WO2020087310A1 - 一种盲检次数的确定方法及装置、终端 - Google Patents

一种盲检次数的确定方法及装置、终端 Download PDF

Info

Publication number
WO2020087310A1
WO2020087310A1 PCT/CN2018/112796 CN2018112796W WO2020087310A1 WO 2020087310 A1 WO2020087310 A1 WO 2020087310A1 CN 2018112796 W CN2018112796 W CN 2018112796W WO 2020087310 A1 WO2020087310 A1 WO 2020087310A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
cell
bwp
currently activated
terminal
Prior art date
Application number
PCT/CN2018/112796
Other languages
English (en)
French (fr)
Inventor
石聪
王淑坤
沈嘉
赵振山
史志华
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/112796 priority Critical patent/WO2020087310A1/zh
Priority to EP18938364.9A priority patent/EP3869850A4/en
Priority to CN201880099365.0A priority patent/CN113170336A/zh
Publication of WO2020087310A1 publication Critical patent/WO2020087310A1/zh
Priority to US17/244,339 priority patent/US12016029B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the embodiments of the present application relate to the technical field of mobile communications, and in particular to a method, device, and terminal for determining the number of blind inspections.
  • the network configures a cross-carrier scheduling configuration (CrossCarrierSchedulingConfig) on each serving cell to support whether the terminal is self-scheduling or scheduled by another cell in the serving cell.
  • Cross-carrier schedulingConfig Cross-carrier scheduling configuration
  • the current configuration method can only allow the terminal to use the same number of blind checks for a certain aggregation level for all scheduled cells and scheduled cells, but cannot achieve different blind tests for different cells. frequency.
  • Embodiments of the present application provide a method, device, and terminal for determining the number of blind inspections.
  • the terminal blindly detects a downlink control channel on the first search space of the first cell, where the downlink control channel is used to schedule a second cell, where the number of blind detections of the downlink control channel is based on the second search of the second cell
  • the configuration information of the space and / or the configuration information of the first search space of the first cell is determined.
  • a blind detection unit configured to blindly detect a downlink control channel on the first search space of the first cell, where the downlink control channel is used to schedule a second cell, wherein the number of blind detections of the downlink control channel is based on the second The configuration information of the second search space of the cell and / or the configuration information of the first search space of the first cell is determined.
  • the terminal provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method for determining the number of blind inspections described above.
  • the chip provided by the embodiment of the present application is used to implement the above method for determining the number of blind inspections.
  • the chip includes a processor for calling and running a computer program from the memory, so that the device installed with the chip executes the method for determining the number of blind inspections described above.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program causes the computer to execute the method for determining the number of blind inspections described above.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the method for determining the number of blind inspections described above.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above method for determining the number of blind inspections.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining the number of blind inspections provided by an embodiment of the present application
  • FIG. 3 (a) is a schematic diagram 1 of a correspondence relationship between search spaces provided by an embodiment of the present application.
  • FIG. 3 (b) is a second schematic diagram of the correspondence between search spaces provided by an embodiment of the present application.
  • FIG. 3 (c) is a schematic diagram 3 of the correspondence between search spaces provided by an embodiment of the present application.
  • FIG. 3 (d) is a schematic diagram 4 of a correspondence relationship of search spaces provided by embodiments of the present application.
  • FIG. 3 (e) is a schematic diagram 5 of a correspondence relationship between search spaces provided by an embodiment of the present application.
  • FIG. 3 (f) is a schematic diagram 6 of the correspondence between search spaces provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a device for determining the number of blind inspections provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Broadband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access, WiMAX
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminals located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110.
  • terminals include but are not limited to connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (DSL), digital cables, and direct cable connections; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and / or a device of another terminal configured to receive / transmit communication signals; and / or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Lines
  • WLAN wireless local area networks
  • DVB-H networks wireless local area networks
  • satellite networks satellite networks
  • AM-FM A broadcast transmitter AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, fax, and data communication capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • wireless communication Functional handheld devices computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in future evolved PLMNs, etc.
  • terminal 120 may perform terminal direct connection (Device to Device, D2D) communication.
  • D2D Terminal Direct connection
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminals within the coverage area. Embodiments of the present application There is no restriction on this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network / system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 having a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • the network configures CrossCarrierSchedulingConfig on each serving cell to support whether the terminal is self-scheduling or scheduled by another cell in the serving cell. If the serving cell is self-scheduling, the terminal detects a physical downlink control channel (PDCCH, Physical Downlink Control Channel) in the search space (search space) configured on the current serving cell; if the serving cell is cross-carrier scheduling, the terminal is The PDCCH is detected on the search space configured on the scheduling cell (scheduling cell, which refers to the cell scheduling the current serving cell).
  • PDCCH Physical Downlink Control Channel
  • a terminal supporting cross-carrier scheduling determines the corresponding PDCCH blind detection times of each scheduled cell in the search space of the scheduling cell in the following manner:
  • each search space can be configured with a different aggregation level , Different aggregation levels correspond to one blind inspection times.
  • This configuration allows the terminal to use the same number of blind checks for a certain aggregation level for all scheduling cells and scheduled cells, but cannot achieve different blind check times for different cells. For example, there is one scheduling cell, and two scheduled cells (scheduled cell 1 and scheduled cell 2). Assume that a search space control channel unit (CCE, Control Channel) is 32 on the scheduling cell.
  • CCE Search space control channel unit
  • a serving cell can be configured with multiple bandwidth parts (BWP, Band Width Part), and each BWP can be configured with up to 3 control resource sets (CORESET) and 10 search spaces.
  • BWP bandwidth parts
  • CORESET control resource sets
  • FIG. 2 is a schematic flowchart of a method for determining the number of blind tests provided by an embodiment of the present application. As shown in FIG. 2, the method for determining the number of blind tests includes the following steps:
  • Step 201 The terminal blindly detects a downlink control channel on a first search space of a first cell, where the downlink control channel is used to schedule a second cell, where the number of blind detections of the downlink control channel is based on the second cell's The configuration information of the second search space and / or the configuration information of the first search space of the first cell is determined.
  • the terminal may be any device that can communicate with a network, such as a mobile phone, a vehicle-mounted terminal, a tablet computer, a notebook, a wearable device, and the like.
  • the description of the first cell may also be replaced by the first carrier, and the description of the second cell may also be replaced by the second carrier.
  • the first cell is a scheduling cell (that is, a scheduling carrier).
  • the second cell is a scheduled cell (that is, a scheduled carrier).
  • the terminal blindly detects a downlink control channel on the first search space of the first cell, and the downlink control channel is used to schedule the second cell.
