WO2021098355A1 - Csi测量方法及装置 - Google Patents

Csi测量方法及装置 Download PDF

Info

Publication number
WO2021098355A1
WO2021098355A1 PCT/CN2020/115128 CN2020115128W WO2021098355A1 WO 2021098355 A1 WO2021098355 A1 WO 2021098355A1 CN 2020115128 W CN2020115128 W CN 2020115128W WO 2021098355 A1 WO2021098355 A1 WO 2021098355A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency
network device
group
resource segment
Prior art date
Application number
PCT/CN2020/115128
Other languages
English (en)
French (fr)
Inventor
吴晔
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20889560.7A priority Critical patent/EP4044448A4/en
Publication of WO2021098355A1 publication Critical patent/WO2021098355A1/zh
Priority to US17/663,727 priority patent/US20220278726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for measuring channel state information (CSI).
  • CSI channel state information
  • the terminal may send a sound reference signal (SRS) to the base station, so that the base station obtains uplink CSI through the received SRS, determines the downlink CSI based on the uplink CSI, and then determines the precoding matrix based on the downlink CSI, and then determines the precoding matrix based on the downlink CSI.
  • SRS sound reference signal
  • the coding matrix precodes the physical downlink shared channel (PDSCH) and sends it to the terminal.
  • the terminal can send SRS periodically. Assuming that the sending period of SRS is x milliseconds (ms), the preparation time for the base station to send PDSCH needs y ms. As shown in Figure 1, the base station sends PDSCH and receives SRS. The longest time interval is (x+y)ms. Once the value of x is configured, it is fixed, and the value of y is usually a fixed value. In the scenario of terminal mobility, since the channel between the terminal and the base station changes rapidly, the base station can measure through the received SRS The uplink CSI is obtained, and the downlink CSI (denoted as the first downlink CSI) is calculated according to the uplink CSI.
  • the sending period of SRS is x milliseconds (ms)
  • y milliseconds
  • the first downlink CSI is already far from the downlink CSI (denoted as the second downlink CSI) when the PDSCH is transmitted.
  • the precoding matrix determined according to the first downlink CSI is no longer the precoding matrix that best matches the second downlink CSI. In this case, the downlink throughput will decrease.
  • the uplink CSI measurement is inaccurate due to the channel change too fast, which in turn leads to the problem that the precoding matrix determined according to the first downlink CSI is not the precoding matrix that best matches the second downlink CSI, which can be called channel aging. ). Due to the aging of the channel, the effect of precoding in suppressing interference becomes worse. In a multi-user (multi-user, MU) scenario, channel aging will greatly increase the interference between multiple users.
  • the embodiments of the present application provide a CSI measurement method and device, which are used to improve the accuracy of CSI estimation and prediction, thereby improving downlink throughput.
  • a CSI measurement method including: a network device receives N RS groups sent by a terminal, and measures CSI according to at least one RS group in the N RS groups, where N is an integer greater than 1.
  • the N RS groups all include a first RS for measuring CSI and a second RS for measuring CSI.
  • the first RS and the second RS in each RS group occupy a time-frequency resource segment, and the time-frequency resource A segment is composed of a time domain resource segment and a frequency domain resource segment.
  • the frequency domain resource segments occupied by different RS groups do not overlap; the time domain resource segments occupied by different RS groups do not overlap.
  • the network device can jointly measure the downlink CSI when transmitting the PDSCH through the first RS and the second RS, thereby obtaining the instantaneous CSI of the terminal when the terminal is moving, and then determining a better match with the current downlink CSI
  • the PDSCH sent to the terminal is precoded to avoid channel aging and improve the reception quality of the PDSCH received by the terminal.
  • the distribution of the first RS and the second RS on the physical resources proposed in this application enables the RSs in the same RS group to perform joint measurement, so as to improve the accuracy of CSI estimation and prediction, thereby improving downlink throughput The purpose of the amount.
  • the method further includes: the network device sends configuration information for configuring the time-frequency resource of at least one of the first RS and the second RS to the terminal.
  • time-frequency resources include time-domain resources and frequency-domain resources. That is, the configuration information is about the time-frequency resources occupied by the RS.
  • the network device configures the time-frequency resources of the RSs in the RS group for the terminal, so that the terminal can determine the time-frequency resources for sending the first RS and the second RS.
  • a network device including: a transceiving unit and a processing unit; a transceiving unit for receiving N RS groups sent by a terminal; a processing unit for measuring according to at least one RS group in the N RS groups CSI, N is an integer greater than 1.
  • the N RS groups all include a first RS for measuring CSI and a second RS for measuring CSI.
  • the first RS and the second RS in each RS group occupy a time-frequency resource segment, and the time-frequency resource
  • the segment is composed of a time domain resource segment and a frequency domain resource segment; the frequency domain resource segments occupied by different RS groups do not overlap; the time domain resource segments occupied by different RS groups do not overlap.
  • the transceiver unit is further configured to send configuration information for configuring the time-frequency resource of at least one of the first RS and the second RS to the terminal.
  • time-frequency resources include time-domain resources and frequency-domain resources. That is, the configuration information is about the time-frequency resources occupied by the RS.
  • a CSI measurement method including: a terminal determines N RS groups, and sends N RS groups to a network device, where N is an integer greater than 1.
  • the N RS groups all include a first RS for measuring CSI and a second RS for measuring CSI.
  • the first RS and the second RS in each RS group occupy a time-frequency resource segment, and the time-frequency resource
  • the segment is composed of a time domain resource segment and a frequency domain resource segment.
  • the frequency domain resource segments occupied by different RS groups do not overlap, and the time domain resource segments occupied by different RS groups do not overlap.
  • the terminal can send N RS groups to the network device, and the network device obtains the downlink CSI when transmitting the PDSCH according to the first RS and the second RS in the received N RS groups.
  • the network device obtains the instantaneous CSI of the terminal, and then determine a precoding matrix that more closely matches the current downlink CSI, and precode the PDSCH sent to the terminal according to the precoding matrix to avoid channel aging and improve the reception quality of the PDSCH received by the terminal .
  • the distribution of the first RS and the second RS on the physical resources proposed in this application enables the RSs in the same RS group to perform joint measurement, so as to improve the accuracy of CSI estimation and prediction, thereby improving downlink throughput The purpose of the amount.
  • the method further includes: the terminal receives configuration information for configuring time-frequency resources of at least one of the first RS and the second RS from the network device.
  • time-frequency resources include time-domain resources and frequency-domain resources. That is, the configuration information is about the time-frequency resources occupied by the RS.
  • the terminal may determine the time-frequency resources for sending the first RS and the second RS according to the configuration information sent by the network device.
  • a terminal including: a transceiver unit and a processing unit; the processing unit is configured to determine N RS groups, and the transceiver unit is configured to send N RS groups to a network device, where N is an integer greater than 1.
  • the N RS groups all include a first RS for measuring CSI and a second RS for measuring CSI.
  • the first RS and the second RS in each RS group occupy a time-frequency resource segment, and the time-frequency resource
  • the segment is composed of a time domain resource segment and a frequency domain resource segment; the frequency domain resource segments occupied by different RS groups do not overlap; the time domain resource segments occupied by different RS groups do not overlap.
  • the transceiver unit is further configured to receive configuration information for configuring time-frequency resources of at least one of the first RS and the second RS from the network device.
  • time-frequency resources include time-domain resources and frequency-domain resources. That is, the configuration information is about the time-frequency resources occupied by the RS.
  • the first RS and the first RS in each RS group The frequency domain resources occupied by the two RSs are the same.
  • the CSI measurement can be performed on the frequency domain resource segment occupied by the RS group through the first RS and the second RS in the RS group.
  • the first RS is periodically distributed in the time domain of.
  • the second RS is periodically distributed in the time domain of.
  • the time domain period of the first RS and the second RS is the same.
  • the network device may use the CSI prior information measured by the first RS when measuring CSI through the second RS. In this case, the number of REs occupied by the second RS can be reduced, thereby reducing the pilot overhead of the second RS.
  • the RS groups are periodically distributed in the time domain .
  • the first RS and the second RS are also periodically distributed in the time domain.
  • the first RS in each RS group is located in all The occupied position in the time-frequency resource segment is different from the position of the second RS in the occupied time-frequency resource segment.
  • the first RS and the first RS in each RS group The comb-tooth structure adopted by the two RSs in the frequency domain is the same.
  • the first RS and the first RS in each RS group The comb tooth structure adopted by the second RS in the frequency domain is different.
  • the CSI prior information that has been measured by the first RS can be effectively used.
  • the size of the comb-tooth structure used by the second RS can be made larger than that used by the first RS. The size of the comb structure effectively reduces the pilot overhead of the second RS.
  • the first RS and the first RS in each RS group The start positions of the two RSs in the frequency domain are the same.
  • the first RS and the first RS in each RS group have different starting positions in the frequency domain.
  • the first time-frequency resource segment and the second time-frequency resource segment are respectively the time-frequency resource segments occupied by the first RS and the second RS in an RS group, and mod is the remainder function, Represents the number of time slots in a radio frame corresponding to the current subcarrier spacing configuration u, Represents the index of the first transmission slot of the second RS corresponding to the current subcarrier spacing configuration u, Represents the index of the first transmission slot of the first RS corresponding to the current subcarrier spacing configuration u, n f,1 represents the index of the radio frame where the first transmission slot of the second RS is located, n f,0 represents The index of the radio frame where the first transmission slot of the first RS is located.
  • the index of the radio frame is the system index.
  • T offset, 1 is the slot offset configured for the second RS
  • T offset, 0 is the first RS.
  • the slot offset of an RS configuration T represents the time domain period of the first RS or the second RS
  • N is the number of frequency hopping in a frequency hopping period.
  • the first time slot of the time-frequency resource segment occupied by the first RS and the first time slot of the time-frequency resource segment occupied by the second RS satisfy the above formula or an equivalent modification of the above formula
  • the second RS has the same frequency hopping position as the nearest first RS, so that it can be ensured that joint measurement can be performed between the first RS and the second RS.
  • a network device including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, thereby implementing any one of the methods provided in the first aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory can be located in the network device or outside the network device.
  • the processor includes a logic circuit and at least one of an input interface and an output interface.
  • the output interface is used to execute the sending action in the corresponding method
  • the input interface is used to execute the receiving action in the corresponding method.
  • the network device further includes a communication interface and a communication bus, and the processor, memory, and communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the network device exists in the form of a chip product.
  • a terminal including a processor.
  • the processor is connected to the memory, the memory is used to store computer execution instructions, and the processor executes the computer execution instructions stored in the memory, thereby implementing any one of the methods provided in the third aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory can be located in the terminal or outside the terminal.
  • the processor includes a logic circuit and at least one of an input interface and an output interface.
  • the output interface is used to execute the sending action in the corresponding method
  • the input interface is used to execute the receiving action in the corresponding method.
  • the terminal further includes a communication interface and a communication bus, and the processor, memory, and communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the terminal exists in the form of a chip product.
  • a communication system including: the terminal provided in the second aspect and the network device provided in the fourth aspect.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any one of the methods provided in the first aspect or the third aspect.
  • a computer program product containing instructions is provided.
  • the instructions run on a computer, the computer executes any one of the methods provided in the first aspect or the third aspect.
  • Figure 1 is a schematic diagram of the time interval between receiving SRS and transmitting PDSCH by network equipment
  • Figure 2 is a schematic diagram of a network architecture
  • FIG. 3 is a schematic diagram of the distribution of signals or data of comb-tooth structure in time-frequency resources
  • FIG. 4 is an interaction flowchart of a CSI measurement method provided by an embodiment of the application.
  • 5 to 7 are respectively schematic diagrams of the distribution of time-frequency resource segments provided by embodiments of this application.
  • FIG. 8 is a schematic diagram of the distribution of the first RS in the time-frequency resource segment according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of the distribution of the second RS in the time-frequency resource segment according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a time domain resource segment occupied by a time-frequency resource segment according to an embodiment of the application.
  • 11 to 14 are respectively schematic diagrams of the distribution of the first RS and the second RS in the time-frequency resource segment provided by the embodiments of this application;
  • 15 and 16 are respectively schematic diagrams of PRBs occupied by the first RS and the second RS in the time-frequency resource segment provided by an embodiment of this application;
  • FIG. 17 is a schematic diagram of PRBs and OFDM symbols occupied by the first RS and the second RS in the time-frequency resource segment according to an embodiment of the application;
  • 20 is a schematic diagram of the distribution of time-frequency resource segments provided by an embodiment of this application.
  • FIG. 21 and FIG. 22 are respectively schematic diagrams of the distribution of the first RS and the second RS according to an embodiment of the application;
  • FIG. 23 is a schematic diagram of the distribution of the first RS, the second RS, and the third RS provided by an embodiment of the application;
  • FIG. 24 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • FIG. 25 and FIG. 26 are respectively schematic diagrams of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 27 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • FIG. 28 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application.
  • the network elements involved in the embodiments of the present application include network equipment and terminals.
  • FIG. 2 shows a schematic diagram of a communication system to which the technical solution provided in this application is applicable.
  • the communication system may include at least one network device (only one is shown in FIG. 2) and at least one terminal (four are shown in FIG. 2, which are terminal 1 to terminal 4).
  • One or more of the terminals 1 to 4 can communicate with the network device to transmit data.
  • the terminal in the embodiment of the present application may be any terminal that communicates with a network device.
  • the network devices and terminals included in the communication system as shown in FIG. 2 are only an example. In the embodiment of the present application, the type and number of network elements included in the communication system, and the connection relationship between the network elements Not limited to this.
  • the communication system in the embodiment of the present application may be a communication system that supports fourth generation (4G) access technology, such as long term evolution (LTE) access technology; or, the communication system may also support A communication system with fifth generation (5G) access technology, such as new radio (NR) access technology; or, the communication system can also support third generation (3G) access technology
  • 4G fourth generation
  • 5G fifth generation
  • NR new radio
  • 3G third generation
  • the communication system such as the universal mobile telecommunications system (UMTS) access technology; or, the communication system may also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology.
  • the communication system can also be applied to future-oriented communication technologies.
  • the network equipment in the embodiments of the present application may be equipment used on the access network side to support terminal access to the communication system, for example, evolved nodeB (eNB) in a 4G access technology communication system, and 5G access technology communication
  • eNB evolved nodeB
  • the network device may be called a base station, node, or access network device.
  • the terminal in the embodiment of this application may be a device that provides voice or data connectivity to users, and may also be called user equipment (UE), mobile station (mobile station), subscriber unit (subscriber unit), and station. (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal may be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, and a cordless phone.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL Wireless local loop
  • WLL Wireless local loop
  • tablets pads
  • smart phones smart phones
  • customer premises equipment customer premise equipment, CPE
  • sensors with network access functions etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be the terminals in the embodiments of the present application, for example, intelligent transportation Terminals and cars in smart homes, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • the time domain unit is the resource unit in the time domain resource.
  • the time domain unit in the embodiment of the present application is a collection of multiple consecutive orthogonal frequency division multiplexing (OFDM) symbols.
  • the time domain unit may be a minislot (minislot), a time slot (slot), a subframe (subframe), a transmission time interval (TTI), etc.
  • one slot contains 14 OFDM symbols.
  • 1 slot contains 12 OFDM symbols.
  • a slot containing 14 OFDM symbols is taken as an example for description.
  • the 14 OFDM symbols are numbered sequentially from smallest to largest, with the smallest number being 0 and the largest number being 13.
  • the OFDM symbol whose index (ie, the number) is i is denoted as OFDM symbol #i, and one slot includes OFDM symbol #0 to OFDM symbol #13.
  • the time domain unit can also be called a time unit, time domain granularity, and so on.
  • the time domain resource segment in the embodiment of the present application refers to a physical resource composed of multiple consecutive time domain units.
  • the frequency domain unit is a resource unit in frequency domain resources.
  • the frequency domain unit may be one or more PRBs, for example, the frequency domain unit may include x PRBs.
  • x can be any positive integer.
  • x may be 1, 2, 4, 8, 16, etc.
  • the frequency domain unit may also be one or more subcarriers, for example, the frequency domain unit may include y subcarriers.
  • y can be any positive integer.
  • y can be 1, 12, 60, 120, and so on.
  • the frequency domain unit may also be a predefined subband (subband), a frequency band (band), a bandwidth part (bandwidth part, BWP), a component carrier (component carrier, CC), and so on.
  • the frequency domain resource segment in the embodiment of the present application refers to a physical resource composed of multiple continuous frequency domain units.
  • the time-frequency resource segment in the embodiment of the present application refers to a physical resource composed of a time domain resource segment and a frequency domain resource segment.
  • the comb structure can be used to represent the distribution of signals or data on frequency domain resources.
  • the signals or data distributed according to the comb-tooth structure are evenly distributed on the frequency domain resources at equal intervals, that is, the signals or data distributed according to the comb-tooth structure are periodically distributed on the frequency domain resources.
  • the period of the signal or data is the size of the comb teeth, which can be denoted as K.
  • Comb K (combK) means the structure of the comb with a period of K. K is an integer greater than or equal to 1.
  • the distribution of signals or data distributed according to comb 2 on frequency domain resources can be seen in (a) and (d) in Fig. 3.
  • the signals or data distributed according to comb 3 are distributed in frequency domain.
  • the distribution of resources can be seen in (b) and (e) in FIG. 3, and the distribution of signals or data distributed according to the comb 4 on the frequency domain resources can be seen in (c) and (f) in FIG. 3.
  • the measurement bandwidth of the terminal refers to the bandwidth that the terminal needs to perform channel measurement.
  • the measurement bandwidth of the terminal can be the system bandwidth of the terminal, the BWP, or the transmission bandwidth of the terminal.
  • the system bandwidth refers to the bandwidth supported by the terminal or the configured bandwidth, and may also be referred to as carrier bandwidth.
