WO2020029286A1 - 一种信号传输方法及装置、终端、网络设备 - Google Patents

一种信号传输方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2020029286A1
WO2020029286A1 PCT/CN2018/100068 CN2018100068W WO2020029286A1 WO 2020029286 A1 WO2020029286 A1 WO 2020029286A1 CN 2018100068 W CN2018100068 W CN 2018100068W WO 2020029286 A1 WO2020029286 A1 WO 2020029286A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference signal
time
measurement
measurement reference
Prior art date
Application number
PCT/CN2018/100068
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880096606.6A priority Critical patent/CN112789916A/zh
Priority to EP18929570.2A priority patent/EP3836666A4/en
Priority to CN202210837778.2A priority patent/CN115065455B/zh
Priority to PCT/CN2018/100068 priority patent/WO2020029286A1/zh
Priority to TW108128384A priority patent/TW202013918A/zh
Publication of WO2020029286A1 publication Critical patent/WO2020029286A1/zh
Priority to US17/172,712 priority patent/US11943172B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a signal transmission method and device, a terminal, and a network device.
  • the terminal On the authorized spectrum, the terminal measures the measurement reference letter according to the predefined position of the configured measurement reference signal.
  • the base station may not be able to send the measurement reference signal at the predefined position of the measurement reference signal. The terminal is not aware of this situation. If the terminal also measures the measurement reference signal according to the predefined position of the originally configured measurement reference signal, the measurement result will be inaccurate.
  • LBT Listen-Before-Talk
  • the embodiments of the present application provide a signal transmission method and device, a terminal, and a network device.
  • the terminal receives the first indication signal and determines, based on the first indication signal, at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • the base station sends a first indication signal, where the first indication signal is used by the terminal to determine at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • a receiving unit configured to receive a first indication signal
  • a determining unit configured to determine, based on the first indication signal, at least one of a time, frequency, and code domain of a measurement reference signal in which a measurement result is valid.
  • the sending unit is configured to send a first indication signal, where the first indication signal is used by the terminal to determine at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned signal transmission method.
  • the network device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned signal transmission method.
  • the chip provided in the embodiment of the present application is used to implement the foregoing signal transmission method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the foregoing signal transmission method.
  • the computer-readable storage medium provided in the embodiment of the present application is used to store a computer program, and the computer program causes a computer to execute the foregoing signal transmission method.
  • the computer program product provided in the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the foregoing signal transmission method.
  • the computer program provided in the embodiment of the present application when run on a computer, causes the computer to execute the foregoing signal transmission method.
  • the terminal measures the measurement reference signal within the duration of the channel transmission opportunity or the downlink reception opportunity, to avoid the measurement result error caused by the inconsistency between the base station and the terminal transmitting and receiving the measurement reference signal.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a first schematic flowchart of a signal transmission method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a measurement reference signal in MCOT time provided by an embodiment of the present application.
  • FIG. 4 is a second schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 5 is a first schematic structural composition diagram of a signal transmission device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural composition diagram of a signal transmission device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with the terminal 120 (or a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal 120 located within a coverage area of the network device 110.
  • terminal used herein includes, but is not limited to, connection via a wired line, such as via a Public Switched Telephone Network (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Network
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • DVB-H networks digital television networks
  • satellite networks satellite networks
  • AM-FM A broadcast transmitter AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • the terminals 120 may perform terminal direct connection (Device to Device, D2D) communication.
  • D2D Terminal to Device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminals within its coverage area. Embodiments of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • a communication device may include a network device 110 and a terminal 120 having a communication function, and the network device 110 and the terminal 120 may be specific devices described above, and are not described herein again; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which are not limited in the embodiments of the present application.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by countries and regions. This spectrum is generally considered to be shared spectrum, that is, communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. Using this spectrum does not require applying for a proprietary spectrum license from the government. In order to allow various communication systems that use unlicensed spectrum for wireless communication to coexist friendly on this spectrum, some countries or regions have stipulated regulatory requirements that must be met when using unlicensed spectrum. For example, in Europe, communication equipment follows the LBT principle, that is, communication equipment needs to perform channel listening before sending signals on channels with unlicensed spectrum.