  • cell 1 is scheduling cell
  • cell 2 is scheduled cell
  • PDCCH on cell 1 schedules uplink data and / or downlink data on cell 2; in order to receive data on cell 2, the terminal needs to obtain it from cell 1
  • information such as time-frequency resources of data on the cell 2 is determined based on the PDCCH.
  • the downlink control channel (eg, PDCCH) of the second cell is scheduled to be transmitted in the first search space of the first cell, and the number of blind detections of the downlink control channel of the second cell is scheduled (referred to as the blindness of the second cell)
  • the number of detections is determined based on the configuration information of the second search space of the second cell and / or the configuration information of the first search space of the first cell. The following describes when the number of blind detections of the second cell is determined based on the configuration information of the second search space of the second cell and when determined based on the configuration information of the first search space of the first cell.
  • the terminal reports first indication information to the network, where the first indication information is used to indicate whether the terminal supports cross-carrier scheduling and the configuration that different carriers have different times of blind detection in cross-carrier scheduling.
  • the terminal searches based on the second search of the second cell
  • the space configuration information determines the number of blind detections of the downlink control channel.
  • the terminal is based on the first search space of the first cell
  • the configuration information of determines the number of blind checks of the downlink control channel.
  • the first indication information may be a display indication or an implicit indication.
  • the first indication information is UE capability information of the terminal, and the UE capability information of the terminal indicates whether the terminal supports cross-carrier scheduling and different carriers have in cross-carrier scheduling Configuration of different blind inspection times.
  • the first indication information is the access layer (AS, Access Stratum) version information of the terminal
  • AS Access Stratum
  • the AS version information of the terminal is used by the network to determine the Whether the terminal supports cross-carrier scheduling and the configuration that different carriers have different times of blind detection in cross-carrier scheduling. For example, if the terminal's AS version is R15, it means that the terminal does not support cross-carrier scheduling and that different carriers have different configurations of blind detection times; the terminal's AS version is R16, which means that the terminal supports cross-carrier scheduling and In cross-carrier scheduling, different carriers have different configurations of blind detection times.
  • the first cell is configured with at least one BWP
  • each BWP is configured with at least one search space
  • each search space is configured with at least one aggregation level, and each aggregation level corresponds to one blind detection number.
  • the second cell is configured with at least one BWP
  • each BWP is configured with at least one search space
  • each search space is configured with at least one aggregation level
  • each aggregation level corresponds to a blind Inspection times.
  • the first cell is configured with three BWPs, namely BWP1, BWP2, and BWP3, where BWP1 is the activated BWP.
  • Each of the three BWPs is configured with at least one search space.
  • BWP1 is configured with a first search space.
  • the configuration of the first search space includes the following information: search space identifier of the first search space (SearchSpaceId), control resource set identifier (ControlResourceSetId) of the first control resource set associated with the first search space, time domain information of the first search space (cycle information, starting position information in a cycle); in addition, the The configuration of the first search space also includes the following information: one or more aggregation levels, where each aggregation level corresponds to a number of blind checks.
  • the BWP configuration and the search space configuration on the second cell are the same as the first cell.
  • the number of blind detections of the downlink control channel is based on the blind detection in the configuration information of the second search space of the second cell Times determined.
  • the related configuration of the aggregation level and the corresponding number of blind checks in the configuration information of the second search space of the second cell is replaced by the related configuration of the aggregate level of the first search space and the corresponding number of blind checks in the first cell,
  • the PDCCH blind detection space configuration of the second cell is obtained.
  • the number of blind checks is for a specific aggregation level, for example, the number of blind checks for aggregation level 1 is N1, and the number of blind checks for aggregation level 2 is N2.
  • the first search space is a search space on the BWP currently activated by the first cell
  • the second search space is a search space on the BWP currently activated by the second cell
  • the first search space and the second search space have a corresponding relationship, that is, the identifier of the first search space and the identifier of the second search space have a corresponding relationship.
  • the correspondence between the first search space and the second search space is determined in one of the following ways:
  • Manner 1 The search space on the BWP currently activated by the second cell is mapped to the search space on the BWP currently activated by the first cell in the order of small to large identifier.
  • the number of search spaces on the BWP currently activated by the first cell is greater than or equal to the number of search spaces on the BWP currently activated by the second cell, so that the second search space of the second cell can uniquely correspond Go to the first search space of the first cell.
  • the first cell is configured with three BWPs, namely BWP # 1, BWP # 2, and BWP # 3, where BWP # 1 is the currently activated BWP, and the second cell is also configured There are 3 BWPs, among which BWP # 2 is the currently activated BWP.
  • the search space # 3 on BWP # 2 of the second cell corresponds to the search space # 1 on BWP # 1 of the first cell
  • the search space on BWP # 2 of the second cell # 9 corresponds to search space # 4 on BWP # 1 of the first cell
  • search space # 10 on BWP # 2 of the second cell corresponds to search space # 6 on BWP # 1 of the first cell.
  • the number of blind detections of the PDCCH is the number of blind detections configured on the search space # 3 on the BWP # 2 of the second cell, and other search space configuration information corresponding to the PDCCH still uses the search space on the BWP # 1 of the first cell # 1 Configuration.
  • Manner 2 The search space on the BWP currently activated by the second cell is mapped to the search space on the BWP currently activated by the first cell according to the order from the largest to the smallest.
  • the number of search spaces on the BWP currently activated by the first cell is greater than or equal to the number of search spaces on the BWP currently activated by the second cell, so that the second search space of the second cell can uniquely correspond Go to the first search space of the first cell.
  • the first cell is configured with three BWPs, namely BWP # 1, BWP # 2, and BWP # 3, where BWP # 1 is the currently activated BWP, and the second cell is also configured There are 3 BWPs, among which BWP # 2 is the currently activated BWP.
  • the search space # 10 on BWP # 2 of the second cell corresponds to the search space # 1 on BWP # 1 of the first cell
  • the search space on BWP # 2 of the second cell # 9 corresponds to search space # 4 on BWP # 1 of the first cell
  • search space # 3 on BWP # 2 of the second cell corresponds to search space # 6 on BWP # 1 of the first cell.
  • the number of blind detections of the PDCCH is the number of blind detections configured on the search space # 10 on the BWP # 2 of the second cell, and other search space configuration information corresponding to the PDCCH still uses the search space on the BWP # 1 of the first cell # 1 Configuration.
  • Manner 3 The search space on the BWP currently activated by the second cell is mapped to the search space on the BWP currently activated by the first cell according to the identification modulo.
  • the number of search spaces on the BWP currently activated by the first cell is greater than or equal to the number of search spaces on the BWP currently activated by the second cell, so that the second search space of the second cell can uniquely correspond Go to the first search space of the first cell.
