WO2020186534A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020186534A1
WO2020186534A1 PCT/CN2019/079147 CN2019079147W WO2020186534A1 WO 2020186534 A1 WO2020186534 A1 WO 2020186534A1 CN 2019079147 W CN2019079147 W CN 2019079147W WO 2020186534 A1 WO2020186534 A1 WO 2020186534A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
csi
resources
bwp
subband
Prior art date
Application number
PCT/CN2019/079147
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202110874798.2A priority Critical patent/CN113596880B/zh
Priority to KR1020217033524A priority patent/KR20210139396A/ko
Priority to PCT/CN2019/079147 priority patent/WO2020186534A1/zh
Priority to CN201980079861.4A priority patent/CN113170460A/zh
Priority to EP19920336.5A priority patent/EP3914008A4/en
Publication of WO2020186534A1 publication Critical patent/WO2020186534A1/zh
Priority to US17/458,465 priority patent/US20230403057A1/en
Priority to US17/458,522 priority patent/US20210392532A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the embodiments of the application relate to the field of communications, and specifically to the field of communications, and specifically to a method, terminal device, and network device for wireless communication.
  • terminal equipment can use channel state information reference signal (Channel State Information Reference Signal, CSI-RS) measurement to feed back channel state information (Channel State Information, CSI) to network equipment or perform channel state information interference measurement (Channel State Information Interference Measurement, CSI-IM) and other methods to improve high-speed service transmission and ensure user experience quality.
  • CSI-RS Channel State Information Reference Signal
  • CSI-IM channel state information Interference Measurement
  • BWP Bandwidth Part
  • the embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which are beneficial to improving communication performance.
  • a wireless communication method includes: a terminal device receives configuration information of a first resource sent by a network device, the first resource includes a channel state information reference signal CSI-RS resource and/or The channel state information interferes with the measurement CSI-IM resource; the terminal device determines the first resource on the BWP of the first bandwidth part according to the configuration information, the first BWP is the BWP on the unlicensed carrier, and the second A BWP includes at least two subbands in the frequency domain.
  • the first BWP may be a BWP configured for the terminal device.
  • the first BWP may be an activated BWP among multiple BWPs configured for the terminal device.
  • the first BWP is a downlink BWP.
  • a wireless communication method includes: a network device sends configuration information of a first resource to a terminal device, where the configuration information is used by the terminal device to determine all data on the first bandwidth part BWP.
  • the first BWP is a BWP on an unlicensed carrier
  • the first BWP includes at least two subbands in the frequency domain
  • the first resource includes channel state information reference signal CSI-RS resources and/ Or channel state information interferes with measuring CSI-IM resources.
  • a wireless communication method includes: a terminal device receives configuration information of a sounding reference signal (Sounding Reference Signal, SRS) resource sent by a network device; the terminal device according to the configuration information, Determine the SRS resource on the first bandwidth part BWP, where the first BWP is a BWP on an unlicensed carrier, and the first BWP includes at least two subbands in the frequency domain.
  • SRS Sounding Reference Signal
  • the first BWP is an uplink BWP.
  • the configuration information is used to indicate the SRS resource on the first BWP.
  • the configuration information is used to indicate the SRS resource on at least one subband included in the first BWP.
  • the configuration information is included in at least part of the at least one subband included in the first BWP, and the start resource block RB of the SRS resource and the SRS resource include The number of RBs.
  • the configuration information includes N bits, the N bits have a corresponding relationship with the resource block RB group included in the first BWP, and the N bits are used to indicate the first BWP.
  • the SRS resource on a BWP, N is a positive integer.
  • the configuration information is used to indicate the SRS resource on at least one subband included in the unlicensed carrier, and the terminal device determines the first bandwidth part BWP according to the configuration information
  • the above SRS resource includes: the terminal device determines the SRS resource on the first BWP according to the configuration information and the subband included in the first BWP.
  • the configuration information is included on at least part of the at least one subband included in the unlicensed carrier, and the start resource block RB of the SRS resource and the SRS resource include The number of RBs.
  • the configuration information includes K bits, the K bits have a corresponding relationship with the resource block RB group included in the unlicensed carrier, and the K bits are used to indicate the non-licensed carrier.
  • K is a positive integer.
  • the configuration information is included in the first BWP, the starting resource block RB of the SRS resource, and the number of RBs included in the SRS resource.
  • the configuration information is used to determine that the resources included in the guardband between two adjacent subbands in the at least two subbands do not include the SRS resource.
  • the SRS resource occupies M frequency domain units on the first BWP, and at least two of the M frequency domain units are discontinuous, where M is greater than 1. A positive integer.
  • the SRS resources are located in the first subband and the second subband of the at least two subbands
  • the M frequency domain units include M1 frequency domain units and M2 frequency domains Unit
  • the M1 frequency domain units are located on the first subband
  • the M2 frequency domain units are located on the second subband, where M1 and M2 are respectively positive integers.
  • the M1 frequency domain units are continuous, and the M2 frequency domain units are continuous.
  • any two adjacent frequency domain units among the M1 frequency domain units are discontinuous, and any two adjacent frequency domain units among the M2 frequency domain units are discontinuous.
  • the method further includes: the terminal device sends first indication information to the network device, where the first indication information is used to determine a valid SRS resource in the SRS resource, so
  • the effective SRS resources include SRS resources on subbands and symbols occupied by the terminal device in the SRS resources.
  • a wireless communication method includes: a network device sends configuration information of SRS resources to a terminal device, where the configuration information is used by the terminal device to determine the BWP on the first bandwidth part.
  • SRS resources, the first BWP is a BWP on an unlicensed carrier, and the first BWP includes at least two subbands in the frequency domain.
  • the configuration information is used to indicate the SRS resource on the first BWP.
  • the configuration information is used to indicate the SRS resource on at least one subband included in the first BWP.
  • the configuration information is included in at least part of the at least one subband included in the first BWP, and the start resource block RB of the SRS resource and the SRS resource include The number of RBs.
  • the configuration information includes N bits, the N bits have a corresponding relationship with the resource block RB group included in the first BWP, and the N bits are used to indicate the first BWP.
  • the SRS resource on a BWP, N is a positive integer.
  • the configuration information is used to indicate the SRS resource on at least one subband included in the unlicensed carrier.
  • the configuration information is included on at least part of the at least one subband included in the unlicensed carrier, and the start resource block RB of the SRS resource and the SRS resource include The number of RBs.
  • the configuration information includes K bits, the K bits have a corresponding relationship with the resource block RB group included in the unlicensed carrier, and the K bits are used to indicate the non-licensed carrier.
  • K is a positive integer.
  • the configuration information is included in the first BWP, the starting resource block RB of the SRS resource, and the number of RBs included in the SRS resource.
  • the configuration information is used to determine that the resources included in the guardband between two adjacent subbands in the at least two subbands do not include the SRS resource.
  • the SRS resource occupies M frequency domain units on the first BWP, and at least two of the M frequency domain units are discontinuous, where M is greater than 1. A positive integer.
  • the SRS resources are located in the first subband and the second subband of the at least two subbands
  • the M frequency domain units include M1 frequency domain units and M2 frequency domains Unit
  • the M1 frequency domain units are located on the first subband
  • the M2 frequency domain units are located on the second subband, where M1 and M2 are respectively positive integers.
  • the M1 frequency domain units are continuous, and the M2 frequency domain units are continuous.
  • any two adjacent frequency domain units among the M1 frequency domain units are discontinuous, and any two adjacent frequency domain units among the M2 frequency domain units are discontinuous.
  • the method further includes: the network device performs SRS measurement according to effective SRS resources in the SRS resources, and the effective SRS resources include those occupied by the terminal device in the SRS resources. SRS resources on subbands and symbols.
  • the effective SRS resource is determined according to the first indication information sent by the terminal device, or the effective SRS resource is determined according to reference signal detection.
  • a terminal device which is used to execute the method in the first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device which is used to execute the method in the third aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the third aspect or its implementation manners.
  • a network device configured to execute the method in the fourth aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing fourth aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the third aspect or its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the fourth aspect or its implementation manners.
  • a device for implementing any one of the foregoing first to fourth aspects or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device executes any one of the first aspect to the fourth aspect or the method in each implementation manner thereof.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the first to fourth aspects above or the method in each implementation manner thereof.
  • a computer program which when run on a computer, causes the computer to execute any one of the above-mentioned first to fourth aspects or the method in each of its implementation modes.
  • the terminal device can determine the CSI-RS resource and/or CSI-IM on the BWP of the unlicensed carrier including multiple subbands according to the configuration of the CSI-RS resource and/or CSI-IM resource by the network device Resources, so that the terminal device can perform CSI-RS-based measurement and/or CSI-IM-based measurement, so that the downlink channel on the unlicensed carrier can be used for effective channel measurement under a large bandwidth, which is beneficial to improve communication performance.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of multi-subband adaptive transmission in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a configuration method of the first resource in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another configuration mode of the first resource in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another configuration mode of the first resource in an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Fidelity
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the embodiment of this application does not limit the applied spectrum.
  • the embodiments of the present application may be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • terminal equipment includes but is not limited to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., are not limited in the embodiment of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • FIG. 2 shows a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 2, the method 200 includes some or all of the following contents:
  • S210 The network device sends configuration information of the first resource to the terminal device.
  • S220 The terminal device receives the configuration information of the first resource sent by the network device.
  • the terminal device determines the first resource on the first BWP according to the configuration information.
  • the first BWP is a BWP on an unlicensed spectrum, and the first BWP includes at least two subbands in the frequency domain.
  • the first resource may include CSI-RS resources, CSI-IM resources or SRS resources. If the first BWP is a downlink BWP, the first resource may include CSI-RS resources and/or CSI-IM resources; if the first BWP is an uplink BWP, the first resources may include SRS resources.
  • Unlicensed spectrum is a spectrum that can be used for radio equipment communications divided by countries and regions. This spectrum is usually considered to be a shared spectrum, that is, communication equipment in different communication systems only needs to meet the regulatory requirements set by the country or region on the spectrum. The spectrum can be used without the need to apply for a proprietary spectrum authorization from the government.
  • LBT Listen Before Talk
  • the communication device using the channel of the unlicensed spectrum for signal transmission cannot exceed the maximum channel occupation time (Maximum Channel Occupancy Time, MCOT); in order to avoid signals transmitted on the channel of the unlicensed spectrum
  • MCOT Maximum Channel Occupancy Time
  • the power is too large, which affects the transmission of other important signals on the channel, such as radar signals, etc.
  • communication equipment uses unlicensed spectrum channels for signal transmission, it is necessary to observe that the signal transmission power does not exceed the maximum transmission power and maximum transmission power spectral density limit.
  • the UE can be configured with multiple BWPs and only one BWP can be activated.
  • the activated BWP includes multiple LBT subbands
  • the base station can detect the channel according to the LBT subband
  • PDSCH transmission is performed through part or all of the LBT subbands included in the activated BWP.
  • the BWP0 configured by the base station for the UE includes two LBT subbands, the first subband and the second subband. The base station plans to schedule the first subband and the second subband to transmit PDSCH to the UE.
  • the base station transmits a Physical Downlink Shared Channel (PDSCH) to the UE through the first subband included in the BWP0.
  • PDSCH Physical Downlink Shared Channel
  • the subband included in the first BWP may include the LBT subband here, or may also be a subband composed of a specific resource block (Resource Block, RB) number, and the embodiment of the present application should not be limited to this .
  • Resource Block Resource Block
  • the unlicensed carrier, the first BWP, the first resource, and the subband in the embodiment of the present application are all concepts in the frequency domain, and the configuration information of the first resource is used to indicate the configuration of the first resource.
  • Frequency domain location that is, the terminal device determines the frequency domain location of the first resource on the first BWP according to the configuration information.
  • the network device may configure the first resource to the terminal device.
  • the network device can be configured based on the BWP, or based on the unlicensed carrier configuration, or based on the subband configuration in the BWP, or based on the subband configuration of the unlicensed carrier.
  • the terminal device can determine the first resource on the first BWP on the unlicensed carrier according to the configuration information of the first resource, and the first BWP is in the frequency domain It can include at least two subbands.
  • the terminal device may select an effective first resource on the configured first resource for communication or measurement.
  • the so-called effective first resource may refer to the first resource in which the signal is actually transmitted among the configured first resources.
  • the first resource is a CSI-RS resource
  • the effective CSI-RS resource refers to the resource of the CSI-RS transmitted by the network device among the CSI-RS resources configured by the network device for the terminal device, in other words, the effective CSI-RS
  • the resource refers to the CSI-RS resource on the subband and symbol occupied by the network device in the CSI-RS resource configured by the network device for the terminal device. That is, the effective CSI-RS resource refers to the resources on the subband where the network device obtains the channel usage right among the CSI-RS resources configured by the network device for the terminal device.
  • the first resource is configured based on BWP.
  • the configuration information may be used to indicate the first resource on the first BWP.
  • the terminal device can be configured with multiple BWPs, and the network device can independently configure the first resource on each BWP.
  • the network device can directly indicate to the terminal device the starting RB and the starting RB of the first resource on the first BWP.
  • the number of RBs included in the first resource for another example, the network device may also indicate the first resource on the first BWP to the terminal device through a bitmap.
  • the configuration information includes N bits The N bits have a corresponding relationship with the resource block RB group included in the first BWP, the N bits are used to indicate the first resource on the first BWP, and N is a positive integer.
  • the RB group may include one or more RBs, and each RB group included in the first BWP may include the same number of RBs or different numbers of RBs. It should also be understood that the N bits may have a one-to-one correspondence with the RB group included in the first BWP, or one bit may correspond to multiple RB groups, or multiple bits may correspond to one RB group.
  • the network device may also configure a criterion. After the terminal device receives the configured criterion, it may determine the first resource on the first BWP in combination with the information of the first BWP. For example, the network device may configure the terminal device with a common resource block (CRB) as the starting RB on each BWP, and the resources on 24 consecutive RBs as the first resource.
