WO2019194660A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2019194660A1
WO2019194660A1 PCT/KR2019/004116 KR2019004116W WO2019194660A1 WO 2019194660 A1 WO2019194660 A1 WO 2019194660A1 KR 2019004116 W KR2019004116 W KR 2019004116W WO 2019194660 A1 WO2019194660 A1 WO 2019194660A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
resource
uci
pucch resource
transmission
Prior art date
Application number
PCT/KR2019/004116
Other languages
English (en)
French (fr)
Inventor
양석철
박한준
김재형
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201980004429.9A priority Critical patent/CN111066280B/zh
Priority to EP19772635.9A priority patent/EP3591888A4/en
Priority to KR1020207007427A priority patent/KR102225952B1/ko
Priority to JP2020511986A priority patent/JP7100694B2/ja
Priority to KR1020197013823A priority patent/KR102092680B1/ko
Publication of WO2019194660A1 publication Critical patent/WO2019194660A1/ko
Priority to US16/671,477 priority patent/US10856315B2/en
Priority to US17/091,943 priority patent/US11464034B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system, and more particularly to a method and apparatus for transmitting and receiving wireless signals.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently performing a wireless signal transmission and reception process.
  • a method for transmitting control information by a communication device in a wireless communication system comprising: determining a plurality of physical uplink control channel (PUCCH) resources for transmitting a plurality of uplink control information (UCI); Multiplexing UCI associated with (1) the first PUCCH resource and (2) one or more second PUCCH resources overlapping on the time axis with respect to the first PUCCH resource among the determined plurality of PUCCH resources Making; And determining a third PUCCH resource for transmission of the multiplexed UCI, wherein the first PUCCH resource is a start PUCCH resource among the determined plurality of PUCCH resources being the fastest PUCCH resource.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • the method may further include transmitting the multiplexed UCI using the third PUCCH resource.
  • the determined plurality of PUCCH resources are located in the same slot, and the slot may include a plurality of symbols.
  • the slot includes 14 symbols
  • the index of the start symbol of each PUCCH resource is one of 0 to 13
  • the transmission length of each PUCCH resource may be one of 1 to 14 symbols.
  • the plurality of UCI may include at least Acknowledgment / Negative Acknowledgment (A / N), Channel State Information (CSI) or Scheduling Request (SR).
  • a / N Acknowledgment / Negative Acknowledgment
  • CSI Channel State Information
  • SR Scheduling Request
  • the multiplexed UCI includes at least A / N
  • the third PUCCH resource may be determined based on the payload size of the multiplexed UCI.
  • the multiplexed UCI may be transmitted through the PUSCH.
  • PUSCH Physical Uplink Shared Channel
  • a communication apparatus for use in a wireless communication system, comprising: a memory; And a processor, wherein the processor determines a plurality of physical uplink control channel (PUCCH) resources for transmitting a plurality of uplink control information (UCI), and based on a first PUCCH resource among the determined plurality of PUCCH resources And (1) multiplexing the UCI associated with the first PUCCH resource and (2) one or more second PUCCH resources overlapping with the first PUCCH resource on a time axis, and using a third PUCCH resource for transmission of the multiplexed UCI.
  • the first PUCCH resource is a PUCCH resource whose start symbol is the fastest of the determined plurality of PUCCH resources.
  • the processor may also be configured to transmit the multiplexed UCI using the third PUCCH resource.
  • the processor is further configured to multiplex the first UCI associated with (1) the third PUCCH resource and (2) one or more fourth PUCCH resources overlapping in time axis with the third PUCCH resource, and the multiplexed first It is configured to determine a fifth PUCCH resource for transmission of UCI, and the fourth PUCCH resource may not include the first PUCCH resource and the one or more second PUCCH resources.
  • the determined plurality of PUCCH resources are located in the same slot, and the slot may include a plurality of symbols.
  • the slot includes 14 symbols
  • the index of the start symbol of each PUCCH resource is one of 0 to 13
  • the transmission length of each PUCCH resource may be one of 1 to 14 symbols.
  • the plurality of UCI may include at least Acknowledgment / Negative Acknowledgment (A / N), Channel State Information (CSI) or Scheduling Request (SR).
  • a / N Acknowledgment / Negative Acknowledgment
  • CSI Channel State Information
  • SR Scheduling Request
  • the multiplexed UCI includes at least A / N
  • the third PUCCH resource may be determined based on the payload size of the multiplexed UCI.
  • the multiplexed UCI may be transmitted through the PUSCH.
  • PUSCH Physical Uplink Shared Channel
  • the communication device may further include a radio frequency (RF) unit.
  • RF radio frequency
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • 3 illustrates a resource grid of a slot.
  • FIG. 5 shows an example where a physical channel is mapped within a self-serving slot.
  • PUSCH 7 exemplifies a physical uplink shared channel (PUSCH) transmission process.
  • PUSCH physical uplink shared channel
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology is an evolution of 3GPP LTE / LTE-A.
  • next-generation communication As more communication devices demand larger communication capacities, there is a need for improved mobile broadband communication compared to the existing radio access technology (RAT).
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and provides information such as a cell identity. Acquire.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to be more specific.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a general downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HFs). Each half-frame is divided into five 1 ms subframes (SFs). The subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP). If a normal CP is used, each slot contains 14 OFDM symbols. If extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 1 exemplarily shows that when the CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • the structure of the frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology may be set differently between a plurality of cells merged into one UE.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit e.g. a time unit (TU) for convenience
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), SC-FDMA symbol (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • the slot includes a plurality of symbols in the time domain. For example, one slot includes 14 symbols in the case of a normal CP, but one slot includes 12 symbols in the case of an extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block (RB) is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive physical RBs (PRBs) in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-complete structure in which a DL control channel, DL or UL data, UL control channel, and the like can be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • Each interval is listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
  • the PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for higher layer control messages such as random access response transmitted on the PDSCH, transmission power control command, activation / deactivation of configured scheduling (CS), and the like.
  • DCI includes a cyclic redundancy check (CRC), which is masked / scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner of PDCCH or the intended use. For example, if the PDCCH is for a specific terminal, the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH is about paging, the CRC is masked with P-RNTI (Paging-RNTI). If the PDCCH relates to system information (eg, System Information Block, SIB), the CRC is masked with a System Information RNTI (SI-RNTI). If the PDCCH is for a random access response, the CRC is masked with a Random Access-RNTI (RA-RNTI).
  • CRC cyclic redundancy check
  • the PDCCH is composed of 1, 2, 4, 8, and 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • CCE is a logical allocation unit used to provide a PDCCH of a predetermined code rate according to a radio channel state.
  • CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • the PDCCH is transmitted through a CORESET (Control Resource Set).
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of CORESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, Master Information Block, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (maximum three) constituting CORESET may be set by higher layer signaling.
  • system information eg, Master Information Block, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of OFDM symbols (maximum three) constituting CORESET may be set by higher layer signaling.
  • the UE monitors PDCCH candidates.
  • the PDCCH candidate represents CCE (s) that the UE should monitor for PDCCH detection.
  • Each PDCCH candidate is defined as 1, 2, 4, 8, 16 CCEs according to AL.
  • Monitoring includes (blind) decoding PDCCH candidates.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS).
  • the search space includes a common search space (CSS) or a UE-specific search space (USS).
  • the UE may acquire the DCI by monitoring the PDCCH candidate in one or more search spaces set by MIB or higher layer signaling.
  • Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
  • the search space can be defined based on the following parameters.
  • controlResourceSetId indicates a CORESET associated with the search space
  • monitoringSlotPeriodicityAndOffset indicates the PDCCH monitoring interval (in slots) and the PDCCH monitoring interval offset (in slots).
  • monitoringSymbolsWithinSlot represents the PDCCH monitoring symbol in the slot (e.g., the first symbol (s) of CORESET)
  • An opportunity (eg, time / frequency resource) to monitor PDCCH candidates is defined as a PDCCH (monitoring) opportunity.
  • PDCCH monitoring
  • One or more PDCCH (monitoring) opportunities may be configured in the slot.
  • Table 3 illustrates the features of each search space type.
  • Type Search space RNTI Use case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 4 illustrates the DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used for scheduling TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or Code Block Group (CBG) -based (or CBG-level) PUSCH It can be used to schedule.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for scheduling TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH.
  • DCI format 0_0 / 0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0 / 1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the UE
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the UE.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the fallback DCI format remains the same in the DCI size / field configuration regardless of the UE setting.
  • the non-fallback DCI format the DCI size / field configuration varies according to UE configuration.
  • PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry a maximum of two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • SR Service Request: Information used to request a UL-SCH resource.
  • HARQ (Hybrid Automatic Repeat reQuest) -ACK (Acknowledgement): A response to a downlink data packet (eg, a codeword) on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of HARQ-ACK may be transmitted in response to a single codeword, and two bits of HARQ-ACK may be transmitted in response to two codewords.
  • HARQ-ACK responses include positive ACK (simply ACK), negative ACK (NACK), DTX or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • Table 5 illustrates the PUCCH formats. According to the PUCCH transmission length may be divided into Short PUCCH (format 0, 2) and Long PUCCH (format 1, 3, 4).
  • PUCCH format 0 carries a UCI of a maximum size of 2 bits, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits one sequence of the plurality of sequences through the PUCCH of PUCCH format 0 to transmit a specific UCI to the base station. Only when a positive SR is transmitted, the UE transmits a PUCCH having a PUCCH format 0 in a PUCCH resource for corresponding SR configuration.
  • PUCCH format 1 carries UCI of up to two bits in size, and modulation symbols are spread by an orthogonal cover code (OCC) that is set differently depending on whether frequency hopping is performed in the time domain.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (ie, transmitted by time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI of a bit size larger than 2 bits, and modulation symbols are transmitted by DMRS and Frequency Division Multiplexing (FDM).
  • the DM-RS is located at symbol indexes # 1, # 4, # 7 and # 10 in a given resource block with a density of 1/3.
  • PN Pulseudo Noise sequence is used for DM_RS sequence.
  • Frequency hopping may be enabled for two symbol PUCCH format 2.
  • PUCCH format 3 is not UE multiplexed in the same physical resource blocks and carries a UCI having a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted by time division multiplexing (DMD) with DMRS.
  • PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI of a bit size larger than 2 bits.
  • the PUCCH resource in PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted by time division multiplexing (DMD) with DMRS.
  • PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform or It is transmitted based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the terminal transmits the PUSCH by applying transform precoding.
  • the UE transmits a PUSCH based on the CP-OFDM waveform
  • conversion precoding eg, transform precoding is enabled
  • the terminal is CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmissions are dynamically scheduled by UL grants in DCI or semi-static based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on codebook or non-codebook.
  • the terminal may detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0 and 1_1), and the PDCCH indicates a DL assignment-to-PDSCH offset (K0) and a PDSCH-HARQ-ACK reporting offset (K1).
  • the DCI formats 1_0 and 1_1 may include the following information.
  • Frequency domain resource assignment indicates the RB set allocated to the PDSCH
  • Time domain resource assignment K0, which indicates the start position (eg OFDM symbol index) and length (eg number of OFDM symbols) of the PDSCH in the slot.
  • PDSCH-to-HARQ_feedback timing indicator indicates K1
  • the UE may transmit UCI through PUCCH in slot # (n + K1).
  • the UCI includes a HARQ-ACK response to the PDSCH.
  • the HARQ-ACK response may be configured with 1-bit.
  • the HARQ-ACK response may consist of two bits if spatial bundling is not configured, and one bit if spatial bundling is configured.
  • the UCI transmitted in slot # (n + K1) includes HARQ-ACK responses for the plurality of PDSCHs.
  • the terminal may detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0 and 0_1).
  • the DCI formats 0_0 and 0_1 may include the following information.
  • Frequency domain resource assignment indicates the RB set allocated to the PUSCH
  • Time domain resource assignment indicates slot offset K2, starting position (eg symbol index) and length (eg number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and the length may be indicated through a SLIV (Start and Length Indicator Value) or may be indicated separately.
  • the terminal may transmit the PUSCH in slot # (n + K2) according to the scheduling information of slot #n.
  • the PUSCH includes a UL-SCH TB.
  • UCI may be transmitted through PUSCH as shown (UCI piggyback or PUSCH piggyback). 8 illustrates a case in which HARQ-ACK and CSI are carried on a PUSCH resource.
  • Embodiment Multiplexing of UL Channels
  • the physical layer of the NR is designed to support a flexible transmission structure in consideration of requirements for various services.
  • the physical layer of the NR may change an OFDM symbol length (OFDM symbol interval) and a subcarrier spacing (SCS) (hereinafter, referred to as OFDM technology) as necessary.
  • the transmission resources of the physical channels may be changed within a certain range (in symbol units).
  • the PUCCH (resource) and the PUSCH (resource) may be flexibly set within a predetermined range of transmission length / transmission start time.
  • the PUCCH resource may overlap another PUCCH resource or a PUSCH resource on a time axis. For example, from the same UE perspective (in the same slot), (1) PUCCH (resource) and PUCCH (resource) (for different UCI transmissions), or (2) PUCCH (resource) and PUSCH (resource) time Can overlap in the axis.
  • the terminal may not support simultaneous PUCCH-PUCCH transmission or simultaneous PUCCH-PUSCH transmission (depending on the limitation of the terminal capability or configuration information received from the base station).
  • the terminal may be desirable for the terminal to (1) different UCIs or (2) multiplex UCI (s) and UL data and transmit them.
  • (1) PUCCH (resource) and PUCCH (resource) or (2) PUCCH (resource) and PUSCH (resource) superimposed on the time axis (in slot) time axis and And / or the transmission start time point (eg, start symbol) may be different. Therefore, in view of the processing time of the UE, it may be difficult for the UE to (1) different UCIs or (2) multiplex UUL (s) and UL data and transmit them.
  • PUCCH for transmitting A / N (hereinafter, A / N PUCCH) and PUCCH for transmitting SR (hereinafter, SR PUCCH) may overlap (some or all) on the time axis.
  • a / N PUCCH PUCCH for transmitting A / N
  • SR PUCCH PUCCH for transmitting SR
  • the UE may overlap (some or all) on the time axis.
  • the UE after the UE has already started transmission for SR PUCCH or has finished preparation for transmission, if the UE recognizes the existence of A / N PUCCH overlapping the SR PUCCH, the UE multiplexes A / N in A / N PUCCH with SR. Can be difficult to transmit.
  • the UCI multiplexing rule is applied according to the PUCCH format of the A / N PUCCH as follows.
  • the positive SR means that there is UL data to be transmitted by the UE, and the negative SR means that there is no UL data to be transmitted by the UE.
  • a / N PUCCH is PUCCH format 0
  • a / N PUCCH is PUCCH format 1
  • a / N PUCCH is one of PUCCH formats 2/3/4
  • the UCI status for a SR is positive SR or negative SR
  • the generated UCI is transmitted through A / N PUCCH resource.
  • the existing scheme defines the UCI multiplexing scheme only when the A / N PUCCH resource and the SR PUCCH resource overlap completely on the time axis. Therefore, UCI multiplexing methods need to be discussed in consideration of various situations for efficient UCI transmission.
  • the present invention proposes an operation of multiplexing the UCI and / or data for the UL channel (s) superimposed on the time axis. Specifically, the present invention proposes an operation of multiplexing the UCI and / or data for the UL channel (s) in consideration of the transmission start time of the UL channel (s) and / or the processing time of the terminal.
  • UCI Means control information transmitted by the terminal UL.
  • UCI contains several types of control information (ie, UCI type).
  • the UCI may include HARQ-ACK (simply A / N, AN), SR, CSI.
  • PUCCH means a physical layer UL channel for UCI transmission.
  • the PUCCH resources set by the base station and / or indicating transmission are named as A / N PUCCH resources, SR PUCCH resources, and CSI PUCCH resources, respectively.
  • PUSCH means a physical layer UL channel for UL data transmission.
  • UCI multiplexing This may mean an operation of transmitting different UCIs (types) through a common physical layer UL channel (eg, PUCCH, PUSCH).
  • UCI multiplexing may include the operation of multiplexing different UCIs (types).
  • the multiplexed UCI is referred to as MUX UCI.
  • UCI multiplexing may include operations performed in connection with MUX UCI.
  • UCI multiplexing may include a process of determining UL channel resources for transmitting MUX UCI.
  • UCI / Data Multiplexing This may mean an operation of transmitting UCI and data through a common physical layer UL channel (eg, PUSCH).
  • UCI / data multiplexing may include the operation of multiplexing UCI and data.
  • the multiplexed UCI is referred to as MUX UCI / Data.
  • UCI / data multiplexing may include operations performed in connection with MUX UCI / Data.
  • UCI / data multiplexing may include determining a UL channel resource for transmitting MUX UCI / Data.
  • the slot includes a plurality of symbols.
  • the symbol includes an OFDM-based symbol (eg, a CP-OFDM symbol, a DFT-s-OFDM symbol).
  • a symbol, an OFDM-based symbol, an OFDM symbol, a CP-OFDM symbol, and a DFT-s-OFDM symbol may be replaced with each other.
  • Overlapped UL Channel Resource Means UL channel (eg PUCCH, PUSCH) resource (s) that are (at least in part) superimposed on the time axis within a predetermined time interval (eg slot).
  • the overlapped UL channel resource (s) may mean UL channel resource (s) before performing UCI multiplexing.
  • the PUCCH format may be classified as follows according to the UCI payload size and / or transmission length (eg, the number of symbols constituting the PUCCH resource). For information on the PUCCH format, refer to Table 5 together.
  • Transmission structure consists of UCI signal only without DM-RS and transmits UCI status by selecting and transmitting one of a plurality of sequences
  • DM-RS and UCI are configured in a TDM form with different OFDM symbols, and UCI multiplies a specific sequence by a modulation (eg QPSK) symbol.
  • a modulation eg QPSK
  • Supports CDM between multiple PUCCH resources following PUCCH format 1) (within the same RB) by applying Cyclic Shift (CS) / Orthogonal Cover Code (OCC) to both UCI and DM-RS
  • -Transmission structure A structure in which DMRS and UCI are configured / mapped in FDM form in the same symbol and are transmitted by applying only IFFT without DFT to encoded UCI bits.
  • DMRS and UCI are configured / mapped in different symbols in the form of TDM and transmitted by applying DFT to the deteriorated UCI bits.
  • UCC is applied at the front end of UCI and CS (or IFDM mapping) is applied to DMRS to support multiplexing to multiple terminals.
  • -Transmission structure A structure in which DMRS and UCI are configured / mapped in different symbols in the form of TDM, and are transmitted without multiplexing between terminals by applying DFT to encoded UCI bits.
  • PUCCH resources may be determined for each UCI type (eg, A / N, SR, CSI). PUCCH resources used for UCI transmission may be determined based on UCI (payload) size. For example, the base station may set a plurality of PUCCH resource sets to the terminal, and the terminal may select a specific PUCCH resource set corresponding to a specific range according to the range of the UCI (payload) size (eg, the number of UCI bits). For example, the UE may select one of the following PUCCH resource sets according to the number of UCI bits (N UCI ).
  • N UCI the number of UCI bits
  • PUCCH resource set # 1 if 2 ⁇ number of UCI bits ⁇ N 1
  • K represents the number of PUCCH resource sets (K> 1)
  • N i is the maximum number of UCI bits supported by PUCCH resource set #i.
  • PUCCH resource set # 1 may be configured of resources of PUCCH formats 0-1, and other PUCCH resource sets may be configured of resources of PUCCH formats 2-4 (see Table 5).
  • the PUCCH resource to be used for UCI transmission in the PUCCH resource set may be configured through higher layer signaling (eg, RRC signaling).
  • the UCI type is HARQ-ACK for a Semi-Persistent Scheduling (SPS) PDSCH
  • the PUCCH resource to be used for UCI transmission in the PUCCH resource set may be configured through higher layer signaling (eg, RRC signaling).
  • the UCI type is HARQ-ACK for a PDSCH (ie, PDSCH scheduled by DCI)
  • the PUCCH resource to be used for UCI transmission in the PUCCH resource set may be scheduled based on DCI.
  • the base station transmits the DCI to the UE through the PDCCH, and may indicate the PUCCH resource to be used for UCI transmission in a specific PUCCH resource set through ACK (ACK / NACK Resource Indicator) in the DCI.
  • the ARI is used to indicate a PUCCH resource for ACK / NACK transmission and may be referred to as a PRI (PUCCH Resource Indicator).
  • DCI is DCI used for PDSCH scheduling
  • UCI may include HARQ-ACK for PDSCH.
  • the base station may set the PUCCH resource set consisting of more than the number of states (ARI) that can be represented by the ARI to the terminal using a (terminal-specific) higher layer (eg, RRC) signal.
  • the ARI indicates a PUCCH resource sub-set in the PUCCH resource set, and which PUCCH resource is used in the indicated PUCCH resource sub-set based on the transmission resource information for the PDCCH (eg, the starting CCE index of the PDCCH). It may be determined according to an implicit rule.
  • a / N PUCCH resource and SR PUCCH resource may overlap on the time axis (all or some OFDM symbols in PUCCH).
  • the UE may determine whether to multiplex between A / N and (positive) SR according to whether the resource overlaps with the SR PUCCH resource on the time axis.
  • transmission of one of the A / N and the (positive) SR may be omitted.
  • the UE may receive PDSCH (s) received (or started transmission) up to a time before T 0 (hereinafter referred to as Tref, sr) based on a transmission start time point (eg, start symbol) (hereinafter referred to as Tsr) of the SR PUCCH ( Or A / N PUCCH resources corresponding to PDCCH (s) (or indicated from the corresponding PDSCH / PDCCH) overlap with SR PUCCH resources on the time axis, whether multiplexing between A / N and (positive) SR You can decide.
  • a / N PUCCH resource corresponding to PDSCH (s) (and / or PDCCH (s)) received up to Tref, sr (or indicated by corresponding PDSCH / PDCCH) is SR PUCCH
  • the UE may transmit multiplexed A / N and (positive) SR (or the same UCI as when A / N PUCCH and SR PUCCH completely overlap all symbols in PUCCH on time axis). Can follow multiplexing rules)
  • a / N PUCCH is PUCCH format 0
  • a / N PUCCH is PUCCH format 1
  • a / N is transmitted through SR PUCCH resource.
  • SR PUCCH is PUCCH format 0, only A / N can be transmitted without SR.
  • a / N PUCCH is one of PUCCH formats 2/3/4
  • the UCI status for a SR is positive SR or negative SR
  • the generated UCI is transmitted through A / N PUCCH resource.
  • the UE may select and transmit one of A / N and (positive) SR. For example, (i) the corresponding (or indicated from the corresponding PDSCH / PDCCH) PDSCH (s) (and / or PDCCH (s)) received (or the transmission started / ended) after the Tref, sr time point.
  • a / N PUCCH resources overlap (or correspond to) PDSCH (s) (and / or PDCCH (s) from which transmission has been initiated) received up to Tref, sr on the time axis with (or corresponding to) the PU PUCH resource.
  • a / N PUCCH resources do not overlap on the time axis with SR PUCCH resources, or (iii) PDSCH (s) (and / or PDCCH (s) from which transmission was initiated) up to, sr. If the A / N PUCCH resource corresponding to (or indicated from the corresponding PDSCH / PDCCH) does not exist, the UE may select and transmit one of the A / N and the (positive) SR.
  • T 0 may be one of the following.
  • T 0 may be represented in units of (OFDM) symbols.
  • a value promised in advance between the base station and the terminal (eg, fixed value)
  • [Proposal # 1] may be extended to PUCCH other than A / N PUCCH.
  • the starting (OFDM) symbol (or start time) of the A / N PUCCH and the SR PUCCH coincides with each other, the same UCI multiplexing as when the A / N PUCCH and the SR PUCCH overlap completely on the time axis
  • the terminal operation to apply the rule is agreed.
  • the start (OFDM) symbol between the A / N PUCCH and the SR PUCCH is different, compare the start (OFDM) symbol (or start time) between the A / N PUCCH and the SR PUCCH and compare the UCI between the A / N and the SR. Determination of multiplexing was discussed.
  • the UE may transmit the SR PUCCH and the A / N transmission may be omitted.
  • the UE may UCI multiplex the SR and the A / N and transmit the single PUCCH. If the UE finds that the A / N transmission is performed after the UE prepares for SR transmission (or during SR transmission), it may be difficult to cancel the SR transmission and transmit the A / N and SR by UCI multiplexing.
  • the existing scheme is not preferable in that the UE omits A / N transmission even when the UE has the capacity to perform UCI multiplexing between the A / N and the SR from the viewpoint of the UE processing time.
  • the UE receives the A / N PUCCH for PDSCH (s) (and / or PDCCH (s)) received up to a time before T 0 (Tref, sr) based on a transmission start time (Tsr) for a specific SR PUCCH. If the resource does not overlap with the SR PUCCH resource on the time axis, if it is a positive SR, it may be determined to transmit the SR PUCCH.
  • the UE omits A / N transmission even if A / N PUCCH resources for PDSCH (s) (and / or PDCCH (s)) received after Tref, sr overlap on SR PUCCH resources on the time axis.
  • SR PUCCH transmission may be performed.
  • the UE may (i) SR information is positive SR
  • a / N and SR are UCI multiplexed and transmitted through a single PUCCH resource.
  • SR information is negative SR, only A / N is transmitted through A / N PUCCH or express bit (s) representing a negative SR. In addition to A / N, it may be transmitted through A / N PUCCH.
  • the UE has already decided to UCI multiplex A / N and SR even if the A / N PUCCH resource is updated so as not to overlap with the SR PUCCH in the future, and thus, the UE still multiplexes the UCI multiplexed A / N and SR as a single PUCCH resource. Can be sent via
  • FIG. 9 illustrates an operation when the A / N PUCCH is in PUCCH format 0/2/3/4.
  • FIG. 10 illustrates an operation when A / N PUCCH is PUCCH format 1.
  • [Proposal # 1] is SR PUCCH for A / N PUCCH corresponding to PDSCH (s) (and / or PDCCH (s)) terminated / received before Tref, sr (i.e., Tsr-To).
  • the assumption is that the existence of the B can be determined before the transmission is confirmed. That is, [proposal # 1] regards PDSCH (s) (and / or PDCCH (s)) terminated after Tref, sr as difficult to grasp before the UE confirms transmission for SR PUCCH. It is not used to determine the multiplexing of / N and SR.
  • [Proposal # 1] is a minimum PDSCH for A / N transmission even when A / N and SR are multiplexed and transmitted to SR PUCCH (eg, when A / N PUCCH is F1 and SR PUCCH is also F1). It has the advantage of suggesting a unified solution possible by guaranteeing the processing time of -to-HARQ-ACK transmission. If a plurality of SR PUCCHs distinguished from each other in one slot is configured, the UE determines whether to multiplex with A / N for the preceding SR PUCCH in the slot, and if the A / N transmission is not omitted, the next SR PUCCH and A The above operation may be sequentially applied by determining whether to multiplex with / N.
  • the operation may be performed when the transmission start time of the PDSCH (and / or PDCCH (s)) corresponding to the A / N PUCCH is earlier than (or the same as) Tref, sr.
  • the A / N PUCCH resource corresponds to the A / N PUCCH resource.
  • transmission of one of the A / N and the (positive) SR may be omitted.
  • the UE determines whether PDSCH (s) (and / or PDCCH (s)) transmission end (or start) timing (corresponding to A / N PUCCH resource) precedes Tref, sr (ie, Tsr-To). It can be determined whether multiplexing between A / N and (positive) SR as follows.
  • SR is transmitted through SR PUCCH resource (A / N transmission is omitted)
  • a / N is transmitted through A / N PUCCH resource
  • a / N PUCCH is PUCCH format 0
  • the UCI status for the SR is negative SR
  • a / N PUCCH is PUCCH format 1
  • a / N is transmitted through SR PUCCH resource.
  • SR PUCCH is PUCCH format 0, only A / N can be transmitted without SR.
  • the UCI status for the SR is negative SR
  • a / N PUCCH is one of PUCCH formats 2/3/4
  • the UCI status for a SR is positive SR or negative SR
  • the generated UCI is transmitted through A / N PUCCH resource.
  • T 0 may be one of the following.
  • T 0 may be represented in units of (OFDM) symbols.
  • a value promised in advance between the base station and the terminal (eg, fixed value)
  • a / N PUCCH resources and CSI PUCCH resources may overlap on the time axis (all or some OFDM symbols in the PUCCH).
  • the UE may correspond to (or indicate from the corresponding PDSCH / PDCCH) PDSCH (s) (and / or PDCCH (s)) received (or initiated transmission) up to a certain time point (from the reference time point). It is possible to determine whether to multiplex between A / N and CSI according to whether N PUCCH resources overlap with the CSI PUCCH resources on the time axis.
  • transmission of one of A / N and CSI may be omitted.
  • the UE may receive PDSCH (s) received (or started transmission) up to a time before T 0 (hereinafter, referred to as Tref, csi) based on a transmission start time (eg, start symbol) (hereinafter, referred to as Tcsi) of the CSI PUCCH ( And / or A / N PUCCH resources corresponding to PDCCH (s)) (or indicated from the corresponding PDSCH / PDCCH) may be multiplexed between A / N and CSI depending on whether the CSI PUCCH resource overlaps with the time axis.
  • Tref, csi Tcsi ⁇ T 0 , and may be expressed in OFDM symbol units.
  • the UE may transmit the multiplexed A / N and CSI.
  • the UE may select and transmit one of A / N and CSI. For example, (i) the corresponding (or indicated from the corresponding PDSCH / PDCCH) PDSCH (s) (and / or PDCCH (s)) received after the Tref, csi time point (or transmission started / ended).
  • a / N PUCCH resources overlap (or correspond to) PDSCH (s) (and / or PDCCH (s) that have been received (or initiated transmission)) up to Tref, csi, or overlap with the CSI PUCCH resources on the time axis;
  • a / N PUCCH resources indicated from PDSCH / PDCCH do not overlap on the time axis with CSI PUCCH resources, or (iii) PDSCH (s) (and / or transmissions initiated) received up to Tref, csi (and / or PDCCH (s)
  • the UE may select and transmit one of A / N and CSI.
  • Opt. 1 transmit CSI through CSI PUCCH resource (omit A / N transmission)
  • T 0 may be one of the following.
  • T 0 may be represented in units of (OFDM) symbols.
  • a value promised in advance between the base station and the terminal (eg, fixed value)
  • the UE When the nested PUCCH resource (s) in the slot satisfies all or part of the following conditions, the UE multiplexes the UCI (s) for the nested PUCCH resource (s) to form a single PUCCH resource (hereinafter MUX PUCCH). Sent via
  • i. Opt. 1 when multiplexing the UCI (s) for the PUCCH resource (s) nested in the slot (if there is a PUCCH resource for HARQ-ACK transmission among the nested PUCCH resource (s) in the slot)
  • the first (OFDM) symbol of the (single) PUCCH resource to send UCI is T 1 from the (each) last (OFDM) symbol of the PDSCH (s) and / or SPS PDSCH release (s) for HARQ-ACK.