  • BWP is part of the system bandwidth.
  • Transmission bandwidth refers to the bandwidth or the number of resources available for data transmission in the system bandwidth or on the BWP.
  • Antenna port is a logical concept.
  • One antenna port can correspond to one physical transmit antenna or multiple physical transmit antennas. In both cases, the receiver of the terminal will not decompose the signal from the same antenna port. Because from the perspective of the terminal, whether the channel is formed by a single physical transmitting antenna or a combination of multiple physical transmitting antennas, the reference signal (RS) corresponding to this antenna port defines the antenna port , The terminal can obtain the channel estimation of this antenna port according to this RS.
  • An antenna port is a channel, and the terminal can perform channel estimation and data demodulation according to the reference signal corresponding to this antenna port.
  • the embodiment of the present application provides a CSI measurement method, as shown in FIG. 4, including:
  • the terminal determines N RS groups.
  • the N RS groups all include a first RS used to measure CSI and a second RS used to measure CSI.
  • the first RS and the second RS in each RS group each occupy a time-frequency resource segment. Frequency domain resource segments occupied by different RS groups do not overlap, and time domain resource segments occupied by different RS groups do not overlap.
  • N is an integer greater than 1. Illustratively, N is an integer of 2, 3, 4 or greater.
  • the first RS may be SRS or Doppler tracking RS (DT-RS) or channel tracking RS (CT-RS).
  • the second RS may also be SRS or DT-RS or CT-RS.
  • DT-RS or CT-RS can be an enhanced SRS.
  • the DT-RS or CT-RS here is only an example, it can also be named with other names, and can refer to other RSs used for measuring CSI except SRS.
  • the first RS and the second RS can be used to measure the uplink CSI, because after the uplink CSI is measured, the downlink CSI can be measured according to the disparity of the uplink and downlink channels. Therefore, it is also considered that the first RS and the second RS can be used to measure downlink CSI.
  • the frequency domain resource segment occupied by an RS group is a continuous frequency domain resource segment that includes the frequency domain resource segments occupied by all RSs in the RS group, and the time domain resource segment occupied by an RS group is included in the RS group A segment of continuous time domain resources in the time domain resource segment occupied by all RSs.
  • the frequency domain resource segment occupied by one RS group may be F1 shown in the figure, and the time domain resource segment occupied by one RS group may be T1 shown in the figure.
  • the frequency domain resource segments occupied by different RS groups may not overlap, and the time domain resource segments occupied by different RS groups may not overlap.
  • CSI measurement can be performed on the frequency domain resource segment occupied by the RS group through the first RS and the second RS in the RS group.
  • the frequency domain resource segments occupied by the first RS and the second RS in each RS group are the same.
  • the frequency domain resource segment occupied by one RS group is the frequency domain resource segment occupied by the first RS or the second RS.
  • the frequency domain resource segments occupied by the N RS groups form a continuous frequency domain resource.
  • CSI measurement can be performed on a continuous frequency domain resource through N RS groups.
  • the continuous frequency domain resources composed of frequency domain resource segments occupied by the N RS groups are the measurement bandwidth of the terminal.
  • CSI measurement can be performed on the entire measurement bandwidth of the terminal through N RS groups.
  • the first RS and the second RS are essentially a sequence, for example, a ZC (Zadoff Chu) sequence, or a sequence obtained by modulating a gold sequence, or a sequence obtained by modulating a gold sequence A sequence obtained after other operations (for example, discrete Fourier transform (DFT)).
  • Multiple elements can be included in a sequence. Exemplarily, each element may be a plural symbol.
  • One or more elements are carried on a resource element (RE).
  • the occupation of the time-frequency resource segment by the first RS in the embodiment of this application does not mean that the first RS occupies all REs in the time-frequency resource segment, but refers to that the first RS is carried in some of the time-frequency resource segments.
  • RE can be all or part). For example, if the time-frequency resource segment occupied by the first RS consists of 168 REs, the first RS may occupy 9 REs among them. The same is true for the second RS.
  • the antenna port (antenna port) of the terminal corresponding to the RS port included in the second RS is at least partially the same as the antenna port of the terminal corresponding to the RS port included in the first RS.
  • This optional method can enable the first RS and the second RS to jointly measure CSI.
  • the antenna port of the terminal corresponding to the RS port included in the second RS is at least partially the same as the antenna port of the terminal corresponding to the RS port included in the first RS, that is, the antenna port of the terminal corresponding to the RS port included in the second RS
  • the antenna port part of the terminal corresponding to the RS port included in the first RS is the same (denoted as example 1), or the antenna port of the terminal corresponding to the RS port included in the second RS corresponds to the RS port included in the first RS
  • the antenna ports of the terminals are all the same (denoted as example 2).
  • Example 1 specifically refers to the one-to-one correspondence between at least one RS port included in the second RS and at least one RS port included in the first RS.
  • Example 2 specifically refers to all RS ports included in the second RS and all RS ports included in the first RS.
  • the RS ports have a one-to-one correspondence, and two RS ports with a corresponding relationship correspond to the antenna ports of the same terminal.
  • the terminal sends N RS groups to the network device.
  • the network device receives the N RS groups sent by the terminal.
  • the network device measures CSI according to at least one RS group in the N RS groups.
  • the network device can measure CSI according to each RS group.
  • the network device can measure the uplink CSI according to the first RS, and can also measure the uplink CSI according to the second RS. Further, it can also measure the downlink CSI according to the reciprocity of the uplink and downlink channels.
  • the specific method is those skilled in the art. The well-known ones will not be repeated here.
  • the network device may also jointly measure the uplink CSI according to the first RS and the second RS, and further, may also obtain the downlink CSI according to the reciprocity of the uplink and downlink channels.
  • the network device can perform joint measurement according to the first RS and the second RS to obtain the uplink CSI when the network device sends the PUSCH, or further perform joint measurement to obtain the PDSCH sent Downlink CSI at time.
  • the network device may include: the network device performs joint measurement according to the first RS and the second RS in the RS group to obtain the downlink CSI when the network device sends the PDSCH.
  • the process of joint measurement may include: the network device calculates the uplink CSI1 according to the first RS in an RS group, and calculates the downlink CSI1 according to the uplink CSI1; according to the second RS in the RS group The uplink CSI2 is calculated, and the downlink CSI2 is calculated according to the uplink CSI2; machine learning or linear/non-linear prediction is performed according to the downlink CSI1 and the downlink CSI2 to obtain the downlink CSI when the network device sends the PDSCH.
  • the process of joint measurement may include: the network device calculates the uplink CSI1 according to the first RS in an RS group, and calculates the downlink CSI1 according to the uplink CSI1; according to the second RS in the RS group
  • the uplink CSI2 is calculated, and the downlink CSI2 is calculated according to the uplink CSI2;
  • the interpolation algorithm is used to calculate the corresponding one or more time domain resource segments between the time domain resource segment occupied by the first RS and the time domain resource segment occupied by the second RS
  • the corresponding downlink CSI is calculated according to the one or more uplink CSI; machine learning or linear or non-linear prediction is performed based on all the calculated downlink CSI to obtain the downlink CSI when the network device sends the PDSCH.
  • the joint measurement process may include: the network device calculates the uplink CSI1 according to the first RS in an RS group, and calculates the downlink CSI1 according to the uplink CSI1; according to the second RS in the RS group The uplink CSI2 is calculated, and the downlink CSI2 is calculated according to the uplink CSI2; the downlink CSI1 and the downlink CSI2 are averaged to obtain the downlink CSI when the network device sends the PDSCH.
  • which RS in the RS group is used by the network device to measure CSI may be predefined or pre-configured or stipulated by the protocol, configured by the network device, or determined through negotiation between the network device and the terminal.
  • the network device can jointly measure the downlink CSI when transmitting the PDSCH through the first RS and the second RS, thereby obtaining the instantaneous CSI of the terminal when the terminal is moving, and then determining that it is more consistent with the current downlink CSI.
  • the matched precoding matrix is used to precode the PDSCH sent to the terminal according to the precoding matrix to avoid channel aging and improve the reception quality of the PDSCH received by the terminal.
  • the distribution of the first RS and the second RS on the physical resources proposed in this application enables the RSs in the same RS group to perform joint measurement, so as to improve the accuracy of CSI estimation and prediction, thereby improving downlink throughput the amount.
  • the first RS is periodically distributed in the time domain.
  • the time domain period of the first RS may be one or more time domain units. For example, one or more time slots, one or more subframes, etc.
  • the time domain period of the first RS may be pre-defined or pre-configured or stipulated by the protocol, may also be configured by the network device, or may be negotiated and determined by the network device and the terminal.
  • the first RS in the first RS group is carried in time slot 0
  • the first RS in the second RS group is carried in time slot 20
  • the third RS in the third RS group One RS is carried in the time slot 40, and the time domain period of the first RS is 20 time slots.
  • the second RS is periodically distributed in the time domain.
  • the time domain period of the second RS may be one or more time domain units. For example, one or more time slots, one or more subframes, etc.
  • the time domain period of the first RS and the time domain period of the second RS may be the same or different, which is not limited in this application.
  • the network device may use the CSI a priori information measured by the first RS when measuring CSI through the second RS. In this case, the number of REs occupied by the second RS can be reduced, thereby reducing the pilot overhead of the second RS.
  • the time domain period of the second RS can be predefined or pre-configured or stipulated by the protocol, it can also be configured by the network device or negotiated and determined by the network device and the terminal, or it can be the first RS (that is, the first RS). What is the time domain period of one RS, so is the time domain period of the second RS).
  • the second RS in the first RS group is carried in time slot 10
  • the second RS in the second RS group is carried in time slot 30, and the third RS in the third RS group
  • the second RS is carried in the time slot 50, and the time domain period of the second RS is 20 time slots.
  • the RS groups are periodically distributed in the time domain.
  • the time domain period of the RS group may be one or more time domain units. For example, one or more time slots, one or more subframes, etc.
  • the time domain period of the RS group can be pre-defined or pre-configured or stipulated by the protocol, can also be configured by the network device, or negotiated and determined by the network device and the terminal.
  • the first RS group is carried in time slot 0 to time slot 10
  • the second RS group is carried in time slot 20 to time slot 30
  • the third RS group is carried in time slot 40.
  • time slot 50 the time domain period of the RS group is 20 time slots.
  • the position of the first RS in each RS group in the occupied time-frequency resource segment is different from the position of the second RS in the occupied time-frequency resource segment.
  • the fourth possible implementation manner can include the following two cases: 1) The number of REs occupied by the first RS in the time-frequency resource segment occupied by the RS group and the time-frequency resources occupied by the second RS The number of REs occupied in the segment is different; 2) The number of REs occupied by the first RS in the occupied time-frequency resource segment and the number of REs occupied by the second RS in the occupied time-frequency resource segment in the RS group The number of occupied REs is the same, but the position of the RE occupied by the first RS in the occupied time-frequency resource section is different from the position of the RE occupied by the second RS in the occupied time-frequency resource section.
  • the first RS occupies 6 REs in the occupied time-frequency resource segment
  • the second RS is in the occupied time-frequency resource segment.
  • the number of REs occupied by the first RS and the second RS in the RS group are different in the time-frequency resource section occupied by each, that is, the first RS is in The occupied position in the time-frequency resource segment is different from the position of the second RS in the occupied time-frequency resource segment.
  • the first RS occupies 6 REs in the occupied time-frequency resource segment
  • the second RS is in the occupied time-frequency resource segment.
  • the time-frequency resource segment also occupies 6 REs, but the positions of the 6 REs occupied by the first RS and the 6 REs occupied by the second RS are different.
  • the number of REs occupied by the second RS in the RS group in the time-frequency resource segment occupied is smaller than that of the first RS in the time-frequency resource segment occupied The number of RE occupied.
  • This optional method can save pilot overhead compared with the same number of REs occupied by the second RS and the first RS in the respective time-frequency resource segments in the RS group.
  • the number of REs occupied by the first RS in the time-frequency resource segment occupied by each RS group is greater than the REs occupied by the second RS in the time-frequency resource segment occupied by the second RS. The number of.
  • the first RS and the second RS in each RS group adopt the same comb structure in the frequency domain (that is, the size of the comb teeth is the same), or the comb teeth in each RS group
  • the first RS and the second RS adopt different comb tooth structures in the frequency domain (that is, the sizes of the comb teeth are different).
  • the first RS and the second RS in each RS group have the same comb structure in the frequency domain, then in one RS group, if the comb structure of the first RS in the frequency domain is comb2, then the first RS has the same comb structure in the frequency domain.
  • the comb structure adopted by the second RS in the frequency domain is also comb2. If the comb structure adopted by the first RS in the frequency domain is comb3, the comb structure adopted by the second RS in the frequency domain is also comb3.
  • the comb-tooth structure adopted by the first RS and the second RS in the frequency domain are both comb4.
  • the comb structure of the first RS and the second RS in each RS group may be different in the frequency domain.
  • the comb structure of the first RS in the frequency domain is comb2
  • the comb-tooth structure adopted by the second RS in the frequency domain is not comb2, and may be comb3 or comb4.
  • the comb structure adopted by the first RS in the frequency domain is comb3
  • the second RS is in the frequency domain.
  • the comb structure used is comb4.
  • the distribution of the second RS in the frequency domain is sparser than the distribution of the first RS in the frequency domain, that is, the comb structure of the comb structure adopted by the second RS is sparser.
  • the size of the teeth is larger than that of the comb-tooth structure used by the first RS.
  • the comb-tooth size of the comb-tooth structure used in the second RS in the frequency domain is 4, see In Figure 13(a), the comb tooth size of the comb tooth structure adopted by the first RS is 3, that is, the comb tooth size of the comb tooth structure adopted by the second RS in the frequency domain is larger than that of the first RS.
  • the comb teeth of the structure are larger in size.
  • the CSI prior information that has been measured by the first RS can be effectively used when measuring CSI through the second RS.
  • the size of the comb-tooth structure used by the second RS can be made larger than that used by the first RS.
  • the size of the comb-tooth structure can effectively reduce the pilot overhead of the second RS.
  • the first RS and the second RS in each RS group have the same starting position in the frequency domain, or the first RS and the second RS in each RS group are in the frequency domain. The starting position on the domain is different.
  • the starting position of an RS in the frequency domain can have the following two situations:
  • the starting position of an RS in the frequency domain may be the subcarrier with the smallest index among the subcarriers corresponding to the RE occupied by the RS in the time-frequency resource segment.
  • the starting position of an RS in the frequency domain may be the subcarrier with the largest index among the subcarriers corresponding to the RE occupied by the RS in the time-frequency resource segment.
  • the starting position of the first RS in the frequency domain is subcarrier 1, and the second RS is in the frequency domain.
  • the starting position on the above is subcarrier 2. Therefore, the starting positions of the first RS and the second RS in the frequency domain are different.
  • the starting position of the first RS in the frequency domain is subcarrier 1
  • the starting position of the second RS in the frequency domain is also subcarrier 1. Therefore, the first RS and the second RS
  • the starting positions of RSs in the frequency domain are the same.
  • the end position can also be used to measure whether the positions of the first RS and the second RS in the frequency domain are the same, the principle is similar, and will not be repeated.
  • the OFDM symbols that carry the RS are all the same; or, in the time-frequency resource segment occupied by each RS, the OFDM symbol that carries the RS is The symbols are different.
  • that the OFDM symbols are all the same means that the number of OFDM symbols and the positions of the OFDM symbols are the same. Different OFDM symbols indicate that the number of OFDM symbols is different, or the number of OFDM symbols is the same but the positions of the OFDM symbols are different.
  • the OFDM symbols that carry the first RS are OFDM symbol 12 and OFDM symbol 13.
  • the OFDM symbols carrying the second RS are also OFDM symbol 12 and OFDM symbol 13. Therefore, in the time-frequency resource segment, the OFDM symbols carrying the first RS and those carrying the second RS are The OFDM symbols are the same.
  • the OFDM symbols carrying the first RS are OFDM symbol 12 and OFDM symbol 13, see (b) in FIG. 11,
  • the OFDM symbol carrying the second RS is OFDM symbol 13. Therefore, in the time-frequency resource segment, the number of OFDM symbols carrying the first RS and the number of OFDM symbols carrying the second RS If they are different, it is considered that the OFDM symbol carrying the first RS is different from the OFDM symbol carrying the second RS.
  • the OFDM symbols carrying the first RS are OFDM symbol 12 and OFDM symbol 13
  • the OFDM symbols carrying the second RS are OFDM symbol 11 and OFDM symbol 12. Therefore, in the time-frequency resource segment, the OFDM symbol carrying the first RS and the OFDM symbol carrying the second RS are If the number of OFDM symbols is the same but the positions are different, it is considered that the OFDM symbol carrying the first RS and the OFDM symbol carrying the second RS are different.
  • each RS is distributed in part or all of the PRBs in the frequency domain resource segment occupied by it.
  • the first RS and the second RS in the same RS group can be both distributed in some PRBs in the frequency domain resource segment they occupy, or they can be distributed in all PRBs in the frequency domain resource segment occupied by them.
  • one RS may also be distributed in part of the PRBs in the frequency domain resource section occupied by the RS, and the other RS may be distributed in all PRBs in the frequency domain resource section occupied by the RS.
  • the first RS and the second RS are both distributed in a part of the PRB in the frequency domain resource segment occupied by them.
  • the PRBs occupied by the first RS and the second RS in the frequency domain resource segment occupied by them may be the same or different (the number of PRBs is different, or the number of PRBs is the same but the positions of the PRBs are different).
  • the four PRBs from top to bottom in Figure 15 (a) and Figure 15 (b) are denoted as PRB1, PRB2, PRB3, and PRB4, respectively, then in Figure 15 (a) , The PRBs occupied by the first RS are PRB1 and PRB3, and the PRBs occupied by the second RS are PRB2 and PRB4. At this time, the PRBs occupied by the first RS and the second RS in the frequency domain resource segment occupied by them are different, as shown in Figure 15 In (b), the PRBs occupied by the first RS and the second RS are both PRB1 and PRB3. At this time, the PRBs occupied by the first RS and the second RS in the frequency domain resource segments occupied by them are the same.
  • the first RS and the second RS are both distributed in all PRBs in the frequency domain resource segment occupied by them.
  • the first RS is distributed in all PRBs in the frequency domain resource segment that it occupies
  • the second RS is distributed in some PRBs in the frequency domain resource segment that it occupies.
  • the OFDM symbols occupied by the RS are all the same; or, in the time-frequency resource segment occupied by each RS. In the time-frequency resource segment, on at least two PRBs carrying the RS, the OFDM symbols occupied by the RS are different.
  • the OFDM symbols occupied by the first RS are all the same, and among the PRB2 and PRB4 occupied by the second RS, the second RS The OFDM symbols occupied by the RS in PRB2 and PRB4 are different.
  • the distribution of the RS adopts the same comb-tooth structure; or, in each RS In the occupied time-frequency resource segment, the RS is carried on at least two PRBs, and the distribution of the RS adopts different comb tooth structures.
  • the comb tooth structure adopted is all comb4.
  • the comb structure used on PRB1 and PRB3 is comb4
  • the comb structure used on PRB2 and PRB4 is comb2.