  • the first resource configured based on the BWP may be continuous or discontinuous in the frequency domain.
  • the first resource configured based on the BWP may or may not cross subbands.
  • the first resource is configured based on the subband on the BWP.
  • the configuration information is used to indicate the first resource on at least one subband included in the first BWP.
  • the network device may independently configure the first resource on at least one subband included in each BWP.
  • the network device may indicate to the terminal device the first resource on each subband in at least one subband included in the first BWP.
  • the configuration information may include the starting RB of the first resource on each subband in the at least one subband and the number of RBs included.
  • the configuration information may include a bitmap used to indicate the first resource on each subband in the at least one subband.
  • the configuration information used to indicate the first resource on the at least one subband may further include the starting RB and the number of RBs included in the first resource on each subband in some subbands, And a bitmap used to indicate the first resource on each subband in another part of the subband.
  • the network device may also configure a criterion. After the terminal device receives the configuration information, combining the information of the first BWP and the subband information included in the first BWP can determine at least one subband included in the first BWP On the first resource. For example, the configuration information is used to indicate resources other than the first few RBs and the last few RBs on each of the first two subbands on each BWP.
  • the first resource based on the subband configuration on the BWP may be continuous or discontinuous in the frequency domain.
  • the first resource is configured based on an unlicensed carrier.
  • the configuration information is used to indicate the first resource on an unlicensed carrier.
  • the terminal device may determine the first resource on the first BWP in combination with the information of the first BWP.
  • the first resource on the first BWP may be an overlapping part of the first resource on the first BWP and the unlicensed carrier.
  • the first resource is configured based on the unlicensed carrier, for example, the network device may directly indicate to the terminal device the starting RB of the first resource on the unlicensed carrier and the number of RBs included in the first resource; and For example, the network device may also indicate the first resource on the unlicensed carrier to the terminal device through a bitmap.
  • the configuration information includes K bits, and the K bits are related to the unlicensed carrier.
  • the resource block RB groups included in the licensed carrier have a corresponding relationship
  • the K bits are used to indicate the first resource on the unlicensed carrier
  • K is a positive integer.
  • the RB group may include one or more RBs
  • each RB group included in the unlicensed carrier may include the same number of RBs or different numbers of RBs.
  • the N bits may have a one-to-one correspondence with the RB groups included in the unlicensed carrier, or one bit may correspond to multiple RB groups, or multiple bits may correspond to one RB group.
  • the first resource is configured based on a subband on an unlicensed carrier, and the configuration information is used to indicate the first resource on at least one subband included in the unlicensed carrier, and the terminal device can combine with the first BWP
  • the included subbands determine the first resource on the first BWP.
  • the network device may indicate to the terminal device the first resource on each subband in at least one subband included in the unlicensed carrier.
  • the configuration information may include the starting RB of the first resource on each subband in the at least one subband and the number of RBs included.
  • the configuration information may include a bitmap for indicating the first resource on each subband in the at least one subband.
  • the configuration information used to indicate the first resource on the at least one subband may further include the starting RB and the number of RBs included in the first resource on each subband in some subbands, And a bitmap used to indicate the first resource on each subband in another part of the subband.
  • the terminal device can first determine which subbands on the first BWP are configured with the first resource, and can further obtain the configured first resources in these subbands. The specific location of the belt.
  • the network device may indicate to the terminal device through the configuration information that the first resource is not included in the guard band between two adjacent subbands among the at least two subbands included in the first BWP.
  • the first resource is a CSI-RS resource, and the terminal device does not perform CSI-RS measurement on the resource included in the guard band between the two adjacent subbands.
  • the first resource is a CSI-IM resource, and the terminal device does not perform interference measurement on the resource included in the guard band between two adjacent subbands in the at least two subbands.
  • the first resource is an SRS resource, and the terminal device does not transmit the SRS on the resource included in the guard band between two adjacent subbands in the at least two subbands.
  • the first resource occupies M frequency domain units on the first BWP, and at least two frequency domain units of the M frequency domain units are not continuous, where M It is a positive integer greater than 1.
  • the M frequency domain units may be located in at least one subband on the first BWP.
  • the M frequency domain units are located in the first subband and the second subband on the first BWP, the M frequency domain units include M1 frequency domain units and M2 frequency domain units, so The M1 frequency domain units are located on the first subband, and the M2 frequency domain units are located on the second subband, where M1 and M2 are respectively positive integers.
  • (M1+M2) may be equal to M or less than M.
  • the first resource is only located on the first subband and the second subband included in the first BWP. If less than, the first resource may also be located in the third subband or the fourth subband included in the first BWP, that is, the first resource may also be located in the first BWP except for the first subband. One subband and the other subbands except the second subband.
  • the M1 frequency domain units may be continuous or discontinuous, and the M2 frequency domain units may also be continuous or discontinuous.
  • the first resource may include CSI-RS resources and/or CSI-IM resources. If the first resource only includes CSI-RS resources or CSI-IM resources, the configuration of the first resource can be implemented in any of the above-mentioned manners. If the first resource includes both CSI-RS resources and CSI-IM resources, the configuration of the CSI-RS resources and the CSI-IM resources can be implemented in any of the above-mentioned manners. For example, the configuration information is used to indicate the CSI-RS resource on the first BWP and the CSI-IM resource on the first BWP.
  • the configuration information may include the starting RB of the CSI-RS resource on the first BWP and the number of RBs included in the CSI-RS resource, and the CSI-IM on the first BWP The starting RB of the resource and the number of RBs included in the CSI-IM resource.
  • the first resources being CSI-RS resources, CSI-IM resources, and SRS resources.
  • the bandwidth occupied by the frequency domain is configured through the CSI-FrequencyOccupation parameter.
  • startingRB represents the first RB occupied by CSI-RS resources with CRB 0 as the reference point, and the value can only be 4.
  • NrofRBs represents the number of RBs occupied by the CSI-RS resource.
  • the value can only be an integer multiple of 4.
  • the minimum configuration parameter is min (24, the bandwidth of the associated BWP). If the configuration parameter is greater than the associated BWP The UE shall assume that the bandwidth of the CSI-RS actually transmitted is equal to the bandwidth of the associated BWP. Among them, the bandwidth of the associated BWP can be understood as the number of RBs included in the bandwidth of the associated BWP.
  • the first BWP is the downlink BWP.
  • the network device After obtaining the channel use right on the unlicensed carrier, the network device sends the CSI-RS to the terminal device through all or part of the determined first resources, so The terminal device receives the CSI-RS through all or part of the first resources.
  • the network device sends the CSI-RS to the terminal device through the effective CSI-RS resource in the configured CSI-RS resource, and the terminal device performs the channel state according to the effective CSI-RS resource in the configured CSI-RS resource Information (Channel State Information, CSI) measurement, the effective CSI-RS resource includes the subband occupied by the network device and the CSI-RS resource on the symbol among the configured CSI-RS resources.
  • CSI Channel State Information
  • the subbands and symbols occupied by the network equipment may refer to the time-frequency resources for which the network equipment obtains the channel use right.
  • the first BWP includes two subbands, a first subband and a second subband.
  • the network device performs channel detection in the first subband and the second subband, if the first subband succeeds and the second subband fails, the network device transmits CSI-RS to the terminal device on the CSI-RS resource on the first subband.
  • RS Among them, the CSI-RS resources on the first subband are effective CSI-RS resources.
  • the CSI-RS resources on the second subband may be invalid CSI-RS resources. It should be understood that the CSI-RS resources configured here may be CSI-RS resources configured on the first BWP, or CSI-RS resources configured on an unlicensed carrier.
  • the network device may send first indication information to the terminal device, and the terminal device determines the effective CSI-RS resource according to the first indication information.
  • the terminal device may also determine the effective CSI-RS resource according to the detection of the reference signal.
  • the terminal device can detect the existence of the CSI-RS on the configured CSI-RS resource, and determine the effective CSI-RS resource according to the existence detection. For example, the terminal device performs presence detection based on sequence correlation detection.
  • the terminal device performs channel state information CSI measurement according to the effective CSI-RS resource in the CSI-RS resource, which may include the terminal device performs channel measurement, interference measurement, timing estimation, and measurement on the CSI-RS on the effective CSI-RS resource. At least one of frequency offset estimation, phase tracking, radio resource management (Radio Resource Management, RRM), and radio link monitoring (radio link monitoring, RLM).
  • RRM Radio Resource Management
  • RLM radio link monitoring
  • the terminal device performs channel measurement on the CSI-RS on the effective CSI-RS resources to obtain CSI, where CSI includes CSI signal to interference plus noise ratio (SINR), rank indicator (Rank Indicator, RI) ), precoding matrix indicator (Precoding Matrix Indicator, PMI), channel quality indicator (Channel quality indicator, CQI), precoding type indicator (Precoding Type Indicator, PTI), CSI-RS resource indicator (CSI-RS resource indicator, CRI) ), at least one of beam direction, etc.
  • the terminal device performs RRM measurement on the CSI-RS on the effective CSI-RS resources, and can obtain CSI-reference signal received power (RSRP) and CSI-reference signal received quality (RSRQ). , At least one of CSI-SINR.
  • the terminal device After the terminal device has performed the CSI measurement, it can report the target CSI corresponding to the configured CSI-RS resource to the network device.
  • the format or bit size of the CSI reported by the terminal device to the network device may be fixed, for example, fixed to 16 bits.
  • the valid CSI-RS resources are only part of the configured CSI-RS resources, it is necessary to specify the CSI corresponding to the invalid CSI-RS resources in the configured CSI-RS resources.
  • the effective CSI-RS resource includes the CSI-RS resources on the subbands and symbols occupied by the network device among the configured CSI-RS resources.
  • the target CSI includes a first CSI, where the first CSI may be measured according to the effective CSI-RS resource.
  • the target CSI-RS may further include preset bits, and the preset bits may be used to indicate measurement information corresponding to the invalid CSI-RS resource.
  • the target CSI-RS may also include a second CSI, and the second CSI is the CSI obtained by any previous valid measurement corresponding to the invalid CSI-RS resource.
  • the second CSI may It is the CSI obtained by the last valid measurement corresponding to the invalid CSI-RS resource.
  • the target CSI may also include subband information corresponding to the first CSI.
  • the target CSI may not include measurement information on resources included in the guardband between two adjacent subbands.
  • the first BWP includes subband 0 and subband 1, and CSI-RS resources are configured on subband 0 and subband 1.
  • CSI-RS on subband 0 and subband 1 are transmitted, and at time t1, only CSI-RS on subband 1 is transmitted.
  • the target CSI includes 8 bits, among which the first 4 bits are the measurement information report corresponding to subband 0, and the last 4 bits are the measurement information report corresponding to subband 1.
  • the target CSI is [a aa ab b b b], where aaaa represents the CSI on subband 0 at time t0, and bbbb represents the CSI on subband 1 at time t0.
  • the target CSI corresponding to time t1 can be divided into the following two situations:
  • the reported CSI format may be subband number + subband measurement result, where the bit size included in the reported CSI is pre-configured by the network device.
  • the number of reported subbands configured by the network device is less than or equal to the number of subbands included in the BWP.
  • the terminal device can select a subband from the measured subbands to report.
  • the network device is configured to report a subband
  • the reported CSI information of the terminal device can be: the corresponding CSI report at t0 is [0a aa]; at t1
  • the corresponding CSI report is [1c c c]; where 0aaa represents the CSI on subband 0 at t0, and 1cccc represents the CSI on subband 1 at t1.
  • the reserved bit in 1 or the method of reporting any previous valid CSI can also be adopted.
  • the CSI on a certain subband may include CSI measured according to all resources in the effective CSI-RS resources on the subband, for example, wideband CSI (subband CSI) on the subband
  • the wideband CQI or wideband PMI, etc. may also include CSI measured according to part of the effective CSI-RS resources on the subband, for example, the subband CSI on the subband (subband CQI on the subband) Or subband PMI, etc.), this application is not limited to this.
  • the first BWP is a downlink BWP.
  • the network device may not send any signal on the configured CSI-IM resource.
  • the terminal device can perform interference measurement through all or part of the configured CSI-IM resources.
  • the configured CSI-IM resource may include a second resource and/or a third resource, where the second resource includes the subband and symbol occupied by the network device in the configured CSI-IM resource
  • the second resource includes, in the frequency domain, part of the configured CSI-IM resource in the subband where the network device obtains the channel usage right.
  • the third resource includes CSI-IM resources on subbands or symbols not occupied by the network device among the configured CSI-IM resources.
  • the third resource includes, in the frequency domain, part of the resources of the configured CSI-IM resource in the subband where the network device does not obtain the channel usage right.
  • the terminal device may independently perform interference measurement on the second resource or the third resource. For example, the terminal device performs interference measurement on the second resource, and further, the terminal device may filter the interference measurement result on the second resource; or, the terminal device performs interference measurement on the third resource, Further, the terminal device may filter the interference measurement result on the third resource.
  • the terminal device may also combine the second resource and the third resource to perform interference measurement. Further, the terminal device may filter the interference measurement results on the combined CSI-IM resources.
  • the network device may send second indication information to the terminal device, and the terminal device receives the second indication information, and determines the second resource and/or the third resource according to the second indication information .
  • the first BWP is an uplink BWP.
  • the terminal device After obtaining the channel use right on the unlicensed carrier, the terminal device sends an SRS to the network device through all or part of the determined first resource, and the network device uses all or part of the first resource Receive SRS.
  • the terminal device sends the SRS to the network device through the effective SRS resource in the configured SRS resource, and the network device performs measurement based on the effective SRS resource in the configured SRS resource.
  • the effective SRS resource includes all configured SRS resources.
  • the subbands and symbols occupied by the terminal device may refer to the time-frequency resources for which the terminal device obtains the right to use the channel.
  • the first BWP includes two subbands, a first subband and a second subband.