  • iv. Opt. 4 multiplexing assuming multiplexing UCI (s) for the PUCCH resource (s) nested in the slot (if there is a PUCCH resource for HARQ-ACK transmission among the nested PUCCH resource (s) in the slot) PDSCH (s) (or SPS) in which the (single) PUCCH resource to transmit UCI and the first (OFDM) symbol of the previous PUCCH resource (on the time axis) of the nested CSI PUCCH resource (s) in the slot correspond to HARQ-ACK Start after T 1 from the (each) last (OFDM) symbol of PDSCH release (s)
  • v. Opt. 5 out of (all) PUCCH resource (s) configured for the UE for any UCI combination / UCI payload in the slot (when PUCCH resource for HARQ-ACK transmission exists among nested PUCCH resource (s) in the slot)
  • the first (OFDM) symbol of the earliest PUCCH resource (on the time axis) is after T 1 from the (each) last (OFDM) symbol of the PDSCH (s) (or SPS PDSCH release (s)) corresponding to the HARQ-ACK.
  • i. Opt. 1 Suppose that multiplexing UCI (s) for the PUCCH resource (s) nested in the slot (if there is a PUCCH resource indicated to be transmitted through DCI among the nested PUCCH resource (s) in the slot).
  • the first (OFDM) symbol of the (single) PUCCH resource selected according to the rule and the first PUCCH resource (on the time axis) of the nested PUCCH resource (s) in the slot is from the last (OFDM) symbol of the (scheduling) DCI. Starts after T 2
  • Opt. 2 first PUCCH resource (in time axis) of the previous PUCCH resource (s) in the slot indicated to be transmitted via DCI (in the time axis). OFDM) symbol starts after T 2 from the last (OFDM) symbol of the (scheduling) DCI
  • PUCCH resource (s) configured for the UE for any UCI combination / UCI payload in the slot (if there is a PUCCH resource indicated for transmission through DCI among the nested PUCCH resource (s) in the slot)
  • the first (OFDM) symbol of the earliest PUCCH resource (on the time axis) starts after T 2 from the last (OFDM) symbol of the (scheduling) DCI.
  • iv. Opt. 4 The first (OFDM) symbol (or the first (OFDM) symbol allowed for UL transmission) of the slot (if there is a PUCCH resource indicated to be transmitted via DCI among the superimposed PUCCH resource (s) in the slot). (Scheduling) Start after T 2 from last (OFDM) symbol of DCI
  • the (scheduling) DCI-based PUCCH resource may be a HARQ-ACK transmission PUCCH resource allocated through DCI.
  • the last symbol of the DCI may be the last symbol on which the PDCCH carrying the DCI is transmitted.
  • the terminal may perform the following operation.
  • B. Opt. 2 UE omits transmission of UCI (s) for (some) PUCCH resource (s) that do not meet condition (s) of (1), and the remaining PUCCH that meets condition (s) of (1) Multiplex UCI (s) for resource (s) and transmit over a single PUCCH resource
  • D. Opt. 4 UE transmits only a specific (one) PUCCH resource (eg, PUCCH resource for transmitting the highest priority UCI, or PUCCH resource in advance on the time axis) (of nested PUCCH resource (s) in the slot) Drop the rest
  • a (single) PUCCH resource (hereinafter, MUX PUCCH) to transmit the multiplexed UCI may be newly determined.
  • T 1 may be a value corresponding to a terminal processing time required for the UE to perform HARQ-ACK transmission after receiving the PDSCH.
  • T 2 may be a value corresponding to UE processing time required for performing UL transmission after the UE receives (scheduling) DCI for UL transmission.
  • T 1 and T 2 may be expressed in units of (OFDM) symbols.
  • Time-line condition # 1 is a condition for ensuring UE processing time from PDSCH reception until HARQ-ACK transmission.
  • the time-line condition # 1 is intended to allow HARQ-ACK transmission to be performed after a predetermined time T 1 from the last (OFDM) symbol of the PDSCH (s) corresponding to the HARQ-ACK.
  • Time-line condition # 2 is a condition for guaranteeing a UE processing time from PDCCH reception to UL transmission.
  • Time-line condition # 2 aims to allow UL transmission to be performed after a certain time T 2 from the last (OFDM) symbol of the PDCCH (s) (scheduling the UL transmission of one or more of the nested PUCCH (s)). .
  • Time-line condition # 2 is also intended to know whether to schedule before T 2 from the start of any UL transmission. Thus, reception for the PDCCH (s) (scheduling the UL transmission of one or more of the nested PUCCH (s)) must be terminated before T 2 prior to the earliest UL resource of the superimposed PUCCH resource (s).
  • time-line condition # 2 is (in the time axis) of (single) PUCCH resources selected according to a specific rule, assuming multiplexing of PUCCH resource (s) nested in the slot (and assuming UCI (s) multiplexing).
  • the first (OFDM) symbol of the earliest PUCCH resource may be a condition starting after T 2 from the last (OFDM) symbol of the (scheduling) DCI.
  • the UE may UCI (s) for the nested PUCCH resource (s) and PUSCH resource (s). And multiplexing UL-SCH TB (s) to transmit through a single PUSCH resource (hereinafter MUX PUSCH)
  • i. Opt. 1 when multiplexing the UCI (s) for the PUCCH resource (s) nested in the slot (if there is a PUCCH resource for HARQ-ACK transmission among the nested PUCCH resource (s) in the slot)
  • the first (OFDM) symbol of the (single) PUSCH resource to send UCI starts after T 1 from the (each) last (OFDM) symbol of the PDSCH (s) and / or SPS PDSCH release (s) for HARQ-ACK.
  • Opt. 3 UL in front of the superimposed PUCCH resource (s) and PUSCH resource (s) in the slot (in time axis) when there is a PUCCH resource for HARQ-ACK transmission among the superimposed PUCCH resource (s) in the slot.
  • the first (OFDM) symbol of the transmission resource starts after T 1 from the (each) last (OFDM) symbol of the PDSCH (s) (or SPS PDSCH release (s)) corresponding to the HARQ-ACK.
  • iv. Opt. 4 (all) PUCCH resource (s) configured to the terminal for any UCI combination / UCI payload in the slot (if there is a PUCCH resource for HARQ-ACK transmission of the nested PUCCH resource (s) in the slot)
  • the first (OFDM) symbol of the earliest UL transmission resource (on the time axis) of the (all) PUSCH resource (s) in the slot is the PDSCH (s) (or SPS PDSCH release (s)) corresponding to the HARQ-ACK. Start after T 1 from the last (OFDM) symbol
  • i. Opt. 1 (when there is a PUCCH resource indicated to be transmitted through DCI among the nested PUCCH resource (s) in the slot); the earliest (in time axis) of the nested PUCCH resource (s) and PUSCH resource (s) in the slot.
  • First (OFDM) symbol of UL transmission resource starts after T 2 from last (OFDM) symbol of (scheduling) DCI
  • ii. Opt. 2 (all) PUCCH resource (s) configured for the UE for any UCI combination / UCI payload in the slot (if there is a PUCCH resource indicated to be transmitted through DCI among the nested PUCCH resource (s) in the slot)
  • the first (OFDM) symbol of the earliest UL transmission resource (on the time axis) of and (all) PUSCH resource (s) starts after T 2 from the last (OFDM) symbol of the (scheduling) DCI.
  • Opt. 3 the first (OFDM) symbol (or the first (OFDM) symbol allowed for UL transmission) of the slot (if there is a PUCCH resource indicated to be transmitted via DCI among the superimposed PUCCH resource (s) in the slot). (Scheduling) Start after T 2 from last (OFDM) symbol of DCI
  • the (scheduling) DCI-based PUCCH resource may be a HARQ-ACK transmission PUCCH resource allocated through DCI.
  • the last symbol of the DCI may be the last symbol on which the PDCCH carrying the DCI is transmitted.
  • UE transmits for UCI (s) corresponding to (some) PUCCH resource (s) that do not meet the condition (s) of (1) and / or UL- corresponding to (some) PUSCH resource (s) Omit transmission for SCH TB.
  • the UE multiplexes a single PUCCH resource by multiplexing the UCI (s) and / or UL-SCH (s) for the remaining PUCCH resource (s) and / or remaining PUSCH resource (s) that satisfy the condition (s) of (1). Or, on a single PUSCH resource (if there are overlapping PUSCH resources that meet the condition (s) of (1))
  • D. Opt. 4 UE transmits a specific (one) PUCCH or PUSCH resource (eg, among superimposed PUCCH resource (s) and PUSCH resource (s) in UL slot or time axis transmitting UCI of highest priority) Transmit only UL resource) and drop transmission of others
  • a specific (one) PUCCH or PUSCH resource eg, among superimposed PUCCH resource (s) and PUSCH resource (s) in UL slot or time axis transmitting UCI of highest priority
  • a (single) PUCCH resource (hereinafter, MUX PUCCH) to transmit the multiplexed UCI may be newly determined.
  • T 1 may be a value corresponding to a terminal processing time required for the UE to perform HARQ-ACK transmission after receiving the PDSCH.
  • T 2 may be a value corresponding to UE processing time required for performing UL transmission after the UE receives (scheduling) DCI for UL transmission.
  • T 1 and T 2 may be expressed in units of (OFDM) symbols.
  • Time-line condition # 1 is a condition for ensuring UE processing time from PDSCH reception until HARQ-ACK transmission.
  • the time-line condition # 1 is intended to allow HARQ-ACK transmission to be performed after a predetermined time T 1 from the last (OFDM) symbol of the PDSCH (s) corresponding to the HARQ-ACK.
  • Time-line condition # 2 is a condition for guaranteeing a UE processing time from PDCCH reception to UL transmission.
  • Time-line condition # 2 aims to allow UL transmission to be performed after a certain time T 2 from the last (OFDM) symbol of the PDCCH (s) (scheduling the UL transmission of one or more of the nested PUCCH (s)). .
  • Time-line condition # 2 is also intended to know whether to schedule before T 2 from the start of any UL transmission. Thus, reception for the PDCCH (s) (scheduling the UL transmission of one or more of the nested PUCCH (s)) must be terminated before T 2 prior to the earliest UL resource of the superimposed PUCCH resource (s).
  • time-line condition # 2 indicates that the first (OFDM) symbol of the PUCCH resource (s) nested in the slot and the PUCCH resource that is the earliest (on the time axis) of the PUSCH resource (s) is the last (scheduled) DCI ( OFDM) symbol may be a condition starting after T 2 .
  • Step 1 When the PUSCH resource (s) (where multiplexed UCI transmissions are allowed) exist, for each PUSCH resource (i) with the corresponding PUSCH resource (ii) in the PUCCH resource (s) overlapping (in time axis) Apply UCI multiplexing rules When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUSCH resource
  • Step 2 When there are PUCCH resource (s) (scheduled based on DCI) (allowed for multiplexed UCI transmissions), (i) overlapping with the corresponding PUCCH resource (ii) on a time axis per PUCCH resource Apply UCI multiplexing rules to the PUCCH resource (s) being configured.
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUCCH resource (hereafter MUX PUCCH).
  • the terminal may perform one of the following operations.
  • Step 1 Reapply Step 1 and / or Step 2 for (single) PUCCH resources and PUCCH resources (scheduled based on DCI)
  • -Opt. 2 transmit MUX UCI over (single) PUCCH resource, UL resource (s) overlapping with (single) PUCCH resource omit transmission
  • Step 3 When there is a PUCCH resource (s) (configured through a higher layer (e.g., RRC) signal) (where multiplexed UCI transmissions are allowed), for each PUCCH resource (i) the corresponding PUCCH resource and (ii) Apply UCI multiplexing rules for overlapping PUCCH resource (s) (set via upper layer signals) (on the time axis).
  • a PUCCH resource (s) (configured through a higher layer (e.g., RRC) signal) (where multiplexed UCI transmissions are allowed)
  • a PUCCH resource (configured through a higher layer (e.g., RRC) signal) (where multiplexed UCI transmissions are allowed)
  • the corresponding PUCCH resource for each PUCCH resource (i) the corresponding PUCCH resource and (ii) Apply UCI multiplexing rules for overlapping PUCCH resource (s) (set via upper layer signals) (on the time axis).
  • UCI multiplexing replace the existing
  • Step 1 When the PUSCH resource (s) (where multiplexed UCI transmissions are allowed) exist, apply the UCI multiplexing rule to the PUCCH resource (s) overlapping with the corresponding PUSCH resource (on the time axis) for each PUSCH resource. . When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUSCH resource
  • Step 2 (i) PUCCH1 and (ii) based on the PUCCH resource (hereafter PUCCH1) carrying the start symbol (allowing multiplexed UCI transmission) with the fastest (or carrying the highest priority UCI).
  • PUCCH1 the PUCCH resource carrying the start symbol (allowing multiplexed UCI transmission) with the fastest (or carrying the highest priority UCI).
  • PUCCH2 the PUCCH resource carrying the start symbol (allowing multiplexed UCI transmission) with the fastest (or carrying the highest priority UCI).
  • PUCCH2 the PUCCH resource
  • PUCCH3 ie MUX PUCCH
  • Step 3-1 (i) PUCCH3 in Step 2 and (ii) PUCCH resource (s) (except PUCCH1 and PUCCH2) overlap (in time axis)
  • Step 2 Apply UCI multiplexing rules for PUCCH3 and PUCCH4 (Step 2).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUCCH resource.
  • Step 3-2 PUCCH3 and PUCCH 4 do not overlap (in time axis)
  • UCI multiplexing rules may follow [Proposal # 1A] or [Suggest # 1B].
  • the UE may replace the existing UL resource (s) with a resource that does not exist in a later step. Can be considered. That is, the replaced existing UL resource (s) is not considered as a UCI multiplexing target in a later process.
  • the (single) PUCCH or PUSCH resource determined to transmit the multiplexed UCI (s) may be considered as a UCI multiplexing target in a later process.
  • the order of applying the operation of the step between the plurality of PUCCH (or PUSCH) resource (s) may follow a predetermined priority rule.
  • the priority rule may be a relative transmission time point (in a slot) (e.g., start position / symbol), UCI type, resource allocation scheme (e.g., dynamic or semi-static), scheduled order, and transmission capacity. Etc., may be determined based on the like.
  • the CSI PUCCH resources overlap on the time axis with the AN PUCCH resource / SR PUCCH resource, while the AN PUCCH resource and the SR PUCCH resource are on the time axis with each other.
  • you do not nest In this case, whether (1) multiplexing for all HARQ-ACK, CSI, SR should be performed, (2) multiplexing for HARQ-ACK-CSI pair and multiplexing for CSI-SR pair, UE operation is performed. It may be unclear.
  • the method of performing UCI multiplexing in order of UL resources that can contain the most kinds of UCI eg, [Method #A]
  • the PUCCH resource that carries the fastest (or highest priority UCI) resource e.g. [Method #B]
  • a method eg, [Method #B] to sequentially perform UCI multiplexing on the PUCCH resource (s) superimposed on the time axis.
  • the PUCCH resource selected once as a UCI multiplexing target may be excluded in a subsequent UCI multiplexing process.
  • Step (s) in [Method #A] / [Method #B] may be changed. For example, consider the following operation.
  • Step 1 When there is a PUCCH resource (s) (permitted by multiplexed UCI transmissions) (set via a higher layer (e.g., RRC) signal), for each PUCCH resource (i) the corresponding PUCCH resource and (ii) UCI multiplexing rules may be applied to PUCCH resource (s) (set via a higher layer signal) that overlap (in the time axis).
  • the existing UL resource (s) for the multiplexed UCI (s) may be replaced with (single) PUCCH resources (hereinafter, MUX PUCCH resources).
  • Step 2 When there are PUCCH resource (s) (scheduled based on DCI) (allowed for multiplexed UCI transmissions), (i) overlapping with the corresponding PUCCH resource (ii) on a time axis per PUCCH resource UCI multiplexing rules may be applied to the PUCCH resource (s).
  • the existing UL resource (s) for the multiplexed UCI (s) may be replaced with (single) PUCCH resources (ie, MUX PUCCH resources).
  • the superimposed PUCCH resource (s) may mean PUCCH resource (s) in a slot.
  • Step 2 Reapply Step 2 for (i) MUX PUCCH resource and (ii) PUCCH resource (scheduled based on DCI)
  • -Opt. 2 perform transmission for MUX PUCCH resources, but omit transmission for UL resource (s) overlapping with MUX PUCCH resources
  • Step 3 When PUSCH resource (s) (where multiplexed UCI transmissions are allowed) exist, for each PUSCH resource (i) with the corresponding PUSCH resource (ii) in the PUCCH resource (s) overlapping (in time axis) UCI multiplexing rules can be applied.
  • the PUCCH resource (s) may include MUX PUCCH resource (s).
  • the existing UL resource (s) for the multiplexed UCI (s) may be replaced with a specific (single) PUSCH resource.
  • Step 1 When the PUSCH resource (s) (where multiplexed UCI transmissions are allowed) exist, for each PUSCH resource (i) with the corresponding PUSCH resource (ii) in the PUCCH resource (s) overlapping (in time axis) UCI multiplexing rules can be applied.
  • the existing UL resource (s) for the multiplexed UCI (s) may be replaced with a (single) PUSCH resource (hereinafter, MUX PUSCH resource).
  • Step 2 When there is a PUCCH resource (s) (configured through a higher layer (e.g., RRC) signal) (where multiplexed UCI transmissions are allowed), for each PUCCH resource (i) the corresponding PUCCH resource and (ii) UCI multiplexing rules may be applied to PUCCH resource (s) (set via a higher layer signal) that overlap (in the time axis).
  • the existing UL resource (s) for the multiplexed UCI (s) may be replaced with (single) PUCCH resources (ie, MUX PUCCH resources).
  • Step 3 When there are PUCCH resource (s) (scheduled based on DCI) (allowed for multiplexed UCI transmissions), (i) overlapping with the corresponding PUCCH resource (ii) on a time axis per PUCCH resource UCI multiplexing rules may be applied to the PUCCH resource (s).
  • the existing UL resource (s) for the multiplexed UCI (s) may be replaced with (single) PUCCH resources (ie, MUX PUCCH resources).
  • Step 1 Reapply Step 1 and / or Step 3 for (i) MUX PUCCH resources and (ii) PUCCH resources (scheduled based on DCI)
  • -Opt. 2 perform transmission for MUX PUCCH resources, but omit UCI transmission for UL resource (s) overlapping MUX PUCCH resources
  • Step 1 (i) PUCCH1 based on the PUCCH resource (hereinafter, PUCCH1) carrying the highest (or highest priority UCI) starting symbol (or last symbol allowed). And (ii) (time / 2-2 can be replaced with Step # A / # B1 / # B2 respectively).
  • PUCCH1 based on the PUCCH resource (hereinafter, PUCCH1) carrying the highest (or highest priority UCI) starting symbol (or last symbol allowed).
  • time / 2-2 can be replaced with Step # A / # B1 / # B2 respectively).
  • Step #A The starting symbol (or last symbol) is based on the earliest (or carrying the highest priority UCI) PUCCH (hereafter PUCCH1), (i) PUCCH1 and (ii) UCI multiplexing rule between PUCCH and PUCCH may be applied to only overlapping PUCCHs (hereinafter, PUCCH2).
  • PUCCH1 a (single) container PUCCH
  • MUX PUCCH1 may be determined to transmit the multiplexed UCI (s). That is, the overlapped existing UL resource (s) (ie PUCCH1 / PUCCH2) may be replaced with MUX PUCCH1.
  • Step # B1 (i) the container PUCCH (i.e., MUX PUCCH1) and (ii) the remaining PUCCHs (except PUCCH1 / PUCCH2) determined in Step #A (hereinafter, PUCCH3) If there is no overlap,
  • Step # B2 If (i) MUX PUCCH1 and (ii) PUCCH3 overlap,
  • UCI multiplexing rule between PUCCH and PUCCH may be applied again for container PUCCH (ie, MUX PUCCH1) and PUCCH3.
  • a (single) container PUCCH (hereinafter MUX PUCCH2) may be newly determined to transmit the multiplexed UCI (s). That is, the overlapped existing UL resource (s) (ie MUX PUCCH1 / PUCCH3) may be replaced with MUX PUCCH2.
  • Step # B1 / # B2 may be applied again to the MUX PUCCH2.
  • Opt 2 PUCCH3 transmission may be dropped.
  • the UE may determine the PUCCH resource for each UCI.
  • Each PUCCH resource may be defined by a start symbol and a transmission length. If there are overlapped PUCCH resources (in slot), the UE may determine the PUCCH resource set X overlapping with the fastest PUCCH resource A (eg, the earliest start symbol) (Step A1, S1202). Thereafter, the UE may perform UCI multiplexing on (i) PUCCH resource A and (ii) PUCCH resource set X (Steps A1 and S1204).
  • a (single) container PUCCH (hereinafter MUX PUCCH) may be determined to transmit the multiplexed UCI (s). Accordingly, PUCCH resource A and PUCCH resource set X may be replaced with MUX PUCCH. Thereafter, the UE may transmit the UCI through the MUX PUCCH. If the MUX PUCCH overlaps with the remaining PUCCHs (except PUCCH resource A / PUCCH resource set X), the UE may select the MUX PUCCH (or the fastest PUCCH among the remaining PUCCHs including the fastest PUCCH). Step A1 / A2 may be performed again in the state of replacing the fastest PUCCH resource A (eg, the fastest start symbol).
  • Step A1 / A2 of FIG. 12 corresponds to Step 1 of FIG. 11, and Step 1 of FIG. 11 may be replaced with Step A1 / A2 of FIG. 12.
  • FIG. 13 illustrates UCI multiplexing according to FIG. 12.
  • UCI multiplexing may be performed based on the fastest PUCCH resource A (eg, the fastest start symbol).
  • Case 1/2 represents a case where the first PUCCH resource overlaps with another PUCCH resource.
  • the process of FIG. 12 may be performed in the state in which the first PUCCH resource is regarded as the fastest PUCCH resource A.
  • case 3 is a case where the first PUCCH resource does not overlap with other PUCCH resources and the second PUCCH resource overlaps with other PUCCH resources. In this case, UCI multiplexing is not performed for the first PUCCH resource.
  • FIG. 12 may be performed with the second PUCCH resource regarded as the fastest PUCCH resource A.
  • FIG. Case 2 is a case where a MUX PUCCH resource determined for transmitting multiplexed UCI overlaps another PUCCH resource.
  • the process of FIG. 12 may be additionally performed with the MUX PUCCH resource (or the fastest PUCCH resource among the remaining PUCCHs including the same) as the fastest PUCCH resource A. .
  • Step 1 When there is a PUCCH resource (s) (permitted by multiplexed UCI transmissions) (set via a higher layer (e.g., RRC) signal), for each PUCCH resource (i) the corresponding PUCCH resource and (ii) Apply UCI multiplexing rules for overlapping PUCCH resource (s) (set via upper layer signals) (on the time axis).
  • a higher layer e.g., RRC
  • Step 1 may be as follows.
  • Step 1-1 For each CSI PUCCH resource, apply the UCI multiplexing rule to (i) the corresponding PUCCH resource and (ii) the CSI PUCCH resource (s) overlapping (on the time axis).
  • UCI multiplexing When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (CSI) PUCCH resource.
  • Step 1-2 Apply the UCI multiplexing rule for the AN PUCCH resource (s) and / or the SR PUCCH resource (s) overlapping (i) with the corresponding PUCCH resource for each CSI PUCCH resource.
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (CSI) PUCCH resource.
  • Step 1-3 Apply UCI multiplexing rules for each PU PUCH resource (i) the corresponding PUCCH resource and (ii) the SR PUCCH resource (s) overlapping (on the time axis).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (AN) PUCCH resource.
  • Step 2 When there are PUCCH resource (s) (scheduled based on DCI) (allowed for multiplexed UCI transmissions), (i) overlapping with the corresponding PUCCH resource (ii) on a time axis per PUCCH resource Apply UCI multiplexing rules to the PUCCH resource (s) being configured.
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUCCH resource.
  • Step 2 may be as follows.
  • Step 2-1 CSI PUCCH resource (s) and / or SR PUCCH resource (s) overlapping (i) corresponding PUCCH resources (by time axis) per AN PUCCH resource (scheduled based on DCI) ( And / or apply UCI multiplexing rules for AN PUCCH resource (s).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (AN) PUCCH resource.
  • Step 2-1 CSI PUCCH resource (s) and / or SR PUCCH resource (s) overlapping (i) corresponding PUCCH resources (by time axis) per AN PUCCH resource (scheduled based on DCI) ( And / or apply UCI multiplexing rules for AN PUCCH resource (s).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (AN) PUCCH resource.
  • Step 2-2 SR PUCCH resource (s) (and / or CSI PUCCH resource (s)) overlapping (i) the corresponding PUCCH resource (by time axis) for each CSI PUCCH resource (scheduled based on DCI).
  • UCI multiplexing rules When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (CSI) PUCCH resource.
  • Step 3 When PUSCH resource (s) (where multiplexed UCI transmissions are allowed) exist, for each PUSCH resource (i) with the corresponding PUSCH resource (ii) in the PUCCH resource (s) overlapping (in time axis) Apply UCI multiplexing rules When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUSCH resource
  • the order of applying the operation of the step between the plurality of PUCCH (or PUSCH) resource (s) may follow a predetermined priority rule.
  • the priority rule may be defined based on relative transmission time (in a slot) (eg, start position / symbol), UCI type, resource allocation method (eg, dynamic or quasi-static), scheduled order, transmission capacity, and the like. Can be done.
  • the newly selected PUCCH resource for transmitting the multiplexed UCI (s) is different from the PUCCH resource (s) other than the (existing) PUCCH resource (s) for the multiplexed UCI (s) (in time axis).
  • the terminal may determine the case as an error case and may not expect it.
  • the UC multiplexing rule and the PUCCH resource (s) superimposed with the newly selected PUCCH resource may be applied, and the existing UL resource for the multiplexed UCI (s) may be replaced with a specific (single) PUCCH resource when performing UCI multiplexing.
  • the UE when performing UCI multiplexing on PUCCH resource (s) and / or PUSCH resource (s) configured / instructed to a terminal in a slot, the UE performs (stepwise) UCI multiplexing as follows. And a method of performing transmission resource determination for the multiplexed UCI.
  • Step 1 When the PUSCH resource (s) (where multiplexed UCI transmissions are allowed) exist, for each PUSCH resource (i) with the corresponding PUSCH resource (ii) in the PUCCH resource (s) overlapping (in time axis) Apply UCI multiplexing rules When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUSCH resource
  • Step 2 When there are PUCCH resource (s) (scheduled based on DCI) (allowed for multiplexed UCI transmissions), (i) overlapping with the corresponding PUCCH resource (ii) on a time axis per PUCCH resource Apply UCI multiplexing rules to the PUCCH resource (s) being configured.
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) PUCCH resource.
  • Step 2 may be as follows.
  • Step 2-1 CSI PUCCH resource (s) and / or SR PUCCH resource (s) overlapping (i) corresponding PUCCH resources (by time axis) per AN PUCCH resource (scheduled based on DCI) ( And / or apply UCI multiplexing rules for AN PUCCH resource (s).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (AN) PUCCH resource.
  • Step 2-1 CSI PUCCH resource (s) and / or SR PUCCH resource (s) overlapping (i) corresponding PUCCH resources (by time axis) per AN PUCCH resource (scheduled based on DCI) ( And / or apply UCI multiplexing rules for AN PUCCH resource (s).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (AN) PUCCH resource.
  • Step 2-2 SR PUCCH resource (s) (and / or CSI PUCCH resource (s)) overlapping (i) the corresponding PUCCH resource (by time axis) for each CSI PUCCH resource (scheduled based on DCI).
  • UCI multiplexing rules When performing UCI multiplexing, replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (CSI) PUCCH resource.
  • Step 3 When there is a PUCCH resource (s) (permitted by multiplexed UCI transmissions) (set via a higher layer (e.g., RRC) signal), for each PUCCH resource (i) the corresponding PUCCH resource and (ii) Apply UCI multiplexing rules for overlapping PUCCH resource (s) (set via upper layer signals) (on the time axis).
  • a higher layer e.g., RRC
  • Step 3 may be as follows.
  • Step 3-1 Apply the UCI multiplexing rule for each CSI PUCCH resource (i) the corresponding PUCCH resource and (ii) the CSI PUCCH resource (s) overlapping (on the time axis).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (CSI) PUCCH resource.
  • Step 3-2 Apply the UCI multiplexing rule for (i) the corresponding PUCCH resource and (ii) the AN PUCCH resource (s) and / or the SR PUCCH resource (s) overlapping (on the time axis) for each CSI PUCCH resource.
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (CSI) PUCCH resource.
  • Step 3-3 Apply the UCI multiplexing rule for each PU PUCH resource (i) the corresponding PUCCH resource and (ii) the SR PUCCH resource (s) overlapping (on the time axis).
  • UCI multiplexing replace the existing UL resource (s) for the multiplexed UCI (s) with a specific (single) (AN) PUCCH resource.
  • the order of applying the operation of the step between the plurality of PUCCH (or PUSCH) resource (s) may follow a predetermined priority rule.
  • the priority rule may be defined based on relative transmission time (in a slot) (eg, start position / symbol), UCI type, resource allocation method (eg, dynamic or quasi-static), scheduled order, transmission capacity, and the like. Can be done.
  • the newly selected PUCCH resource for transmitting the multiplexed UCI (s) is different from the PUCCH resource (s) other than the (existing) PUCCH resource (s) for the multiplexed UCI (s) (in time axis).
  • the terminal may determine the case as an error case and may not expect it.
  • the UC multiplexing rule and the PUCCH resource (s) superimposed with the newly selected PUCCH resource may be applied, and the existing UL resource for the multiplexed UCI (s) may be replaced with a specific (single) PUCCH resource when performing UCI multiplexing.
  • Opt. 1 Multiplex CSI and SR by adding SR bit (s) to UCI payload of each CSI PUCCH resource. That is, the SR information may be loaded on all CSI PUCCHs overlapped with the SR PUCCHs.
  • the SR information (s) carried on the plurality of CSI PUCCH resources may be in a form in which SR information transmitted in the first CSI PUCCH resource is copied (or transmitted in the same manner). That is, the SR information carried on the plurality of CSI PUCCH resources may be all identically copied information.
  • the SR information (s) carried on the plurality of CSI PUCCH resources may be SR information updated for each CSI PUCCH resource (or reflecting the SR status (eg, negative or positive) of the UE at each CSI PUCCH time point). have. That is, the SR information carried on the plurality of CSI PUCCH resources may be updated SR information at every CSI PUCCH resource transmission time.
  • one specific CSI PUCCH resource may be one of the following.
  • -Opt. 2-1 The first (or last) CSI PUCCH resource on the time axis, or the CSI PUCCH resource with the earliest (or late) start time. That is, the SR information may be loaded only on the first CSI PUCCH among all the CSI PUCCHs overlapped with the SR PUCCH.
  • Opt. 1 UL-SCH TB for a CSI report (or HARQ-ACK information) for a CSI PUCCH resource (or AN PUCCH resource) of a specific one of the CSI PUCCH resource (s) (or AN PUCCH resource (s)) superimposed with a PUSCH. (E.g., UL data) and transmitted on the PUSCH resource (e.g., UCI piggyback).