  • the comb tooth structure adopted is comb4.
  • the comb structure used on PRB1 is comb4
  • the comb structure used on PRB3 is comb2.
  • the N RS groups are periodically distributed, that is, when the N RS groups are regarded as a whole, the whole is periodically distributed.
  • the period of periodically distributed N RS groups (that is, the overall period of N RS groups) may be referred to as a frequency hopping period.
  • N is the number of frequency hopping in a frequency hopping period.
  • the frequency hopping period is 40 time slots.
  • the 3 RS groups shown in (b) in Figure 7 are periodically distributed in the time domain, please refer to (b) in Figure 20. If the first The time domain periods of the RS and the second RS are both 20 time slots, and the frequency hopping period is 60 time slots.
  • FIG. 21 and FIG. 22 respectively show a possible distribution of N RS groups in time-frequency resources.
  • the time-frequency resource segment occupied by the first RS in an RS group is recorded as the first time-frequency resource segment
  • the time-frequency resource segment occupied by the second RS is recorded as the second time-frequency resource segment.
  • the following conditions are satisfied between the first time-frequency resource segment and the second time-frequency resource segment:
  • mod is the remainder function, Represents the number of time slots in a radio frame corresponding to the current subcarrier spacing configuration u, Represents the index of the first transmission slot of the second RS corresponding to the current subcarrier spacing configuration u, Represents the index of the first transmission slot of the first RS corresponding to the current subcarrier spacing configuration u, n f,1 represents the index of the radio frame where the first transmission slot of the second RS is located, n f,0 represents The index of the radio frame where the first transmission slot of the first RS is located.
  • the index of the radio frame is the system frame number (SFN).
  • T offset, 1 is the slot offset configured for the second RS.
  • T offset, 0 is the time slot offset configured for the first RS
  • T represents the time domain period of the first RS or the second RS
  • N is the number of frequency hopping in one frequency hopping period.
  • At least one of T offset,1 and n f,1 is configured by the network device for the second RS
  • At least one of T offset, 0 and n f, 0 is configured by the network device for the first RS.
  • the network device configures these parameters, it needs to ensure that these parameters meet the foregoing formula 1 or an equivalent modification of the foregoing formula 1.
  • the first time slot of the time-frequency resource segment occupied by the first RS and the first time slot of the time-frequency resource segment occupied by the second RS satisfy the above formula 1 or an equivalent modification of the above formula 1.
  • the frequency hopping position of the second RS is the same as that of the nearest first RS, so that joint measurement can be performed between the first RS and the second RS.
  • the second time-frequency resource segment is located after the first time-frequency resource segment. It should be noted that the second time-frequency resource segment and the first time-frequency resource segment may be located in the same time slot, or may be located in different time slots.
  • the method further includes: the network device sends indication information to the terminal, where the indication information is used to indicate the relationship between the first RS and the second RS in each RS group.
  • the terminal receives the indication information from the network device, and determines the relationship between the first RS and the second RS in each RS group according to the indication information.
  • the indication information may be carried in RRC signaling.
  • the usage cell in the RRC signaling when the usage cell in the RRC signaling is set to interpolation, it indicates the information of the terminal corresponding to the RS port included in the second RS.
  • the antenna port is at least partially the same as the antenna port of the terminal corresponding to the RS port included in the first RS.
  • frequency hopping when usage is configured as interpolation, it also indicates that the first RS and the second RS satisfy the above formula 1 or the equivalent modification of the above formula 1.
  • the indication information may be configured for the first RS (or the second RS), and may also be configured for the first RS and the second RS. If it is the former, the indication information may also include the resource identification (ID) of the first RS (or the second RS).
  • ID resource identification
  • the time-frequency resource of each RS may be specified by the protocol, or may be configured by the network, and may also be determined jointly by the information specified by the protocol and the information of the network configuration. If it is configured for a network, optionally, the above method further includes: the network device sends configuration information to the terminal, where the configuration information is used to configure the time-frequency resource of at least one of the first RS and the second RS. Correspondingly, the terminal receives the configuration information from the network device, and determines the time-frequency resource of the RS in the RS group according to the configuration information. In this case, when step 402 is specifically implemented, it may include: the terminal sends N RS groups to the network device according to the configuration information.
  • the terminal may determine the time-frequency resources of the first RS and the second RS according to the configuration information, and send the first RS and the second RS on the determined time-frequency resources.
  • the time-frequency resource occupied by the first RS (or the second RS) includes not only the occupied time-frequency resource segment, but also the frequency domain of the RE occupied by the first RS (or the second RS) on each time-frequency resource segment. Location and time domain location.
  • the configuration information can be carried in radio resource control (RRC) signaling or medium access control (medium access control, MAC) control element (MAC control element, MAC CE) signaling or downlink control information ( downlink control information, DCI) sends configuration information to the terminal.
  • RRC radio resource control
  • MAC medium access control
  • MAC CE MAC control element
  • DCI downlink control information
  • the time-frequency resources of the first RS and the second RS in this application can be considered as two different resources, or the same resource can be recognized. In these two cases, the time-frequency resources of the first RS and the second RS can be regarded as two different resources.
  • the configuration of frequency resources is also different, and the two situations are described separately below.
  • the time-frequency resources of the first RS and the second RS are two different resources.
  • the network device independently configures the time-frequency resource of the first RS and the time-frequency resource of the second RS, but the configured time-frequency resources need to be such that the first RS and the second RS satisfy the above formula 1 or the above formula 1.
  • the network device can configure the time-frequency resource for the RS (first RS or second RS) through the following method 1 or method 2.
  • Manner 1 The network device configures the pattern identifier of the pattern of the time-frequency resource segment for the terminal.
  • the information included in the configuration information may be the identification of the pattern of the time-frequency resource segment.
  • a pattern of the time-frequency resource segment represents a position distribution of the RS in the time-frequency resource segment.
  • a pattern of the time-frequency resource segment corresponds to a pattern identifier.
  • one or more patterns of time-frequency resource segments may be stored in the network device and the terminal.
  • the terminal may determine the pattern of the time-frequency resource segment according to the pattern identifier.
  • Manner 2 The network device configures the specific location of the RS time-frequency resource for the terminal.
  • the configuration information may include one or more of the following information: the frequency domain position of the time-frequency resource section occupied by the RS, the time domain position of the time-frequency resource section occupied by the RS, and the time domain period of the RS The comb-tooth structure adopted by the RS, the start position (or end position) of the RS in the time-frequency resource section in the frequency domain, and the frequency-domain position and time-domain position of the RE of the RS in the time-frequency resource section.
  • the terminal can determine the time-frequency resource of each RS according to the information contained in the configuration information.
  • the network device configures the time-frequency resource of the first RS and the time-frequency resource of the second RS as a whole.
  • the network device may configure time-frequency resources for the first RS and the second RS through the following manner three or manner four.
  • Manner 3 The network device configures the pattern identifier of the pattern of the time-frequency resource segment for the terminal.
  • the information included in the configuration information may be the identification of the pattern of the time-frequency resource segment.
  • a pattern of the time-frequency resource segment represents a position distribution of the first RS and the second RS in the time-frequency resource segment.
  • a pattern of the time-frequency resource segment corresponds to a pattern identifier.
  • one or more patterns of time-frequency resource segments may be stored in the network device and the terminal.
  • the terminal may determine the pattern of the time-frequency resource segment according to the pattern identifier.
  • Manner 4 The network device configures the specific locations of the time-frequency resources of the first RS and the second RS for the terminal.
  • the configuration information may include one or more of the following information: the frequency domain position of the time-frequency resource section occupied by the first RS, the time domain position of the time-frequency resource section occupied by the first RS, and the first RS.
  • the time-frequency resource offset of the second RS relative to the first RS, the comb structure adopted by the first RS and the second RS, and the start position (or end position) of the first RS and the second RS in the frequency domain The frequency domain position and the time domain position of the RE occupied by the first RS and the second RS in the occupied time-frequency resource segment.
  • the terminal can determine the time-frequency resource of the first RS according to the information contained in the configuration information, Then derive the time-frequency resource of the second RS according to the offset.
  • an RS group including only the first RS and the second RS is taken as an example to illustrate the method provided in the embodiment of the present application.
  • an RS group may include 3 or more.
  • RS in this case, any two RSs satisfy the above formula 1 or the equivalent modification of the above formula 1.
  • the RS other than the first RS and the second RS in an RS group may be an SRS, or may be a DT-RS or a CT-RS, which is not limited in this application.
  • a RS group includes a first RS, a second RS, and a third RS.
  • FIG. 23 For a possible distribution of RSs in physical resources, refer to FIG. 23.
  • each network element for example, a network device and a terminal, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the network device and the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 24 shows a possible structural diagram of the communication device (denoted as the communication device 240) involved in the above-mentioned embodiment.
  • the communication device 240 includes a processing unit 2401 and a transceiver unit 2402. , May also include a storage unit 2403.
  • the schematic structural diagram shown in FIG. 24 may be used to illustrate the structure of the network device and the terminal involved in the foregoing embodiment.
  • the processing unit 2401 is used to control and manage the actions of the terminal.
  • the processing unit 2401 is used to support the terminal to execute the terminal shown in FIG. 4 401 and 402, and some or all of the actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processing unit 2401 may communicate with other network entities through the transceiver unit 2402, for example, communicate with the network device shown in FIG. 4.
  • the storage unit 2403 is used to store the program code and data of the terminal.
  • the communication device 240 may be a terminal or a chip in the terminal.
  • the processing unit 2401 is used to control and manage the actions of the network device.
  • the processing unit 2401 is used to support the network device to execute the diagram. 402 and 403 in 4, and some or all of the actions performed by the network device in other processes described in the embodiments of this application.
  • the processing unit 2401 may communicate with other network entities through the transceiver unit 2402, for example, communicate with the terminal shown in FIG. 4.
  • the storage unit 2403 is used to store the program code and data of the network device.
  • the communication device 240 may be a network device or a chip in the network device.
  • the processing unit 2401 may be a processor or a controller, and the transceiver unit 2402 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, or a transceiver.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 2403 may be a memory.
  • the processing unit 2401 may be a processor or a controller, and the transceiver unit 2402 may be an input/output interface, a pin, a circuit, or the like.
  • the storage unit 2403 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in a terminal or a network device.
  • a storage unit for example, a register, a cache, etc.
  • a storage unit for example, a read-only memory, a random access memory, etc. located outside the chip in a terminal or a network device.
  • the transceiver unit may also be referred to as a communication unit.
  • the antenna and control circuit with the transceiving function in the communication device 240 can be regarded as the transceiving unit 2402 of the communication device 240, and the processor with processing function can be regarded as the processing unit 2401 of the communication device 240.
  • the device for implementing the receiving function in the transceiver unit 2402 may be regarded as a receiving unit, and the receiving unit is used to perform the receiving steps in the embodiment of the present application.
  • the receiving unit in the network device may be used to receive the first RS and may also be used to receive the second RS, and the receiving unit in the terminal may be used to receive configuration information.
  • the receiving unit can be a receiver, a receiver, a receiving circuit, and so on.
  • the device for implementing the sending function in the transceiver unit 2402 can be regarded as a sending unit, and the sending unit is used to execute the sending steps in the embodiment of the present application.
  • the sending unit in the network device can be used to send configuration information
  • the sending unit in the terminal can be used to send the first RS, and can also be used to send the second RS.
  • the transmitting unit may be a transmitter, a transmitter, a transmitting circuit, and so on.
  • the integrated unit in FIG. 24 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.
  • the unit in FIG. 24 may also be referred to as a module, for example, the processing unit may be referred to as a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device.
  • the communication device includes a processor 2501, and optionally, a memory 2502 connected to the processor 2501.
  • the processor 2501 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • the processor 2501 may also include multiple CPUs, and the processor 2501 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 2502 may be ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or it can be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, and the embodiment of the present application does not impose any limitation on this.
  • the memory 2502 may exist independently, or may be integrated with the processor 2501. Wherein, the memory 2502 may contain computer program code.
  • the processor 2501 is configured to execute the computer program code stored in the memory 2502, so as to implement the method provided in the embodiment of the present application
  • the communication device further includes a transceiver 2503.
  • the processor 2501, the memory 2502, and the transceiver 2503 are connected by a bus.
  • the transceiver 2503 is used to communicate with other devices or a communication network.
  • the transceiver 2503 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 2503 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the receiver in the network device can be used to receive the first RS and can also be used to receive the second RS, and the receiver in the terminal can be used to receive configuration information.
  • the device used in the transceiver 2503 to implement the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • the transmitter in the network device can be used to send configuration information
  • the transmitter in the terminal can be used to send the first RS, and can also be used to send the second RS.
  • FIG. 25 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
  • the processor 2501 is used to control and manage the actions of the terminal.
  • the processor 2501 is used to support the terminal to execute the terminal shown in FIG. 4 401 and 402, and some or all of the actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processor 2501 may communicate with other network entities through the transceiver 2503, for example, communicate with the network device shown in FIG. 4.
  • the memory 2502 is used to store program codes and data of the terminal.
  • the processor 2501 is used to control and manage the actions of the network device.
  • the processor 2501 is used to support the network device to execute the diagram. 402 and 403 in 4, and some or all of the actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 2501 may communicate with other network entities through the transceiver 2503, for example, communication with the terminal shown in FIG. 4.
  • the memory 2502 is used to store program codes and data of the network device.
  • the processor 2501 includes a logic circuit, and an input interface and/or an output interface.
  • the output interface is used to execute the sending action in the corresponding method.
  • the output interface in the network device can be used to send configuration information
  • the output interface in the terminal can be used to send the first RS, and can also be used to send the second RS.
  • the input interface is used to perform the received action in the corresponding method.
  • the input interface in the network device can be used to receive the first RS and can also be used to receive the second RS, and the input interface in the terminal can be used to receive configuration information.
  • FIG. 26 The schematic structural diagram shown in FIG. 26 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
  • the processor 2501 is used to control and manage the actions of the terminal.
  • the processor 2501 is used to support the terminal to execute the terminal shown in FIG. 4 401 and 402, and some or all of the actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processor 2501 may communicate with other network entities through an input interface and/or an output interface, for example, communicate with the network device shown in FIG. 4.
  • the memory 2502 is used to store program codes and data of the terminal.
  • the processor 2501 is used to control and manage the actions of the network device.
  • the processor 2501 is used to support the network device to execute the diagram. 402 and 403 in 4, and some or all of the actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 2501 may communicate with other network entities through an input interface and/or an output interface, for example, communicate with the terminal shown in FIG. 4.
  • the memory 2502 is used to store program codes and data of the network device.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal (denoted as a terminal 270) and a network device. For details, refer to FIG. 27 and FIG. 28, respectively.
  • FIG. 27 is a schematic diagram of the hardware structure of the terminal 270. For ease of description, FIG. 27 only shows the main components of the terminal. As shown in FIG. 27, the terminal 270 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program. For example, it is used to control the terminal to execute 401 and 402 in FIG. 4, as well as the implementation of this application. Some or all of the actions performed by the terminal in the other processes described in the example.
  • the memory is mainly used to store software programs and data.
  • the control circuit also called a radio frequency circuit
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit, and the control circuit performs radio frequency processing on the baseband signal
  • the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and
  • the data is processed (for example, one or more of the sequence carried by the frequency domain resource segment for transmitting the first RS and the occupied time-frequency resource is determined according to the configuration information).
  • FIG. 27 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 27 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the network device in the embodiment of the present application may be a complete entity, or may be a form in which a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) are separated.
  • Figure 28 shows a schematic diagram of the hardware structure of a network device.
  • Network equipment can include CU2801 and DU2802.
  • it further includes an active antenna unit (AAU) 2803.
  • AAU active antenna unit
  • CU implements part of the functions of network equipment
  • DU implements part of the functions of network equipment.
  • the CU is responsible for processing non-real-time protocols and services, and implements the functions of the radio resource control (Radio Resource Control, RRC) layer and the Packet Data Convergence Protocol (PDCP) layer.
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the CU can be divided into network devices in the RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited here.
  • the network device shown in FIG. 28 can perform some or all of the actions performed by the network device in the other processes described in the embodiments of the present application as 402 and 403 in FIG. 4.
  • the operation, function, or operation and function of each module in the network device are respectively set to implement the corresponding process in the above method embodiment.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in Fig. 27 please refer to the descriptions of the processor in Figs. 25 and 26, and will not be repeated.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned network device and a terminal.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种CSI测量方法及装置。该方法中,终端确定N(N为大于1的整数)个RS组,并向网络设备发送N个RS组,网络设备接收终端发送的N个RS组,并根据N个RS组中的至少一个RS组测量CSI。其中,N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的第一RS和第二RS各占据一个时频资源段,时频资源段由一个时域资源段和一个频域资源段组成,不同的RS组占据的频域资源段不重叠,不同的RS组占据的时域资源段不重叠。在跳频情况下,第一RS和第二RS在物理资源上的分布使得同一个RS组中的RS能够进行联合测量,通过联合测量可以提高CSI估计与预测准确性。