  • the terminal device performs channel detection in the first subband and the second subband, and the first subband succeeds and the second subband fails, the terminal device transmits the SRS to the network device on the SRS resource on the first subband.
  • the SRS resources on the first subband are effective SRS resources.
  • the SRS resources on the second subband may be invalid SRS resources.
  • the SRS resources configured here may be SRS resources configured on the first BWP, or SRS resources configured on an unlicensed carrier.
  • the terminal device may send the first indication information to the network device, and the network device determines the effective SRS resource according to the first indication information.
  • the network device may also determine the effective SRS resource based on the detection of the reference signal.
  • the network device can detect the existence of the SRS on the configured SRS resource, and determine the effective SRS resource according to the existence detection. For example, network equipment performs presence detection based on sequence correlation detection.
  • the network device performs measurement according to the effective SRS resource in the SRS resource, which may include the network device performing at least one of channel measurement, interference measurement, timing estimation, frequency offset estimation, phase tracking, etc. on the SRS on the effective SRS resource .
  • the network device performs channel measurement on the SRS on the effective SRS resource, and can obtain at least one of SRS SINR, RI, PMI, CQI, beam direction, and the like.
  • the SRS sent by the terminal device on the effective SRS resource does not support frequency hopping.
  • the SRS frequency domain resource configuration includes items as shown in Table 1.
  • the SRS resource configuration on the unlicensed carrier only supports the SRS transmission in Table 1 and does not support frequency hopping.
  • the configured SRS resource is located on the first subband and the second subband of the at least two subbands, the configured SRS resource occupies M frequency domain units in the frequency domain, and the M frequency domains
  • the M1 frequency domain units in the unit are located on the first subband
  • the M2 frequency domain units of the M frequency domain units are located on the second subband
  • M is greater than or equal to (M1+M2).
  • the SRS sequence corresponding to the configured SRS resource includes a first SRS subsequence and a second SRS subsequence, where the first SRS subsequence is generated according to M1 frequency domain units, and the second SRS subsequence is generated according to M2
  • the first SRS subsequence is transmitted through M1 frequency domain units on the first subband
  • the second SRS subsequence is transmitted through M2 frequency domain units on the second subband.
  • the first SRS subsequence and the second SRS subsequence are generated independently.
  • the configured SRS resource is located on the first subband and the second subband of the at least two subbands, the configured SRS resource occupies M frequency domain units in the frequency domain, and the M frequency domains
  • the M1 frequency domain units in the unit are located on the first subband
  • the M2 frequency domain units of the M frequency domain units are located on the second subband
  • M is greater than or equal to (M1+M2).
  • the SRS sequence corresponding to the configured SRS resource is generated according to M frequency domain units, and the SRS sequence is transmitted through M frequency domain units.
  • the first subband transmits some elements in the SRS sequence that match the M1 frequency domain units
  • the second subband transmits the SRS sequence that matches M2 frequency domain units and does not match the first subband. Take another part of the element that overlaps the transmitted element.
  • the M1 frequency domain units are continuous, and the M2 frequency domain units are continuous.
  • any two adjacent frequency domain units among the M1 frequency domain units are discontinuous, and any two adjacent frequency domain units among the M2 frequency domain units are discontinuous.
  • any two adjacent frequency domain units in the M1 frequency domain units are discontinuous and have equal frequency domain intervals, and any two adjacent frequency domain units in the M2 frequency domain units are discontinuous and have equal frequency domain intervals .
  • the network device After the network device measures effective SRS resources in the configured SRS resources, it may schedule the terminal device to perform downlink transmission or uplink transmission according to the measurement information.
  • the configuration information of the first resource in the embodiment of this application may include the configuration information of the first resource on the unlicensed carrier, and may also include the configuration information of the first resource on the licensed carrier. In short, as long as the terminal device can For the configuration information, it is sufficient to determine the first resource on the BWP of the unlicensed carrier.
  • the configuration information of the first resource, and/or the first indication information, and/or the second indication information in the embodiment of the present application may be sent to the terminal device through an unlicensed carrier, or may be sent through a licensed carrier.
  • the terminal device may be sent to the terminal device through an unlicensed carrier, or may be sent through a licensed carrier.
  • a licensed carrier For terminal equipment.
  • CSI-RS resources as an example to illustrate the configuration method of the first resource.
  • the frequency domain resources included in the BWP0 of the configured CSI-RS resources are continuous.
  • the frequency domain resources included in the configured CSI-RS resources are determined according to two parameters: a starting RB (for example, startingRB) and the number of RBs (for example, nrofRBs).
  • the start RB represents the first RB occupied by the configured CSI-RS resource with CRB 0 as the reference point, and the value can only be an integer multiple of 4;
  • the number of RBs represents the configured CSI-RS resource The number of occupied RBs can only be an integer multiple of 4.
  • a network device When a network device is performing CSI-RS transmission, it may be due to the failure of LBT on some subbands (for example, subband 2 in Figure 4, that is, invalid CSI-RS resources), causing the network device to only pass the part included in BWP0 Subbands (for example, subbands 0, 1, 3 in Figure 4, that is, effective CSI-RS resources) perform CSI-RS transmission.
  • the terminal device needs to determine the frequency domain resources where CSI-RS is not transmitted, for example Determine the first reference point and/or the second reference point, and determine that CSI-RS transmission is not performed on subband 2 according to the two reference points. Further, the terminal device performs CSI-RS reception according to the CSI-RS transmitted on subbands 0, 1, and 3.
  • the terminal device may determine the first reference point and/or the second reference point according to an instruction sent by the network device for determining the transmission bandwidth.
  • the terminal device may determine the first reference point and/or the second reference point according to the presence detection of CSI-RS on different subbands.
  • the positions of the first reference point and/or the second reference point are predefined or configured by the network device.
  • the terminal device determines that the frequency domain resources where the CSI-RS is not transmitted include a guard band between two adjacent subbands.
  • Each subband is configured with CSI-RS resources, and the terminal device determines the CSI-RS resources included in the BWP0 according to the subbands included in the first BWP.
  • subband 0 is configured with CSI-RS resource 0
  • subband 1 is configured with CSI-RS resource 1
  • subband 2 is configured with CSI-RS resource 2
  • subband 3 is configured with CSI-RS.
  • RS resource 3 When BWP0 includes subbands 0, 1, 2, and 3, correspondingly, the CSI-RS resources configured on BWP0 include CSI-RS resources 0, 1, 2, 3.
  • the frequency domain resources included in the CSI-RS resources on each subband are determined according to two parameters, a starting RB (for example, startingRB) and the number of RBs (for example, nrofRBs).
  • the guard band between two adjacent subbands does not include CSI-RS resources, or in other words, the CSI-RS resources on two adjacent subbands are not continuous in the frequency domain.
  • the corresponding CSI-RS patterns on CSI-RS resources 0, 1, 2, and 3 may be the same.
  • a network device When a network device is performing CSI-RS transmission, it may be due to the failure of LBT on some subbands (for example, subband 2 in FIG. 5, that is, invalid CSI-RS resources), causing the network device to only pass the first BWP including Part of the subbands (for example, subbands 0, 1, 3 in Figure 3, which are effective CSI-RS resources) perform CSI-RS transmission. In this case, the network device performs CSI-RS resources 0, 1, 3 For transmission, the terminal device can independently receive the CSI-RS on each subband, thereby determining the reception of the first CSI-RS.
  • some subbands for example, subband 2 in FIG. 5, that is, invalid CSI-RS resources
  • the network device performs CSI-RS resources 0, 1, 3
  • the terminal device can independently receive the CSI-RS on each subband, thereby determining the reception of the first CSI-RS.
  • the terminal device may determine the actually transmitted CSI-RS frequency domain resource according to an instruction sent by the network device for determining the transmission bandwidth.
  • the terminal device may determine the actually transmitted CSI-RS frequency domain resource according to the presence detection of the CSI-RS on each subband.
  • this embodiment supports the independent configuration of CSI-RS resources for each subband.
  • different BWPs of the multiple BWPs configured by the terminal device include different subbands, through the combination of CSI-RS resources configured on different subbands, It can realize the measurement of CSI-RS on different BWPs with high flexibility.
  • the frequency domain resources included in the CSI-RS resource on the first BWP are configured discontinuously.
  • the frequency domain resources included in the CSI-RS resource are configured in a bitmap mode.
  • any two phases are configured.
  • the guard band between adjacent subbands is not used for CSI-RS transmission.
  • the CSI-RS frequency domain resource configuration parameter includes an N-bit bitmap, where each bit corresponds to one RB group in BWP0, and each RB group includes L RBs.
  • BWP0 may include multiple non-overlapping and continuous RB groups.
  • the bitmap and the RB groups included in BWP0 have a one-to-one mapping relationship.
  • the first bit corresponds to the first RB group in BWP0.
  • the starting position is determined according to the starting position N start of BWP0, that is, the index of the first RB in the first RB group is L*ceil (N start /L), where ceil represents rounding up.
  • N start /L the index of the first RB in the first RB group
  • ceil represents rounding up.
  • the bit value is 1, the corresponding RB group is configured as a CSI-RS frequency domain resource, and if the bit value is 0, the corresponding RB group is not configured as a CSI-RS frequency domain resource.
  • Figure 6 shows an example of CSI-RS frequency domain resource configuration.
  • the frequency domain resources of the CSI-RS resources included in each subband are continuous in the frequency domain.
  • the guard band between two adjacent subbands does not include CSI-RS resources, or in other words, the CSI-RS resources on two adjacent subbands are not continuous in the frequency domain.
  • a network device When a network device is performing CSI-RS transmission, it may be due to the failure of LBT on some subbands (for example, subband 2 in Figure 4, that is, invalid CSI-RS resources), causing the network device to only pass the part included in BWP0 Subbands (for example, subbands 0, 1, 3 in Figure 4, that is, effective CSI-RS resources) perform CSI-RS transmission.
  • the CSI-RS of the network equipment on subbands 0, 1, 3 After the resource is transmitted, the terminal device can independently receive the CSI-RS on each subband, thereby determining the CSI-RS reception.
  • the terminal device may determine the actually transmitted CSI-RS frequency domain resource according to an instruction sent by the network device for determining the transmission bandwidth.
  • the terminal device may determine the actually transmitted CSI-RS frequency domain resource according to the presence detection of the CSI-RS on each subband.
  • the independent configuration of CSI-RS resources on each subband is implemented by means of bitmap, and the signaling indication is simple.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 7 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • the transceiver unit 310 is configured to receive configuration information of a first resource sent by a network device, where the first resource includes a channel state information reference signal CSI-RS resource and/or a channel state information interference measurement CSI-IM resource;
  • the processing unit 320 is configured to determine the first resource on the first bandwidth part BWP according to the configuration information, the first BWP is a BWP on an unlicensed carrier, and the first BWP includes at least Two sub-bands.
  • the configuration information is used to indicate the first resource on the first BWP.
  • the configuration information is used to indicate the first resource on at least one subband included in the first BWP.
  • the configuration information is included in at least part of the at least one subband included in the first BWP, and the starting resource block RB of the first resource and the The number of RBs included in the first resource.
  • the configuration information includes N bits, the N bits have a corresponding relationship with the resource block RB group included in the first BWP, and the N bits are used to indicate all For the first resource on the first BWP, N is a positive integer.
  • the configuration information is used to indicate the first resource on at least one subband included in the unlicensed carrier
  • the processing unit is specifically configured to: according to the configuration information And the subband included in the first BWP, determining the first resource on the first BWP.
  • the configuration information is included on at least part of the at least one subband included in the unlicensed carrier, the starting resource block RB of the first resource and the The number of RBs included in the first resource.
  • the configuration information includes K bits, the K bits have a corresponding relationship with the resource block RB group included in the unlicensed carrier, and the K bits are used to indicate all For the first resource on the unlicensed carrier, K is a positive integer.
  • the configuration information is included in the first BWP, the starting resource block RB of the first resource, and the number of RBs included in the first resource.
  • the configuration information is used to determine that resources included in a guard band between two adjacent subbands in the at least two subbands do not include the first resource.
  • the first resource occupies M frequency domain units on the first BWP, and at least two frequency domain units of the M frequency domain units are not continuous, where M It is a positive integer greater than 1.
  • the first resource is located in the first subband and the second subband of the at least two subbands
  • the M frequency domain units include M1 frequency domain units and M2 frequency domain units.
  • Frequency domain units, the M1 frequency domain units are located on the first subband, and the M2 frequency domain units are located on the second subband, where M1 and M2 are respectively positive integers.
  • the M1 frequency domain units are continuous, and the M2 frequency domain units are continuous.
  • the first resource includes a CSI-RS resource
  • the processing unit is further configured to: perform channel state information CSI measurement according to the effective CSI-RS resource in the CSI-RS resource
  • the effective CSI-RS resource includes the CSI-RS resource on the subband and symbol occupied by the network device in the CSI-RS resource.
  • the effective CSI-RS resource is determined according to the first indication information sent by the network device, or the effective CSI-RS resource is determined according to reference signal detection.
  • the first resource includes a CSI-RS resource
  • the transceiving unit is further configured to: report the target CSI corresponding to the CSI-RS resource to the network device, where the The target CSI includes the first CSI, and the first CSI is measured according to the effective CSI-RS resource in the CSI-RS resource, and the effective CSI-RS resource includes the network in the CSI-RS resource.
  • CSI-RS resources on subbands and symbols occupied by the device.
  • the target CSI includes preset bits, and the preset bits are used to indicate measurement information corresponding to invalid CSI-RS resources in the CSI-RS resources; or, the The target CSI includes a second CSI, and the second CSI is the CSI obtained by the last valid measurement corresponding to an invalid CSI-RS resource in the CSI-RS resource, where the invalid CSI-RS resource includes the CSI-RS resource.
  • the target CSI includes subband information corresponding to the first CSI.
  • the target CSI does not include measurement information on resources included in a guard band between two adjacent subbands in the at least two subbands.