  • One specific CSI PUCCH resource may include a CSI PUCCH resource set in the fastest or highest priority CSI on the time axis.
  • a specific AN PUCCH resource may include the fastest AN PUCCH resource on the time axis.
  • the transmission of the remaining CSI PUCCH (or AN PUCCH) and the corresponding CSI report (or HARQ-ACK) other than one specific CSI PUCCH (or AN PUCCH) may be omitted.
  • UL-SCH TB (e.g., UL data) for the entire CSI report (s) (or HARQ-ACK information (s)) for CSI PUCCH resource (s) (or AN PUCCH resource (s)) superimposed with PUSCH And multiplex and transmit on the PUSCH resource (eg, UCI piggyback). Or, among the CSI report (s) (or HARQ-ACK information (s)) for the CSI PUCCH resource (s) (or AN PUCCH resource (s)) superimposed with the PUSCH, according to a priority rule previously defined / set in advance. Multiplex up to M high CSI report (s) (or HARQ-ACK information (s)) with UL-SCH TB (e.g., UL data) and transmit on the PUSCH resource (e.g., UCI piggyback)
  • the M value may be 1 or 2.
  • the M value may be a value promised in advance or a value that is set / defined based on a higher layer (eg, RRC) signal.
  • RRC higher layer
  • the CI multiplexing operation for the CSI PUCCH resource and the AN PUCCH resource may be equally applied.
  • a case may occur where a single PUSCH resource and one or more CSI PUCCH resources (or AN PUCCH resources) overlap in one slot.
  • M CSI report (s) for M CSI PUCCH resource (s) (or AN PUCCH resource (s)) (or high priority) based on a priority rule may be UCI piggybacked to PUSCH.
  • the M value may be a previously promised value or a value that is set / defined based on a higher layer signal.
  • only the CSI report (or HARQ-ACK) for the first CSI PUCCH resource (or AN PUCCH resource) superimposed on the PUSCH resource and the time axis may be UCI piggybacked to the PUSCH.
  • AN PUCCH resource is indicated by DCI (eg, ARI)
  • AN PUCCH resource is not indicated by DCI (eg, ARI) (eg, when AN PUCCH resource is associated with A / N information for SPS PDSCH)
  • -Opt. 1 transmit multiplexed UCI (eg AN / SR) in PUCCH format 0/1
  • the UE may multiplex AN and SR.
  • the UE may transmit UCI (eg, HARQ-ACK) through the PUCCH resource indicated by the ARI among the PUCCH resources in the selected PUCCH resource set.
  • UCI eg, HARQ-ACK
  • ARI ACK / NACK resource indicator
  • the number of PUCCH resource sets for the AN PUCCH resource may be plural (K> 1).
  • the UE may multiplex the UCI different from the AN, and then select a PUCCH resource set corresponding to the multiplexed (total) UCI payload size. Thereafter, the UE may transmit the multiplexed UCI using the PUCCH resources indicated by the ARI among the PUCCH resources in the corresponding PUCCH resource set.
  • the PUCCH resource set may include a PUCCH format 0/1.
  • the PUCCH resource set may include a PUCCH format 2/3/4. If the number of PUCCH resource sets is one or more, at least one PUCCH resource set is configured for UCI transmission of 2 bits or less. Accordingly, when the AN PUCCH resource is indicated by the ARI and the number of PUCCH resource sets for the AN PUCCH resource is two or more, the UE may transmit the UCI through the PUCCH format 2/3/4 for UCI transmission of 3 bits or more.
  • the UE when the UE performs multiplexing between the AN and the plurality of SRs, the UE adds the SR information for the plurality of SR PUCCH resources to the AN payload, and then selects the PUCCH resources selected by the overall UCI payload size.
  • Multiplexed AN / SR may be transmitted through one of the PUCCH formats 2/3/4 indicated by the ARI within the set.
  • a scheme of transmitting the multiplexed AN / SR through the PUCCH format 0/1 resource may be considered. For example, when the UE performs multiplexing between AN and multiple SRs, if AN PUCCH is PUCCH format 1, SR transmission for SR PUCCH resource (s) following PUCCH format 0 is omitted, and SR PUCCH according to PUCCH format 1 is omitted.
  • AN may be transmitted through an SR PUCCH resource corresponding to a SR that is a positive SR and the highest priority among the resource (s) (but, if all negative SRs, an AN PUCCH transmission).
  • SR information for two SR PUCCHs (groups) may be expressed by applying up to two CS offsets to AN PUCCH resources. That is, the CS offset corresponding to the SR PUCCH (group) having the highest priority while including at least one SR PUCCH that is a positive SR may be applied to the AN PUCCH format 0.
  • the AN PUCCH resource corresponding to the Semi-Static Scheduling (SPS) PDSCH transmission may not be indicated by the ARI, but may be semi-statically configured through an upper layer (eg, RRC) signal. Therefore, when the AN PUCCH resource corresponding to the SPS PDSCH transmission and the SR PUCCH resource overlap, the UE cannot use the PUCCH format 2/3/4 resource when performing multiplexing between the AN and the plurality of SRs. Therefore, a scheme of transmitting the multiplexed AN / SR through the PUCCH format 0/1 resource may be considered.
  • SPS Semi-Static Scheduling
  • AN PUCCH when the UE performs multiplexing between AN and a plurality of SRs, if AN PUCCH is PUCCH format 1, SR transmission for SR PUCCH resource (s) following PUCCH format 0 is omitted, and SR PUCCH resource (following PUCCH format 1) is omitted.
  • AN may be transmitted through an SR PUCCH resource corresponding to a SR having a positive SR and a highest priority (but, if all are negative SRs, an AN PUCCH transmission).
  • SR information for two SR PUCCHs (groups) may be expressed by applying up to two CS offsets to AN PUCCH resources.
  • the CS offset corresponding to the SR PUCCH (group) having the highest priority while including at least one SR PUCCH that is a positive SR may be applied to the AN PUCCH format 0.
  • the UE may consider multiplexing AN and SR as follows. However, PF0 / 1/2/3/4 means PUCCH format 0/1/2/3/4.
  • Case # 1 UCI multiplexing between (single) AN and (single) SR
  • SR PF0 If Positive SR, then AN will be sent over the resource with CS offset applied to AN PF0 resource. Negative SR, send AN through AN PF0 resource
  • -Opt. 1 If it is a positive SR, then AN is sent through the resource with CS offset applied to the AN PF0 resource. Negative SR, send AN through AN PF0 resource
  • SR PF1 If Positive SR, send AN over SR PF1 resource. If it is a negative SR, send AN through AN PF1 resource
  • Case # 2 UCI multiplexing between (single) AN and (multiple) SR (w / single PUCCH format)
  • AN is transmitted through a resource that applies a CS offset (corresponding to the specific SR PUCCH group) to the AN PF0 resource.
  • each of the L SR PUCCH groups may be mapped / mapped to different L CS offsets. Can be. If at least one of the SRs belonging to a specific SR PUCCH group is positive, transmit an AN through a resource applying a CS offset corresponding to the specific SR PUCCH group
  • SR information for all SR PUCCH (s) is a Negative SR, send AN through AN PF0 resource.
  • SR information for at least one SR PUCCH is a Positive SR
  • send AN through a resource applying a CS offset (corresponding to the specific SR PUCCH group) to the AN PF0 resource.
  • a CS offset corresponding to the specific SR PUCCH group
  • each of the L SR PUCCH groups may be mapped / mapped to different L CS offsets. have.
  • at least one of the SRs belonging to a specific SR PUCCH group is positive, transmit an AN through a resource applying a CS offset corresponding to the specific SR PUCCH group.
  • the SR information for all SR PUCCH (s) is Negative SR, send AN over AN PF0 resource.
  • SR information for the at least one SR PUCCH is a Positive SR, send AN through the SR PF1 resource corresponding to the SR PUCCH (of the highest priority) among the SR PUCCHs. If the SR information for all SR PUCCH (s) is Negative SR, send AN over AN PF0 resource.
  • SR PF0 Send AN via AN PF1 resource (SR drop)
  • SR PF1 If the SR information for the at least one SR PUCCH is a Positive SR, the AN is transmitted through the SR PF1 resource corresponding to the SR PUCCH (of the highest priority) among the SR PUCCHs. If the SR information for all SR PUCCH (s) is a Negative SR, send AN over AN PF1 resource.
  • Case # 3 UCI multiplexing between (single) AN and (multiple) SR (w / different PUCCH formats)
  • -Opt. 1 When the SR information for the at least one SR PUCCH is a positive SR and the SR PUCCH (of the highest priority) among the SR PUCCHs is PF0, the AN is transmitted through a resource having a CS offset applied to the AN PF0 resource.
  • the AN is transmitted through a resource to which a CS offset corresponding to the specific SR PUCCH group is applied. If the number of SR PUCCHs K set to PF0 is equal to or smaller than L, each of the K SR PUCCHs may correspond / map to different K CS offsets without separate grouping. In this case, the AN is transmitted through a resource applied with a CS offset corresponding to the positive SR PUCCH.
  • the SR information for the at least one SR PUCCH is a Positive SR and the SR PUCCH (of the highest priority) of the SR PUCCHs is PF1, then send an AN through the SR PF1 resource. If the SR information for all SR PUCCH (s) is Negative SR, send AN over AN PF0 resource.
  • SR information for at least one SR PUCCH (in a specific SR PUCCH group) is a Positive SR, then transmit AN through a resource that applies a CS offset (corresponding to the specific SR PUCCH group) to the AN PF0 resource.
  • a CS offset (corresponding to the specific SR PUCCH group) to the AN PF0 resource.
  • each of the L SR PUCCH groups may be mapped / mapped to different L CS offsets. has exist.
  • the AN is transmitted through a resource applied with a CS offset corresponding to the specific SR PUCCH group. If the SR information for all SR PUCCH (s) is Negative SR, send AN over AN PF0 resource.
  • SR information for the at least one SR PUCCH is a Positive SR
  • send an AN on a specific SR PF1 resource corresponding to the specific SR PUCCH group.
  • grouping each of the L SR PUCCH groups into different L SR F1 groups. Can respond / map to resources.
  • at least one of the SRs belonging to a specific SR PUCCH group is positive, an AN is transmitted through an SR F1 resource corresponding to the specific SR PUCCH group.
  • the SR information for all SR PUCCH (s) is Negative SR, send AN over AN PF0 resource.
  • -Opt. 1 When the SR information for the at least one SR PUCCH is a Positive SR and the SR PUCCH (of the highest priority) of the SR PUCCHs is PF0, AN is dropped through the AN PF1 resource (SR drop). If the SR information for the at least one SR PUCCH is a Positive SR and the SR PUCCH (of the highest priority) of the SR PUCCHs is PF1, then send AN over the corresponding SR PF1 resource. If the SR information for all SR PUCCH (s) is a Negative SR, send AN over AN PF1 resource.
  • SR information for at least one SR PUCCH is a Positive SR
  • send an AN on a specific SR PF1 resource corresponding to the specific SR PUCCH group.
  • grouping each of the L SR PUCCH groups into different L SR F1 groups. Can respond / map to resources.
  • the SR information for all SR PUCCH (s) is a Negative SR, send AN over AN PF1 resource.
  • the SR PUCCH group may be composed of one or more SR PUCCHs, and one or more SR PUCCH groups may be defined.
  • SR PF0 is a positive SR and has the highest priority
  • AN + SR on AN F0 by CS Offset & SR Bundling.
  • the SR bundling target is limited to SR F0s only.
  • the SR bundling target includes both SR PF0 and SR PF1.
  • SR PF is a positive SR
  • AN + SR on SR PF1 by CH selection & SR bundling.
  • the SR bundling target includes both SR PF0 and SR PF1.
  • the SR bundling target includes both SR PF0 and SR PF1.
  • a / N PUCCH resource and SR PUCCH resource in a slot may overlap (all or some OFDM symbol (s) in PUCCH) on the time axis.
  • the UE assumes A / N and (positive) multiplexing between SRs according to the relative relationship between the transmission start time of PUCCH (hereinafter, MUX PUCCH) and SR PUCCH transmission start point (positive). Multiplexing between SRs can be determined.
  • transmission of one of the A / N and the (positive) SR may be omitted.
  • the UE may determine whether to multiplex between the A / N and the (positive) SR as follows according to whether the transmission start time of the SR PUCCH is advanced by T 0 or later than the transmission start time of the MUX PUCCH.
  • a / N PUCCH is PUCCH format 0
  • a / N PUCCH is PUCCH format 1
  • a / N PUCCH is one of PUCCH formats 2/3/4
  • T 0 may be one of the following.
  • T 0 may be represented in units of (OFDM) symbols.
  • a value promised in advance between the base station and the terminal (eg, fixed value)
  • [Proposal # 2] may be applied when A / N PUCCH is PUCCH format 0/2/3/4.
  • the start between the A / N PUCCH and the SR PUCCH is different in the NR system
  • the start between the A / N PUCCH (hereinafter referred to as A / N PUCCH 1) and the SR PUCCH (OFDM) symbol assuming A / N only transmission A method of determining whether UCI multiplexing between A / N and SR by comparing (or starting time) was discussed. For example, when the start (OFDM) symbol of SR PUCCH is earlier than the start (OFDM) symbol of A / N PUCCH 1, the UE transmits SR PUCCH and omits A / N transmission.
  • the UE may transmit UCI multiplexing of the SR and the A / N through a single PUCCH.
  • the above operation is because the terminal is expected to process the PUCCH preceding the start (OFDM) symbol first.
  • a / N PUCCH is in PUCCH format 0/2/3/4 when multiplexing A / N and SR in NR system and transmitting it through a single PUCCH resource, a single PUCCH resource is total for A / N and SR.
  • the UCI payload size may be calculated to be a newly selected A / N PUCCH resource (hereinafter, A / N PUCCH 2) and may be different from A / N PUCCH 1. Accordingly, after the UE determines that the start (OFDM) symbol of the SR PUCCH is later than (or the same as) the start (OFDM) symbol of the A / N PUCCH 1, the UE intends to transmit A / N and SR to the A / N PUCCH 2. When the start of the A / N PUCCH 2 (OFDM) symbol ahead of the SR PUCCH may occur. Thus, for more consistent UE operation, it may be desirable to compare the posterior relationship between the start (OFDM) symbol of A / N PUCCH 2 and the start (OFDM) symbol of SR PUCCH rather than A / N PUCCH 1.
  • a / N PUCCH resource and SR PUCCH resource in the slot may overlap (all or some OFDM symbol (s) in the PUCCH) on the time axis.
  • the transmission start time of PUCCH (hereinafter, MUX PUCCH) to be used when assuming multiplexing between A / N and (positive) SR may be later than the start time of transmission of SR PUCCH.
  • the UE may stop the corresponding SR PUCCH transmission and multiplex A / N and (positive) SR with MUX PUCCH.
  • the UE may use PUCCH to assume multiplexing between A / N and (positive) SR.
  • the transmission start time of the following (MUX PUCCH) may be later than the transmission start time of the A / N PUCCH. In this case, if there is On-going A / N PUCCH transmission (in the best effort), the UE stops transmitting the corresponding A / N PUCCH and multiplexes A / N and (positive) SR with MUX PUCCH and transmits it.
  • the above operation may be limited to a terminal having a specific terminal capability.
  • the terminal may omit the corresponding A / N transmission in a simple manner. However, if the terminal has sufficient capability, it may try to stop the SR transmission currently in progress (ie, in the best effort manner), multiplex the A / N and the SR, and transmit the single PUCCH resource. Alternatively, after the UE performs A / N transmission, a positive SR for SR PUCCH resources partially overlapping with the A / N PUCCH on the time axis may occur.
  • the UE may stop A / N transmission that is currently in progress (ie, in the best effort manner), and may attempt to transmit through a single PUCCH resource by multiplexing A / N and SR.
  • the terminal can support multiplexed transmission of A / N and SR even when SR and A / N collide with each other.
  • a / N PUCCH is PF0 or PF1
  • a / N PUCCH resource and SR PUCCH resource (s) are overlapped on the time axis (all or some OFDM symbol (s) in PUCCH) in a slot.
  • the UE may differently apply the UCI multiplexing rule for the A / N and the SR according to the number of SR processes corresponding to the SR PUCCH resource (s) overlapping the A / N PUCCH resource.
  • the UE may apply the UCI multiplexing rule to A / N and SR as follows. .
  • a / N PUCCH is PUCCH format 0
  • a / N PUCCH is PUCCH Format 1
  • a / N PUCCH is PF0 or PF1
  • a / N PUCCH resource may be a resource selected based on the UCI payload size including the A / N and the multi-bit SR, and may be one of PF2 / 3/4.
  • the SR PUCCH resource settings corresponding to the plurality of SR processes are classified by a specific ID and may be independent of each other.
  • the UE when the A / N PUCCH is PF0 or PF1, the supported A / N payload size is 2 bits or less.
  • the UE uses the resource selection method rather than using the PUCCH format (for example, PF2 / 3/4) for the large UCI payload size in which the multiplexing capacity is low. It can express positive / negative SR for.
  • the UE may transmit information on which SR process is a positive / negative SR in addition to the positive / negative SR to the base station. It should be possible.
  • a PUCCH format for a large UCI payload size of 3 bits or more (e.g., PF2 / 3/4), rather than utilizing a resource selection method as in the case of one SR process. ) May be more efficient.
  • a / N PUCCH resource is not based on DL assignment
  • a / N and CSI are multiplexed and transmitted to CSI PUCCH
  • i. Opt. 1 transmit CSI through CSI PUCCH resource (omit A / N transmission)
  • a / N PUCCH resource is based on DL assignment
  • CSI reference resource means a time resource that is a reference of CSI calculation.
  • a (valid) DL slot is a slot included in the same DL BWP as a slot set to a DL slot (to a terminal) and / or a slot not included in a measurement gap (eg, a measurement gap) and / or a DL BWP in which CSI reporting is performed. It may mean.
  • T 0 may be one of the following.
  • T 0 may be represented in units of (OFDM) symbols.
  • a value promised in advance between the base station and the terminal (eg, fixed value)
  • T 1 may be one of the following.
  • T 1 may be represented in units of (OFDM) symbols.
  • the A / N PUCCH resource is re-selected based on the total UCI payload size for A / N and CSI.
  • the multiplexing operation may be applied even when the A / N PUCCH and the CSI PUCCH partially overlap in the time axis.
  • T 0 which is the terminal processing time
  • the CSI is not multiplexed with the A / N
  • the CSI is updated with the A / N and multiplexed. Suggest.
  • the UE may transmit the A / N and the CSI by multiplexing the CSI PUCCH.
  • a / N is transmitted through CSI PUCCH
  • multiplexing between A / N and CSI may be allowed only when minimum UL timing for A / N transmission is guaranteed. That is, the A / N PUCCH for PDSCH (s) (and / or PDCCH (s)) received up to a point before T 1 based on the start time of CSI PUCCH transmission overlaps with the CSI PUCCH. Only when the multiplexing between the A / N and CSI is performed, otherwise the A / N transmission can be omitted and only the CSI PUCCH can be transmitted.
  • the UE punctures some (OFDM) symbol (s) in a specific PUCCH (or PUSCH) resource (hereinafter UL-CH1), and another PUCCH (or PUSCH) in the (OFDM) symbol (s) ) Resources (hereinafter, UL-CH2) may be transmitted.
  • UL-CH1 a specific PUCCH (or PUSCH) resource
  • UL-CH2 a specific PUCCH (or PUSCH) resource (hereinafter, UL-CH2)
  • UL-CH2 resources
  • the transmission power for UL-CH2 may be applied as follows.
  • the terminal may even transmit resources (discontinuously) after the puncturing of the UL-CH1.
  • DM-RS means a data demodulation reference signal.
  • DM-RS is present in a resource after puncturing of UL-CH1, transmission of the remaining resources of UL-CH1 is omitted.
  • phase continuity means that there is no phase difference except for the phase difference according to the channel change between the resource before and after puncturing for the UL-CH1.
  • TXP2 may be a value that the terminal arbitrarily selects according to the implementation.
  • PC UL power control
  • the UE needs to perform PUCCH transmission for an urgent service (eg, URLLC) while transmitting a PUSCH.
  • the UE since the UE is already in progress of the PUSCH transmission (for example, on-going transmission), the UE should terminate the PUSCH transmission and transmit the PUCCH.
  • only OFDM symbols on which PUCCH is transmitted may be punctured.
  • a phase is established between a PUSCH resource transmitted in front and a PUSCH resource transmitted in the rear with respect to the puncturing interval as a power amplifier (PA) setting is initialized. This may vary.
  • PA power amplifier
  • the present invention punctures some (OFDM) symbol (s) in a PUCCH (or PUSCH) resource (i.e., UL-CH1), and other PUCCH (or PUSCH) resource (s) within the (OFDM) symbol (s). That is, when transmitting the UL-CH2), the UE may perform the following operation to reduce the phase change.
  • OFDM OFDM
  • the A / N PUCCH resource and the PUSCH resource in the slot may overlap (either or all or some OFDM symbol (s) in the PUCCH or PUSCH) on the time axis.
  • the UE may correspond to (or indicate from the corresponding PDSCH / PDCCH) PDSCH (s) (and / or PDCCH (s)) received (or initiated transmission) up to a certain time point (from the reference time point).
  • transmission of one of the A / N and UL data may be omitted.
  • the UE may correspond to (or begin to transmit) PDSCH (s) (and / or PDCCH (s)) received up to a time before T 0 based on a transmission start time point (eg, a start symbol) of the PUSCH (or It may be determined whether to perform A / N piggyback on the PUSCH according to whether the A / N PUCCH resource (indicated from the corresponding PDSCH / PDCCH) overlaps the PUSCH on the time axis.
  • a transmission start time point eg, a start symbol
  • a / N and UL data are multiplexed and transmitted (i.e., U / C piggybacked by A / N to PUSCH) (or A / N PUCCH and PUSCH are completely overlapped with PUCCH or all OFDM symbols in PUSCH on time axis)
  • U / N and UL data are multiplexed and transmitted (i.e., U / C piggybacked by A / N to PUSCH) (or A / N PUCCH and PUSCH are completely overlapped with PUCCH or all OFDM symbols in PUSCH on time axis)
  • a / N PUCCH resource corresponding to (s)) overlaps with the PUSCH resource on the time axis or is received up to a point before T 0 based on the transmission start time of the PUSCH ( Or A / N PUCCH resources corresponding to PDSCH (s) (and / or PDCCH (s)) that have been started (or indicated from the corresponding PDSCH / PDCCH) do not overlap the PUSCH resources on the time axis, or the transmission of PUSCH There is an A / N PUCCH resource corresponding to (or indicated from the corresponding PDSCH / PDCCH) PDSCH (s) (and / or PDCCH (s)) received (or initiated
  • UL data is transmitted through PUSCH resource (A / N transmission is omitted)
  • a / N is transmitted through A / N PUCCH resource (PUSCH transmission is omitted)
  • the A / N for the PDSCH scheduled by DL assignment which is received after receiving the UL grant for the PUSCH, may not be the subject of UCI piggyback to the PUSCH.
  • T 0 may be one of the following.
  • T 0 may be represented in units of (OFDM) symbols.
  • UE processing time required until A / N transmission after PDSCH termination or a corresponding value according to UE capability (1) UE processing time required until A / N transmission after PDSCH termination or a corresponding value according to UE capability.
  • UE processing time or a value corresponding thereto required until A / N (PUCCH) transmission corresponding to the PDSCH after PDSCH reception according to UE capability (2) UE processing time or a value corresponding thereto required until A / N (PUCCH) transmission corresponding to the PDSCH after PDSCH reception according to UE capability. Or, UE processing time required for UCI (PUCCH) transmission or a corresponding value according to UE capability
  • the UE when the PUCCH is a PUCCH (hereinafter, A / N PUCCH) for HARQ-ACK transmission, the UE is based on a PUSCH transmission start time point (which is a time required until A / N transmission after PDSCH reception according to terminal capability) . Only A / N for PDSCH (s) (and / or PDCCH (s)) received up to a time earlier may be transmitted in PUSCH.
  • the present invention is similar to the UCI multiplexing rule ([Proposal # 1]) between the SR PUCCH and the A / N PUCCH, based on the PDSCH (s) received by the UE up to a point before T 0 based on the PUSCH transmission start time point ( And / or whether the A / N PUCCH resource for the PDCCH (s) overlaps with the PUSCH resource on the time axis, to determine whether to piggyback the UCI for the A / N.
  • the UCI multiplexing rule [Proposal # 1]
  • the UE may piggyback CSI on the PUSCH without transmitting the CSI PUCCH. At this time, if the processing time for the CSI calculation is not enough to prepare for the PUSCH transmission, the UE may not update the CSI.
  • the UE may operate as follows.
  • a / N If, based on the transmission start time (or slots) of the PUCCH is UL channels that overlap in the A / N PUCCH and time axis to the T 0 before the time that is set / no indication (e.g., UL channel SR May be a PUCCH or a PUSCH carrying a UL-SCH TB)
  • A. UE transmits only A / N through A / N PUCCH resource
  • PUCCH-A transmitting (specific) UCI (hereinafter UCI-A)
  • PDSCH (s) (and / or PDCCH (s)) received (or initiated transmission) up to a point before T 1 with respect to the transmission start time of the PUCCH-A resource.
  • a / N PUCCH resources overlap with the PUCCH-A resources on the time axis, A / N and UCI-A are multiplexed and transmitted through a single PUCCH resource.
  • a / N PUCCH resource (indicated from / PDCCH) does not overlap with the PUCCH-A resource on the time axis, or PDSCH received up to a point in time before T 1 based on a transmission start time of a PUCCH-A resource (or transmission started)
  • a / N (only) is transmitted through A / N PUCCH resource (UCI-A transmission is omitted)
  • the UL channel is a PUSCH transmitting UL-SCH TB (or UL data)
  • -Opt. 1 transmit UL-SCH (only) through PUSCH resource (omit A / N transmission)
  • a / N (only) is transmitted through A / N PUCCH resource (UL-SCH transmission is omitted)
  • T 0 , T 1 , and T 2 may be one of the following.
  • T 0 , T 1 , and T 2 may be represented in units of (OFDM) symbols.
  • the UE may apply the following (generalized) UCI multiplexing rule.
  • PUCCH resource (PUCCH 1 ) for the specific UCI 1 is first set / indicated, the PUCCH until the time before T 0 based on the transmission start time (or slot) of the PUCCH resource (PUCCH 1 ) for the UCI 1 .
  • PUCCH resource (PUCCH 2 ) is set / indicated for 1 and the specific UCI 2 overlapping on the time axis
  • a single PUCCH resource may be a resource other than PUCCH 1 and PUCCH 2 .
  • the PUCCH resource for a specific UCI is first set / indicated, the PUCCH resource overlaps with the PUCCH resource on a time axis until a time before T 0 based on a transmission start time (or slot) of the PUCCH resource for the specific UCI.
  • PUSCH resource for UL-SCH TB is set / indicated
  • T 1 If that is not the UL channel, which overlap in the PUSCH and time axis setting / instruction to an earlier point in time (for example, the UL Channel may be PUCCH)
  • A. UE transmits only specific UL-SCH through PUSCH resource
  • the PUSCH resource for a specific UL-SCH is first set / indicated, the PUSCH resource and time until a point before T 1 based on the transmission start time (or slot) of the PUSCH resource for the specific UL-SCH.
  • PUCCH resources are set / indicated for a specific UCI nested in an axis
  • a UE multiplexes UCI and UL-SCH TB and transmits it through a PUSCH resource (ie, UCI piggyback)
  • T 0 , T 1 may be one of the following.
  • T 0 and T 1 may be represented in units of (OFDM) symbols.
  • the time point at which PUCCH resources are set / indicated for the UCI may be regarded as a PDSCH reception (end) time point corresponding to the A / N.
  • the operation in which the PUCCH resource for the specific UCI is first set / indicated may include an operation set based on an upper layer (eg, RRC) signal.
  • the PUCCH resource preset by the higher layer signal may be regarded as a resource that is always set / indicated before the PUCCH resource indicated by the DCI.
  • UCI 1 and UCI 2 may be SR and A / N, respectively, or (periodic) CSI and HARQ-ACK, respectively.
  • a / N PUCCH is PUCCH format 0
  • a / N is transmitted through A / N PUCCH resource
  • a / N PUCCH is PUCCH Format 1
  • a / N is transmitted through A / N PUCCH resource
  • a / N PUCCH is in PUCCH format 2/3/4
  • a / N and CSI are multiplexed and transmitted through A / N PUCCH resource
  • a / N PUCCH is not indicated by DL assignment
  • a / N and CSI are multiplexed and transmitted through CSI PUCCH resource
  • the A / N PUCCH resource and the PUSCH resource in the slot may overlap.
  • the UE may be later than the transmission time of the PUSCH transmission of the A / N PUCCH. In this case, if there is On-going PUSCH transmission (in the best effort), the UE may stop the corresponding PUSCH transmission and transmit A / N through the A / N PUCCH.
  • the A / N PUCCH resource and the PUSCH resource in the slot may overlap on the time axis (all or some OFDM symbol (s) in the PUCCH or PUSCH).
  • the transmission start time of the A / N PUCCH may be earlier than the transmission time of the PUSCH.
  • the UE may stop the corresponding PUCCH transmission and piggyback A / N to the PUSCH.
  • the UE After the UE performs the PUSCH transmission, when the UE determines the existence of the A / N PUCCH resources partially overlapped with the corresponding PUCCH on the time axis, the UE may omit the corresponding A / N transmission in a simple manner. However, if the UE is capable enough, it may stop the PUSCH transmission currently in progress (ie, in the best effort manner) and attempt to transmit the A / N through the A / N PUCCH resource. Through the operation of [Proposed Method # 6.1], the UE can support the transmission of A / N transmission to the maximum even when the PUSCH and the A / N collide.
  • FIG. 15 illustrates a base station and a terminal that can be applied to the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • the wireless communication system includes a relay
  • the base station or the terminal may be replaced with a relay.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112. Memory 114 may be part of a communication modem / chip in which processor 112 is used for 3GPP-based wireless communication (eg, NR).
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • Memory 114 may be part of a communication modem / chip in which processor 112 is used for 3GPP-based wireless communication (eg, NR).