  • the communication equipment can perform Signal transmission; if the channel monitoring result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot perform signal transmission. And in order to ensure fairness, in one transmission, the communication device uses the channel of the unlicensed spectrum for signal transmission time not to exceed the maximum channel occupation time (MCOT, Maximum Channel Occupation Time).
  • MCOT Maximum Channel Occupation Time
  • the base station needs to perform LBT to transmit the downlink channel, and the time for occupying the channel at one time is limited, so the transmission of the downlink channel and signals may be discontinuous.
  • the terminal does not know when the base station starts occupying the downlink channel for transmission, and therefore needs to continuously detect the downlink channel, which will cause power consumption of the terminal.
  • an instruction signal is sent to the terminal to notify the terminal base station to obtain a downlink transmission opportunity.
  • the terminal starts to receive corresponding downlink channels and signals, such as PDCCH, reference signals, and so on.
  • the terminal may not detect channels and signals other than the indication signal, or may detect downlink channels and signals including the indication signal with a longer period.
  • the terminal needs to perform radio resource management (RRM, Radio Resource Management) measurement and radio link monitoring (RLM, Radio Link Monitoring) measurement, and through the channel state information reference signal (CSI-RS, Channel State Information-Reference Signal) ) Or reference signal received power (RSRP, Reference Signal Received Power), reference signal received quality (RSRQ, Reference Signal Received Quality), or signal-to-interference and noise ratio (SINR, Signal-to- noise and Interference Ratio) to perform mobility management and out-of-sync judgment. Or, the terminal performs channel state measurement through the configured CSI-RS.
  • RRM Radio Resource Management
  • RLM Radio Link Monitoring
  • CSI-RS Channel State Information-Reference Signal
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to-interference and noise ratio
  • FIG. 2 is a first flowchart of a signal transmission method according to an embodiment of the present application. As shown in FIG. 2, the signal transmission method includes the following steps:
  • Step 201 The terminal receives a first indication signal and determines, based on the first indication signal, at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • the terminal may be any device capable of communicating on a network, such as a mobile phone, a tablet computer, a vehicle-mounted terminal, and a notebook.
  • the terminal receives the first indication signal sent by the base station, and determines at least one of a time, frequency, and code domain of a measurement reference signal whose measurement result is valid based on the first indication signal.
  • the base station may be, but is not limited to, gNB in 5G.
  • the first indication signal indicates at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • the terminal can determine at which positions the measurement reference signal is detected.
  • the measurement result is a valid measurement result.
  • the first indication signal directly indicates at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal to be detected, and a measurement result corresponding to the measurement reference signal to be detected is a valid measurement.
  • the terminal determines at least one of a time domain, a frequency domain, and a code domain of the measurement reference signal to be detected based on the first indication signal. Further, the terminal references the measurement reference only at the positions of the measurement reference signals where these measurement results are valid. The signal is detected.
  • the measurement reference signal includes at least one of a CSI-RS, a TRS, a synchronization signal, and a synchronization signal block.
  • the first indication signal is a physical layer signal or information carried by a PDCCH. Further, the physical layer signal is a reference signal.
  • the information carried by the PDCCH may be Pre-emption Indication information.
  • the PDCCH carries Pre-emption Indication information
  • Pre-emption Indication information is used to indicate a time-frequency resource location occupied by a terminal of an ultra-high-reliability ultra-low-latency communication (URLLC) service, and this time-frequency resource location is located in the Pre-emption
  • the area occupied by the physical downlink shared channel (PDSCH) scheduled to other terminals before the indication information is sent is used by other terminals to determine the time-frequency resources that their PDSCH actually occupies to further achieve rate matching.
  • This embodiment of the present application uses Pre-emption Indication information to indicate at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal whose measurement result is valid.
  • the base station needs to perform LBT first when sending downlink channels / signals. After the LBT is successful, the base station obtains a downlink transmission opportunity. Correspondingly, the terminal side is downlink Receive an opportunity. Based on this, the first indication signal is used to indicate the start position of the downlink transmission opportunity and / or the occupied time of the downlink transmission opportunity; or the first indication signal is used to indicate the start position of the downlink reception opportunity and / or Downlink reception time.
  • the time-domain position of the measurement reference signal for which the measurement result is valid includes the time-domain position of the measurement reference signal within the time occupied by the downlink transmission opportunity or the time received by the downlink.
  • the base station after the base station successfully performs the LBT, the base station obtains a downlink transmission opportunity, and notifies the terminal of the starting position of the downlink transmission opportunity and / or the occupation time of the downlink transmission opportunity through the first indication signal, so that the terminal can determine the time corresponding to the downlink transmission opportunity.