  • the first resource includes a CSI-IM resource
  • the processing unit is further configured to: perform interference measurement on a second resource, and the second resource includes the CSI-IM CSI-IM resources on the subbands and symbols occupied by the network equipment in the resources; and/or interference measurement is performed on a third resource, where the third resource includes the CSI-IM resources CSI-IM resources on occupied subbands or symbols.
  • the terminal device does not perform interference measurement on resources included in the guard band between two adjacent sub-bands in the at least two sub-bands.
  • the transceiving unit is further configured to: receive second indication information sent by the network device, where the second indication information is used to determine the second resource and/or the The third resource.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to implement the terminal device in the method of FIG. 2 respectively.
  • the corresponding process of the equipment will not be repeated here.
  • FIG. 8 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 includes:
  • the transceiver unit 410 is configured to send configuration information of a first resource to a terminal device, where the configuration information is used by the terminal device to determine the first resource on a first bandwidth part BWP, and the first BWP is an unlicensed carrier
  • the first BWP includes at least two subbands in the frequency domain
  • the first resource includes channel state information reference signal CSI-RS resources and/or channel state information interference measurement CSI-IM resources.
  • the configuration information is used to indicate the first resource on the first BWP.
  • the configuration information is used to indicate the first resource on at least one subband included in the first BWP.
  • the configuration information is included in at least part of the at least one subband included in the first BWP, and the start resource block RB of the first resource and the first resource block RB The number of RBs included in a resource.
  • the configuration information includes N bits, the N bits have a corresponding relationship with the resource block RB group included in the first BWP, and the N bits are used to indicate all For the first resource on the first BWP, N is a positive integer.
  • the configuration information is used to indicate the first resource on at least one subband included in the unlicensed carrier.
  • the configuration information is included in at least part of the at least one subband included in the unlicensed carrier, the starting resource block RB of the first resource and the first resource block RB The number of RBs included in a resource.
  • the configuration information includes K bits, the K bits have a corresponding relationship with the resource block RB group included in the unlicensed carrier, and the K bits are used to indicate all For the first resource on the unlicensed carrier, K is a positive integer.
  • the configuration information is included in the first BWP, the starting resource block RB of the first resource, and the number of RBs included in the first resource.
  • the configuration information is used to determine that resources included in a guard band between two adjacent subbands in the at least two subbands do not include the first resource.
  • the first resource occupies M frequency domain units on the first BWP, and at least two frequency domain units of the M frequency domain units are not continuous, where M It is a positive integer greater than 1.
  • the first resource is located in the first subband and the second subband of the at least two subbands
  • the M frequency domain units include M1 frequency domain units and M2 frequency domain units.
  • Frequency domain units, the M1 frequency domain units are located on the first subband, and the M2 frequency domain units are located on the second subband, where M1 and M2 are respectively positive integers.
  • the M1 frequency domain units are continuous, and the M2 frequency domain units are continuous.
  • the first resource includes a CSI-RS resource
  • the transceiving unit is further configured to: send first indication information to the terminal device, where the first indication information is used to determine Effective CSI-RS resources in the CSI-RS resources, where the effective CSI-RS resources include subbands occupied by the network device in the CSI-RS resources and CSI-RS resources on symbols.
  • the first resource includes a CSI-RS resource
  • the transceiving unit is further configured to: receive the target CSI corresponding to the CSI-RS resource reported by the terminal device, where: The target CSI includes a first CSI, the first CSI is a CSI measured according to an effective CSI-RS resource in the CSI-RS resource, and the effective CSI-RS resource includes all information in the CSI-RS resource.
  • CSI-RS resources on subbands and symbols occupied by the network equipment.
  • the target CSI includes preset bits, and the preset bits are used to indicate measurement information corresponding to invalid CSI-RS resources in the CSI-RS resources; or, the The target CSI includes a second CSI, and the second CSI is the CSI obtained by the last valid measurement corresponding to an invalid CSI-RS resource in the CSI-RS resource, where the invalid CSI-RS resource includes the CSI-RS resource.
  • the target CSI includes subband information corresponding to the first CSI.
  • the target CSI does not include measurement information on resources included in a guard band between two adjacent subbands in the at least two subbands.
  • the first resource includes a CSI-IM resource
  • the transceiving unit is further configured to: send second indication information to the terminal device, where the second indication information is used to determine The second resource and/or the third resource, the second resource includes the CSI-IM resource on the subband or symbol occupied by the network device in the CSI-IM resource, and the third resource includes the CSI-IM resource.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 400 are to implement the network in the method of FIG. 2 respectively.
  • the corresponding process of the equipment will not be repeated here.
  • an embodiment of the present application also provides a terminal device 500.
  • the terminal device 500 may be the terminal device 300 in FIG. 5, which can be used to execute the terminals corresponding to the methods in FIG. 5 and FIG. The content of the device.
  • the terminal device 500 shown in FIG. 9 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the terminal device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the terminal device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 500 may be a terminal device of an embodiment of the present application, and the terminal device 500 may implement corresponding procedures implemented by the terminal device in each method of the embodiment of the present application.
  • the terminal device 500 may implement corresponding procedures implemented by the terminal device in each method of the embodiment of the present application.
  • the transceiver unit in the terminal device 300 may be implemented by the transceiver 530 in FIG. 9.
  • the processing unit in the terminal device 300 may be implemented by the processor 510 in FIG. 9.
  • an embodiment of the present application also provides a network device 600.
  • the network device 600 may be the network device 400 in FIG. 6, which can be used to execute network devices corresponding to the methods in FIG. 6 and FIG. Content.
  • the network device 600 shown in FIG. 10 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the network device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the network device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the network device 600 may be a network device of an embodiment of the present application, and the network device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the network device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the transceiver unit in the network device 400 may be implemented by the transceiver 630 in FIG. 10.
  • Fig. 11 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 11 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or devices, and specifically, can obtain information or data sent by other devices or devices.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or devices, and specifically, can output information or data to other devices or devices.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 12, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/communication device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/communication device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/communication device in each method of the embodiment of the present application.
  • I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the communication device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the communication device in each method of the embodiment of the present application. , I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请实施例公开了一种无线通信的方法、终端设备和网络设备,所述方法包括:终端设备接收网络设备发送的第一资源的配置信息,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源;所述终端设备根据所述配置信息,确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。本申请实施例的方法、终端设备和网络设备,可以使终端设备能够对非授权载波上的下行信道进行大带宽下的有效信道测量,有利于提高通信性能。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在相关技术中,终端设备可以采用基于对信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的测量向网络设备反馈信道状态信息(Channel State Information,CSI)或者进行信道状态信息干扰测量(Channel State Information Interference Measurement,CSI-IM)等方式来提高高速的业务传输和保证用户的体验质量。