Description

CSI测量方法及装置
本申请要求于2019年11月18日提交国家知识产权局、申请号为201911130321.2、申请名称为“CSI测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信道状态信息(channel state information,CSI)测量方法及装置。
背景技术
现有技术中,终端可以向基站发送探测参考信号(sound reference signal,SRS),以便基站通过接收到的SRS获取上行CSI,根据上行CSI确定下行CSI,进而根据下行CSI确定预编码矩阵,根据预编码矩阵对物理下行共享信道(physical downlink shared channel,PDSCH)进行预编码后向终端发送。
一种情况下,终端可以周期性的发送SRS,假设SRS的发送周期为x毫秒(ms),基站发送PDSCH的准备时间需要y ms,则如图1所示,基站发送PDSCH与接收SRS之间的时间间隔最长为(x+y)ms。x的值一旦配置之后,就是固定的,y的值通常为固定值,则在终端移动(mobility)的场景中,由于终端和基站之间的信道变化较快,基站通过接收到的SRS可以测量得到上行CSI,根据该上行CSI计算得到下行CSI(记为第一下行CSI),第一下行CSI已经与发送PDSCH时的下行CSI(记为第二下行CSI)相差较远。相应的,根据第一下行CSI确定的预编码矩阵已经不是与第二下行CSI最佳匹配的预编码矩阵了。该情况下,会导致下行吞吐量下降。
由于信道变化太快导致的上行CSI测量不准,进而导致根据第一下行CSI确定的预编码矩阵不是与第二下行CSI最佳匹配的预编码矩阵的问题,可以称为信道老化(channel aging)。由于信道老化的存在,使得预编码抑制干扰的效果变差。在多用户(multi-user,MU)场景下,信道老化会大大的增加多用户之间的干扰。
发明内容
本申请实施例提供了一种CSI测量方法及装置,用于提高CSI估计与预测准确性,进而提高下行吞吐量。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种CSI测量方法,包括:网络设备接收终端发送的N个RS组,并根据N个RS组中的至少一个RS组测量CSI,N为大于1的整数。其中,N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的第一RS和第二RS各占据一个时频资源段,时频资源段由一个时域资源段和一个频域资源段组成,不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段也不重叠。第一方面提供的方法,网络设备可以通过第一RS和第二RS联合测量得到发送PDSCH时的下行CSI,从而在终端移动的场景下,获取终端的瞬时CSI,进而确定与当前下行CSI更加匹配的预编码矩阵,根据该预编码矩阵对发送给终端的PDSCH进行预编码,避免信道老化,提高终端接收PDSCH的接收质量。在跳频情况下,本申请提出的第一RS和第二RS在物理资 源上的分布使得同一个RS组中的RS能够进行联合测量,以达到提高CSI估计与预测准确性,进而提高下行吞吐量的目的。
结合第一方面,在一种可能的实现方式中,该方法还包括:网络设备向终端发送用于配置第一RS和第二RS中的至少一个的时频资源的配置信息。其中,时频资源包括时域资源和频域资源。也即,配置信息是关于RS占用的时频资源的。该种可能的实现方式,网络设备为终端配置RS组中的RS的时频资源,以便终端确定发送第一RS和第二RS的时频资源。
第二方面,提供了一种网络设备,包括:收发单元和处理单元;收发单元,用于接收终端发送的N个RS组;处理单元,用于根据N个RS组中的至少一个RS组测量CSI,N为大于1的整数。其中,N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的第一RS和第二RS各占据一个时频资源段,时频资源段由一个时域资源段和一个频域资源段组成;不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段不重叠。
结合第二方面,在一种可能的实现方式中,收发单元,还用于向终端发送用于配置第一RS和第二RS中的至少一个的时频资源的配置信息。其中,时频资源包括时域资源和频域资源。也即,配置信息是关于RS占用的时频资源的。
第三方面,提供了一种CSI测量方法,包括:终端确定N个RS组,并向网络设备发送N个RS组,N为大于1的整数。其中,N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的第一RS和第二RS各占据一个时频资源段,时频资源段由一个时域资源段和一个频域资源段组成,不同的RS组占据的频域资源段不重叠,不同的RS组占据的时域资源段也不重叠。第三方面提供的方法,终端可以向网络设备发送N个RS组,网络设备根据接收到的N个RS组中的第一RS和第二RS联合测量得到发送PDSCH时的下行CSI,从而在终端移动的场景下,获取终端的瞬时CSI,进而确定与当前下行CSI更加匹配的预编码矩阵,根据该预编码矩阵对发送给终端的PDSCH进行预编码,避免信道老化,提高终端接收PDSCH的接收质量。在跳频情况下,本申请提出的第一RS和第二RS在物理资源上的分布使得同一个RS组中的RS能够进行联合测量,以达到提高CSI估计与预测准确性,进而提高下行吞吐量的目的。
结合第三方面,在一种可能的实现方式中,该方法还包括:终端从网络设备接收用于配置第一RS和第二RS中的至少一个的时频资源的配置信息。其中,时频资源包括时域资源和频域资源。也即,配置信息是关于RS占用的时频资源的。该种可能的实现方式,终端可以根据网络设备发送的配置信息确定发送第一RS和第二RS的时频资源。
第四方面,提供了一种终端,包括:收发单元和处理单元;处理单元,用于确定N个RS组,收发单元,用于向网络设备发送N个RS组,N为大于1的整数。其中,N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的第一RS和第二RS各占据一个时频资源段,时频资源段由一个时域资源段和一个频域资源段组成;不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段也不重叠。
结合第四方面,在一种可能的实现方式中,收发单元,还用于从网络设备接收用于配置第一RS和第二RS中的至少一个的时频资源的配置信息。其中,时频资源包括时域资源和频域资源。也即,配置信息是关于RS占用的时频资源的。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,每个RS组中的第一RS和第二RS占据的频域资源段相同。该种可能的实现方式,通过一个RS组中的第一RS和第二RS可以对该RS组占据的频域资源段进行CSI测量。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,第一RS在时域上是周期性分布的。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,第二RS在时域上是周期性分布的。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,第一RS的时域周期和第二RS的时域周期相同。该种可能的实现方式,第二RS与第一RS的周期相同时,网络设备通过第二RS测量CSI时可以使用第一RS测量的CSI先验信息。该情况下,可以减少第二RS占用的RE个数,从而降低第二RS的导频开销。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,RS组在时域上是周期性分布的。该情况下,可以理解的是,第一RS和第二RS在时域上也是周期性分布的。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,每个RS组中的第一RS在所占据的时频资源段中的位置和第二RS在所占据的时频资源段中的位置不同。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,每个RS组中的第一RS和第二RS在频域上采用的梳齿结构相同。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,每个RS组中的第一RS和第二RS在频域上采用的梳齿结构不同。该种可能的实现方式,通过第二RS测量CSI时可以有效使用第一RS已经测量的CSI先验信息,该情况下,可以使得第二RS采用的梳齿结构的大小大于第一RS采用的梳齿结构的大小,从而有效减少第二RS的导频开销。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,每个RS组中的第一RS和第二RS在频域上的起始位置相同。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,每个RS组中的第一RS和第二RS在频域上的起始位置不同。
结合第一方面提供的方法或第二方面提供的网络设备或第三方面提供的方法或第四方面提供的终端,在一种可能的实现方式中,第一时频资源段和第二时频资源段之间满足如下条件:
Figure PCTCN2020115128-appb-000001
Figure PCTCN2020115128-appb-000002
其中,第一时频资源段和第二时频资源段分别为一个RS组中的第一RS和第二RS占据的时频资源段,mod为取余函数,
Figure PCTCN2020115128-appb-000003
表示对应当前子载波间隔配置u的一个无线帧中的时隙的数量,
Figure PCTCN2020115128-appb-000004
表示对应当前子载波间隔配置u下第二RS的第一个发送时隙的索引,
Figure PCTCN2020115128-appb-000005
表示对应当前子载波间隔配置u下第一RS的第一个发送时隙的索引,n f,1表 示第二RS的第一个发送时隙所处的无线帧的索引,n f,0表示第一RS的第一个发送时隙所处的无线帧的索引,无线帧的索引为系统索引,T offset,1是为第二RS配置的时隙偏移量,T offset,0是为第一RS配置的时隙偏移量,T表示第一RS或第二RS的时域周期,N为一个跳频周期内的跳频次数。该种可能的实现方式,第一RS所占据的时频资源段的第一个时隙和第二RS所占据的时频资源段的第一个时隙满足上述公式或上述公式的等效变形后,第二RS与之前最近的第一RS的跳频位置相同,从而可以保证第一RS和第二RS之间可以进行联合测量。
第五方面,提供了一种网络设备,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于网络设备内,也可以位于网络设备外。
在一种可能的实现方式中,处理器包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,网络设备还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,网络设备以芯片的产品形态存在。
第六方面,提供了一种终端,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第三方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于终端内,也可以位于终端外。
在一种可能的实现方式中,处理器包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,终端还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,终端以芯片的产品形态存在。
第七方面,提供了一种通信系统,包括:第二方面提供的终端和第四方面提供的网络设备。
第八方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面或第三方面提供的任意一种方法。
第九方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面或第三方面提供的任意一种方法。
第二方面、第四方面至第九方面中的任一种实现方式所带来的技术效果可参见第一方面或第三方面中对应实现方式所带来的技术效果,此处不再赘述。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方 案不矛盾的前提下,均可以进行组合。
附图说明
图1为网络设备接收SRS与发送PDSCH的时间间隔示意图;
图2为一种网络架构示意图;
图3为梳齿结构的信号或数据在时频资源中的分布示意图;
图4为本申请实施例提供的CSI测量方法的交互流程图;
图5至图7分别为本申请实施例提供的时频资源段的分布示意图;
图8为本申请实施例提供的第一RS在时频资源段中的分布示意图;
图9为本申请实施例提供的第二RS在时频资源段中的分布示意图;
图10为本申请实施例提供的时频资源段占据的时域资源段的示意图;
图11至图14分别为本申请实施例提供的第一RS和第二RS在时频资源段中的分布示意图;
图15和图16分别为本申请实施例提供的第一RS和第二RS在时频资源段中所占据的PRB的示意图;
图17为本申请实施例提供的第一RS和第二RS在时频资源段中所占据的PRB以及OFDM符号的示意图;
图18和图19分别为本申请实施例提供的RS所采用的梳齿结构的示意图;
图20为本申请实施例提供的时频资源段的分布示意图;
图21和图22分别为本申请实施例提供的第一RS和第二RS的分布示意图;
图23为本申请实施例提供的第一RS、第二RS和第三RS的分布示意图;
图24为本申请实施例提供的一种通信装置的组成示意图;
图25和图26分别为本申请实施例提供的一种通信装置的硬件结构示意图;
图27为本申请实施例提供的一种终端的硬件结构示意图;
图28为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例涉及的网元包括网络设备和终端。示例性的,参见图2,图2示出了本申请提供的技术方案所适用的一种通信系统的示意图。该通信系统可以包括至少一个网络设备(图2中仅示出了1个)和至少一个终端(图2中示出了4个,分别为终端1至终端4)。终端1至终端4中的一个或多个终端可以与网络设备通信,从而传输数据。本申请实施例中的终端可以为与网络设备通信的任意一个终端。需要说明的是,在如图2的通信系统包含的网络设备和终端仅是一种示例,在本申请实施例中,通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
本申请实施例中的通信系统可以是支持第四代(fourth generation,4G)接入技术的通 信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术的通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如通用移动通讯系统(universal mobile telecommunications system,UMTS)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
本申请实施例中的网络设备可以是接入网侧用于支持终端接入通信系统的设备,例如,4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。网络设备可以称为基站、节点或者接入网设备等。
本申请实施例中的终端可以是一种向用户提供语音或者数据连通性的设备,也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。例如,终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad),智能手机(smartphone),用户驻地设备(customer premise equipment,CPE),具有网络接入功能的传感器等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。
为便于理解本申请实施例,下面先对本文涉及的相关术语进行简单的介绍。
1、时域单元
时域单元为时域资源中的资源单位。
本申请实施例中的时域单元为多个连续的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的集合。例如,时域单元可以为迷你时隙(minislot)、时隙(slot)、子帧(subframe)、传输时间间隔(transmission time interval,TTI)等。
在NR通信系统中,对于常规(normal)循环前缀(cyclic prefix,CP),1个时隙包含14个OFDM符号。对于扩展(extended)CP,1个时隙包含12个OFDM符号。在本申请实施例中,以1个时隙包含14个OFDM符号为例进行说明。