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a base station may in some cases be performed by an upper node thereof. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 복수의 UCI 전송을 위해 복수의 PUCCH 자원을 결정하는 단계; 상기 결정된 복수의 PUCCH 자원 중 제1 PUCCH 자원을 기준으로 기준으로, (1) 상기 제1 PUCCH 자원 및 (2) 상기 제1 PUCCH 자원과과 시간 축에서 겹치는 하나 이상의 제2 PUCCH 자원과 관련된 UCI를 다중화하는 단계; 및 상기 다중화된 UCI의 전송을 위해 제3 PUCCH 자원을 결정하는 단계를 포함하고, 여기서, 상기 제1 PUCCH 자원은 상기 결정된 복수의 PUCCH 자원 중 시작 심볼이 가장 빠른 PUCCH 자원인 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 통신 장치가 제어 정보를 전송하는 방법에 있어서, 복수의 UCI(Uplink Control Information) 전송을 위해 복수의 PUCCH(Physical Uplink Control Channel) 자원을 결정하는 단계; 상기 결정된 복수의 PUCCH 자원 중 제1 PUCCH 자원을 기준으로 기준으로, (1) 상기 제1 PUCCH 자원 및 (2) 상기 제1 PUCCH 자원과과 시간 축에서 겹치는 하나 이상의 제2 PUCCH 자원과 관련된 UCI를 다중화하는 단계; 및 상기 다중화된 UCI의 전송을 위해 제3 PUCCH 자원을 결정하는 단계를 포함하고, 여기서, 상기 제1 PUCCH 자원은 상기 결정된 복수의 PUCCH 자원 중 시작 심볼이 가장 빠른 PUCCH 자원인 방법이 제공된다.
바람직하게, 상기 다중화된 UCI를 상기 제3 PUCCH 자원을 이용하여 전송하는 단계를 더 포함할 수 있다.
바람직하게, (1) 상기 제3 PUCCH 자원 및 (2) 상기 제3 PUCCH 자원과 시간 축에서 겹치는 하나 이상의 제4 PUCCH 자원과 관련된 제1 UCI를 다중화하는 단계; 및 상기 다중화된 제1 UCI의 전송을 위해 제5 PUCCH 자원을 결정하는 단계를 더 포함하고, 상기 제4 PUCCH 자원에는 상기 제1 PUCCH 자원과 상기 하나 이상의 제2 PUCCH 자원이 포함되지 않을 수 있다.
바람직하게, 상기 결정된 복수의 PUCCH 자원은 동일 슬롯 내에 위치하며, 상기 슬롯은 복수의 심볼을 포함할 수 있다.
바람직하게, 상기 슬롯은 14개의 심볼을 포함하며, 각 PUCCH 자원의 시작 심볼의 인덱스는 0~13 중 하나이고, 각 PUCCH 자원의 전송 길이는 1~14개의 심볼 중 하나일 수 있다.
바람직하게, 상기 복수의 UCI는 적어도 A/N(Acknowledgement/Negative Acknowledgement), CSI(Channel State Information) 또는 SR(Scheduling Request)을 포함할 수 있다.
바람직하게, 상기 다중화된 UCI는 적어도 A/N을 포함하고, 상기 제3 PUCCH 자원은 상기 다중화된 UCI의 페이로드 크기에 기반하여 결정될 수 있다.
바람직하게, 상기 제3 PUCCH 자원이 시간 축에서 PUSCH(Physical Uplink Shared Channel) 자원과 겹치는 경우, 상기 다중화된 UCI는 상기 PUSCH를 통해 전송될 수 있다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용되는 통신 장치에 있어서, 메모리; 및 프로세서를 포함하고, 상기 프로세서는, 복수의 UCI(Uplink Control Information) 전송을 위해 복수의 PUCCH(Physical Uplink Control Channel) 자원을 결정하고, 상기 결정된 복수의 PUCCH 자원 중 제1 PUCCH 자원을 기준으로 기준으로, (1) 상기 제1 PUCCH 자원 및 (2) 상기 제1 PUCCH 자원과과 시간 축에서 겹치는 하나 이상의 제2 PUCCH 자원과 관련된 UCI를 다중화하며, 상기 다중화된 UCI의 전송을 위해 제3 PUCCH 자원을 결정하도록 구성되고, 여기서, 상기 제1 PUCCH 자원은 상기 결정된 복수의 PUCCH 자원 중 시작 심볼이 가장 빠른 PUCCH 자원인 통신 장치가 제공된다.
바람직하게, 상기 프로세서는 또한, 상기 다중화된 UCI를 상기 제3 PUCCH 자원을 이용하여 전송하도록 구성될 수 있다.
바람직하게, 상기 프로세서는 또한, (1) 상기 제3 PUCCH 자원 및 (2) 상기 제3 PUCCH 자원과 시간 축에서 겹치는 하나 이상의 제4 PUCCH 자원과 관련된 제1 UCI를 다중화하고, 상기 다중화된 제1 UCI의 전송을 위해 제5 PUCCH 자원을 결정하도록 구성되며, 상기 제4 PUCCH 자원에는 상기 제1 PUCCH 자원과 상기 하나 이상의 제2 PUCCH 자원이 포함되지 않을 수 있다.
바람직하게, 상기 결정된 복수의 PUCCH 자원은 동일 슬롯 내에 위치하며, 상기 슬롯은 복수의 심볼을 포함할 수 있다.
바람직하게, 상기 슬롯은 14개의 심볼을 포함하며, 각 PUCCH 자원의 시작 심볼의 인덱스는 0~13 중 하나이고, 각 PUCCH 자원의 전송 길이는 1~14개의 심볼 중 하나일 수 있다.
바람직하게, 상기 복수의 UCI는 적어도 A/N(Acknowledgement/Negative Acknowledgement), CSI(Channel State Information) 또는 SR(Scheduling Request)을 포함할 수 있다.
바람직하게, 상기 다중화된 UCI는 적어도 A/N을 포함하고, 상기 제3 PUCCH 자원은 상기 다중화된 UCI의 페이로드 크기에 기반하여 결정될 수 있다.
바람직하게, 상기 제3 PUCCH 자원이 시간 축에서 PUSCH(Physical Uplink Shared Channel) 자원과 겹치는 경우, 상기 다중화된 UCI는 상기 PUSCH를 통해 전송될 수 있다.
바람직하게, 상기 통신 장치는 RF(Radio Frequency) 유닛을 더 포함할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 6은 ACK/NACK 전송 과정을 예시한다.
도 7은 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 8은 제어 정보를 PUSCH에 다중화하는 예를 나타낸다.
도 9~14는 본 발명에 따른 신호 전송을 예시한다.
도 15 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols N PUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 6은 ACK/NACK 전송 과정을 예시한다. 도 6을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
도 7은 PUSCH 전송 과정을 예시한다. 도 7을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
도 8은 USI를 PUSCH에 다중화 하는 예를 나타낸다. 슬롯 내에 복수의 PUCCH 자원과 PUSCH 자원이 중첩되고, PUCCH-PUSCH 동시 전송이 설정되지 않은 경우, UCI는 도시된 바와 같이 PUSCH를 통해 전송될 수 있다(UCI 피기백 또는 PUSCH 피기백). 도 8은 HARQ-ACK과 CSI가 PUSCH 자원에 실리는 경우를 예시한다.
실시예: UL 채널들의 다중화
NR 시스템에서는 단일 물리 네트워크 상에 복수의 논리 네트워크를 구현하는 방안이 고려되고 있다. 여기서, 논리 네트워크는 다양한 요구 조건을 갖는 서비스 (예, eMBB, mMTC, URLLC 등)를 지원할 수 있어야 한다. 따라서, NR의 물리 계층은 다양한 서비스에 대한 요구 조건을 고려하여 유연한 전송 구조를 지원하도록 설계되고 있다. 일 예로, NR의 물리 계층은 필요에 따라 OFDM 심볼 길이 (OFDM 심볼 구간) 및 부반송파 간격(SCS)(이하, OFDM 뉴머놀로지)을 변경할 수 있다. 또한, 물리 채널들의 전송 자원도 (심볼 단위로) 일정 범위 내에서 변경될 수 있다. 예를 들어, NR에서 PUCCH (자원)과 PUSCH (자원)은 전송 길이/전송 시작 시점이 일정 범위 내에서 유연하게 설정될 수 있다.
한편, 기지국과 단말로 구성된 무선 통신 시스템에서 단말이 UCI를 PUCCH로 전송할 때, PUCCH 자원이 시간 축에서 다른 PUCCH 자원 혹은 PUSCH 자원과 중첩될 수 있다. 예를 들어, 동일 단말 관점에서 (동일 슬롯 내에서) (1) (서로 다른 UCI 전송을 위한) PUCCH (자원)와 PUCCH (자원), 혹은 (2) PUCCH (자원)와 PUSCH (자원)가 시간 축에서 중첩될 수 있다. 한편, 단말은 (단말 능력의 제한, 또는 기지국으로부터 받은 설정 정보에 따라) PUCCH-PUCCH 동시 전송 혹은 PUCCH-PUSCH 동시 전송을 지원하지 않을 수 있다. 이 경우, 단말은 (1) 서로 다른 UCI들 혹은 (2) UCI(들)와 UL 데이터를 최대한 다중화하여 전송하는 것이 바람직할 수 있다. 그러나, NR 시스템에서는 (슬롯 내) 시간 축에서 중첩된 (1) PUCCH (자원)와 PUCCH (자원), 혹은 (2) PUCCH (자원)과 PUSCH (자원) 간에 전송 길이(예, 심볼 개수) 및/또는 전송 시작 시점(예, 시작 심볼)이 다를 수 있다. 따라서, 단말의 처리 시간 관점에서, 단말이 (1) 서로 다른 UCI들 혹은 (2) UCI(들)와 UL 데이터를 다중화하여 전송하기 어려운 경우가 발생할 수 있다. 예를 들어, A/N을 전송하는 PUCCH (이하, A/N PUCCH)와 SR을 전송하는 PUCCH (이하, SR PUCCH)가 시간 축에서 (일부 혹은 전부) 중첩될 수 있다. 이 경우, 단말이 SR PUCCH에 대한 전송을 이미 시작했거나 전송 준비를 마친 이후, 상기 SR PUCCH와 중첩되는 A/N PUCCH의 존재를 인지하면, 단말은 A/N PUCCH 내 A/N을 SR과 다중화하여 전송하기 어려울 수 있다.
기존의 NR 시스템에서는 A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 완전히 중첩될 경우(즉, 전송 구간이 일치), A/N PUCCH의 PUCCH 포맷에 따라 아래와 같이 UCI 다중화 규칙을 적용한다. positive SR은 단말이 전송할 UL 데이터가 있음을 의미하고, negative SR은 단말이 전송할 UL 데이터가 없음을 의미한다.
(1) A/N PUCCH가 PUCCH 포맷 0인 경우
A. SR에 대한 UCI 상태가 positive SR인 경우
- A/N을 A/N PUCCH에 CS/OCC/PRB 오프셋이 적용된 자원을 통해 전송
B. SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
(2) A/N PUCCH가 PUCCH 포맷 1인 경우
A. SR에 대한 UCI 상태가 positive SR인 경우
- A/N을 SR PUCCH 자원을 통해 전송
B. SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
(3) A/N PUCCH가 PUCCH 포맷 2/3/4 중 하나인 경우
A. SR에 대한 UCI 상태가 positive SR 또는 negative SR인 경우
- SR을 명시적 비트(들)로 표현하여 A/N에 부가(Appending)하여 UCI 페이로드 생성 후, 상기 생성된 UCI를 A/N PUCCH 자원을 통해 전송
그러나, 기존 방안은 A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 완전히 중첩될 경우에 대해서만 UCI 다중화 방안을 정의하고 있다. 따라서, 효율적인 UCI 전송을 위해 다양한 상황을 고려하여 UCI 다중화 방안을 논의할 필요가 있다.
상술한 문제를 해결하기 위해, 본 발명에서는 시간 축에서 중첩된 UL 채널(들)에 대한 UCI 및/또는 데이터를 다중화하는 동작을 제안한다. 구체적으로, 본 발명에서는 UL 채널(들)의 전송 시작 시점 및/또는 단말의 처리 시간을 고려하여 UL 채널(들)에 대한 UCI 및/또는 데이터를 다중화하는 동작을 제안한다.
먼저, 다음과 같이 용어를 정의한다.
- UCI: 단말이 UL 전송하는 제어 정보를 의미한다. UCI는 여러 타입의 제어 정보(즉, UCI 타입)을 포함한다. 예를 들어, UCI는 HARQ-ACK (간단히, A/N, AN), SR, CSI를 포함할 수 있다.
- PUCCH: UCI 전송을 위한 물리계층 UL 채널을 의미한다. 편의상, A/N, SR, CSI 전송을 위해, 기지국이 설정한 및/또는 전송을 지시한 PUCCH 자원을 각각 A/N PUCCH 자원, SR PUCCH 자원, CSI PUCCH 자원으로 명명한다.
- PUSCH: UL 데이터 전송을 위한 물리계층 UL 채널을 의미한다.
- UCI 다중화(multiplexing): 서로 다른 UCI (타입)들을 공통의 물리계층 UL 채널(예, PUCCH, PUSCH)을 통해 전송하는 동작을 의미할 수 있다. UCI 다중화는 서로 다른 UCI (타입)들을 다중화하는 동작을 포함할 수 있다. 편의상, 다중화된 UCI를 MUX UCI라고 지칭한다. 또한, UCI 다중화는 MUX UCI와 관련하여 수행되는 동작을 포함할 수 있다. 예를 들어, UCI 다중화는 MUX UCI를 전송하기 위해 UL 채널 자원을 결정하는 과정을 포함할 수 있다.
- UCI/데이터 다중화: UCI와 데이터를 공통의 물리계층 UL 채널(예, PUSCH)을 통해 전송하는 동작을 의미할 수 있다. UCI/데이터 다중화는 UCI와 데이터를 다중화하는 동작을 포함할 수 있다. 편의상, 다중화된 UCI를 MUX UCI/Data라고 지칭한다. 또한, UCI/데이터 다중화는 MUX UCI/Data와 관련하여 수행되는 동작을 포함할 수 있다. 예를 들어, UCI/데이터 다중화는 MUX UCI/Data를 전송하기 위해 UL 채널 자원을 결정하는 과정을 포함할 수 있다.
- 슬롯: 데이터 스케줄링을 위한 기본 시간 단위(time unit (TU), 또는 time interval)를 의미한다. 슬롯은 복수의 심볼을 포함한다. 여기서, 심볼은 OFDM-기반 심볼(예, CP-OFDM 심볼, DFT-s-OFDM 심볼)을 포함한다. 본 명세서에서 심볼, OFDM-기반 심볼, OFDM 심볼, CP-OFDM 심볼 및 DFT-s-OFDM 심볼은 서로 대체될 수 있다.
- 중첩된 UL 채널 자원(들): 소정 시간 구간(예, 슬롯) 내에서 시간 축에서 (적어도 일부가) 중첩된 UL 채널(예, PUCCH, PUSCH) 자원(들)을 의미한다. 중첩된 UL 채널 자원(들)은 UCI 다중화 수행 이전의 UL 채널 자원(들)을 의미할 수 있다.
PUCCH 포맷은 UCI 페이로드 크기 및/또는 전송 길이(예, PUCCH 자원을 구성하는 심볼 개수)에 따라 다음과 같이 구분될 수 있다. PUCCH 포맷에 관한 사항은 표 5를 함께 참조할 수 있다.
(0) PUCCH 포맷 0 (PF0, F0)
- 지원 가능한 UCI 페이로드 사이즈: up to K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼(예, X = 2)
- 전송 구조: DM-RS 없이 UCI 신호만으로 구성되고, 복수의 시퀀스들 중 하나를 선택 및 전송함으로써 UCI 상태를 전송
(1) PUCCH 포맷 1 (PF1, F1)
- 지원 가능한 UCI 페이로드 사이즈: up to K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼(예, Y = 4, Z = 14)
- 전송 구조: DM-RS와 UCI가 서로 다른 OFDM 심볼에 TDM 형태로 구성되고, UCI는 특정 시퀀스에 변조(예, QPSK) 심볼을 곱해주는 형태. UCI와 DM-RS에 모두 CS(Cyclic Shift)/OCC(Orthogonal Cover Code)를 적용하여 (동일 RB 내에서) (PUCCH 포맷 1을 따르는) 복수 PUCCH 자원들간에 CDM을 지원
(2) PUCCH 포맷 2 (PF2, F2)
- 지원 가능한 UCI 페이로드 사이즈: more than K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼(예, X = 2)
- 전송 구조: DMRS와 UCI가 동일 심볼 내에서 FDM 형태로 구성/매핑되며, 부호화된 UCI 비트에 DFT없이 IFFT만을 적용하여 전송되는 구조
(3) PUCCH 포맷 3 (PF3, F3)
- 지원 가능한 UCI 페이로드 사이즈: more than K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼(예, Y = 4, Z = 14)
- 전송 구조: DMRS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되고, 부후화된 UCI 비트에 DFT를 적용하여 전송하는 형태. UCI에는 DFT 전단에서 OCC를 적용하고 DMRS에는 CS (또는 IFDM 매핑)를 적용하여 복수 단말에 다중화 지원
(4) PUCCH 포맷 4 (PF4, F4)
- 지원 가능한 UCI 페이로드 사이즈: more than K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼(예, Y = 4, Z = 14)
- 전송 구조: DMRS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되며, 부호화된 UCI 비트에 DFT를 적용하여 단말간 다중화 없이 전송되는 구조
UCI 타입(예, A/N, SR, CSI) 별로 PUCCH 자원이 결정될 수 있다. UCI 전송에 사용되는 PUCCH 자원은 UCI (페이로드) 사이즈에 기반하여 결정될 수 있다. 일 예로, 기지국은 단말에게 복수의 PUCCH 자원 세트를 설정하고, 단말은 UCI (페이로드) 사이즈(예, UCI 비트 수)의 범위에 따라 특정 범위에 대응되는 특정 PUCCH 자원 세트를 선택할 수 있다. 예를 들어, 단말은 UCI 비트 수(N UCI)에 따라 다음 중 하나의 PUCCH 자원 세트를 선택할 수 있다.
- PUCCH 자원 세트 #0, if UCI 비트 수 ≤ 2
- PUCCH 자원 세트 #1, if 2< UCI 비트 수 ≤ N 1
...
- PUCCH 자원 세트 #(K-1), if N K-2 < UCI 비트 수 ≤ N K-1
여기서, K는 PUCCH 자원 세트를 개수를 나타내고(K>1), N i는 PUCCH 자원 세트 #i가 지원하는 최대 UCI 비트 수이다. 예를 들어, PUCCH 자원 세트 #1은 PUCCH 포맷 0~1의 자원으로 구성될 수 있고, 그 외의 PUCCH 자원 세트는 PUCCH 포맷 2~4의 자원으로 구성될 수 있다(표 5 참조).
UCI 타입이 SR, CSI인 경우, PUCCH 자원 세트 내에서 UCI 전송에 활용할 PUCCH 자원은 상위계층 시그널링(예, RRC 시그널링)을 통해 설정될 수 있다. UCI 타입이 SPS(Semi-Persistent Scheduling) PDSCH에 대한 HARQ-ACK인 경우, PUCCH 자원 세트 내에서 UCI 전송에 활용할 PUCCH 자원은 상위계층 시그널링(예, RRC 시그널링)을 통해 설정될 수 있다. 반면, 반면, UCI 타입이 보통 PDSCH (즉, DCI에 의해 스케줄링된 PDSCH)에 대한 HARQ-ACK인 경우, PUCCH 자원 세트 내에서 UCI 전송에 활용할 PUCCH 자원은 DCI에 기반하여 스케줄링 될 수 있다.
DCI-기반한 PUCCH 자원 스케줄링의 경우, 기지국은 단말에게 PDCCH를 통해 DCI를 전송하며, DCI 내의 ARI(ACK/NACK Resource Indicator)를 통해 특정 PUCCH 자원 세트 내에서 UCI 전송에 활용할 PUCCH 자원을 지시할 수 있다. ARI는 ACK/NACK 전송을 위한 PUCCH 자원을 지시하는데 사용되며, PRI(PUCCH Resource Indicator)로 지칭될 수도 있다. 여기서, DCI는 PDSCH 스케줄링에 사용되는 DCI이고, UCI는 PDSCH에 대한 HARQ-ACK을 포함할 수 있다. 한편, 기지국은 ARI가 표현할 수 있는 상태(state) 수보다 많은 PUCCH 자원들로 구성된 PUCCH 자원 세트를 (단말-특정) 상위 계층(예, RRC) 신호를 이용하여 단말에게 설정할 수 있다. 이때, ARI는 PUCCH 자원 세트 내 PUCCH 자원 서브-세트를 지시하고, 지시된 PUCCH 자원 서브-세트 내에서 어떤 PUCCH 자원을 사용할지는 PDCCH에 대한 전송 자원 정보(예, PDCCH의 시작 CCE 인덱스 등)에 기반한 암묵적 규칙(implicit rule)에 따라 결정될 수 있다.
아래에서 설명하는 각 제안 방안은 다른 제안 방안들과 상호 배치되지 않는 한 결합되어 함께 적용될 수 있다.
PUCCH/PUCCH 다중화
[제안 방안 #1] A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼들이) 중첩될 수 있다. 이 경우, (기준 시점으로부터) 특정 시점 이전까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되는지 여부에 따라, 단말에서 A/N과 (positive) SR 간의 다중화 여부를 결정할 수 있다.
단, 단말이 A/N과 (positive) SR간의 다중화를 수행하지 않는 경우, A/N과 (positive) SR 중 하나의 전송이 생략될 수 있다.
일 예로, 단말은 SR PUCCH의 전송 시작 시점(예, 시작 심볼)(이하, Tsr)을 기준으로 T 0 이전 시점(이하, Tref,sr)까지 수신된 (또는 전송이 시작된) PDSCH(들) (또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되는지 여부에 따라, A/N과 (positive) SR 간의 다중화 여부를 결정할 수 있다. Tref,sr = Tsr - T 0로 정의되며, OFDM 심볼 단위로 표현될 수 있다.
(케이스 1) Tref,sr까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되는 경우, 단말은 A/N과 (positive) SR을 다중화하여 전송할 수 있다 (또는 A/N PUCCH와 SR PUCCH가 시간 축에서 PUCCH 내 모든 심볼들이 완전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 따를 수 있다)
(1) A/N PUCCH가 PUCCH 포맷 0인 경우
A. SR에 대한 UCI 상태가 positive SR인 경우
- A/N을 A/N PUCCH에 CS/OCC/PRB 오프셋이 적용된 자원을 통해 전송
B. SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
(2) A/N PUCCH가 PUCCH 포맷 1인 경우
A. SR에 대한 UCI 상태가 positive SR인 경우
- A/N을 SR PUCCH 자원을 통해 전송. 단, SR PUCCH가 PUCCH 포맷 0인 경우에는 SR을 전송하지 않고, A/N만 전송할 수 있다.
B. SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
(3) A/N PUCCH가 PUCCH 포맷 2/3/4 중 하나인 경우
A. SR에 대한 UCI 상태가 positive SR 또는 negative SR인 경우
- SR을 명시적 비트(들)로 표현하여 A/N에 부가(Appending)하여 UCI 페이로드 생성 후, 상기 생성된 UCI를 A/N PUCCH 자원을 통해 전송
(케이스 2) (케이스 1)에 해당하지 않는 경우, 단말은 A/N과 (positive) SR 중 하나를 선택하여 전송할 수 있다. 예를 들어, (i) Tref,sr 시점 이후에 수신된 (또는 전송이 시작/종료된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되거나, (ii) Tref,sr까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되지 않거나, (iii) ,sr까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 존재하지 않는 경우, 단말은 A/N과 (positive) SR 중 하나를 선택하여 전송할 수 있다.
(1) SR에 대한 UCI 상태가 positive SR인 경우
- SR을 SR PUCCH 자원을 통해 전송 (A/N 전송 생략)
(2) SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
T 0은 아래 중 하나일 수 있다. T 0는 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력(capability)에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른 복조에 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(5) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
[제안 방안 #1]는 A/N PUCCH이외의 PUCCH에도 확장 적용될 수 있다.
한편, NR 시스템에서는 A/N PUCCH와 SR PUCCH간 시작(starting) (OFDM) 심볼 (혹은 시작 시간)이 일치하는 경우, A/N PUCCH와 SR PUCCH가 시간 축에서 완전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 적용하는 단말 동작이 합의되었다. 반편, A/N PUCCH와 SR PUCCH 간 시작 (OFDM) 심볼이 다른 경우에 대해서는, A/N PUCCH와 SR PUCCH간 시작 (OFDM) 심볼 (혹은 시작 시간)을 비교하여, A/N과 SR 간의 UCI 다중화 여부를 결정하는 방안이 논의되었다. 예를 들어, SR PUCCH의 시작 (OFDM) 심볼이 A/N PUCCH의 시작 (OFDM) 심볼보다 앞서는 경우, 단말은 SR PUCCH를 전송하고 A/N 전송은 생략될 수 있다. 반대로, SR PUCCH 의 시작 (OFDM) 심볼이 A/N PUCCH의 시작 (OFDM) 심볼보다 뒤서는 경우, 단말은 SR과 A/N을 UCI 다중화하여 단일 PUCCH로 전송할 수 있다. 상기 동작은 단말이 SR 전송을 준비한 이후 (또는 SR 전송 중)에 A/N 전송을 있음을 알게 된 경우, SR 전송을 취소하고 A/N과 SR을 UCI 다중화하여 전송하는 과정이 단말 구현 상 어려울 수 있다는 점에서 제안된 것으로 보인다. 그러나, SR PUCCH의 시작 (OFDM) 심볼이 A/N PUCCH의 시작 (OFDM) 심볼보다 앞선다고 해도, A/N PUCCH에 대응되는 PDSCH (및/또는 PDCCH) 수신 시점이 한참 전이었다면, 단말은 A/N과 SR을 UCI 다중화하여 전송할 수 있을 것이다. 따라서, 기존 방안은 단말 처리 시간 관점에서 A/N과 SR간 UCI 다중화를 수행할 여력이 단말에게 있는 경우에도 A/N 전송을 생략한다는 점에서 바람직하지 않다.
따라서, A/N과 SR의 다중화를 지원하기 위해, 단말에게 (i) SR only 전송을 수행할지, (ii) SR과 A/N을 다중화하여 전송할지에 대해 결정을 내릴 수 있는 시점을 명시할 수 있다. 가령, 단말은 특정 SR PUCCH에 대한 전송 시작 시점(Tsr)을 기준으로 T 0 이전 시점(Tref,sr)까지 수신된, PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되는 않은 경우, positive SR이면 SR PUCCH를 전송할 것을 결정할 수 있다. 이때, 단말은 Tref,sr 이후에 수신된 PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩되더라고, A/N 전송을 생략하고 SR PUCCH 전송을 수행할 수 있다. 반면, Tref,sr까지 수신된 PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N PUCCH 자원이 SR PUCCH 자원과 시간 축에서 중첩된 경우, 단말은 (i) SR 정보가 positive SR이면 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원을 통해 전송하고, (ii) SR 정보가 negative SR이면 A/N만 A/N PUCCH를 통해 전송하거나 negative SR을 표현하는 명시적 비트(들)를 A/N에 부가하여 A/N PUCCH를 통해 전송할 수 있다.
한편, 단말은 추후 A/N PUCCH 자원이 SR PUCCH와 중첩되지 않도록 업데이트 되더라도 A/N과 SR을 UCI 다중화할 것으로 이미 결정하였으므로 결정을 번복하지 않고 여전히 UCI 다중화된 A/N과 SR을 단일 PUCCH 자원을 통해 전송할 수 있다.
도 9는 A/N PUCCH가 PUCCH 포맷 0/2/3/4인 경우의 동작을 예시한다. 도 10은 A/N PUCCH가 PUCCH 포맷 1인 경우의 동작을 예시한다.
[제안 방안 #1]은 단말이 Tref,sr(즉, Tsr - To) 이전에 종료된/수신된 PDSCH(들) (및/또는 PDCCH(들))에 대응되는 A/N PUCCH에 대해서는 SR PUCCH에 대한 전송을 확정하기 전에 존재 여부를 파악할 수 있다는 가정을 전제로 한다. 즉, [제안 방안 #1]은 Tref,sr 이후에 종료된 PDSCH(들) (및/또는 PDCCH(들))에 대해서는 단말이 SR PUCCH에 대한 전송을 확정하기 이전에 파악하기 어렵다고 간주하고, A/N과 SR의 다중화를 판단하는 데 참조하지 않는다. [제안 방안 #1]에 따르면, 단말은 Tref,sr 이전에 종료된/수신된 PDSCH(들) (및/또는 PDCCH(들))에 대응되는 A/N PUCCH가 SR PUCCH와 시간 축에서 중첩되면 A/N과 SR을 함께 다중화하여 전송할 수 있다. 상기 A/N PUCCH가 SR PUCCH와 시간 축에서 중첩되지 않거나 존재하지 않으면 SR만 전송할 수 있어 단말 구현이 용이할 수 있다. 또한, [제안 방안 #1]은 대부분의 경우에 A/N과 SR이 다중화될 수 있도록 함으로써, A/N 또는 SR 전송이 생략되는 경우를 줄이는 효과가 있다. 또한, [제안 방안 #1]은 A/N과 SR이 다중화되어 SR PUCCH로 전송되는 경우, (예, A/N PUCCH가 F1이고 SR PUCCH도 F1인 경우)에도 A/N 전송에 대한 최소 PDSCH-to-HARQ-ACK 전송 처리 시간을 보장하여 가능한 단일화된 해결책을 제시하는 장점이 있다. 만약, 한 슬롯 내에 서로 구분되는 복수의 SR PUCCH가 설정된 경우, 단말은 슬롯 내 앞서는 SR PUCCH에 대해 A/N과의 다중화 여부를 판단한 뒤, A/N 전송이 생략되지 않으면 다음 번 SR PUCCH와 A/N과의 다중화 여부를 판단하는 식으로 순차적으로 상기 동작을 적용할 수 있다.
[제안 방안 #1]의 변형으로, Tref,sr(즉, Tsr - To)까지 전송이 시작된 PDSCH(들) (및/또는 PDCCH(들))에 대응하는 A/N PUCCH가 SR PUCCH와 중첩되는 경우에는 A/N과 SR에 대한 다중화를 수행하고, 그렇지 않은 경우에는 SR만 전송할 수 있다. 상기 동작은 (A/N PUCCH에 대응되는) PDSCH (및/또는 PDCCH(들))의 전송 시작 시점이 Tref,sr보다 앞선 (또는 같은) 경우, 단말이 해당 PDSCH에 대응되는 PDCCH (예, DL assignment)를 검출 및 복조할 시간이 충분해서, SR PUCCH에 대한 전송을 확정 짓기 전에 해당 SR PUCCH와 충돌하는 A/N PUCCH가 존재함을 알 수 있다는 가정을 전제로 한다. 따라서, (A/N PUCCH에 대응되는) PDSCH (및/또는 PDCCH(들))의 전송 시작 시점이 Tref,sr보다 뒤선 경우, 해당 PDSCH에 대응되는 PDCCH (예, DL assignment)를 검출 및 복조할 시간이 충분하지 않으므로, 단말은 해당 PDSCH들에 대해서는 A/N과 SR에 대한 다중화 여부를 판단할 때 반영하지 않는다.
[제안 방안 #1]의 변형으로, 단말이 전송하고자 한 A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 (PUCCH 내 일부 OFDM 심볼들에 대해) 중첩된 경우, A/N PUCCH 자원에 대응되는 PDSCH(들) (및/또는 PDCCH(들))의 전송 종료 (혹은 시작) 시점과 SR PUCCH의 전송 시작 시점 간 상대적인 관계에 따라 A/N과 (positive) SR간의 다중화 여부를 결정하는 방안을 고려할 수 있다.