由于非授权频谱被认为是共享频谱,如果能够有效利用这部分频谱,将极大地提高通信性能。因此,在非授权频谱上进行CSI-RS测量和CSI-IM也得到了研究。目前,随着带宽部分(Bandwidth Part,BWP)的引入,终端设备如何获取在非授权载波的BWP上用于传输CSI-RS的资源和/或用于进行CSI-IM的资源,以便进行CSI-RS测量和CSI-IM,还没有可参考的方案。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,有利于提高通信性能。
第一方面,提供了一种无线通信的方法,所述方法包括:终端设备接收网络设备发送的第一资源的配置信息,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源;所述终端设备根据所述配置信息,确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。
可选地,所述第一BWP可以是为终端设备配置的BWP。
可选地,所述第一BWP可以是为终端设备配置的多个BWP中激活的BWP。
可选地,所述第一BWP为下行BWP。
第二方面,提供了一种无线通信的方法,所述方法包括:网络设备向终端设备发送第一资源的配置信息,所述配置信息用于所述终端设备确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源。
第三方面,提供了一种无线通信的方法,所述方法包括:终端设备接收网络设备发送的探测参考信号(Sounding Reference Signal,SRS)资源的配置信息;所述终端设备根据所述配置信息,确定第一带宽部分BWP上的所述SRS资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。
可选地,所述第一BWP为上行BWP。
在一种可能的实现方式中,所述配置信息用于指示所述第一BWP上的所述SRS资源。
在一种可能的实现方式中,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述SRS资源。
在一种可能的实现方式中,所述配置信息包括在所述第一BWP包括的至少一个子带中的至少部分子带上,所述SRS资源的起始资源块RB和所述SRS资源包括的RB数目。
在一种可能的实现方式中,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述SRS资源,N为正整数。
在一种可能的实现方式中,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述SRS资源,所述终端设备根据所述配置信息,确定第一带宽部分BWP上的所述SRS资源,包括:所述终端设备根据所述配置信息和所述第一BWP包括的子带,确定所述第一BWP上的所述SRS资源。
在一种可能的实现方式中,所述配置信息包括在所述非授权载波包括的至少一个子带中的至少部分子带上,所述SRS资源的起始资源块RB和所述SRS资源包括的RB数目。
在一种可能的实现方式中,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述SRS资源,K为正整数。
在一种可能的实现方式中,所述配置信息包括在所述第一BWP上,所述SRS资源的起始资源块RB和所述SRS资源包括的RB数目。
在一种可能的实现方式中,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述SRS资源。
在一种可能的实现方式中,所述SRS资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
在一种可能的实现方式中,所述SRS资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
在一种可能的实现方式中,所述M1个频域单元连续,所述M2个频域单元连续。
在一种可能的实现方式中,所述M1个频域单元中任意相邻两个频域单元不连续,所述M2个频域单元中任意相邻两个频域单元不连续。
在一种可能的实现方式中,所述方法还包括:所述终端设备向所述网络设备发送第一指示信息,所述第一指示信息用于确定所述SRS资源中的有效SRS资源,所述有效SRS资源包括所述SRS资源中所述终端设备占用的子带和符号上的SRS资源。
第四方面,提供了一种无线通信的方法,所述方法包括:网络设备向终端设备发送SRS资源的配置信息,所述配置信息用于所述终端设备确定第一带宽部分BWP上的所述SRS资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。
在一种可能的实现方式中,所述配置信息用于指示所述第一BWP上的所述SRS资源。
在一种可能的实现方式中,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述SRS资源。
在一种可能的实现方式中,所述配置信息包括在所述第一BWP包括的至少一个子带中的至少部分子带上,所述SRS资源的起始资源块RB和所述SRS资源包括的RB数目。
在一种可能的实现方式中,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述SRS资源,N为正整数。
在一种可能的实现方式中,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述SRS资源。
在一种可能的实现方式中,所述配置信息包括在所述非授权载波包括的至少一个子带中的至少部分子带上,所述SRS资源的起始资源块RB和所述SRS资源包括的RB数目。
在一种可能的实现方式中,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述SRS资源,K为正整数。
在一种可能的实现方式中,述配置信息包括在所述第一BWP上,所述SRS资源的起始资源块RB和所述SRS资源包括的RB数目。
在一种可能的实现方式中,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述SRS资源。
在一种可能的实现方式中,所述SRS资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
在一种可能的实现方式中,所述SRS资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
在一种可能的实现方式中,所述M1个频域单元连续,所述M2个频域单元连续。
在一种可能的实现方式中,所述M1个频域单元中任意相邻两个频域单元不连续,所述M2个频域单元中任意相邻两个频域单元不连续。
在一种可能的实现方式中,所述方法还包括:所述网络设备根据所述SRS资源中的有效SRS资源进行SRS测量,所述有效SRS资源包括所述SRS资源中所述终端设备占用的子带和符号上的SRS资源。
在一种可能的实现方式中,所述有效SRS资源是根据所述终端设备发送的第一指示信息确定的,或所述有效SRS资源是根据参考信号检测确定的。
第五方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,用于执行上述第三方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第八方面,提供了一种网络设备,用于执行上述第四方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第四方面或其各实现方式中的方法的功能模块。
第九方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第十方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第十一方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面或其各实现方式中的方法。
第十二方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第四方面或其各实现方式中的方法。
第十三方面,提供了一种装置,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得该装置执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十五方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十六方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以根据网络设备对CSI-RS资源和/或CSI-IM资源的配置,确定位于非授权载波的包括多个子带的BWP上的CSI-RS资源和/或CSI-IM资源,以便终端设备进行基于CSI-RS的测量和/或基于CSI-IM的测量,从而可以对非授权载波上的下行信道进行大带宽下的有效信道测量,有利于提高通信性能。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意图。
图2是本申请实施例提供的无线通信的方法的一种示意图。
图3是本申请实施例中多子带自适应传输的示意图。
图4是本申请实施例中第一资源的一种配置方式的示意图。
图5是本申请实施例中第一资源的另一种配置方式的示意图。
图6是本申请实施例中第一资源的再一种配置方式的示意图。
图7是本申请实施例提供的终端设备的一种示意性框图。
图8是本申请实施例提供的网络设备的一种示意性框图。
图9是本申请实施例提供的终端设备的另一种示意性框图。
图10是本申请实施例提供的网络设备的另一种示意性框图。
图11是本申请实施例提供的一种装置的示意性框图。
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器 到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于非授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2示出了本申请实施例的无线通信的方法200的示意图。如图2所示,该方法200包括以下部分或全部内容:
S210,网络设备向终端设备发送第一资源的配置信息。
S220,所述终端设备接收所述网络设备发送的第一资源的配置信息。
S230,终端设备根据所述配置信息,确定第一BWP上的所述第一资源。
其中,所述第一BWP是非授权频谱上的BWP,所述第一BWP在频域上包括至少两个子带。所述第一资源可以包括CSI-RS资源、CSI-IM资源或者SRS资源。若所述第一BWP为下行BWP,所述第一资源可以包括CSI-RS资源和/或CSI-IM资源;若所述第一BWP为上行BWP,所述第一资源可以包括SRS资源。
在详细描述本申请实施例之前,首先介绍以下相关技术。
1、非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信 道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT);为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号,例如雷达信号等的传输,通信设备使用非授权频谱的信道进行信号传输时需要遵循信号发射功率不超过最大发射功率和最大发射功率谱密度的限制。
2、在系统载波带宽大于20MHz的宽带传输的场景下,UE可以被配置多个BWP且只激活一个BWP,当该激活的BWP包括多个LBT子带时,基站可以根据LBT子带的信道检测结果,通过该激活的BWP包括的部分或全部LBT子带进行PDSCH的传输。如图3所示,基站给UE配置的BWP0包括第一子带和第二子带两个LBT子带,基站计划通过调度第一子带和第二子带向UE传输PDSCH,然而,在每个LBT子带进行信道检测时,第一子带LBT成功,第二子带LBT失败,因此基站通过BWP0包括的第一子带向UE传输物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
应理解,所述第一BWP包括的子带,可以包括此处的LBT子带,或者也可以是由特定资源块(Resource Block,RB)数目组成的子带,本申请实施例应不限于此。
还应理解,本申请实施例中的非授权载波,第一BWP,第一资源以及子带等都是频域上的概念,所述第一资源的配置信息用于指示所述第一资源的频域位置,也就是说,终端设备根据所述配置信息,确定所述第一BWP上的所述第一资源的频域位置。
具体而言,网络设备可以向终端设备配置所述第一资源。例如,网络设备可以基于BWP配置,也可以基于非授权载波配置,也可以是基于BWP中的子带配置,或者是基于非授权载波的子带配置的。无论是基于何种方式配置的,终端设备都可以根据所述第一资源的配置信息,确定非授权载波上的第一BWP上的所述第一资源,并且所述第一BWP在频域上可以包括至少两个子带。进一步终端设备可以在配置的第一资源上选择有效的第一资源进行通信或者测量。所谓有效的第一资源可以是指所述配置的第一资源中实际传输了信号的第一资源。例如,第一资源为CSI-RS资源,有效的CSI-RS资源是指网络设备为终端设备配置的CSI-RS资源中网络设备发送了CSI-RS的资源,换句话说,有效的CSI-RS资源是指网络设备为终端设备配置的CSI-RS资源中网络设备占用的子带和符号上的CSI-RS资源。也即,有效的CSI-RS资源是指网络设备为终端设备配置的CSI-RS资源中网络设备获得信道使用权的子带上的资源。
关于所述第一资源的配置方式,可以通过以下几种方式实现:
1、所述第一资源是基于BWP配置的。所述配置信息可以用于指示所述第一BWP上的所述第一资源。终端设备可以被配置多个BWP,网络设备可以在每个BWP上独立配置第一资源,例如,网络设备可以直接向终端设备指示所述第一BWP上所述第一资源的起始RB和所述第一资源包括的RB数目;再例如,网络设备还可以通过比特图(bitmap)向终端设备指示所述第一BWP上的所述第一资源,具体地,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。应理解,RB组可以包括一个或多个RB,并且所述第一BWP包括的每个RB组可以包括相同数量的RB或者不同数量的RB。还应理解,N个比特与第一BWP包括的RB组可以是一一对应,也可以是一个比特对应多个RB组,或者还可以是多个比特对应一个RB组。
可替代地,网络设备也可以配置一个准则,当终端设备接收到配置的准则之后,就可以结合第一BWP的信息,确定所述第一BWP上的第一资源。例如,网络设备可以向终端设备配置每个BWP上以公共资源块(common resource block,CRB)作为起始RB,连续的24个RB上的资源为第一资源。可选地,基于BWP配置的第一资源在频域上可以连续,也可以不连续。基于BWP配置的第一资源可以跨子带,也可以不跨子带。
2、所述第一资源是基于BWP上的子带配置的。所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。同样地,网络设备可以在每个BWP包括的至少一个子带上独立配置第一资源。例如,网络设备可以向终端设备指示第一BWP包括的至少一个子带中每个子带上的第一资源。在一种可实现的实施例中,所述配置信息可以包括所述至少一个子带中每个子带上所述第一资源的起始RB和包括的RB数目。在另一种可实现的实施例中,所述配置信息可以包括用于指示所述至少一个子带中每个子带上的所述第一资源的bitmap。可替代地,用于指示所述至少一个子带上的所述第一资源的配置信息还可以包括在部分子带中每个子带上所述第一资源的起始RB和包括的RB数目,以及用于指示另外部分子带中每个子带上的所述第一资源的bitmap。
可替代地,网络设备也可以配置一个准则,当终端设备接收到配置信息之后,结合第一BWP的信息以及第一BWP包括的子带信息就可以确定所述第一BWP包括的至少一个子带上的所述第一资源。例如,所述配置信息用于指示每个BWP上的前两个子带中每个子带上除前几个RB和最后几个 RB之外的资源。
可选地,基于BWP上的子带配置的第一资源在频域上可以连续,也可以不连续。
3、所述第一资源是基于非授权载波配置的。所述配置信息用于指示非授权载波上的所述第一资源。终端设备可以结合第一BWP的信息,确定第一BWP上的所述第一资源。换句话说,第一BWP上的所述第一资源可以是第一BWP与非授权载波上的所述第一资源的重叠部分。第一资源是基于非授权载波配置的,例如可以是,网络设备可以直接向终端设备指示所述非授权载波上所述第一资源的起始RB和所述第一资源包括的RB数目;再例如,网络设备还可以通过比特图(bitmap)向终端设备指示所述非授权载波上的所述第一资源,具体地,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正整数。应理解,RB组可以包括一个或多个RB,并且所述非授权载波包括的每个RB组可以包括相同数量的RB或者不同数量的RB。还应理解,N个比特与非授权载波包括的RB组可以是一一对应,也可以是一个比特对应多个RB组,或者还可以是多个比特对应一个RB组。
4、所述第一资源是基于非授权载波上的子带配置的,所述配置信息用于指示非授权载波包括的至少一个子带上的所述第一资源,终端设备可以结合第一BWP包括的子带,确定第一BWP上的所述第一资源。例如,网络设备可以向终端设备指示非授权载波包括的至少一个子带中每个子带上的第一资源。在一种可实现的实施例中,所述配置信息可以包括所述至少一个子带中每个子带上所述第一资源的起始RB和包括的RB数目。在另一种可实现的实施例中,所述配置信息可以包括用于指示所述至少一个子带中每个子带上的所述第一资源的比特图(bitmap)。可替代地,用于指示所述至少一个子带上的所述第一资源的配置信息还可以包括在部分子带中每个子带上所述第一资源的起始RB和包括的RB数目,以及用于指示另外部分子带中每个子带上的所述第一资源的bitmap。终端设备可以根据所述第一BWP包括的子带以及所述配置信息,首先可以确定第一BWP上的哪些子带上配置了第一资源,进一步地可以获得被配置的第一资源在这些子带上的具体位置。
可选地,网络设备可以通过配置信息向终端设备指示第一BWP包括的至少两个子带中相邻两个子带之间的保护带上不包括所述第一资源。例如,所述第一资源为CSI-RS资源,终端设备不在所述相邻的两个子带之间的保护带包括的资源上进行CSI-RS测量。再例如,所述第一资源为CSI-IM资源,终端设备不在所述至少两个子带中相邻两个子带之间的保护带包括的资源上进行干扰测量。再例如,所述第一资源为SRS资源,终端设备不在所述至少两个子带中相邻两个子带之间的保护带包括的资源上传输SRS。
可选地,在本申请实施例中,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。所述M个频域单元可以位于所述第一BWP上的至少一个子带。举例来说,所述M个频域单元位于所述第一BWP上的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。需要说明的是,(M1+M2)可以等于M,也可以小于M,若等于,则所述第一资源只位于所述第一BWP包括的第一子带和第二子带上。若小于,则所述第一资源还可以位于所述第一BWP包括的第三子带或第四子带上,也就是说,所述第一资源还可以位于所述第一BWP中除第一子带和第二子带之外的其他子带上。
可选地,所述M1个频域单元可以连续或不连续,所述M2个频域单元也可以连续或不连续。
可选地,若所述第一BWP为下行BWP,所述第一资源可以包括CSI-RS资源和/或CSI-IM资源。若所述第一资源只包括CSI-RS资源或CSI-IM资源,则所述第一资源的配置可以如上文所述任一种方式实现。若所述第一资源即包括CSI-RS资源,又包括CSI-IM资源,则所述CSI-RS资源和所述CSI-IM资源的配置均可以如上文所述任一种方式实现。举例来说,所述配置信息用于指示所述第一BWP上的所述CSI-RS资源和所述第一BWP上的所述CSI-IM资源。具体地,所述配置信息可以包括在所述第一BWP上所述CSI-RS资源的起始RB和所述CSI-RS资源包括的RB数目以及在所述第一BWP上所述CSI-IM资源的起始RB和所述CSI-IM资源包括的RB数目。
下面分别以第一资源为CSI-RS资源、CSI-IM资源以及SRS资源详细描述本申请技术方案。
对于CSI-RS资源,频域占用的带宽大小是通过CSI-FrequencyOccupation参数配置的,具体地,startingRB表示以CRB 0为参考点的CSI-RS资源占用的第一个RB,取值只能是4的整数倍;nrofRBs表示该CSI-RS资源占用的RB的个数,取值也只能是4的整数倍,且最小配置参数为min(24,关联BWP的带宽),如果配置参数大于关联BWP的带宽,UE应假定实际传输的CSI-RS的带宽等于该关联BWP的带宽。其中,关联BWP的带宽可以理解为关联BWP的带宽包括的RB个数。
对于CSI-RS资源,第一BWP是下行BWP,网络设备在获得非授权载波上的信道使用权后,通 过确定的所述第一资源中的全部或部分资源向终端设备发送CSI-RS,所述终端设备通过所述第一资源中的全部或部分资源接收CSI-RS。换句话说,网络设备通过被配置的CSI-RS资源中的有效CSI-RS资源向终端设备发送CSI-RS,终端设备则根据被配置的CSI-RS资源中的有效CSI-RS资源进行信道状态信息(Channel State Information,CSI)测量,所述有效CSI-RS资源包括被配置的所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。其中,网络设备占用的子带和符号可以是指网络设备取得信道使用权的时频资源。例如,第一BWP包括两个子带,第一子带和第二子带。网络设备在第一子带和第二子带进行信道检测时,第一子带成功,第二子带失败,则网络设备在第一子带上的CSI-RS资源上向终端设备传输CSI-RS。其中,第一子带上的CSI-RS资源则为有效CSI-RS资源。第二子带上的CSI-RS资源可以是无效CSI-RS资源。应理解,此处被配置的CSI-RS资源可以是第一BWP上被配置的CSI-RS资源,也可以是非授权载波上被配置的CSI-RS资源。