  • the first cell is configured with three BWPs, namely BWP # 1, BWP # 2 and BWP # 3, where BWP # 1 is the currently activated BWP, and the second cell is also configured There are 3 BWPs, among which BWP # 2 is the currently activated BWP.
  • Three search spaces are configured on the activated BWP # 1 of the first cell, namely search space # 1, search space # 5 and search space # 6; and three search spaces are configured on the activated BWP # 2 of the second cell , Search space # 10, search space # 5 and search space # 3.
  • the search space # 10 on BWP # 2 of the second cell corresponds to the search space # 1 on BWP # 1 of the first cell (the result of modulo operation on 3 is 1 )
  • the search space # 5 on the BWP # 2 of the second cell corresponds to the search space # 5 on the BWP # 1 of the first cell (the result of the modulo operation of 3 is 2)
  • the BWP # 2 of the second cell The search space # 3 on corresponds to the search space # 6 on BWP # 1 of the first cell (the result of modulo operation on 3 is 0).
  • the number of blind detections of the PDCCH is the number of blind detections configured on the search space # 10 on the BWP # 2 of the second cell, and other search space configuration information corresponding to the PDCCH still uses the search space on the BWP # 1 of the first cell # 1 Configuration.
  • Manner 4 The search space on the BWP currently activated by the second cell is mapped to the search space on the BWP currently activated by the first cell in the same manner as the identifier.
  • the number of search spaces on the BWP currently activated by the first cell is greater than or equal to the number of search spaces on the BWP currently activated by the second cell, so that the second search space of the second cell can uniquely correspond Go to the first search space of the first cell.
  • the first cell is configured with three BWPs, namely BWP # 1, BWP # 2, and BWP # 3, where BWP # 1 is the currently activated BWP, and the second cell is also configured There are 3 BWPs, among which BWP # 2 is the currently activated BWP.
  • the search space # 3 on BWP # 2 of the second cell corresponds to the search space # 3 on BWP # 1 of the first cell
  • the search space # 9 on BWP # 2 of the second cell corresponds to the first
  • the search space # 9 on BWP # 1 of one cell and the search space # 10 on BWP # 2 of the second cell correspond to the search space # 10 on BWP # 1 of the first cell.
  • the number of blind detections of the PDCCH is the number of blind detections configured on the search space # 3 on the BWP # 2 of the second cell, and other search space configuration information corresponding to the PDCCH still uses the search space on the BWP # 1 of the first cell # 3 The configuration.
  • the number of search spaces on the BWP currently activated by the first cell is greater than or equal to the number of search spaces on the BWP currently activated by the second cell, so that the second search space of the second cell can uniquely correspond Go to the first search space of the first cell.
  • the network may pre-configure the correspondence between the search spaces of the first cell and the second cell, and the terminal directly determines the correspondence between the first search space and the second search space according to the correspondence.
  • Manner 6 The first control resource set corresponding to the search space on the BWP currently activated by the second cell is mapped to the second control resource set on the BWP currently activated by the first cell, the first control resource The set and the second control resource set have the same identification; wherein the identification of the search space on the BWP currently activated by the second cell is at least the same as the identification of one search space associated with the second control resource set; or , Applying at least one parameter in the search space on the BWP currently activated by the second cell to at least one search space associated with the second control resource set.
  • search space # 1 (Cell2) is a search space on the BWP currently activated by the second cell, and the control resource associated with search space # 1 (Cell2)
  • the set is a control resource set 2 (Cell2), which corresponds to the control resource set 2 (Cell1) of the first cell.
  • the search space # 1 (Cell2) is mapped to the search space # 1 (Cell1), see FIG. 3 (e).
  • the search space # 1 (Cell2) is mapped to the search space # 3 (Cell1) according to a preset rule, where The search space # 3 (Cell1) is associated with the control resource set 2 (Cell1), see FIG. 3 (f).
  • the terminal blindly detects the PDCCH of the second cell on the search space # 1 (Cell1) or search space # 3 (Cell1)
  • the number of blind detections of the PDCCH is the blind detection configured on the search space # 1 (Cell2) Times
  • other search space configuration information corresponding to the PDCCH still adopts the configuration of search space # 1 (Cell1) or search space # 3 (Cell1).
  • the first search space is a search space on the currently activated BWP of the first cell
  • the second search space is a search space on the inactive BWP of the second cell
  • the first search space and the second search space have a corresponding relationship, that is, the identifier of the first search space and the identifier of the second search space have a corresponding relationship.
  • the first search space and the second search space have the same identifier.
  • the first cell is configured with 3 BWPs, namely BWP # 1, BWP # 2 and BWP # 3, where BWP # 1 is the currently activated BWP, and the second cell is also configured with 3 BWPs, of which, BWP # 2 is the currently activated BWP.
  • Three search spaces are configured on the activated BWP # 1 of the first cell, namely search space # 1, search space # 2 and search space # 3; and two search spaces are configured on the activated BWP # 2 of the second cell , Search space # 4 and search space # 5.
  • the terminal will be in the second Find a search space on the inactive BWP of the cell that matches the identifier of the search space # 2 on the activated BWP # 1 of the first cell.
  • the terminal Replace the relevant parameters of the search space # 2 on the non-activated BWP # 1 in the second cell (aggregation level and corresponding number of blind checks) with the relevant parameters of the search space # 2 on the activated BWP # 1 in the first cell (aggregation Level and the corresponding number of blind tests).
  • the number of second cells scheduled by the first cell is one or more, and when the number of second cells scheduled by the first cell is multiple, different second cells
  • the number of PDCCH blind detections corresponding to a cell may be different, so that different cells have different blind detection times in cross-carrier scheduling.
  • FIG. 4 is a schematic structural composition diagram of a device for determining the number of blind inspections provided by an embodiment of the present application. As shown in FIG. 4, the device includes:
  • the blind detection unit 401 is used to blindly detect a downlink control channel on the first search space of the first cell, and the downlink control channel is used to schedule a second cell, wherein the number of blind detections of the downlink control channel is based on the first The configuration information of the second search space of the second cell and / or the configuration information of the first search space of the first cell is determined.
  • the first search space is a search space on the BWP currently activated by the first cell
  • the second search space is a search space on the BWP currently activated by the second cell
  • the first search space and the second search space have a corresponding relationship.
  • the correspondence between the first search space and the second search space is determined in the following manner:
  • the search space on the BWP currently activated by the second cell is mapped to the search space on the BWP currently activated by the first cell.
  • the number of search spaces on the BWP currently activated by the first cell is greater than or equal to the number of search spaces on the BWP currently activated by the second cell.
  • the correspondence between the first search space and the second search space is determined in the following manner:
  • the identifier of the search space on the BWP currently activated by the second cell is at least the same as the identifier of a search space associated with the second control resource set; or, the search on the BWP currently activated by the second cell At least one parameter in the space is applied to at least one search space associated with the second set of control resources.