在1个时隙中,14个OFDM符号按照从小到大的顺序依次编号,最小的编号为0,最大的编号为13。本申请实施例中将索引(即编号)为i的OFDM符号记为OFDM符号#i,则1个时隙包含OFDM符号#0至OFDM符号#13。
时域单元也可以称为时间单元,时域粒度等。
2、时域资源段
本申请实施例中的时域资源段是指由连续的多个时域单元组成的物理资源。
3、频域单元
频域单元为频域资源中的资源单位。频域单元可以为一个或多个PRB,例如,频域单 元可以包括x个PRB。x可以为任意正整数。示例性的,x可以为1、2、4、8、16等。频域单元也可以为一个或多个子载波,例如,频域单元可以包括y个子载波。y可以为任意正整数。示例性的,y可以为1、12、60、120等。频域单元还可以为一个预定义的子带(subband)、一个频带(band)、一个带宽部分(bandwidth part,BWP)、一个单元载波(component carrier,CC)等。
4、频域资源段
本申请实施例中的频域资源段是指由连续的多个频域单元组成的物理资源。
5、时频资源段
本申请实施例中的时频资源段是指由一个时域资源段和一个频域资源段组成的物理资源。
6、梳齿(comb)结构
梳齿结构可以用于表示信号或数据在频域资源上的分布方式。按照梳齿结构分布的信号或数据等间隔均匀分布在频域资源上,也就是说,按照梳齿结构分布的信号或数据周期性的分布在频域资源上。该信号或数据的周期为梳齿的大小,可以记为K。梳齿K(combK)即表示周期为K的梳齿结构。K为大于等于1的整数。
示例性的,参见图3,按照梳齿2分布的信号或数据在频域资源上的分布可参见图3中的(a)和(d),按照梳齿3分布的信号或数据在频域资源上的分布可参见图3中的(b)和(e),按照梳齿4分布的信号或数据在频域资源上的分布可参见图3中的(c)和(f)。
7、终端的测量带宽
终端的测量带宽是指终端的需要进行信道测量的带宽,终端的测量带宽可以是终端的系统带宽,也可以是BWP,还可以是终端的传输带宽。
其中,系统带宽是指终端所支持的带宽或配置的带宽,也可以称为载波带宽。BWP为系统带宽中的部分带宽。传输带宽是指在系统带宽中或BWP上可用于数据传输的带宽或资源个数。
8、天线端口
天线端口是逻辑上的概念,一个天线端口可以对应一个物理发射天线,也可以对应多个物理发射天线。在这两种情况下,终端的接收机(receiver)都不会去分解来自同一个天线端口的信号。因为从终端的角度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(reference signal,RS)就定义了这个天线端口,终端都可以根据这个RS得到这个天线端口的信道估计。一个天线端口就是一个信道,终端可以根据这个天线端口对应的参考信号进行信道估计和数据解调。
本申请实施例提供了一种CSI测量方法,如图4所示,包括:
401、终端确定N个RS组。
其中,N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS。每个RS组中的第一RS和第二RS各占据一个时频资源段。不同的RS组占据的频域资源段不重叠、且不同的RS组占据的时域资源段不重叠。N为大于1的整数,示例性的,N为2、3、4或更大的整数。
其中,能够用于测量CSI的RS均可以作为本申请实施例中的第一RS或第二RS。示例性的,第一RS可以为SRS或多普勒跟踪RS(doppler tracking RS,DT-RS)或信道跟踪 RS(channel tracking RS,CT-RS)。第二RS也可以为SRS或DT-RS或CT-RS。DT-RS或CT-RS可以是一种增强的SRS。这里的DT-RS或CT-RS仅为举例,其还可以用其他名称命名,可以指代除SRS之外的其他用于测量CSI的RS。
第一RS和第二RS可以用于测量上行CSI,由于测量得到上行CSI之后,可以根据上下行信道的互异性测量得到下行CSI。因此,也认为第一RS和第二RS可以用于测量下行CSI。
其中,一个RS组占据的频域资源段为包含该RS组中的全部RS所占据的频域资源段的一段连续的频域资源,一个RS组占据的时域资源段为包含该RS组中的全部RS所占据的时域资源段的一段连续的时域资源。示例性的,参见图5,一个RS组占据的频域资源段可以为图中所示的F1,一个RS组占据的时域资源段可以为图中所示的T1。
不同的RS组占据的频域资源段可以不重叠、且不同的RS组占据的时域资源段可以不重叠,示例性的,若N=2,则2个RS组占据的时频资源段可参见图6中的(a),若N=3,则3个RS组占据的时频资源段可参见图6中的(b)。该可选的方法,通过一个RS组中的第一RS和第二RS可以对该RS组占据的频域资源段进行CSI测量。可以理解的是,本申请中涉及到RS的跳频,其中,一个RS组占据的时频资源段可以认为是一个跳频位置,那么图6中的(a)中有两个跳频位置,图6中的(b)中有三个跳频位置。
可选的,每个RS组中的第一RS和第二RS占据的频域资源段相同。该情况下,一个RS组占据的频域资源段即第一RS或第二RS占据的频域资源段。
可选的,N个RS组占据的频域资源段组成了一段连续的频域资源。示例性的,若N=2,则2个RS组占据的时频资源段组成了一段连续的频域资源,可参见图7中的(a),若N=3,则3个RS组占据的时频资源段组成了一段连续的频域资源,可参见图7中的(b)。该可选的方法,通过N个RS组可以对一段连续的频域资源进行CSI测量。
可选的,N个RS组占据的频域资源段组成的连续的频域资源为终端的测量带宽。该可选的方法,通过N个RS组可以对终端的整个测量带宽进行CSI测量。
需要说明的是,第一RS和第二RS实质上是一个序列,例如,ZC(Zadoff Chu)序列,或,由金(gold)序列经过调制后得到的序列,或由gold序列调制得到的序列再经过其他操作(例如,离散傅里叶变换(discrete fourier transform,简称DFT))后得到的序列。一个序列中可以包括多个元素。示例性的,每个元素可以为一个复数符号。一个或多个元素承载在一个资源元素(resource element,RE)上。本申请实施例中的第一RS占据时频资源段并不是指第一RS占据了该时频资源段中的全部RE,而是指第一RS被承载在该时频资源段中的某些RE(可以为全部,也可以为部分)上。例如,若第一RS占据的时频资源段有168个RE组成,则第一RS可能占据了其中的9个RE。第二RS同理。
可选的,第二RS包含的RS端口所对应的终端的天线端口(antenna port)与第一RS包含的RS端口所对应的终端的天线端口至少部分相同。该可选的方法,可以使得第一RS和第二RS能够联合起来测量CSI。
其中,第二RS包含的RS端口所对应的终端的天线端口与第一RS包含的RS端口所对应的终端的天线端口至少部分相同,即第二RS包含的RS端口所对应的终端的天线端口与第一RS包含的RS端口所对应的终端的天线端口部分相同(记为示例1),或,第二RS包含的RS端口所对应的终端的天线端口与第一RS包含的RS端口所对应的终端的天线端 口全部相同(记为示例2)。
其中,示例1具体是指第二RS包含的至少一个RS端口与第一RS包含的至少一个RS端口一一对应,示例2具体是指第二RS包含的全部RS端口与第一RS包含的全部RS端口一一对应,具有对应关系的两个RS端口对应相同的终端的天线端口。
402、终端向网络设备发送N个RS组。相应的,网络设备接收终端发送的N个RS组。
403、网络设备根据N个RS组中的至少一个RS组测量CSI。
步骤403在具体实现时,网络设备可以根据每个RS组测量CSI。针对一个RS组,网络设备可以根据第一RS测量上行CSI,也可以根据第二RS测量上行CSI,进一步的,还可以根据上下行信道的互异性测量得到下行CSI,具体方法为本领域技术人员所熟知的,在此不再赘述。
步骤403在具体实现时,网络设备还可以根据第一RS和第二RS联合测量上行CSI,进一步的,还可以根据上下行信道的互异性测量得到下行CSI。
若网络设备根据第一RS和第二RS联合测量上行CSI,则网络设备可以根据第一RS和第二RS进行联合测量得到网络设备发送PUSCH时的上行CSI,也可以进一步进行联合测量得到发送PDSCH时的下行CSI。示例性的,针对一个RS组,步骤403在具体实现时,可以包括:网络设备根据该RS组中的第一RS和第二RS进行联合测量得到网络设备发送PDSCH时的下行CSI。
在第一种可能的实现方式中,联合测量的过程可以包括:网络设备根据一个RS组中的第一RS计算得到上行CSI1,根据上行CSI1计算得到下行CSI1;根据该RS组中的第二RS计算得到上行CSI2,根据上行CSI2计算得到下行CSI2;根据下行CSI1和下行CSI2进行机器学习或者线性/非线性预测得到网络设备发送PDSCH时的下行CSI。
在第二种可能的实现方式中,联合测量的过程可以包括:网络设备根据一个RS组中的第一RS计算得到上行CSI1,根据上行CSI1计算得到下行CSI1;根据该RS组中的第二RS计算得到上行CSI2,根据上行CSI2计算得到下行CSI2;采用插值算法计算得到第一RS占据的时域资源段和第二RS占据的时域资源段之间的一个或多个时域资源段对应的一个或多个上行CSI,根据该一个或多个上行CSI计算对应的下行CSI;根据计算得到的全部下行CSI进行机器学习或者线性或非线性预测得到网络设备发送PDSCH时的下行CSI。
在第三种可能的实现方式中,联合测量的过程可以包括:网络设备根据一个RS组中的第一RS计算得到上行CSI1,根据上行CSI1计算得到下行CSI1;根据该RS组中的第二RS计算得到上行CSI2,根据上行CSI2计算得到下行CSI2;对下行CSI1和下行CSI2取平均得到网络设备发送PDSCH时的下行CSI。
可选的,网络设备采用RS组中的哪个RS测量CSI可以是预定义的或预配置的或协议规定的,也可以是网络设备配置的,还可以是网络设备和终端协商确定的。
本申请实施例提供的方法,网络设备可以通过第一RS和第二RS联合测量得到发送PDSCH时的下行CSI,从而在终端移动的场景下,获取终端的瞬时CSI,进而确定与当前下行CSI更加匹配的预编码矩阵,根据该预编码矩阵对发送给终端的PDSCH进行预编码,避免信道老化,提高终端接收PDSCH的接收质量。在跳频情况下,本申请提出的第一RS和第二RS在物理资源上的分布使得同一个RS组中的RS能够进行联合测量,以达到提高 CSI估计与预测准确性,进而提高下行吞吐量。
在第一种可能的实现方式中,第一RS在时域上是周期性分布的。
其中,第一RS的时域周期可以为一个或多个时域单元。例如,一个或多个时隙,一个或多个子帧等。第一RS的时域周期可以为预定义的或预配置的或协议规定的,也可以是网络设备配置的,还可以是网络设备和终端协商确定的。
示例性的,参见图8,第一个RS组中的第一RS承载在时隙0中,第二个RS组中的第一RS承载在时隙20中,第三个RS组中的第一RS承载在时隙40中,第一RS的时域周期为20个时隙。
在第二种可能的实现方式中,第二RS在时域上是周期性分布的。
其中,第二RS的时域周期可以为一个或多个时域单元。例如,一个或多个时隙,一个或多个子帧等。第一RS的时域周期和第二RS的时域周期可以相同,也可以不同,本申请不作限制。当第二RS与第一RS的周期相同时,网络设备通过第二RS测量CSI时可以使用第一RS测量的CSI先验信息。该情况下,可以减少第二RS占用的RE个数,从而降低第二RS的导频开销。
其中,第二RS的时域周期可以为预定义的或预配置的或协议规定的,也可以是网络设备配置的或网络设备和终端协商确定的,还可以是沿用第一RS的(即第一RS的时域周期是多少,则第二RS的时域周期也是多少)。
示例性的,参见图9,第一个RS组中的第二RS承载在时隙10中,第二个RS组中的第二RS承载在时隙30中,第三个RS组中的第二RS承载在时隙50中,第二RS的时域周期为20个时隙。
在第三种可能的实现方式中,RS组在时域上是周期性分布的。
其中,RS组的时域周期可以为一个或多个时域单元。例如,一个或多个时隙,一个或多个子帧等。RS组的时域周期可以为预定义的或预配置的或协议规定的,也可以是网络设备配置的,还可以是网络设备和终端协商确定的。
示例性的,参见图10,第一个RS组承载在时隙0至时隙10中,第二个RS组承载在时隙20至时隙30中,第三个RS组承载在时隙40至时隙50中,RS组的时域周期为20个时隙。
在第四种可能的实现方式中,每个RS组中的第一RS在所占据的时频资源段中的位置和第二RS在所占据的时频资源段中的位置不同。
第四种可能的实现方式可以包括以下两种情况:1)RS组中的第一RS在所占据的时频资源段中所占据的RE的个数和第二RS在所占据的时频资源段中所占据的RE的个数不同;2)RS组中的第一RS在所占据的时频资源段中所占据的RE的个数和第二RS在所占据的时频资源段中所占据的RE的个数相同,但是第一RS在所占据的时频资源段中所占据的RE的位置和第二RS在所占据的时频资源段中所占据的RE的位置不同。
示例性的,针对一个RS组,参见图11中的(a),第一RS在所占据的时频资源段中占据6个RE,参见图11中的(b),第二RS在所占据的时频资源段中占据3个RE,此时,该RS组中的第一RS和第二RS在各自所占据的时频资源段中所占据的RE的个数不同,即第一RS在所占据的时频资源段中的位置和第二RS在所占据的时频资源段中的位置不同。
示例性的,针对一个RS组,参见图12中的(a),第一RS在所占据的时频资源段中 占据6个RE,参见图12中的(b),第二RS在所占据的时频资源段中也占据6个RE,但是,第一RS占据的6个RE和第二RS占据的6个RE的位置不同。
在第四种可能的实现方式中,可选的,RS组中的第二RS在所占据的时频资源段中所占据的RE的个数小于第一RS在所占据的时频资源段中所占据的RE的个数。该可选的方法,相比RS组中的第二RS和第一RS在各自所占据的时频资源段中所占据的RE的个数相同而言,可以节约导频开销。示例性的,参见图10,每个RS组中第一RS在所占据的时频资源段中所占据的RE的个数均大于第二RS在所占据的时频资源段中所占据的RE的个数。
在第五种可能的实现方式中,每个RS组中的第一RS和第二RS在频域上采用的梳齿结构相同(即梳齿的大小相同),或者,每个RS组中的第一RS和第二RS在频域上采用的梳齿结构不同(即梳齿的大小不同)。
若每个RS组中的第一RS和第二RS在频域上采用的梳齿结构相同,则在一个RS组中,若第一RS在频域上采用的梳齿结构为comb2,则第二RS在频域上采用的梳齿结构也为comb2,若第一RS在频域上采用的梳齿结构为comb3,则第二RS在频域上采用的梳齿结构也为comb3。例如,参见图11中的(a)和图11中的(b),第一RS和第二RS在频域上采用的梳齿结构均为comb4。
每个RS组中的第一RS和第二RS在频域上采用的梳齿结构可以不同,例如,在一个RS组中,若第一RS在频域上采用的梳齿结构为comb2,则第二RS在频域上采用的梳齿结构不为comb2,可能为comb3或comb4。示例性的,在一个RS组中,参见图13中的(a),第一RS在频域上采用的梳齿结构为comb3,参见图13中的(b),第二RS在频域上采用的梳齿结构为comb4。
第五种可能的实现方式中,可选的,第二RS在频域上的分布比第一RS在频域上的分布更稀疏,也就是说,第二RS所采用的梳齿结构的梳齿大小比第一RS所采用的梳齿结构的梳齿大小更大,例如,参见图13中的(b),第二RS在频域上采用的梳齿结构的梳齿大小为4,参见图13中的(a),第一RS所采用的梳齿结构的梳齿大小为3,即第二RS在频域上采用的梳齿结构的梳齿大小比第一RS所采用的梳齿结构的梳齿大小更大。该可选的方法,相比第一RS和第二RS在频域上采用相同的梳齿结构而言,可以节约导频开销。
第五种可能的实现方式,通过第二RS测量CSI时可以有效使用第一RS已经测量的CSI先验信息,该情况下,可以使得第二RS采用的梳齿结构的大小大于第一RS采用的梳齿结构的大小,从而有效减少第二RS的导频开销。
在第六种可能的实现方式中,每个RS组中的第一RS和第二RS在频域上的起始位置相同,或者,每个RS组中的第一RS和第二RS在频域上的起始位置不同。
其中,一个RS在频域上的起始位置可以有以下两种情况:
1、一个RS在频域上的起始位置可以为时频资源段中,该RS所占据的RE对应的子载波中的索引最小的子载波。
2、一个RS在频域上的起始位置可以为时频资源段中,该RS所占据的RE对应的子载波中的索引最大的子载波。
以一个RS在频域上的起始位置为第1种情况为例,参见图14中的(a),第一RS在频域上的起始位置为子载波1,第二RS在频域上的起始位置为子载波2,因此,第一RS 和第二RS在频域上的起始位置不同。参见图14中的(b),第一RS在频域上的起始位置为子载波1,第二RS在频域上的起始位置也为子载波1,因此,第一RS和第二RS在频域上的起始位置相同。
第六种可能的实现方式中,也可以用结束位置来衡量第一RS和第二RS在频域上的位置是否相同,原理是类似的,不再赘述。
在第七种可能的实现方式中,在每个RS占据的时频资源段中,承载该RS的OFDM符号均相同;或者,在每个RS占据的时频资源段中,承载该RS的OFDM符号不同。
第七种可能的实现方式中,OFDM符号均相同表示OFDM符号个数和OFDM符号位置均相同。OFDM符号不同表示OFDM符号个数不同,或者,OFDM符号个数相同但OFDM符号位置不同。
