WO2018127141A1 - 一种参考信号传输方法及装置 - Google Patents

一种参考信号传输方法及装置 Download PDF

Info

Publication number
WO2018127141A1
WO2018127141A1 PCT/CN2018/071617 CN2018071617W WO2018127141A1 WO 2018127141 A1 WO2018127141 A1 WO 2018127141A1 CN 2018071617 W CN2018071617 W CN 2018071617W WO 2018127141 A1 WO2018127141 A1 WO 2018127141A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
resource unit
unit
network node
Prior art date
Application number
PCT/CN2018/071617
Other languages
English (en)
French (fr)
Inventor
秦熠
李华
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019536900A priority Critical patent/JP6783945B2/ja
Priority to EP18735995.5A priority patent/EP3565164B1/en
Priority to KR1020197022528A priority patent/KR20190099069A/ko
Priority to EP21163334.2A priority patent/EP3905579B1/en
Priority to BR112019013789A priority patent/BR112019013789A2/pt
Priority to CA3049296A priority patent/CA3049296C/en
Publication of WO2018127141A1 publication Critical patent/WO2018127141A1/zh
Priority to US16/428,467 priority patent/US10778393B2/en
Priority to US17/019,760 priority patent/US11431453B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a reference signal transmission method and apparatus.
  • the 3rd Generation Partnership Project (3GPP) in the Next Generation Evolutionary Radio System (New Radio, NR) incorporates high frequency bands into the design of the system. At high frequencies, coverage can be enhanced by beamforming techniques. Multiple beams can be used for communication between the base station and the terminal.
  • 3GPP 3rd Generation Partnership Project
  • Next Generation Evolutionary Radio System NR
  • Multiple beams can be used for communication between the base station and the terminal.
  • CSI-RS channel state information reference signal
  • the base station After receiving the reference signal and measuring the reference signal reception power (RSRP) or the signal to interference and noise ratio (SINR), the measurement information is reported, and the base station determines the optimal beam.
  • RSRP reference signal reception power
  • SINR signal to interference and noise ratio
  • the above measurement information reporting scheme needs to be optimized.
  • the present application provides a reference signal transmission method and apparatus, which can reduce channel resources occupied by reporting measurement information.
  • a reference signal transmission method including:
  • the network node transmits the reference signal by mapping a reference signal to at least one resource unit, wherein the at least one resource unit includes a plurality of resource subunits;
  • the network node receives measurement information related to a portion of the resource subunits from the terminal.
  • the method further includes:
  • the network node sends configuration information of the reference signal to the terminal.
  • the configuration information of the reference signal includes at least one of the following information: a type of the resource unit, a size of the resource unit, The number of resource units, the order of the resource units.
  • the type of the resource unit indicates that the network node is mapped on multiple resource subunits of the at least one resource unit Whether the reference signal has the same reference signal characteristic or associated reference signal characteristic.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has different reference signal characteristics or unrelated references.
  • the measurement information related to the part of the resource subunit includes a part of the index of the resource subunit and a measurement value of a reference signal corresponding to a part of the resource subunit.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has different reference signal characteristics or is not associated.
  • the measurement information related to the part of the resource subunit includes a part of the index of the resource subunit and a measurement value of a reference signal corresponding to a part of the resource subunit.
  • a part of the resource sub-unit related measurement information includes a measurement value of a reference signal corresponding to a part of the resource sub-unit.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has the same reference signal feature or associated reference
  • the measurement information related to a part of the resource subunit includes a part of the index of the resource unit and a measurement value of a reference signal corresponding to a part of the resource unit.
  • part of the resource subunit related measurement information includes The index of the partial resource subunit of the second resource unit and the measured value of the reference signal corresponding to the part of the resource subunit.
  • the same reference signal feature includes at least one of the following features: the same transmit beam, the same precoding, the same beam identification, the same precoding identifier, the same exit angle, and the same antenna port;
  • the associated reference signal characteristics include a quasi co-located QCL relationship.
  • the measurement information includes at least one of the following: a resource unit index, a resource subunit index, and a measured value.
  • the measurement value includes at least one of the following: a reference signal received power RSRP, an RSRP quantized value, a channel quality indicator CQI, a letter The dry noise ratio SINR, the SINR quantized value, the precoding matrix indicates the PMI, and the rank indicates the RI.
  • a reference signal transmission method including:
  • the terminal receives configuration information of a reference signal from the network node
  • the terminal receives and measures the reference signal mapped to the at least one resource unit according to the configuration information, where the at least one resource unit includes multiple resource subunits;
  • the terminal sends part of the measurement information related to the resource subunit to the network node.
  • the configuration information of the reference signal includes at least one of the following information: a type of the resource unit, a size of the resource unit, a quantity of the resource unit, The order of the resource units.
  • the type of the resource unit indicates that the network node is mapped on multiple resource subunits of the at least one resource unit Whether the reference signal has the same reference signal characteristic or associated reference signal characteristic.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has different reference signal characteristics or unrelated references.
  • the measurement information related to the part of the resource subunit includes a part of the index of the resource subunit and a measurement value of a reference signal corresponding to a part of the resource subunit.
  • part of the resource subunit related measurement information includes an index of a part of the resource subunits. A measured value of a reference signal corresponding to a portion of the resource subunit.
  • part of the resource subunit related measurement information includes a reference signal corresponding to a part of the resource subunit Measured value.
  • part of the resource subunit related measurement information includes an index and part of the part of the resource unit. The measured value of the reference signal corresponding to the resource unit.
  • the type of the resource unit indicates that the network node is in the first
  • the reference signals mapped on the plurality of resource subunits of the resource unit have the same reference signal characteristic or associated reference signal feature, and the reference signal mapped on the plurality of resource subunits of the second resource unit
  • the measurement information related to the resource subunits includes an index of a part of the resource subunits of the second resource unit and a reference signal corresponding to a part of the resource subunits. Measured value.
  • the same reference signal feature includes at least one of the following features: the same transmit beam, the same pre- Coding, same beam identification, same precoding identification, same exit angle, same antenna port;
  • the associated reference signal characteristics include a quasi co-located QCL relationship.
  • the measurement information includes at least one of the following: a resource unit index, a resource subunit index, and a measured value.
  • the measurement value includes at least one of the following information: reference signal received power RSRP, RSRP quantized value, channel quality indicator CQI, and signal Noise ratio SINR, SINR quantized value, precoding matrix indicating PMI, rank indicating RI.
  • a network node including:
  • a processor configured to map a reference signal to at least one resource unit, where the at least one resource unit includes multiple resource subunits;
  • a transceiver configured to send the reference signal, and receive measurement information related to a part of the resource subunits from the terminal.
  • the transceiver is further configured to send configuration information of the reference signal to the terminal.
  • the configuration information of the reference signal includes at least one of the following information: a type of the resource unit, a size of the resource unit, The number of resource units, the order of the resource units.
  • the type of the resource unit indicates that the network node is mapped on multiple resource subunits of the at least one resource unit Whether the reference signal has the same reference signal characteristic or associated reference signal characteristic.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has different reference signal characteristics or unrelated references.
  • the measurement information related to the part of the resource subunit includes a part of the index of the resource subunit and a measurement value of a reference signal corresponding to a part of the resource subunit.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has different reference signal characteristics or is not associated.
  • the measurement information related to the part of the resource subunit includes a part of the index of the resource subunit and a measurement value of a reference signal corresponding to a part of the resource subunit.
  • a part of the resource sub-unit related measurement information includes a measurement value of a reference signal corresponding to a part of the resource sub-unit.
  • the type of the resource unit indicates that the reference signal mapped by the network node on multiple resource subunits of the one resource unit has the same reference signal feature or associated reference
  • the measurement information related to a part of the resource subunit includes a part of the index of the resource unit and a measurement value of a reference signal corresponding to a part of the resource unit.
  • part of the resource subunit related measurement information includes The index of the partial resource subunit of the second resource unit and the measured value of the reference signal corresponding to the part of the resource subunit.
  • the same reference signal feature includes at least one of the following features: the same transmit beam, the same precoding, the same beam identification, the same precoding identifier, the same exit angle, and the same antenna port;
  • the associated reference signal characteristics include a quasi co-located QCL relationship.
  • the measurement information includes at least one of the following: a resource unit index, a resource subunit index, and a measured value.
  • the measurement value includes at least one of the following information: reference signal received power RSRP, RSRP quantized value, channel quality indicator CQI, and a letter
  • the dry noise ratio SINR, the SINR quantized value, the precoding matrix indicates the PMI, and the rank indicates the RI.
  • a terminal including:
  • a transceiver configured to receive configuration information of a reference signal from a network node, and receive the reference signal mapped to the at least one resource unit according to the configuration information, where the at least one resource unit includes multiple resources unit;
  • a processor configured to measure the received reference signal
  • the transceiver is further configured to send part of the measurement information related to the resource subunit.
  • the configuration information of the reference signal includes at least one of: a type of the resource unit, a size of the resource unit, a quantity of the resource unit, The order of the resource units.
  • the type of the resource unit indicates that the network node is mapped on multiple resource subunits of the at least one resource unit Whether the reference signal has the same reference signal characteristic or associated reference signal characteristic.
  • part of the resource subunit related measurement information includes an index of a part of the resource subunits. A measurement value of a reference signal corresponding to a part of the resource subunit.
  • part of the resource subunit related measurement information includes an index of a part of the resource subunits. A measured value of a reference signal corresponding to a portion of the resource subunit.
  • part of the resource subunit related measurement information includes a reference signal corresponding to a part of the resource subunit Measured value.
  • part of the resource subunit related measurement information includes an index and part of the part of the resource unit. The measured value of the reference signal corresponding to the resource unit.
  • the type of the resource unit indicates that the network node is in the first
  • the reference signals mapped on the plurality of resource subunits of the resource unit have the same reference signal characteristic or associated reference signal feature, and the reference signal mapped on the plurality of resource subunits of the second resource unit
  • the measurement information related to the resource subunits includes an index of a part of the resource subunits of the second resource unit and a reference signal corresponding to a part of the resource subunits. Measured value.
  • the same reference signal feature includes at least one of the following features: the same transmit beam, the same pre- Coding, same beam identification, same precoding identification, same exit angle, same antenna port;
  • the associated reference signal characteristics include a quasi co-located QCL relationship.
  • the measurement information includes at least one of the following: a resource unit index, a resource subunit index, and a measured value.
  • the measurement value includes at least one of the following: a reference signal received power RSRP, an RSRP quantized value, a channel quality indicator CQI, and a signal Noise ratio SINR, SINR quantized value, precoding matrix indicating PMI, rank indicating RI.
  • the network node provided by the present application may include a corresponding module that performs the behavior of the network node in the above method, and the module may be software and/or hardware.
  • the terminal provided by the present application may include a corresponding module that performs the behavior of the terminal in the above method, and the module may be software and/or hardware.
  • a communication system comprising the network node and terminal according to the above third aspect and the fourth aspect, or a network node, a terminal, and a core network.
  • a computer storage medium comprising the program for performing the first to fourth aspects described above.
  • a resource request method including:
  • the network node receives a reference signal transmission request from the terminal, where the reference signal transmission request includes at least one of the following types: a resource unit type, a resource unit size, a resource unit number, a reference signal mapping manner, and a sequence of resource units.
  • a resource request method including:
  • the terminal sends a reference signal transmission request to the network node, where the reference signal transmission request includes at least one of the following types: a resource unit type, a resource unit size, a resource unit number, a reference signal mapping manner, and a sequence of resource units.
  • a network node including:
  • a transceiver configured to receive a reference signal sending request from the terminal
  • a processor configured to obtain at least one of the following information from the reference signal sending request: a resource unit type, a resource unit size, a resource unit number, a reference signal mapping manner, and a sequence of resource units.
  • a terminal including:
  • a processor configured to generate a reference signal sending request, where the reference signal sending request includes at least one of the following: a type of a resource unit, a resource unit size, a resource unit number, a reference signal mapping manner, and a sequence of resource units;
  • transceiver configured to send the reference signal sending request to the network node.
  • the network node provided by the present application may include a corresponding module that performs the behavior of the network node in the above method, and the module may be software and/or hardware.
  • the terminal provided by the present application may include a corresponding module that performs the behavior of the terminal in the above method, and the module may be software and/or hardware.
  • a communication system comprising the network node and terminal of the above-described ninth and tenth aspects, or a network node, a terminal, and a core network.
  • a computer storage medium comprising the program for performing the seventh to tenth aspects described above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic structural diagram of a possible system for implementing an embodiment of the present invention
  • FIG. 2 is a flowchart of a reference signal transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a beam configuration according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another beam configuration according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another beam configuration according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another beam configuration according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another beam configuration according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a resource request method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a beam indication method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of one possible system network of the present invention.
  • RAN radio access network
  • the RAN includes at least one base station (BS), and for the sake of clarity, only one base station and one UE are shown.
  • the RAN is connected to a core network (CN).
  • the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
  • PSTN public switched telephone network
  • User equipment (English: User Equipment, UE for short) is a terminal device with communication function, which can also be called a terminal. It can include a handheld device with wireless communication function, an in-vehicle device, a wearable device, a computing device, or a connection to Other processing devices of the wireless modem, and the like.
  • User equipment can be called different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, Wireless local loop station, etc.
  • a base station also referred to as a base station device, is a device deployed in a radio access network to provide wireless communication functions.
  • the name of the base station may be different in different wireless access systems, for example, in a Universal Mobile Telecommunications System (UMTS) network, the base station is called a Node B (NodeB), in the LTE network.
  • the base station is called an evolved Node B (abbreviated as eNB or eNodeB).
  • eNB evolved Node B
  • TRP Transmission Reception Point
  • gNB g-NodeB
  • the embodiment of the invention provides a reference signal transmission method. This method can be applied to the system shown in FIG. As shown in Figure 2, the method includes:
  • Step 201 The network node sends a reference signal by mapping the reference signal to the at least one resource unit, where the at least one resource unit includes multiple resource subunits.
  • Step 202 The network node receives measurement information related to a part of the resource subunits from the terminal.
  • the foregoing method may further include:
  • Step 203 The network node sends configuration information of the reference signal to the terminal.
  • step 203 may be before step 201.
  • the terminal selects a part of the measurement information report according to the configuration information of the reference signal, which reduces the occupancy of the measurement information on the channel resources.
  • the reference signal is a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the resource unit and the resource sub-unit refer to a channel resource, which can be distinguished by time, and can be called a time unit (TU) and a sub-time unit (sub-TU), respectively.
  • the different sub-TUs in the same TU may be time division multiplexed TDM or interleaved frequency division multiple access (IFDMA); different resource units and resource subunits may also pass the frequency. Differentiating; different resource units and resource sub-units can also be divided by time and / or frequency and / or code.
  • the base station may transmit the CSI-RS through one or more beams in each resource subunit.
  • the configuration information of the reference signal includes at least one of the following information: a type of the resource unit, a size of the resource unit, a quantity of the resource unit, and an order of the resource unit.
  • the order of the foregoing resource units may be for multiple resource units of different resource unit types.
  • the type of the resource unit indicates whether the reference signal mapped by the network node on the multiple resource subunits of the at least one resource unit has the same reference signal feature or an associated reference signal feature.
  • the same reference signal feature includes at least one of the following features: the same transmit beam, the same precoding, the same beam identifier, the same precoding identifier, the same exit angle, the same antenna port; the associated reference Signal characteristics include quasi co-location (QCL) relationships.
  • QCL quasi co-location
  • the QCL relationship refers to that the reference signal corresponding to the antenna port of the reference signal has the same parameter, or the QCL relationship refers to that the terminal can determine that the antenna port has an antenna port according to an antenna port.