단, 단말이 A/N과 (positive) SR간의 다중화를 수행하지 않는 경우, A/N과 (positive) SR 중 하나의 전송이 생략될 수 있다.
일 예로, 단말은 (A/N PUCCH 자원에 대응되는) PDSCH(들) (및/또는 PDCCH(들)) 전송 종료 (혹은 시작) 시점이 Tref,sr(즉, Tsr - To)보다 앞서는지/뒤서는지에 따라 아래와 같이 A/N과 (positive) SR 간의 다중화 여부를 결정할 수 있다.
(1) (A/N PUCCH 자원에 대응되는) PDSCH(들) (및/또는 PDCCH(들))의 전송 종료 (혹은 시작) 시점이 Tref,sr보다 뒤선 경우
A. A/N과 (positive) SR 중 하나를 선택하여 전송
i. SR에 대한 UCI 상태가 positive SR인 경우
1. SR을 SR PUCCH 자원을 통해 전송 (A/N 전송 생략)
ii. SR에 대한 UCI 상태가 negative SR인 경우
1. A/N을 A/N PUCCH 자원을 통해 전송
(2) (A/N PUCCH 자원에 대응되는) PDSCH(들) (및/또는 PDCCH(들))의 전송 종료 (혹은 시작) 시점이 Tref,sr보다 앞선 (또는 같은) 경우
A. A/N과 (positive) SR을 다중화하여 전송 (또는, A/N PUCCH와 SR PUCCH가 시간 축에서 PUCCH 내 모든 OFDM 심볼들이 완전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 따름)
i. A/N PUCCH가 PUCCH 포맷 0인 경우
1. SR에 대한 UCI 상태가 positive SR인 경우
- A/N을 A/N PUCCH에 CS/OCC/PRB 오프셋이 적용된 자원을 통해 전송
2. SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
ii. A/N PUCCH가 PUCCH 포맷 1인 경우
1. SR에 대한 UCI 상태가 positive SR인 경우
- A/N을 SR PUCCH 자원을 통해 전송. 단, SR PUCCH가 PUCCH 포맷 0인 경우에는 SR을 전송하지 않고, A/N만 전송할 수 있다.
2. SR에 대한 UCI 상태가 negative SR인 경우
- A/N을 A/N PUCCH 자원을 통해 전송
iii. A/N PUCCH가 PUCCH 포맷 2/3/4 중 하나인 경우
1. SR에 대한 UCI 상태가 positive SR 또는 negative SR인 경우
- SR을 명시적 비트(들)로 표현하여 A/N에 부가하여 UCI 페이로드 생성 후, 상기 생성된 UCI를 A/N PUCCH 자원을 통해 전송
T 0은 아래 중 하나일 수 있다. T 0는 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력(capability)에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른 복조에 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(5) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
[제안 방안 #1]의 변형으로, A/N과 CSI 간의 UCI 다중화에 대해서도 A/N과 SR 간의 UCI 다중화와 유사하게 다음의 동작을 수행할 수 있다. 예를 들어, A/N PUCCH 자원과 CSI PUCCH 자원이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼들이) 중첩될 수 있다. 이 경우, 단말은 (기준 시점으로부터) 특정 시점 이전까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 CSI PUCCH 자원과 시간 축에서 중첩되는지 여부에 따라 A/N과 CSI 간의 다중화 여부를 결정할 수 있다.
단, 단말이 A/N과 CSI 간의 다중화를 수행하지 않는 경우, A/N과 CSI 중 하나의 전송이 생략될 수 있다.
일 예로, 단말은 CSI PUCCH의 전송 시작 시점(예, 시작 심볼)(이하, Tcsi)을 기준으로 T 0 이전 시점(이하, Tref,csi)까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 CSI PUCCH 자원과 시간 축에서 중첩되는지 여부에 따라 A/N과 CSI 간의 다중화 여부를 결정할 수 있다. Tref,csi = Tcsi - T 0로 정의되며, OFDM 심볼 단위로 표현될 수 있다.
(케이스 1) Tref,csi까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 CSI PUCCH 자원과 시간 축에서 중첩되는 경우, 단말은 A/N과 CSI를 다중화하여 전송할 수 있다.
(1) A/N PUCCH가 DL assignment로 지시된 경우
- A/N과 CSI를 다중화하여 A/N PUCCH 자원을 통해 전송
(2) A/N PUCCH가 DL assignment로 지시되지 않은 경우
- A/N과 CSI를 다중화하여 CSI PUCCH 자원을 통해 전송
(케이스 2) (케이스 1)에 해당하지 않는 경우, 단말은 A/N과 CSI 중 하나를 선택하여 전송할 수 있다. 예를 들어, (i) Tref,csi 시점 이후에 수신된 (또는 전송이 시작/종료된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 CSI PUCCH 자원과 시간 축에서 중첩되거나, (ii) Tref,csi까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 CSI PUCCH 자원과 시간 축에서 중첩되지 않거나, (iii) Tref,csi까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 존재하지 않는 경우, 단말은 A/N과 CSI 중 하나를 선택하여 전송할 수 있다.
(1) Opt. 1: CSI를 CSI PUCCH 자원을 통해 전송 (A/N 전송 생략)
(2) Opt. 2: A/N을 A/N PUCCH 자원을 통해 전송 (CSI 전송 생략)
T 0은 아래 중 하나일 수 있다. T 0는 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른 복조에 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(5) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
[제안 방안 #1A] 단말에게 전송 설정/지시된 PUCCH 자원(들)이 슬롯 내 시간 축에서 전체 혹은 일부 OFDM 심볼들이 중첩된 경우, 단말이 다음의 UCI 다중화 규칙에 따라 UCI 다중화 (예, UCI 다중화)를 수행하는 방안
(1) 슬롯 내 중첩된 PUCCH 자원(들)이 아래 조건 전체 혹은 일부를 충족할 경우, 단말은 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화하여 단일 PUCCH 자원(이하, MUX PUCCH)을 통해 전송
A. 조건 #1
i. Opt. 1: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, 다중화된 UCI를 전송할 (단일) PUCCH 자원의 첫 번째 (OFDM) 심볼이 HARQ-ACK에 대한 PDSCH(들) 및/또는 SPS PDSCH 해제(release)(들)의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
ii. Opt. 2: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯의 첫 번째 (OFDM) 심볼 (또는 UL 전송이 허용된 첫 번째 (OFDM) 심볼)이 HARQ-ACK에 대응되는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 마지막 (각각의) (OFDM) 심볼로부터 T 1 이후에 시작
iii. Opt. 3: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, 다중화된 UCI를 전송할 (단일) PUCCH 자원 그리고 상기 슬롯 내 중첩된 PUCCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 HARQ-ACK에 대응하는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
iv. Opt. 4: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, 다중화된 UCI를 전송할 (단일) PUCCH 자원 그리고 상기 슬롯 내 중첩된 CSI PUCCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 (OFDM) 심볼이 HARQ-ACK에 대응하는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
v. Opt. 5: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 임의의 UCI 조합/UCI 페이로드에 대하여 단말에게 설정된 (모든) PUCCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 HARQ-ACK에 대응하는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
B. 조건 #2
i. Opt. 1: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, 특정 규칙에 따라 선택되는 (단일) PUCCH 자원 그리고 상기 슬롯 내 중첩된 PUCCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
ii. Opt. 2: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
iii. Opt. 3: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯 내 임의의 UCI 조합/UCI 페이로드에 대하여 단말에게 설정된 (모든) PUCCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
iv. Opt. 4: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯의 첫 번째 (OFDM) 심볼 (또는 UL 전송이 허용된 첫 번째 (OFDM) 심볼)이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
여기서, (스케줄링) DCI 기반 PUCCH 자원은, DCI를 통해 할당 받은 HARQ-ACK 전송 PUCCH 자원일 수 있다. 상기에서, DCI의 마지막 심볼은 해당 DCI를 나르는 PDCCH가 전송된 마지막 심볼일 수 있다.
(2) 슬롯 내 중첩된 (일부) PUCCH 자원(들)이 상기 조건(들)을 충족하지 않는 경우, 단말은 다음 동작을 수행할 수 있다.
A. Opt. 1: 단말은 (2)의 경우를 기대하지 않으며, (2)의 경우가 발생 시 단말 동작은 단말 구현에 따름
B. Opt. 2: 단말은 (1)의 조건(들)을 충족하지 않는 (일부) PUCCH 자원(들)에 대한 UCI(들)에 대한 전송을 생략하고, (1)의 조건(들)을 충족하는 나머지 PUCCH 자원(들)에 대한 UCI(들)을 다중화하여 단일 PUCCH 자원을 통해 전송
C. Opt. 3: 단말은 슬롯 내 중첩된 PUCCH 자원(들)에 대한 전송을 생략
D. Opt. 4: 단말은 (슬롯 내 중첩된 PUCCH 자원(들) 중) 특정 (하나의) PUCCH 자원 (예, 가장 높은 우선 순위의 UCI를 전송하는 PUCCH 자원, 또는 시간 축에서 가장 앞선 PUCCH 자원)만을 전송하고, 나머지는 전송을 생략(drop)
단, 슬롯 내 (상위계층(예, RRC) 신호 및/또는 DCI로 전송 지시된) 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, (다중화 할) UCI 조합, (전체) UCI 페이로드 사이즈 등을 토대로 정해진 특정 규칙에 따라, 다중화된 UCI를 전송할 (단일) PUCCH 자원(이하, MUX PUCCH)이 새로 결정될 수 있다.
여기서, T 1은 단말이 PDSCH를 수신한 후 HARQ-ACK 전송을 수행하기 위해 필요한 단말 처리 시간에 대응되는 값일 수 있다. 또한, T 2는 단말이 UL 전송에 대한 (스케줄링) DCI 수신한 후 UL 전송을 수행하기 위해 필요한 단말 처리 시간에 대응되는 값일 수 있다. T 1과 T 2는 (OFDM) 심볼 단위로 표현될 수 있다.
단말은 시간 축에서 중첩된 PUCCH 자원(들) 간의 UCI 다중화 여부를 결정할 때, 적어도 2가지 타임-라인 조건을 고려할 수 있다. 타임-라인 조건 #1은 PDSCH 수신 후 HARQ-ACK 전송까지의 단말 처리 시간을 보장하기 위한 조건이다. 타임-라인 조건 #1은 HARQ-ACK에 대응되는 PDSCH(들)의 마지막 (OFDM) 심볼로부터 일정 시간 T 1 이후에 HARQ-ACK 전송이 수행되도록 하는 것을 목적으로 한다. 따라서, T 1 시간에 기반한 조건은 HARQ-ACK 전송이 수행되는 UL 자원을 기준으로 적용되어야 하며, 중첩된 UCI들이 다중화된다고 가정할 때, (특정 규칙에 따라) 결정되는 PUCCH 자원의 시작 시점과 HARQ-ACK에 대응되는 PDSCH(들)의 마지막 (OFDM) 심볼 사이에 적용될 수 있다. 타임-라인 조건 #2는 PDCCH 수신 후 UL 전송까지의 단말 처리 시간을 보장하기 위한 조건이다. 타임-라인 조건 #2는 (중첩된 PUCCH(들) 중 하나 이상의 UL 전송을 스케줄링 하는) PDCCH(들)의 마지막 (OFDM) 심볼로부터 일정 시간 T 2 이후에 UL 전송이 수행되도록 하는 것을 목적으로 한다. 타임-라인 조건 #2는 임의의 UL 전송 시작으로부터 T 2 이전에 스케줄링 여부를 알도록 하는 목적도 있다. 따라서, 중첩된 PUCCH 자원(들) 중 가장 빠른 UL 자원보다 T 2 이전에 (중첩된 PUCCH(들) 중 하나 이상의 UL 전송을 스케줄링 하는) PDCCH(들)에 대한 수신이 종료되어야 한다. 즉, 타임-라인 조건 #2는, 슬롯 내 중첩된 PUCCH 자원(들) (및 UCI(들)을 다중화한다고 가정할 때, 특정 규칙에 따라 선택되는 (단일) PUCCH 자원) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작하는 조건일 수 있다.
[제안 방안 #1B] 단말에게 설정/지시된 PUCCH 자원(들)과 PUSCH 자원(들)이 슬롯 내 시간 축에서 전체 혹은 일부 OFDM 심볼(들)에서 중첩된 경우, 단말이 다음의 UCI 다중화 규칙에 따라 UCI 다중화를 수행하는 방안
(1) 슬롯 내 중첩된 PUCCH 자원(들) 및 PUSCH 자원(들)이 아래 조건의 전체 혹은 일부를 만족할 경우, 단말은 중첩된 PUCCH 자원(들) 및 PUSCH 자원(들)에 대한 UCI(들) 및 UL-SCH TB(들)을 다중화하여 단일 PUSCH 자원(이하, MUX PUSCH)을 통해 전송
A. 조건 #1
i. Opt. 1: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, 다중화된 UCI를 전송할 (단일) PUSCH 자원의 첫 번째 (OFDM) 심볼이 HARQ-ACK에 대한 PDSCH(들) 및/또는 SPS PDSCH 해제(들)의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
ii. Opt. 2: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯의 첫 번째 (OFDM) 심볼 (또는 UL 전송이 허용된 첫 번째 (OFDM) 심볼)이 HARQ-ACK에 대응되는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
iii. Opt. 3: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들) 그리고 PUSCH 자원(들) 중 (시간 축에서) 가장 앞선 UL 전송 자원의 첫 번째 (OFDM) 심볼이 HARQ-ACK에 대응하는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
iv. Opt. 4: (슬롯 내 중첩된 PUCCH 자원(들) 중 HARQ-ACK 전송을 위한 PUCCH 자원이 존재할 경우) 상기 슬롯 내 임의의 UCI 조합/UCI 페이로드에 대하여 단말에게 설정된 (모든) PUCCH 자원(들)과 상기 슬롯 내 (모든) PUSCH 자원(들) 중 (시간 축에서) 가장 앞선 UL 전송 자원의 첫 번째 (OFDM) 심볼이 HARQ-ACK에 대응하는 PDSCH(들) (또는 SPS PDSCH 해제(들))의 (각각의) 마지막 (OFDM) 심볼로부터 T 1 이후에 시작
B. 조건 #2
i. Opt. 1: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯 내 중첩된 PUCCH 자원(들) 그리고 PUSCH 자원(들) 중 (시간 축에서) 가장 앞선 UL 전송 자원의 첫 번째 (OFDM) 심볼이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
ii. Opt. 2: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯 내 임의의 UCI 조합/UCI 페이로드에 대하여 단말에게 설정된 (모든) PUCCH 자원(들)과 (모든) PUSCH 자원(들) 중 (시간 축에서) 가장 앞선 UL 전송 자원의 첫 (OFDM) 심볼이 상기 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
iii. Opt. 3: (슬롯 내 중첩된 PUCCH 자원(들) 중 DCI를 통해 전송이 지시된 PUCCH 자원이 존재할 경우) 상기 슬롯의 첫 번째 (OFDM) 심볼 (또는 UL 전송이 허용된 첫 번째 (OFDM) 심볼)이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작
여기서, (스케줄링) DCI 기반 PUCCH 자원은, DCI를 통해 할당 받은 HARQ-ACK 전송 PUCCH 자원일 수 있다. 상기에서, DCI의 마지막 심볼은 해당 DCI를 나르는 PDCCH가 전송된 마지막 심볼일 수 있다.
(2) 슬롯 내 중첩된 (일부) PUCCH 자원(들) 및/또는 (일부) PUSCH 자원(들)이 상기 조건(들)을 만족하지 않는 경우,
A. Opt. 1: 단말은 (2)의 경우를 기대하지 않으며, (2)의 경우가 발생 시 단말 동작은 단말 구현에 따름
B. Opt. 2: 단말은 (1)의 조건(들)을 충족하지 않는 (일부) PUCCH 자원(들)에 대응되는 UCI(들)에 대한 전송 및/또는 (일부) PUSCH 자원(들)에 대응되는 UL-SCH TB에 대한 전송은 생략. 반면, 단말은 (1)의 조건(들)을 충족하는 나머지 PUCCH 자원(들) 및/또는 나머지 PUSCH 자원(들) 대한 UCI(들) 및/또는 UL-SCH(들)을 다중화하여 단일 PUCCH 자원이나, ((1)의 조건(들)을 충족하는 중첩된 PUSCH 자원이 존재하는 경우) 단일 PUSCH 자원을 통해 전송
C. Opt. 3: 단말은 슬롯 내 중첩된 PUCCH 자원(들) 및/또는 PUSCH 자원(들)에 대한 전송을 생략
D. Opt. 4: 단말은 (슬롯 내 중첩된 PUCCH 자원(들) 그리고 PUSCH 자원(들) 중) 특정 (하나의) PUCCH 또는 PUSCH 자원 (예, 가장 높은 우선 순위의 UCI를 전송하는 UL 자원 또는 시간 축에서 가장 앞선 UL 자원)만을 전송하고, 나머지는 전송을 생략(drop)
단, 슬롯 내 (상위계층(예, RRC) 신호 및/또는 DCI로 전송 지시된) 중첩된 PUCCH 자원(들)에 대한 UCI(들)을 다중화한다고 가정할 때, (다중화 할) UCI 조합, (전체) UCI 페이로드 사이즈 등을 토대로 정해진 특정 규칙에 따라, 다중화된 UCI를 전송할 (단일) PUCCH 자원(이하, MUX PUCCH)이 새로 결정될 수 있다.
여기서, T 1은 단말이 PDSCH를 수신한 후 HARQ-ACK 전송을 수행하기 위해 필요한 단말 처리 시간에 대응되는 값일 수 있다. 또한, T 2는 단말이 UL 전송에 대한 (스케줄링) DCI를 수신한 후 UL 전송을 수행하기 위해 필요한 단말 처리 시간에 대응되는 값일 수 있다. T 1과 T 2는 (OFDM) 심볼 단위로 표현될 수 있다.
단말은 시간 축에서 중첩된 PUCCH 자원(들) 그리고 PUSCH 자원(들) 간의 UCI 다중화 여부를 결정할 때, 적어도 2가지 타임-라인 조건을 고려할 수 있다. 타임-라인 조건 #1은 PDSCH 수신 후 HARQ-ACK 전송까지의 단말 처리 시간을 보장하기 위한 조건이다. 타임-라인 조건 #1은 HARQ-ACK에 대응되는 PDSCH(들)의 마지막 (OFDM) 심볼로부터 일정 시간 T 1 이후에 HARQ-ACK 전송이 수행되도록 하는 것을 목적으로 한다. 따라서, T 1 시간에 기반한 조건은 HARQ-ACK 전송이 수행되는 UL 자원을 기준으로 적용되어야 하며, 중첩된 UCI들이 다중화된다고 가정할 때, (특정 규칙에 따라) 결정되는 PUCCH 자원 또는 PUSCH 자원의 시작 시점과 HARQ-ACK에 대응되는 PDSCH(들)의 마지막 (OFDM) 심볼 사이에 적용될 수 있다. 타임-라인 조건 #2는 PDCCH 수신 후 UL 전송까지의 단말 처리 시간을 보장하기 위한 조건이다. 타임-라인 조건 #2는 (중첩된 PUCCH(들) 중 하나 이상의 UL 전송을 스케줄링 하는) PDCCH(들)의 마지막 (OFDM) 심볼로부터 일정 시간 T 2 이후에 UL 전송이 수행되도록 하는 것을 목적으로 한다. 타임-라인 조건 #2는 임의의 UL 전송 시작으로부터 T 2 이전에 스케줄링 여부를 알도록 하는 목적도 있다. 따라서, 중첩된 PUCCH 자원(들) 중 가장 빠른 UL 자원보다 T 2 이전에 (중첩된 PUCCH(들) 중 하나 이상의 UL 전송을 스케줄링 하는) PDCCH(들)에 대한 수신이 종료되어야 한다. 즉, 타임-라인 조건 #2는, 슬롯 내 중첩된 PUCCH 자원(들) 그리고 PUSCH 자원(들) 중 (시간 축에서) 가장 앞선 PUCCH 자원의 첫 번째 (OFDM) 심볼이 (스케줄링) DCI의 마지막 (OFDM) 심볼로부터 T 2 이후에 시작하는 조건일 수 있다.
[제안 방안 #1C] 슬롯 내 단말에게 설정/지시된 PUCCH 자원(들) 및/또는 PUSCH 자원(들)에 대해 UCI 다중화를 수행할 때, 단말이 (단계적인) UCI 다중화, 및 다중화된 UCI(즉, MUX UCI)에 대한 전송 자원 결정을 수행하는 방안
[방법 #A]
(1) Step 1: (다중화된 UCI 전송이 허용된) PUSCH 자원(들)이 존재할 때, PUSCH 자원 별로 (i) 해당 PUSCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUSCH 자원으로 대체
(2) Step 2: (다중화된 UCI 전송이 허용된) (DCI 기반으로 스케줄링된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원(이하, MUX PUCCH)으로 대체
A. 다중화된 UCI(들)을 전송할 (단일) PUCCH 자원(즉, MUX PUCCH)이 (시간 축에서) 다른 PUSCH 자원(들) 및/또는 PUCCH 자원(들))과 (새롭게) 중첩되는 경우, 단말은 아래 중 하나의 동작을 수행할 수 있다.
- Opt. 1: (단일) PUCCH 자원과 (DCI 기반으로 스케줄링된) PUCCH 자원에 대해 Step 1 및/또는 Step 2를 다시 적용
- Opt. 2: (단일) PUCCH 자원을 통해 MUX UCI를 전송하고, (단일) PUCCH 자원과 중첩되는 UL 자원(들)은 전송을 생략
- Opt. 3: (단일) PUCCH 자원의 전송 생략(drop)
- Opt. 4: 에러 케이스로 처리(unspecified)
(3) Step 3: (다중화된 UCI 전송이 허용된) (상위계층(예, RRC) 신호를 통해 설정된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 (상위계층 신호를 통해 설정된) PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원(즉, MUX PUCCH)으로 대체
[방법 #B]
(1) Step 1: (다중화된 UCI 전송이 허용된) PUSCH 자원(들)이 존재할 때, PUSCH 자원 별로 해당 PUSCH 자원과 (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUSCH 자원으로 대체
(2) Step 2: (다중화된 UCI 전송이 허용된) 시작 심볼이 가장 빠른 (혹은 가장 높은 우선 순위의 UCI를 나르는) PUCCH 자원(이하, PUCCH1)를 기준으로, (i) PUCCH1과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)(이하, PUCCH2))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원(이하, PUCCH3; 즉, MUX PUCCH)으로 대체
(3) Step 3
A. Step 3-1: (i) Step 2의 PUCCH3과 (ii) (PUCCH1과 PUCCH2를 제외한) PUCCH 자원(들)(이하 PUCCH 4)이 (시간 축에서) 중첩되는 경우
- Opt. 1: PUCCH3과 PUCCH4에 대해 UCI 다중화 규칙을 적용(Step 2). UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원으로 대체
- Opt. 2: PUCCH3의 전송 생략(drop)
- Opt. 3: PUCCH4의 전송 생략(drop)
B. Step 3-2: PUCCH3과 PUCCH 4가 (시간 축에서) 중첩되지 않는 경우
- PUCCH4 내 PUCCH 자원(들)을 대상으로 Step 2 및 Step 3을 적용
UCI 다중화 규칙은 [제안 방안 #1A] 또는 [제안 방안 #1B]를 따를 수 있다.
각 단계에서 다중화된 UCI(들)에 대한 기존 UL 자원(들)이 특정 (단일) PUCCH 혹은 PUSCH 자원으로 대체된 경우, 단말은 대체된 기존 UL 자원(들)은 이후 단계에서 존재하지 않는 자원으로 간주할 수 있다. 즉, 대체된 기존 UL 자원(들)은 이후 과정에서 UCI 다중화 대상으로 고려되지 않는다. 반면, 다중화된 UCI(들)을 전송하도록 결정된 (단일) PUCCH 혹은 PUSCH 자원은 이후 과정에서 UCI 다중화 대상으로 고려될 수 있다.
각 단계에 복수의 PUCCH (또는 PUSCH) 자원(들)이 존재할 때, 복수의 PUCCH (또는 PUSCH) 자원(들) 간에 해당 단계의 동작을 적용하는 순서는 미리 약속된 우선순위 규칙을 따를 수 있다. 일 예로, 우선순위 규칙은 (슬롯 내) 상대적인 전송 시점(예, 시작 위치/심볼), UCI 타입, 자원 할당 방식(예, 동적 또는 준-정적(semi-static)), 스케줄링된 순서, 전송 용량 등을 기준으로 정해질 수 있다.
일 예로, 슬롯 내 시간 축에서 중첩된 PUCCH 자원(들) 및/또는 PUSCH 자원(들)에 대해 UCI 다중화를 수행할 때, 한 슬롯 내에서 복수의 PUCCH 전송 및 PUCCH 시간 자원의 유연한 할당이 지원되는 NR 시스템의 특징으로 인해, UCI 다중화를 수행할 대상이 되는 PUCCH 자원(들) 및/또는 PUSCH 자원(들)을 정하기 불분명한 경우가 발생할 수 있다. 가령, AN PUCCH, CSI PUCCH, SR PUCCH 자원이 한 슬롯 내에 공존할 때, CSI PUCCH 자원은 AN PUCCH 자원/SR PUCCH 자원과 시간 축에서 중첩되는 반면, AN PUCCH 자원과 SR PUCCH 자원은 서로 시간 축에서 중첩되지 않는다고 가정하자. 이 경우, (1) HARQ-ACK, CSI, SR 모두에 대한 다중화를 수행해야 하는지, (2) HARQ-ACK-CSI 쌍에 대한 다중화와 CSI-SR 쌍에 대한 다중화를 수행해야 하는지, 단말 동작이 불분명할 수 있다. 따라서, 본 발명에서는 가장 많은 종류의 UCI를 담을 수 있는 UL 자원 순서대로 UCI 다중화를 수행하는 방안(예, [방법 #A]), 또는 가장 빠른 (혹은 가장 높은 우선순위의 UCI를 싣는) PUCCH 자원을 기준으로 시간 축에서 중첩된 PUCCH 자원(들)에 대해 순차적으로 UCI 다중화를 수행하는 방안(예, [방법 #B])을 제안한다. [방법 #A]의 경우, PUSCH => (DCI 기반 스케줄링된) AN PUCCH => CSI PUCCH => (상위계층(예, RRC) 신호로 설정된) AN PUCCH 순서로 UCI 다중화를 수행할 수 있다. 이때, 한 번 UCI 다중화 대상으로 선정된 PUCCH 자원은 이후 UCI 다중화 과정에서 배제될 수 있다.
[제안 방안 #1C]의 변형으로, [방법 #A]/[방법 #B]에서 Step(들)간의 순서가 변경될 수 있다. 예를 들어, 아래의 동작을 고려할 수 있다.
[방법 #A-1]
(1) Step 1: (다중화된 UCI 전송이 허용된) (상위계층(예, RRC) 신호를 통해 설정된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 (상위계층 신호를 통해 설정된) PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)은 (단일) PUCCH 자원(이하, MUX PUCCH 자원)으로 대체될 수 있다.
(2) Step 2: (다중화된 UCI 전송이 허용된) (DCI 기반으로 스케줄링된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)은 (단일) PUCCH 자원(즉, MUX PUCCH 자원)으로 대체될 수 있다. 여기서, 중첩된 PUCCH 자원(들)은 슬롯 내의 PUCCH 자원(들)을 의미할 수 있다.
A. MUX PUCCH 자원이 (시간 축에서) 다른 PUCCH 자원(들))과 (새롭게) 중첩되는 경우, 다음의 동작을 수행할 수 있다.
- Opt. 1: (i) MUX PUCCH 자원과 (ii) (DCI 기반으로 스케줄링된) PUCCH 자원에 대해 Step 2를 다시 적용
- Opt. 2: MUX PUCCH 자원에 대한 전송을 수행하되, MUX PUCCH 자원과 중첩되는 UL 자원(들)에 대한 전송을 생략
- Opt. 3: MUX PUCCH 자원에 대한 전송을 생략(drop)
- Opt. 4: 에러 케이스로 처리(unspecified)
(3) Step 3: (다중화된 UCI 전송이 허용된) PUSCH 자원(들)이 존재할 때, PUSCH 자원 별로 (i) 해당 PUSCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용할 수 있다. 여기서, PUCCH 자원(들)은 MUX PUCCH 자원(들)을 포함할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)은 특정 (단일) PUSCH 자원으로 대체될 수 있다.
[방법 #A-2]
(1) Step 1: (다중화된 UCI 전송이 허용된) PUSCH 자원(들)이 존재할 때, PUSCH 자원 별로 (i) 해당 PUSCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)은 (단일) PUSCH 자원(이하, MUX PUSCH 자원)으로 대체될 수 있다.
(2) Step 2: (다중화된 UCI 전송이 허용된) (상위계층(예, RRC) 신호를 통해 설정된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 (상위계층 신호를 통해 설정된) PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)은 (단일) PUCCH 자원(즉, MUX PUCCH 자원)으로 대체될 수 있다.
(3) Step 3: (다중화된 UCI 전송이 허용된) (DCI 기반으로 스케줄링된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)은 (단일) PUCCH 자원(즉, MUX PUCCH 자원)으로 대체될 수 있다.
A. MUX PUCCH 자원이 (시간 축에서) 다른 PUSCH 자원(들) 및/또는 PUCCH 자원(들))과 (새롭게) 중첩되는 경우, 다음의 동작을 수행할 수 있다.
- Opt. 1: (i) MUX PUCCH 자원과 (ii) (DCI 기반으로 스케줄링된) PUCCH 자원에 대해 Step 1 및/또는 Step 3를 다시 적용
- Opt. 2: MUX PUCCH 자원에 대한 전송을 수행하되, MUX PUCCH 자원과 중첩되는 UL 자원(들)에 대한 UCI 전송을 생략
- Opt. 3: MUX PUCCH 자원에 대한 UCI 전송을 생략(drop)
- Opt. 4: 에러 케이스로 처리(unspecified)
[방법 #B-1]
(1) Step 1: (다중화된 UCI 전송이 허용된) 시작 심볼 (또는 마지막 심볼)이 가장 빠른 (혹은 가장 높은 우선 순위의 UCI를 나르는) PUCCH 자원(이하 PUCCH1)를 기준으로, (i) PUCCH1과 (ii) 이와 (시간 /2-2는 각각 Step #A/#B1/#B2로 대체될 수 있다.
(1) Step #A: 시작 심볼 (또는 마지막 심볼)이 가장 빠른 (혹은 가장 높은 우선순위의 UCI를 나르는) PUCCH(이하 PUCCH1)를 기준으로, (i) PUCCH1과 (ii) 이와 (시간 축에서) 겹치는 PUCCH들(이하 PUCCH2)에 한정해서 PUCCH-PUCCH 간 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)을 전송하기 위해 (단일) 컨테이너 PUCCH(이하, MUX PUCCH1)가 결정될 수 있다. 즉, 중첩된 기존 UL 자원(들)(즉, PUCCH1/PUCCH2)은 MUX PUCCH1로 대체될 수 있다.