  • the device further includes:
  • the reporting unit 402 is configured to report first indication information to the network, where the first indication information is used to indicate whether the terminal supports cross-carrier scheduling and the configuration that different carriers have different times of blind detection in cross-carrier scheduling.
  • the first indication information is UE capability information of the terminal, and the UE capability information of the terminal indicates whether the terminal supports cross-carrier scheduling and different carriers have different blind detection times in cross-carrier scheduling Configuration.
  • the first indication information is AS version information of the terminal
  • the AS version information of the terminal is used by the network to determine whether the terminal supports cross-carrier scheduling and different carriers in cross-carrier scheduling Configurations with different blind inspection times.
  • the first indication information indicates that the terminal supports cross-carrier scheduling and the configuration that different carriers have different times of blind detection in cross-carrier scheduling, then:
  • the blind detection unit 401 determines the number of blind detections of the downlink control channel based on the configuration information of the second search space of the second cell.
  • the second cell is configured with at least one BWP, each BWP is configured with at least one search space, and each search space is configured with at least one aggregation level, and each aggregation level corresponds to one blind detection number.
  • the terminal does not support cross-carrier scheduling and different carriers have different configurations of blind detection times in cross-carrier scheduling, then:
  • the blind detection unit 401 determines the number of blind detections of the downlink control channel based on the configuration information of the first search space of the first cell.
  • the first cell is configured with at least one BWP, each BWP is configured with at least one search space, and each search space is configured with at least one aggregation level, and each aggregation level corresponds to one blind detection number.
  • FIG. 5 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal.
  • the communication device 600 shown in FIG. 5 includes a processor 610, and the processor 610 may call and run a computer program from a memory to implement the method in the embodiments of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • the communication device 600 may specifically be the mobile terminal / terminal of the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal / terminal in each method of the embodiment of the present application. This will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 6 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application. Repeat.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chips, system chips, chip systems, or system-on-chip chips.
  • the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the above method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal / terminal in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal / terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application, for simplicity , Will not repeat them here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. , Will not repeat them here.
  • the computer program can be applied to the mobile terminal / terminal in the embodiments of the present application, and when the computer program runs on the computer, the computer is allowed to execute the corresponding implementations of the mobile terminal / terminal in each method of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种盲检次数的确定方法及装置、终端,包括:终端在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。

Description

一种盲检次数的确定方法及装置、终端 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种盲检次数的确定方法及装置、终端。
背景技术
在支持跨载波调度的终端中,网路通过在每个服务小区(serving cell)上配置跨载波调度配置(CrossCarrierSchedulingConfig)来支持终端在该serving cell是自调度还是被别的小区调度。然而,目前的配置方式只能让终端对于所有的调度小区(scheduling cell)和被调度小区(scheduled cell)对于某一个聚合等级采用相同的盲检次数,而不能达到不同的小区有不同的盲检次数。
发明内容
本申请实施例提供一种盲检次数的确定方法及装置、终端。
本申请实施例提供的盲检次数的确定方法,包括:
终端在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。
本申请实施例提供的盲检次数的确定装置,包括:
盲检单元,用于在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的盲检次数的确定方法。
本申请实施例提供的芯片,用于实现上述的盲检次数的确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的盲检次数的确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的盲检次数的确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的盲检次数的确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的盲检次数 的确定方法。
通过上述技术方案,在跨载波调度中实现了不同的小区有不同的盲检次数,即scheduling cell和scheduled cell不局限于相同的盲检次数,盲检方式更加灵活。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的盲检次数的确定方法的流程示意图;
图3(a)为本申请实施例提供的搜索空间的对应关系的示意图一;
图3(b)为本申请实施例提供的搜索空间的对应关系的示意图二;
图3(c)为本申请实施例提供的搜索空间的对应关系的示意图三;
图3(d)为本申请实施例提供的搜索空间的对应关系的示意图四;
图3(e)为本申请实施例提供的搜索空间的对应关系的示意图五;
图3(f)为本申请实施例提供的搜索空间的对应关系的示意图六;
图4为本申请实施例提供的盲检次数的确定装置的结构组成示意图;
图5是本申请实施例提供的一种通信设备示意性结构图;
图6是本申请实施例的芯片的示意性结构图;
图7是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为 特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例涉及到的相关技术进行说明。
在支持跨载波调度的终端中,网路通过在每个serving cell上配置CrossCarrierSchedulingConfig来支持终端在该serving cell是自调度还是被别的小区调度。如果该serving cell是自调度,则终端在当前serving cell上配置的搜索空间(search space)上检测物理下行控制信道(PDCCH,Physical Downlink Control Channel);如果该serving cell是跨载波调度,则终端在调度小区(scheduling cell,指调度当前serving cell的小区)上配置的search space上检测PDCCH。
在相关技术中,支持跨载波调度的终端通过以下方式确定每一个scheduled cell在scheduling cell的search space中对应的PDCCH盲检次:在search space配置结构中,每个search space可以配置不同的聚合等级,不同的聚合等级对应一个盲检次数。这种配置方式让终端对于所有的scheduling cell和scheduled cell对于某一个聚合等级采用相同的盲检次数,而不能达到不同的小区有不同的盲检次数。比如,有1个scheduling cell,两个scheduled cell(scheduled cell1和scheduled cell2),假设scheduling cell上配置的一个search space的控制信道单元(CCE,Control Channel Element)为32个,假设对于聚合等级为2的情况下,想要实现scheduling cell的盲检次数为2,scheduled cell1为3,scheduled cell2为4,目前的信令配置无法达到这种需求。另一方面,在search space配置中,一个serving cell可以配置多个带宽部分(BWP,Band Width Part),每个BWP上最多可以配置3个控制资源集(CORESET),10个search space。本申请实施例可以实现跨载波调度中不同小区具有不同的盲检次数。
图2为本申请实施例提供的盲检次数的确定方法的流程示意图,如图2所示,所述盲检次数的确定方法包括以下步骤:
步骤201:终端在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。
本申请实施例中,所述终端可以是手机、车载终端、平板电脑、笔记本、穿戴式设备等任意能够与网络进行通信的设备。
本申请实施例中,第一小区的描述也可以替换为第一载波,第二小区的描述也可以替换为第二载波,在跨载波调度中,第一小区为scheduling cell(即调度载波),第二小区为scheduled cell(即被调度载波)。在实现跨载波调度时,所述终端在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区。
举个例子:小区1为scheduling cell,小区2为scheduled cell,小区1上的PDCCH调度小区 2上的上行数据和/或下行数据;终端为了对小区2上数据进行接收,需要从小区1上获取PDCCH,从而基于该PDCCH确定小区2上的数据的时频资源等信息。
本申请实施例中,调度第二小区的下行控制信道(如PDCCH)在第一小区的第一搜索空间中传输,调度第二小区的下行控制信道的盲检次数(简称为第二小区的盲检次数)基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。以下对第二小区的盲检次数何时基于第二小区的第二搜索空间的配置信息确定,何时基于第一小区的第一搜索空间的配置信息确定,进行描述。
所述终端向网络上报第一指示信息,所述第一指示信息用于指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。其中,1)如果所述第一指示信息指示所述终端支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:所述终端基于所述第二小区的第二搜索空间的配置信息确定所述下行控制信道的盲检次数。2)如果所述第一指示信息指示所述终端不支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:所述终端基于所述第一小区的第一搜索空间的配置信息确定所述下行控制信道的盲检次数。
上述方案中,所述第一指示信息可以是是显示指示也可以是隐式指示。
在一实施方式中(显示指示),所述第一指示信息为所述终端的UE能力信息,所述终端的UE能力信息指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
在另一实施方式中(隐式指示),所述第一指示信息为所述终端的接入层(AS,Access Stratum)版本信息,所述终端的AS版本信息用于所述网络确定所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。例如:终端的AS版本为R15,则表示该终端不支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置;终端的AS版本为R16,则表示该终端支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
上述方案中,所述第一小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。同样,对于支持跨载波调度的终端,所述第二小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
举个例子,所述第一小区配置有3个BWP,分别为BWP1、BWP2,BWP3,其中,BWP1为激活的BWP。这3个BWP中的每个BWP都配置有至少一个搜索空间,以BWP1为例,BWP1上配置有第一搜索空间,该第一搜索空间的配置包括如下信息:第一搜索空间的搜索空间标识(SearchSpaceId)、第一搜索空间关联的第一控制资源集的控制资源集标识(ControlResourceSetId)、第一搜索空间的时域信息(周期信息、在一个周期中的起始位置信息);此外,该第一搜索空间的配置还包括如下信息:一个或多个聚合等级,其中,每个聚合等级对应一个盲检次数。第二小区上的BWP配置以及搜索空间配置与第一小区同理。
基于此,终端在第一小区的第一搜索空间上盲检调度第二小区的下行控制信道时,下行控制信道的盲检次数是基于第二小区的第二搜索空间的配置信息中的盲检次数确定的。换言之,将第二小区的第二搜索空间的配置信息中的聚合等级及对应的盲检次数的相关配置替换掉第一小区的第一搜索空间的聚合等级及对应的盲检次数的相关配置,就得到了第二小区的PDCCH盲检空间配置。需要注意的是,盲检次数是针对特定聚合等级的,例如聚合等级1的盲检次数为N1,聚合等级2的盲检次数为N2。
本申请实施例中,所述第一搜索空间为所述第一小区当前激活的BWP上的一个搜索空间,所述第二搜索空间为所述第二小区当前激活的BWP上的一个搜索空间;其中,所述第一搜索空间和所述第二搜索空间具有对应关系,即所述第一搜索空间的标识和所述第二搜索空间的标识具有对应关系。进一步,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式之一确定:
方式一:将所述第二小区当前激活的BWP上的搜索空间按照标识由小到大的顺序对应到所述第一小区当前激活的BWP上的搜索空间。
其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数,从而使得第二小区的第二搜索空间能够唯一对应到第一小区的第一搜索空间上。
举个例子:参照图3(a),第一小区配置有3个BWP,分别为BWP#1,BWP#2和BWP#3,其中,BWP#1为当前激活的BWP,第二小区也配置有3个BWP,其中,BWP#2为当前激活的BWP。第一小区的激活的BWP#1上配置有3个搜索空间,分别为搜索空间#1,搜索空间#4和搜索空间#6;第二小区的激活的BWP#2上配置有3个搜索空间,分别为搜索空间#3,搜索空间#9和搜索空间#10。按照标识由小到大的顺序对应,第二小区的BWP#2上的搜索空间#3对应到第一小区的BWP#1上的搜索空间#1,第二小区的BWP#2上的搜索空间#9对应到第一小区的BWP#1上的搜索空间#4,第二小区的BWP#2上的搜索空间#10对应到第一小区的BWP#1上的搜索空间#6。
基于此,以第二搜索空间是第二小区的BWP#2上的搜索空间#3为例,终端在第一小区的BWP#1上的搜索空间#1上盲检调度第二小区的PDCCH时,该PDCCH的盲检次数是第二小区的BWP#2上的搜索空间#3上配置的盲检次数,该PDCCH对应的其他搜索空间配置信息依然采用第一小区的BWP#1上的搜索空间#1的配置。
方式二:将所述第二小区当前激活的BWP上的搜索空间按照标识由大到小的顺序对应到所述第一小区当前激活的BWP上的搜索空间。
其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数,从而使得第二小区的第二搜索空间能够唯一对应到第一小区的第一搜索空间上。
举个例子:参照图3(b),第一小区配置有3个BWP,分别为BWP#1,BWP#2和BWP#3,其中,BWP#1为当前激活的BWP,第二小区也配置有3个BWP,其中,BWP#2为当前激活的BWP。 第一小区的激活的BWP#1上配置有3个搜索空间,分别为搜索空间#1,搜索空间#4和搜索空间#6;第二小区的激活的BWP#2上配置有3个搜索空间,分别为搜索空间#10,搜索空间#9和搜索空间#3。按照标识由大到小的顺序对应,第二小区的BWP#2上的搜索空间#10对应到第一小区的BWP#1上的搜索空间#1,第二小区的BWP#2上的搜索空间#9对应到第一小区的BWP#1上的搜索空间#4,第二小区的BWP#2上的搜索空间#3对应到第一小区的BWP#1上的搜索空间#6。
基于此,以第二搜索空间是第二小区的BWP#2上的搜索空间#10为例,终端在第一小区的BWP#1上的搜索空间#1上盲检调度第二小区的PDCCH时,该PDCCH的盲检次数是第二小区的BWP#2上的搜索空间#10上配置的盲检次数,该PDCCH对应的其他搜索空间配置信息依然采用第一小区的BWP#1上的搜索空间#1的配置。
方式三:将所述第二小区当前激活的BWP上的搜索空间按照标识取模的方式对应到所述第一小区当前激活的BWP上的搜索空间。
其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数,从而使得第二小区的第二搜索空间能够唯一对应到第一小区的第一搜索空间上。
举个例子:参照图3(c),第一小区配置有3个BWP,分别为BWP#1,BWP#2和BWP#3,其中,BWP#1为当前激活的BWP,第二小区也配置有3个BWP,其中,BWP#2为当前激活的BWP。第一小区的激活的BWP#1上配置有3个搜索空间,分别为搜索空间#1,搜索空间#5和搜索空间#6;第二小区的激活的BWP#2上配置有3个搜索空间,分别为搜索空间#10,搜索空间#5和搜索空间#3。按照对3做取模运算的结果对应,第二小区的BWP#2上的搜索空间#10对应到第一小区的BWP#1上的搜索空间#1(对3做取模运算的结果为1),第二小区的BWP#2上的搜索空间#5对应到第一小区的BWP#1上的搜索空间#5(对3做取模运算的结果为2),第二小区的BWP#2上的搜索空间#3对应到第一小区的BWP#1上的搜索空间#6(对3做取模运算的结果为0)。
基于此,以第二搜索空间是第二小区的BWP#2上的搜索空间#10为例,终端在第一小区的BWP#1上的搜索空间#1上盲检调度第二小区的PDCCH时,该PDCCH的盲检次数是第二小区的BWP#2上的搜索空间#10上配置的盲检次数,该PDCCH对应的其他搜索空间配置信息依然采用第一小区的BWP#1上的搜索空间#1的配置。
方式四:将所述第二小区当前激活的BWP上的搜索空间按照标识相同的方式对应到所述第一小区当前激活的BWP上的搜索空间。
其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数,从而使得第二小区的第二搜索空间能够唯一对应到第一小区的第一搜索空间上。
举个例子:参照图3(d),第一小区配置有3个BWP,分别为BWP#1,BWP#2和BWP#3,其中,BWP#1为当前激活的BWP,第二小区也配置有3个BWP,其中,BWP#2为当前激活的BWP。第一小区的激活的BWP#1上配置有3个搜索空间,分别为搜索空间#3,搜索空间#9和搜索空间#10; 第二小区的激活的BWP#2上配置有3个搜索空间,分别为搜索空间#3,搜索空间#9和搜索空间#10。按照标识相同对应,第二小区的BWP#2上的搜索空间#3对应到第一小区的BWP#1上的搜索空间#3,第二小区的BWP#2上的搜索空间#9对应到第一小区的BWP#1上的搜索空间#9,第二小区的BWP#2上的搜索空间#10对应到第一小区的BWP#1上的搜索空间#10。
基于此,以第二搜索空间是第二小区的BWP#2上的搜索空间#3为例,终端在第一小区的BWP#1上的搜索空间#3上盲检调度第二小区的PDCCH时,该PDCCH的盲检次数是第二小区的BWP#2上的搜索空间#3上配置的盲检次数,该PDCCH对应的其他搜索空间配置信息依然采用第一小区的BWP#1上的搜索空间#3的配置。
方式五:按照网络配置的标识对应关系,将所述第二小区当前激活的BWP上的搜索空间对应到所述第一小区当前激活的BWP上的搜索空间。
其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数,从而使得第二小区的第二搜索空间能够唯一对应到第一小区的第一搜索空间上。
这里,网络可以预先配置第一小区和第二小区的各个搜索空间之间的对应关系,终端直接依据该对应关系来确定第一搜索空间与第二搜索空间的对应关系。
方式六:将所述第二小区当前激活的BWP上的搜索空间所对应的第一控制资源集对应到所述第一小区当前激活的BWP上的第二控制资源集,所述第一控制资源集和所述第二控制资源集具有相同的标识;其中,所述第二小区当前激活的BWP上的搜索空间的标识至少与所述第二控制资源集关联的一个搜索空间的标识相同;或者,将所述第二小区当前激活的BWP上的搜索空间中的至少一个参数应用到与所述第二控制资源集关联的至少一个搜索空间。
举个例子:参照图3(e)和图3(f),搜索空间#1(Cell2)是第二小区当前激活的BWP上的一个搜索空间,与搜索空间#1(Cell2)关联的控制资源集是控制资源集2(Cell2),将该控制资源集2(Cell2)对应到第一小区的控制资源集2(Cell1),进一步,1)控制资源集2(Cell1)关联的搜索空间中如果有搜索空间#1(Cell1),则将搜索空间#1(Cell2)对应到搜索空间#1(Cell1),参照图3(e)。或者,2)控制资源集2(Cell1)关联的搜索空间中如果没有搜索空间#1(Cell1),则按照预设规则将搜索空间#1(Cell2)对应到搜索空间#3(Cell1),其中,搜索空间#3(Cell1)与控制资源集2(Cell1)关联,参照图3(f)。
基于此,终端在搜索空间#1(Cell1)或搜索空间#3(Cell1)上盲检调度第二小区的PDCCH时,该PDCCH的盲检次数是搜索空间#1(Cell2)上配置的盲检次数,该PDCCH对应的其他搜索空间配置信息依然采用搜索空间#1(Cell1)或搜索空间#3(Cell1)的配置。
本申请实施例中,所述第一搜索空间为所述第一小区当前激活的BWP上的一个搜索空间,所述第二搜索空间为所述第二小区非激活的BWP上的一个搜索空间;其中,所述第一搜索空间和所述第二搜索空间具有对应关系,即所述第一搜索空间的标识和所述第二搜索空间的标识具有对应关系。进一步,所述第一搜索空间和所述第二搜索空间具有相同的标识。
举个例子:第一小区配置有3个BWP,分别为BWP#1,BWP#2和BWP#3,其中,BWP#1为当前激活的BWP,第二小区也配置有3个BWP,其中,BWP#2为当前激活的BWP。第一小区的激活的BWP#1上配置有3个搜索空间,分别为搜索空间#1,搜索空间#2和搜索空间#3;第二小区的激活的BWP#2上配置有2个搜索空间,分别为搜索空间#4和搜索空间#5。假设第一搜索空间为第一小区激活的BWP#1上的搜索空间#2,由于第二小区激活的BWP#2上没有与搜索空间#2的标识一致的搜索空间,因此终端会在第二小区非激活的BWP上找跟第一小区激活的BWP#1上的搜索空间#2的标识一致的搜索空间,假设在第二小区非激活的BWP#1上有搜索空间#2,那么,终端将第二小区非激活的BWP#1上的搜索空间#2的相关参数(聚合等级以及对应的盲检次数)替换掉第一小区激活的BWP#1上的搜索空间#2的相关参数(聚合等级以及对应的盲检次数)。
需要说明的是,本申请实施例的技术方案中,第一小区调度的第二小区的数目为一个或多个,当第一小区调度的第二小区的数目为多个时,不同的第二小区对应的PDCCH盲检次数可以都不相同,从而实现了跨载波调度中不同小区具有不同的盲检次数。
图4为本申请实施例提供的盲检次数的确定装置的结构组成示意图,如图4所示,所述装置包括:
盲检单元401,用于在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。
在一实施方式中,所述第一搜索空间为所述第一小区当前激活的BWP上的一个搜索空间,所述第二搜索空间为所述第二小区当前激活的BWP上的一个搜索空间;
其中,所述第一搜索空间和所述第二搜索空间具有对应关系。
在一实施方式中,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式确定:
将所述第二小区当前激活的BWP上的搜索空间按照标识由小到大的顺序对应到所述第一小区当前激活的BWP上的搜索空间;或者,
将所述第二小区当前激活的BWP上的搜索空间按照标识由大到小的顺序对应到所述第一小区当前激活的BWP上的搜索空间;或者,
将所述第二小区当前激活的BWP上的搜索空间按照标识取模的方式对应到所述第一小区当前激活的BWP上的搜索空间;或者,
将所述第二小区当前激活的BWP上的搜索空间按照标识相同的方式对应到所述第一小区当前激活的BWP上的搜索空间;或者,
按照网络配置的标识对应关系,将所述第二小区当前激活的BWP上的搜索空间对应到所述第一小区当前激活的BWP上的搜索空间。
在一实施方式中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数。
在一实施方式中,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式确定:
将所述第二小区当前激活的BWP上的搜索空间所对应的第一控制资源集对应到所述第一小区当前激活的BWP上的第二控制资源集,所述第一控制资源集和所述第二控制资源集具有相同的标识;
其中,所述第二小区当前激活的BWP上的搜索空间的标识至少与所述第二控制资源集关联的一个搜索空间的标识相同;或者,将所述第二小区当前激活的BWP上的搜索空间中的至少一个参数应用到与所述第二控制资源集关联的至少一个搜索空间。
在一实施方式中,所述装置还包括:
上报单元402,用于向网络上报第一指示信息,所述第一指示信息用于指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
在一实施方式中,所述第一指示信息为所述终端的UE能力信息,所述终端的UE能力信息指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
在一实施方式中,所述第一指示信息为所述终端的AS版本信息,所述终端的AS版本信息用于所述网络确定所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
在一实施方式中,如果所述第一指示信息指示所述终端支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:
所述盲检单元401基于所述第二小区的第二搜索空间的配置信息确定所述下行控制信道的盲检次数。
在一实施方式中,所述第二小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
在一实施方式中,如果所述第一指示信息指示所述终端不支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:
所述盲检单元401基于所述第一小区的第一搜索空间的配置信息确定所述下行控制信道的盲检次数。
在一实施方式中,所述第一小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
本领域技术人员应当理解,本申请实施例的上述盲检次数的确定装置的相关描述可以参照本申请实施例的盲检次数的确定方法的相关描述进行理解。
图5是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,图5所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图5所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统900的示意性框图。如图7所示,该通信系统900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行 本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种盲检次数的确定方法,所述方法包括:
    终端在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。
  2. 根据权利要求1所述的方法,其中,所述第一搜索空间为所述第一小区当前激活的带宽部分BWP上的一个搜索空间,所述第二搜索空间为所述第二小区当前激活的BWP上的一个搜索空间;
    其中,所述第一搜索空间和所述第二搜索空间具有对应关系。
  3. 根据权利要求2所述的方法,其中,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式确定:
    将所述第二小区当前激活的BWP上的搜索空间按照标识由小到大的顺序对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    将所述第二小区当前激活的BWP上的搜索空间按照标识由大到小的顺序对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    将所述第二小区当前激活的BWP上的搜索空间按照标识取模的方式对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    将所述第二小区当前激活的BWP上的搜索空间按照标识相同的方式对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    按照网络配置的标识对应关系,将所述第二小区当前激活的BWP上的搜索空间对应到所述第一小区当前激活的BWP上的搜索空间。
  4. 根据权利要求2或3所述的方法,其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数。
  5. 根据权利要求2所述的方法,其中,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式确定:
    将所述第二小区当前激活的BWP上的搜索空间所对应的第一控制资源集对应到所述第一小区当前激活的BWP上的第二控制资源集,所述第一控制资源集和所述第二控制资源集具有相同的标识;
    其中,所述第二小区当前激活的BWP上的搜索空间的标识至少与所述第二控制资源集关联的一个搜索空间的标识相同;或者,将所述第二小区当前激活的BWP上的搜索空间中的至少一个参数应用到与所述第二控制资源集关联的至少一个搜索空间。
  6. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述终端向网络上报第一指示信息,所述第一指示信息用于指示所述终端是否支持跨载波调 度以及在跨载波调度中不同载波具有不同盲检次数的配置。
  7. 根据权利要求6所述的方法,其中,所述第一指示信息为所述终端的UE能力信息,所述终端的UE能力信息指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
  8. 根据权利要求6所述的方法,其中,所述第一指示信息为所述终端的接入层AS版本信息,所述终端的AS版本信息用于所述网络确定所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
  9. 根据权利要求6至8任一项所述的方法,其中,如果所述第一指示信息指示所述终端支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:
    所述终端基于所述第二小区的第二搜索空间的配置信息确定所述下行控制信道的盲检次数。
  10. 根据权利要求9所述的方法,其中,所述第二小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
  11. 根据权利要求6至8任一项所述的方法,其中,如果所述第一指示信息指示所述终端不支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:
    所述终端基于所述第一小区的第一搜索空间的配置信息确定所述下行控制信道的盲检次数。
  12. 根据权利要求11所述的方法,其中,所述第一小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
  13. 一种盲检次数的确定装置,所述装置包括:
    盲检单元,用于在第一小区的第一搜索空间上盲检下行控制信道,所述下行控制信道用于调度第二小区,其中,所述下行控制信道的盲检次数基于所述第二小区的第二搜索空间的配置信息和/或所述第一小区的第一搜索空间的配置信息确定。
  14. 根据权利要求13所述的装置,其中,所述第一搜索空间为所述第一小区当前激活的BWP上的一个搜索空间,所述第二搜索空间为所述第二小区当前激活的BWP上的一个搜索空间;
    其中,所述第一搜索空间和所述第二搜索空间具有对应关系。
  15. 根据权利要求14所述的装置,其中,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式确定:
    将所述第二小区当前激活的BWP上的搜索空间按照标识由小到大的顺序对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    将所述第二小区当前激活的BWP上的搜索空间按照标识由大到小的顺序对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    将所述第二小区当前激活的BWP上的搜索空间按照标识取模的方式对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    将所述第二小区当前激活的BWP上的搜索空间按照标识相同的方式对应到所述第一小区当前激活的BWP上的搜索空间;或者,
    按照网络配置的标识对应关系,将所述第二小区当前激活的BWP上的搜索空间对应到所述第一小区当前激活的BWP上的搜索空间。
  16. 根据权利要求14或15所述的装置,其中,所述第一小区当前激活的BWP上的搜索空间的个数大于等于所述第二小区当前激活的BWP上的搜索空间的个数。
  17. 根据权利要求14所述的装置,其中,所述第一搜索空间和所述第二搜索空间的对应关系,通过以下方式确定:
    将所述第二小区当前激活的BWP上的搜索空间所对应的第一控制资源集对应到所述第一小区当前激活的BWP上的第二控制资源集,所述第一控制资源集和所述第二控制资源集具有相同的标识;
    其中,所述第二小区当前激活的BWP上的搜索空间的标识至少与所述第二控制资源集关联的一个搜索空间的标识相同;或者,将所述第二小区当前激活的BWP上的搜索空间中的至少一个参数应用到与所述第二控制资源集关联的至少一个搜索空间。
  18. 根据权利要求13至17任一项所述的装置,其中,所述装置还包括:
    上报单元,用于向网络上报第一指示信息,所述第一指示信息用于指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
  19. 根据权利要求18所述的装置,其中,所述第一指示信息为所述终端的UE能力信息,所述终端的UE能力信息指示所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
  20. 根据权利要求18所述的装置,其中,所述第一指示信息为所述终端的AS版本信息,所述终端的AS版本信息用于所述网络确定所述终端是否支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置。
  21. 根据权利要求18至20任一项所述的装置,其中,如果所述第一指示信息指示所述终端支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:
    所述盲检单元基于所述第二小区的第二搜索空间的配置信息确定所述下行控制信道的盲检次数。
  22. 根据权利要求21所述的装置,其中,所述第二小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