示例性的,参见图14中的(a)或图14中的(b),在第一RS占据的时频资源段中,承载第一RS的OFDM符号为OFDM符号12和OFDM符号13,在第二RS占据的时频资源段中,承载第二RS的OFDM符号也为OFDM符号12和OFDM符号13,因此,在时频资源段中,承载第一RS的OFDM符号和承载第二RS的OFDM符号相同。
示例性的,参见图11中的(a),在第一RS占据的时频资源段中,承载第一RS的OFDM符号为OFDM符号12和OFDM符号13,参见图11中的(b),在第二RS占据的时频资源段中,承载第二RS的OFDM符号为OFDM符号13,因此,在时频资源段中,承载第一RS的OFDM符号和承载第二RS的OFDM符号个数不同,那么认为承载第一RS的OFDM符号和承载第二RS的OFDM符号不同。
示例性的,参见图13中的(a),在第一RS占据的时频资源段中,承载第一RS的OFDM符号为OFDM符号12和OFDM符号13,参见图13中的(b),在第二RS占据的时频资源段中,承载第二RS的OFDM符号为OFDM符号11和OFDM符号12,因此,在时频资源段中,承载第一RS的OFDM符号和承载第二RS的OFDM符号个数相同,但位置不同,那么认为承载第一RS的OFDM符号和承载第二RS的OFDM符号不同。
在第八种可能实现方式中,每个RS分布在其占据的频域资源段中的部分或全部PRB中。
其中,针对同一个RS组中的第一RS和第二RS,可以均分布在其占据的频域资源段中的部分PRB中,也可以均分布在其占据的频域资源段中的全部PRB中,还可以一个RS分布在其占据的频域资源段中的部分PRB中,另一个分布在其占据的频域资源段中的全部PRB中。
示例性的,参见图15中的(a)和图15中的(b),第一RS和第二RS均分布在其占据的频域资源段中的部分PRB中。需要说明的是,第一RS和第二RS在其占据的频域资源段中占据的PRB可以相同,也可以不同(PRB个数不同,或,PRB个数相同但是PRB位置不同)。例如,若将图15中的(a)和图15中的(b)中的从上至下的4个PRB分别记为PRB1、PRB2、PRB3和PRB4,则在图15中的(a)中,第一RS占据的PRB为PRB1和PRB3,第二RS占据的PRB为PRB2和PRB4,此时,第一RS和第二RS在其占据的频域资源段中占据的PRB不同,在图15中的(b)中,第一RS和第二RS占据的PRB均为PRB1和PRB3,此时,第一RS和第二RS在其占据的频域资源段中占据的PRB相同。
示例性的,参见图16中的(a),第一RS和第二RS均分布在其占据的频域资源段中 的全部PRB中。参见图16中的(b),第一RS分布在其占据的频域资源段中的全部PRB中,第二RS分布在其占据的频域资源段中的部分PRB中。
第八种可能实现方式中,可选的,在每个RS占据的时频资源段中,承载该RS的每个PRB上,该RS占用的OFDM符号均相同;或者,在每个RS占据的时频资源段中,承载该RS的至少两个PRB上,该RS占据的OFDM符号不同。
示例性的,基于图16中的(b),参见图17,第一RS占据的4个PRB中,第一RS所占据的OFDM符号均相同,第二RS占据的PRB2和PRB4中,第二RS在PRB2和在PRB4中所占据的OFDM符号均不同。
第八种可能实现方式中,可选的,在每个RS占据的时频资源段中,承载该RS的每个PRB上,该RS的分布采用相同的梳齿结构;或者,在每个RS占据的时频资源段中,承载该RS至少两个PRB上,该RS的分布采用不同的梳齿结构。
示例性的,参见图18中的(a),一个RS占据的4个PRB中,采用的梳齿结构均为comb4。参见图18中的(b),一个RS占据的4个PRB中,在PRB1和PRB3上采用的梳齿结构为comb4,在PRB2和PRB4上采用的梳齿结构为comb2。
示例性的,参见图19中的(a),一个RS占据的2个PRB中,采用的梳齿结构均为comb4。参见图19中的(b),一个RS占据的2个PRB中,在PRB1上采用的梳齿结构为comb4,在PRB3上采用的梳齿结构为comb2。
在第九种可能实现方式中,N个RS组是周期性分布的,也就是说,将N个RS组看作一个整体时,该整体是周期性分布的。
其中,周期性分布的N个RS组的周期(即N个RS组这一个整体的周期)可以称为一个跳频周期,此时,N为一个跳频周期内的跳频次数。
示例性的,图7中的(a)所示的2个RS组在时域上周期性分布后可参见图20中的(a),若第一RS和第二RS的时域周期均为20个时隙,则跳频周期为40个时隙,图7中的(b)所示的3个RS组在时域上周期性分布后可参见图20中的(b),若第一RS和第二RS的时域周期均为20个时隙,则跳频周期为60个时隙。
上述多种可能的实现方式之间,在方案不矛盾的情况下均可以互相组合。基于上述多种可能的实现方式,示例性的,图21和图22分别示出了一种可能的N个RS组在时频资源中的分布。
在上述实施例中,将一个RS组中的第一RS占据的时频资源段记为第一时频资源段,第二RS占据的时频资源段记为第二时频资源段。可选的,第一时频资源段和第二时频资源段之间满足如下条件:
Figure PCTCN2020115128-appb-000006
其中,mod为取余函数,
Figure PCTCN2020115128-appb-000007
表示对应当前子载波间隔配置u的一个无线帧中的时隙的数量,
Figure PCTCN2020115128-appb-000008
表示对应当前子载波间隔配置u下第二RS的第一个发送时隙的索引,
Figure PCTCN2020115128-appb-000009
表示对应当前子载波间隔配置u下第一RS的第一个发送时隙的索引,n f,1表示第二RS的第一个发送时隙所处的无线帧的索引,n f,0表示第一RS的第一个发送时隙所处的无线帧的索引,无线帧的索引为系统索引(system frame number,SFN),T offset,1是为第二RS配置的时隙偏移量,T offset,0是为第一RS配置的时隙偏移量,T表示第一RS或第二RS的时域周期,N为一个跳频周期内的跳频次数。
其中,
Figure PCTCN2020115128-appb-000010
T offset,1和n f,1中的至少一个为网络设备为第二RS配置的,
Figure PCTCN2020115128-appb-000011
T offset,0和n f,0中的至少一个为网络设备为第一RS配置的,网络设备在配置这些参数时,需要保证这些参数满足上述公式1或上述公式1的等效变形。
可以理解的是,第一RS所占据的时频资源段的第一个时隙和第二RS所占据的时频资源段的第一个时隙满足上述公式1或上述公式1的等效变形后,第二RS与之前最近的第一RS的跳频位置相同,从而可以保证第一RS和第二RS之间可以进行联合测量。
可选的,第二时频资源段位于第一时频资源段之后。需要说明的是,第二时频资源段和第一时频资源段可以位于同一个时隙中,也可以位于不同的时隙中。
可选的,该方法还包括:网络设备向终端发送指示信息,指示信息用于指示每个RS组中第一RS和第二RS之间的关系。相应的,终端从网络设备接收指示信息,并根据指示信息确定每个RS组中第一RS和第二RS之间的关系。
示例性的,该指示信息可以携带在RRC信令中,例如,将RRC信令中的类型(usage)信元设置为插值(interpolation)时,表示第二RS包含的RS端口所对应的终端的天线端口与第一RS包含的RS端口所对应的终端的天线端口至少部分相同。在跳频情况下,usage被配置为interpolation时,还表示第一RS和第二RS满足上述公式1或上述公式1的等效变形。
其中,指示信息可以是为第一RS(或第二RS)配置的,还可以是为第一RS和第二RS配置的。若为前者,指示信息中还可以包括第一RS(或第二RS)的资源标识(ID)。
在上述实施例中,每个RS的时频资源可以是协议规定的,也可以是网络配置的,还可以通过协议规定的信息和网络配置的信息共同确定。若为网络配置的,可选的,上述方法还包括:网络设备向终端发送配置信息,配置信息用于配置第一RS和第二RS中的至少一个的时频资源。相应的,终端从网络设备接收配置信息,并根据配置信息确定RS组中的RS的时频资源。该情况下,步骤402在具体实现时可以包括:终端根据配置信息向网络设备发送N个RS组。具体的,终端可以根据配置信息确定第一RS和第二RS的时频资源,在确定的时频资源上发送第一RS和第二RS。其中,第一RS(或第二RS)占据的时频资源既包括占据的时频资源段,也包括每个时频资源段上的第一RS(或第二RS)占据的RE的频域位置和时域位置。
可选的,配置信息可携带在无线资源控制(radio resource control,RRC)信令或媒体接入控制(medium access control,MAC)控制元素(MAC control element,MAC CE)信令或下行控制信息(downlink control information,DCI)向终端发送配置信息。
其中,本申请中的第一RS和第二RS的时频资源可以认为是两个不同的资源,也可以认识是同一个资源,这两种情况下,对第一RS和第二RS的时频资源进行配置时也有所不同,以下对这两种情况分别进行描述。
情况1、第一RS和第二RS的时频资源为两个不同的资源。
在情况1下,网络设备独立的配置第一RS的时频资源和第二RS的时频资源,但配置的时频资源需要使得第一RS和第二RS满足上述公式1或上述公式1的等效变形。网络设备可以通过以下方式一或方式二为RS(第一RS或第二RS)配置时频资源。
方式一、网络设备为终端配置时频资源段的图样的图样标识。
该情况下,配置信息中包含的信息可以为时频资源段的图样的标识。时频资源段的一种图样(Pattern)代表了RS在时频资源段中的一种位置分布。时频资源段的一种图样对 应一个图样标识。
在方式一中,网络设备和终端中可以存储有一个或多个时频资源段的图样。网络设备为终端指示图样的图样标识时,终端可以根据图样标识确定时频资源段的图样。
方式二、网络设备为终端配置RS的时频资源的具体位置。
在方式二下,配置信息中可以包括以下信息中的一种或多种信息:RS占据的时频资源段的频域位置、RS占据的时频资源段的时域位置、RS的时域周期、RS所采用的梳齿结构、频域上RS在时频资源段中的起始位置(或结束位置)、RS在时频资源段中的RE的频域位置和时域位置。
配置信息配置每个RS的时频资源时,终端可以根据配置信息中包含的信息确定每个RS的时频资源。
情况2、第一RS和第二RS的时频资源为同一个资源。
在情况2下,网络设备将第一RS的时频资源和第二RS的时频资源作为一个整体进行配置。网络设备可以通过以下方式三或方式四为第一RS和第二RS配置时频资源。
方式三、网络设备为终端配置时频资源段的图样的图样标识。
该情况下,配置信息中包含的信息可以为时频资源段的图样的标识。时频资源段的一种图样(Pattern)代表了第一RS和第二RS在时频资源段中的一种位置分布。时频资源段的一种图样对应一个图样标识。
在方式三中,网络设备和终端中可以存储有一个或多个时频资源段的图样。网络设备为终端指示图样的图样标识时,终端可以根据图样标识确定时频资源段的图样。
方式四、网络设备为终端配置第一RS和第二RS的时频资源的具体位置。
在方式四下,配置信息中可以包括以下信息中的一种或多种信息:第一RS占据的时频资源段的频域位置、第一RS占据的时频资源段的时域位置、第二RS相对于第一RS的时频资源的偏移量、第一RS和第二RS所采用的梳齿结构、第一RS和第二RS在频域上的起始位置(或结束位置)、第一RS和第二RS在所占据的时频资源段中所占据的RE的频域位置和时域位置。
当配置信息配置第一RS的时频资源,并配置第二RS相对于第一RS的时频资源的偏移量时,终端可以根据配置信息中包含的信息确定第一RS的时频资源,再根据偏移量推导第二RS的时频资源。
另外,上述实施例中,以一个RS组仅包括第一RS和第二RS为例对本申请实施例提供的方法作示例性说明,在实际实现时,一个RS组可以包括3个甚至更多个RS,该情况下,任意两个RS之间均满足上述公式1或上述公式1的等效变形。一个RS组中除第一RS和第二RS之外的RS可以为SRS,也可以为DT-RS或CT-RS,本申请不作限制。示例性的,假设一个RS组中包括第一RS、第二RS和第三RS,RS在物理资源中的一种可能的分布可参见图23。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,网络设备和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术 方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图24示出了上述实施例中所涉及的通信装置(记为通信装置240)的一种可能的结构示意图,该通信装置240包括处理单元2401和收发单元2402,还可以包括存储单元2403。图24所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端的结构。
当图24所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理单元2401用于对终端的动作进行控制管理,例如,处理单元2401用于支持终端执行图4中的401和402,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。处理单元2401可以通过收发单元2402与其他网络实体通信,例如,与图4中示出的网络设备通信。存储单元2403用于存储终端的程序代码和数据。
当图24所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,通信装置240可以是终端,也可以是终端内的芯片。
当图24所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理单元2401用于对网络设备的动作进行控制管理,例如,处理单元2401用于支持网络设备执行图4中的402和403,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。处理单元2401可以通过收发单元2402与其他网络实体通信,例如,与图4中示出的终端通信。存储单元2403用于存储网络设备的程序代码和数据。
当图24所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,通信装置240可以是网络设备,也可以是网络设备内的芯片。
其中,当通信装置240为终端或网络设备时,处理单元2401可以是处理器或控制器,收发单元2402可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元2403可以是存储器。当通信装置240为终端或网络设备内的芯片时,处理单元2401可以是处理器或控制器,收发单元2402可以是输入/输出接口、管脚或电路等。存储单元2403可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端或网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
其中,收发单元也可以称为通信单元。通信装置240中的具有收发功能的天线和控制电路可以视为通信装置240的收发单元2402,具有处理功能的处理器可以视为通信装置240的处理单元2401。可选的,收发单元2402中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤。例如,网络设备中的接收单元可以用于接收第一RS,还可以用于接收第二RS,终端中的接收单元可以用于接收配置信息。接收单元可以为接收机、接收器、接收电路等。收发单元2402中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤。例如,网络设备中的发送 单元可以用于发送配置信息,终端中的发送单元可以用于发送第一RS,还可以用于发送第二RS。发送单元可以为发送机、发送器、发送电路等。
图24中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图24中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置的硬件结构示意图,参见图25或图26,该通信装置包括处理器2501,可选的,还包括与处理器2501连接的存储器2502。