(2) Step #B1: (i) Step #A에서 결정된 (다중화된 UCI 전송용) 컨테이너 PUCCH(즉, MUX PUCCH1)와 (ii) (PUCCH1/PUCCH2를 제외한) 나머지 PUCCH들(이하, PUCCH3)이 겹치지 않는 경우,
- (PUCCH3 내 PUCCH들간에 Step #A를 적용하여) 시간축에서 중첩되지 않는 PUCCH들을 TDM으로 전송할 수 있다.
(3) Step #B2: (i) MUX PUCCH1과 (ii) PUCCH3이 겹치는 경우,
- Opt 1: 컨테이너 PUCCH(즉, MUX PUCCH1)와 PUCCH3에 대해 다시 PUCCH-PUCCH 간 UCI 다중화 규칙을 적용할 수 있다. UCI 다중화 수행 시, 다중화된 UCI(들)을 전송하기 위해 (단일) 컨테이너 PUCCH(이하, MUX PUCCH2)가 새로 결정될 수 있다. 즉, 중첩된 기존 UL 자원(들)(즉, MUX PUCCH1/PUCCH3)은 MUX PUCCH2으로 대체될 수 있다. MUX PUCCH2에 대해 Step #B1/#B2가 다시 적용될 수 있다.
- Opt 2: PUCCH3 전송을 생략(drop)할 수 있다.
도 12는 Step #A/#B1/#B2에 따른 채널 다중화 과정을 예시한다. UCI 전송을 위해, 단말은 각 UCI 별로 PUCCH 자원을 결정할 수 있다. 각 PUCCH 자원은 시작 심볼과 전송 길이로 정의될 수 있다. (슬롯 내) 중첩된 PUCCH 자원들이 있는 경우, 단말은 가장 빠른(예, 시작 심볼이 가장 빠른) PUCCH 자원 A와 중첩되는 PUCCH 자원 세트 X를 결정할 수 있다(Step A1, S1202). 이후, 단말은 (i) PUCCH 자원 A와 (ii) PUCCH 자원 세트 X에 대해 UCI 다중화를 수행할 수 있다(Step A1, S1204). UCI 다중화 수행 시, 다중화된 UCI(들)을 전송하기 위해 (단일) 컨테이너 PUCCH(이하, MUX PUCCH)가 결정될 수 있다. 이에 따라, PUCCH 자원 A와 PUCCH 자원 세트 X은 MUX PUCCH로 대체될 수 있다. 이후, 단말은 MUX PUCCH를 통해 UCI를 전송할 수 있다. 만약, MUX PUCCH가 (PUCCH 자원 A/PUCCH 자원 세트 X를 제외한) 나머지 PUCCH들과 겹치는 경우, 단말은 MUX PUCCH (또는 이를 포함한 나머지 PUCCH들 중 가장 빠른(예, 시작 심볼이 가장 빠른) PUCCH)를 가장 빠른(예, 시작 심볼이 가장 빠른) PUCCH 자원 A로 대체한 상태에서 Step A1/A2를 다시 수행될 수 있다. 보다 자세한 사항은 Step #A/#B1/#B2에 관한 설명을 참조할 수 있다. 도 12의 Step A1/A2는 도 11의 Step 1에 대응하며, 도 11의 Step 1은 도 12의 Step A1/A2로 대체될 수 있다.
도 13은 도 12에 따른 UCI 다중화를 예시한다. 도 13을 참조하면, 슬롯 내에 복수의 PUCCH 자원이 중첩하는 경우, 가장 빠른(예, 시작 심볼이 가장 빠른) PUCCH 자원 A을 기준으로 UCI 다중화가 수행될 수 있다. 케이스 1/2은 첫 번째 PUCCH 자원이 다른 PUCCH 자원과 중첩되는 경우를 나타낸다. 이 경우, 첫 번째 PUCCH 자원을 가장 빠른 PUCCH 자원 A로 간주한 상태에서 도 12의 과정이 수행할 수 있다. 반면, 케이스 3은 첫 번째 PUCCH 자원은 다른 PUCCH 자원과 중첩되지 않고, 두 번째 PUCCH 자원이 다른 PUCCH 자원과 중첩되는 경우이다. 이 경우, 첫 번째 PUCCH 자원에 대해서는 UCI 다중화가 수행되지 않는다. 대신, 두 번째 PUCCH 자원을 가장 빠른 PUCCH 자원 A로 간주한 상태에서 도 12의 과정이 수행될 수 있다. 케이스 2는 다중화된 UCI를 전송하기 위해 결정된 MUX PUCCH 자원이 다른 PUCCH 자원과 새롭게 중첩되는 경우이다. 이 경우, MUX PUCCH 자원 (또는 이를 포함한 나머지 PUCCH들 중 가장 빠른(예, 시작 심볼이 가장 빠른) PUCCH 자원)을 가장 빠른 PUCCH 자원 A로 간주한 상태에서 도 12의 과정이 추가로 수행될 수 있다. 보다 자세한 사항은 Step #A/#B1/#B2에 관한 설명을 참조할 수 있다.
[제안 방안 #1C]의 변형으로, 단말에게 설정/지시된 PUCCH 자원(들) 및/또는 PUSCH 자원(들)에 대해 UCI 다중화 (즉, UCI 다중화)을 수행할 때, 단말은 아래와 같이 (단계적인) UCI 다중화, 및 다중화된 UCI에 대한 전송 자원 결정을 수행하는 방안을 고려할 수 있다.
(1) Step 1: (다중화된 UCI 전송이 허용된) (상위계층(예, RRC) 신호를 통해 설정된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 (상위 계층 신호를 통해 설정된) PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원으로 대체
A. 일 예로, Step 1의 세부 단계는 아래와 같을 수 있다.
[Example #1]
- Step 1-1: CSI PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 CSI PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (CSI) PUCCH 자원으로 대체
- Step 1-2: CSI PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 AN PUCCH 자원(들) 및/또는 SR PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (CSI) PUCCH 자원으로 대체
- Step 1-3: AN PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 SR PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (AN) PUCCH 자원으로 대체
(2) Step 2: (다중화된 UCI 전송이 허용된)(DCI 기반으로 스케줄링된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원으로 대체
A. 일 예로, Step 2의 세부 단계는 아래와 같을 수 있다.
[Example #1]
- Step 2-1: (DCI 기반으로 스케줄링된) AN PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 CSI PUCCH 자원(들) 및/또는 SR PUCCH 자원(들) (및/또는 AN PUCCH 자원(들))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (AN) PUCCH 자원으로 대체
[Example #2]
- Step 2-1: (DCI 기반으로 스케줄링된) AN PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 CSI PUCCH 자원(들) 및/또는 SR PUCCH 자원(들) (및/또는 AN PUCCH 자원(들))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (AN) PUCCH 자원으로 대체
- Step 2-2: (DCI 기반으로 스케줄링된) CSI PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 SR PUCCH 자원(들) (및/또는 CSI PUCCH 자원(들))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (CSI) PUCCH 자원으로 대체
(3) Step 3: (다중화된 UCI 전송이 허용된) PUSCH 자원(들)이 존재할 때, PUSCH 자원 별로 (i) 해당 PUSCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUSCH 자원으로 대체
각 단계에 복수의 PUCCH (또는 PUSCH) 자원(들)이 존재할 때, 복수의 PUCCH (또는 PUSCH) 자원(들) 간에 해당 단계의 동작을 적용하는 순서는 미리 약속된 우선순위 규칙을 따를 수 있다. 일 예로, 우선순위 규칙은 (슬롯 내) 상대적인 전송 시점(예, 시작 위치/심볼), UCI 타입, 자원 할당 방식(예, 동적 또는 준-정적), 스케줄링된 순서, 전송 용량 등을 기준으로 정해질 수 있다.
각 단계에서 다중화된 UCI(들)을 전송하기 위해 새롭게 선택된 PUCCH 자원이, 상기 다중화된 UCI(들)에 대한 (기존의) PUCCH 자원(들) 이외의 다른 PUCCH 자원(들)과 (시간 축에서) 중첩되는 경우, 단말은 상기 경우를 에러 케이스로 판단하고 기대하지 않을 수 있다. 또는 상기 새롭게 선택된 PUCCH 자원과 중첩된 PUCCH 자원(들)과 UCI 다중화 규칙을 적용하며, UCI 다중화 수행 시 다중화된 UCI(들)에 대한 기존 UL 자원을 특정 (단일) PUCCH 자원으로 대체할 수 있다.
[제안 방안 #1C]의 변형으로 슬롯 내 단말에게 설정/지시된 PUCCH 자원(들) 및/또는 PUSCH 자원(들)에 대해 UCI 다중화를 수행할 때, 단말은 아래와 같이 (단계적인) UCI 다중화, 및 다중화된 UCI에 대한 전송 자원 결정을 수행하는 방안을 고려할 수 있다.
(1) Step 1: (다중화된 UCI 전송이 허용된) PUSCH 자원(들)이 존재할 때, PUSCH 자원 별로 (i) 해당 PUSCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUSCH 자원으로 대체
(2) Step 2: (다중화된 UCI 전송이 허용된)(DCI 기반으로 스케줄링된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원으로 대체
A. 일 예로, Step 2의 세부 단계는 아래와 같을 수 있다.
[Example #1]
- Step 2-1: (DCI 기반으로 스케줄링된) AN PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 CSI PUCCH 자원(들) 및/또는 SR PUCCH 자원(들) (및/또는 AN PUCCH 자원(들))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (AN) PUCCH 자원으로 대체
[Example #2]
- Step 2-1: (DCI 기반으로 스케줄링된) AN PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 CSI PUCCH 자원(들) 및/또는 SR PUCCH 자원(들) (및/또는 AN PUCCH 자원(들))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (AN) PUCCH 자원으로 대체
- Step 2-2: (DCI 기반으로 스케줄링된) CSI PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 SR PUCCH 자원(들) (및/또는 CSI PUCCH 자원(들))에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (CSI) PUCCH 자원으로 대체
(3) Step 3: (다중화된 UCI 전송이 허용된)(상위계층(예, RRC) 신호를 통해 설정된) PUCCH 자원(들)이 존재할 때, PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 (상위계층 신호를 통해 설정된) PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) PUCCH 자원으로 대체
A. 일 예로, Step 3의 세부 단계는 아래와 같을 수 있다.
[Example #1]
- Step 3-1: CSI PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 CSI PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (CSI) PUCCH 자원으로 대체
- Step 3-2: CSI PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 AN PUCCH 자원(들) 및/또는 SR PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (CSI) PUCCH 자원으로 대체
- Step 3-3: AN PUCCH 자원 별로 (i) 해당 PUCCH 자원과 (ii) (시간 축에서) 중첩되는 SR PUCCH 자원(들)에 대해 UCI 다중화 규칙을 적용. UCI 다중화 수행 시, 다중화된 UCI(들)에 대한 기존 UL 자원(들)을 특정 (단일) (AN) PUCCH 자원으로 대체
각 단계에 복수의 PUCCH (또는 PUSCH) 자원(들)이 존재할 때, 복수의 PUCCH (또는 PUSCH) 자원(들) 간에 해당 단계의 동작을 적용하는 순서는 미리 약속된 우선순위 규칙을 따를 수 있다. 일 예로, 우선순위 규칙은 (슬롯 내) 상대적인 전송 시점(예, 시작 위치/심볼), UCI 타입, 자원 할당 방식(예, 동적 또는 준-정적), 스케줄링된 순서, 전송 용량 등을 기준으로 정해질 수 있다.
각 단계에서 다중화된 UCI(들)을 전송하기 위해 새롭게 선택된 PUCCH 자원이, 상기 다중화된 UCI(들)에 대한 (기존의) PUCCH 자원(들) 이외의 다른 PUCCH 자원(들)과 (시간 축에서) 중첩되는 경우, 단말은 상기 경우를 에러 케이스로 판단하고 기대하지 않을 수 있다. 또는 상기 새롭게 선택된 PUCCH 자원과 중첩된 PUCCH 자원(들)과 UCI 다중화 규칙을 적용하며, UCI 다중화 수행 시 다중화된 UCI(들)에 대한 기존 UL 자원을 특정 (단일) PUCCH 자원으로 대체할 수 있다.
[제안 방안 #1D] 슬롯 내에서 단말에게 설정/지시된 (준-정적으로 설정된) (단일) SR PUCCH 자원이 2개 이상의 (준-정적으로 설정된) CSI PUCCH 자원과 시간 축에서 중첩된 경우, 단말이 아래 중 하나의 동작을 수행하는 방안
(1) Opt. 1: SR 비트(들)을 각 CSI PUCCH 자원의 UCI 페이로드에 모두 추가하여 CSI과 SR을 다중화하여 전송. 즉, SR 정보를 SR PUCCH와 중첩된 모든 CSI PUCCH에 실을 수 있다.
- 복수의 CSI PUCCH 자원에 실리는 SR 정보(들)은 가장 첫 번째 CSI PUCCH 자원에 전송된 SR 정보가 복사된 (혹은 동일하게 전송되는) 형태일 수 있다. 즉, 복수 CSI PUCCH 자원에 실리는 SR 정보는 모두 동일하게 복사된 정보일 수 있다. 또한, 복수의 CSI PUCCH 자원에 실리는 SR 정보(들)은 각 CSI PUCCH 자원 별로 갱신된 (혹은, 각 CSI PUCCH 시점의 단말의 SR 상태(예, negative 또는 positive)를 반영하는) SR 정보일 수 있다. 즉, 복수 CSI PUCCH 자원에 실리는 SR 정보는 매 CSI PUCCH 자원 전송 시점마다 갱신된 SR 정보일 수 있다.
(2) Opt. 2: SR 비트(들)을 특정 하나의 CSI PUCCH 자원의 UCI 페이로드에만 추가하여 CSI과 SR을 다중화하여 전송. 여기서, 특정 하나의 CSI PUCCH 자원은 아래 중 하나일 수 있다.
- Opt. 2-1: 시간 축에서 첫 번째 (또는 마지막)인 CSI PUCCH 자원, 혹은 시작 시점이 가장 빠른 (또는 늦은) CSI PUCCH 자원. 즉, SR 정보를 SR PUCCH와 중첩된 모든 CSI PUCCH들 중 첫 번째 CSI PUCCH에만 실을 수 있다.
- Opt. 2-2: 가장 전송 용량이 큰 CSI PUCCH 자원
- Opt. 2-3: 가장 높은 우선순위를 갖는 CSI에 설정된 CSI PUCCH 자원
NR 시스템에서는 단일 CSI PUCCH 자원과 하나 또는 그 이상의 SR PUCCH 자원들이 한 슬롯 내 중첩되는 경우, 모든 UCI를 다중화하여 상기 단일 CSI PUCCH 자원을 통해 전송하는 동작이 고려되고 있다. 이때, 상기 CSI와 SR을 다중화하는 문제에 대해서, 상기 경우와 반대로 단일 SR PUCCH 자원이 복수 개의 CSI PUCCH 자원들과 중첩되는 경우의 UCI 다중화 규칙 또한 정해야 한다. 상기 문제에 대해서 앞에서 제안한 옵션을 고려할 수 있다.
[제안 방안 #1F] 슬롯 내에서 단말에게 설정/지시된 (단일) PUSCH 자원이 2개 이상의 CSI PUCCH 자원 (또는 AN PUCCH 자원)과 시간 축에서 중첩된 경우, 단말이 아래 중 하나의 동작을 수행하는 방안
(1) Opt. 1: PUSCH와 중첩된 CSI PUCCH 자원(들) (또는 AN PUCCH 자원(들)) 중 특정 하나의 CSI PUCCH 자원 (또는 AN PUCCH 자원)에 대한 CSI 리포트 (또는 HARQ-ACK 정보)를 UL-SCH TB(예, UL 데이터)와 다중화하여 상기 PUSCH 자원을 통해 전송(예, UCI 피기백).
- 특정 하나의 CSI PUCCH 자원은 시간 축에서 가장 빠른 혹은 우선순위가 가장 높은 CSI에 설정된 CSI PUCCH 자원을 포함할 수 있다. 또한, 특정 하나의 AN PUCCH 자원은 시간 축에서 가장 빠른 AN PUCCH 자원을 포함할 수 있다.
- 특정 하나의 CSI PUCCH (또는 AN PUCCH) 외의 나머지 CSI PUCCH (또는 AN PUCCH) 및 대응되는 CSI 리포트 (또는 HARQ-ACK) 전송은 생략될 수 있다.
(2) Opt. 2: PUSCH와 중첩된 CSI PUCCH 자원(들) (또는 AN PUCCH 자원(들))에 대한 CSI 리포트(들) (또는 HARQ-ACK 정보(들)) 전체를 UL-SCH TB(예, UL 데이터)와 다중화하여 상기 PUSCH 자원을 통해 전송(예, UCI 피기백). 또는, PUSCH와 중첩된 CSI PUCCH 자원(들) (또는 AN PUCCH 자원(들))에 대한 CSI 리포트(들) (또는 HARQ-ACK 정보(들)) 중 사전에 정의/설정된 우선 순위 규칙에 따라 우선 순위가 높은 최대 M개까지의 CSI 리포트(들) (또는 HARQ-ACK 정보(들))를 UL-SCH TB(예, UL 데이터)와 다중화하여 상기 PUSCH 자원을 통해 전송(예, UCI 피기백)
- M 값은 1 또는 2일 수 있다.
- M 값은 사전에 약속된 값이거나, 상위계층(예, RRC) 신호에 기반하여 설정/정의되는 값일 수 있다.
[제안 방안 #1F]에서 PUSCH 자원을 CSI PUCCH 자원으로 치환하고, UL-SCH TB를 CSI로 치환한 경우, CSI PUCCH 자원과 AN PUCCH 자원에 대한 CI 다중화 동작은 동일하게 적용될 수 있다.
NR 시스템은 유연한 PUCCH 전송 구간 설정이 지원되므로, 단일 PUSCH 자원과 하나 또는 그 이상의 CSI PUCCH 자원들 (또는 AN PUCCH 자원들)이 한 슬롯 내에서 중첩되는 경우가 발생할 수 있다. 이 경우, 우선순위 규칙을 토대로 (우선순위가 높은) M개의 CSI PUCCH 자원(들) (또는 AN PUCCH 자원(들))에 대한 M개의 CSI 리포트(들)만을 PUSCH로 UCI 피기백 할 수 있다. M 값은 사전에 약속된 값이거나 또는 상위 계층 신호에 기반하여 설정/정의되는 값일 수 있다. 또는, 간단한 방안으로, PUSCH 자원과 시간 축에서 첫 번째로 중첩한 CSI PUCCH 자원 (또는 AN PUCCH 자원)에 대한 CSI 보고 (또는 HARQ-ACK)만 PUSCH로 UCI 피기백 할 수 있다.
[제안 방안 #1H] 단말이 (2비트 이하 AN에 대한) AN PUCCH 자원과 N개(예, N>1) SR PUCCH 자원에 대한 UCI 다중화를 수행할 때, AN PUCCH에 대한 스케줄링 방법 및/또는 AN PUCCH에 대해 설정된 PUCCH 자원 집합 개수 K에 따라 다중화된 UCI (예, AN/SR)를 전송할 PUCCH 포맷을 다음과 같이 달리하는 방안
(1) AN PUCCH 자원이 DCI (예, ARI)에 의해 지시된 경우
A. K>1인 경우
- 다중화된 UCI (예, AN/SR)를 PUCCH 포맷 2/3/4 중 하나로 전송
B. K=1인 경우
- 다중화된 UCI (예, AN/SR)를 PUCCH 포맷 0/1 중 하나로 전송
(2) AN PUCCH 자원이 DCI (예, ARI)에 의해 지시되지 않은 경우 (예, AN PUCCH 자원이 SPS PDSCH에 대한 A/N 정보와 연관된 경우)
A. K>1인 경우
- Opt. 1: 다중화된 UCI (예, AN/SR)를 PUCCH 포맷 0/1 중 하나로 전송
- Opt. 2: 다중화된 UCI (예, AN/SR)를 특정 ARI 값을 가정하여 선택된 PUCCH 포맷 2/3/4 중 하나로 전송
B. K=1인 경우
- 다중화된 UCI (예, AN/SR)를 PUCCH 포맷 0/1 중 하나로 전송
상술한 방법에 따라, AN PUCCH 자원이 N(예, N>1)개의 SR PUCCH 자원과 시간 축에서 중첩될 때, 단말은 AN과 SR을 다중화 할 수 있다.
단말은 (총) UCI 페이로드 사이즈에 따라 PUCCH 자원 집합을 선택한 뒤, 선택된 PUCCH 자원 집합 내 PUCCH 자원들 중에서 ARI에 의해 지시된 PUCCH 자원을 통해 UCI(예, HARQ-ACK)를 전송할 수 있다. 여기서, ARI (ACK/NACK 자원 지시자)는 DCI 내 PUCCH 자원을 지시하는 비트 필드를 의미한다.
한편, AN PUCCH 자원에 대한 PUCCH 자원 집합 개수는 복수일 수 있다(K>1). 이 경우, 단말은 AN과 다른 UCI를 다중화한 뒤, 다중화된 (총) UCI 페이로드 사이즈에 대응하는 PUCCH 자원 집합을 선택할 수 있다. 이후, 단말은 해당 PUCCH 자원 집합 내 PUCCH 자원들 중에서 ARI에 의해 지시된 PUCCH 자원을 이용해 다중화된 UCI를 전송할 수 있다. 이때, PUCCH 자원 집합이 지원하는 UCI 사이즈가 2비트 이하인 경우, PUCCH 자원 집합은 PUCCH 포맷 0/1을 포함할 수 있다. 반면, PUCCH 자원 집합이 지원하는 UCI 사이즈가 3비트 이상인 경우, PUCCH 자원 집합은 PUCCH 포맷 2/3/4를 포함할 수 있다. PUCCH 자원 집합 개수가 1개 이상이면 적어도 하나의 PUCCH 자원 집합은 2비트 이하 UCI 전송용으로 설정된다. 따라서, AN PUCCH 자원이 ARI에 의해 지시되고, AN PUCCH 자원에 대한 PUCCH 자원 집합 개수가 2개 이상이면, 단말은 3비트 이상의 UCI 전송용인 PUCCH 포맷 2/3/4를 통해 UCI를 전송할 수 있다. 이 경우, 단말은 AN과 복수 SR간에 다중화를 수행할 때, 복수의 SR PUCCH 자원에 대한 SR 정보를 멀티-비트 SR 정보를 AN 페이로드에 추가한 뒤, 전체 UCI 페이로드 사이즈에 의해 선택된 PUCCH 자원 집합 내에서 ARI에 의해 지시된 PUCCH 포맷 2/3/4 중 하나를 통해 다중화된 AN/SR을 전송할 수 있다.
그러나, AN PUCCH 자원이 ARI에 의해 지시되더라도, AN PUCCH 자원에 대한 PUCCH 자원 집합 개수가 1개이면, 단말은 PUCCH 포맷 2/3/4 자원을 사용할 수 없다. 따라서, 다중화된 AN/SR을 PUCCH 포맷 0/1 자원을 통해 전송하는 방안을 고려할 수 있다. 예를 들어, 단말은 AN과 복수 SR간 다중화를 수행할 때, AN PUCCH가 PUCCH 포맷 1이면 PUCCH 포맷 0을 따르는 SR PUCCH 자원(들)에 대한 SR 전송은 생략하고, PUCCH 포맷 1을 따르는 SR PUCCH 자원(들) 중 positive SR이면서 가장 우선 순위가 높은 SR에 대응되는 SR PUCCH 자원을 통해 AN을 전송할 수 있다(단, 모두 negative SR이면 AN PUCCH 전송). 또는, AN PUCCH가 PUCCH 포맷 0이면, AN PUCCH 자원에 대해 최대 2개의 CS 오프셋을 적용해 2개의 SR PUCCH (그룹)에 대한 SR 정보를 표현할 수 있다. 즉, positive SR인 SR PUCCH를 적어도 하나 이상 포함하면서 가장 우선 순위가 높은 SR PUCCH (그룹)에 대응되는 CS 오프셋을 AN PUCCH 포맷 0에 적용할 수 있다.
한편, SPS(Semi-Static Scheduling) PDSCH 전송에 대응되는 AN PUCCH 자원은 ARI에 의해 지시되지 않고, 상위계층(예, RRC) 신호를 통해 준-정적으로 설정될 수 있다. 따라서, SPS PDSCH 전송에 대응되는 AN PUCCH 자원과 SR PUCCH 자원이 중첩된 경우, 단말은 AN과 복수 SR간 다중화를 수행할 때 PUCCH 포맷 2/3/4 자원을 사용할 수 없다. 따라서, 다중화된 AN/SR을 PUCCH 포맷 0/1 자원을 통해 전송하는 방안을 고려할 수 있다. 가령, 단말이 AN과 복수 SR간 다중화를 수행할 때, AN PUCCH가 PUCCH 포맷 1이면 PUCCH 포맷 0를 따르는 SR PUCCH 자원(들)에 대한 SR 전송은 생략하고, PUCCH 포맷 1을 따르는 SR PUCCH 자원(들) 중 positive SR이면서 가장 우선 순위가 높은 SR에 대응되는 SR PUCCH 자원을 통해 AN을 전송할 수 있다(단, 모두 negative SR이면 AN PUCCH 전송). 또는, AN PUCCH가 PUCCH 포맷 0이면, AN PUCCH 자원에 대해 최대 2개까지 CS 오프셋을 적용하여 2개 SR PUCCH (그룹)에 대한 SR 정보를 표현할 수 있다. 즉, positive SR인 SR PUCCH를 적어도 하나 이상 포함하면서 가장 우선 순위가 높은 SR PUCCH (그룹)에 대응되는 CS 오프셋을 AN PUCCH 포맷 0에 적용할 수 있다. 그러나, AN PUCCH 자원에 대한 PUCCH 자원 집합 개수가 2개 이상인 경우, ARI이 지시되지는 않았지만 단말은 AN PUCCH 자원을 결정하기 위해 특정 ARI 값(예, ARI=0)를 가정할 수 있다. 이후, 단말은 (1) 복수의 SR PUCCH 자원에 대한 SR 정보를 멀티-비트 SR 정보로 표현하여 AN 페이로드에 추가한 뒤, (2) 다중화된 전체 UCI 페이로드 사이즈에 의해 선택된 PUCCH 자원 집합 내에서 ARI=0에 대응되는 PUCCH 포맷 2/3/4 자원을 중 하나를 이용하여 다중화된 AN/SR을 전송할 수 있다.
[제안 방안 #1H]의 "다중화된 UCI (예, AN/SR)를 PUCCH 포맷 0/1 중 하나로 전송"하는 동작에 대해 단말이 AN과 SR을 아래와 같이 다중화하는 동작을 고려할 수 있다. 단, PF0/1/2/3/4는 PUCCH 포맷 0/1/2/3/4를 의미한다.
(1) Case #1: (단일) AN과 (단일) SR 간 UCI 다중화
A. AN PF0인 경우
i. SR PF0인 경우: Positive SR이면, AN을 AN PF0 자원에 CS 오프셋을 적용한 자원을 통해 전송. Negative SR이면, AN을 AN PF0 자원을 통해 전송
ii. SR PF1인 경우
- Opt. 1: Positive SR이면, AN을 AN PF0 자원에 CS 오프셋을 적용한 자원을 통해 전송. Negative SR이면, AN을 AN PF0 자원을 통해 전송
- Opt. 2: Positive SR이면, AN을 SR PF1 자원을 통해 전송. Negative SR이면, AN을 AN PF0 자원을 통해 전송
B. AN PF1인 경우
i. SR PF0인 경우: AN을 AN PF1 자원을 통해 전송 (SR drop)
ii. SR PF1인 경우: Positive SR이면, AN을 SR PF1 자원을 통해 전송. Negative SR이면, AN을 AN PF1 자원을 통해 전송
(2) Case #2: (단일) AN과 (멀티플) SR (w/ 단일 PUCCH 포맷) 간 UCI 다중화
A. AN PF0인 경우
i. (멀티플) SR PF0인 경우
- (특정 SR PUCCH 그룹 내) 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 AN PF0 자원에 (상기 특정 SR PUCCH 그룹에 대응되는) CS 오프셋을 적용한 자원을 통해 전송
- 이 경우, 전체 K개 SR PUCCH들을 L개 (예, L=2, K>L) SR PUCCH 그룹으로 그룹화한 후, 해당 L개의 SR PUCCH 그룹 각각을 서로 다른 L개 CS 오프셋에 대응/매핑시킬 수 있다. 특정 SR PUCCH 그룹에 속한 SR 중 적어도 하나가 Positive이면 해당 특정 SR PUCCH 그룹에 대응되는 CS 오프셋을 적용한 자원을 통해 AN을 전송하도록 동작
- 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF0 자원을 통해 전송
ii. (멀티플) SR PF1인 경우
- Opt. 1: (특정 SR PUCCH 그룹 내) 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 AN PF0 자원에 (상기 특정 SR PUCCH 그룹에 대응되는) CS 오프셋을 적용한 자원을 통해 전송. 이 경우, 전체 K개 SR PUCCH들을 L개 (예, L=2, K>L) SR PUCCH 그룹으로 그룹화한 후, 해당 L개의 SR PUCCH 그룹 각각을 서로 다른 L개 CS 오프셋에 대응/매핑시킬 수 있다. 특정 SR PUCCH 그룹에 속한 SR 중 적어도 하나가 Positive이면, 해당 특정 SR PUCCH 그룹에 대응되는 CS 오프셋을 적용한 자원을 통해 AN을 전송하도록 동작. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF0 자원을 통해 전송
- Opt. 2: 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 SR PUCCH들 중 (최우선 순위의) SR PUCCH에 대응되는 SR PF1 자원을 통해 전송. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF0 자원을 통해 전송
B. AN PF1인 경우
i. (멀티플) SR PF0 경우:AN을 AN PF1 자원을 통해 전송 (SR drop)
ii. (멀티플) SR PF1인 경우: 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 SR PUCCH들 중 (최우선 순위의) SR PUCCH에 대응되는 SR PF1 자원을 통해 전송. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF1 자원을 통해 전송
(3) Case #3: (단일) AN과 (멀티플) SR (w/ 서로 다른 PUCCH 포맷들) 간 UCI 다중화
A. AN PF0인 경우
i. (멀티플) SR PF0 + (멀티플) SR F1인 경우
- Opt. 1: 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이고 SR PUCCH들 중 (최우선 순위의) SR PUCCH가 PF0인 경우, AN을 AN PF0 자원에 CS 오프셋을 적용한 자원을 통해 전송. 이 경우, 전체 혹은 PF0로 설정된 K개 SR PUCCH들을 L개 (예, L=2, K>L) SR PUCCH 그룹으로 그룹화한 후, 해당 L개의 SR PUCCH 그룹 각각을 서로 다른 L개 CS 오프셋에 대응/매핑시킬 수 있음. 이 경우, 특정 SR PUCCH 그룹에 속한 SR 중 적어도 하나가 Positive이면, 해당 특정 SR PUCCH 그룹에 대응되는 CS 오프셋을 적용한 자원을 통해 AN을 전송하도록 동작. 만약, PF0로 설정된 SR PUCCH 수 K가 L과 동일하거나 L보다 작은 경우에는 별도의 그룹화 없이 해당 K개 SR PUCCH 각각을 서로 다른 K개 CS 오프셋에 대응/매핑시킬 수 있음. 이 경우, Positive SR PUCCH에 대응되는 CS 오프셋을 적용한 자원을 통해 AN을 전송하도록 동작. 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이고, SR PUCCH들 중 (최우선 순위의) SR PUCCH가 PF1인 경우, AN을 (해당) SR PF1 자원을 통해 전송. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF0 자원을 통해 전송
- Opt. 2: (특정 SR PUCCH 그룹 내) 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 AN PF0 자원에 (상기 특정 SR PUCCH 그룹에 대응되는) CS 오프셋을 적용한 자원을 통해 전송. 이 경우, 전체 K개 SR PUCCH들을 L개 (예, L=2, K>L) SR PUCCH 그룹으로 그룹화한 후, 해당 L개의 SR PUCCH 그룹 각각을 서로 다른 L개 CS 오프셋에 대응/매핑시킬 수 있음. 이 경우, 특정 SR PUCCH 그룹에 속한 SR 중 적어도 하나가 Positive이면 해당 특정 SR PUCCH 그룹에 대응되는 CS 오프셋을 적용한 자원을 통해 AN을 전송하도록 동작. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF0 자원을 통해 전송
- Opt. 3: (특정 SR PUCCH 그룹 내) 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 (상기 특정 SR PUCCH 그룹에 대응되는) 특정 SR PF1 자원을 통해 전송. 이 경우, 전체 K개 SR PUCCH들을 L개 (예, L = the number of SRs configured with F1, K>L) SR PUCCH 그룹으로 그룹화한 후, 해당 L개의 SR PUCCH 그룹 각각을 서로 다른 L개 SR F1 자원에 대응/매핑시킬 수 있음. 이 경우, 특정 SR PUCCH 그룹에 속한 SR 중 적어도 하나가 Positive이면 해당 특정 SR PUCCH 그룹에 대응되는 SR F1 자원을 통해 AN을 전송하도록 동작. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF0 자원을 통해 전송
B. AN PF1인 경우
i. (멀티플) SR PF0 + (멀티플) SR F1인 경우
- Opt. 1: 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이고 SR PUCCH들 중 (최우선 순위의) SR PUCCH가 PF0인 경우, AN을 AN PF1 자원을 통해 전송(SR drop). 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이고 SR PUCCH들 중 (최우선 순위의) SR PUCCH가 PF1인 경우, AN을 (해당) SR PF1 자원을 통해 전송. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF1 자원을 통해 전송.