  • the parameter of an antenna port of the QCL relationship, or the QCL relationship refers to the fact that the two antenna ports have the same parameter, or the QCL relationship refers to the difference between the parameters of the two antenna ports being less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival (AOA), average AOA, AOA extension, and exit angle (Angle of Departure) , AOD), average departure angle AOD, AOD extension, receive antenna spatial correlation parameter, transmit antenna spatial correlation parameter, transmit beam, receive beam, resource identifier, at least one of.
  • the beam includes at least one of the following, a precoding, a weight sequence number, and a beam sequence number.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a channel state information reference signal (CSI-RS) resource identifier, or an SRS resource identifier, which is used to indicate a beam on the resource.
  • CSI-RS channel state information reference signal
  • the measurement information may include at least one of the following: a resource unit index, a resource subunit index, a measurement value, and a reference signal resource index.
  • the measured value may include at least one of the following: reference signal received power RSRP, RSRP quantized value, channel quality indicator CQI, signal to interference and noise ratio SINR, SINR quantized value, precoding matrix indication PMI, rank indication RI.
  • the measurement information related to the resource subunit reported by the terminal may include multiple situations, for example, only reporting the index of the partial resource unit and the measured value of the corresponding reference signal; The index of the unit and the measured value of the corresponding reference signal; only the partial measurement value is reported; only the index of the partial resource subunit in one resource unit and the measured value of the corresponding reference signal are reported; only part of the measurement information is reported, for example, only reported One or both of the measured value, the resource unit index, and the resource subunit index. This will be further explained by way of example.
  • the resource unit and the resource subunit are TU and sub-TU, and one TU includes four sub-TUs.
  • the reference signal characteristics are the same as the transmission beam as an example:
  • Scenario 1 As shown in FIG. 3, when the number of TUs is 1, the type of the resource unit indicates that the transmission beams of the reference signals of multiple sub-TUs of one TU are different, and the reported measurement information includes the index of the sub-TU and the sub- The measured value of the reference signal corresponding to the TU;
  • Scenario 2 As shown in FIG. 4, when the number of TUs is greater than or equal to 2, and the type of the resource unit indicates that the transmit beams of the reference signals of the plurality of sub-TUs of one TU are different, the reported measurement information includes the index of the sub-TU and the The measured value of the reference signal corresponding to the sub-TU;
  • Scenario 3 As shown in FIG. 5, when the number of TUs is 1, and the type of the resource unit indicates that the transmission beams of the reference signals of multiple sub-TUs of one TU are the same, the reported measurement information includes the reference signal corresponding to the part of the sub-TU. Measured value;
  • Scenario 4 As shown in FIG. 6, when the number of TUs is greater than or equal to 2, and the type of the resource unit indicates that the transmit beams of the reference signals of multiple sub-TUs of one TU are the same, the reported measurement information includes an index of the partial TU and the TU. The measured value of the corresponding reference signal;
  • Scenario 5 As shown in FIG. 7, when the number of TUs is greater than or equal to 2, the type of the resource unit indicates that the transmission beams of the reference signals of the plurality of sub-TUs of one TU are the same, and the reference signals of the plurality of sub-TUs of the other TU are the same.
  • the reported measurement information includes a sub-TU index of a TU of a different transmission beam of the reference signals of the plurality of sub-TUs and a measurement value of the reference signal corresponding to the sub-TU.
  • the method according to the scenario 1 The TUs of the transmission beams of the reference signals of the plurality of sub-TUs are reported by the same TUs of the reference signals of the plurality of sub-TUs according to the method of the third method.
  • the order of the resource elements of the different resource unit types may be predefined or configured by the base station in the configuration information of the reference signal.
  • TxB and RxB in Figures 3-7 represent the base station transmit beam and the terminal receive beam, respectively.
  • the transmit beam may be at least one of the following: a transmit beam identifier, a transmit weight, a precoding, a precoding identifier, a departure angle, a transmit antenna port, and a transmit end space characteristic.
  • the type of the resource unit is used to indicate whether the reference signal mapped by the base station on the multiple resource subunits of the at least one resource unit has an associated reference signal feature.
  • the associated reference signal feature in the example is a QCL relationship of the reference signal, if the QDC relationship of the reference signal indicates a parameter of the reference signal, including at least one of the following transmit beams, an exit angle, an average departure angle, and a transmit antenna.
  • the spatial correlation parameter, resource identifier, and other parameters related to the sender are included, the following scenarios are included:
  • the reported measurement information includes The index of the sub-TU and the measured value of the reference signal corresponding to the sub-TU;
  • Scenario 7 As shown in FIG. 4, when the number of TUs is greater than or equal to 2, and the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU do not have a QCL relationship between all antenna ports or the same antenna port, the reported measurement information include an index of the sub-TU and a measured value of the reference signal corresponding to the sub-TU;
  • Scenario 8 As shown in FIG. 5, when the number of TUs is 1, and the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU have a QCL relationship between all antenna ports or the same antenna port, the reported measurement information includes a part. The measured value of the reference signal corresponding to the sub-TU;
  • the reported measurement information includes The index of the partial TU and the measured value of the reference signal corresponding to the TU;
  • the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU have a QCL relationship between all antenna ports or the same antenna port, and the other TU has more Reference signals of sub-TUs If there is no QCL relationship between all antenna ports or between the same antenna ports, if the order of resource elements of different resource unit types is multiple sub-TU reference signals, between all antenna ports or between the same antenna ports A TU with a QCL relationship before a TU of a plurality of sub-TU reference signals between all antenna ports or between the same antenna ports does not have a QCL relationship, the reported measurement information includes multiple sub-TU reference signals, all antenna ports or the same antenna The sub-TU index of the TU that does not have a QCL relationship between the ports and the measured value of the reference signal corresponding to the sub-TU.
  • the order of the resource units of the different resource unit types is a reference signal of multiple sub-TUs, a TU having a QCL relationship between all antenna ports or between the same antenna ports, a reference signal of multiple sub-TUs, all antenna ports or the same antenna port
  • the TUs that do not have the QCL relationship are reported for the reference signals of the multiple sub-TUs according to the method of the sixth scenario.
  • the reference signal of the TU is reported by the TU with QCL relationship between all antenna ports or the same antenna port.
  • the order of the resource elements of the different resource unit types may be predefined or configured by the base station in the configuration information of the reference signal.
  • the associated reference signal feature in the example is a QCL relationship of the reference signal, and if the QCL relationship of the reference signal indicates a parameter of the reference signal, the at least one of the following receive beams, an angle of arrival, an average angle of arrival, and a receiving antenna
  • the spatial correlation parameter, resource identifier, and other parameters related to the receiving end the following scenarios are included:
  • the reported measurement information includes The index of the sub-TU and the measured value of the reference signal corresponding to the sub-TU;
  • Scenario 12 As shown in FIG. 4, when the number of TUs is greater than or equal to 2, the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU have a QCL relationship between all antenna ports or the same antenna port, and the reported measurement information Include an index of the sub-TU and a measured value of the reference signal corresponding to the sub-TU;
  • Scenario 13 As shown in FIG. 5, when the number of TUs is 1, and the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU do not have a QCL relationship between all antenna ports or the same antenna port, the reported measurement information a measurement value including a reference signal corresponding to a part of the sub-TU;
  • Scenario 14 As shown in FIG. 6, when the number of TUs is greater than or equal to 2, and the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU do not have a QCL relationship between all antenna ports or the same antenna port, the reported measurement
  • the information includes an index of a partial TU and a measured value of a reference signal corresponding to the TU;
  • the type of the resource unit indicates that the reference signals of multiple sub-TUs of one TU do not have a QCL relationship between all antenna ports or the same antenna port, and another TU Reference signals of multiple sub-TUs when there are QCL relationships between all antenna ports or between the same antenna ports, if the order of resource elements of different resource unit types is multiple sub-TU reference signals, all antenna ports or the same antenna port A TU that does not have a QCL relationship before a TU with a QCL relationship between all antenna ports of a plurality of sub-TU reference signals or between the same antenna ports, the reported measurement information includes reference signals of multiple sub-TUs, all antenna ports or the same A sub-TU index of a TU having a QCL relationship between antenna ports and a measured value of a reference signal corresponding to the sub-TU.
  • the TUs without QCL relationship between all antenna ports or between the same antenna ports are among the reference signals of multiple sub-TUs, all antenna ports or the same antenna
  • the TUs with the QCL relationship between all the antenna ports or the same antenna ports are reported for the reference signals of the multiple sub-TUs according to the method of the scenario 11.
  • the reference signal of the -TU is reported by all TUs that do not have a QCL relationship between the antenna ports or the same antenna port.
  • the order of the resource elements of the different resource unit types may be predefined or configured by the base station in the configuration information of the reference signal.
  • Scenario 16 As shown in FIG. 3, when the number of TUs is 1, the type of the resource unit indicates that the receiving beams of the reference signals of the plurality of sub-TUs of one TU are the same, and the reported measurement information includes the index of the sub-TU and the sub. a measured value of a reference signal corresponding to the -TU;
  • Scenario 17 As shown in FIG. 4, when the number of TUs is greater than or equal to 2, and the type of the resource unit indicates that the receiving beams of the reference signals of multiple sub-TUs of one TU are the same, the reported measurement information includes the index of the sub-TU and a measured value of the reference signal corresponding to the sub-TU;
  • Scenario 18 As shown in FIG. 5, when the number of TUs is 1, and the type of the resource unit indicates that the receiving beams of the reference signals of multiple sub-TUs of one TU are different, the reported measurement information includes a reference corresponding to a part of the sub-TU. The measured value of the signal;
  • Scenario 19 As shown in FIG. 6, when the number of TUs is greater than or equal to 2, and the type of the resource unit indicates that the receiving beams of the reference signals of the plurality of sub-TUs of one TU are different, the reported measurement information includes an index of the partial TU and the The measured value of the reference signal corresponding to the TU;
  • Scenario 20 As shown in FIG. 7, when the number of TUs is greater than or equal to 2, the type of the resource unit indicates that the receiving beams of the reference signals of the plurality of sub-TUs of one TU are different, and the reference of the multiple sub-TUs of the other TU When the receiving beams of the signals are the same, if the order of the resource units of the different resource unit types is different, the receiving beams of the reference signals of the plurality of sub-TUs are different from the TUs of the receiving beams of the reference signals of the plurality of sub-TUs.
  • the reported measurement information includes a sub-TU index of the same TU of the receiving beam of the reference signals of the plurality of sub-TUs and a measured value of the reference signal corresponding to the sub-TU. If the order of the resource units of the different resource unit types is that the TUs of the reference beams of the plurality of sub-TUs are different after the TUs of the reference beams of the reference signals of the plurality of sub-TUs, the method according to the scenario 1 The same TU reporting is performed on the receiving beams of the reference signals of the multiple sub-TUs, and the TUs of the different receiving beams of the reference signals of the multiple sub-TUs are reported according to the method of the third method.
  • the order of the resource elements of the different resource unit types may be predefined or configured by the base station in the configuration information of the reference signal.
  • the receiving beam may also be at least one of the following: a receiving beam identifier, a receiving weight, an angle of arrival, a receiving antenna port, and a receiving end spatial characteristic.
  • the sub-TU in the scenario 1 to the scenario 20 may also be a reference signal resource or other resource sub-unit
  • the sub-TU index in the scenario 1 to the scenario 5 may also be a reference signal resource index or another resource sub-unit index.
  • the measurement information reported by the terminal in the scenario 1 to the scene 20 includes measurement information other than the measured value, that is, the measurement value is not included.
  • the measured values in the measurement information reported by the terminal in the scenario 1 to the scene 20 include m optimal measured values and n worst measured values, where m and n are values greater than or equal to 0, and m+n is greater than Equal to 1, m is configured or pre-defined for the base station, and n is configured or pre-defined by the base station.
  • the base station sends a reference signal measurement report indication to the terminal before the terminal reports the measurement information, where the reference signal measurement report indication is used to indicate the reported measurement information and the uplink after the measurement information is reported.
  • the reference signal measurement report indication is used to indicate the reported measurement information and the uplink after the measurement information is reported.
  • the downlink transmission is related, or is used to indicate whether the reported measurement information is related to the resource unit type, or is used to indicate whether the reported measurement information includes a resource unit index and a resource subunit index.
  • the reference signal measurement reporting indication is used to indicate that the reported measurement information is not related to the uplink or downlink transmission after the measurement information is reported, or the measurement information used to indicate the reporting is not related to the resource unit type, or the measurement information used to indicate the reporting includes The resource index and the sub-resource index
  • the measurement information reported by the terminal includes a resource unit index and a resource sub-unit index and a measured value, or a resource sub-unit index and a measured value, or a resource sub-unit index, or a resource unit index and a resource sub-unit index. Otherwise, the measurement information reported by the terminal is determined according to the type of the resource unit according to the manners of the above scenarios 1 to 20.
  • the measured information reported by the terminal includes: a resource unit index and a resource subunit index and a measured value, or a resource subunit index and a measured value, or a resource subunit index, or a resource unit index and a resource subunit index.
  • the number of reported indexes and measured values may be different, for example, one index may also correspond to multiple measured values.
  • the terminal can only report the index.
  • the base station may configure the measurement information reported by the terminal, and the terminal determines the resource unit type of the reference signal according to the configuration.
  • the resource subunit is a resource unit.
  • Another embodiment of the present invention provides a resource request method, which can be applied to the system shown in FIG. 1. As shown in Figure 8, the method includes:
  • Step 801 The terminal sends a reference signal sending request to the network node.
  • the reference signal transmission request includes at least one of the following types: a resource unit type, a resource unit size, a resource unit number, a reference signal mapping manner, and a resource unit order.
  • Step 802 The network node receives the foregoing reference signal sending request.
  • the reference signal may be a reference signal used for downlink measurement, such as a CSI-RS, or a reference signal for uplink measurement, such as a sounding reference symbol (SRS).
  • a reference signal used for downlink measurement such as a CSI-RS
  • a reference signal for uplink measurement such as a sounding reference symbol (SRS).
  • SRS sounding reference symbol
  • the base station may determine, according to the request of the terminal, the resource used for transmitting the corresponding reference signal.
  • the following is an example of a terminal sending a reference signal sending request in the embodiment of the present invention.
  • the terminal sends a CSI-RS sending request, including the following scenarios:
  • the terminal sends a CSI-RS transmission request, where the resource unit size of the CSI-RS is 4 resource sub-units, the number of resource units is 2, and the resource unit type is the resource sub-unit of the resource unit.
  • the same transmit beam The same transmit beam.
  • the terminal sends a CSI-RS transmission request, where the resource unit size including the CSI-RS is 4 resource subunits, the number of resource units is 2, and the resource unit type is the resource subunit of the resource unit. Different transmit beams are used.
  • the transmit beam in the CSI-RS resource request scenario 1 and 2 may also be at least one of the following: a transmit beam identifier, a transmit beam weight, a precoding, a precoding identifier, a departure angle, a transmit antenna port, and a transmit End space characteristics.
  • CSI-RS resource request scenario 3 The terminal sends a CSI-RS transmission request, where the resource unit size of the CSI-RS is 4 resource sub-units, the number of resource units is 2, and the resource unit type is the resource sub-unit of the resource unit. Different receive beams.
  • the terminal sends a CSI-RS transmission request, where the resource unit size including the CSI-RS is 4 resource subunits, the number of resource units is 2, and the resource unit type is the resource subunit of the resource unit.
  • the same receive beam is used.
  • the receiving beam in the CSI-RS resource request scenarios 3 and 4 may also be at least one of the following: a receiving beam identifier, a receiving weight, an angle of arrival, a receiving antenna port, and a receiving end space characteristic.
  • CSI-RS resource request scenario 5 The terminal sends a CSI-RS transmission request, where the resource unit size of the CSI-RS is 4 resource sub-units, the number of resource units is 2, and the resource unit type is the resource sub-unit of the resource unit. All or the same antenna port has a QCL relationship.
  • the terminal sends a CSI-RS transmission request, where the resource unit size including the CSI-RS is 4 resource subunits, the number of resource units is 2, and the resource unit type is the resource subunit of the resource unit. There is no QCL relationship between all or the same antenna ports.
  • the terminal sends an SRS sending request, including the following scenario.
  • the terminal sends an SRS transmission request, where the resource unit size of the SRS is 4 resource sub-units, the number of resource units is 2, and the resource unit type of the resource unit is the same transmission beam.
  • the terminal sends an SRS transmission request, where the resource unit size of the SRS is 4 resource sub-units, the number of resource units is 2, and the resource unit type uses different transmission beams for the resource sub-units of the resource unit.
  • the transmit beam in the SRS resource request scenarios 1 and 2 may also be at least one of the following: a transmit beam identifier, a transmit beam weight, a precoding, a precoding identifier, a departure angle, a transmit antenna port, and a transmit end space. characteristic.
  • SRS resource request scenario 3 The terminal sends an SRS transmission request, where the resource unit size of the SRS is 4 resource sub-units, the number of resource units is 2, and the resource unit type is a resource sub-unit of the resource unit adopting different receiving beams.
  • SRS resource request scenario 4 for example, the terminal sends an SRS transmission request, where the resource unit size of the SRS is 4 resource sub-units, the number of resource units is 2, and the resource unit type is the resource sub-unit of the resource unit adopts the same receiving beam.
  • the receiving beam in the SRS resource request scenarios 3 and 4 may also be at least one of the following: a receiving beam identifier, a receiving weight, an angle of arrival, a receiving antenna port, and a receiving end space characteristic.
  • SRS resource request scenario 5 The terminal sends an SRS transmission request, where the resource unit size of the SRS is 4 resource subunits, the number of resource units is 2, and the resource unit type is all or the same on the resource subunit of the resource unit. There is a QCL relationship between the antenna ports.
  • SRS resource request scenario 6 for example, the terminal sends an SRS transmission request, where the resource unit size of the SRS is 4 resource subunits, the number of resource units is 2, and the resource unit type is all or the same on the resource subunit of the resource unit. There is no QCL relationship between the antenna ports.
  • Another embodiment of the present invention provides a resource indication method, which can be applied to the system shown in FIG. 1. As shown in FIG. 9, the method includes:
  • Step 901 The base station sends configuration information to the terminal, where the configuration information indicates resources of the terminal.
  • Step 902 The terminal receives the foregoing configuration information.
  • the foregoing resources include at least one of receiving or transmitting a beam, receiving or transmitting a beam index, receiving or transmitting a precoding, receiving or transmitting a precoding index, receiving or transmitting an antenna port, and a spatial resource.
  • the resource may be used for downlink transmission, for example, Physical downlink shared channel transmission, physical downlink control channel transmission, CSI-RS transmission, and the like.
  • the resource may be used for uplink transmission, for example, Physical uplink shared channel transmission, physical uplink control channel transmission, SRS transmission, scheduling request transmission, and the like.
  • the configuration information includes at least one of the following: a base station transmit beam, a base station receive beam, a terminal transmit beam, a terminal receive beam, a time domain resource, a frequency domain resource, a code domain resource, and an associated port feature.
  • the beam includes at least one of the following, a precoding, a weight sequence number, a beam sequence number, and a beam range.
  • the associated port characteristics include the QCL relationship of the port.
  • the beam range includes a fixed beam range or an opposite beam range.
  • the resource indicated by the configuration information has the same port feature or an associated port feature as the transmission performed by using the terminal resource.
  • the same port feature includes at least one of the following features: the same transmit beam, the same precoding, the same beam identifier, the same precoding identifier, the same exit angle, the same antenna port; associated port characteristics Includes quasi-co-location QCL relationships.
  • the base station sends configuration information to the terminal, where the configuration information includes the terminal receiving beam, for example, including the sequence number of the terminal receiving beam, and the terminal determines the downlink receiving beam according to the terminal receiving beam number of the configuration information, and is used for downlink receiving.
  • the terminal receives the beam sequence number according to the configuration information, and the corresponding relationship between the terminal receiving beam and the terminal transmitting beam, and determines the transmitting beam for uplink transmission.
  • the base station sends configuration information to the terminal, where the configuration information includes the terminal transmitting beam, for example, including the sequence number of the terminal transmitting beam, and the terminal determines the uplink sending beam according to the terminal sending beam number of the configuration information, and is used for uplink sending. Or the terminal determines the downlink receiving beam for downlink reception according to the connection beam serial number of the configuration information and the correspondence between the terminal transmitting beam and the terminal receiving beam.
  • the configuration information includes the terminal transmitting beam, for example, including the sequence number of the terminal transmitting beam
  • the terminal determines the uplink sending beam according to the terminal sending beam number of the configuration information, and is used for uplink sending.
  • the terminal determines the downlink receiving beam for downlink reception according to the connection beam serial number of the configuration information and the correspondence between the terminal transmitting beam and the terminal receiving beam.
  • the base station sends configuration information to the terminal, where the configuration information includes the base station transmitting beam, for example, including the sequence number of the base station transmitting beam, the base station transmitting the beam sequence number according to the configuration information, and the beam of the base station transmitting beam and the terminal receiving beam.
  • the pairing relationship determines the downlink receiving beam for downlink reception, or the base station sends the beam sequence number according to the configuration information, and the beam pairing relationship between the base station transmitting beam and the terminal receiving beam, and the corresponding relationship between the terminal receiving beam and the terminal connected transmitting beam. Determine the uplink transmit beam for uplink transmission.
  • the base station sends configuration information to the terminal, where the configuration information includes the base station receiving beam, for example, including the sequence number of the base station receiving beam, the base station receiving the beam sequence number according to the configuration information, and the base station receiving beam and the beam of the terminal transmitting beam.
  • the pairing relationship determines the uplink transmit beam for uplink transmission, or the base station receives the beam sequence number according to the configuration information, and the beam pairing relationship between the base station receive beam and the terminal transmit beam, and the correspondence between the terminal transmit beam and the terminal receive beam Determine the downlink receive beam for downlink reception.
  • the base station sends configuration information to the terminal, where the configuration information includes at least one of a time domain resource, a code domain resource, and a frequency domain resource, and the terminal transmits the time-frequency code resource according to the configuration information and the time-frequency code resource.
  • the terminal receiving beam determines the downlink receiving beam for downlink receiving, or the terminal determines according to the time-frequency code resource of the configuration information and the receiving beam used for transmission on the time-frequency code resource, and the corresponding relationship between the terminal receiving beam and the terminal transmitting beam.
  • the transmit beam is used for uplink transmission.
  • the base station sends configuration information to the terminal, where the configuration information includes at least one of a time domain resource, a code domain resource, and a frequency domain resource, where the terminal transmits the time-frequency code resource according to the configuration information and the time-frequency code resource.
  • the terminal transmitting beam determines the uplink transmitting beam, and is used for uplink transmission, or the terminal determines according to the time-frequency code resource of the configuration information and the transmission beam used for transmission on the time-frequency code resource, and the corresponding relationship between the terminal transmitting beam and the terminal receiving beam.
  • the base station sends configuration information to the terminal, where the configuration information includes at least one of a time domain resource, a code domain resource, and a frequency domain resource, and the terminal transmits the time-frequency code resource according to the configuration information and the time-frequency code resource.
  • the base station transmits a beam, and a beam pairing relationship between the base station transmit beam and the terminal receive beam, determines a downlink receive beam for downlink reception, or the terminal transmits according to the time-frequency code resource of the configuration information and the base station used for transmission on the time-frequency code resource.
  • the base station sends configuration information to the terminal, where the configuration information includes at least one of a time domain resource, a code domain resource, and a frequency domain resource, where the terminal transmits the time-frequency code resource according to the configuration information and the time-frequency code resource.
  • the base station receives the beam, and the beam pairing relationship between the base station receive beam and the terminal transmit beam, determines the uplink transmit beam for uplink transmission, or the terminal receives the time-frequency code resource according to the configuration information and the base station used for transmission on the time-frequency code resource.
  • the time domain resource, the code domain resource, and the frequency domain resource in the configuration information in the fifth to eighth embodiments may be a QCL relationship between the uplink transmission or the downlink transmission and the time domain resource, the code domain resource, and the port on the frequency domain resource.
  • the terminal determines the time domain resource, the code domain resource, and the beam on the frequency domain resource according to the QCL relationship and the time domain resource, the code domain resource, and the frequency domain resource in the configuration information, so as to determine the uplink transmission according to the method of examples 5-8.
  • the time domain resource, the code domain resource, and the frequency domain resource in the configuration information in the fifth to eighth configurations are time-frequency code resources used for downlink or uplink measurement reference signal transmission, the time domain resource and the code domain resource are used.
  • the frequency domain resource may be the resource unit and/or the resource subunit.
  • the configuration information includes the resource subunit identifier.
  • the resource unit type of the measurement reference signal is that the resource subunit in the resource unit has different reference signal characteristics
  • the parameter of the reference signal indicated by the QCL relationship of the reference signal includes at least one of the following transmit beams, the exit angle, The average leaving angle, the transmitting antenna spatial correlation parameter, the resource identifier, and the like, and all or the same port does not have a QCL relationship
  • the parameter of the reference signal indicated by the QCL relationship of the reference signal includes at least one of the following receiving beams
  • the configuration information includes the resource subunit identifier when the arrival angle, the average angle of arrival, the receiving antenna spatial correlation parameter, the resource identifier, and other receiving end related parameters, and all or the same port has a QCL relationship.
  • the resource unit identifier is not included in the configuration information.
  • the base station receives the reference signal measurement information reported by the terminal.
  • the configuration information at this time includes an identifier of the reference signal measurement information reported by the terminal and/or an identifier of the reference signal measurement configuration.
  • the identifier of the reference signal measurement information includes at least one of the following: an identifier of the measurement quantity, an identifier of the resource unit index, an identifier of the resource subunit index, and an identifier of the reference signal resource index.
  • the identifier of the reference signal measurement configuration includes an identifier for configuring configuration information that the terminal reports the reference signal measurement information at a time, or an identifier of the process or event that the terminal reports the measurement information at a time.
  • the following uses the identifier of the reference signal measurement information by the base station of the present invention and the resource of the identifier configuration reference terminal of the reference signal measurement configuration as an example.
  • the identifier of the measurement information of the base station is 2, and the identifier of the reference signal measurement configuration is 1, the terminal receives the beam on the resource measured according to the second measurement information when the first measurement is reported.
  • the downlink receiving beam is determined, or the terminal determines the uplink transmitting beam according to the terminal receiving beam on the resource measured by the second measurement information when the first measurement is reported, and the correspondence between the transmitting beam and the receiving beam of the terminal.
  • the identifier of the measurement information of the base station is 2, and the identifier of the reference signal measurement configuration is 1, and the terminal transmits the beam according to the second measurement information measured by the first measurement.
  • the uplink transmit beam is determined, or the terminal determines the downlink receive beam according to the terminal transmit beam on the resource measured by the second measurement information when the first measurement is reported, and the correspondence between the transmit beam and the receive beam of the terminal.
  • the base station indicates that the identifier of the measurement information is 2, and the identifier of the reference signal measurement configuration is 1, the base station receiving beam on the resource measured by the terminal according to the second measurement information when the first measurement is reported.
  • a beam pairing relationship between the base station receiving beam and the terminal transmitting beam, determining an uplink transmitting beam, or a base station receiving beam on the resource measured by the terminal according to the second measurement information when the first measurement is reported, and the base station receiving beam and the terminal The beam pairing relationship of the transmitting beam and the correspondence between the transmitting beam and the receiving beam of the terminal determine the downlink receiving beam.
  • the base station indicates that the identifier of the measurement information is 2, and the identifier of the reference signal measurement configuration is 1, and the base station transmits the beam on the resource measured according to the second measurement information when the first measurement is reported.
  • a beam pairing relationship between the base station transmitting beam and the terminal receiving beam, determining a downlink receiving beam, or a base station transmitting beam on the resource measured by the terminal according to the second measurement information when the first measurement is reported, and the base station transmitting beam and the terminal The beam pairing relationship of the receiving beam and the correspondence between the transmitting beam and the receiving beam of the terminal determine the uplink transmitting beam.
  • the configuration information in the foregoing examples 1 to 12 may further include a beam range.
  • the beam range is a relative range
  • the terminal performs beam selection in the beam range after determining the beam according to the methods in the examples 1 to 12. For example, if the horizontal angle of the beam determined according to Examples 1 to 12 is 30 degrees and the beam range is -10 degrees to 10 degrees, the terminal selects a beam in a range of 20 degrees to 40 degrees, and for example, a beam determined by one to twelve is a beam. No. 5, the beam range is -2 to 2, and the terminal is selected within the beam number ⁇ 3, 4, 5, 6, 7 ⁇ . If the beam range is an absolute range, the terminal selects a beam within the configured beam range, for example, the beam horizontal angle ranges from 20 degrees to 40 degrees, and for example, the beam range is the beam number ⁇ 3, 4, 5, 6, 7 ⁇ .
  • the number of reported measurement information is 1, it is not necessary to indicate the measurement information identifier.
  • the base station before the uplink transmission or the downlink transmission, the base station further sends an indication to the terminal whether the measurement information is associated with the configuration information. If the base station configuration terminal sends the measurement information and is not associated with the configuration information, the configuration information is not Contains the identifier of the reference signal measurement information reported by the terminal.
  • Embodiments of the present invention further provide an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • the methods, steps, technical details, technical effects, and the like of the foregoing method embodiments are also applicable to the device embodiments, and will not be described in detail later.
  • FIG. 10 shows a schematic structural diagram of a base station which can be applied to the system shown in FIG. 1.
  • the base station 20 includes one or more remote radio units (RRUs) 201 and one or more baseband units (BBUs) 202.
  • the RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting signaling indications and/or reference signals in the above embodiments to the terminal.
  • the BBU 202 part is mainly used for baseband processing, base station control, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as a 5G network), or may separately support wireless access of different access systems. network.
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the processor 2022 is configured to control the base station to perform necessary actions.
  • Memory 2021 and processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor.
  • the necessary circuits are also provided on each board.
  • the foregoing base station may be used to implement the reference signal transmission method of the foregoing method embodiment, specifically:
  • a processor configured to map a reference signal to at least one resource unit, where the at least one resource unit includes multiple resource subunits;
  • a transceiver configured to send the reference signal, and receive measurement information related to a part of the resource subunits from the terminal.
  • the transceiver is further configured to send configuration information of the reference signal to the terminal.
  • the foregoing base station may also be used to implement the resource request method of the foregoing method embodiment, specifically:
  • a transceiver configured to receive a reference signal sending request from the terminal
  • a processor configured to obtain at least one of the following information from the reference signal sending request: a type of the resource unit, a resource unit size, a resource unit number, a reference signal mapping manner, and a sequence of resource units.
  • the foregoing base station may also be used to implement the resource indication method of the foregoing method embodiment.
  • FIG. 11 provides a schematic structural diagram of a terminal.
  • the terminal can be adapted for use in the system shown in FIG.
  • FIG. 11 shows only the main components of the terminal.
  • the terminal 10 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing data of the software programs.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • the input/output device such as a touch screen, a display screen, a keyboard, etc., is mainly used for receiving data input by a user and outputting data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 shows only one memory and processor for ease of illustration. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to accommodate different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 101 of the terminal 10, and the processor having the processing function is regarded as the processing unit 102 of the terminal 10.
  • the terminal 10 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the foregoing terminal may be used to implement the reference signal transmission method in the foregoing method embodiment, specifically:
  • a transceiver configured to receive configuration information of a reference signal from a network node, and receive the reference signal mapped to the at least one resource unit according to the configuration information, where the at least one resource unit includes multiple resources unit;
  • a processor configured to measure the received reference signal
  • the transceiver is further configured to send part of the measurement information related to the resource subunit.
  • the foregoing terminal may also be used to implement the resource request method of the foregoing method embodiment, specifically:
  • a processor configured to generate a reference signal sending request, where the reference signal sending request includes at least one of the following types: a resource unit type, a resource unit size, a resource unit number, a reference signal mapping manner, and a sequence of resource units;
  • the transceiver is configured to send a reference signal sending request to the network node.
  • the foregoing terminal may also be used to implement the resource indication method of the foregoing method embodiment.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and the storage medium may also be located in different components in the UE.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种参考信号传输方法及装置。网络节点通过将参考信号映射到至少一个资源单元上发送所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;所述网络节点接收来自于所述终端的部分所述资源子单元相关的测量信息。终端根据参考信号的配置信息选择一部分测量信息上报,降低了测量信息对信道资源的占用量。

Description

一种参考信号传输方法及装置
本申请要求于2017年01月06日提交中国专利局、申请号为201710011019.X、申请名称为“一种参考信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,特别涉及一种参考信号传输方法及装置。
背景技术
随着移动通信技术的发展,通信速率和容量需求日益增长。第三代合作伙伴计划3GPP(The 3rd Generation Partnership Project)在下一代演进无线系统(New Radio,NR)中,将高频频段纳入系统设计的考虑范围内。在高频段,可以通过波束赋形技术增强覆盖。基站和终端之间可以采用多个波束来进行通信。对于下行传输,为了确定最优的基站侧发送波束和终端侧接收波束,基站需用在多个波束上发送信道状态信息参考信号(Channel state information reference signal,CSI-RS),终端使用多个波束接收参考信号,并分别测量参考信号接收功率(reference signal reception power,RSRP)或信干噪比(signal to interference and noise ratio,SINR)后上报测量信息,基站确定出最优的波束。
上述测量信息上报方案需要优化。
发明内容
本申请提供了一种参考信号传输方法及装置,可以减少上报测量信息占用的信道资源。
第一方面,提供了一种参考信号传输方法,包括:
网络节点通过将参考信号映射到至少一个资源单元上发送所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
所述网络节点接收来自于所述终端的部分所述资源子单元相关的测量信息。
结合第一方面,在第一种可能的实现方式中,所述方法还包括:
所述网络节点向所述终端发送所述参考信号的配置信息。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
结合第一方面第二种或第三种可能的实现方式,在第四种可能的实现方式中:
当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第一方面第二种或第三种可能的实现方式,在第五种可能的实现方式中:
当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第一方面第二种或第三种可能的实现方式,在第六种可能的实现方式中:
当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
结合第一方面第二种或第三种可能的实现方式,在第七种可能的实现方式中:
当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
结合第一方面第二种或第三种可能的实现方式,在第八种可能的实现方式中:
当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第一方面第三种至第八种任一可能的实现方式,在第九种可能的实现方式中:
所述相同的参考信号特征包括以下特征至少之一:相同的发送波束,相同的预编码,相同的波束标识,相同的预编码标识,相同的离开角,相同的天线端口;
所述关联的参考信号特征包括准共址QCL关系。
结合上述任一可能的实现方式,在第十种可能的实现方式中,所述测量信息包括以下信息至少之一:资源单元索引,资源子单元索引,测量值。
结合第一方面第十种可能的实现方式,在第十一种可能的实现方式中,所述测量值包括以下信息至少之一:参考信号接收功率RSRP,RSRP量化值,信道质量指示CQI,信干噪比SINR,SINR量化值,预编码矩阵指示PMI,秩指示RI。
第二方面,提供了一种参考信号传输方法,包括:
终端接收来自于网络节点的参考信号的配置信息;
所述终端根据所述配置信息接收并测量映射到至少一个资源单元上的所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
所述终端向所述网络节点发送部分所述资源子单元相关的测量信息。
结合第二方面,在第一种可能的实现方式中,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
结合第二方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,
当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第二方面第一种或第二种可能的实现方式,在第四种可能的实现方式中,当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第二方面第一种或第二种可能的实现方式,在第五种可能的实现方式中,当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
结合第二方面第一种或第二种可能的实现方式,在第六种可能的实现方式中,当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
结合第二方面第一种或第二种可能的实现方式,在第七种可能的实现方式中,当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第二方面第二种至第七种任一可能的实现方式,在第八种可能的实现方式中,所述相同的参考信号特征包括以下特征至少之一:相同的发送波束,相同的预编码,相同的波束标识,相同的预编码标识,相同的离开角,相同的天线端口;
所述关联的参考信号特征包括准共址QCL关系。
结合上述任一可能的实现方式,在第九种可能的实现方式中,所述测量信息包括 以下信息至少之一:资源单元索引,资源子单元索引,测量值。
结合第二方面第九种可能的实现方式,在第十种可能的实现方式中,所述测量值包括以下信息至少之一:参考信号接收功率RSRP,RSRP量化值,信道质量指示CQI,信干噪比SINR,SINR量化值,预编码矩阵指示PMI,秩指示RI。
第三方面,提供了一种网络节点,包括:
处理器,用于将参考信号映射到至少一个资源单元上,其中,所述至少一个资源单元包括多个资源子单元;
收发器,用于发送所述参考信号,接收来自于所述终端的部分所述资源子单元相关的测量信息。
结合第三方面,在第一种可能的实现方式中:
所述收发器,还用于向所述终端发送所述参考信号的配置信息。
结合第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
结合第三方面第二种可能的实现方式,在第三种可能的实现方式中,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
结合第三方面第二种或第三种可能的实现方式,在第四种可能的实现方式中:
当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第三方面第二种或第三种可能的实现方式,在第五种可能的实现方式中:
当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第三方面第二种或第三种可能的实现方式,在第六种可能的实现方式中:
当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
结合第三方面第二种或第三种可能的实现方式,在第七种可能的实现方式中:
当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
结合第三方面第二种或第三种可能的实现方式,在第八种可能的实现方式中:
当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一 所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第三方面第三种至第八种任一可能的实现方式,在第九种可能的实现方式中:
所述相同的参考信号特征包括以下特征至少之一:相同的发送波束,相同的预编码,相同的波束标识,相同的预编码标识,相同的离开角,相同的天线端口;
所述关联的参考信号特征包括准共址QCL关系。
结合上述任一可能的实现方式,在第十种可能的实现方式中,所述测量信息包括以下信息至少之一:资源单元索引,资源子单元索引,测量值。
结合第三方面第十种可能的实现方式,在第十一种可能的实现方式中,所述测量值包括以下信息至少之一:参考信号接收功率RSRP,RSRP量化值,信道质量指示CQI,信干噪比SINR,SINR量化值,预编码矩阵指示PMI,秩指示RI。
第四方面,提供了一种终端,包括:
收发器,用于接收来自于网络节点的参考信号的配置信息,并根据所述配置信息接收映射到至少一个资源单元上的所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
处理器,用于测量接收到的所述参考信号;
所述收发器,还用于发送部分所述资源子单元相关的测量信息。
结合第四方面,在第一种可能的实现方式中,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
结合第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
结合第四方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第四方面第一种或第二种可能的实现方式,在第四种可能的实现方式中,当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第四方面第一种或第二种可能的实现方式,在第五种可能的实现方式中,当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号 特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
结合第四方面第一种或第二种可能的实现方式,在第六种可能的实现方式中,当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
结合第四方面第一种或第二种可能的实现方式,在第七种可能的实现方式中,当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
结合第四方面第二种至第七种任一可能的实现方式,在第八种可能的实现方式中,所述相同的参考信号特征包括以下特征至少之一:相同的发送波束,相同的预编码,相同的波束标识,相同的预编码标识,相同的离开角,相同的天线端口;
所述关联的参考信号特征包括准共址QCL关系。
结合上述任一可能的实现方式,在第九种可能的实现方式中,所述测量信息包括以下信息至少之一:资源单元索引,资源子单元索引,测量值。
结合第四方面第九种可能的实现方式,在第十种可能的实现方式中,所述测量值包括以下信息至少之一:参考信号接收功率RSRP,RSRP量化值,信道质量指示CQI,信干噪比SINR,SINR量化值,预编码矩阵指示PMI,秩指示RI。
在一个可能的设计中,本申请提供的网络节点可以包括执行上述方法中网络节点行为的相应的模块,所述模块可以是软件和/或硬件。
在一个可能的设计中,本申请提供的终端可以包括执行上述方法中终端行为的相应的模块,所述模块可以是软件和/或硬件。
第五方面,提供了一种通信系统,该系统包括上述第三方面和第四方面所述的网络节点和终端,或者网络节点,终端以及核心网络。
第六方面,提供了一种计算机存储介质,其包含用于执行上述第一至第四方面所涉及的程序。
第七方面,提供了一种资源请求方法,包括:
网络节点接收来自终端的参考信号发送请求,所述参考信号发送请求包括以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序。
第八方面,提供了一种资源请求方法,包括:
终端向网络节点发送参考信号发送请求,所述参考信号发送请求包括以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序。
第九方面,提供了一种网络节点,包括:
收发器,用于接收来自终端的参考信号发送请求;
处理器,用于从所述参考信号发送请求获得以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序。
第十方面,提供了一种终端,包括:
处理器,用于生成参考信号发送请求,所述参考信号发送请求包括以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序;
收发器,用于向网络节点发送所述参考信号发送请求。
在一个可能的设计中,本申请提供的网络节点可以包括执行上述方法中网络节点行为的相应的模块,所述模块可以是软件和/或硬件。
在一个可能的设计中,本申请提供的终端可以包括执行上述方法中终端行为的相应的模块,所述模块可以是软件和/或硬件。
第十一方面,提供了一种通信系统,该系统包括上述第九方面和第十方面所述的网络节点和终端,或者网络节点,终端以及核心网络。
第十二方面,提供了一种计算机存储介质,其包含用于执行上述第七至第十所方面涉及的程序。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为实现本发明实施例的一种可能的系统结构示意图;
图2为本发明实施例提供的一种参考信号传输方法流程图;
图3为本发明实施例提供的一种波束配置示意图;
图4为本发明实施例提供的另一种波束配置示意图;
图5为本发明实施例提供的另一种波束配置示意图;
图6为本发明实施例提供的另一种波束配置示意图;
图7为本发明实施例提供的另一种波束配置示意图;
图8为本发明实施例提供的一种资源请求方法流程图;
图9为本发明实施例提供的一种波束指示方法流程图;
图10为本发明实施例提供的一种基站的结构示意图;
图11为本发明实施例提供的一种终端的结构示意图。
具体实施方式
下面结合附图,对本发明提供的实施例做详细说明。本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和 新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本发明的一种可能的系统网络示意图。如图1所示,至少一个终端10与无线接入网(Radio access network,简称RAN)进行通信。所述RAN包括至少一个基站20(base station,简称BS),为清楚起见,图中只示出一个基站和一个UE。所述RAN与核心网络(core network,简称CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(External Network),例如英特网,公共交换电话网(public switched telephone network,简称PSTN)等。
为便于理解下面对本申请中涉及到的一些名词做些说明。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。用户设备(英文:User Equipment,简称:UE)是一种具有通信功能的终端设备,也可以称为终端,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中用户设备可以叫做不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为用户设备UE或终端。基站(base station,简称:BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在不同的无线接入系统中基站的名称可能有所不同,例如在而在通用移动通讯系统(Universal Mobile Telecommunications System,简称:UMTS)网络中基站称为节点B(NodeB),在LTE网络中的基站称为演进的节点B(evolved NodeB,简称:eNB或者eNodeB),在未来5G系统中可以称为收发节点(Transmission Reception Point,TRP)或网络节点或g节点B(g-NodeB,gNB)。
本发明实施例提供了一种参考信号传输方法。该方法可以应用于图1所示的系统。如图2所示,该方法包括:
步骤201、网络节点通过将参考信号映射到至少一个资源单元上发送参考信号,其中,所述至少一个资源单元包括多个资源子单元;
步骤202、网络节点接收来自于终端的部分所述资源子单元相关的测量信息。
可选的,上述方法还可以包括:
步骤203、网络节点向终端发送参考信号的配置信息。
可选的,步骤203可以在步骤201之前。
上述方案中,终端根据参考信号的配置信息选择一部分测量信息上报,降低了测量信息对信道资源的占用量。
本发明实施例中可选的,参考信号是信道状态信息参考信号(Channel state information reference signal,CSI-RS)。
本发明实施例中,资源单元和资源子单元指的是一段信道资源,可以通过时间区分,可以分别称为时间单元(time unit,TU)和时间子单元(sub-time unit,sub-TU),其中同一个TU内的不同的sub-TU间可以是时分复用TDM或交织的频分多址接入IFDMA(Interleaved frequency division multiple access,IFDMA);不同资源单元和资源子单元也可以通过频率区分;不同资源单元和资源子单元也可以通过时间和/或频率和/或码分区分。基站可以在每个资源子单元通过一个或多个波束发送CSI-RS。
可选的,参考信号的配置信息包括以下信息至少之一:资源单元的类型,资源单元的大小,资源单元的数量,资源单元的顺序。
可选的,上述资源单元的顺序可以针对不同资源单元类型的多个资源单元。
可选的,资源单元的类型指示网络节点在至少一个资源单元的多个资源子单元上映射的参考信号是否具有相同的参考信号特征或关联的参考信号特征。
可选的,相同的参考信号特征包括以下特征至少之一:相同的发送波束,相同的预编码,相同的波束标识,相同的预编码标识,相同的离开角,相同的天线端口;关联的参考信号特征包括准共址(quasi co-location,QCL)关系。
本发明实施例中可选的,QCL关系是指参考信号的天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是终端可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源标识,或SRS资源标识,用于指示资源上的波束。
测量信息可以包括以下信息至少之一:资源单元索引,资源子单元索引,测量值,参考信号资源索引。
测量值可以包括以下信息至少之一:参考信号接收功率RSRP,RSRP量化值,信道质量指示CQI,信干噪比SINR,SINR量化值,预编码矩阵指示PMI,秩指示RI。
本发明实施例中可选的,终端上报部分所述资源子单元相关的测量信息可以包含多种情况,例如:仅上报部分资源单元的索引及对应的参考信号的测量值;仅上报部分资源子单元的索引及对应的参考信号的测量值;仅上报部分测量值;仅上报一个资源单元中部分资源子单元的索引及对应的参考信号的测量值;仅上报测量信息中的一部分,例如仅上报测量值、资源单元索引、资源子单元索引中的一项或两项。后文通过举例进一步说明。
下面对本发明实施例中终端如何根据配置信息确定上报的测量信息进行举例说明,为描述简便,下文中以资源单元和资源子单元是TU和sub-TU,一个TU包括4个sub-TU,相同的参考信号特征是相同的发送波束为例进行说明:
场景一:如图3所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号的发送波束不同,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景二:如图4所示,当TU数量大于等于2,资源单元的类型指示一个TU的多 个sub-TU的参考信号的发送波束不同时,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景三:如图5所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号的发送波束相同时,上报的测量信息包括部分sub-TU对应的参考信号的测量值;
场景四:如图6所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号的发送波束相同时,上报的测量信息包括部分TU的索引和该TU对应的参考信号的测量值;
场景五:如图7所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号的发送波束相同,在另一个TU的多个sub-TU的参考信号的发送波束不同时,若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号的发送波束相同的TU在多个sub-TU的参考信号的发送波束不同的TU之前,则上报的测量信息包括多个sub-TU的参考信号的发送波束不同的TU的sub-TU索引和该sub-TU对应的参考信号的测量值。若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号的发送波束相同的TU在多个sub-TU的参考信号的发送波束不同的TU之后,则按照场景一的方法针对多个sub-TU的参考信号的发送波束不同的TU上报,按照场景三的方法针对多个sub-TU的参考信号的发送波束相同的TU上报。所述不同资源单元类型的资源单元的顺序可以是预定义的或在参考信号的配置信息中由基站配置的。
图3-图7中的TxB和RxB分别表示基站发送波束和终端接收波束。
可选的,场景一至场景五中,所述发送波束还可以是以下至少之一:发送波束标识,发送权值,预编码,预编码标识,离开角,发送天线端口,发送端空间特性。
可选的,下文中以资源单元的类型指示基站在至少一个资源单元的多个资源子单元上映射的参考信号是否具有关联的参考信号特征为例进行说明
可选的,本举例中关联的参考信号特征为参考信号的QCL关系,若所述参考信号的QCL关系指示的参考信号的参数包括以下至少之一发送波束,离开角,平均离开角,发送天线空间相关性参数,资源标识等发送端相关参数时,包括以下场景:
场景六:如图3所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系时,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景七:如图4所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系时,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景八:如图5所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系时,上报的测量信息包括部分sub-TU对应的参考信号的测量值;
场景九:如图6所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系时,上报的测量信息包括部分TU的索引和该TU对应的参考信号的测量值;
场景十:如图7所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系,在另一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系时,若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU在多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU之前,则上报的测量信息包括多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU的sub-TU索引和该sub-TU对应的参考信号的测量值。若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU在多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU之后,则按照场景六的方法针对多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU上报,按照场景八的方法针对多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU上报。所述不同资源单元类型的资源单元的顺序可以是预定义的或在参考信号的配置信息中由基站配置的。
可选的,本举例中关联的参考信号特征为参考信号的QCL关系,若所述参考信号的QCL关系指示的参考信号的参数包括以下至少之一接收波束,到达角,平均到达角,接收天线空间相关性参数,资源标识等接收端相关参数时,包括以下场景:
场景十一:如图3所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系时,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景十二:如图4所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系时,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景十三:如图5所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系时,上报的测量信息包括部分sub-TU对应的参考信号的测量值;
场景十四:如图6所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系时,上报的测量信息包括部分TU的索引和该TU对应的参考信号的测量值;
场景十五:如图7所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系,在另一个TU的多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系时,若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU在多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU之前,则上报的测量信息包括多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU的sub-TU索引和该sub-TU对应的参考信号的测量值。若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU在多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU之后, 则按照场景十一的方法针对多个sub-TU的参考信号所有天线端口间或相同天线端口间具有QCL关系的TU上报,按照场景十三的方法针对多个sub-TU的参考信号所有天线端口间或相同天线端口间不具有QCL关系的TU上报。所述不同资源单元类型的资源单元的顺序可以是预定义的或在参考信号的配置信息中由基站配置的。
下文以相同的参考信号特征是相同的接收波束为例进行说明
场景十六:如图3所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号的接收波束相同,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景十七:如图4所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号的接收波束相同时,上报的测量信息包括sub-TU的索引和该sub-TU对应的参考信号的测量值;
场景十八:如图5所示,当TU数量为1,资源单元的类型指示一个TU的多个sub-TU的参考信号的接收波束不同时,上报的测量信息包括部分sub-TU对应的参考信号的测量值;
场景十九:如图6所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号的接收波束不同时,上报的测量信息包括部分TU的索引和该TU对应的参考信号的测量值;
场景二十:如图7所示,当TU数量大于等于2,资源单元的类型指示一个TU的多个sub-TU的参考信号的接收波束不同,在另一个TU的多个sub-TU的参考信号的接收波束相同时,若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号的接收波束不同的TU在多个sub-TU的参考信号的接收波束相同的TU之前,则上报的测量信息包括多个sub-TU的参考信号的接收波束相同的TU的sub-TU索引和该sub-TU对应的参考信号的测量值。若所述不同资源单元类型的资源单元的顺序为多个sub-TU的参考信号的接收波束不同的TU在多个sub-TU的参考信号的接收波束相同的TU之后,则按照场景一的方法针对多个sub-TU的参考信号的接收波束相同的TU上报,按照场景三的方法针对多个sub-TU的参考信号的接收波束不同的TU上报。所述不同资源单元类型的资源单元的顺序可以是预定义的或在参考信号的配置信息中由基站配置的。
可选的,场景十六至场景二十中,所述接收波束还可以是以下至少之一:接收波束标识,接收权值,到达角,接收天线端口,接收端空间特性。
可选的,场景一至场景二十中的sub-TU还可以是参考信号资源或其他资源子单元,场景一至场景五中的sub-TU索引还可以是参考信号资源索引或其他资源子单元索引。
可选的,场景一至场景二十中终端上报的测量信息包含测量值以外的测量信息,即不包含测量值。
可选的,场景一至场景二十中终端上报的测量信息中的测量值包含m个最优的测量值以及n个最差的测量值,m和n为大于等于0的值,m+n大于等于1,m为基站配置的或预定义的,n为基站配置的或预定义的。
可选的,所述基站在所述终端上报测量信息前,向所述终端发送参考信号测量上报指示,所述参考信号测量上报指示用于指示所述上报的测量信息与上报测量信息后 的上行或下行传输是否有关,或用于指示上报的测量信息是否与资源单元类型有关,或用于指示上报的测量信息是否包含资源单元索引和资源子单元索引。若参考信号测量上报指示用于指示所述上报的测量信息与上报测量信息后的上行或下行传输无关,或用于指示上报的测量信息与资源单元类型无关,或用于指示上报的测量信息包含资源索引和子资源索引,则终端上报的测量信息包含资源单元索引和资源子单元索引和测量值,或者资源子单元索引和测量值,或者资源子单元索引,或者资源单元索引和资源子单元索引,否则终端上报的测量信息按照上述场景一至二十的方式,根据所述资源单元类型确定。
可选的,终端的上报的测量信息包括:资源单元索引和资源子单元索引和测量值,或者资源子单元索引和测量值,或者资源子单元索引,或者资源单元索引和资源子单元索引。
可选的,上述各种场景中,上报的索引和测量值数量可以不一样,例如一个索引也可以对应多个测量值。终端可以只上报索引。
本发明实施例中可选的,基站可以配置终端上报的测量信息,终端根据该配置确定参考信号的资源单元类型。
可选的,一个资源单元中只包含一个资源子单元时(即资源单元不划分成资源子单元),也可以理解为资源子单元是资源单元。
本发明另一实施例提供了一种资源请求方法,该方法可以应用于图1所示的系统。如图8所示,该方法包括:
步骤801、终端向网络节点发送参考信号发送请求。
参考信号发送请求包括以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序。
步骤802、网络节点接收上述参考信号发送请求。
可选的,上述参考信号可以是CSI-RS等用于下行测量的参考信号或者探测参考符号(sounding reference symbol,SRS)等用于上行测量的参考信号。
上述实施例中,基站可以根据终端的请求来确定发送相应参考信号使用的资源。
下面对本发明实施例中终端发送参考信号发送请求进行举例说明
可选的,终端发送CSI-RS发送请求,包括以下场景:
CSI-RS资源请求场景一,终端发送CSI-RS发送请求,包括CSI-RS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用相同的发送波束。
CSI-RS资源请求场景二,例如终端发送CSI-RS发送请求,包括CSI-RS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用不同的发送波束。
可选的,CSI-RS资源请求场景一和二中所述发送波束还可以是以下至少之一:发送波束标识,发送波束权值,预编码,预编码标识,离开角,发送天线端口,发送端空间特性。
CSI-RS资源请求场景三,终端发送CSI-RS发送请求,包括CSI-RS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单 元采用不同的接收波束。
CSI-RS资源请求场景四,例如终端发送CSI-RS发送请求,包括CSI-RS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用相同的接收波束。
