지전자 주식회사 크기를 조정한 dci를 이용한 pdcch 송수신 방법 및 장치
WO2011122825A2 (ko) 2010-03-30 2011-10-06 엘지전자 주식회사 다중 반송파 시스템에서 반송파 지시 필드 설정 방법
WO2011122852A2 (ko) 2010-03-30 2011-10-06 엘지전자 주식회사 무선통신 시스템에서 제어채널을 모니터링하기 위한 방법 및 장치
CN102215586B (zh) 2010-04-02 2014-12-17 电信科学技术研究院 一种物理下行控制信道pdcch盲检的方法及设备
US20110267948A1 (en) 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US20110292891A1 (en) * 2010-05-26 2011-12-01 Industrial Technology Research Institute Control channel allocation method, control channel searching method and communication apparatus using the same
JP6039578B2 (ja) 2011-01-07 2016-12-07 インターデイジタル パテント ホールディングス インコーポレイテッド 多地点協調送信におけるダウンリンク共有チャネル受信の方法、システムおよび装置
KR101763751B1 (ko) * 2011-01-11 2017-08-02 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 부차반송파의 활성화 및 비활성화 방법 및 장치
JP5641061B2 (ja) 2011-01-28 2014-12-17 富士通株式会社 無線通信装置、無線通信システムおよび無線通信方法
JP5487136B2 (ja) 2011-02-14 2014-05-07 株式会社Nttドコモ 非周期的チャネル状態情報通知方法、無線基地局装置、ユーザ端末
EP2688239B1 (en) 2011-03-13 2018-11-28 LG Electronics Inc. Method for transmitting/receiving signal and device therefor
KR20120108345A (ko) * 2011-03-23 2012-10-05 주식회사 팬택 잉여전력보고의 수행장치 및 방법
US9042277B2 (en) 2011-04-11 2015-05-26 Qualcomm Incorporated Transmission of control information for FDD-TDD carrier aggregation
KR101528091B1 (ko) 2011-04-28 2015-06-10 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
US9391758B2 (en) 2011-05-06 2016-07-12 Lg Electronics Inc. Method and apparatus for adjusting transmission timing in wireless access system supporting carrier aggregation
US20120300714A1 (en) * 2011-05-06 2012-11-29 Samsung Electronics Co., Ltd. Methods and apparatus for random access procedures with carrier aggregation for lte-advanced systems
EP2723009B1 (en) 2011-06-15 2020-02-19 LG Electronics Inc. Method for receiving downlink control information in wireless access system and terminal therefor
KR101876230B1 (ko) 2011-06-16 2018-07-10 주식회사 팬택 다중 요소 반송파 시스템에서 제어채널의 수신장치 및 방법
WO2013017154A1 (en) 2011-07-29 2013-02-07 Fujitsu Limited Control channel for wireless communication
JP5612770B2 (ja) 2011-07-29 2014-10-22 株式会社Nttドコモ 無線通信システム、無線通信方法、無線基地局装置及びユーザ端末
WO2013022451A1 (en) 2011-08-11 2013-02-14 Research In Motion Limited Performing random access in carrier aggregation
US9648511B2 (en) 2011-10-10 2017-05-09 Samsung Electronics Co., Ltd Method and device for suggesting recording information and acquiring positional information to allow MDT technology to be effectively utilized in a mobile communication system
WO2013062396A1 (ko) 2011-10-27 2013-05-02 엘지전자 주식회사 상향링크를 통한 제어 정보 전송하는 방법 및 장치
KR102121849B1 (ko) 2011-10-27 2020-06-12 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
EP2590350A1 (en) 2011-11-07 2013-05-08 Panasonic Corporation Enhanced PDCCH overlapping with the PDCCH region
JP5801694B2 (ja) 2011-11-09 2015-10-28 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
EP3432666B1 (en) * 2011-12-22 2021-06-16 Interdigital Patent Holdings, Inc. Control signaling in lte carrier aggregation
US9119120B2 (en) 2012-01-23 2015-08-25 Intel Corporation Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
WO2013112972A1 (en) 2012-01-27 2013-08-01 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
CN103327591A (zh) * 2012-03-21 2013-09-25 北京三星通信技术研究有限公司 一种探测参考信号的功率控制方法
WO2013147532A1 (ko) 2012-03-28 2013-10-03 엘지전자 주식회사 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
KR20150003233A (ko) * 2012-03-30 2015-01-08 아지노모토 가부시키가이샤 황산화 화합물을 포함하는 줄기 세포 증식용 배지
JP2013236340A (ja) 2012-05-10 2013-11-21 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
JP5726819B2 (ja) 2012-05-11 2015-06-03 株式会社Nttドコモ 復号方法、無線基地局、ユーザ端末及び無線通信システム
JP2014007670A (ja) * 2012-06-26 2014-01-16 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末及び通信制御方法
WO2014051293A1 (ko) 2012-09-28 2014-04-03 주식회사 케이티 하향링크 제어채널에서의 블라인드 디코딩을 조절하는 방법 및 장치
US9930646B2 (en) 2012-10-10 2018-03-27 Lg Electronics Inc. Method and user device for receiving uplink control information, and method and base station for transmitting uplink information
CN104981989B (zh) 2013-02-01 2018-01-23 Lg电子株式会社 在无线通信系统中分配用于参考信号的资源的方法和设备
KR102025385B1 (ko) 2013-02-26 2019-11-27 삼성전자주식회사 셀 내의 캐리어 집적 시스템에서 단말의 능력에 따른 제어 채널 전송 방법 및 장치
US9306721B2 (en) 2013-03-15 2016-04-05 Google Technology Holdings LLC Method and apparatus for device-to-device communication
WO2014157927A1 (ko) 2013-03-28 2014-10-02 주식회사 케이티 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 방법 및 그 장치
US20150189574A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Methods for dormant cell signaling for advanced cellular network
US9603164B2 (en) 2014-07-01 2017-03-21 Intel Corporation Group carrier scheduling for unlicensed long term evolution network
JP6426840B2 (ja) 2014-11-07 2018-11-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America アンライセンスキャリアで送信するための改良されたリソース割当て
JP2018506246A (ja) 2015-01-12 2018-03-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末の端末能力情報送信方法及び装置
JP2018050089A (ja) * 2015-01-29 2018-03-29 シャープ株式会社 端末装置、基地局装置、集積回路、および、通信方法
KR102423756B1 (ko) * 2015-01-29 2022-07-21 삼성전자주식회사 셀 집적 시스템에서 하향 제어 채널 정보 송신 방법 및 장치
JP2018050090A (ja) * 2015-01-29 2018-03-29 シャープ株式会社 端末装置、基地局装置、集積回路、および、通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130021393A (ko) * 2010-04-30 2013-03-05 리서치 인 모션 리미티드 캐리어 집성을 위한 제어 채널 공유 시스템 및 방법
KR20110134305A (ko) * 2010-06-08 2011-12-14 한국전자통신연구원 다중 캐리어 무선 통신 시스템에서의 송수신 방법 및 장치
KR20140088180A (ko) * 2011-11-04 2014-07-09 퀄컴 인코포레이티드 무선 통신 네트워크에서 e-pdcch 에 대한 검색 공간 설계
WO2014027810A1 (ko) * 2012-08-11 2014-02-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2014065585A1 (ko) * 2012-10-23 2014-05-01 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 이를 위한 장치

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316615B2 (en) 2017-02-05 2022-04-26 Lg Electronics Inc. Method of transmitting uplink control information by user equipment in wireless communication system and device for supporting same
US11742981B2 (en) 2017-02-05 2023-08-29 Lg Electronics Inc. Method of transmitting uplink control information by user equipment in wireless communication system and device for supporting same
CN109067499A (zh) * 2017-06-13 2018-12-21 维沃移动通信有限公司 一种下行控制信息的发送方法、接收方法及相关设备
EP3641446A4 (en) * 2017-06-13 2020-06-03 Vivo Mobile Communication Co., Ltd. METHOD FOR SENDING AND RECEIVING DOWNLINK CONTROL INFORMATION AND CORRESPONDING DEVICE
US11251902B2 (en) 2017-06-13 2022-02-15 Vivo Mobile Communication Co., Ltd. Downlink control information transmission method and receiving method, and related device
US11716167B2 (en) 2017-06-13 2023-08-01 Vivo Mobile Communication Co., Ltd. Downlink control information transmission method and receiving method, and related device
EP3684126A4 (en) * 2017-09-15 2021-06-02 Sharp Kabushiki Kaisha TERMINAL DEVICE AND COMMUNICATION PROCEDURES
US11337238B2 (en) 2017-09-15 2022-05-17 Sharp Kabushiki Kaisha Terminal apparatus and communication method
RU2776255C2 (ru) * 2017-09-15 2022-07-15 Шарп Кабусики Кайся Терминальное устройство и способ связи

Also Published As

Publication number Publication date
US20170374653A1 (en) 2017-12-28
KR102053228B1 (ko) 2019-12-06
US11805539B2 (en) 2023-10-31
KR20170095275A (ko) 2017-08-22
US10667276B2 (en) 2020-05-26
WO2016114562A1 (ko) 2016-07-21
EP3247061A1 (en) 2017-11-22
US10674519B2 (en) 2020-06-02
JP6954948B2 (ja) 2021-10-27
EP3247061A4 (en) 2018-10-17
KR20170095920A (ko) 2017-08-23
US20200029338A1 (en) 2020-01-23
US10869321B2 (en) 2020-12-15
US20200015240A1 (en) 2020-01-09
US10433318B2 (en) 2019-10-01
EP3247060A4 (en) 2018-08-29
WO2016114560A1 (ko) 2016-07-21
EP3247060B1 (en) 2021-03-17
JP2019165461A (ja) 2019-09-26
US20210092748A1 (en) 2021-03-25
EP3247061B1 (en) 2023-03-01
US10462800B2 (en) 2019-10-29
US20180027574A1 (en) 2018-01-25
CN107113603B (zh) 2021-03-19
CN107113603A (zh) 2017-08-29
WO2016114561A1 (ko) 2016-07-21
US10448412B2 (en) 2019-10-15
US20180020443A1 (en) 2018-01-18
JP2018506246A (ja) 2018-03-01
EP3247060A1 (en) 2017-11-22
US20170374569A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2016114563A1 (ko) 무선 통신 시스템에서 단말의 하향링크 제어 정보 모니터링 방법 및 장치
WO2019143164A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018174653A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019194660A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2019164302A1 (ko) 무선 통신 시스템에서 bwp 또는 빔 전환에 따라 제어 채널을 구성하는 방법 및 장치
WO2018084672A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2018231036A1 (ko) 무선 통신 시스템에서 데이터 채널 및 제어 채널의 송수신 방법, 장치, 및 시스템
WO2021020955A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템
WO2016105127A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 향상된 물리 하향링크 제어채널을 송수신하는 방법 및 이를 지원하는 장치
WO2020222625A1 (ko) 무선 통신 시스템에서 공유 채널을 송수신하는 방법 및 이를 위한 장치
WO2018030792A1 (ko) 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019194545A1 (ko) 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치
WO2017146342A1 (ko) 협대역 iot를 지원하는 무선 통신 시스템에서 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2019194531A1 (ko) 무선 통신 시스템에서 신호의 송수신 방법 및 이를 위한 장치
WO2011126329A2 (ko) 캐리어 접합 시스템에서 pdcch 모니터링 방법 및 장치
WO2017039141A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 우선순위 클래스를 고려하여 경쟁 윈도우 크기를 조절하는 방법 및 이를 지원하는 장치
WO2018143749A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2011122852A2 (ko) 무선통신 시스템에서 제어채널을 모니터링하기 위한 방법 및 장치
WO2016111582A1 (ko) 무선통신 시스템에서 단말을 위한 제어 채널 전송 방법 및 장치
WO2016048099A2 (ko) 캐리어 어그리게이션을 이용한 통신 방법 및 이를 위한 장치
WO2016105129A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2017069571A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 신호를 송수신하는 방법 및 장치
WO2015093851A1 (ko) Epdcch의 묶음을 수신하는 방법 및 단말
WO2018203627A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737527

Country of ref document: EP

Kind code of ref document: A1