- Opt. 2: (특정 SR PUCCH 그룹 내) 적어도 하나의 SR PUCCH에 대한 SR 정보가 Positive SR이면, AN을 (상기 특정 SR PUCCH 그룹에 대응되는) 특정 SR PF1 자원을 통해 전송. 이 경우, 전체 K개 SR PUCCH들을 L개 (예, L = the number of SRs configured with F1, K>L) SR PUCCH 그룹으로 그룹화한 후, 해당 L개의 SR PUCCH 그룹 각각을 서로 다른 L개 SR F1 자원에 대응/매핑시킬 수 있음. 이 경우, 특정 SR PUCCH 그룹에 속한 SR 중 적어도 하나가 Positive이면 해당 특정 SR PUCCH 그룹에 대응되는 SR F1 자원으로 AN을 전송하도록 동작. 모든 SR PUCCH(들)에 대한 SR 정보가 Negative SR이면, AN을 AN PF1 자원을 통해 전송
여기서, SR PUCCH 그룹은 하나 이상의 SR PUCCH들로 구성될 수 있으며, 하나 이상의 SR PUCCH 그룹이 정의될 수 있다.
앞에서 설명한 내용을 정리하면 다음과 같다.
(1) Case #1
A. AN PF0 + 단일 SR PF0 => AN+SR on AN PF0 (by CS 오프셋)
B. AN PF0 + 단일 SR PF1 => AN+SR on AN PF0 (by CS 오프셋) 또는 SR PF1 (by CH selection)
C. AN PF1 + 단일 SR PF0 => AN only on AN PF1 (by SR drop)
D. AN PF1 + 단일 SR PF1 => AN+SR on SR PF1 (by CH selection)
(2) Case #2
A. AN PF0 + 멀티플 SR PF0 => AN+SR on AN PF0 (by CS 오프셋 & SR 번들링)
B. AN PF0 + 멀티플 SR PF1 => AN+SR on AN PF0 (by CS 오프셋 & SR 번들링) or SR F1 (by CH selection)
C. AN PF1 + 멀티플 SR PF0 => AN only on AN PF1 (by SR drop)
D. AN PF1 + 멀티플 SR PF1 => AN+SR on SR PF1 (by CH selection)
(3) Case #3
A. AN PF0 + (멀티플) SR PF0 + (멀티플) SR PF1
i. Option 1
1. SR PF0이 positive SR이고 우선순위가 가장 높은 경우, AN+SR on AN F0 (by CS 오프셋 & SR 번들링). 이 경우, SR 번들링 대상은 SR F0들만으로 한정
2. SR PF1이 positive SR이고 우선순위가 가장 높은 경우, AN+SR on SR PF1 (by CH selection)
ii. Option 2
1. SR PF가 positive SR인지 관계없이, AN+SR on AN PF0 (by CS 오프셋 & SR 번들링). 이 경우, SR 번들링 대상은 SR PF0과 SR PF1를 모두 포함
iii. Option 3
1. SR PF가 positive SR인지 관계없이, AN+SR on SR PF1 (by CH selection & SR 번들링). 이 경우, SR 번들링 대상은 SR PF0과 SR PF1를 모두 포함
B. AN PF1 + (멀티플) SR PF0 + (멀티플) SR PF1
i. Option 1
1. SR PF0이 positive SR이고 우선순위가 가장 높은 경우, AN only on AN PF1 (by SR drop)
2. SR PF1이 positive SR이고 우선순위가 가장 높은 경우, AN+SR on SR PF1 (by CH selection)
ii. Option 2
1. AN+SR on SR PF1 (by CH selection & SR 번들링). 이 경우, SR 번들링 대상은 SR PF0과 SR PF1를 모두 포함
[제안 방안 #2] 슬롯 내에서 A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩될 수 있다. 이 경우, 단말은 A/N과 (positive) SR간 다중화를 가정할 때 사용될 PUCCH(이하, MUX PUCCH)의 전송 시작 시점과 SR PUCCH의 전송 시작 시점의 상대적인 관계에 따라 A/N과 (positive) SR간의 다중화 여부를 결정할 수 있다.
단, 단말이 A/N과 (positive) SR간의 다중화를 수행하지 않는 경우, A/N과 (positive) SR 중 하나의 전송이 생략될 수 있다.
일 예로, 단말은 SR PUCCH의 전송 시작 시점이 MUX PUCCH의 전송 시작 시점보다 T 0만큼 앞서는지, 뒤서는지에 따라 아래와 같이 A/N과 (positive) SR간의 다중화 여부를 결정할 수 있다.
(1) SR PUCCH의 전송 시작 시점이 MUX PUCCH의 전송 시작 시점을 기준으로 T 0 이전 시점보다 앞선 경우
A. A/N과 (positive) SR 중 하나를 선택하여 전송
i. SR에 대한 UCI 상태가 positive SR인 경우, SR을 SR PUCCH 자원을 통해 전송 (A/N 전송 생략)
ii. SR에 대한 UCI 상태가 negative SR인 경우, A/N을 A/N PUCCH 자원을 통해 전송
(2) SR PUCCH의 전송 시작 시점이 MUX PUCCH의 전송 시작 시점을 기준으로 T 0 이전 시점보다 뒤선 (또는 같은) 경우
A. A/N과 (positive) SR을 다중화하여 전송 (또는 A/N PUCCH와 SR PUCCH가 시간 축에서 PUCCH 내 모든 OFDM 심볼들에 대해 온전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 따름)
i. A/N PUCCH가 PUCCH 포맷 0인 경우
1. SR에 대한 UCI 상태가 positive SR인 경우, A/N을 A/N PUCCH에 CS/OCC/PRB 오프셋이 적용된 자원을 통해 전송
2. SR에 대한 UCI 상태가 negative SR인 경우, A/N을 A/N PUCCH 자원을 통해 전송
ii. A/N PUCCH가 PUCCH 포맷 1인 경우
1. SR에 대한 UCI 상태가 positive SR인 경우, A/N을 SR PUCCH 자원을 통해 전송. 단, SR PUCCH가 PUCCH 포맷 0인 경우에는 SR을 전송하지 않고, A/N만 전송할 수 있다.
2. SR에 대한 UCI 상태가 negative SR인 경우, A/N을 A/N PUCCH 자원을 통해 전송
iii. A/N PUCCH가 PUCCH 포맷 2/3/4 중 하나인 경우
1. SR에 대한 UCI 상태가 positive SR 또는 negative SR인 경우, A. SR을 명시적 비트(들)로 표현하여 A/N에 Appending하여 UCI 페이로드 생성 후 상기 UCI를 A/N PUCCH 자원을 통해 전송
T 0은 아래 중 하나일 수 있다. T 0는 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른 복조에 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(5) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
[제안 방안 #2]는 A/N PUCCH가 PUCCH 포맷 0/2/3/4인 경우에 적용될 수 있다.
NR 시스템에서 A/N PUCCH와 SR PUCCH 간 시작 (OFDM) 심볼이 다른 경우, A/N only 전송을 가정한 A/N PUCCH(이하, A/N PUCCH 1)와 SR PUCCH간 시작 (OFDM) 심볼 (혹은 시작 시간)을 비교하여 A/N과 SR 간의 UCI 다중화 여부를 결정하는 방안이 논의되었다. 예를 들어, SR PUCCH의 시작 (OFDM) 심볼이 A/N PUCCH 1의 시작 (OFDM) 심볼보다 앞선 경우, 단말은 SR PUCCH를 전송하고 A/N 전송은 생략한다. 반대로, SR PUCCH 의 시작 (OFDM) 심볼이 A/N PUCCH 1의 시작 (OFDM) 심볼보다 뒤선 (혹은 같은) 경우, 단말은 SR과 A/N을 UCI 다중화하여 단일 PUCCH로 전송할 수 있다. 상술한 동작은, 단말이 시작 (OFDM) 심볼이 앞서는 PUCCH를 먼저 처리할 것으로 기대되기 때문이다. 그러나, NR 시스템에서 A/N과 SR을 다중화하여 단일 PUCCH 자원을 통해 전송할 때, A/N PUCCH가 PUCCH 포맷 0/2/3/4인 경우, 단일 PUCCH 자원은 A/N과 SR에 대한 전체 UCI 페이로드 사이즈를 산정하여 새롭게 선택된 A/N PUCCH 자원(이하 A/N PUCCH 2)일 수 있고, A/N PUCCH 1과는 다를 수 있다. 따라서, 단말이 SR PUCCH의 시작 (OFDM) 심볼이 A/N PUCCH 1의 시작 (OFDM) 심볼보다 뒤선 (혹은 같은) 경우로 판단한 후, A/N PUCCH 2로 A/N과 SR을 전송하고자 할 때, SR PUCCH보다 A/N PUCCH 2의 시작 (OFDM) 심볼이 앞서는 경우가 발생할 수 있다. 따라서, 보다 일관된 단말 동작을 위해, A/N PUCCH 1이 아니라 A/N PUCCH 2의 시작 (OFDM) 심볼과 SR PUCCH의 시작 (OFDM) 심볼 간의 선후 관계를 비교하는 것이 바람직할 수 있다.
[제안 방안 #3] 슬롯 내에서 A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩될 수 있다. 이때, A/N과 (positive) SR간 다중화를 가정할 때 사용될 PUCCH (이하, MUX PUCCH)의 전송 시작 시점이 SR PUCCH의 전송 시작 시점 보다 늦을 수 있다. 이 경우, 단말은 (최선 노력(best effort) 방식으로) On-going SR PUCCH 전송이 있으면, 해당 SR PUCCH 전송을 중단하고 MUX PUCCH로 A/N과 (positive) SR을 다중화하여 전송할 수 있다.
추가적으로, A/N PUCCH 자원과 SR PUCCH 자원이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩된 경우, 단말은 A/N과 (positive) SR간 다중화를 가정할 때 사용될 PUCCH (이하 MUX PUCCH)의 전송 시작 시점이 A/N PUCCH의 전송 시작 시점 보다 늦을 수 있다. 이 경우, 단말은 (최선 노력 방식으로) On-going A/N PUCCH 전송이 있으면, 해당 A/N PUCCH 전송을 중단하고 MUX PUCCH로 A/N과 (positive) SR을 다중화하여 전송하는 방안
단, 상기 동작은 특정 단말 능력을 보유한 단말에 대해 한정 적용될 수 있다.
단말이 SR 전송을 수행한 이후에 SR PUCCH와 시간 축에서 일부 중첩되는 A/N PUCCH 자원의 존재를 파악한 경우, 간단한 방법으로 단말은 해당 A/N 전송을 생략할 수 있다. 그러나, 단말이 충분한 능력이 된다면, 가능한 한 (즉, 최선 노력 방식으로) 현재 진행 중이던 SR 전송을 중단하고, A/N과 SR을 다중화하여 단일 PUCCH 자원을 통해 전송하려고 시도할 수 있다. 또는 반대로, 단말이 A/N 전송을 수행한 이후에 A/N PUCCH와 시간 축에서 일부 중첩되는 SR PUCCH 자원에 대한 Positive SR이 발생할 수 있다. 이 경우에도 단말은 (즉, 최선 노력 방식으로) 현재 진행 중이던 A/N 전송을 중단하고, A/N과 SR을 다중화하여 단일 PUCCH 자원을 통해 전송하려고 시도할 수 있다. [제안 방안 #3]을 통해 단말은 SR과 A/N이 충돌하는 경우에도 A/N과 SR의 다중화된 전송을 최대한 지원할 수 있다.
[제안 방안 #4] A/N PUCCH가 PF0 또는 PF1이고, 슬롯 내에서 A/N PUCCH 자원과 SR PUCCH 자원(들)이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩될 수 있다. 이 경우, 단말은 A/N PUCCH 자원과 중첩된 SR PUCCH 자원(들)에 대응되는 SR 프로세스 개수에 따라 A/N과 SR에 대한 UCI 다중화 규칙을 달리 적용할 수 있다.
일 예로, A/N PUCCH 자원과 중첩된 SR PUCCH 자원(들)에 대응되는 SR 프로세스가 하나인지 혹은 복수인지에 따라, 단말은 아래와 같이 A/N과 SR에 대해 UCI 다중화 규칙을 적용할 수 있다.
(1) (A/N과 중첩된) SR 프로세스가 하나인 경우
A. A/N PUCCH가 PUCCH 포맷 0인 경우
i. SR에 대한 UCI 상태가 positive SR인 경우, A/N PUCCH에 CS/OCC/PRB 오프셋이 적용된 자원을 통해 A/N을 전송
ii. SR에 대한 UCI 상태가 negative SR인 경우, A/N PUCCH 자원을 통해 A/N을 전송
B. A/N PUCCH가 PUCCH 포맷 1인 경우
i. SR에 대한 UCI 상태가 positive SR인 경우, SR PUCCH 자원을 통해 A/N을 전송
ii. SR에 대한 UCI 상태가 negative SR인 경우, A/N PUCCH 자원을 통해 A/N을 전송
(2) (A/N과 중첩된) SR 프로세스가 복수인 경우
A. A/N PUCCH가 PF0 또는 PF1인 경우
i. A/N에 (복수 SR 프로세스에 대한) SR을 표현하는 멀티-비트(들)을 부가한 후, A/N PUCCH 자원을 통해 전체 UCI를 전송. 여기서, A/N PUCCH 자원은 A/N과 멀티-비트 SR을 포함한 UCI 페이로드 사이즈를 기준으로 선택된 자원일 수 있으며, PF2/3/4 중 하나일 수 있다.
여기서, 복수의 SR 프로세스에 대응되는 SR PUCCH 자원 설정은 특정 ID로 구분되며 각각 독립적일 수 있다.
NR 시스템에서는 A/N PUCCH가 PF0 또는 PF1인 경우, 지원되는 A/N 페이로드 사이즈는 2비트 이하이다. 이때, 하나의 SR 프로세스에 대한 정보가 추가될 경우, 단말은 다중화 용량이 떨어지는 라지 UCI 페이로드 사이즈용 PUCCH 포맷(예, PF2/3/4)을 사용하기 보다는 자원 선택 방식을 이용하여 해당 SR 프로세스에 대한 positive/negative SR을 표현할 수 있다. 그러나, A/N PUCCH 자원과 복수의 SR 프로세스에 대응되는 SR PUCCH 자원(들)이 중첩된 경우, 단말은 positive/negative SR 외에, 어떤 SR 프로세스가 positive/negative SR인지에 관한 정보도 기지국에게 전달할 수 있어야 한다. 이 경우, SR 정보를 표현하기 위해 필요한 비트 수가 크므로, SR 프로세스가 1개인 경우와 같이 자원 선택 방식을 활용하기 보다는, 3비트 이상의 라지 UCI 페이로드 사이즈용 PUCCH 포맷(예, PF2/3/4)을 사용하는 것이 보다 효율적일 수 있다.
[제안 방안 #5] 슬롯 내의 A/N PUCCH 자원과 CSI PUCCH 자원이 시간 축에서 (PUCCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩된 경우, 아래와 같이 A/N과 CSI 간 다중화를 지원하는 방안
(1) A/N PUCCH 자원이 DL assignment 기반이 아닌 경우
A. CSI PUCCH의 전송 시작 시점을 기준으로 T 0 이전 시점까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 CSI PUCCH 자원과 시간 축에서 중첩되는 경우
i. A/N과 CSI를 다중화하여 CSI PUCCH로 전송
B. 그 밖의 경우
i. Opt. 1: CSI를 CSI PUCCH 자원을 통해 전송 (A/N 전송 생략)
ii. Opt. 2: A/N을 A/N PUCCH 자원을 통해 전송 (CSI 전송 생략)
(2) A/N PUCCH 자원이 DL assignment 기반인 경우
A. A/N과 CSI를 다중화하여 (전체 UCI 기준으로 재-선택된) A/N PUCCH 자원을 통해 전송. 단, CSI를 갱신할 시간이 부족한 경우(예, CSI 참조 자원이 A/N PUCCH 자원의 전송 시작 시점을 기준으로 T 1 이전 시점인 경우), 단말은 CSI를 갱신하지 않을 수 있다.
CSI 참조 자원은 CSI 계산의 참조가 되는 시간 자원을 의미한다. (밸리드) DL 슬롯은 (단말에게) DL 슬롯으로 설정된 슬롯 및/또는 측정 갭(예, measurement gap)에 포함되지 않는 슬롯 및/또는 CSI 보고가 수행되는 DL BWP와 동일 DL BWP에 포함되는 슬롯을 의미할 수 있다.
T 0은 아래 중 하나일 수 있다. T 0는 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, PDSCH 종료 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른 복조에 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(5) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
T 1은 아래 중 하나일 수 있다. T 1은 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, CSI 계산 및 보고를 위해 필요한 단말의 처리 시간 또는 그에 대응되는 값
(2) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(3) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
NR 시스템에서는 DL assignment (= DL scheduling DCI)에 기반한 PDSCH에 대한 A/N과 CSI가 다중화 되는 경우, A/N과 CSI에 대한 전체 UCI 페이로드 사이즈를 기준으로 재-선택된 A/N PUCCH 자원을 통해 다중화된 A/N과 CSI를 전송할 수 있다. 상기 다중화 동작은 A/N PUCCH와 CSI PUCCH가 시간 축에서 일부 중첩되는 경우에도 적용될 수 있다. 다만, CSI 참조 자원이 A/N PUCCH의 전송 시작 지점을 기준으로, 단말 처리 시간인 T 0 이전에 존재할 경우, 단말이 CSI를 새롭게 갱신하기 어려울 수 있다. 따라서, CSI를 새롭게 갱신하기 어려운 경우에는 CSI를 갱신하지 않고 (단, 갱신되지 않은 CSI는 여전히 A/N과 다중화하여 보고), 그 밖의 경우에는 CSI를 갱신하여 A/N과 다중화하여 보고하는 방안을 제안한다.
반면, A/N이 DL assignment에 기반한 PDSCH에 대응되지 않는 경우, 단말은 A/N과 CSI를 CSI PUCCH로 다중화하여 전송할 수 있다. CSI PUCCH를 통해 A/N을 전송하는 경우, A/N 전송을 위한 최소 UL 타이밍이 보장되는 경우만 A/N과 CSI 간의 다중화를 허용할 수 있다. 즉, 단말은 CSI PUCCH 전송 시작 시점을 기준으로 T 1 이전 시점까지 수신한 (혹은 전송을 시작한) PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N PUCCH가 CSI PUCCH와 중첩되는 경우에만 A/N과 CSI 간의 다중화를 수행하고, 그렇지 않은 경우에는 A/N 전송을 생략하고 CSI PUCCH만 전송할 수 있다.
[제안 방안 #6] 단말이 특정 PUCCH (또는 PUSCH) 자원(이하, UL-CH1) 내 일부 (OFDM) 심볼(들)을 펑처링하고, 상기 (OFDM) 심볼(들)에서 다른 PUCCH (또는 PUSCH) 자원(이하, UL-CH2)을 전송할 수 있다. 이 경우, UL-CH2에 대한 송신 전력을 다음과 같이 적용할 수 있다.
(1) Opt. 1
A. UL-CH2에 대해 (UL-CH1과) 독립적으로 설정된 송신 전력을 적용
i. UL-CH2의 송신 전력이 UL-CH1의 송신 전력을 기준으로 일정 범위 내 값을 갖는 경우, 단말은 UL-CH1의 펑처링 이후 자원을 (불연속적으로) 마저 전송할 수 있다.
ii. UL-CH2의 송신 전력이 UL-CH1의 송신 전력을 기준으로 일정 범위 바깥의 값을 갖는 경우,
1. UL-CH1의 펑처링 이후의 자원 내에 DM-RS가 존재하면, UL-CH1의 나머지 자원에 대한 전송을 마저 수행. 여기서, DM-RS는 데이터 복조용 참조 신호를 의미한다.
2. UL-CH1의 펑처링 이후의 자원 내에 DM-RS가 존재하면, UL-CH1의 나머지 자원에 대한 전송을 생략
(2) Opt. 2
A. UL-CH2에 대해 UL-CH1과 동일한 송신 전력을 적용
(3) Opt. 3
A. UL-CH2에 대해 (UL-CH1과) 독립적으로 설정된 송신 전력이 TXP1이고, UL-CH1에 대한 위상 연속성(Phase continuity)을 보장하도록 하는 최대 송신 전력이 TXP2일 때, min(TXP1, TXP2)을 UL-CH2에 대한 송신 전력으로 적용. 여기서, 위상 연속성은 UL-CH1에 대해 펑처링 이전 자원과 이후 자원 간에 채널 변화에 따른 위상 차이를 제외한 다른 위상 차이는 없음을 의미한다.
i. TXP2는 단말이 구현에 따라 임의로 선택하는 값일 수 있다.
i. UL-CH2에 대해 설정된 기존 UL PC(power control) 규칙을 예외적으로 풀어줄 수 있음.
일 예로, 단말이 PUSCH를 전송하는 도중에 긴급한 서비스(예, URLLC)에 대한 PUCCH 전송을 수행해야 하는 경우가 발생할 수 있다. 이 경우, 단말이 PUSCH 전송을 이미 진행하고 있는 도중(예, On-going transmission)이므로, 단말은 PUSCH 전송을 끊고 PUCCH를 전송해야 한다. 이때, PUSCH 전송 관점에서, PUCCH가 전송되는 OFDM 심볼들만 펑처링 될 수 있다. 이 경우, 펑처링 구간 내의 PUCCH 전송 전력이 PUSCH와 달라서, PA(power amplifier) 설정이 초기화되면서 펑처링 구간을 기준으로 앞쪽에 전송된 PUSCH 자원과 뒤쪽에 전송된 PUSCH 자원 간에 (전송 신호의) 위상이 달라질 수 있다. 상기 문제는 PUSCH 전송 도중에 PUCCH 전송을 수행하면서 단말의 송신 전력이 크게 변경되기 때문이다. 따라서, 본 발명에서는 PUCCH (또는 PUSCH) 자원(즉, UL-CH1) 내의 일부 (OFDM) 심볼(들)을 펑처링하고, 상기 (OFDM) 심볼(들) 내에서 다른 PUCCH (또는 PUSCH) 자원(즉, UL-CH2)을 전송할 때, 단말은 위상 변화를 줄이기 위해 다음 동작을 수행할 수 있다.
(1) UL-CH2에 대한 전송 전력을 UL-CH1과 동일 값으로 설정하거나,
(2) UL-CH2에 대해 독립적인 UL 전력 제어를 수행하되, UL-CH1 전송 전력과 비교하여 위상 차이를 유발하는 전력 차이가 발생하는 경우, UL-CH2 전송 이후 나머지 UL-CH1 자원은 DM-RS가 존재하는 경우에만 전송하는 동작을 고려할 수 있다.
PUCCH/PUSCH 다중화
[제안 방안 #6.1] 슬롯 내에서 A/N PUCCH 자원과 PUSCH 자원이 시간 축에서 (PUCCH 혹은 PUSCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩될 수 있다. 이 경우, 단말은 (기준 시점으로부터) 특정 시점 이전까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 시간 축에서 상기 PUSCH 자원과 중첩되는지 여부에 따라 A/N과 UL 데이터 간의 다중화 여부 (혹은 A/N을 PUSCH로 UCI 피기백 여부)를 결정하는 방안
단, 단말이 A/N과 UL 데이터 간의 다중화를 수행하지 않는 경우, A/N과 UL 데이터 중 하나의 전송이 생략될 수 있다.
일 예로, 단말은 PUSCH의 전송 시작 시점(예, 시작 심볼)을 기준으로 T 0 이전 시점까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 시간 축에서 상기 PUSCH와 중첩되는지 여부에 따라 PUSCH로의 A/N 피기백 수행 여부를 결정할 수 있다.
(1) PUSCH의 전송 시작 시점을 기준으로 T 0 이전 시점까지 수신된 (또는 전송 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 PUSCH 자원과 시간 축에서 중첩되는 경우
- A/N과 UL 데이터를 다중화하여 전송(즉, A/N을 PUSCH로 UCI 피기백하여 전송)(또는 A/N PUCCH와 PUSCH가 시간 축에서 PUCCH 혹은 PUSCH 내 모든 OFDM 심볼들과 완전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 따름)
(2) (1)에 해당하지 않는 경우(예, PUSCH의 전송 시작 시점을 기준으로, T 0 이전 시점으로부터 그 이후에 수신된 (또는 전송 시작/종료된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 시간 축에서 상기 PUSCH 자원과 중첩되거나, PUSCH의 전송 시작 시점을 기준으로, T 0 이전 시점까지 수신된 (또는 전송 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 시간 축에서 상기 PUSCH 자원과 중첩되지 않거나, PUSCH의 전송시작 시점을 기준으로 T 0 이전 시점까지 수신된 (또는 전송 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 존재하지 않는 경우)
- Opt. 1: UL 데이터를 PUSCH 자원을 통해 전송 (A/N 전송 생략)
- Opt. 2: A/N을 A/N PUCCH 자원을 통해 전송 (PUSCH 전송 생략)
단, 특정 버전의 단말의 경우, PUSCH에 대한 UL 그랜트 수신 이후에 수신된, DL assignment로 스케줄링된 PDSCH에 대한 A/N은 PUSCH로의 UCI 피기백 대상이 아닐 수 있다.
T 0는 아래 중 하나일 수 있다. T 0는 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, PDSCH 종료 후, A/N 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값. 단말 능력에 따른, UCI (PUCCH) 전송을 위해 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값. 또는, 단말 능력에 따른, UCI (PUCCH) 전송을 위해 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른, (특정) UCI 전송을 위해 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 단말 능력에 따른, UL 그랜트 수신 후 PUSCH 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(5) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(6) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
[제안 방안 #6.1]는 A/N PUCCH이외의 PUCCH에도 확장 적용될 수 있다.
NR 시스템에서는 PUCCH와 PUSCH간 시작 (OFDM) 심볼 (혹은 시작 시간)이 일치하는 경우, PUCCH와 PUSCH가 시간 축에서 완전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 적용하는 단말 동작이 합의되었다. 이때, PUCCH와 PUSCH가 다중화되어 전송되는 자원이 PUSCH 자원이므로, PUSCH 자원의 전송 시작 전까지 PUCCH 내 특정 UCI의 전송에 필요한 처리 시간이 충족되지 않는 경우에는 해당 PUCCH를 PUSCH로 다중화 할 수 없다. 가령, PUCCH가 HARQ-ACK 전송을 위한 PUCCH(이하, A/N PUCCH)인 경우, 단말은 PUSCH 전송 시작 시점을 기준으로 (단말 능력에 따른 PDSCH 수신 후 A/N 전송까지 필요한 시간인) T 0 시간 이전 시점까지 수신된 PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N만 PUSCH로 전송할 수 있다. 따라서, 본 발명은 SR PUCCH와 A/N PUCCH간 UCI 다중화 규칙([제안 방안 #1])과 유사하게, 단말이 PUSCH 전송 시작 시점을 기준으로, T 0 이전 시점까지 수신된 PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N PUCCH 자원이 시간 축에서 상기 PUSCH 자원과 중첩되는지 여부로 A/N에 대한 UCI 피기백 여부를 결정할 수 있다. 즉, 단말은 PUSCH 전송 시작 시점을 기준으로, T 0 이전 시점까지 수신된 PDSCH(들) (및/또는 PDCCH(들))에 대한 A/N PUCCH 자원이 시간 축에서 상기 PUSCH 자원과 중첩되면, A/N을 PUSCH로 UCI 피기백하여 전송하고, 그렇지 않은 경우에는 A/N에 대한 전송 없이 PUSCH만 전송할 수 있다. 도 14는 [제안 방안 #6.1]의 동작을 예시한다.
[제안 방안 #6.1]의 변형으로, CSI PUCCH와 PUSCH가 시간 축에서 중첩된 경우, 단말은 CSI PUCCH를 전송하지 않고 PUSCH로 CSI를 UCI 피기백 할 수 있다. 이때, CSI 계산을 위한 처리 시간이 PUSCH 전송 준비까지 충분하지 않은 경우, 단말은 CSI를 업데이트하지 않을 수 있다.
A/N PUCCH 자원과 다른 UL 채널이 시간 축에서 (일부 혹은 전체) 중첩될 때, [제안 방안 #1]과 [제안 방안 #6.1]을 통합하면 단말은 아래처럼 동작할 수 있다.