可选的,CSI-RS资源请求场景三和四中所述接收波束还可以是以下至少之一:接收波束标识,接收权值,到达角,接收天线端口,接收端空间特性。
CSI-RS资源请求场景五,终端发送CSI-RS发送请求,包括CSI-RS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元上的所有的或相同的天线端口间具有QCL关系。
CSI-RS资源请求场景六,例如终端发送CSI-RS发送请求,包括CSI-RS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元上的所有的或相同的天线端口间不具有QCL关系。
可选的,终端发送SRS发送请求,包括以下场景
SRS资源请求场景一,终端发送SRS发送请求,包括SRS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用相同的发送波束。
SRS资源请求场景二,例如终端发送SRS发送请求,包括SRS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用不同的发送波束。
可选的,SRS资源请求场景一和二中所述发送波束还可以是以下至少之一:发送波束标识,发送波束权值,预编码,预编码标识,离开角,发送天线端口,发送端空间特性。
SRS资源请求场景三,终端发送SRS发送请求,包括SRS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用不同的接收波束。
SRS资源请求场景四,例如终端发送SRS发送请求,包括SRS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元采用相同的接收波束。
可选的,SRS资源请求场景三和四中所述接收波束还可以是以下至少之一:接收波束标识,接收权值,到达角,接收天线端口,接收端空间特性。
SRS资源请求场景五,终端发送SRS发送请求,包括SRS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元上的所有的或相同的天线端口间具有QCL关系。
SRS资源请求场景六,例如终端发送SRS发送请求,包括SRS的资源单元大小为4个资源子单元,资源单元的数量为2,资源单元类型为该资源单元的资源子单元上的所有的或相同的天线端口间不具有QCL关系。
本发明另一实施例提供了一种资源指示方法,该方法可以应用于图1所示的系统。如图9所示,该方法包括:
步骤901、基站向终端发送配置信息,配置信息指示终端的资源。
步骤902、终端接收上述配置信息。
可选的,上述资源包括以下资源至少之一:接收或发送波束、接收或发送波束索引、接收或发送预编码、接收或发送预编码索引、接收或发送天线端口、空间资源。
可选的,若所述资源包括以下至少之一:接收波束、接收波束索引、接收预编码、接收预编码索引、接收天线端口、空间资源,则所述资源可以用于下行传输,例如用于物理下行共享信道传输,物理下行控制信道传输,CSI-RS传输等。
可选的,若所述资源包括以下至少之一:发送波束、发送波束索引、发送预编码、接收发送预编码索引、发送天线端口、空间资源,则所述资源可以用于上行传输,例如用于物理上行共享信道传输,物理上行控制信道传输,SRS传输,调度请求传输等。
可选的,所述配置信息包括以下至少之一:基站发送波束,基站接收波束,终端发送波束,终端接收波束,时域资源,频域资源,码域资源,关联的端口特征。
可选的,所述波束包括以下至少一个,预编码,权值序号,波束序号,波束范围。所述关联的端口特征包括端口的QCL关系。
可选的,所述波束范围包括固定的波束范围或相对的波束范围。
可选的,当配置信息包含时域资源、频域资源、码域资源至少之一时,配置信息所指示的资源与使用所述终端资源进行的传输具有相同的端口特征或关联的端口特征。可选的,相同的端口特征包括以下特征至少之一:相同的发送波束,相同的预编码,相同的波束标识,相同的预编码标识,相同的离开角,相同的天线端口;关联的端口特征包括准共址QCL关系。
下面对本发明实施例中基站配置终端的资源进行举例说明
举例一:可选的,基站向终端发送配置信息,配置信息包括终端接收波束,例如包括终端接收波束的序号,则终端根据配置信息的终端接收波束序号确定下行的接收波束,用于下行接收,或终端根据配置信息的终端接收波束序号,以及终端接收波束与终端发送波束的对应关系,确定发送波束,用于上行发送。
举例二:可选的,基站向终端发送配置信息,配置信息包括终端发送波束,例如包括终端发送波束的序号,则终端根据配置信息的终端发送波束序号确定上行的发送波束,用于上行发送,或终端根据配置信息的终端接发送波束序号,以及终端发送波束与终端接收波束的对应关系,确定下行接收波束,用于下行接收。
举例三:可选的,基站向终端发送配置信息,配置信息包括基站发送波束,例如包括基站发送波束的序号,则终端根据配置信息的基站发送波束序号,以及基站发送波束与终端接收波束的波束配对关系,确定下行的接收波束,用于下行接收,或终端根据配置信息的基站发送波束序号,以及基站发送波束与终端接收波束的波束配对关系,以及终端接收波束与终端接发送波束的对应关系,确定上行发送波束,用于上行发送。
举例四:可选的,基站向终端发送配置信息,配置信息包括基站接收波束,例如包括基站接收波束的序号,则终端根据配置信息的基站接收波束序号,以及基站接收波束与终端发送波束的波束配对关系,确定上行的发送波束,用于上行发送,或终端根据配置信息的基站接收波束序号,以及基站接收波束与终端发送波束的波束配对关系,以及终端发送波束与终端接接收波束的对应关系,确定下行接收波束,用于下行 接收。
举例五:可选的,基站向终端发送配置信息,配置信息包括时域资源、码域资源、频域资源至少之一,则终端根据配置信息的时频码资源以及时频码资源上传输使用的终端接收波束确定下行的接收波束,用于下行接收,或终端根据配置信息的时频码资源以及时频码资源上传输使用的接收波束,以及终端接收波束与终端发送波束的对应关系,确定发送波束,用于上行发送。
举例六:可选的,基站向终端发送配置信息,配置信息包括时域资源、码域资源、频域资源至少之一,则终端根据配置信息的时频码资源以及时频码资源上传输使用的终端发送波束确定上行的发送波束,用于上行发送,或终端根据配置信息的时频码资源以及时频码资源上传输使用的发送波束,以及终端发送波束与终端接收波束的对应关系,确定下行接收波束,用于下行接收。
举例七:可选的,基站向终端发送配置信息,配置信息包括时域资源、码域资源、频域资源至少之一,则终端根据配置信息的时频码资源以及时频码资源上传输使用的基站发送波束,以及基站发送波束与终端接收波束的波束配对关系,确定下行的接收波束,用于下行接收,或终端根据配置信息的时频码资源以及时频码资源上传输使用的基站发送波束,以及基站发送波束与终端接收波束的波束配对关系,以及终端接收波束与终端接发送波束的对应关系,确定上行发送波束,用于上行发送。
举例八:可选的,基站向终端发送配置信息,配置信息包括时域资源、码域资源、频域资源至少之一,则终端根据配置信息的时频码资源以及时频码资源上传输使用的基站接收波束,以及基站接收波束与终端发送波束的波束配对关系,确定上行的发送波束,用于上行发送,或终端根据配置信息的时频码资源以及时频码资源上传输使用的基站接收波束,以及基站接收波束与终端发送波束的波束配对关系,以及终端发送波束与终端接接收波束的对应关系,确定下行接收波束,用于下行接收。
可选的,举例五至八中配置信息中的时域资源、码域资源、频域资源可以为所述上行传输或下行传输与时域资源、码域资源、频域资源上端口的QCL关系,终端根据所述QCL关系以及配置信息中的时域资源、码域资源、频域资源确定时域资源、码域资源、频域资源上的波束,从而根据举例五至八的方法确定上行传输的发送波束或下行传输的接收波束。
可选的,若举例五至八中配置信息中的时域资源、码域资源、频域资源为下行或上行测量参考信号传输使用的时频码资源,则所述时域资源、码域资源、频域资源可以为所述资源单元和/或资源子单元。若所述测量参考信号的资源单元类型为资源单元内的资源子单元具有相同的参考信号特征,或所述参考信号的QCL关系指示的参考信号的参数包括以下至少之一发送波束,离开角,平均离开角,发送天线空间相关性参数,资源标识等发送端相关参数且全部或相同端口具有QCL关系时,或所述参考信号的QCL关系指示的参考信号的参数包括以下至少之一接收波束,到达角,平均到达角,接收天线空间相关性参数,资源标识等接收端相关参数且全部或相同端口不具有QCL关系时,所述配置信息中包含资源子单元标识。若所述测量参考信号的资源单元类型为资源单元内的资源子单元具有不同的参考信号特征,或所述参考信号的QCL关系指示的参考信号的参数包括以下至少之一发送波束,离开角,平均离开角,发送天线空 间相关性参数,资源标识等发送端相关参数且全部或相同端口不具有QCL关系时,或所述参考信号的QCL关系指示的参考信号的参数包括以下至少之一接收波束,到达角,平均到达角,接收天线空间相关性参数,资源标识等接收端相关参数且全部或相同端口具有QCL关系时,所述配置信息中包含资源子单元标识。
可选的,当所述参考信号的资源单元数为一时配置信息中不包含资源单元标识。
可选的,在终端进行所述上行传输或下行传输前,基站接收终端上报的参考信号测量信息。此时所述配置信息包括终端上报的参考信号测量信息的标识和/或参考信号测量配置的标识。
所述参考信号测量信息的标识包括以下至少之一:测量量的标识,资源单元索引的标识,资源子单元索引的标识,参考信号资源索引的标识。
所述参考信号测量配置的标识包括用于配置终端一次上报参考信号测量信息的配置信息的标识,或终端一次上报测量信息过程或事件的标识。
终端根据参考信号测量信息的标识以及参考信号测量配置的标识,确定所述参考信号测量配置下的参考信号测量信息所测量的资源上的波束,从而确定所述上行传输或下行传输的波束。
下面对本发明基站使用参考信号测量信息的标识以及参考信号测量配置的标识配置终端的资源进行举例说明。
举例九,可选的,基站指示测量信息的标识为2,参考信号测量配置的标识为1,则终端根据第1次测量上报时的第2个测量信息所测量的资源上的终端接收波束,确定下行接收波束,或终端根据第1次测量上报时的第2个测量信息所测量的资源上的终端接收波束,以及终端的发送波束和接收波束的对应关系,确定上行发送波束。
举例十,可选的,基站指示测量信息的标识为2,参考信号测量配置的标识为1,则终端根据第1次测量上报时的第2个测量信息所测量的资源上的终端发送波束,确定上行发送波束,或终端根据第1次测量上报时的第2个测量信息所测量的资源上的终端发送波束,以及终端的发送波束和接收波束的对应关系,确定下行接收波束。
举例十一,可选的,基站指示测量信息的标识为2,参考信号测量配置的标识为1,则终端根据第1次测量上报时的第2个测量信息所测量的资源上的基站接收波束,以及基站接收波束与终端发送波束的波束配对关系,确定上行发送波束,或终端根据第1次测量上报时的第2个测量信息所测量的资源上的基站接收波束,以及基站接收波束与终端发送波束的波束配对关系,以及终端的发送波束和接收波束的对应关系,确定下行接收波束。
举例十二,可选的,基站指示测量信息的标识为2,参考信号测量配置的标识为1,则终端根据第1次测量上报时的第2个测量信息所测量的资源上的基站发送波束,以及基站发送波束与终端接收波束的波束配对关系,确定下行接收波束,或终端根据第1次测量上报时的第2个测量信息所测量的资源上的基站发送波束,以及基站发送波束与终端接收波束的波束配对关系,以及终端的发送波束和接收波束的对应关系,确定上行发送波束。
可选的,上述举例一至十二中的配置信息还可以为包括波束范围,若波束范围为相对范围,则终端根据举例一至十二的方法确定波束后,在所述波束范围内进行波束 选择,例如根据举例一至十二确定的波束的水平角度为30度,波束范围为-10度~10度,则终端在20度~40度范围内选择波束,又例如举例一至十二确定的波束为波束序号5,波束范围为-2~2,则终端在波束序号{3,4,5,6,7}内选择。若波束范围为绝对范围,则终端在配置的波束范围内选择波束,例如波束水平角范围为20度~40度,又例如波束范围为波束序号{3,4,5,6,7}。
可选的,当上报的测量信息数为1时,不需要指示测量信息标识。
可选的,基站在所述上行传输或下行传输前,还向终端发送测量信息与所述配置信息是否关联的指示,若基站配置终端发送测量信息与所述配置信息不关联,则配置信息不包含终端上报的参考信号测量信息的标识。
本发明实施例中,配置信息和上报的测量信息的含义可以参考前述参考信号传输方法中的解释,此处不再赘述。
需要说明的是,前述多个方法实施例中,不同方案的部分或全部步骤、技术实现细节等可以结合使用。
本发明实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。前述方法实施例的方法、步骤、技术细节、技术效果等同样适用于装置实施例,后续不再详细说明。
图10示出一种基站的结构示意图,该基站可应用于如图1所示的系统。基站20包括一个或多个远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)202。RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。RRU201分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送上述实施例中的信令指示和/或参考信号。BBU202部分主要用于进行基带处理,对基站进行控制等。RRU201与BBU202可以是可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。在一个示例中,BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如5G网络),也可以分别支持不同接入制式的无线接入网。BBU202还包括存储器2021和处理器2022。存储器2021用以存储必要的指令和数据。处理器2022用于控制基站进行必要的动作。存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
上述基站可以用于实现前述方法实施例的参考信号传输方法,具体的:
处理器,用于将参考信号映射到至少一个资源单元上,其中,所述至少一个资源单元包括多个资源子单元;
收发器,用于发送所述参考信号,接收来自于所述终端的部分所述资源子单元相关的测量信息。
可选的,收发器,还用于向所述终端发送所述参考信号的配置信息。
上述基站也可以用于实现前述方法实施例的资源请求方法,具体的:
收发器,用于接收来自终端的参考信号发送请求;
处理器,用于从参考信号发送请求获得以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序。
上述基站也可以用于实现前述方法实施例的资源指示方法。
图11提供了一种终端的结构示意图。该终端可适用于图1所示出的系统中。为了便于说明,图11仅示出了终端的主要部件。如图11所示,终端10包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。具输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为终端10的收发单元101,将具有处理功能的处理器视为终端10的处理单元102。如图11所示,终端10包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
上述终端可以用于实现前述方法实施例中的参考信号传输方法,具体的:
收发器,用于接收来自于网络节点的参考信号的配置信息,并根据所述配置信息接收映射到至少一个资源单元上的所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
处理器,用于测量接收到的所述参考信号;
所述收发器,还用于发送部分所述资源子单元相关的测量信息。
上述终端还可以用于实现前述方法实施例的资源请求方法,具体的:
处理器,用于生成参考信号发送请求,参考信号发送请求包括以下信息至少之一:资源单元的类型,资源单元大小,资源单元数量,参考信号映射方式,资源单元的顺序;
收发器,用于向网络节点发送参考信号发送请求。
上述终端也可以用于实现前述方法实施例的资源指示方法。
本领域技术任何还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务 器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (34)