处理器2501可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器2501也可以包括多个CPU,并且处理器2501可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器2502可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器2502可以是独立存在,也可以和处理器2501集成在一起。其中,存储器2502中可以包含计算机程序代码。处理器2501用于执行存储器2502中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图25,通信装置还包括收发器2503。处理器2501、存储器2502和收发器2503通过总线相连接。收发器2503用于与其他设备或通信网络通信。可选的,收发器2503可以包括发射机和接收机。收发器2503中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。例如,网络设备中的接收机可以用于接收第一RS,还可以用于接收第二RS,终端中的接收机可以用于接收配置信息。收发器2503中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。例如,网络设备中的发射机可以用于发送配置信息,终端中的发射机可以用于发送第一RS,还可以用于发送第二RS。
基于第一种可能的实现方式,图25所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图25所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器2501用于对终端的动作进行控制管理,例如,处理器2501用于支持终端执行图4中的401和 402,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。处理器2501可以通过收发器2503与其他网络实体通信,例如,与图4中示出的网络设备通信。存储器2502用于存储终端的程序代码和数据。
当图25所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器2501用于对网络设备的动作进行控制管理,例如,处理器2501用于支持网络设备执行图4中的402和403,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。处理器2501可以通过收发器2503与其他网络实体通信,例如,与图4中示出的终端的通信。存储器2502用于存储网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器2501包括逻辑电路,以及输入接口和/或输出接口。其中,输出接口用于执行相应方法中的发送的动作。例如,网络设备中的输出接口可以用于发送配置信息,终端中的输出接口可以用于发送第一RS,还可以用于发送第二RS。输入接口用于执行相应方法中的接收的动作。例如,网络设备中的输入接口可以用于接收第一RS,还可以用于接收第二RS,终端中的输入接口可以用于接收配置信息。
基于第二种可能的实现方式,参见图26,图26所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图26所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器2501用于对终端的动作进行控制管理,例如,处理器2501用于支持终端执行图4中的401和402,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。处理器2501可以通过输入接口和/或输出接口与其他网络实体通信,例如,与图4中示出的网络设备通信。存储器2502用于存储终端的程序代码和数据。
当图26所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器2501用于对网络设备的动作进行控制管理,例如,处理器2501用于支持网络设备执行图4中的402和403,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。处理器2501可以通过输入接口和/或输出接口与其他网络实体通信,例如,与图4中示出的终端通信。存储器2502用于存储网络设备的程序代码和数据。
另外,本申请实施例还提供了一种终端(记为终端270)和网络设备的硬件结构示意图,具体可分别参见图27和图28。
图27为终端270的硬件结构示意图。为了便于说明,图27仅示出了终端的主要部件。如图27所示,终端270包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端执行图4中的401和402,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据(例如,第一RS、第二RS)时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基 带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据(例如,配置信息)发送到终端时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理(例如,根据配置信息确定发送第一RS的频域资源段承载的序列和占据的时频资源中的一个或多个)。
本领域技术人员可以理解,为了便于说明,图27仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图27中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
本申请实施例中的网络设备可以为一个完整的实体,还可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的形态。若为后者,图28示出了一种网络设备的硬件结构示意图。网络设备可包括CU2801和DU2802。可选的,还包括有源天线单元(active antenna unit,AAU)2803。
其中,CU实现网络设备的部分功能,DU实现网络设备的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
应理解,图28所示的网络设备能够执行图4中的402和403,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。网络设备中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。图27中的关于处 理器的其他描述可参见图25和图26中的与处理器相关的描述,不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述网络设备和终端。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信道状态信息CSI测量方法,其特征在于,包括:
    网络设备接收终端发送的N个参考信号RS组,其中,所述N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的所述第一RS和所述第二RS各占据一个时频资源段,所述时频资源段由一个时域资源段和一个频域资源段组成;不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段不重叠,N为大于1的整数;
    所述网络设备根据所述N个RS组中的至少一个RS组测量CSI。
  2. 一种网络设备,其特征在于,包括:收发单元和处理单元;
    所述收发单元,用于接收终端发送的N个参考信号RS组,其中,所述N个RS组均包括用于测量信道状态信息CSI的第一RS和用于测量CSI的第二RS,每个RS组中的所述第一RS和所述第二RS各占据一个时频资源段,所述时频资源段由一个时域资源段和一个频域资源段组成;不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段不重叠,N为大于1的整数;
    所述处理单元,用于根据所述N个RS组中的至少一个RS组测量CSI。
  3. 根据权利要求1或2所述的方法或网络设备,其特征在于,每个RS组中的所述第一RS和所述第二RS占据的频域资源段相同。
  4. 根据权利要求1-3任一项所述的方法或网络设备,其特征在于,所述第一RS在时域上是周期性分布的。
  5. 根据权利要求1-4任一项所述的方法或网络设备,其特征在于,所述第二RS在时域上是周期性分布的。
  6. 根据权利要求4或5所述的方法或网络设备,其特征在于,所述第一RS的时域周期和所述第二RS的时域周期相同。
  7. 根据权利要求1-6任一项所述的方法或网络设备,其特征在于,所述RS组在时域上是周期性分布的。
  8. 根据权利要求1-7任一项所述的方法或网络设备,其特征在于,每个RS组中的所述第一RS在所占据的时频资源段中的位置和所述第二RS在所占据的时频资源段中的位置不同。
  9. 根据权利要求1-8任一项所述的方法或网络设备,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上采用的梳齿结构相同。
  10. 根据权利要求1-8任一项所述的方法或网络设备,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上采用的梳齿结构不同。
  11. 根据权利要求1-10任一项所述的方法或网络设备,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上的起始位置相同。
  12. 根据权利要求1-10任一项所述的方法或网络设备,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上的起始位置不同。
  13. 根据权利要求1-12任一项所述的方法或网络设备,其特征在于,第一时频资源段和第二时频资源段之间满足如下条件:
    Figure PCTCN2020115128-appb-100001
    其中,所述第一时频资源段和所述第二时频资源段分别为一个RS组中的所述第一RS和所述第二RS占据的时频资源段,mod为取余函数,
    Figure PCTCN2020115128-appb-100002
    表示对应当前子载波间隔配置u的一个无线帧中的时隙的数量,
    Figure PCTCN2020115128-appb-100003
    表示对应当前子载波间隔配置u下所述第二RS的第一个发送时隙的索引,
    Figure PCTCN2020115128-appb-100004
    表示对应当前子载波间隔配置u下所述第一RS的第一个发送时隙的索引,n f,1表示所述第二RS的第一个发送时隙所处的无线帧的索引,n f,0表示所述第一RS的第一个发送时隙所处的无线帧的索引,所述无线帧的索引为系统索引,T offset,1是为所述第二RS配置的时隙偏移量,T offset,0是为所述第一RS配置的时隙偏移量,T表示所述第一RS或所述第二RS的时域周期,N为一个跳频周期内的跳频次数。
  14. 一种网络设备,其特征在于,包括:处理器和与所述处理器连接的存储器;
    所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述网络设备实现如权利要求1以及权利要求3至权利要求13中的任一项所述的方法。
  15. 一种信道状态信息CSI测量方法,其特征在于,包括:
    终端确定N个参考信号RS组,其中,所述N个RS组均包括用于测量CSI的第一RS和用于测量CSI的第二RS,每个RS组中的所述第一RS和所述第二RS各占据一个时频资源段,所述时频资源段由一个时域资源段和一个频域资源段组成;不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段不重叠,N为大于1的整数;
    所述终端向网络设备发送所述N个RS组。
  16. 一种终端,其特征在于,包括:收发单元和处理单元;
    所述处理单元,用于确定N个参考信号RS组,其中,所述N个RS组均包括用于测量信道状态信息CSI的第一RS和用于测量CSI的第二RS,每个RS组中的所述第一RS和所述第二RS各占据一个时频资源段,所述时频资源段由一个时域资源段和一个频域资源段组成;不同的RS组占据的频域资源段不重叠;不同的RS组占据的时域资源段不重叠,N为大于1的整数;
    所述收发单元,用于向网络设备发送所述N个RS组。
  17. 根据权利要求15或16所述的方法或终端,其特征在于,每个RS组中的所述第一RS和所述第二RS占据的频域资源段相同。
  18. 根据权利要求15-17任一项所述的方法或终端,其特征在于,所述第一RS在时域上是周期性分布的。
  19. 根据权利要求15-18任一项所述的方法或终端,其特征在于,所述第二RS在时域上是周期性分布的。
  20. 根据权利要求18或19所述的方法或终端,其特征在于,所述第一RS的时域周期和所述第二RS的时域周期相同。
  21. 根据权利要求15-20任一项所述的方法或终端,其特征在于,所述RS组在时域上是周期性分布的。
  22. 根据权利要求15-21任一项所述的方法或终端,其特征在于,每个RS组中的所述第一RS在所占据的时频资源段中的位置和所述第二RS在所占据的时频资源段中的位置不同。
  23. 根据权利要求15-22任一项所述的方法或终端,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上采用的梳齿结构相同。
  24. 根据权利要求15-22任一项所述的方法或终端,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上采用的梳齿结构不同。
  25. 根据权利要求15-24任一项所述的方法或终端,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上的起始位置相同。
  26. 根据权利要求15-24任一项所述的方法或终端,其特征在于,每个RS组中的所述第一RS和所述第二RS在频域上的起始位置不同。
  27. 根据权利要求15-26任一项所述的方法或终端,其特征在于,第一时频资源段和第二时频资源段之间满足如下条件:
    Figure PCTCN2020115128-appb-100005
    其中,所述第一时频资源段和所述第二时频资源段分别为一个RS组中的所述第一RS和所述第二RS占据的时频资源段,mod为取余函数,
    Figure PCTCN2020115128-appb-100006
    表示对应当前子载波间隔配置u的一个无线帧中的时隙的数量,
    Figure PCTCN2020115128-appb-100007
    表示对应当前子载波间隔配置u下所述第二RS的第一个发送时隙的索引,
    Figure PCTCN2020115128-appb-100008
    表示对应当前子载波间隔配置u下所述第一RS的第一个发送时隙的索引,n f,1表示所述第二RS的第一个发送时隙所处的无线帧的索引,n f,0表示所述第一RS的第一个发送时隙所处的无线帧的索引,所述无线帧的索引为系统索引,T offset,1是为所述第二RS配置的时隙偏移量,T offset,0是为所述第一RS配置的时隙偏移量,T表示所述第一RS或所述第二RS的时域周期,N为一个跳频周期内的跳频次数。
  28. 一种终端,其特征在于,包括:处理器和与所述处理器连接的存储器;
    所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述终端实现如权利要求15以及权利要求17至权利要求27中的任一项所述的方法。
PCT/CN2020/115128 2019-11-18 2020-09-14 Csi测量方法及装置 WO2021098355A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20889560.7A EP4044448A4 (en) 2019-11-18 2020-09-14 METHOD AND APPARATUS FOR MEASURING CSI
US17/663,727 US20220278726A1 (en) 2019-11-18 2022-05-17 CSI Measurement Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911130321.2A CN112821929B (zh) 2019-11-18 2019-11-18 Csi测量方法及装置
CN201911130321.2 2019-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/663,727 Continuation US20220278726A1 (en) 2019-11-18 2022-05-17 CSI Measurement Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021098355A1 true WO2021098355A1 (zh) 2021-05-27