  • the terminal measures the measurement reference signal within the time range corresponding to the downlink transmission opportunity.
  • the time length corresponding to the downlink transmission opportunity cannot exceed MCOT.
  • Figure 3 takes the time length corresponding to a downlink transmission opportunity as MCOT as an example.
  • the terminal does not measure the measurement reference signal or reports the measurement result to the upper layer before receiving the first indication signal again.
  • the terminal Considering that the time domain position of the measurement reference signal is pre-configured on the network side, the terminal refers to the measurement reference signal at the time domain position of the measurement reference signal within the time occupied by the downlink transmission opportunity or downlink reception time. The signal is detected. Referring to FIG. 3, the time domain positions of the four measurement reference signals are included in the MCOT time, and the terminal detects the measurement reference signals at the time domain positions of the four measurement reference signals.
  • the terminal reports a measurement result of the measurement reference signal at the time domain position to a higher layer.
  • the measurement reference signal is used for RRM measurement, or RLM measurement, or synchronization, or channel state measurement, or time-frequency tracking.
  • FIG. 4 is a second flowchart of a signal transmission method according to an embodiment of the present application. As shown in FIG. 4, the signal transmission method includes the following steps:
  • Step 401 The base station sends a first indication signal, where the first indication signal is used by the terminal to determine at least one of a time, frequency, and code domain of a measurement reference signal in which a measurement result is valid.
  • the base station may be, but is not limited to, a gNB in 5G.
  • the base station sends a first instruction signal to the terminal
  • the terminal may be any device capable of communicating on the network, such as a mobile phone, a tablet computer, a vehicle-mounted terminal, and a notebook.
  • the first indication signal indicates at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • the terminal can determine at which positions the measurement reference signal is detected.
  • the measurement result is a valid measurement result.
  • the first indication signal directly indicates at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal to be detected, and a measurement result corresponding to the measurement reference signal to be detected is a valid measurement.
  • the first indication signal is used by the terminal to determine at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal to be detected.
  • the measurement reference signal includes at least one of a CSI-RS, a TRS, a synchronization signal, and a synchronization signal block.
  • the first indication signal is a physical layer signal or information carried by a PDCCH. Further, the physical layer signal is a reference signal.
  • the information carried by the PDCCH may be Pre-emption Indication information.
  • the PDCCH carries Pre-emption Indication information
  • Pre-emption Indication information is used to indicate a time-frequency resource location occupied by a terminal of an ultra-high-reliability ultra-low-latency communication (URLLC) service, and this time-frequency resource location is located in the Pre-emption
  • the area occupied by the PDSCH scheduled to other terminals before the indication information is sent is used by other terminals to determine the time-frequency resources actually occupied by their PDSCH, thereby further achieving rate matching.
  • This embodiment of the present application uses Pre-emption Indication information to indicate at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal whose measurement result is valid.
  • the base station needs to perform LBT first when sending downlink channels / signals. After the LBT is successful, the base station obtains a downlink transmission opportunity. Correspondingly, the terminal side is downlink Receive an opportunity. Based on this, the first indication signal is used to indicate the start position of the downlink transmission opportunity and / or the occupied time of the downlink transmission opportunity; or the first indication signal is used to indicate the start position of the downlink reception opportunity and / or Downlink reception time.
  • the time-domain position of the measurement reference signal for which the measurement result is valid includes the time-domain position of the measurement reference signal within the time occupied by the downlink transmission opportunity or the time received by the downlink.
  • the base station after the base station successfully performs the LBT, the base station obtains a downlink transmission opportunity, and notifies the terminal of the starting position of the downlink transmission opportunity and / or the occupation time of the downlink transmission opportunity through the first indication signal, so that the terminal can determine the time corresponding to the downlink transmission opportunity.
  • the terminal measures the measurement reference signal within the time range corresponding to the downlink transmission opportunity.
  • the time length corresponding to the downlink transmission opportunity cannot exceed MCOT.
  • Figure 3 takes the time length corresponding to a downlink transmission opportunity as MCOT as an example.
  • the terminal does not measure the measurement reference signal or reports the measurement result to the upper layer before receiving the first indication signal again.
  • the terminal Considering that the time domain position of the measurement reference signal is pre-configured on the network side, the terminal refers to the measurement reference signal at the time domain position of the measurement reference signal within the time occupied by the downlink transmission opportunity or downlink reception time. The signal is detected. Referring to FIG. 3, the time domain positions of the four measurement reference signals are included in the MCOT time, and the terminal detects the measurement reference signals at the time domain positions of the four measurement reference signals.