  1. 一种参考信号传输方法,其特征在于,包括:
    网络节点通过将参考信号映射到至少一个资源单元上发送所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
    所述网络节点接收来自于所述终端的部分所述资源子单元相关的测量信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络节点向所述终端发送所述参考信号的配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
  4. 根据权利要求3所述的方法,其特征在于,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
  5. 根据权利要求3或4所述的方法,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  6. 根据权利要求3或4所述的方法,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  7. 根据权利要求3或4所述的方法,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
  8. 根据权利要求3或4所述的方法,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
  9. 根据权利要求3或4所述的方法,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参 考信号的测量值。
  10. 一种参考信号传输方法,其特征在于,包括:
    终端接收来自于网络节点的参考信号的配置信息;
    所述终端根据所述配置信息接收并测量映射到至少一个资源单元上的所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
    所述终端向所述网络节点发送部分所述资源子单元相关的测量信息。
  11. 根据权利要求10所述的方法,其特征在于,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
  12. 根据权利要求11所述的方法,其特征在于,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
  13. 根据权利要求11或12所述的方法,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  14. 根据权利要求11或12所述的方法,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  15. 根据权利要求11或12所述的方法,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
  16. 根据权利要求11或12所述的方法,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
  17. 根据权利要求11或12所述的方法,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  18. 一种网络节点,其特征在于,包括:
    处理器,用于将参考信号映射到至少一个资源单元上,其中,所述至少一个资源单元包括多个资源子单元;
    收发器,用于发送所述参考信号,接收来自于所述终端的部分所述资源子单元相关的测量信息。
  19. 根据权利要求18所述的网络节点,其特征在于:
    所述收发器,还用于向所述终端发送所述参考信号的配置信息。
  20. 根据权利要求19所述的网络节点,其特征在于,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
  21. 根据权利要求20所述的网络节点,其特征在于,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
  22. 根据权利要求20或21所述的网络节点,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  23. 根据权利要求20或21所述的网络节点,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  24. 根据权利要求20或21所述的网络节点,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
  25. 根据权利要求20或21所述的网络节点,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
  26. 根据权利要求20或21所述的网络节点,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参 考信号的测量值。
  27. 一种终端,其特征在于,包括:
    收发器,用于接收来自于网络节点的参考信号的配置信息,并根据所述配置信息接收映射到至少一个资源单元上的所述参考信号,其中,所述至少一个资源单元包括多个资源子单元;
    处理器,用于测量接收到的所述参考信号;
    所述收发器,还用于发送部分所述资源子单元相关的测量信息。
  28. 根据权利要求27所述的终端,其特征在于,所述参考信号的配置信息包括以下信息至少之一:所述资源单元的类型,所述资源单元的大小,所述资源单元的数量,所述资源单元的顺序。
  29. 根据权利要求28所述的终端,其特征在于,所述资源单元的类型指示所述网络节点在所述至少一个资源单元的多个资源子单元上映射的所述参考信号是否具有相同的参考信号特征或关联的参考信号特征。
  30. 根据权利要求28或29所述的终端,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  31. 根据权利要求28或29所述的终端,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
  32. 根据权利要求28或29所述的终端,其特征在于:
    当所述资源单元数量为1,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源子单元对应的参考信号的测量值。
  33. 根据权利要求28或29所述的终端,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在所述一个资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征时,部分所述资源子单元相关的测量信息包括部分所述资源单元的索引和部分所述资源单元对应的参考信号的测量值。
  34. 根据权利要求28或29所述的终端,其特征在于:
    当所述资源单元数量大于等于2,所述资源单元的类型指示所述网络节点在第一所述资源单元的多个资源子单元上映射的所述参考信号具有相同的参考信号特征或关联的参考信号特征,在第二所述资源单元的多个资源子单元上映射的所述参考信号具有不同的参考信号特征或不关联的参考信号特征时,部分所述资源子单元相关的测量信息包括第二所述资源单元的部分资源子单元的索引和部分所述资源子单元对应的参考信号的测量值。
PCT/CN2018/071617 2017-01-06 2018-01-05 一种参考信号传输方法及装置 WO2018127141A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019536900A JP6783945B2 (ja) 2017-01-06 2018-01-05 参照信号送信方法および装置
EP18735995.5A EP3565164B1 (en) 2017-01-06 2018-01-05 Reference signal transmission method and apparatus
KR1020197022528A KR20190099069A (ko) 2017-01-06 2018-01-05 참조 신호 송신 방법 및 장치
EP21163334.2A EP3905579B1 (en) 2017-01-06 2018-01-05 Reference signal transmission method, network node, terminal device, computer-readable storage medium and computer program product
BR112019013789A BR112019013789A2 (pt) 2017-01-06 2018-01-05 método de transmissão de sinal de referência, aparelho e sistema
CA3049296A CA3049296C (en) 2017-01-06 2018-01-05 Reference signal transmission method, and apparatus
US16/428,467 US10778393B2 (en) 2017-01-06 2019-05-31 Reference signal transmission method, and apparatus
US17/019,760 US11431453B2 (en) 2017-01-06 2020-09-14 Reference signal transmission method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011019.X 2017-01-06
CN201710011019.XA CN108282296B (zh) 2017-01-06 2017-01-06 一种参考信号传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/428,467 Continuation US10778393B2 (en) 2017-01-06 2019-05-31 Reference signal transmission method, and apparatus

Publications (1)

Publication Number Publication Date
WO2018127141A1 true WO2018127141A1 (zh) 2018-07-12

Family

ID=62789207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071617 WO2018127141A1 (zh) 2017-01-06 2018-01-05 一种参考信号传输方法及装置

Country Status (8)

Country Link
US (2) US10778393B2 (zh)
EP (2) EP3565164B1 (zh)
JP (1) JP6783945B2 (zh)
KR (1) KR20190099069A (zh)
CN (3) CN108282296B (zh)
BR (1) BR112019013789A2 (zh)
CA (1) CA3049296C (zh)
WO (1) WO2018127141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147578A1 (zh) * 2019-01-16 2020-07-23 华为技术有限公司 发送信道信息的方法和装置与接收信道信息的方法和装置
JP2022518198A (ja) * 2019-01-11 2022-03-14 維沃移動通信有限公司 チャネル・干渉測定方法、及び機器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282296B (zh) * 2017-01-06 2024-03-01 华为技术有限公司 一种参考信号传输方法及装置
CN110972155B (zh) * 2018-09-28 2023-05-09 中国移动通信有限公司研究院 测量配置方法、测量方法、测量上报方法及装置
CN112118082B (zh) * 2019-06-21 2022-04-15 中国移动通信有限公司研究院 上行传输指示方法、装置及通信设备
US11206076B2 (en) * 2019-08-07 2021-12-21 Samsung Electronics Co., Ltd. Method and apparatus for low-latency beam selection
CN117063512A (zh) * 2022-03-11 2023-11-14 北京小米移动软件有限公司 信息传输方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105025519A (zh) * 2014-04-30 2015-11-04 电信科学技术研究院 干扰信号测量方法及相关设备
WO2016122232A1 (ko) * 2015-01-30 2016-08-04 엘지전자(주) 무선 통신 시스템에서 무선 링크 모니터링 방법 및 이를 위한 장치
CN105981421A (zh) * 2014-03-20 2016-09-28 夏普株式会社 终端装置、基站装置、通信系统、通信方法、以及集成电路

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656526B2 (ja) * 2000-07-17 2005-06-08 株式会社日立製作所 無線通信基地局、無線位置測定システム、送信タイミング測定装置ならびに位置測定センタ装置
CN101510868A (zh) * 2009-03-17 2009-08-19 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
CN101594633B (zh) * 2009-06-19 2015-06-10 中兴通讯股份有限公司 使用多天线传输测量参考信号的基站、终端、系统和方法
CN101626620B (zh) * 2009-08-07 2014-03-12 中兴通讯股份有限公司 一种参考信号的发送方法
CN102036376B (zh) * 2009-09-28 2013-11-06 电信科学技术研究院 测量导频csi-rs的获取方法、指示方法和设备
CN101867403B (zh) * 2010-06-13 2016-06-29 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端
EP2738953A1 (en) * 2011-01-07 2014-06-04 Interdigital Patent Holdings, Inc. Communicating channel state information (CSI) of multiple transmission points
KR101902578B1 (ko) * 2011-10-14 2018-10-01 애플 인크. 무선통신 시스템에서 참조신호의 전송 방법 및 장치
CN102404854B (zh) * 2011-11-04 2018-04-06 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
KR101669701B1 (ko) * 2012-06-25 2016-10-26 주식회사 케이티 물리적 상향링크 데이터 채널 맵핑정보 제공방법 및 그 송수신포인트, 물리적 상향링크 데이터 채널의 전송방법, 그 단말
JP6205648B2 (ja) * 2012-09-27 2017-10-04 シャープ株式会社 端末装置、通信方法および集積回路
CN110417527B (zh) * 2012-10-19 2022-07-05 北京三星通信技术研究有限公司 测量信道参考信号的方法及设备
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US10193665B2 (en) * 2013-03-21 2019-01-29 Texas Instruments Incorporated Reference signal for 3D MIMO in wireless communication systems
EP2984865B1 (en) 2013-04-08 2019-06-05 LG Electronics Inc. Method and apparatus for reporting channel state information for fractional beamforming in a wireless communication system
JP5701332B2 (ja) * 2013-05-07 2015-04-15 シャープ株式会社 基地局装置、端末装置、通信システムおよび通信方法
EP3050232B1 (en) * 2013-09-27 2020-04-01 Samsung Electronics Co., Ltd. Method and apparatus for discovery signals for lte advanced
CN103499356B (zh) * 2013-10-12 2017-07-07 复旦大学 消减光纤干涉系统传输路径信号干扰的方法与结构
KR102039535B1 (ko) * 2013-10-22 2019-11-01 삼성전자 주식회사 무선 자원 할당 방법 및 장치
CN105940738B (zh) * 2014-01-29 2020-03-17 Lg电子株式会社 在无线通信系统中由终端执行的d2d操作方法及使用该方法的终端
US10225054B2 (en) * 2014-11-07 2019-03-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
KR102371961B1 (ko) * 2014-11-07 2022-03-08 한국전자통신연구원 레퍼런스 신호를 전송하는 방법 및 장치, 채널 상태 정보를 측정 및 보고하는 방법 및 장치, 그리고 이를 위한 설정 방법
JP6674954B2 (ja) * 2015-02-05 2020-04-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるcsiをフィードバックするための方法及びこのための装置
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
US10536199B2 (en) * 2015-04-10 2020-01-14 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
US10374839B2 (en) * 2015-08-13 2019-08-06 Lg Electronics Inc. Operation method of user equipment in relation to CSI-RS in wireless communication system and apparatus supporting the same
CN106612546B (zh) * 2015-10-27 2021-10-22 大唐移动通信设备有限公司 一种确定csi-rs传输资源的方法及设备
EP3343859B1 (en) * 2015-11-02 2020-02-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving a reference signal in a beamforming communication system
US10425139B2 (en) * 2016-09-21 2019-09-24 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
US10263681B2 (en) * 2016-10-10 2019-04-16 Samsung Electronics Co., Ltd. Method and apparatus for reporting periodic channel state information in mobile communication system using massive array antennas
JP6989617B2 (ja) * 2016-12-28 2022-01-05 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおける参照信号資源受信方法及びそのための装置
CN108282296B (zh) * 2017-01-06 2024-03-01 华为技术有限公司 一种参考信号传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981421A (zh) * 2014-03-20 2016-09-28 夏普株式会社 终端装置、基站装置、通信系统、通信方法、以及集成电路
CN105025519A (zh) * 2014-04-30 2015-11-04 电信科学技术研究院 干扰信号测量方法及相关设备
WO2016122232A1 (ko) * 2015-01-30 2016-08-04 엘지전자(주) 무선 통신 시스템에서 무선 링크 모니터링 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "DL RS Design for NR Beam Management", R1-1611242, 3GPP TSG RAN WG1 MEETING #87, 18 November 2016 (2016-11-18), XP051189814, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/> *
HUAWEI: "Independent and joint control of CSI-RS transmission and CSI re- porting for NR MIMO", R1-1611236, 3GPP TSG RAN WG1 MEETING #87, 18 November 2016 (2016-11-18), XP051189808, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518198A (ja) * 2019-01-11 2022-03-14 維沃移動通信有限公司 チャネル・干渉測定方法、及び機器
JP7279170B2 (ja) 2019-01-11 2023-05-22 維沃移動通信有限公司 チャネル・干渉測定方法、及び機器
WO2020147578A1 (zh) * 2019-01-16 2020-07-23 华为技术有限公司 发送信道信息的方法和装置与接收信道信息的方法和装置
US12021765B2 (en) 2019-01-16 2024-06-25 Huawei Technologies Co., Ltd. Channel information sending method and apparatus and channel information receiving method and apparatus

Also Published As

Publication number Publication date
CN110299981B (zh) 2020-06-16
CN110299981A (zh) 2019-10-01
CA3049296C (en) 2022-03-01
CN110149193A (zh) 2019-08-20
US20190296875A1 (en) 2019-09-26
BR112019013789A2 (pt) 2020-01-21
EP3905579B1 (en) 2023-10-04
US10778393B2 (en) 2020-09-15
CA3049296A1 (en) 2018-07-12
EP3565164A1 (en) 2019-11-06
EP3565164B1 (en) 2021-04-14
CN108282296A (zh) 2018-07-13
EP3905579A1 (en) 2021-11-03
CN110149193B (zh) 2020-06-16
CN108282296B (zh) 2024-03-01
US20210105115A1 (en) 2021-04-08
JP6783945B2 (ja) 2020-11-11
JP2020507948A (ja) 2020-03-12
KR20190099069A (ko) 2019-08-23
US11431453B2 (en) 2022-08-30
EP3565164A4 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
WO2018127141A1 (zh) 一种参考信号传输方法及装置
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
CN111602449B (zh) 一种通信方法及装置
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
US11064499B2 (en) Communication method and apparatus
WO2018228228A9 (zh) 信息传输方法及装置
CN110268773A (zh) 上行数据传输方法及相关设备
WO2021052473A1 (zh) 通信方法和通信装置
WO2018196529A1 (zh) 一种资源信息确定方法及终端设备、网络设备
US20190305902A1 (en) Reference signal transmission method and apparatus
CN111436129B (zh) 数据传输方法和通信装置
CN116264475A (zh) 信道状态信息的反馈方法及装置
CN111865482A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3049296

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019536900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013789

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197022528

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018735995

Country of ref document: EP

Effective date: 20190806

ENP Entry into the national phase

Ref document number: 112019013789

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190703