可选地,网络设备可以向终端设备发送第一指示信息,终端设备根据所述第一指示信息确定所述有效CSI-RS资源。可替代地,终端设备还可以根据对参考信号的检测来确定所述有效CSI-RS资源。换句话说,终端设备可以在被配置的CSI-RS资源上检测CSI-RS的存在性,并根据存在性检测确定所述有效CSI-RS资源。例如,终端设备根据序列相关检测进行存在性检测。
所述终端设备根据所述CSI-RS资源中的有效CSI-RS资源进行信道状态信息CSI测量,可以包括终端设备对有效CSI-RS资源上的CSI-RS进行信道测量、干扰测量、定时估计、频偏估计、相位跟踪、无线资源管理(Radio Resource Management,RRM)和无线链路监测(radio link monitoring,RLM)中的至少一种。其中,终端设备对有效CSI-RS资源上的CSI-RS进行信道测量,可以获得CSI,其中,CSI包括CSI信干噪比(Signal to Interference plus Noise Ratio,SINR)、秩指示(Rank Indicator,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、信道质量指示(Channel quality indicator,CQI)、预编码类型指示(Precoding Type Indicator,PTI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、波束(beam)方向等中的至少一种。其中,终端设备对有效CSI-RS资源上的CSI-RS进行RRM测量,可以获得CSI-参考信号接收功率(reference signal received power,RSRP)、CSI-参考信号接收质量(reference signal received quality,RSRQ)、CSI-SINR中的至少一种。
终端设备在进行了CSI测量之后,可以向网络设备上报被配置的CSI-RS资源对应的目标CSI。通常情况下,终端设备向网络设备上报的CSI的格式或比特大小可能是固定的,例如,固定为16个比特位。当有效CSI-RS资源只是被配置的CSI-RS资源中的部分资源时,则需要规定被配置的CSI-RS资源中无效CSI-RS资源所对应的CSI。所述有效CSI-RS资源包括被配置的所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
所述目标CSI包括第一CSI,其中,第一CSI可以是根据所述有效CSI-RS资源测量得到的。可选地,所述目标CSI-RS还可以包括预设比特,所述预设比特可以用于指示所述无效CSI-RS资源对应的测量信息。可替代地,所述目标CSI-RS还可以包括第二CSI,所述第二CSI则是所述无效CSI-RS资源对应的之前任一次有效测量得到的CSI,例如,所述第二CSI可以是所述无效CSI-RS资源对应的最近一次有效测量得到的CSI。
可选地,所述目标CSI还可以包括所述第一CSI对应的子带信息。
可选地,所述目标CSI中可以不包括相邻的两个子带之间的保护带包括的资源上的测量信息。
举例来说,第一BWP包括子带0和子带1,CSI-RS资源配置在子带0和子带1上。在时刻t0,子带0和子带1上的CSI-RS传输了,在时刻t1,只有子带1上的CSI-RS传输了。
1、目标CSI包括8比特,其中,前4比特是对应子带0的测量信息上报,后4比特是对应子带1的测量信息上报。在t0时刻对应的目标CSI中,目标CSI为[a a a a b b b b],其中,aaaa表示t0时刻子带0上的CSI,bbbb表示t0时刻子带1上的CSI。在t1时刻对应的目标CSI中,可以分为以下两种情况:
情况1:[r r r r c c c c],其中,cccc表示t1时刻子带1上的CSI,rrrr表示预留比特,例如rrrr取值固定为1111。
情况2:[a a a a c c c c],其中,cccc表示t1时刻子带1上的CSI,aaaa为子带0上最近一次有效CSI测量结果。
2、上报的CSI格式可以为子带编号+子带测量结果,其中,上报的CSI包括的比特大小是网络设备预配置的。网络设备配置的上报的子带数小于或等于BWP包括的子带数。终端设备可以从测量的子带中选择一个子带上报,例如,网络设备配置上报一个子带,终端设备的上报CSI信息可以为:t0时刻对应的CSI上报为[0a a a a];t1时刻对应的CSI上报为[1c c c c];其中,0aaaa表示t0时刻子带0上的CSI,1cccc表示t1时刻子带1上的CSI。当某个上报时刻对应的CSI不包括有效CSI时,也可以采用1中的预留比特或上报之前任一次有效CSI的做法。
需要说明的是,在上述举例中,某一个子带上的CSI可以包括根据该子带上的有效CSI-RS资源中的全部资源测量得到的CSI,例如,子带上的宽带CSI(子带上的宽带CQI或宽带PMI等),也可以包括根据该子带上的有效CSI-RS资源中的部分资源测量得到的CSI,例如,子带上的子带CSI(子带上的子带CQI或子带PMI等),本申请对此并不限定。
对于CSI-IM资源,所述第一BWP为下行BWP。网络设备可以在被配置的CSI-IM资源上不发送任何信号。终端设备可以通过被配置的CSI-IM资源中的全部或部分资源进行干扰测量。
可选地,被配置的CSI-IM资源可以包括第二资源和/或第三资源,其中,所述第二资源包括被配置的CSI-IM资源中所述网络设备占用的子带和符号上的CSI-IM资源,换句话说,所述第二资源在频域上包括被配置的CSI-IM资源在网络设备获得信道使用权的子带上的部分资源。所述第三资源包括被配置的CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。换句话说,所述第三资源在频域上包括被配置的CSI-IM资源在网络设备未获得信道使用权的子带上的部分资源。
终端设备可以独立在所述第二资源或所述第三资源上进行干扰测量。例如,终端设备在所述第二资源上进行干扰测量,进一步地,终端设备可以对所述第二资源上的干扰测量结果进行滤波;或,终端设备在所述第三资源上进行干扰测量,进一步地,终端设备可以对所述第三资源上的干扰测量结果进行滤波。
终端设备还可以在所述第二资源和所述第三资源上合并进行干扰测量。进一步地,终端设备可以对合并在一起的CSI-IM资源上的干扰测量结果进行滤波。
可选地,网络设备可以向终端设备发送第二指示信息,所述终端设备接收所述第二指示信息,并根据所述第二指示信息确定所述第二资源和/或所述第三资源。
对于SRS资源,所述第一BWP是上行BWP。终端设备在获得非授权载波上的信道使用权后,通过确定的所述第一资源中的全部或部分资源向网络设备发送SRS,所述网络设备通过所述第一资源中的全部或部分资源接收SRS。换句话说,终端设备通过被配置的SRS资源中的有效SRS资源向网络设备发送SRS,网络设备则根据被配置的SRS资源中的有效SRS资源进行测量,所述有效SRS资源包括被配置的所述SRS资源中所述终端设备占用的子带和符号上的SRS资源。其中,终端设备占用的子带和符号可以是指终端设备取得信道使用权的时频资源。例如,第一BWP包括两个子带,第一子带和第二子带。终端设备在第一子带和第二子带进行信道检测时,第一子带成功,第二子带失败,则终端设备在第一子带上的SRS资源上向网络设备传输SRS。其中,第一子带上的SRS资源则为有效SRS资源。第二子带上的SRS资源可以是无效SRS资源。应理解,此处被配置的SRS资源可以是第一BWP上被配置的SRS资源,也可以是非授权载波上被配置的SRS资源。
可选地,终端设备可以向网络设备发送第一指示信息,网络设备根据所述第一指示信息确定所述有效SRS资源。可替代地,网络设备还可以根据对参考信号的检测来确定所述有效SRS资源。换句话说,网络设备可以在被配置的SRS资源上检测SRS的存在性,并根据存在性检测确定所述有效SRS资源。例如,网络设备根据序列相关检测进行存在性检测。
所述网络设备根据所述SRS资源中的有效SRS资源进行测量,可以包括网络设备对有效SRS资源上的SRS进行信道测量、干扰测量、定时估计、频偏估计、相位跟踪等中的至少一种。其中,网络设备对有效SRS资源上的SRS进行信道测量,可以获得SRS SINR、RI、PMI、CQI、beam方向等中的至少一种。
可选地,终端设备在所述有效SRS资源上发送的SRS不支持跳频。例如,SRS的频域资源的配置包括的项可以如表1所示,非授权载波上的SRS资源配置只支持表1中SRS的发送不支持跳频的情况。
表1
Figure PCTCN2019079147-appb-000001
可选地,被配置的SRS资源位于所述至少两个子带中的第一子带和第二子带上,被配置的SRS资源在频域上占用M个频域单元,该M个频域单元中的M1个频域单元位于第一子带上,该M个频 域单元中的M2个频域单元位于第二子带上,M大于或等于(M1+M2)。相应地,被配置的SRS资源对应的SRS序列包括第一SRS子序列和第二SRS子序列,其中,第一SRS子序列是根据M1个频域单元生成的,第二SRS子序列是根据M2个频域单元生成的,第一SRS子序列通过第一子带上的M1个频域单元传输,第二SRS子序列通过第二子带上的M2个频域单元传输。例如,第一SRS子序列和第二SRS子序列是独立生成的。
可选地,被配置的SRS资源位于所述至少两个子带中的第一子带和第二子带上,被配置的SRS资源在频域上占用M个频域单元,该M个频域单元中的M1个频域单元位于第一子带上,该M个频域单元中的M2个频域单元位于第二子带上,M大于或等于(M1+M2)。相应地,被配置的SRS资源对应的SRS序列是根据M个频域单元生成的,且所述SRS序列通过M个频域单元传输。例如,第一子带上传输的是该SRS序列中与M1个频域单元匹配的部分元素,第二子带上传输的是该SRS序列中与M2个频域单元匹配且不与第一子带上传输的元素重叠的另一部分元素。
可选地,该M1个频域单元连续,该M2个频域单元连续。
可选地,该M1个频域单元中任意相邻两个频域单元不连续,该M2个频域单元中任意相邻两个频域单元不连续。进一步可选地,该M1个频域单元中任意相邻两个频域单元不连续且频域间隔相等,该M2个频域单元中任意相邻两个频域单元不连续且频域间隔相等。这主要是因为在非授权频谱上,信号发送不能超过规定的功率谱密度,采用离散分布的频域资源发送上行信号可以提高上行信号的发射功率。
网络设备在对被配置的SRS资源中的有效SRS资源进行测量之后,可以根据该测量信息调度终端设备进行下行传输或上行传输。
应理解,本申请实施例中第一资源的配置信息可以包括在非授权载波上的第一资源的配置信息,还可以包括授权载波上的第一资源的配置信息,总之,只要终端设备能够根据配置信息,确定在位于非授权载波的BWP上的第一资源即可。
还应理解,本申请实施例中第一资源的配置信息,和/或第一指示信息,和/或第二指示信息可以是通过非授权载波发送给终端设备的,也可以是通过授权载波发送给终端设备的。
下面将以CSI-RS资源为例,说明所述第一资源的配置方法。
1、如图4所示,被配置的CSI-RS资源在BWP0上包括的频域资源是连续的。如图4所示,被配置的CSI-RS资源包括的频域资源根据起始RB(例如startingRB)和RB数量(例如nrofRBs)两个参数确定。可选地,起始RB表示以CRB 0为参考点的被配置的CSI-RS资源占用的第一个RB,取值只能是4的整数倍;RB数量表示该被配置的CSI-RS资源占用的RB的个数,取值也只能是4的整数倍。
当网络设备在进行CSI-RS的传输时,可能因为部分子带(例如图4中的子带2,即无效CSI-RS资源)上的LBT失败,导致该网络设备只能通过BWP0包括的部分子带(例如图4中的子带0、1、3,即有效CSI-RS资源)进行CSI-RS传输,在这种情况下,终端设备需要确定未传输CSI-RS的频域资源,例如确定第一参考点和/或第二参考点,并根据该两个参考点确定子带2上未进行CSI-RS传输。进一步地,终端设备根据子带0、1、3上传输的CSI-RS进行CSI-RS接收。
可选地,终端设备可以根据网络设备发送的用于确定传输带宽的指示,确定第一参考点和/或第二参考点。可选地,终端设备可以根据不同子带上的CSI-RS的存在性检测来确定第一参考点和/或第二参考点。可选地,第一参考点和/或第二参考点的位置是预定义的或网络设备配置的。可选地,终端设备确定未传输CSI-RS的频域资源中包括了相邻两个子带之间的保护带。
2、每个子带均配置有CSI-RS资源,终端设备根据第一BWP包括的子带确定BWP0包括的CSI-RS资源。如图5所示,子带0上配置有CSI-RS资源0,子带1上配置有CSI-RS资源1,子带2上配置有CSI-RS资源2,子带3上配置有CSI-RS资源3。当BWP0包括子带0、1、2、3时,相应地,BWP0上配置的CSI-RS资源包括CSI-RS资源0、1、2、3。可选地,每个子带上的CSI-RS资源包括的频域资源根据起始RB(例如startingRB)和RB数量(例如nrofRBs)两个参数确定。可选地,相邻两个子带之间的保护带中不包括CSI-RS资源,或者说,相邻两个子带上的CSI-RS资源在频域上是不连续的。可选地,CSI-RS资源0、1、2、3上对应的CSI-RS图案可以相同。
当网络设备在进行CSI-RS的传输时,可能因为部分子带(例如图5中的子带2,即无效CSI-RS资源)上的LBT失败,导致该网络设备只能通过第一BWP包括的部分子带(例如图3中的子带0、1、3,即有效CSI-RS资源)进行CSI-RS传输,在这种情况下,网络设备在CSI-RS资源0、1、3进行了传输,终端设备可以在每个子带上独立接收CSI-RS,从而确定第一CSI-RS的接收。
可选地,终端设备可以根据网络设备发送的用于确定传输带宽的指示,确定实际传输的CSI-RS频域资源。可选地,终端设备可以根据每个子带上的CSI-RS的存在性检测来确定实际传输的CSI-RS 频域资源。
因此,本实施例支持每个子带独立配置CSI-RS资源,当终端设备被配置的多个BWP中的不同BWP包括不同的子带时,通过不同子带上配置的CSI-RS资源的组合,可以实现不同BWP上的CSI-RS的测量,灵活性高。
3、CSI-RS资源在第一BWP上包括的频域资源是非连续配置的,可选地,CSI-RS资源包括的频域资源是通过bitmap的方式配置的,可选地,任意两个相邻子带之间的保护带不用于CSI-RS传输。如图6所示,CSI-RS频域资源配置参数包括N比特的bitmap,其中,每个bit对应BWP0中的一个RB组,每个RB组包括L个RB。BWP0可以包括不重叠且连续的多个RB组,该bitmap和BWP0包括的RB组具有一一映射关系,其中,第1个bit对应BWP0内的第1个RB组,该第1个RB组的起始位置是根据BWP0的起始位置N start确定的,即该第1个RB组中的第一个RB的索引为L*ceil(N start/L),其中,ceil表示上取整。可选地,如果bit取值为1,那么对应的RB组被配置为CSI-RS频域资源,如果bit取值为0,那么对应的RB组不被配置为CSI-RS频域资源。图6给出了CSI-RS频域资源配置的一个示例。
如图6所示,每个RB组包括4个RB,即L=4,BWP0包括4个子带,CSI-RS资源包括的频域资源分为4个簇,分别分布在4个子带中的每个子带上。可选地,每个子带内包括的CSI-RS资源的频域资源在频域上是连续的。可选地,相邻两个子带之间的保护带中不包括CSI-RS资源,或者说,相邻两个子带上的CSI-RS资源在频域上是不连续的。
当网络设备在进行CSI-RS的传输时,可能因为部分子带(例如图4中的子带2,即无效CSI-RS资源)上的LBT失败,导致该网络设备只能通过BWP0包括的部分子带(例如图4中的子带0、1、3,即有效CSI-RS资源)进行CSI-RS传输,在这种情况下,网络设备在子带0、1、3上的CSI-RS资源进行了传输,终端设备可以在每个子带上独立接收CSI-RS,从而确定CSI-RS的接收。
可选地,终端设备可以根据网络设备发送的用于确定传输带宽的指示,确定实际传输的CSI-RS频域资源。可选地,终端设备可以根据每个子带上的CSI-RS的存在性检测来确定实际传输的CSI-RS频域资源。
因此,本实施例通过bitmap的方式实现CSI-RS资源在每个子带上的独立配置,信令指示简单。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图7示出了本申请实施例的终端设备300的示意性框图。如图7所示,该终端设备300包括:
收发单元310,用于接收网络设备发送的第一资源的配置信息,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源;
处理单元320,用于根据所述配置信息,确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。
可选地,在本申请实施例中,所述配置信息用于指示所述第一BWP上的所述第一资源。
可选地,在本申请实施例中,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。
可选地,在本申请实施例中,所述配置信息包括在所述第一BWP包括的至少一个子带中的至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
可选地,在本申请实施例中,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。
可选地,在本申请实施例中,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述第一资源,所述处理单元具体用于:根据所述配置信息和所述第一BWP包括的子带,确定所述第一BWP上的所述第一资源。
可选地,在本申请实施例中,所述配置信息包括在所述非授权载波包括的至少一个子带中的至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
可选地,在本申请实施例中,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正整数。
可选地,在本申请实施例中,所述配置信息包括在所述第一BWP上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
可选地,在本申请实施例中,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述第一资源。
可选地,在本申请实施例中,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
可选地,在本申请实施例中,所述第一资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
可选地,在本申请实施例中,所述M1个频域单元连续,所述M2个频域单元连续。
可选地,在本申请实施例中,所述第一资源包括CSI-RS资源,所述处理单元还用于:根据所述CSI-RS资源中的有效CSI-RS资源进行信道状态信息CSI测量,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
可选地,在本申请实施例中,所述有效CSI-RS资源是根据所述网络设备发送的第一指示信息确定的,或所述有效CSI-RS资源是根据参考信号检测确定的。
可选地,在本申请实施例中,所述第一资源包括CSI-RS资源,所述收发单元还用于:向所述网络设备上报所述CSI-RS资源对应的目标CSI,其中,所述目标CSI包括第一CSI,所述第一CSI是根据所述CSI-RS资源中的有效CSI-RS资源测量得到的,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
可选地,在本申请实施例中,所述目标CSI包括预设比特,所述预设比特用于指示所述CSI-RS资源中的无效CSI-RS资源对应的测量信息;或,所述目标CSI包括第二CSI,所述第二CSI是所述CSI-RS资源中的无效CSI-RS资源对应的最近一次有效测量得到的CSI,其中,所述无效CSI-RS资源包括所述CSI-RS资源中所述网络设备未占用的子带或符号上的CSI-RS资源。
可选地,在本申请实施例中,所述目标CSI中包括所述第一CSI对应的子带信息。
可选地,在本申请实施例中,所述目标CSI中不包括所述至少两个子带中相邻两个子带之间的保护带包括的资源上的测量信息。
可选地,在本申请实施例中,所述第一资源包括CSI-IM资源,所述处理单元还用于:在第二资源上进行干扰测量,所述第二资源包括所述CSI-IM资源中所述网络设备占用的子带和符号上的CSI-IM资源;和/或,在第三资源上进行干扰测量,所述第三资源包括所述CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。
可选地,在本申请实施例中,所述终端设备不在所述至少两个子带中相邻两个子带之间的保护带包括的资源上进行干扰测量。
可选地,在本申请实施例中,所述收发单元还用于:接收所述网络设备发送的第二指示信息,所述第二指示信息用于确定所述第二资源和/或所述第三资源。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中终端设备的相应流程,为了简洁,在此不再赘述。
图8示出了本申请实施例的网络设备400的示意性框图。如图8所示,该网络设备400包括:
收发单元410,用于向终端设备发送第一资源的配置信息,所述配置信息用于所述终端设备确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源。
可选地,在本申请实施例中,所述配置信息用于指示所述第一BWP上的所述第一资源。