  • the measurement reference signal is used for RRM measurement, or RLM measurement, or synchronization, or channel state measurement, or time-frequency tracking.
  • FIG. 5 is a first schematic structural diagram of a signal transmission device according to an embodiment of the present application. As shown in FIG. 5, the signal transmission device includes:
  • a receiving unit 501 configured to receive a first indication signal
  • a determining unit 502 is configured to determine, based on the first indication signal, at least one of a time, frequency, and code domain of a measurement reference signal in which a measurement result is valid.
  • the determining unit 502 is configured to determine at least one of a time reference, a frequency reference, and a code reference of a measurement reference signal to be detected based on the first indication signal.
  • the corresponding measurement result is a valid measurement result.
  • the measurement reference signal includes at least one of a CSI-RS, a TRS, a synchronization signal, and a synchronization signal block.
  • the first indication signal is a physical layer signal or information carried through a PDCCH.
  • the physical layer signal is a reference signal.
  • the first indication signal is used to indicate a starting position of a downlink transmission opportunity and / or an occupation time of the downlink transmission opportunity; or,
  • the first indication signal is used to indicate a starting position of a downlink receiving opportunity and / or a downlink receiving time.
  • the time-domain position of the measurement reference signal includes a time-domain position of the measurement reference signal within a downlink transmission opportunity occupation time or a downlink reception time.
  • the device further includes:
  • the detecting unit 503 is configured to detect the measurement reference signal in a time domain position of the measurement reference signal in the time occupied by the downlink transmission opportunity or in the downlink reception time.
  • the device further includes:
  • the reporting unit 504 is configured to report a measurement result of the measurement reference signal at the time domain position to a higher layer.
  • the measurement reference signal is used for RRM measurement, or RLM measurement, or synchronization, or channel state measurement, or time-frequency tracking.
  • FIG. 6 is a second schematic diagram of the structure and composition of a signal transmission device according to an embodiment of the present application. As shown in FIG. 6, the signal transmission device includes:
  • the sending unit 601 is configured to send a first indication signal, where the first indication signal is used by the terminal to determine at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal in which a measurement result is valid.
  • the first indication signal is used by the terminal to determine at least one of a time domain, a frequency domain, and a code domain of a measurement reference signal to be detected, and a measurement result corresponding to the measurement reference signal to be detected is valid Measurement results.
  • the measurement reference signal includes at least one of a CSI-RS, a TRS, a synchronization signal, and a synchronization signal block.
  • the first indication signal is a physical layer signal or information carried through a PDCCH.
  • the physical layer signal is a reference signal.
  • the first indication signal is used to indicate a starting position of a downlink transmission opportunity and / or an occupation time of the downlink transmission opportunity; or,
  • the first indication signal is used to indicate a starting position of a downlink receiving opportunity and / or a downlink receiving time.
  • the time-domain position of the measurement reference signal includes a time-domain position of the measurement reference signal within a downlink transmission opportunity occupation time or a downlink reception time.
  • the measurement reference signal is used for RRM measurement, or RLM measurement, or synchronization, or channel state measurement, or time-frequency tracking.
  • FIG. 7 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device.
  • the communication device 600 shown in FIG. 7 includes a processor 610, and the processor 610 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other information. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method in the embodiment of the present application. For brevity, details are not described herein again. .
  • the communication device 600 may specifically be a mobile terminal / terminal of the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal / terminal in each method of the embodiment of the present application. For simplicity, in This will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 8 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application. To repeat.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 9 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 9, the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to a mobile terminal / terminal in the embodiments of the present application, and the computer program causes a computer to execute a corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application in order to Concise, I won't repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application for the sake of brevity , Will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal in the embodiment of the present application, and when the computer program is run on a computer, the computer is caused to execute a corresponding method implemented by the mobile terminal / terminal in each method of the embodiment of the present application.
  • the computer program may be applied to a mobile terminal / terminal in the embodiment of the present application, and when the computer program is run on a computer, the computer is caused to execute a corresponding method implemented by the mobile terminal / terminal in each method of the embodiment of the present application.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Abstract

本申请实施例提供一种信号传输方法及装置、终端、网络设备,包括:终端接收第一指示信号,基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。

Description

一种信号传输方法及装置、终端、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种信号传输方法及装置、终端、网络设备。
背景技术
在授权频谱上,终端根据配置的测量参考信号的预定义位置对测量参考信进行测量。而在免授权频谱上,由于下行信道/信号通过先听后说(LBT,Listen-Before-Talk)的方式占用,有可能在测量参考信号的预定义位置上基站无法发送测量参考信号,此时终端并不知道该情况,如果终端还按照原来配置的测量参考信号的预定义位置对测量参考信号进行测量,会造成测量结果的不准确。
发明内容
本申请实施例提供一种信号传输方法及装置、终端、网络设备。
本申请实施例提供的信号传输方法,包括:
终端接收第一指示信号,基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例提供的信号传输方法,包括:
基站发送第一指示信号,所述第一指示信号用于终端确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例提供的信号传输装置,包括:
接收单元,用于接收第一指示信号;
确定单元,用于基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例提供的信号传输装置,包括:
发送单元,用于发送第一指示信号,所述第一指示信号用于终端确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信号传输方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信号传输方法。
本申请实施例提供的芯片,用于实现上述的信号传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信号传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信号传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信号传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信号传输方法。
通过上述技术方案,在免授权频谱系统中,通过第一指示信号指示测量结果有效的测量参考信号的时域、频域、码域中的至少一个,也即指示出了信道传输机会或下行接收机会,终端在信道传输机会或下行接收机会的持续时间内对测量参考信号进行测量,避免基站与终端之间发送和接收测量参考信号的不一致造成测量结果的错误。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的信号传输方法的流程示意图一;
图3是本申请实施例提供的MCOT时间内的测量参考信号的示意图;
图4为本申请实施例提供的信号传输方法的流程示意图二;
图5为本申请实施例提供的信号传输装置的结构组成示意图一;
图6为本申请实施例提供的信号传输装置的结构组成示意图;
图7是本申请实施例提供的一种通信设备示意性结构图;
图8是本申请实施例的芯片的示意性结构图;
图9是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、 网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术进行说明。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区,通信设备遵循LBT原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结 果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(MCOT,Maximum Channel Occupation Time)。
在免授权频谱的系统中,基站发送下行信道需要进行LBT,且一次占用信道的时间有限制,因此下行信道和信号的传输有可能是不连续的。而终端并不知道基站何时开始占用下行信道进行传输,因此需要不断的检测下行信道,这样会造成终端的耗电。为了减少终端的耗电,在基站进行信道侦听的结果为空闲后,发送指示信号给终端,通知终端基站获得下行传输机会。终端收到该指示后,开始接收相应的下行信道和信号,例如PDCCH,参考信号等。在收到该指示之前,终端可以不检测除指示信号之外的信道和信号,或者以较长的周期检测包括指示信号在内的下行信道和信号。
另一方面,终端需要进行无线资源管理(RRM,Radio Resource Management)测量和无线链路监听(RLM,Radio Link Monitoring)测量,通过对信道状态信息参考信号(CSI-RS,Channel State Information-Reference Signal)或者同步信号(SS,synchronization signal)的参考信号接收功率(RSRP,Reference Signal Received Power)、参考信号接收质量(RSRQ,Reference Signal Received Quality)或者信号与干扰加噪声比(SINR,Signal-to-noise and Interference Ratio)行测量,进行移动性管理和同失步判决。或者,终端通过配置的CSI-RS进行信道状态的测量。
图2为本申请实施例提供的信号传输方法的流程示意图一,如图2所示,所述信号传输方法包括以下步骤:
步骤201:终端接收第一指示信号,基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例中,所述终端可以是手机、平板电脑、车载终端、笔记本等任意能够网络进行通信的设备。
本申请实施例中,终端接收基站发送的第一指示信号,基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。这里,基站可以但不局限于是5G中的gNB。
本申请实施例中,所述第一指示信号指示测量结果有效的测量参考信号的时域、频域、码域中的至少一个,如此,终端可以确定出哪些位置上检测出的测量参考信号的测量结果是有效测量结果。
在一实施方式中,所述第一指示信号直接指示出需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果,终端基于所述第一指示信号确定需要检测的测量参考信号的时域、频域、码域中的至少一个,进一步,终端仅在这些测量结果有效的测量参考信号的位置上对测量参考信号进行检测。
本申请实施例中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
在一实施方式中,所述第一指示信号为物理层信号或PDCCH承载的信息。进一步,所述物理层信号为参考信号。
这里,PDCCH承载的信息可以是优先抢占指示(Pre-emption Indication)信息。具体地,通过PDCCH承载Pre-emption Indication信息,Pre-emption Indication信息用于指示超高可靠超低时延通信(URLLC)业务的终端占用的时频资源位置,这个时频资源位置位于Pre-emption Indication信息发送之前调度给其他终端的物理下行共享信道(PDSCH)占用的区域,用于其他终端做确定其PDSCH实际占用的时频资源, 进一步实现速率匹配。本申请实施例利用Pre-emption Indication信息来指示测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例中,考虑到非免授权频谱系统中的LBT原则,基站在发送下行信道/信号的时候,需要首先进行LBT,LBT成功后,基站获得下行传输机会,对应地,终端侧是下行接收机会。基于此,所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。上述方案中,测量结果有效的测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
参照图3,基站进行LBT成功后,获得下行传输机会,通过第一指示信号通知终端下行传输机会的起始位置和/或下行传输机会的占用时间,从而终端可以确定出下行传输机会对应的时间范围,终端在下行传输机会对应的时间范围内对测量参考信号进行测量,这里,下行传输机会对应的时间长度不能超过MCOT,图3以一次下行传输机会对应的时间长度为MCOT为例,在MCOT结束后,终端在再次收到第一指示信号之前,不对测量参考信号进行测量,或者不上报测量结果给高层。
考虑到测量参考信号的时域位置是网络侧预配置的,因此,所述终端在所述下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置上,对所述测量参考信号进行检测。参照图3,在MCOT的时间内包括4个测量参考信号的时域位置,终端会在这4个测量参考信号的时域位置上检测测量参考信号。
本申请实施例中,所述终端将所述时域位置上对于所述测量参考信号的测量结果上报给高层。进一步,所述测量参考信号用于RRM测量、或RLM测量、或同步、或信道状态测量、或时频跟踪。
图4为本申请实施例提供的信号传输方法的流程示意图二,如图4所示,所述信号传输方法包括以下步骤:
步骤401:基站发送第一指示信号,所述第一指示信号用于终端确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例中,所述基站可以但不局限于是5G中的gNB。
本申请实施例中,基站向终端发送第一指示信号,所述终端可以是手机、平板电脑、车载终端、笔记本等任意能够网络进行通信的设备。
本申请实施例中,所述第一指示信号指示测量结果有效的测量参考信号的时域、频域、码域中的至少一个,如此,终端可以确定出哪些位置上检测出的测量参考信号的测量结果是有效测量结果。
在一实施方式中,所述第一指示信号直接指示出需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果,可见,所述第一指示信号用于终端确定需要检测的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
在一实施方式中,所述第一指示信号为物理层信号或PDCCH承载的信息。进一步,所述物理层信号为参考信号。
这里,PDCCH承载的信息可以是优先抢占指示(Pre-emption Indication)信息。具体地,通过PDCCH承载Pre-emption Indication信息,Pre-emption Indication信息用于指示超高可靠超低时延通信(URLLC)业务的终端占用的时频资源位置,这个时频资源位置位于Pre-emption Indication信息发送之前调度给其他终端的PDSCH占用的区域,用于其他终端做确定其PDSCH实际占用的时频资源,从而进一步实现速率 匹配。本申请实施例利用Pre-emption Indication信息来指示测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
本申请实施例中,考虑到非免授权频谱系统中的LBT原则,基站在发送下行信道/信号的时候,需要首先进行LBT,LBT成功后,基站获得下行传输机会,对应地,终端侧是下行接收机会。基于此,所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。上述方案中,测量结果有效的测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
参照图3,基站进行LBT成功后,获得下行传输机会,通过第一指示信号通知终端下行传输机会的起始位置和/或下行传输机会的占用时间,从而终端可以确定出下行传输机会对应的时间范围,终端在下行传输机会对应的时间范围内对测量参考信号进行测量,这里,下行传输机会对应的时间长度不能超过MCOT,图3以一次下行传输机会对应的时间长度为MCOT为例,在MCOT结束后,终端在再次收到第一指示信号之前,不对测量参考信号进行测量,或者不上报测量结果给高层。
考虑到测量参考信号的时域位置是网络侧预配置的,因此,所述终端在所述下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置上,对所述测量参考信号进行检测。参照图3,在MCOT的时间内包括4个测量参考信号的时域位置,终端会在这4个测量参考信号的时域位置上检测测量参考信号。
本申请实施例中,所述测量参考信号用于RRM测量、或RLM测量、或同步、或信道状态测量、或时频跟踪。
图5为本申请实施例提供的信号传输装置的结构组成示意图一,如图5所示,所述信号传输装置包括:
接收单元501,用于接收第一指示信号;
确定单元502,用于基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
在一实施方式中,所述确定单元502,用于基于所述第一指示信号确定需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果。
在一实施方式中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
在一实施方式中,所述第一指示信号为物理层信号或通过PDCCH承载的信息。
在一实施方式中,所述物理层信号为参考信号。
在一实施方式中,所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,
所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。
在一实施方式中,所述测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
在一实施方式中,所述装置还包括:
检测单元503,用于在所述下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置上,对所述测量参考信号进行检测。
在一实施方式中,所述装置还包括:
上报单元504,用于将所述时域位置上对于所述测量参考信号的测量结果上报给高层。
在一实施方式中,所述测量参考信号用于RRM测量、或RLM测量、或同步、或 信道状态测量、或时频跟踪。
本领域技术人员应当理解,本申请实施例的上述信号传输装置的相关描述可以参照本申请实施例的信号传输方法的相关描述进行理解。
图6为本申请实施例提供的信号传输装置的结构组成示意图二,如图6所示,所述信号传输装置包括:
发送单元601,用于发送第一指示信号,所述第一指示信号用于终端确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
在一实施方式中,所述第一指示信号用于终端确定需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果。
在一实施方式中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
在一实施方式中,所述第一指示信号为物理层信号或通过PDCCH承载的信息。
在一实施方式中,所述物理层信号为参考信号。
在一实施方式中,所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,
所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。
在一实施方式中,所述测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
在一实施方式中,所述测量参考信号用于RRM测量、或RLM测量、或同步、或信道状态测量、或时频跟踪。
本领域技术人员应当理解,本申请实施例的上述信号传输装置的相关描述可以参照本申请实施例的信号传输方法的相关描述进行理解。
图7是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,也可以是网络设备,图7所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图7所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的芯片的示意性结构图。图8所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,芯片700还可以包括存储器720。其中,处理器710可以从 存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统900的示意性框图。如图9所示,该通信系统900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个 网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (46)

  1. 一种信号传输方法,所述方法包括:
    终端接收第一指示信号,基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
  2. 根据权利要求1所述的方法,其中,所述基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个,包括:
    基于所述第一指示信号确定需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果。
  3. 根据权利要求1或2所述的方法,其中,所述测量参考信号包括信道状态信息参考信号CSI-RS、跟踪参考信号TRS、同步信号和同步信号块中的至少一种。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一指示信号为物理层信号或通过物理下行控制信道PDCCH承载的信息。
  5. 根据权利要求4所述的方法,其中,所述物理层信号为参考信号。
  6. 根据权利要求1至5任一项所述的方法,其中,
    所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,
    所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。
  7. 根据权利要求6所述的方法,其中,所述测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述终端在所述下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置上,对所述测量参考信号进行检测。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端将所述时域位置上对于所述测量参考信号的测量结果上报给高层。
  10. 根据权利要求1至9任一项所述的方法,其中,所述测量参考信号用于无线资源管理RRM测量、或无线链路监听RLM测量、或同步、或信道状态测量、或时频跟踪。
  11. 一种信号传输方法,所述方法包括:
    基站发送第一指示信号,所述第一指示信号用于终端确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
  12. 根据权利要求11所述的方法,其中,所述第一指示信号用于终端确定需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果。
  13. 根据权利要求11或12所述的方法,其中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
  14. 根据权利要求11至13任一项所述的方法,其中,所述第一指示信号为物理层信号或通过PDCCH承载的信息。
  15. 根据权利要求14所述的方法,其中,所述物理层信号为参考信号。
  16. 根据权利要求11至15任一项所述的方法,其中,
    所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,
    所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。
  17. 根据权利要求16所述的方法,其中,所述测量参考信号的时域位置包括下 行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
  18. 根据权利要求11至17任一项所述的方法,其中,所述测量参考信号用于RRM测量、或RLM测量、或同步、或信道状态测量、或时频跟踪。
  19. 一种信号传输装置,所述装置包括:
    接收单元,用于接收第一指示信号;
    确定单元,用于基于所述第一指示信号确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
  20. 根据权利要求19所述的装置,其中,所述确定单元,用于基于所述第一指示信号确定需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果。
  21. 根据权利要求19或20所述的装置,其中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
  22. 根据权利要求19至21任一项所述的装置,其中,所述第一指示信号为物理层信号或通过PDCCH承载的信息。
  23. 根据权利要求22所述的装置,其中,所述物理层信号为参考信号。
  24. 根据权利要求19至23任一项所述的装置,其中,
    所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,
    所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。
  25. 根据权利要求24所述的装置,其中,所述测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
  26. 根据权利要求25所述的装置,其中,所述装置还包括:
    检测单元,用于在所述下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置上,对所述测量参考信号进行检测。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    上报单元,用于将所述时域位置上对于所述测量参考信号的测量结果上报给高层。
  28. 根据权利要求19至27任一项所述的装置,其中,所述测量参考信号用于RRM测量、或RLM测量、或同步、或信道状态测量、或时频跟踪。
  29. 一种信号传输装置,所述装置包括:
    发送单元,用于发送第一指示信号,所述第一指示信号用于终端确定测量结果有效的测量参考信号的时域、频域、码域中的至少一个。
  30. 根据权利要求29所述的装置,其中,所述第一指示信号用于终端确定需要检测的测量参考信号的时域、频域、码域中的至少一个,所述需要检测的测量参考信号对应的测量结果为有效测量结果。
  31. 根据权利要求29或30所述的装置,其中,所述测量参考信号包括CSI-RS、TRS、同步信号和同步信号块中的至少一种。
  32. 根据权利要求29至31任一项所述的装置,其中,所述第一指示信号为物理层信号或通过PDCCH承载的信息。
  33. 根据权利要求32所述的装置,其中,所述物理层信号为参考信号。
  34. 根据权利要求29至33任一项所述的装置,其中,
    所述第一指示信号用于指示下行传输机会的起始位置和/或下行传输机会的占用时间;或者,
    所述第一指示信号用于指示下行接收机会的起始位置和/或下行接收时间。
  35. 根据权利要求34所述的装置,其中,所述测量参考信号的时域位置包括下行传输机会占用时间内或下行接收时间内的测量参考信号的时域位置。
  36. 根据权利要求29至35任一项所述的装置,其中,所述测量参考信号用于RRM测量、或RLM测量、或同步、或信道状态测量、或时频跟踪。
  37. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  38. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求11至18中任一项所述的方法。
  39. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  40. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至18中任一项所述的方法。
  41. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  42. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至18中任一项所述的方法。
  43. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  44. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至18中任一项所述的方法。
  45. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  46. 一种计算机程序,所述计算机程序使得计算机执行如权利要求11至18中任一项所述的方法。
PCT/CN2018/100068 2018-08-10 2018-08-10 一种信号传输方法及装置、终端、网络设备 WO2020029286A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880096606.6A CN112789916A (zh) 2018-08-10 2018-08-10 一种信号传输方法及装置、终端、网络设备
EP18929570.2A EP3836666A4 (en) 2018-08-10 2018-08-10 METHOD AND DEVICE FOR SIGNAL TRANSMISSION AS WELL AS TERMINAL DEVICE AND NETWORK DEVICE
CN202210837778.2A CN115065455B (zh) 2018-08-10 2018-08-10 一种信号传输方法及装置、终端、网络设备
PCT/CN2018/100068 WO2020029286A1 (zh) 2018-08-10 2018-08-10 一种信号传输方法及装置、终端、网络设备
TW108128384A TW202013918A (zh) 2018-08-10 2019-08-08 一種訊號傳輸方法及裝置、終端、網路設備
US17/172,712 US11943172B2 (en) 2018-08-10 2021-02-10 Signal transmission method and apparatus, terminal and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100068 WO2020029286A1 (zh) 2018-08-10 2018-08-10 一种信号传输方法及装置、终端、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,712 Continuation US11943172B2 (en) 2018-08-10 2021-02-10 Signal transmission method and apparatus, terminal and network device