Family

ID=75852822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115128 WO2021098355A1 (zh) 2019-11-18 2020-09-14 Csi测量方法及装置

Country Status (4)

Country Link
US (1) US20220278726A1 (zh)
EP (1) EP4044448A4 (zh)
CN (1) CN112821929B (zh)
WO (1) WO2021098355A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220303995A1 (en) * 2021-03-19 2022-09-22 Qualcomm Incorporated Frequency multiplexing for control information over shared channel resources
CN114040421B (zh) * 2021-09-30 2024-07-30 华为技术有限公司 一种无线资源测量方法及装置
CN117792429A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808409A (zh) * 2010-04-01 2010-08-18 中兴通讯股份有限公司 一种lte-a系统中测量参考信号的配置方法和系统
CN107294643A (zh) * 2016-03-31 2017-10-24 中兴通讯股份有限公司 一种信道状态信息反馈的方法和装置
CN108023699A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 信号传输方法和装置
US20180205440A1 (en) * 2017-01-13 2018-07-19 Nokia Technologies Oy Reference signal indications for massive mimo networks
US20190149295A1 (en) * 2017-06-16 2019-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Joint resource map design of dm-rs and pt-rs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615199B (zh) * 2011-10-28 2023-10-24 华为技术有限公司 上行功率控制的方法、用户设备和接入点
CN110401472B (zh) * 2014-09-17 2021-03-09 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置
CN107371194A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 资源预留方法、资源确定方法、基站和移动台
WO2018137256A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 参考信号配置方法、参考信号接收方法及设备
CN108632008B (zh) * 2017-03-24 2023-06-02 华为技术有限公司 一种参考信号发送方法及装置
CN109151887B (zh) * 2017-06-16 2023-10-24 华为技术有限公司 通信方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808409A (zh) * 2010-04-01 2010-08-18 中兴通讯股份有限公司 一种lte-a系统中测量参考信号的配置方法和系统
CN107294643A (zh) * 2016-03-31 2017-10-24 中兴通讯股份有限公司 一种信道状态信息反馈的方法和装置
CN108023699A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 信号传输方法和装置
US20180205440A1 (en) * 2017-01-13 2018-07-19 Nokia Technologies Oy Reference signal indications for massive mimo networks
US20190149295A1 (en) * 2017-06-16 2019-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Joint resource map design of dm-rs and pt-rs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Dynamic CSI-RS Design and Overhead Reduction", 3GPP DRAFT; R1-165406 DYNAMIC CSI-RS DESIGN AND OVERHEAD REDUCTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nanjing, China; 20160523 - 20160527, 24 May 2016 (2016-05-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051104195 *
See also references of EP4044448A4

Also Published As

Publication number Publication date
EP4044448A4 (en) 2022-11-23
EP4044448A1 (en) 2022-08-17
CN112821929B (zh) 2023-02-03
CN112821929A (zh) 2021-05-18
US20220278726A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
CN108886776B (zh) 终端、无线通信系统以及无线通信方法
WO2021098355A1 (zh) Csi测量方法及装置
CN110891312B (zh) 一种信息发送方法,信息接收的方法和装置
WO2018127141A1 (zh) 一种参考信号传输方法及装置
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2022022579A1 (zh) 一种通信方法及装置
WO2020199854A1 (zh) 确定传输资源的方法及装置
WO2021093139A1 (en) Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
CN114868443A (zh) 对探测参考信号(srs)传输信令进行增强的方法和设备
WO2022151439A1 (zh) 一种通信方法及装置
WO2018127180A1 (zh) 一种参考信号传输方法及装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
WO2021047615A1 (zh) 参考信号传输方法及通信装置
WO2020156471A1 (zh) 信号传输方法及装置
WO2020200296A1 (zh) Csi测量方法及装置
WO2021207968A1 (zh) 信号传输方法及装置
JP2022550162A (ja) 通信方法及び装置
WO2022151500A1 (zh) 一种通信方法及装置
WO2024113238A1 (zh) 一种感知信号的传输方法及相关装置
WO2023274287A1 (zh) 信道状态信息传输方法以及相关通信装置
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
EP4340496A1 (en) Resource scheduling method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020889560

Country of ref document: EP

Effective date: 20220509

NENP Non-entry into the national phase

Ref country code: DE