可选地,在本申请实施例中,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。
可选地,在本申请实施例中,所述配置信息包括在所述第一BWP包括的至少一个子带中至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
可选地,在本申请实施例中,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。
可选地,在本申请实施例中,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述第一资源。
可选地,在本申请实施例中,所述配置信息包括在所述非授权载波包括的至少一个子带中至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
可选地,在本申请实施例中,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正 整数。
可选地,在本申请实施例中,所述配置信息包括在所述第一BWP上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
可选地,在本申请实施例中,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述第一资源。
可选地,在本申请实施例中,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
可选地,在本申请实施例中,所述第一资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
可选地,在本申请实施例中,所述M1个频域单元连续,所述M2个频域单元连续。
可选地,在本申请实施例中,所述第一资源包括CSI-RS资源,所述收发单元还用于:向所述终端设备发送第一指示信息,所述第一指示信息用于确定所述CSI-RS资源中的有效CSI-RS资源,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
可选地,在本申请实施例中,所述第一资源包括CSI-RS资源,所述收发单元还用于:接收所述终端设备上报的所述CSI-RS资源对应的目标CSI,其中,所述目标CSI包括第一CSI,所述第一CSI是根据所述CSI-RS资源中的有效CSI-RS资源测量得到的CSI,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
可选地,在本申请实施例中,所述目标CSI包括预设比特,所述预设比特用于指示所述CSI-RS资源中的无效CSI-RS资源对应的测量信息;或,所述目标CSI包括第二CSI,所述第二CSI是所述CSI-RS资源中的无效CSI-RS资源对应的最近一次有效测量得到的CSI,其中,所述无效CSI-RS资源包括所述CSI-RS资源中所述网络设备未占用的子带或符号上的CSI-RS资源。
可选地,在本申请实施例中,所述目标CSI中包括所述第一CSI对应的子带信息。
可选地,在本申请实施例中,所述目标CSI中不包括所述至少两个子带中相邻两个子带之间的保护带包括的资源上的测量信息。
可选地,在本申请实施例中,所述第一资源包括CSI-IM资源,所述收发单元还用于:向所述终端设备发送第二指示信息,所述第二指示信息用于确定第二资源和/或第三资源,所述第二资源包括所述CSI-IM资源中所述网络设备占用的子带或符号上的CSI-IM资源,所述第三资源包括所述CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中网络设备的相应流程,为了简洁,在此不再赘述。
如图9所示,本申请实施例还提供了一种终端设备500,该终端设备500可以是图5中的终端设备300,其能够用于执行与图5和图9中各方法对应的终端设备的内容。图9所示的终端设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,终端设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图9所示,终端设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备500可为本申请实施例的终端设备,并且该终端设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,终端设备300中的收发单元可以由图9中的收发器530实现。终端设备300中的处理单元可以由图9中的处理器510实现。
如图10所示,本申请实施例还提供了一种网络设备600,该网络设备600可以是图6中的网络设备400,其能够用于执行与图6和图9各方法对应的网络设备的内容。图10所示的网络设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,网络设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图10所示,网络设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该网络设备600可为本申请实施例的网络设备,并且该网络设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,网络设备400中的收发单元可以由图10中的收发器630实现。
图11是本申请实施例的装置的示意性结构图。图11所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或装置进行通信,具体地,可以获取其他设备或装置发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或装置进行通信,具体地,可以向其他设备或装置输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的装置还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统800的示意性框图。如图12所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double  data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (92)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一资源的配置信息,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源;
    所述终端设备根据所述配置信息,确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息用于指示所述第一BWP上的所述第一资源。
  3. 根据权利要求2所述的方法,其特征在于,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。
  4. 根据权利要求3所述的方法,其特征在于,所述配置信息包括在所述第一BWP包括的至少一个子带中的至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  5. 根据权利要求2所述的方法,其特征在于,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。
  6. 根据权利要求1所述的方法,其特征在于,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述第一资源,所述终端设备根据所述配置信息,确定第一带宽部分BWP上的所述第一资源,包括:
    所述终端设备根据所述配置信息和所述第一BWP包括的子带,确定所述第一BWP上的所述第一资源。
  7. 根据权利要求6所述的方法,其特征在于,所述配置信息包括在所述非授权载波包括的至少一个子带中的至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  8. 根据权利要求6所述的方法,其特征在于,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正整数。
  9. 根据权利要求2所述的方法,其特征在于,所述配置信息包括在所述第一BWP上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述第一资源。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
  12. 根据权利要求11所述的方法,其特征在于,所述第一资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述M1个频域单元连续,所述M2个频域单元连续。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一资源包括CSI-RS资源,所述方法还包括:
    所述终端设备根据所述CSI-RS资源中的有效CSI-RS资源进行信道状态信息CSI测量,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  15. 根据权利要求14所述的方法,其特征在于,所述有效CSI-RS资源是根据所述网络设备发送的第一指示信息确定的,或所述有效CSI-RS资源是根据参考信号检测确定的。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一资源包括CSI-RS资源,所述方法还包括:
    所述终端设备向所述网络设备上报所述CSI-RS资源对应的目标CSI,其中,所述目标CSI包括第一CSI,所述第一CSI是根据所述CSI-RS资源中的有效CSI-RS资源测量得到的,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  17. 根据权利要求16所述的方法,其特征在于,所述目标CSI包括预设比特,所述预设比特用于指示所述CSI-RS资源中的无效CSI-RS资源对应的测量信息;或,
    所述目标CSI包括第二CSI,所述第二CSI是所述CSI-RS资源中的无效CSI-RS资源对应的最近一次有效测量得到的CSI,
    其中,所述无效CSI-RS资源包括所述CSI-RS资源中所述网络设备未占用的子带或符号上的CSI-RS资源。
  18. 根据权利要求16或17所述的方法,其特征在于,所述目标CSI中包括所述第一CSI对应的子带信息。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述目标CSI中不包括所述至少两个子带中相邻两个子带之间的保护带包括的资源上的测量信息。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述第一资源包括CSI-IM资源,所述方法还包括:
    所述终端设备在第二资源上进行干扰测量,所述第二资源包括所述CSI-IM资源中所述网络设备占用的子带和符号上的CSI-IM资源;和/或,
    所述终端设备在第三资源上进行干扰测量,所述第三资源包括所述CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备不在所述至少两个子带中相邻两个子带之间的保护带包括的资源上进行干扰测量。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于确定所述第二资源和/或所述第三资源。
  23. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一资源的配置信息,所述配置信息用于所述终端设备确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源。
  24. 根据权利要求23所述的方法,其特征在于,所述配置信息用于指示所述第一BWP上的所述第一资源。
  25. 根据权利要求24所述的方法,其特征在于,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。
  26. 根据权利要求25所述的方法,其特征在于,所述配置信息包括在所述第一BWP包括的至少一个子带中至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  27. 根据权利要求24所述的方法,其特征在于,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。
  28. 根据权利要求24所述的方法,其特征在于,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述第一资源。
  29. 根据权利要求28所述的方法,其特征在于,所述配置信息包括在所述非授权载波包括的至少一个子带中至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  30. 根据权利要求28所述的方法,其特征在于,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正整数。
  31. 根据权利要求24所述的方法,其特征在于,所述配置信息包括在所述第一BWP上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  32. 根据权利要求23至31中任一项所述的方法,其特征在于,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述第一资源。
  33. 根据权利要求23至32中任一项所述的方法,其特征在于,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
  34. 根据权利要求33所述的方法,其特征在于,所述第一资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
  35. 根据权利要求34所述的方法,其特征在于,所述M1个频域单元连续,所述M2个频域单元连续。
  36. 根据权利要求23至35中任一项所述的方法,其特征在于,所述第一资源包括CSI-RS资源,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于确定所述CSI-RS资源 中的有效CSI-RS资源,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  37. 根据权利要求23至36中任一项所述的方法,其特征在于,所述第一资源包括CSI-RS资源,所述方法还包括:
    所述网络设备接收所述终端设备上报的所述CSI-RS资源对应的目标CSI,其中,所述目标CSI包括第一CSI,所述第一CSI是根据所述CSI-RS资源中的有效CSI-RS资源测量得到的CSI,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  38. 根据权利要求37所述的方法,其特征在于,所述目标CSI包括预设比特,所述预设比特用于指示所述CSI-RS资源中的无效CSI-RS资源对应的测量信息;或,
    所述目标CSI包括第二CSI,所述第二CSI是所述CSI-RS资源中的无效CSI-RS资源对应的最近一次有效测量得到的CSI,
    其中,所述无效CSI-RS资源包括所述CSI-RS资源中所述网络设备未占用的子带或符号上的CSI-RS资源。
  39. 根据权利要求37或38所述的方法,其特征在于,所述目标CSI中包括所述第一CSI对应的子带信息。
  40. 根据权利要求37至39中任一项所述的方法,其特征在于,所述目标CSI中不包括所述至少两个子带中相邻两个子带之间的保护带包括的资源上的测量信息。
  41. 根据权利要求23至40中任一项所述的方法,其特征在于,所述第一资源包括CSI-IM资源,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于确定第二资源和/或第三资源,所述第二资源包括所述CSI-IM资源中所述网络设备占用的子带或符号上的CSI-IM资源,所述第三资源包括所述CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。
  42. 一种终端设备,其特征在于,所述终端设备包括:
    收发单元,用于接收网络设备发送的第一资源的配置信息,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源;
    处理单元,用于根据所述配置信息,确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带。
  43. 根据权利要求42所述的终端设备,其特征在于,所述配置信息用于指示所述第一BWP上的所述第一资源。
  44. 根据权利要求43所述的终端设备,其特征在于,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。
  45. 根据权利要求44所述的终端设备,其特征在于,所述配置信息包括在所述第一BWP包括的至少一个子带中的至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  46. 根据权利要求43所述的终端设备,其特征在于,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。
  47. 根据权利要求42所述的终端设备,其特征在于,所述配置信息用于指示所述非授权载波包括的至少一个子带上的所述第一资源,所述处理单元具体用于:
    根据所述配置信息和所述第一BWP包括的子带,确定所述第一BWP上的所述第一资源。
  48. 根据权利要求47所述的终端设备,其特征在于,所述配置信息包括在所述非授权载波包括的至少一个子带中的至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  49. 根据权利要求47所述的终端设备,其特征在于,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正整数。
  50. 根据权利要求43所述的终端设备,其特征在于,所述配置信息包括在所述第一BWP上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  51. 根据权利要求42至50中任一项所述的终端设备,其特征在于,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述第一资源。
  52. 根据权利要求42至51中任一项所述的终端设备,其特征在于,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
  53. 根据权利要求52所述的终端设备,其特征在于,所述第一资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
  54. 根据权利要求53所述的终端设备,其特征在于,所述M1个频域单元连续,所述M2个频域单元连续。
  55. 根据权利要求42至54中任一项所述的终端设备,其特征在于,所述第一资源包括CSI-RS资源,所述处理单元还用于:
    根据所述CSI-RS资源中的有效CSI-RS资源进行信道状态信息CSI测量,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  56. 根据权利要求55所述的终端设备,其特征在于,所述有效CSI-RS资源是根据所述网络设备发送的第一指示信息确定的,或所述有效CSI-RS资源是根据参考信号检测确定的。
  57. 根据权利要求42至56中任一项所述的终端设备,其特征在于,所述第一资源包括CSI-RS资源,所述收发单元还用于:
    向所述网络设备上报所述CSI-RS资源对应的目标CSI,其中,所述目标CSI包括第一CSI,所述第一CSI是根据所述CSI-RS资源中的有效CSI-RS资源测量得到的,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  58. 根据权利要求57所述的终端设备,其特征在于,所述目标CSI包括预设比特,所述预设比特用于指示所述CSI-RS资源中的无效CSI-RS资源对应的测量信息;或,
    所述目标CSI包括第二CSI,所述第二CSI是所述CSI-RS资源中的无效CSI-RS资源对应的最近一次有效测量得到的CSI,
    其中,所述无效CSI-RS资源包括所述CSI-RS资源中所述网络设备未占用的子带或符号上的CSI-RS资源。
  59. 根据权利要求57或58所述的终端设备,其特征在于,所述目标CSI中包括所述第一CSI对应的子带信息。
  60. 根据权利要求57至59中任一项所述的终端设备,其特征在于,所述目标CSI中不包括所述至少两个子带中相邻两个子带之间的保护带包括的资源上的测量信息。
  61. 根据权利要求42至60中任一项所述的终端设备,其特征在于,所述第一资源包括CSI-IM资源,所述处理单元还用于:
    在第二资源上进行干扰测量,所述第二资源包括所述CSI-IM资源中所述网络设备占用的子带和符号上的CSI-IM资源;和/或,
    在第三资源上进行干扰测量,所述第三资源包括所述CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。
  62. 根据权利要求61所述的终端设备,其特征在于,所述终端设备不在所述至少两个子带中相邻两个子带之间的保护带包括的资源上进行干扰测量。
  63. 根据权利要求61或62所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于确定所述第二资源和/或所述第三资源。