Publications (1)

Publication Number Publication Date
WO2020029286A1 true WO2020029286A1 (zh) 2020-02-13

Family

ID=69414390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100068 WO2020029286A1 (zh) 2018-08-10 2018-08-10 一种信号传输方法及装置、终端、网络设备

Country Status (5)

Country Link
US (1) US11943172B2 (zh)
EP (1) EP3836666A4 (zh)
CN (2) CN115065455B (zh)
TW (1) TW202013918A (zh)
WO (1) WO2020029286A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4135249A4 (en) * 2020-04-10 2023-10-04 Spreadtrum Communications (Shanghai) Co., Ltd. METHOD AND DEVICE FOR PROCESSING A DOWNLINK REFERENCE SIGNAL, AND READABLE STORAGE MEDIUM
US11943172B2 (en) 2018-08-10 2024-03-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus, terminal and network device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707673A (zh) * 2022-02-25 2023-09-05 维沃软件技术有限公司 感知方法、装置及通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150098397A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Techniques for assessing clear channel in an unlicensed radio frequency spectrum band
CN105376861A (zh) * 2014-08-22 2016-03-02 中兴通讯股份有限公司 一种占用非授权载波的发送的方法、系统及接入点

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071488A1 (en) 2011-11-15 2013-05-23 Renesas Mobile Corporation Method, apparatus and computer program product for unlicensed carrier adaptation
US9955477B2 (en) * 2014-05-01 2018-04-24 Samsung Electronics Co., Ltd. Method and apparatus for controlling cell state at subframe level in wireless network
US9967131B2 (en) * 2014-06-27 2018-05-08 Lg Electronics Inc. Method and device for measurement by device-to-device terminal in wireless communication system
US11303403B2 (en) * 2014-08-05 2022-04-12 Nokia Technologies Oy Signaling arrangement for wireless system
WO2016036097A1 (ko) * 2014-09-01 2016-03-10 엘지전자 주식회사 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법
EP3245533B1 (en) * 2015-02-18 2019-06-26 Sony Corporation Communications device, infrastructure equipment, mobile communications network and methods
WO2016148511A1 (ko) * 2015-03-19 2016-09-22 엘지전자 주식회사 무선 통신 시스템에서 불연속 전송을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站
AU2016327704A1 (en) * 2015-09-25 2018-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Communication terminal, radio network node and methods therein
US10182456B2 (en) * 2015-10-15 2019-01-15 Qualcomm Incorporated Collision detection in a shared radio frequency spectrum band
US10433291B2 (en) * 2016-02-26 2019-10-01 Qualcomm Incorporated Discovery reference signal transmission window detection and discovery reference signal measurement configuration
US10547494B2 (en) * 2016-10-31 2020-01-28 Qualcomm Incorporated Unlicensed spectrum coverage enhancement for industrial internet of things
US11121803B2 (en) * 2018-05-11 2021-09-14 Mediatek Inc. NR CSI measurement and CSI reporting
US11071000B2 (en) * 2018-07-19 2021-07-20 Samsung Electronics Co., Ltd. Method and apparatus for RRM measurement enhancement for NR unlicensed
EP3836666A4 (en) 2018-08-10 2021-08-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR SIGNAL TRANSMISSION AS WELL AS TERMINAL DEVICE AND NETWORK DEVICE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150098397A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Techniques for assessing clear channel in an unlicensed radio frequency spectrum band
CN105376861A (zh) * 2014-08-22 2016-03-02 中兴通讯股份有限公司 一种占用非授权载波的发送的方法、系统及接入点

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "Discussions on UL Multiplexing", 3GPP TSG RAN WG1 MEETING #92B R1-1804947, 20 April 2018 (2018-04-20), XP051427210 *
See also references of EP3836666A4 *
VIVO: "Multiplexing Data with Different Transmission Durations", 3GPP TSG RAN WG1 MEETING 90BIS RL-1717502, 13 October 2017 (2017-10-13), XP051340690 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11943172B2 (en) 2018-08-10 2024-03-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus, terminal and network device
EP4135249A4 (en) * 2020-04-10 2023-10-04 Spreadtrum Communications (Shanghai) Co., Ltd. METHOD AND DEVICE FOR PROCESSING A DOWNLINK REFERENCE SIGNAL, AND READABLE STORAGE MEDIUM

Also Published As

Publication number Publication date
US11943172B2 (en) 2024-03-26
EP3836666A4 (en) 2021-08-25
TW202013918A (zh) 2020-04-01
EP3836666A1 (en) 2021-06-16
US20210167931A1 (en) 2021-06-03
CN115065455A (zh) 2022-09-16
CN112789916A (zh) 2021-05-11
CN115065455B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US11943172B2 (en) Signal transmission method and apparatus, terminal and network device
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
EP3908035B1 (en) Wireless communication method, terminal device, and network device
US11895705B2 (en) Communication method, terminal device, and network device
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020243972A1 (zh) 一种控制测量的方法及装置、终端、网络设备
US20210105077A1 (en) Wireless link monitoring method, terminal device, and network device
US11523432B2 (en) Signal transmission method and device
US20220104216A1 (en) Method and apparatus for determining slot format
WO2020186534A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
US11737139B2 (en) Communication method, terminal device, and network device
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020093403A1 (zh) 一种随机接入方法及装置、终端、基站
WO2020051903A1 (zh) 一种链路恢复过程的处理方法及装置、终端
WO2020113431A1 (zh) 无线链路的检测方法及终端设备
WO2020248282A1 (zh) 一种参考信号的指示方法及装置、终端、网络设备
US20220256489A1 (en) Wireless communication method and terminal device
WO2020248272A1 (zh) 用于发送上行信道/信号的方法、终端设备和网络设备
US20210092774A1 (en) Radio Link Monitoring Method and Terminal Device
WO2020087313A1 (zh) 一种窗口配置方法及装置、终端、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929570

Country of ref document: EP

Effective date: 20210310