  23. 根据权利要求18至20任一项所述的装置,其中,如果所述第一指示信息指示所述终端不支持跨载波调度以及在跨载波调度中不同载波具有不同盲检次数的配置,则:
    所述盲检单元基于所述第一小区的第一搜索空间的配置信息确定所述下行控制信道的盲检次数。
  24. 根据权利要求23所述的装置,其中,所述第一小区配置有至少一个BWP,每个BWP上配置有至少一个搜索空间,每个搜索空间配置有至少一个聚合等级,每个聚合等级对应一个盲检次数。
  25. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至12中任一项所述的方法。
  26. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
  28. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至12中任一项所述的方法。
  29. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
PCT/CN2018/112796 2018-10-30 2018-10-30 一种盲检次数的确定方法及装置、终端 WO2020087310A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/112796 WO2020087310A1 (zh) 2018-10-30 2018-10-30 一种盲检次数的确定方法及装置、终端
EP18938364.9A EP3869850A4 (en) 2018-10-30 2018-10-30 METHOD AND DEVICE FOR DETERMINING THE NUMBER OF BLIND DETECTIONS AND TERMINAL DEVICE
CN201880099365.0A CN113170336A (zh) 2018-10-30 2018-10-30 一种盲检次数的确定方法及装置、终端
US17/244,339 US12016029B2 (en) 2018-10-30 2021-04-29 Method, apparatus and terminal for determining number of times of blind inspections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112796 WO2020087310A1 (zh) 2018-10-30 2018-10-30 一种盲检次数的确定方法及装置、终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,339 Continuation US12016029B2 (en) 2018-10-30 2021-04-29 Method, apparatus and terminal for determining number of times of blind inspections

Publications (1)

Publication Number Publication Date
WO2020087310A1 true WO2020087310A1 (zh) 2020-05-07

Family

ID=70463372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112796 WO2020087310A1 (zh) 2018-10-30 2018-10-30 一种盲检次数的确定方法及装置、终端

Country Status (4)

Country Link
US (1) US12016029B2 (zh)
EP (1) EP3869850A4 (zh)
CN (1) CN113170336A (zh)
WO (1) WO2020087310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217516A1 (zh) * 2021-04-14 2022-10-20 Oppo广东移动通信有限公司 检测能力确定方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315918A (zh) * 2022-06-13 2022-11-08 北京小米移动软件有限公司 一种多小区调度的调度信息的检测方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490495A1 (en) * 2009-10-12 2012-08-22 China Mobile Communications Corporation Method for transmitting physical downlink control channel (pdcch) information, method for determining pdcch search space and devices thereof
CN103139819A (zh) * 2009-08-28 2013-06-05 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095920A (ko) * 2015-01-12 2017-08-23 엘지전자 주식회사 무선 통신 시스템에서 단말의 동작 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139819A (zh) * 2009-08-28 2013-06-05 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
EP2490495A1 (en) * 2009-10-12 2012-08-22 China Mobile Communications Corporation Method for transmitting physical downlink control channel (pdcch) information, method for determining pdcch search space and devices thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Remaining Issues on Search Space", 3GPP DRAFT; R1-1806779, 25 May 2018 (2018-05-25), pages 1 - 5, XP051462750 *
OPPO: "Remaining Issues on Search Space", 3GPP DRAFT; R1-1802115, 2 March 2018 (2018-03-02), Athens, Greece, pages 1 - 4, XP051396847 *
See also references of EP3869850A4 *
VIVO: "Remaining Issues on PDCCH", 3GPP DRAFT; R1-1808224, 24 August 2018 (2018-08-24), Gothenburg, Sweden, pages 1 - 9, XP051515609 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217516A1 (zh) * 2021-04-14 2022-10-20 Oppo广东移动通信有限公司 检测能力确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113170336A (zh) 2021-07-23
US20210250978A1 (en) 2021-08-12
EP3869850A1 (en) 2021-08-25
US12016029B2 (en) 2024-06-18
EP3869850A4 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2020082304A1 (zh) 切换资源池的方法、终端设备和通信设备
JP7178428B2 (ja) 下り信号の伝送方法及び端末デバイス
WO2020143050A1 (zh) 跨载波调度的dci的确定方法、终端设备及网络设备
WO2019141146A1 (zh) 一种波束配置方法和装置
WO2020019756A1 (zh) 一种传输资源确定方法及装置、终端设备
TW202002687A (zh) 信息測量方法、終端設備和網路設備
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
WO2021016777A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020243972A1 (zh) 一种控制测量的方法及装置、终端、网络设备
WO2020001582A1 (zh) 一种配置pdcch检测的方法及相关设备
WO2019242419A1 (zh) 一种bwp切换方法及装置、终端设备
US12016029B2 (en) Method, apparatus and terminal for determining number of times of blind inspections
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
WO2020061776A1 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2020029286A1 (zh) 一种信号传输方法及装置、终端、网络设备
WO2021026844A1 (zh) 数据传输方法、终端设备、网络设备及存储介质
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2021168814A1 (zh) 控制信道的确定方法、装置、存储介质和处理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938364

Country of ref document: EP

Effective date: 20210518