  64. 一种网络设备,其特征在于,所述网络设备包括:
    收发单元,用于向终端设备发送第一资源的配置信息,所述配置信息用于所述终端设备确定第一带宽部分BWP上的所述第一资源,所述第一BWP为非授权载波上的BWP,所述第一BWP在频域上包括至少两个子带,所述第一资源包括信道状态信息参考信号CSI-RS资源和/或信道状态信息干扰测量CSI-IM资源。
  65. 根据权利要求64所述的网络设备,其特征在于,所述配置信息用于指示所述第一BWP上的所述第一资源。
  66. 根据权利要求65所述的网络设备,其特征在于,所述配置信息用于指示所述第一BWP包括的至少一个子带上的所述第一资源。
  67. 根据权利要求66所述的网络设备,其特征在于,所述配置信息包括在所述第一BWP包括的至少一个子带中至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  68. 根据权利要求65所述的网络设备,其特征在于,所述配置信息包括N个比特,所述N个比特与所述第一BWP包括的资源块RB组具有对应关系,所述N个比特用于指示所述第一BWP上的所述第一资源,N为正整数。
  69. 根据权利要求65所述的网络设备,其特征在于,所述配置信息用于指示所述非授权载波包 括的至少一个子带上的所述第一资源。
  70. 根据权利要求69所述的网络设备,其特征在于,所述配置信息包括在所述非授权载波包括的至少一个子带中至少部分子带上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  71. 根据权利要求69所述的网络设备,其特征在于,所述配置信息包括K个比特,所述K个比特与所述非授权载波包括的资源块RB组具有对应关系,所述K个比特用于指示所述非授权载波上的所述第一资源,K为正整数。
  72. 根据权利要求65所述的网络设备,其特征在于,所述配置信息包括在所述第一BWP上,所述第一资源的起始资源块RB和所述第一资源包括的RB数目。
  73. 根据权利要求64至72中任一项所述的网络设备,其特征在于,所述配置信息用于确定所述至少两个子带中相邻两个子带之间的保护带包括的资源上不包括所述第一资源。
  74. 根据权利要求64至73中任一项所述的网络设备,其特征在于,所述第一资源在所述第一BWP上占用M个频域单元,所述M个频域单元中至少两个频域单元不连续,其中,M为大于1的正整数。
  75. 根据权利要求74所述的网络设备,其特征在于,所述第一资源位于所述至少两个子带中的第一子带和第二子带,所述M个频域单元包括M1个频域单元和M2个频域单元,所述M1个频域单元位于所述第一子带上,所述M2个频域单元位于所述第二子带上,其中,M1和M2分别为正整数。
  76. 根据权利要求75所述的网络设备,其特征在于,所述M1个频域单元连续,所述M2个频域单元连续。
  77. 根据权利要求64至76中任一项所述的网络设备,其特征在于,所述第一资源包括CSI-RS资源,所述收发单元还用于:
    向所述终端设备发送第一指示信息,所述第一指示信息用于确定所述CSI-RS资源中的有效CSI-RS资源,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  78. 根据权利要求64至77中任一项所述的网络设备,其特征在于,所述第一资源包括CSI-RS资源,所述收发单元还用于:
    接收所述终端设备上报的所述CSI-RS资源对应的目标CSI,其中,所述目标CSI包括第一CSI,所述第一CSI是根据所述CSI-RS资源中的有效CSI-RS资源测量得到的CSI,所述有效CSI-RS资源包括所述CSI-RS资源中所述网络设备占用的子带和符号上的CSI-RS资源。
  79. 根据权利要求78所述的网络设备,其特征在于,所述目标CSI包括预设比特,所述预设比特用于指示所述CSI-RS资源中的无效CSI-RS资源对应的测量信息;或,
    所述目标CSI包括第二CSI,所述第二CSI是所述CSI-RS资源中的无效CSI-RS资源对应的最近一次有效测量得到的CSI,
    其中,所述无效CSI-RS资源包括所述CSI-RS资源中所述网络设备未占用的子带或符号上的CSI-RS资源。
  80. 根据权利要求78或79所述的网络设备,其特征在于,所述目标CSI中包括所述第一CSI对应的子带信息。
  81. 根据权利要求78至80中任一项所述的网络设备,其特征在于,所述目标CSI中不包括所述至少两个子带中相邻两个子带之间的保护带包括的资源上的测量信息。
  82. 根据权利要求64至81中任一项所述的网络设备,其特征在于,所述第一资源包括CSI-IM资源,所述收发单元还用于:
    向所述终端设备发送第二指示信息,所述第二指示信息用于确定第二资源和/或第三资源,所述第二资源包括所述CSI-IM资源中所述网络设备占用的子带或符号上的CSI-IM资源,所述第三资源包括所述CSI-IM资源中所述网络设备未占用的子带或符号上的CSI-IM资源。
  83. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  84. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求23至41中任一项所述的方法。
  85. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  86. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装 有所述芯片的设备执行如权利要求23至41中任一项所述的方法。
  87. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  88. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求23至41中任一项所述的方法。
  89. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  90. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求23至41中任一项所述的方法。
  91. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  92. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求23至41中任一项所述的方法。
PCT/CN2019/079147 2019-03-21 2019-03-21 无线通信的方法、终端设备和网络设备 WO2020186534A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202110874798.2A CN113596880B (zh) 2019-03-21 2019-03-21 无线通信的方法、终端设备和网络设备
KR1020217033524A KR20210139396A (ko) 2019-03-21 2019-03-21 무선 통신 방법, 단말 디바이스 및 네트워크 디바이스
PCT/CN2019/079147 WO2020186534A1 (zh) 2019-03-21 2019-03-21 无线通信的方法、终端设备和网络设备
CN201980079861.4A CN113170460A (zh) 2019-03-21 2019-03-21 无线通信的方法、终端设备和网络设备
EP19920336.5A EP3914008A4 (en) 2019-03-21 2019-03-21 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US17/458,465 US20230403057A1 (en) 2019-03-21 2021-08-26 Wireless communication method, terminal device and network device
US17/458,522 US20210392532A1 (en) 2019-03-21 2021-08-26 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079147 WO2020186534A1 (zh) 2019-03-21 2019-03-21 无线通信的方法、终端设备和网络设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/458,465 Continuation US20230403057A1 (en) 2019-03-21 2021-08-26 Wireless communication method, terminal device and network device
US17/458,522 Continuation US20210392532A1 (en) 2019-03-21 2021-08-26 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020186534A1 true WO2020186534A1 (zh) 2020-09-24

Family

ID=72519498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079147 WO2020186534A1 (zh) 2019-03-21 2019-03-21 无线通信的方法、终端设备和网络设备

Country Status (5)

Country Link
US (2) US20230403057A1 (zh)
EP (1) EP3914008A4 (zh)
KR (1) KR20210139396A (zh)
CN (2) CN113596880B (zh)
WO (1) WO2020186534A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008064A1 (zh) * 2022-07-07 2024-01-11 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11864232B2 (en) * 2019-02-15 2024-01-02 Electronics And Telecommunications Research Institute Signal transmission and reception method for unlicensed band communication, and apparatus therefor
US20220407663A1 (en) * 2019-10-01 2022-12-22 Idac Holdings, Inc Methods for using in-carrier guard bands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442304A1 (en) * 2017-08-07 2019-02-13 HTC Corporation Method of handling radio link failure and related communication device
CN109413691A (zh) * 2017-08-18 2019-03-01 北京三星通信技术研究有限公司 一种报告信道状态信息的方法和装置
CN109451864A (zh) * 2018-02-13 2019-03-08 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797966B2 (en) * 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US9999074B2 (en) * 2015-01-30 2018-06-12 Electronics And Telecommunications Research Institute Method and apparatus for transmitting downlink reference signal and method and apparatus for transmitting control information in cooperative multi-point communication system
KR102070961B1 (ko) * 2015-06-29 2020-01-29 후아웨이 테크놀러지 컴퍼니 리미티드 채널 상태 정보 참조 신호 송신을 위한 방법 및 디바이스
CN107204794B (zh) * 2016-03-18 2020-02-21 电信科学技术研究院 一种csi反馈方法及装置
WO2018082016A1 (en) * 2016-11-04 2018-05-11 Qualcomm Incorporated Methods and apparatus for setting subband csi-related parameters
WO2018126764A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
WO2019017753A1 (ko) * 2017-07-21 2019-01-24 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN109495232B (zh) * 2017-08-11 2020-04-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN109428697B (zh) * 2017-08-25 2021-12-28 华为技术有限公司 数据传输方法、网络设备及终端设备
EP3723425A4 (en) * 2017-12-04 2021-07-21 Ntt Docomo, Inc. USER EQUIPMENT AND RADIO COMMUNICATION PROCESS
ES2929855T3 (es) * 2018-01-09 2022-12-02 Beijing Xiaomi Mobile Software Co Ltd Procedimientos de capa física y de MAC en un dispositivo inalámbrico
CN108601084B (zh) * 2018-01-12 2019-04-19 华为技术有限公司 信道状态信息上报频带的配置方法及通信装置
US11622350B2 (en) * 2018-02-13 2023-04-04 Interdigital Patent Holdings, Inc. Methods for unlicensed resource selection
KR20210066856A (ko) * 2018-09-27 2021-06-07 콘비다 와이어리스, 엘엘씨 새로운 라디오의 비허가 스펙트럼들에서의 부대역 동작들
US11223532B2 (en) * 2018-10-05 2022-01-11 Qualcomm Incorporated Subband usage dependent downlink signals and channels
WO2020092054A1 (en) * 2018-10-30 2020-05-07 Idac Holdings, Inc. Methods for bandwidth part and supplementary uplink operation in wireless systems
JP7207951B2 (ja) * 2018-11-01 2023-01-18 シャープ株式会社 端末装置、および、方法
CN112997524B (zh) * 2018-11-08 2024-04-19 Lg电子株式会社 在非授权带中发送或接收信道状态信息-参考信号的方法及其设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442304A1 (en) * 2017-08-07 2019-02-13 HTC Corporation Method of handling radio link failure and related communication device
CN109413691A (zh) * 2017-08-18 2019-03-01 北京三星通信技术研究有限公司 一种报告信道状态信息的方法和装置
CN109451864A (zh) * 2018-02-13 2019-03-08 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Initial Access in NR Unlicensed", 3GPP DRAFT; R1-1812195, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 10, XP051478351 *
See also references of EP3914008A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008064A1 (zh) * 2022-07-07 2024-01-11 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Also Published As

Publication number Publication date
CN113596880A (zh) 2021-11-02
US20210392532A1 (en) 2021-12-16
US20230403057A1 (en) 2023-12-14
CN113170460A (zh) 2021-07-23
EP3914008A1 (en) 2021-11-24
EP3914008A4 (en) 2022-02-16
CN113596880B (zh) 2023-08-08
KR20210139396A (ko) 2021-11-22

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US20210136739A1 (en) Method and device for transmitting uplink signal
US20210392532A1 (en) Wireless communication method, terminal device and network device
CN110061768B (zh) 一种波束配置方法和装置
US11910369B2 (en) Uplink transmission method, terminal device and network device
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
US11805519B2 (en) Method for determining transmission bandwidth, device and storage medium
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
CN112997562A (zh) 传输控制信息的方法、终端设备和网络设备
CN113170455A (zh) 下行信号传输的方法和设备
EP3735053A1 (en) Signal transmission method, terminal device and network device
WO2020029286A1 (zh) 一种信号传输方法及装置、终端、网络设备
US20210367825A1 (en) Wireless communication method, terminal device and network device
WO2021088262A1 (zh) 确定时隙格式的方法及装置
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
EP4280516A1 (en) Signal transmission method, apparatus, terminal device, network device, and storage medium
US20220086777A1 (en) Wireless communication method, terminal device and network device
EP3755082A1 (en) Channel transmission method and apparatus, and computer storage medium
WO2021209013A1 (zh) 无线通信方法、终端设备和网络设备
CN112703808B (zh) Bwp切换的方法和设备
WO2020093403A1 (zh) 一种随机接入方法及装置、终端、基站
WO2020232647A1 (zh) 用于检测pdcch的方法、装置和通信设备
WO2020248272A1 (zh) 用于发送上行信道/信号的方法、终端设备和网络设备
AU2018400261B2 (en) Signal transmission method and apparatus and computer storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019920336

Country of ref document: EP

Effective date: 20210820

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033524

Country of ref document: KR

Kind code of ref document: A