(1) A/N PUCCH의 전송 시작 시점 (또는 슬롯)을 기준으로 T 0 이전 시점까지 상기 A/N PUCCH와 시간 축에서 중첩하는 UL 채널이 설정/지시되지 않은 경우(예, UL 채널은 SR을 전송하는 PUCCH 또는 UL-SCH TB를 나르는 PUSCH일 수 있음)
A. 단말은 A/N만을 A/N PUCCH 자원을 통해 전송 (상기 시점 이후, A/N PUCCH와 중첩하는 UL 채널이 발생해도 무시 혹은 해당 UL 채널 전송을 생략/포기)
(2) A/N PUCCH의 전송 시작 시점 (또는 슬롯)을 기준으로 T 0 이전 시점까지 상기 A/N PUCCH와 시간 축에서 중첩하는 UL 채널이 설정/지시된 경우 (예, 해당 UL 채널은 SR을 전송하는 PUCCH 또는 UL-SCH TB를 나르는 PUSCH일 수 있음)
A. 상기 UL 채널이 (특정) UCI (이하 UCI-A)를 전송하는 PUCCH (이하 PUCCH-A)인 경우
i. PUCCH-A 자원의 전송 시작 시점을 기준으로 T 1 이전 시점까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 PUCCH-A 자원과 시간 축에서 중첩되는 경우, A/N과 UCI-A를 다중화하여 단일 PUCCH 자원을 통해 전송
ii. 그 밖의 경우(예, PUCCH-A 자원의 전송 시작 시점을 기준으로 T 1 이전 시점까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 PUCCH-A 자원과 시간 축에서 중첩되지 않거나, PUCCH-A 자원의 전송 시작 시점을 기준으로 T 1 이전 시점까지 수신된 (또는 전송이 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 존재하지 않는 경우), A/N과 UCI-A 중 하나를 선택하여 전송
- Opt. 1: UCI-A (only)를 PUCCH-A 자원을 통해 전송(A/N 전송 생략)
- Opt. 2: A/N (only)을 A/N PUCCH 자원을 통해 전송(UCI-A 전송 생략)
- Opt. 3: UCI-A의 상태에 따라 Opt. 1 또는 Opt. 2 적용
B. UL 채널이 UL-SCH TB(또는 UL 데이터)를 전송하는 PUSCH인 경우
i. PUSCH의 전송 시작 시점을 기준으로 T 2 이전 시점까지 수신된 (또는 전송 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 PUSCH 자원과 시간 축에서 중첩되는 경우
1. A/N과 UL 데이터를 다중화하여 전송(즉, A/N을 PUSCH로 UCI 피기백) (또는 A/N PUCCH와 PUSCH가 시간 축에서 PUCCH 혹은 PUSCH 내 모든 OFDM 심볼들에 대해 완전히 중첩되는 경우와 동일한 UCI 다중화 규칙을 따름)
ii. 그 밖의 경우(예, PUSCH 자원의 전송 시작 시점을 기준으로 T 2 이전 시점까지 수신 된 (또는 전송 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 상기 PUSCH 자원과 시간 축에서 중첩되지 않는 경우이거나 또는 PUSCH 자원의 전송 시작 시점을 기준으로 T 2 이전 시점까지 수신된 (또는 전송 시작된) PDSCH(들) (및/또는 PDCCH(들))에 대응되는 (또는 해당 PDSCH/PDCCH로부터 지시된) A/N PUCCH 자원이 존재하지 않는 경우), A/N과 UL-SCH 중 하나를 선택하여 전송
- Opt. 1: UL-SCH (only)를 PUSCH 자원을 통해 전송(A/N 전송 생략)
- Opt. 2: A/N (only)을 A/N PUCCH 자원을 통해 전송(UL-SCH 전송 생략)
T 0, T 1, T 2은 아래 중 하나일 수 있다. T 0, T 1, T 2은 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른, (특정) UCI 전송을 위해 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 단말 능력에 따른, UL 그랜트 수신 후 PUSCH 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(5) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(6) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
본 발명의 변형으로, 슬롯에서 PUCCH-PUCCH 또는 PUCCH-PUSCH가 시간 축에서 중첩된 경우, 단말은 아래의 (일반화된) UCI 다중화 규칙을 적용할 수 있다.
(1) 특정 UCI에 대한 PUCCH 자원의 전송 시작 시점 (또는 슬롯)을 기준으로, T 0 이전 시점까지 상기 PUCCH 자원과 시간 축에서 중첩하는 UL 채널이 설정/지시되지 않은 경우(예, UL 채널은 PUCCH 또는 PUSCH일 수 있음)
A. 단말은 특정 UCI만을 PUCCH 자원을 통해 전송 (상기 시점 이후 PUCCH와 중첩하는 UL 채널이 발생해도 무시 혹은 해당 UL 채널의 전송을 생략/포기)
(2) 특정 UCI 1에 대한 PUCCH 자원 (PUCCH 1)이 먼저 설정/지시된 이후, UCI 1에 대한 PUCCH 자원 (PUCCH 1)의 전송 시작 시점 (또는 슬롯)을 기준으로, T 0 이전 시점까지 PUCCH 1과 시간 축에서 중첩하는 특정 UCI 2에 대한 PUCCH 자원 (PUCCH 2)이 설정/지시된 경우
A. 단말은 UCI 1과 UCI 2를 다중화하여 단일 PUCCH 자원을 통해 전송
i. 단, 단일 PUCCH 자원은 PUCCH 1과 PUCCH 2 이외의 자원일 수 있다.
(3) 특정 UCI에 대한 PUCCH 자원이 먼저 설정/지시된 이후, 상기 특정 UCI에 대한 PUCCH 자원의 전송 시작 시점 (또는 슬롯)을 기준으로, T 0 이전 시점까지 상기 PUCCH 자원과 시간 축에서 중첩하는 UL-SCH TB에 대한 PUSCH 자원이 설정/지시된 경우
A. 단말은 UCI와 UL-SCH를 다중화하여 PUSCH 자원을 통해 전송(즉, UCI 피기백)
(4) 특정 UL-SCH에 대한 PUSCH 자원의 전송 시작 시점 (또는 슬롯)을 기준으로, T 1 이전 시점까지 상기 PUSCH와 시간 축에서 중첩하는 UL 채널이 설정/지시되지 않은 경우 (예, 해당 UL 채널은 PUCCH 일 수 있음)
A. 단말은 특정 UL-SCH만을 PUSCH 자원을 통해 전송 (상기 시점 이후 PUSCH와 중첩하는 UL 채널이 발생해도 무시 혹은 해당 UL 채널의 전송을 생략/포기)
(5) 특정 UL-SCH에 대한 PUSCH 자원이 먼저 설정/지시된 이후, 상기 특정 UL-SCH에 대한 PUSCH 자원의 전송 시작 시점 (또는 슬롯)을 기준으로, T 1 이전 시점까지 상기 PUSCH 자원과 시간 축에서 중첩하는 특정 UCI에 대한 PUCCH 자원이 설정/지시된 경우
A. 단말은 UCI와 UL-SCH TB를 다중화하여 PUSCH 자원을 통해 전송(즉, UCI 피기백)
T 0, T 1은 아래 중 하나일 수 있다. T 0, T 1은 (OFDM) 심볼 단위로 표시될 수 있다.
(1) 단말 능력에 따른, PDSCH 수신 후, 상기 PDSCH에 대응되는 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(2) 단말 능력에 따른, PDCCH 수신 후, 상기 PDCCH로부터 지시된 A/N (PUCCH) 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(3) 단말 능력에 따른, (특정) UCI 전송을 위해 필요한 단말 처리 시간 또는 그에 대응되는 값
(4) 단말 능력에 따른, UL 그랜트 수신 후 PUSCH 전송까지 필요한 단말 처리 시간 또는 그에 대응되는 값
(5) 상위계층(예, RRC) 신호 및/또는 DCI를 통해 설정된 값
(6) 기지국과 단말 간에 사전에 약속된 값(예, 고정 값)
특정 UCI가 A/N일 때, 해당 UCI에 대한 PUCCH 자원이 설정/지시되는 시점은 A/N에 대응되는 PDSCH 수신 (종료) 시점으로 간주될 수 있다.
특정 UCI에 대한 PUCCH 자원이 먼저 설정/지시되는 동작은 상위계층(예, RRC) 신호에 기반하여 설정되는 동작을 포함할 수 있다. 예를 들어, 상위계층 신호에 의해 미리 설정된 PUCCH 자원은, DCI에 의해 지시된 PUCCH 자원보다 항상 먼저 설정/지시된 자원으로 간주할 수 있다. 예를 들어, UCI 1과 UCI 2는 각각 SR과 A/N이거나, 각각 (periodic) CSI와 HARQ-ACK일 수 있다.
단, UCI 1과 UCI 2에 대해서 아래의 다중화 동작이 적용될 수 있다.
(1) UCI 1 = SR, UCI 2 = A/N인 경우
A. A/N PUCCH가 PUCCH 포맷 0인 경우
i. SR에 대한 UCI 상태가 positive SR인 경우
1. A/N을 A/N PUCCH에 CS/OCC/PRB 오프셋이 적용된 자원을 통해 전송
ii. SR에 대한 UCI 상태가 negative SR인 경우
1. A/N을 A/N PUCCH 자원을 통해 전송
B. A/N PUCCH가 PUCCH 포맷 1인 경우
i. SR에 대한 UCI 상태가 positive SR인 경우
1. A/N을 SR PUCCH 자원을 통해 전송
A. 단, SR PUCCH가 PUCCH 포맷 0인 경우에는 SR을 전송하지 않고, A/N만 전송할 수 있다.
ii. SR에 대한 UCI 상태가 negative SR인 경우
1. A/N을 A/N PUCCH 자원을 통해 전송
C. A/N PUCCH가 PUCCH 포맷 2/3/4 중 하나인 경우
i. SR에 대한 UCI 상태가 positive SR 또는 negative SR인 경우
1. SR을 명시적 비트(들)로 표현하여 A/N에 Appending하여 UCI 페이로드 생성 후 상기 UCI를 A/N PUCCH 자원을 통해 전송
(2) UCI 1 = CSI, UCI 2 = A/N인 경우
A. A/N PUCCH가 DL assignment로 지시된 경우
i. A/N과 CSI를 다중화하여 A/N PUCCH 자원을 통해 전송
B. A/N PUCCH가 DL assignment로 지시되지 않은 경우
i. A/N과 CSI를 다중화하여 CSI PUCCH 자원을 통해 전송
[제안 방안 #7] 슬롯 내에서 A/N PUCCH 자원과 PUSCH 자원이 시간 축에서 (PUCCH 혹은 PUSCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩될 수 있다. 이때, 단말은 A/N PUCCH의 전송 시작 시점이 PUSCH의 전송 시점 보다 늦을 수 있다. 이 경우, 단말은 (최선 노력 방식으로) On-going PUSCH 전송이 있으면 해당 PUSCH 전송을 중단하고 상기 A/N PUCCH를 통해 A/N을 전송할 수 있다.
추가적으로, 슬롯 내에서 A/N PUCCH 자원과 PUSCH 자원이 시간 축에서 (PUCCH 혹은 PUSCH 내 전체 혹은 일부 OFDM 심볼(들)이) 중첩될 수 있다. 이때, A/N PUCCH의 전송 시작 시점이 PUSCH의 전송 시점 보다 빠를 수 있다. 이 경우, 단말은 (최선 노력 방식으로) On-going PUCCH 전송이 있으면 해당 PUCCH 전송을 중단하고 A/N을 상기 PUSCH로 피기백 할 수 있다.
단말이 PUSCH 전송을 수행한 이후에 해당 PUCCH와 시간 축에서 일부 중첩되는 A/N PUCCH 자원의 존재를 파악한 경우, 간단한 방법으로 단말은 해당 A/N 전송을 생략할 수 있다. 그러나, 단말이 충분한 능력이 된다면, 가능한 한 (즉, 최선 노력 방식으로) 현재 진행 중이던 PUSCH 전송을 중단하고, A/N을 A/N PUCCH 자원을 통해 전송하려고 시도할 수 있다. [제안 방안 #6.1]의 동작을 통해 단말은 PUSCH와 A/N이 충돌하는 경우에도 A/N 전송을 전송을 최대한 지원할 수 있다.
도 15는 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
도 15를 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. 메모리(114)는 프로세서(112)는 3GPP-기반 무선 통신(예, NR)에 사용되는 통신 모뎀/칩의 일부일 수 있다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. 메모리(114)는 프로세서(112)는 3GPP-기반 무선 통신(예, NR)에 사용되는 통신 모뎀/칩의 일부일 수 있다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (17)

  1. 무선 통신 시스템에서 통신 장치가 제어 정보를 전송하는 방법에 있어서,
    복수의 UCI(Uplink Control Information) 전송을 위해 복수의 PUCCH(Physical Uplink Control Channel) 자원을 결정하는 단계;
    상기 결정된 복수의 PUCCH 자원 중 제1 PUCCH 자원을 기준으로 기준으로, (1) 상기 제1 PUCCH 자원 및 (2) 상기 제1 PUCCH 자원과과 시간 축에서 겹치는 하나 이상의 제2 PUCCH 자원과 관련된 UCI를 다중화하는 단계; 및
    상기 다중화된 UCI의 전송을 위해 제3 PUCCH 자원을 결정하는 단계를 포함하고,
    여기서, 상기 제1 PUCCH 자원은 상기 결정된 복수의 PUCCH 자원 중 시작 심볼이 가장 빠른 PUCCH 자원인 방법.
  2. 제1항에 있어서,
    상기 다중화된 UCI를 상기 제3 PUCCH 자원을 이용하여 전송하는 단계를 더 포함하는 방법.
  3. 제1항에 있어서,
    (1) 상기 제3 PUCCH 자원 및 (2) 상기 제3 PUCCH 자원과 시간 축에서 겹치는 하나 이상의 제4 PUCCH 자원과 관련된 제1 UCI를 다중화하는 단계; 및
    상기 다중화된 제1 UCI의 전송을 위해 제5 PUCCH 자원을 결정하는 단계를 더 포함하고,
    상기 제4 PUCCH 자원에는 상기 제1 PUCCH 자원과 상기 하나 이상의 제2 PUCCH 자원이 포함되지 않는 방법.
  4. 제1항에 있어서,
    상기 결정된 복수의 PUCCH 자원은 동일 슬롯 내에 위치하며, 상기 슬롯은 복수의 심볼을 포함하는 방법.
  5. 제4항에 있어서,
    상기 슬롯은 14개의 심볼을 포함하며,
    각 PUCCH 자원의 시작 심볼의 인덱스는 0~13 중 하나이고,
    각 PUCCH 자원의 전송 길이는 1~14개의 심볼 중 하나인 방법.
  6. 제1항에 있어서,
    상기 복수의 UCI는 적어도 A/N(Acknowledgement/Negative Acknowledgement), CSI(Channel State Information) 또는 SR(Scheduling Request)을 포함하는 방법.
  7. 제6항에 있어서,
    상기 다중화된 UCI는 적어도 A/N을 포함하고, 상기 제3 PUCCH 자원은 상기 다중화된 UCI의 페이로드 크기에 기반하여 결정되는 방법.
  8. 제1항에 있어서,
    상기 제3 PUCCH 자원이 시간 축에서 PUSCH(Physical Uplink Shared Channel) 자원과 겹치는 경우, 상기 다중화된 UCI는 상기 PUSCH를 통해 전송되는 방법.
  9. 무선 통신 시스템에 사용되는 통신 장치에 있어서,
    메모리; 및
    프로세서를 포함하고, 상기 프로세서는,
    복수의 UCI(Uplink Control Information) 전송을 위해 복수의 PUCCH(Physical Uplink Control Channel) 자원을 결정하고,
    상기 결정된 복수의 PUCCH 자원 중 제1 PUCCH 자원을 기준으로 기준으로, (1) 상기 제1 PUCCH 자원 및 (2) 상기 제1 PUCCH 자원과과 시간 축에서 겹치는 하나 이상의 제2 PUCCH 자원과 관련된 UCI를 다중화하며,
    상기 다중화된 UCI의 전송을 위해 제3 PUCCH 자원을 결정하도록 구성되고,
    여기서, 상기 제1 PUCCH 자원은 상기 결정된 복수의 PUCCH 자원 중 시작 심볼이 가장 빠른 PUCCH 자원인 통신 장치.
  10. 제9항에 있어서, 상기 프로세서는 또한,
    상기 다중화된 UCI를 상기 제3 PUCCH 자원을 이용하여 전송하도록 구성된 통신 장치.
  11. 제9항에 있어서, 상기 프로세서는 또한,
    (1) 상기 제3 PUCCH 자원 및 (2) 상기 제3 PUCCH 자원과 시간 축에서 겹치는 하나 이상의 제4 PUCCH 자원과 관련된 제1 UCI를 다중화하고,
    상기 다중화된 제1 UCI의 전송을 위해 제5 PUCCH 자원을 결정하도록 구성되며,
    상기 제4 PUCCH 자원에는 상기 제1 PUCCH 자원과 상기 하나 이상의 제2 PUCCH 자원이 포함되지 않는 방법.
  12. 제9항에 있어서,
    상기 결정된 복수의 PUCCH 자원은 동일 슬롯 내에 위치하며, 상기 슬롯은 복수의 심볼을 포함하는 통신 장치.
  13. 제12항에 있어서,
    상기 슬롯은 14개의 심볼을 포함하며,
    각 PUCCH 자원의 시작 심볼의 인덱스는 0~13 중 하나이고,
    각 PUCCH 자원의 전송 길이는 1~14개의 심볼 중 하나인 통신 장치.
  14. 제9항에 있어서,
    상기 복수의 UCI는 적어도 A/N(Acknowledgement/Negative Acknowledgement), CSI(Channel State Information) 또는 SR(Scheduling Request)을 포함하는 통신 장치.
  15. 제14항에 있어서,
    상기 다중화된 UCI는 적어도 A/N을 포함하고, 상기 제3 PUCCH 자원은 상기 다중화된 UCI의 페이로드 크기에 기반하여 결정되는 방법.
  16. 제9항에 있어서,
    상기 제3 PUCCH 자원이 시간 축에서 PUSCH(Physical Uplink Shared Channel) 자원과 겹치는 경우, 상기 다중화된 UCI는 상기 PUSCH를 통해 전송되는 통신 장치.
  17. 제9항에 있어서,
    RF(Radio Frequency) 유닛을 더 포함하는 통신 장치.
PCT/KR2019/004116 2018-04-05 2019-04-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2019194660A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980004429.9A CN111066280B (zh) 2018-04-05 2019-04-05 在无线通信系统中发送/接收无线信号的方法和设备
EP19772635.9A EP3591888A4 (en) 2018-04-05 2019-04-05 METHOD AND DEVICE FOR WIRELESS SIGNAL TRANSMISSION / RECEPTION IN A WIRELESS COMMUNICATION SYSTEM
KR1020207007427A KR102225952B1 (ko) 2018-04-05 2019-04-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
JP2020511986A JP7100694B2 (ja) 2018-04-05 2019-04-05 無線通信システムにおいて無線信号の送受信方法及び装置
KR1020197013823A KR102092680B1 (ko) 2018-04-05 2019-04-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US16/671,477 US10856315B2 (en) 2018-04-05 2019-11-01 Method and apparatus for transmitting/receiving wireless signal in wireless communication system
US17/091,943 US11464034B2 (en) 2018-04-05 2020-11-06 Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201862653461P 2018-04-05 2018-04-05
US62/653,461 2018-04-05
US201862654432P 2018-04-08 2018-04-08
US62/654,432 2018-04-08
US201862656928P 2018-04-12 2018-04-12
US62/656,928 2018-04-12
US201862669956P 2018-05-10 2018-05-10
US62/669,956 2018-05-10
US201862673996P 2018-05-20 2018-05-20
US62/673,996 2018-05-20
US201862674589P 2018-05-21 2018-05-21
US62/674,589 2018-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/671,477 Continuation US10856315B2 (en) 2018-04-05 2019-11-01 Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2019194660A1 true WO2019194660A1 (ko) 2019-10-10

Family

ID=68101413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004116 WO2019194660A1 (ko) 2018-04-05 2019-04-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (6)

Country Link
US (2) US10856315B2 (ko)
EP (1) EP3591888A4 (ko)
JP (1) JP7100694B2 (ko)
KR (2) KR102092680B1 (ko)
CN (1) CN111066280B (ko)
WO (1) WO2019194660A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867117A (zh) * 2019-11-08 2022-08-05 Oppo广东移动通信有限公司 上行数据传输方法、装置、上行数据接收方法及网络设备
EP4057549A4 (en) * 2019-11-08 2023-07-26 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR FEEDBACK AND RECORDING MEDIUM

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2964135T3 (es) * 2018-05-10 2024-04-04 Beijing Xiaomi Mobile Software Co Ltd Método y aparato para multiplexar la transmisión de información, y método y aparato de recepción de información
CN113472497B (zh) 2018-05-11 2022-05-13 华为技术有限公司 通信的方法和通信装置
CN110536420B (zh) * 2018-05-23 2022-04-01 中国移动通信有限公司研究院 配置物理下行控制信道时域检测位置的方法及设备
CA3104606A1 (en) * 2018-06-28 2020-01-02 Ntt Docomo, Inc. Terminal and radio communication method with flexible resource allocation
US11265854B2 (en) * 2018-08-21 2022-03-01 Qualcomm Incorporated Collision handling for physical uplink channel repetition
EP3855658A4 (en) * 2018-09-18 2021-09-08 Beijing Xiaomi Mobile Software Co., Ltd. PUCCH DETERMINATION METHOD AND DEVICE REQUIRING TRANSMISSION
CN111083782B (zh) * 2018-10-19 2023-09-08 荣耀终端有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
KR20200077895A (ko) * 2018-12-21 2020-07-01 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어 채널 블라인드 디코딩 방법 및 장치
US11212821B2 (en) * 2019-04-02 2021-12-28 Lenovo (Singapore) Pte. Ltd. Method and apparatus for cancelling transmission based on overlapping transmission occasions
KR20200127681A (ko) * 2019-05-03 2020-11-11 삼성전자주식회사 무선 통신 시스템에서 상향링크 채널들의 전송 방법 및 장치
CN113645164B (zh) * 2019-08-01 2023-03-24 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质
CN112398614B (zh) * 2019-08-15 2021-09-17 大唐移动通信设备有限公司 一种上行控制信息uci的处理方法、终端及基站
EP4017184B1 (en) * 2019-11-08 2023-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource set configuration method, terminal, and network device
KR20210063027A (ko) 2019-11-22 2021-06-01 삼성전자주식회사 무선 통신 시스템에서 pdcch 전송 방법 및 장치
WO2021155608A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 信息传输方法及相关装置
CN113678558B (zh) * 2020-02-13 2023-08-15 Oppo广东移动通信有限公司 信息传输方法及相关装置
KR20220127875A (ko) * 2020-02-14 2022-09-20 후지쯔 가부시끼가이샤 업링크 송신 방법 및 장치
EP4133642A1 (en) * 2020-04-10 2023-02-15 Telefonaktiebolaget LM ERICSSON (PUBL) Prioritization between sr and harq-ack
CN111585738B (zh) * 2020-05-07 2021-08-24 四川创智联恒科技有限公司 一种同时传输调度请求和harq反馈的方法
CN113825180B (zh) * 2020-06-19 2024-07-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4152666A4 (en) * 2020-05-13 2024-01-24 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR SENDING UPLINK CONTROL INFORMATION
CN113677032B (zh) * 2020-05-13 2024-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113965301B (zh) * 2020-07-21 2023-04-18 维沃移动通信有限公司 物理上行控制信道资源重叠的处理方法及装置
CN114902602B (zh) 2020-08-06 2024-06-21 Lg电子株式会社 在无线通信系统中发送和接收信号的方法和设备
WO2022027645A1 (en) * 2020-08-07 2022-02-10 Nec Corporation Computer readable medium, methods, and devices for communication
CN116368890A (zh) * 2020-08-11 2023-06-30 株式会社Ntt都科摩 终端、无线通信方法以及基站
CN114079553B (zh) * 2020-08-19 2023-02-21 维沃移动通信有限公司 上行传输方法、设备及可读存储介质
US20240306154A1 (en) * 2021-01-15 2024-09-12 FG Innovation Company Limited User equipment and method for multiplexing uplink control information
US20220322336A1 (en) * 2021-03-26 2022-10-06 Qualcomm Incorporated Timelines for uplink control information multiplexing over multiple slot transmissions
CN115242361B (zh) * 2021-04-25 2024-08-20 中国移动通信有限公司研究院 信息处理方法、相关设备及可读存储介质
US20240267918A1 (en) * 2021-05-10 2024-08-08 Lenovo (Beijing) Limited Methods and apparatus of pdsch processing procedure time derivation for harq-ack feedback of pdsch scheduled by enhanced pdcch e

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140133439A1 (en) * 2010-10-02 2014-05-15 Sharp Kabushiki Kaisha Uplink control information multiplexing on the physical uplink control channel for lte-a

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100086920A (ko) * 2009-01-23 2010-08-02 엘지전자 주식회사 무선 통신 시스템에서 제어정보 전송 방법 및 장치
US8553671B2 (en) * 2010-03-10 2013-10-08 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
KR101813031B1 (ko) * 2010-04-13 2017-12-28 엘지전자 주식회사 상향링크 신호를 전송하는 방법 및 이를 위한 장치
KR101761618B1 (ko) * 2010-06-25 2017-07-26 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
EP2421317A1 (en) * 2010-08-19 2012-02-22 HTC Corporation Method of handling uplink control information reporting and related communication device
KR101691470B1 (ko) * 2010-08-21 2017-01-09 삼성전자주식회사 무선 통신시스템 및 그 무선 통신시스템에서 제어채널 자원 할당 방법 및 장치
CN104012023B (zh) * 2012-10-31 2017-03-15 Lg电子株式会社 用于发送和接收控制信息的方法及其设备
KR101763602B1 (ko) * 2013-12-03 2017-08-01 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 상향링크 전송 방법 및 장치
CN104170303B (zh) * 2014-01-29 2017-06-06 华为技术有限公司 一种数据传输方法、设备和系统
JP2018503293A (ja) * 2014-12-08 2018-02-01 エルジー エレクトロニクス インコーポレイティド 5個を超えるセルをキャリアアグリゲーションによって使用する時のpucch送信方法及びユーザ装置
EP3242435B1 (en) * 2014-12-31 2019-10-23 LG Electronics Inc. Method and apparatus for allocating resources in wireless communication system
WO2017150942A1 (ko) * 2016-03-03 2017-09-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10536246B2 (en) * 2016-03-22 2020-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic demodulation indication
US10966223B2 (en) * 2018-01-22 2021-03-30 Apple Inc. Handling overlapping of PUCCH and PUSCH for new radio systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140133439A1 (en) * 2010-10-02 2014-05-15 Sharp Kabushiki Kaisha Uplink control information multiplexing on the physical uplink control channel for lte-a

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"PUCCH-PUCCH collision handling", R1-1802410. 3GPP TSG RAN WG1 MEETING #92, 17 February 2018 (2018-02-17), Athens, Greece, XP051397935 *
ERICSSON: "On UCI Multiplexing on PUCCH. R1-1802906", 3GPP TSG RAN WG1 MEETING #92, 17 February 2018 (2018-02-17), Athens, Greece, XP051398295 *
ERICSSON: "Summary of Discussions on Multiplexing Different UCI types on a PUCCH resource", R1-1801262. 3GPP TSG RAN WGI MEETING AH 1801, 29 January 2018 (2018-01-29), Vancouver. Canada, XP051385481 *
OPPO: "Remaining details on UCI multiplexing", R1-1802107. 3GPP TSG RAN WG1 MEETING #92, 15 February 2018 (2018-02-15), Athens, Greece, XP051396839 *
See also references of EP3591888A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867117A (zh) * 2019-11-08 2022-08-05 Oppo广东移动通信有限公司 上行数据传输方法、装置、上行数据接收方法及网络设备
EP4048002A4 (en) * 2019-11-08 2022-11-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR TRANSMITTING UPLINK DATA, TERMINAL AND STORAGE MEDIA
JP2023504350A (ja) * 2019-11-08 2023-02-03 オッポ広東移動通信有限公司 アップリンクデータ伝送方法及びアップリンクデータ伝送装置
EP4057549A4 (en) * 2019-11-08 2023-07-26 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR FEEDBACK AND RECORDING MEDIUM
CN114867117B (zh) * 2019-11-08 2024-01-02 Oppo广东移动通信有限公司 上行数据传输方法、装置、上行数据接收方法及网络设备
JP7462749B2 (ja) 2019-11-08 2024-04-05 オッポ広東移動通信有限公司 アップリンクデータ伝送方法及びアップリンクデータ伝送装置
EP4398507A3 (en) * 2019-11-08 2024-10-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink data transmission method and apparatus, terminal, and storage medium

Also Published As

Publication number Publication date
EP3591888A1 (en) 2020-01-08
KR20200090145A (ko) 2020-07-28
JP7100694B2 (ja) 2022-07-13
CN111066280A (zh) 2020-04-24
US11464034B2 (en) 2022-10-04
US20210058950A1 (en) 2021-02-25
KR20190117474A (ko) 2019-10-16
US20200068599A1 (en) 2020-02-27
KR102225952B1 (ko) 2021-03-10
CN111066280B (zh) 2022-06-21
US10856315B2 (en) 2020-12-01
EP3591888A4 (en) 2020-07-15
JP2020532234A (ja) 2020-11-05
KR102092680B1 (ko) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2019194660A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020222625A1 (ko) 무선 통신 시스템에서 공유 채널을 송수신하는 방법 및 이를 위한 장치
WO2021020955A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템
WO2018174653A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018143749A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032753A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2018231016A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2018203617A1 (ko) 동기 신호를 수신하는 방법 및 이를 위한 장치
WO2018174546A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2021034063A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템
WO2019194545A1 (ko) 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치
WO2018030793A1 (ko) 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2016175486A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 lc 기기
WO2016105127A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 향상된 물리 하향링크 제어채널을 송수신하는 방법 및 이를 지원하는 장치
WO2017146342A1 (ko) 협대역 iot를 지원하는 무선 통신 시스템에서 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2019194652A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2017057984A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 주동기신호 송수신 방법 및 장치
WO2015182970A1 (ko) 탐색 신호 측정 수행 방법 및 사용자 장치
WO2016018125A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
WO2017010762A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 참조 신호를 송수신하는 방법 및 장치
WO2019050381A1 (ko) 무선 통신시스템에서 상향링크 전송 및 하향링크 수신방법, 장치 및 시스템
WO2017065524A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 서브프레임 길이 정보를 송수신하는 방법 및 장치
WO2015093851A1 (ko) Epdcch의 묶음을 수신하는 방법 및 단말
WO2015108308A1 (ko) 무선 통신 시스템에서 탐색 신호를 기초로 한 셀 탐색 과정의 수행 방법 및 탐색 과정을 수행하는 사용자 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197013823

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019772635

Country of ref document: EP

Effective date: 20190930

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE