以下、本発明にかかる好ましい実施の形態を添付された図面を参照して詳細に説明する。添付された図面と共に以下に開示する詳細な説明は、本発明の例示的な実施の形態を説明するためのものであり、本発明が実施されうる唯一の実施の形態を示すためのものではない。以下の詳細な説明は、本発明の完全な理解を提供するために具体的細部事項を含む。しかしながら、当業者は、本発明がこのような具体的細部事項がなくても実施できることを理解すべきである。
いくつかの場合、本発明の概念が曖昧になることを避けるために、公知の構造及び装置は省略されるか、または各構造及び装置の核心機能を重心にしたブロック図形式で示されることができる。
本明細書において基地局は、端末と直接的に通信を行うネットワークの終端ノード(terminal node)としての意味を有する。本文書において基地局により行われると説明された特定動作は、場合によっては、基地局の上位ノード(upper node)により行われても良い。すなわち、基地局を含む複数のネットワークノード(network nodes)からなるネットワークにおいて端末との通信のために行われる多様な動作は、基地局または基地局以外の他のネットワークノードにより行われうることは明らかである。「基地局(BS:Base Station)」は、固定局(fixed station)、Node B、eNB(evolved−NodeB)、BTS(base transceiver system)、アクセスポイント(AP:Access Point), gNB(g-NodeB, NR(NewRAT)/5G-NodeB), Remote radio head(RRH), transmission point(TP), reception point(RP), transmission/reception point(TRP), relay などの用語により代替されることができる。また、「端末(Terminal)」は、固定されるか、または移動性を有することができ、UE(User Equipment)、MS(Mobile Station)、UT(user terminal)、MSS(Mobile subscriber Station)、SS(Subscriber Station)、AMS(Advanced Mobile Station)、WT(Wireless terminal)、MTC(Machine−Type Communication)装置、M2M(Machine−to−Machine)装置、D2D(Device−to−Device)装置などの用語に代替されることができる。
以下、ダウンリンク(DL:downlink)は、基地局から端末への通信を意味し、アップリンク(UL:uplink)は、端末から基地局への通信を意味する。ダウンリンクにおける送信機は、基地局の一部で、受信機は、端末の一部でありうる。アップリンクにおける送信機は、端末の一部で、受信機は、基地局の一部でありうる。
以下の説明において用いられる特定用語は、本発明の理解に役立つために提供されたものであり、このような特定用語の使用は、本発明の技術的思想から外れない範囲内で他の形態に変更されることができる。
以下の技術は、CDMA(code division multiple access)、FDMA(frequency division multiple access)、TDMA(time division multiple access)、OFDMA(orthogonal frequency division multiple access)、SC−FDMA(single carrier frequency division multiple access)、NOMA(non−orthogonal multiple access)などのような多様な無線接続システムに利用されることができる。CDMAは、UTRA(universal terrestrial radio access)またはCDMA2000のような無線技術(radio technology)により具現化されることができる。TDMAは、GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)のような無線技術により具現化されることができる。OFDMAは、IEEE 802.11(Wi−Fi)、IEEE 802.16(WIMAX)、IEEE 802−20、E−UTRA(evolved UTRA)などのような無線技術により具現化されることができる。UTRAは、UMTS(universal mobile telecommunications system)の一部である。3GPP(3rd generation partnership project)LTE(long term evolution)は、E−UTRAを使用するE−UMTS(evolved UMTS)の一部であり、ダウンリンクにおいてOFDMAを採用し、アップリンクにおいてSC−FDMAを採用する。LTE−A(advanced)は、3GPP LTEの進化である。
本発明の実施の形態は、無線接続システムであるIEEE 802、3GPP及び3GPP2のうち、少なくとも1つに開示された標準文書により裏付けられることができる。すなわち、本発明の実施の形態のうち、本発明の技術的思想を明確にあらわすために、説明しない段階または部分は、前記文書により裏付けられることができる。また、本文書に開示しているすべての用語は、前記標準文書により説明されることができる。
説明を明確にするために、3GPP LTE/LTE−Aを中心に述べるが、本発明の技術的特徴がこれに制限されることではない。
システム一般
図1は、本発明が適用できる無線通信システムにおける無線フレームの構造を示す。
3GPP LTE/LTE−Aでは、FDD(Frequency Division Duplex)に適用できるタイプ1の無線フレーム(radio frame)構造とTDD(Time Division Duplex)に適用できるタイプ2の無線フレーム構造を支援する。
図1の(a)は、タイプ1の無線フレームの構造を例示する。無線フレームは10個のサブフレームから構成される。1つのサブフレームは、時間領域(time domain)において2つのスロット(slot)から構成される。1つのサブフレームの送信にかかる時間をTTI(transmission time interval)という。例えば、1つのサブフレームの長さは1msであり、1つのスロットの長さは0.5msでありうる。
1つのスロットは、時間領域において複数のOFDM(orthogonal frequency division multiplexing)シンボルを含み、周波数領域において複数の資源ブロック(RB:Resource Block)を含む。3GPP LTEは、ダウンリンクでOFDMAを用いるので、OFDMシンボルは1つのシンボル区間(symbol period)を表現するためのものである。OFDMシンボルは、1つのSC−FDMAシンボル又はシンボル区間ということができる。資源ブロックはリソース割り当て単位であり、1つのスロットにおいて複数の連続的な副搬送波(subcarrier)を含む。
図1の(b)は、タイプ2のフレーム構造(frame structure type 2)を示す。タイプ2の無線フレームは2つのハーフフレーム(half frame)から構成され、各ハーフフレームは、5つのサブフレームとDwPTS(Downlink Pilot Time Slot)、保護区間(GP:Guard Period)、UpPTS(Uplink Pilot Time Slot)から構成され、このうち1つのサブフレームは2つのスロットから構成される。DwPTSは、端末での初期セル探索、同期化又はチャネル推定に用いられる。UpPTSは、基地局でのチャネル推定と端末のアップリンク送信同期を合わせるのに用いられる。保護区間は、アップリンクとダウンリンクとの間にダウンリンク信号のマルチパス遅延によりアップリンクで発生する干渉を除去するための区間である。
TDDシステムのタイプ2のフレーム構造において、アップリンク−ダウンリンク構成(uplink-downlink configuration)は全てのサブフレームに対してアップリンクとダウンリンクが割り当てられる(又は、予約される)かを示す規則である。表1はアップリンク−ダウンリンク構成を示す。
表1を参照すると、無線フレームの各サブフレーム別に、「D」はダウンリンク送信のためのサブフレームを示し、「U」はアップリンク送信のためのサブフレームを示し、「S」はDwPTS、GP、UpPTSの3種類のフィールドから構成されるスペシャルサブフレーム(special subframe)を示す。アップリンク−ダウンリンク構成は、7種類に区分されることができ、各構成別にダウンリンクサブフレーム、スペシャルサブフレーム、アップリンクサブフレームの位置及び/または数が異なる。
ダウンリンクからアップリンクに変更される時点またはアップリンクからダウンリンクに切り替えられる時点を切り替え時点(switching point)という。切り替え時点の周期性(Switch−point periodicity)は、アップリンクサブフレームとダウンリンクサブフレームが切り替えられる様相が同様に繰り返される周期を意味し、5msまたは10msが全て支援される。5msのダウンリンク−アップリンク切り替え時点の周期を有する場合には、スペシャルサブフレーム(S)は、ハーフフレーム毎に存在し、5msのダウンリンク−アップリンク切り替え時点の周期を有する場合には、1番目のハーフフレームだけに存在する。
すべての構成において、0番、5番サブフレーム及びDwPTSは、ダウンリンク送信だけのための区間である。UpPTS及びサブフレームのサブフレームに直ちにつながるサブフレームは、常にアップリンク送信のための区間である。
このような、アップリンク−ダウンリンク構成はシステム情報であって、基地局と端末ともが知っていることができる。基地局は、アップリンク−ダウンリンク構成情報が変わる毎に構成情報のインデックスだけを送信することによって、無線フレームのアップリンク−ダウンリンク割り当て状態の変更を端末に知らせることができる。また、構成情報は、一種のダウンリンク制御情報として他のスケジューリング情報と同様にPDCCH(Physical Downlink control Channel)を介して送信されることができ、放送情報としてブロードキャストチャネル(broadcast channel)を介してセル内のすべての端末に共通に送信されることもできる。
表2は、スペシャルサブフレームの構成(DwPTS/GP/UpPTSの長さ)を示す。
1つの例示に過ぎず、無線フレームに含まれる副搬送波の数またはサブフレームに含まれるスロットの数、スロットに含まれるOFDMシンボルの数は、多様に変更されることができる。
図2は、本発明が適用されることができる無線通信システムにおける1つのダウンリンクスロットに対する資源グリッド(resource grid)を示した図である。
図2に示すように、1つのダウンリンクスロットは、時間領域において複数のOFDMシンボルを含む。ここで、1つのダウンリンクスロットは、7個のOFDMシンボルを含み、1つの資源ブロックは、周波数領域において12個の副搬送波を含むことを例示的に述べるが、これに限定されるものではない。
資源グリッド上において各要素(element)を資源要素(resource element)とし、1つの資源ブロック(RB:resource block)は、12×7個の資源要素を含む。ダウンリンクスロットに含まれる資源ブロックの数N^DLは、ダウンリンク送信帯域幅(bandwidth)に従属する。
アップリンクスロットの構造は、ダウンリンクスロットの構造と同一でありうる。
図3は、本発明が適用されることができる無線通信システムにおけるダウンリンクサブフレームの構造を示す。
図3に示すように、サブフレーム内の第1番目のスロットにおいて前の最大3個のOFDMシンボルは、制御チャネルが割り当てられる制御領域(control region)であり、残りのOFDMシンボルは、PDSCH(Physical Downlink Shared Channel)が割り当てられるデータ領域(data region)である。3GPP LTEで使用されるダウンリンク制御チャネルの一例にPCFICH(Physical Control Format Indicator Channel)、PDCCH(Physical Downlink control Channel)、PHICH(Physical Hybrid−ARQ Indicator Channel)などがある。
PCFICHは、サブフレームの第1番目のOFDMシンボルにおいて送信され、サブフレーム内で制御チャネルの送信のために使用されるOFDMシンボルの数(すなわち、制御領域のサイズ)に関する情報を運ぶ。PHICHは、アップリンクに対する応答チャネルで、HARQ(Hybrid Automatic Repeat Request)に対するACK(Acknowledgement)/NACK(Not−Acknowledgement)信号を運ぶ。PDCCHを介して送信される制御情報をダウンリンク制御情報(DCI:downlink control information)という。ダウンリンク制御情報は、アップリンク資源割り当て情報、ダウンリンク資源割り当て情報または任意の端末グループに対するアップリンク送信(Tx)パワー制御命令を含む。
PDCCHは、DL−SCH(Downlink Shared Channel)の資源割り当て及び送信フォーマット(これをダウンリンクグラントともいう)、UL−SCH(Uplink Shared Channel)の資源割り当て情報(これをアップリンクグラントともいう)、PCH(Paging Channel)でのページング(paging)情報、DL−SCHでのシステム情報、PDSCHから送信されるランダムアクセス応答(random access response)のような上位層(upper−layer)制御メッセージに対する資源割り当て、任意の端末グループ内の個別端末に対する送信パワー制御命令の集合、VoIP(Voice over IP)の活性化などを運ぶことができる。複数のPDCCHは、制御領域内で送信されることができ、端末は、複数のPDCCHをモニタリングできる。PDCCHは、1つまたは複数の連続的なCCE(control channel elements)の集合から構成される。CCEは、無線チャネルの状態に応じる符号化率(coding rate)をPDCCHに提供するために使用される論理的割り当て単位である。CCEは、複数の資源要素グループ(resource element group)に対応する。PDCCHのフォーマット及び使用可能なPDCCHのビット数は、CCEの数とCCEにより提供される符号化率間の関連関係によって決定される。
基地局は、端末に送信しようとするDCIに応じてPDCCHフォーマットを決定し、制御情報にCRC(Cyclic Redundancy Check)を付ける。CRCには、PDCCHの所有者(owner)または用途に応じて、固有の識別子(これをRNTI(Radio Network Temporary Identifier)という。)がマスキングされる。特定の端末のためのPDCCHであれば、端末の固有の識別子、例えばC−RNTI(Cell−RNTI)がCRCにマスキングされることができる。またはページングメッセージのためのPDCCHであれば、ページング指示識別子、例えばP−RNTI(Paging−RNTI)がCRCにマスキングされることができる。システム情報、さらに具体的にシステム情報ブロック(SIB:system information block)のためのPDCCHであれば、システム情報識別子、SI−RNTI(system information RNTI)がCRCにマスキングされることができる。端末のランダムアクセスプリアンブルの送信に対する応答であるランダムアクセス応答を指示するために、RA−RNTI(random access−RNTI)がCRCにマスキングされることができる。
図4は、本発明が適用されることができる無線通信システムにおけるアップリンクサブフレームの構造を示す。
図4に示すように、アップリンクサブフレームは、周波数領域において制御領域とデータ領域とに分けられる。制御領域には、アップリンク制御情報を運ぶPUCCH(Physical Uplink control Channel)が割り当てられる。データ領域は、ユーザデータを運ぶPUSCH(Physical Uplink Shared Channel)が割り当てられる。単一搬送波特性を維持するために、1つの端末は、PUCCHとPUSCHを同時に送信しない。
1つの端末に対するPUCCHにはサブフレーム内に資源ブロック(RB)対が割り当てられる。RB対に属するRBは、2つのスロットのそれぞれにおいて異なる副搬送波を占める。これを、PUCCHに割り当てられたRB対はスロット境界(slot boundary)で周波数ホッピング(frequency hopping)されるという。
より多くの通信機器がさらに大きい通信容量を要求するようになるにつれて既存のRATに比べて向上したモバイルブロードバンド(mobile broadband)通信の必要性が高くなっている。また、複数の機器及び物を接続していつでもどこでも様々なサービスを提供する大規模MTC(massive MTC(Machine Type Communications)も次世代通信において考慮される主な問題の1つである。それだけでなく、次世代通信において信頼度(reliability)及び遅延(latency)に敏感なサービス/UEを考慮した通信システムデザインが論議されている。このように、向上した移動広域通信(enhanced mobile broadband communication)、大規模MTC(massive MTC)、URLLC(Ultra-Reliable and Low Latency Communication)などを考慮した次世代RATの導入が論議されており、このような技術を「New RAT」という。
自己完結型(Self-contained)サブフレーム構造
図5は、本発明が適用できる自己完結型サブフレーム構造を例示する。
TDDシステムにおいてデータ送信遅延を最小化するために、5世代New RATでは図5に示すような自己完結型サブフレーム構造が考慮されている。図5において斜線領域はダウンリンク制御領域、黒色部分はアップリンク制御領域を示す。また、図5において表示無しの領域はダウンリンクデータ送信のために用いられることもでき、アップリンクデータ送信のために用いられることもできる。このような構造の特徴は、1つのサブフレーム内でDL送信とUL送信が順次行われることができるため、1つのサブフレーム内でDLデータを送り、UL ACK/NACKを受けることができる。結果的に、データ送信エラーの発生時にデータの再送信までかかる時間が短縮され、これにより、最終データ伝達までの遅延を最小化することができる。
New RATに基づいて動作するシステムにおいて、構成/設定可能な前記自己完結型サブフレーム構造の一例として、少なくとも次のような4種類のサブフレームタイプを考慮することができる。以下、各サブフレームタイプで存在する区間は時間順に列挙した。
1)DL制御区間+DLデータ区間+GP(guard period)+UL制御区間
2)DL制御区間+DLデータ区間
3)DL制御区間+GP+ULデータ区間+UL制御区間
4)DL制御区間+GP+ULデータ区間
このような自己完結型サブフレーム構造において、基地局とUEが送信モードから受信モードに切り替えられる過程又は受信モードから送信モードに切り替えられる過程のための時間ギャップ(time gap)が必要である。このために、サブフレーム構造において、DLからULに切り替えられる時点のOFDMシンボルの一部がGPに設定され、このようなサブフレームタイプは「self−contained SF」ということができる。
アナログビームフォーミング(analog beamforming)
ミリメートル波 (Milli Meter Wave:mmW)では、波長が短くなって同一面積に複数のアンテナの設置が可能となる。すなわち、30GHz帯域において波長は1cmであり、5×5cmのパネルに0.5ラムダ(波長)間隔で2次元配列形態で合計100個のアンテナ要素(element)が設置できる。従って、mmWでは複数のアンテナ要素を用いてビームフォーミング(beamforming:BF)利得を向上させてカバレッジを増加させるか、スループット(throughput)を向上させようとする。
この場合は、アンテナ要素別に送信パワー及び位相調節ができるようにTXRU(transceiver unit)を有すると、周波数資源別に独立的なビームフォーミングが可能である。しかしながら、約100個のアンテナ要素の全てにTXRUを設置することにはコストの側面で実効性が低下するという問題がある。従って、1つのTXRUに複数のアンテナ要素をマッピングし、アナログ位相シフター(analog phase shifter)でビームの方向を調節する方式が考慮されている。このようなアナログビームフォーミング方式は全帯域において1つのビーム方向のみを生成できるため、周波数選択的ビームフォーミングができないという欠点がある。
デジタルBFとアナログBFの中間形態でQ個のアンテナ要素より少ない個数のB個のTXRUを有するハイブリッド(hybrid)BFも考慮することができる。この場合、B個のTXRUとQ個のアンテナ要素の接続方式によって違いはあるが、同時に送信できるビームの方向はB個以下に制限される。
図6及び図7は、TXRUとアンテナ要素の代表的な接続方式を示す。より詳細には、図6は、第1TXRU仮想化モデルオプションであるサブアレイパーティションモデルを例示し、図7は、第2TXRU仮想化モデルオプションであるプール−コネクションモデルを例示する。図6及び図7において、TXRU仮想化モデルは、TXRUの出力信号とアンテナ要素の出力信号間の関係を示す。
図6に示すように、TXRUがサブアレイに接続される仮想化モデルの場合、アンテナ要素は1つのTXRUにのみ接続される。これとは異なり、TXRUが全てのアンテナ要素に接続される仮想化モデルの場合、アンテナ要素は全てのTXRUに接続される。本図において、Wはアナログ位相シフターにより乗算される位相ベクトルを示す。すなわち、Wによりアナログビームフォーミング方向が決定される。ここで、CSI−RSアンテナポートとTXRUとのマッピングは、1対1(1 to 1, 1:1)又は一対多(1 to many, 1:N)でありうる。
参照信号(RS:Reference Signal)
無線通信システムにおけるデータは無線チャンネルを介して転送されるので、信号は転送中に歪むことがある。受信端で歪んだ信号を正確に受信するために、受信された信号の歪みはチャンネル情報を用いて補正されなければならない。チャンネル情報を検出するために送信側と受信側の両方とも知っている信号転送方法と信号がチャンネルを介して転送される時、歪んだ程度を用いてチャンネル情報を検出する方法を主に用いる。前述した信号をパイロット信号または参照信号(RS:reference signal)という。
また、最近、大部分の移動通信システムでパケットを転送する時、今まで1つの送信アンテナと1つの受信アンテナを使用したことから脱皮して、複数の送信アンテナと複数の受信アンテナを採用して送受信データ効率を向上させることができる方法を使用する。複数の入出力アンテナを用いてデータを送受信する時、信号を正確に受信するために送信アンテナと受信アンテナとの間のチャンネル状態が検出されなければならない。したがって、各送信アンテナは個別的な参照信号を有しなければならない。
移動通信システムにおけるRSはその目的によって2つに大別できる。チャンネル状態情報獲得のための目的のRSとデータ復調のために使われるRSがある。前者はUEがダウンリンクへのチャンネル状態情報を獲得することにその目的があるので、広帯域に転送されなければならず、特定サブフレームでダウンリンクデータを受信しないUEでもそのRSを受信し測定できなければならない。また、これはハンドオーバーなどの無線資源管理(RRM:Radio Resource Management)測定などのためにも使われる。後者は、基地局がダウンリンクを送る時、該当リソースに共に送るRSであって、UEは該当RSを受信することによってチャンネル推定を行うことができ、したがって、データを復調できるようになる。このRSはデータが転送される領域に転送されなければならない。
下り参照信号はセル内の全ての端末が共有するチャンネル状態に対する情報獲得及びハンドオーバーの測定などのための1つの共通参照信号(CRS:common RS)と特定端末のみのためにデータ復調のために使われる専用参照信号(dedicated RS)がある。このような参照信号を用いて復調(demodulation)とチャンネル測定(channel measurement)のための情報を提供することができる。すなわち、DRSはデータ復調用のみに使われ、CRSはチャンネル情報獲得及びデータ復調の2つの目的に全て使われる。
受信側(すなわち、端末)はCRSからチャネル状態を測定し、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Index)及び/又はRI(Rank Indicator)などのチャネル品質に関連したインジケータを送信側(すなわち、基地局)にフィードバックする。CRSは、セル固有参照信号(cell-specific RS)ともいう。それに対して、チャネル状態情報(CSI: Channel State Information)のフィードバックに関連した参照信号をCSI−RSと定義することができる。
3GPP LTE(−A)システムにおいては、UEがCSIを基地局(BS)に報告するように定義されており、ここで、CSIは、UEとアンテナポートとの間に形成される無線チャネル(又は、リンクともいう)の品質を示す情報を総称する。例えば、ランクインジケータ(rank indicator:RI)、プリコーディング行列インジケータ(precoding matrix indicator:PMI)、及び/又はチャネル品質インジケータ(channel quality indicator:CQI)などがCSIに該当する。ここで、RIは、チャネルのランク(rank)情報を示し、これは、UEが同一時間−周波数資源を通じて受信するストリームの数を意味する。RIは、チャネルのロングターム(long-term)フェージング(fading)により従属して決定されるので、通常はPMI、CQIよりさらに長い周期でUEから基地局にフィードバックされることができる。PMIは、チャネル空間特性を反映した値であり、SINRなどのメトリック(metric)を基準にUEが好むプリコーディングインデックスを示す。CQIは、チャネルの強度を示す値であり、一般的に基地局がPMIを用いたときに得られる受信SINRを意味する。
3GPP LTE(−A)システムにおいて、基地局は複数のCSIプロセスをUEに設定し、各プロセスに対するCSIの報告を受けることができる。ここで、CSIプロセスは、基地局からの信号品質測定のためのCSI−RSと干渉測定のためのCSI−IM(CSI-interference measurement)資源を含むことができる。
DRSは、PDSCH上のデータ復調が必要である場合、資源要素を通じて送信されることができる。端末は上位層を介してDRSが存在するか否かを受信することができ、対応するPDSCHがマッピングされたときにのみ有効である。DRSを端末固有参照信号(UE-specific RS)又は復調参照信号(DMRS: Demodulation RS)ということができる。
図8は、本発明が適用できる無線通信システムにおいてダウンリンク資源ブロック対にマッピングされた参照信号パターンを例示する。
図8に示すように、参照信号がマッピングされる単位でダウンリンク資源ブロック対は時間領域において1つのサブフレーム×周波数領域において12個の副搬送波で示すことができる。すなわち、時間軸(x軸)上で1つの資源ブロック対は、ノーマル巡回プレフィックス(normal CP(Cyclic Prefix))である場合は14個のOFDMシンボルの長さを有し(図7aの場合)、拡張巡回プレフィックス(extended CP)である場合は12個のOFDMシンボルの長さを有する(図7bの場合)。資源ブロック格子において「0」、「1」、「2」及び「3」と記載されている資源要素(REs)はそれぞれアンテナポートインデックス「0」、「1」、「2」及び「3」のCRSの位置を意味し、「D」と記載されている資源要素はDRSの位置を意味する。
基地局が単一の送信アンテナを使用する場合、単一アンテナポートのための参照信号が配列される。
基地局が2個の送信アンテナを使用する場合、2個の送信アンテナポートのための参照信号は時分割多重化(TDM:Time Division Multiplexing)及び/又は周波数分割多重化(FDM Frequency Division Multiplexing)方式を用いて配列される。すなわち、2個のアンテナポートのための参照信号は各々が区別されるために互いに異なる時間資源及び/又は互いに異なる周波数資源が割り当てられる。
なお、基地局が4個の送信アンテナを使用する場合、4個の送信アンテナポートのための参照信号はTDM及び/又はFDM方式を用いて配列される。ダウンリンク信号の受信側(端末)により測定されたチャンネル情報は、単一の送信アンテナ転送、送信ダイバーシティ、閉ループ空間多重化(closed−loop spatial multiplexing)、開ループ空間多重化(open−loop spatial multiplexing)、またはマルチユーザMIMO(multi−User MIMO)のような転送方式を用いて転送されたデータを復調するために使われることができる。
複数の入出力アンテナが支援される場合、参照信号が特定のアンテナポートから転送される時、前記参照信号は参照信号のパターンによって特定された資源要素の位置に転送され、異なるアンテナポートのために特定された資源要素の位置に転送されない。すなわち、互いに異なるアンテナ間の参照信号は互いに重ならない。
LTEシステムの進化発展した形態のLTE−Aシステムで基地局のダウンリンクに最大8個の送信アンテナが支援できるようにデザインされなければならない。したがって、最大8個の送信アンテナに対するRSも支援されなければならない。LTEシステムでダウンリンクRSは最大4個のアンテナポートに対するRSのみ定義されているので、LTE−Aシステムで基地局が4個以上最大8個のダウンリンク送信アンテナを有する場合、これらアンテナポートに対するRSが追加的に定義されデザインされなければならない。最大8個の送信アンテナポートに対するRSは、前述したチャンネル測定のためのRSとデータ復調のためのRSの2つが全てデザインされなければならない。
LTE−Aシステムをデザインするに当たって、重要な考慮事項のうちの1つは、下位互換性(backward compatibility)、すなわちLTE端末がLTE−Aシステムでも何の無理なく、よく動作しなければならず、システムもこれを支援しなければならないことである。RS転送の観点から見ると、LTEで定義されているCRSが全帯域にサブフレーム毎に転送される時間−周波数領域で追加的に最大8個の送信アンテナポートに対するRSが追加的に定義されなければならない。LTE−Aシステムで既存LTEのCRSのような方式により最大8個の送信アンテナに対するRSパターンをサブフレーム毎に全帯域に追加するようになれば、RSオーバーヘッドが大きすぎるようになる。
したがって、LTE−Aシステムで新しくデザインされるRSは2つに大別されるが、MCS、PMIなどの選択のためのチャンネル測定目的のRS(CSI−RS:Channel State Information−RS、Channel State Indication−RSなど)と8個の転送アンテナに転送されるデータ復調のためのRS(DM−RS:Data Demodulation−RS)である。
チャンネル測定目的のCSI−RSは既存のCRSがチャンネル測定、ハンドオーバーなどの測定などの目的と共に、データ復調のために使われることとは異なり、チャンネル測定中心の目的のためにデザインされる特徴がある。勿論これもまたハンドオーバーなどの測定などの目的に使われることもできる。CSI−RSがチャンネル状態に対する情報を得る目的のみに転送されるので、CRSとは異なり、サブフレーム毎に転送されなくてもよい。CSI−RSのオーバーヘッドを減らすためにCSI−RSは時間軸上で間歇的に転送される。
LTE−Aシステムで基地局のダウンリンクに最大8個の送信アンテナを支援する。LTE−Aシステムで既存LTEのCRSのような方式により最大8個の送信アンテナに対するRSをサブフレーム毎に全帯域に転送するようになれば、RSオーバーヘッドが大きすぎるようになる。したがって、LTE−Aシステムでは、MCS、PMIなどの選択のためのCSI測定目的のCSI−RSとデータ復調のためのDM−RSに分離されて2つのRSが追加された。CSI−RSはRRM測定などの目的に使われることもできるが、CSI獲得の主目的のためにデザインされた。CSI−RSはデータ復調に使われないので、サブフレーム毎に転送される必要はない。したがって、CSI−RSのオーバーヘッドを減らすために時間軸上で間歇的に転送するようにする。すなわち、CSI−RSは1サブフレームの整数倍の周期で周期的に転送されるか、または特定転送パターンに転送できる。この際、CSI−RSが転送される周期やパターンはeNBが設定することができる。
CSI−RSを測定するためにUEは必ず自身が属したセルの各々のCSI−RSアンテナポートに対するCSI−RSの転送サブフレームインデックス、転送サブフレーム内のCSI−RS資源要素(RE)時間−周波数の位置、そしてCSI−RSシーケンスなどに対する情報を知っていなければならない。
LTE−AシステムでeNBはCSI−RSを最大8個のアンテナポートに対して各々転送しなければならない。互いに異なるアンテナポートのCSI−RS転送のために使われる資源は互いに直交(orthogonal)しなければならない。1つのeNBが互いに異なるアンテナポートに対するCSI−RSを転送する時、各々のアンテナポートに対するCSI−RSを互いに異なるREにマッピングすることによって、FDM/TDM方式によりこれらの資源を直交(orthogonal)に割り当てることができる。または、互いに異なるアンテナポートに対するCSI−RSを互いに直交(orthogonal)したコードにマッピングさせるDM方式により転送することができる。
CSI−RSに関する情報をeNBが自分のセルUEに知らせる時、まず各アンテナポートに対するCSI−RSがマッピングされる時間−周波数に対する情報を知らせなければならない。具体的に、CSI−RSが転送されるサブフレーム番号、またはCSI−RSが転送される周期、CSI−RSが転送されるサブフレームオフセットであり、特定アンテナのCSI−RS REが転送されるOFDMシンボル番号、周波数間隔(spacing)、周波数軸でのREのオフセット、またはシフト値などがある。
CSI−RSは1個、2個、4個、または8個のアンテナポートを介して転送される。この際、使われるアンテナポートは、各々p=15、p=15、16、p=15,...,18、p=15,...,22である。CSI−RSはサブキャリア間隔Δf=15kHzに対してのみ定義できる。
RS仮想化(Virtualization)
mmWにおいてアナログビームフォーミングにより一時点で1つのアナログビーム方向にのみPDSCH送信が可能である。その結果、該当方向にある一部の少数のUEにのみ基地局からデータ送信が可能となる。従って、必要によってアンテナポート別にアナログビーム方向が異なるように設定して様々なアナログビーム方向にある複数のUEに同時にデータ送信を行うことができる。
以下では、256個のアンテナ要素を4等分して4つのサブアレイを形成し、図9に示すように、サブアレイにTXRUを接続した構造の例示を中心に説明する。
図9は、TXRU別のサービス領域を例示した図である。
各サブアレイが2次元(2-dimension)配列形態で合計64(8×8)のアンテナ要素から構成されると、特定アナログビームフォーミングにより15度の水平角領域と15度の垂直角領域に該当する地域をカバーすることができる。すなわち、基地局がサービスしなければならない地域を複数の領域に分けて、一度に1つずつサービスできるようにする。以下の説明において、CSI−RSアンテナポートとTXRUは1対1(1-to-1)マッピングされたと仮定する。従って、以下ではアンテナポートとTXRUは実質的に同一の意味を有する。
図9(a)の例示のように、全てのTXRU(アンテナポート、サブアレイ)が同一のアナログビームフォーミング方向を有すると、より高いレゾリューション(resolution)を有するデジタルビーム(digital beam)を形成して該当地域のスループットを増加させることができる。また、該当地域に送信データのランクを増加させて該当地域のスループットを増加させることができる。
図9(b)に示すように、各TXRU(アンテナポート、サブアレイ)が異なるアナログビームフォーミング方向を有すると、より広い領域に分布したUEに該当サブフレーム(SF)で同時にデータ送信が可能となる。例えば、4つのアンテナポートのうち2つは領域1にあるUE1へPDSCH送信を行うために用い、残り2つは領域2にあるUE2へPDSCH送信を行うために用いることができる。
図9(b)においては、UE1に送信されるPDSCH1とUE2に送信されるPDSCH2がSDM(Spatial Division Multiplexing)された例を示す。これとは異なり、図9(c)においては、UE1に送信されるPDSCH1とUE2に送信されるPDSCH2がFDM(Frequency Division Multiplexing)された例を示す。
全てのアンテナポートを用いて一領域をサービスする方式と、アンテナポートを分けて複数の領域を同時にサービスする方式のうち、セルスループットを最大化するために、UEにサービスするランク及びMCSによって好まれる方式が変更できる。また、各UEに送信するデータの量によって好まれる方式が変更できる。
基地局は、全てのアンテナポートを用いて一領域をサービスするときに得られるセルスループット又はスケジューリングメトリックを計算し、アンテナポートを分けて二領域をサービスするときに得られるセルスループット又はスケジューリングメトリックを計算する。基地局は、各方式で得られるセルスループット又はスケジューリングメトリックを比較して最終送信方式を選択する。その結果、SF別に(SF-by-SF)にPDSCH送信に参加するアンテナポートの数が変動することができる。基地局がアンテナポートの数に応じるPDSCHの送信MCSを計算してスケジューリングアルゴリズムに反映するために、これに適合するUEからのCSIフィードバックが要求されることができる。
ビーム参照信号(Beam reference signal:BRS)及びビーム改良参照信号(Beam refinement reference signal:BRRS)
BRSは、少なくとも1つのアンテナポートp={0、1、…、7}で送信されることができる。BRSシーケンス
は、以下の数1のように定義されることができる。
数1において、
=0、1、…、13は、OFDMシンボルナンバーを示す。また、c(i)は疑似ランダム(pseudo-random)シーケンス生成器(generator)を示し、各OFDMシンボルの開始地点で数2により初期化されることができる。
BRRSは、最大8つのアンテナポートp=600、…、607で送信することができる。BRRSの送信及び受信は、xPDCCHでのダウンリンクリソース割り当てで動的にスケジューリングされることができる。
BRRSシーケンス
は、以下の数3のように定義されることができる。
数3において、n_sは無線フレーム内のスロットナンバーを示し、lは前記スロット内のOFDMシンボルナンバー、c(n)は疑似ランダムシーケンスを示す。前記疑似ランダムシーケンス生成器は、各OFDMシンボルの開始地点で数4により初期化されることができる。
数4において、
は、RRC(Radio Resource Control)シグナリングを通じてUEに設定される。
BRSは、サブフレーム毎に送信されることができ、ポート別に異なるアナログビーム方向に送信されることができる。このようなBRSは、基地局がUEに対するおおよそのアナログビーム方向を決定するのに用いられる。BRSに基づいてUEに対するおおよそのアナログビーム方向が決定されると、基地局は決定されたアナログビーム方向範囲内でより精密な/細かいアナログビーム方向別にBRRSを送信してUEに対するより精密なアナログビーム方向を決定することができる。
このように、UEに対するアナログビーム方向を決定するのに用いられる参照信号に対する名称は、前述したBRS又はBRRSに限定されず、同一の機能を実行するのに使用可能な様々な参照信号で代替できる/呼ばれ得ることは言うまでもない。例えば、BRSは、プライマリ/ファースト(primary/first)CSI−RS、PSS(Primary synchronization signal/sequence)、SSS(Secondary synchronization signal/sequence)、SS(Synchronization Signal/Sequence)block、NR−PSS、及び/又はNR−SSSで代替され/と呼ばれ得るものであり、BRRSは、セカンダリ/セカンド(secondary/second)CSI−RSで代替され/と呼ばれ得る。
ダウンリンク位相ノイズ補償参照信号(DL Phase noise compensation reference signal:DL PCRS)
xPDSCHに連係されたPCRSは、DCIフォーマットでシグナリングされるようにアンテナポートP=60又はP=61で送信されることができる。xPDSCH送信が対応するアンテナポートと連係された場合にのみPCRSが存在し、このときのPCRSは位相ノイズ補償に対する有効な参照となることができる。PCRSは、対応するxPDSCHがマッピングされた物理資源ブロック及びシンボルでのみ送信されることができる。PCRSは、xPDSCH割り当てに対応する全てのシンボルで同一でありうる。
アンテナポートp=60、61のうちどちらのポートに対しても、PCRSシーケンスr(m)は数5のように定義されることができる。
数5において、c(i)は疑似ランダムシーケンスを示す。前記疑似ランダムシーケンス生成器は、各サブフレームの開始地点で数6により初期化されることができる。
数6において
はi=0、1であるときに以下のように決定される。
−もし、
に対する値が上位層により提供されない場合、
n_SCID値は、特別に決定されないと、0に設定されることができる。xPDSCH送信において、n_SCIDはxPDSCH送信に連係されたDCIフォーマットにより与えられることができる。
2D(dimension)−AAS(Active Antenna System)を用いた3D MIMOシステム
図10は、本発明の一実施形態による2D AASを用いた3D MIMOシステムを例示した図である。
LTE標準(Rel−12)に基づいて図10のような単一セル2D−AAS基地局に適合する最適な送信方式として、次の方式を考慮することができる。
図10に示すような8−by−8のアンテナアレイを用いてCSI−RSポートを構成する一例として、縦に配列された8つのアンテナ単位で特定ターゲットUEに最適化された「UE専用(UE-dedicated)ビーム係数」が適用されたプリコーディングされた(precoded)CSI−RSポートが1つずつ構成されることにより、横に合計8ポート(垂直方向にプリコーディングされた(vertically precoded))CSI−RSが構成/設定/送信されることができる。この場合、端末は、このようなCSI−RSに対して従来のような8ポートCSIフィードバックを行う。つまり、これにより個別端末(又は、特定端末グループ)に最適化された垂直方向ビーム利得が適用された(プリコーディングされた)8ポートCSI−RSが送信され、無線チャネルを体験した後、端末により測定される。従って、端末は、従来の水平方向コードブックによる同一のフィードバック方式を行っても、前記(垂直方向にプリコーディングされた(vertically precoded))CSI−RSに対するCSI測定及び報告動作により既に無線チャネルの垂直方向ビーム利得効果を得ることができる。ここで、個別端末に最適化された垂直方向ビームを決定するための方法としては、(垂直方向にプリコーディングされた)スモールセル探索RS(discovery RS:DRS)によるRRM報告結果に応じた方法、端末のsounding RS(SRS)を基地局が最適な受信ビーム方向に受信し、このビーム方向をchannel reciprocity(チャネル相互関係)によりDL最適ビーム方向に変換して適用する方法などが適用される。
もし、端末の移動性などにより、UE専用最適(best)V−ビーム方向が変更されたと(基地局端で)判断されるとき、従来の動作によると、CSI−RS及び関連CSI手順などのRRC設定が全て再設定(re-configure)されなければならない。この場合、RRC再設定過程に伴うRRCレベルの遅延(例えば、数十〜数百ms単位)の発生が避けられない。例えば、ネットワーク次元では事前にターゲットV−ビーム方向を4つに分割し、それぞれに対するV−方向プリコーディングが適用された別途の8ポートCSI−RSを別途の送信資源位置で送信し、各UEは、このうち特定1つのCSI−RS資源に対してCSI測定及び報告を行う。従って、ターゲットV−ビーム方向が変更されると、ネットワークは変更されるCSI−RS設定にRRC再設定を行うしかない。
RRCレベル遅延をなくすか、大幅に減らすための案として、UEに単一CSI手順及び単一ULフィードバック資源のみを割り当てておき、測定対象となるCSI−RSインデックス(及び/又は、CSI−IMインデックス)が何であるかをMAC(Media Access Control)レベル(又は、DCIレベル)で指示する方式及びそれと関連した多様な技術が提案されている。すなわち、基地局は、端末にRRCレベルで複数の候補CSI−RSを設定し、このうちどのCSI−RSが「活性化(activate)」されるかを(MACレベルで又はDCIレベルで)通知することができる。このとき、例えば、活性化されたCSI−RSをCSI−RS1からCSI−RS2に変更するか否かが考慮される状況であれば、基地局は、実際CSI−RS2に対する再活性化命令をする前、端末がCSI−RS2に対する「トラッキング」を予め行っていることができるように一種の「事前活性化(pre-activate)」をまず指示することができる。すなわち、事前活性化されたCSI−RSx(xは自然数)は(特定「タイマー」時間内で)実際に活性化されることもでき、活性化されないこともできる。端末は、最終的に活性化指示メッセージを受信した後、特定y ms(yは整数)以後にCSI報告を開始することができる。
より具体的には、端末は、まず事前に(例えば、初期接続時に)次のような能力関連コンテンツのうち少なくとも1つを自分の能力情報として能力(capability)シグナリングを通じて基地局に通知することができる:
1.全体活性化(設定)(full activation(configuration))可能なCSI−RSの(最大)個数(Nc個)、CSI−IMの(最大)個数(Ni個)、及び/又はCSI−RS手順の(最大)個数(Np個)に関する情報
ここで、「全体活性化(設定)可能」という意味は、端末の能力情報が指示する最大個数まで基地局に端末に「同時に」活性化/設定可能であることを意味する。例えば、Nc=3, Ni=3, Np=4に設定された能力情報を有する端末に対して、基地局は、合計3個のCSI−RS(Nc=3)、3個のCSI−IM(Ni=3)、4個のCSI手順(Np=4)を全て該当端末に対して同時に設定することができる。この場合、端末は、3個のCSI−RSに対して全てチャネル測定を行わなければならず、3個のCSI−IMに対して全て干渉測定しなければならず、4個のCSI手順に対するCSIフィードバックを全て行わなければならない。ここで、従来のRel−11標準でのCoMP動作が全て支援可能である。
2.同時に部分活性化(設定)(partial activation(configuration))可能なCSI−RSの(最大)個数(Nc’個)、CSI−IMの(最大)個数(Ni’個)、及び/又はCSI手順の(最大)個数(Np’個)に関する情報
ここで、「部分活性化(設定)」の意味は、「全体活性化(設定)」時に端末が実行できる動作のうち特定の一部動作(例えば、CSI−RSトラッキング)のみに限定された活性化/設定を意味するか、そして/またはそれ以外に別途の追加動作の活性化/設定を意味することができる。
例えば、特定端末は1番におけるパラメータ(すなわち、全体活性化(設定)可能なパラメータ)はNc=1, Ni=1, Np=1に設定されると同時に、2番におけるパラメータ(すなわち、部分活性化(設定)可能なパラメータ)はNc’=3、Ni’=1、Np’=1でありうる。これは、1番と2番のパラメータ間にCSI−RS個数(Nc=1とNc’=3)の側面でのみ差を示す場合の例示である。このような例示は、つまり、端末は、Nc’=3個の「部分活性化(設定)」されたCSI−RSに対する時間/周波数同期化/トラッキングの実行は維持した中で、このうち、特定Nc=1個の「全体活性化(設定)」されるCSI−RSの指定を受けることができることを意味する。端末は、Nc=1個のCSI−RSをMAC CE命令などを通じてMAC層で指示を受けるか、又はDCIシグナリングを通じてPHY(Physical)層でよりダイナミックに指示を受けることができる。
このような動作により、前述した問題/制限点(CSI−RS再設定のためのRRC遅延)を解決することができる。すなわち、このような実施形態/動作に従うとき、端末は、単一Np=Np’=1個のCSI手順に対する(特定CCで)単一CSIフィードバックのみを行えばよいので、CSIフィードバック複雑度及びオーバーヘッドは常に同一に維持され、端末が測定しなければならないCSI−RSインデックスのみを基地局がMAC又はPHY層シグナリングを通じてダイナミックスイッチングすることができるという利点がある。すなわち、RRCシグナリングによるCSI−RS再設定のためのRRC遅延より小さい遅延を有するシグナリングにより、測定対象となる資源のみが簡単にスイッチングされることができる。本明細書においては、説明の便宜上、CSI−RSを中心に説明しているが、これらに限定されるものではなく、CSI−IMインデックス(又はCSI手順インデックス)をダイナミックスイッチングする実施形態に同一に拡張適用できることは言うまでもない。
前述した実施形態において、パラメータ間サイズに対して次のような形式の追加的な制限/条件が存在することもある。このような制限/条件が存在する場合、端末は、このような制限/条件を満たす限度内で能力情報をシグナリングして基地局に送信しなければならない。
−Nc<=Nc’、Ni<=Ni’、及び/又はNp<=Np’
端末から上記のような能力シグナリングを受信した基地局は、今後該当端末を設定するときに端末の能力特性の組み合わせに反しない形態でRRCシグナリングを提供しなければならない。従って、端末は、能力特性の組み合わせに反する形態の設定/RRCシグナリングを対して期待せず、反する形態の設定/RRCシグナリングはエラーケースとみなすことができる。
上記例示された端末の場合、基地局からNc’=3に該当する3個のCSI−RSのRRC設定を全て受けることができ、各CSI−RS(インデックス)別に「部分活性化(設定)」されているか否かを識別/指示する別途の識別子又は(暗示的/明示的)指示が含まれた(RRC)シグナリングを受信することもできる。端末は、このような(RRC)シグナリングを受信した時点から該当3個のCSI−RSに対してそれぞれ時間/周波数同期化/トラッキングを行うことができる。このとき、端末は、各CSI−RS設定に含まれているQCL(quasi co-location)仮定を適用するように指示された特定RS(例えば、CRS)などの情報に基づいて時間/周波数同期化/トラッキングを行うことができる。このとき、端末は、Nc’=N個(例えば、N=3)のCSI−RSのうちNc=n個(n<N)(例えば、n=1)の特定CSI−RSのみが「全体活性化(設定)」されることを識別/指示する別途の識別子/インジケータの設定/指示を追加に(又は同時に)受けることができる。または、暗示的にこのようなNc=n個(例えば、n=1)の特定CSI−RSは、常に最も低い(又は最も高い)インデックスから昇順に(又は降順に)n個のCSI−RSに規定されるなど、特定インデックスを有するCSI−RSに標準上に規定されることもできる。そうすると、端末は、このようなNc=n個(例えば、n=1)の全体活性化(設定)された特定CSI−RSに対してのみCSIフィードバックのためのチャネル測定を行えばよい。すなわち、端末は、残り(=Nc’−Nc個)のCSI−RSに対してはチャネル測定を行わなくて同期化/トラッキングのみを行う。
このように、Nc=n個の特定CSI−RSに対してのみチャネル測定を行ってフィードバックコンテンツ(例えば、RI、PMI及び/又はCQI)を導出/計算する動作は、これと共に設定される特定CSI手順内で行われるように規定/設定される。例えば、端末が特定Np=1個のCSI手順もRRCシグナリングを通じて設定を受けるようになる場合、このようなCSI手順は、特定個数のCSI−RS(インデックス)とCSI−IM(インデックス)間の組み合わせと連係して設定されることができる。このとき、端末は、全体活性化(設定)指示されたNc=1個の特定CSI−RSを該当CSI手順のチャネル測定対象となるCSI−RSとして(自動で)認識するように定義/設定されることができる。
さらに他の接近方法としては、CSI手順もこれと類似して、例えば、部分活性化(設定)形態でNp’=N1(例えば、N1=3)の設定を受け、それぞれのCSI手順に対して/連係されて前記Nc’=N2(例えば、N2=3)個のCSI−RSインデックスが設定されていることがある。その後、基地局は、全体活性化(設定)されるNp=n1個(例えば、n1=1)の特定CSI手順をMAC又はPHYシグナリングでダイナミックに端末に指示することができる。この場合、端末は、全体活性化(設定)される特定CSI手順に対するCSIフィードバックを開始する。
つまり、このように特定CSI手順別に連動/指示された特定CSI−RS(インデックス)及び/又はCSI−IM(インデックス)が固定/維持されるか(又は固定されるインデックスであるか)、又は上記例示のように変化するか(又は変化するインデックスであるか)を識別/指示するための別途の識別子/インジケータ又は特定暗示的/明示的シグナリング方法が規定されることができる。もし、前記連動/指示された特定CSI−RS(インデックス)及び/又はCSI−IM(インデックス)が固定されたものであるとの指示を受けた場合、端末は、固定されたCSI−RS(インデックス)及び/又はCSI−IM(インデックス)に対応/該当する資源を測定することができる。逆に、前記連動/指示された特定CSI−RS(インデックス)及び/又はCSI−IM(インデックス)が変化するものであるとの指示を受けた場合、端末は、上記例示のようにNc=1個の特定CSI−RS(インデックス)が別途のMAC又はPHYシグナリングで全体活性化(設定)されるときに該当特定CSI−RS(インデックス)を(CSI−RS手順のチャネル測定対象に)自動適用することができる。ここで、全体活性化(設定)可能なCSI−RSの個数は2つ以上(すなわち、Nc個≧2)でもありうる(例えば、2D−AAS構造で複数のCSI−RS資源をクロネッカー(Kronecker)演算などにより共に/同時に測定する目的など)。このときも全体活性化(設定)指示されるCSI−RS(インデックス)が別途にダイナミックに指示することができ、この場合も、端末は該当CSI−RS(インデックス)をCSI手順に自動で適用することができる。
つまり、このようなCSI手順の設定で指示できるCSI−RSインデックス及び/又はCSI−IMインデックスは、どの候補セットから選択/設定できるかがRRC設定段階から定義しなければならない。
これと同一/類似するように、CSI−IMに対してもNi’及びNiによって前述した動作/実施形態が適用されることは言うまでもない(すなわち、CSI−RS→CSI−IM、Nc→Ni、Nc’ →Ni’にそれぞれ代替可能)。
もし、特定CSI−RS(インデックス)、CSI−IM(インデックス)、及び/又はCSI手順プロセス(インデックス)が全体活性化(設定)されるMAC又はPHYシグナリングが♯n SF時点で受信された場合、端末は、該当時点からy ms以後、すなわち#(n+y)SF時点から受信したシグナリングによる動作を開始/適用することができる。
周期的(periodic)CSI報告の場合、端末は、新しく全体活性化(設定)された特定CSI−RS(インデックス)、CSI−IM(インデックス)、及び/又はCSI手順プロセス(インデックス)に対するCSI測定及び報告を、#(n+y) SF時点以降に存在する最初のRI報告時点(instance)と連係された特定参照資源(reference resource)時点(又はCSI報告時点)から開始することができる。すなわち、端末は、#(n+y) SF時点以降に存在する有効な参照資源時点(又はCSI報告時点)(すなわち、CSI(例えば、RI/PMI/CQI)が測定/計算される時点)のうち最初にRIが報告される時点から新しいCSIコンテンツ(すなわち、♯n SF時点で受信したシグナリングによるCSIコンテンツ)を報告することができる。すなわち、これは、前述した最初のRI報告時点以前であれば、PMI/CQI報告時点が存在しても端末が該当PMI/CQI報告時点では前記全体活性化(設定)指示に従う新しいCSIコンテンツを報告してはならず、以前に従っていたCSI設定によるCSIフィードバックコンテンツ報告を維持/持続しなければならないことを意味する。つまり、端末は、(全体活性化(設定)シグナリングを受信した後でも)新しいRI報告時点から全体活性化(設定)によるCSI報告を実行/開始することができる。
上記動作において、測定を平均化するウィンドウに関する設定情報が別途に又は共にRRCシグナリングで提供されるか、事前に規定されることができる(特に、前述した全体/部分活性化(設定)の設定支援が可能な向上した(enhanced)端末に対してのみ規定される)。この場合、従来のような無制限観測(unrestricted observation)が端末に許容されず、[d1、d2]msなど特定時間区間(すなわち、ウィンドウ)内での測定平均化(measurement averaging)が端末に許容されることができる。これは、測定対象となるCSI−RS及び/又はCSI−IM資源設定情報がMAC又はPHYシグナリングを通じて動的スイッチングされることができるので、特定境界/制限区間内でのみ測定平均化を行うように規定することがより好ましいからである。
この場合、前述したような測定対象となるCSI−RS及び/又はCSI−IM資源に関する設定情報がMAC又はPHYシグナリング(例えば、DCIによる)を通じて動的スイッチング/指示される場合、このようなシグナリングと連動してCSI−RS−ベースチャネル測定のための測定平均化ウィンドウを初期化/更新/リセットする端末の動作が規定/設定される。そして/または、前記シグナリングと連動して、CSI−IM−ベースの干渉測定のための測定平均化ウィンドウを初期化/更新/リセットする端末の動作が規定/設定される。ここで、「測定平均化ウィンドウが初期化/更新/リセットされる」とは、現在標準によって「CSI測定のための無制限観測」により過去任意の時点から現在まで繰り返して測定されているCSI−RSポートからのチャネル測定値を端末実現によって平均化する従来の動作において、前記「任意の時点」に該当する「測定ウィンドウの開始点」が特定時点に初期化/更新/リセットされることを意味する。ここで、このような特定時点は、前記シグナリングを受信した時点(♯n SF)又は前記シグナリング受信時点から予め設定された時点後(例えば、♯n+k SF)(ここで、予め設定された時点kは別途に指示/設定できる)に設定/決定されることができる。または、このような特定時点は、明示的にシグナリングされて前記シグナリングを通じて共に端末に提供されることもできる。例えば、特定時点をシグナリングする方式としては、SFN、スロットナンバーなど絶対時間パラメータ値を用いた絶対時間情報指示方法、タイムスタンプ(timestamp)形態の指示方法、又は前記シグナリングを端末が受信した時点を基準にした+/−差等/デルタ値(例えば、特定時点が♯n+k SFである場合、「+k」)形態の指示方法などが存在する。
すなわち、このようなシグナリング(すなわち、CSI−RS及び/又はCSI−IM資源に関する設定情報に関するシグナリング)は、ただ測定平均化ウィンドウの開始時点のみを初期化/更新/リセットする役割のみを果たすものに限定されることができる。そうすると、端末は、初期化/更新/リセットされた時点から始まって以後に追加的な前記シグナリング/指示が受信される前(すなわち、測定平均化ウィンドウの終了時点)まで取得したCSI測定値を(端末実現によって)平均化することができる。
そして/または、このようなシグナリング(すなわち、CSI−RS及び/又はCSI−IM資源に関する設定情報に関するシグナリング)は、各CSI手順別に別途に/独立的にシグナリングされることができる。その結果、各CSI手順別に測定ウィンドウ初期化/更新/リセットが独立的に適用/実行できる。
また、このようなシグナリング(すなわち、CSI−RS及び/又はCSI−IM資源に関する設定情報に関するシグナリング)は、特定CSI−IM資源に対する干渉測定平均化ウィンドウを初期化/更新/リセットする用途としても用いられる。この場合、該当シグナリングは、CSI手順に属する/関連されたCSI−RS及びCSI−IMに対する測定平均化ウィンドウを同時に/共に初期化/更新/リセットする役割を果たすことができる。あるいは、CSI−IM資源に対する干渉測定平均化ウィンドウを初期化/更新/リセットするための別途の/独立的なインジケータをシグナリングする方式も適用することができる。これは、干渉環境の変化が存在する環境(例えば、eICIC、eIMTA、LAAなど)で基地局が干渉環境の変化を予測/感知した場合、端末に特定CSI手順に対する測定平均化ウィンドウを初期化/更新/リセットするように通知することにより、端末が過去の干渉環境を現時点から干渉測定値にそれ以上反映しないように分離するという効果がある。
CSI取得(acquisition)フレームワーク
以下では3GPP LTE及び/又はNRシステムに適用できるCSI取得のためのフレームワークについて提案する。しかしながら、これに限定されるものではなく、様々な無線通信システム(例えば、UTRAなど)にも拡張適用することができる。
次のDL L1(Layer 1)/L2(Layer 2)ビーム管理手順は、1つ又は複数のTRPで支援することができる:
−P−1(手順):P−1は、TRP Tx(transmission)ビーム/UE Rx(reception)ビームの選択を支援するための異なるTRP Txビームに対するUE測定を活性化(enable)するのに用いられる。TRPのビームフォーミングの場合、一般的に異なるビームのセットからの(又は異なるビームから構成されたセットを用いた)intra/inter−TRP Txビームスイーピングを含むことができる。UEのビームフォーミングの場合、一般的に異なるビームのセットからの(又は異なるビームから構成されたセットを用いた)UE Rxビームスイーピングを含むことができる。TRP TxビームとUE Rxビームは、一緒に(jointly)又は順次(sequentially)決定される。順次決定される場合、例えば、TRP Txビームが決定された後に決定されたTRP Txビームに基づいてUE Rxビームが決定される。
−P−2(手順):P−2は、inter/intra−TRP Txビームを決定/変更するために異なるTRP Txビームに対するUEの測定を活性化(enable)するのに用いられる。すなわち、このようなP−2は、UEが最適な/適切なTRP Txビームを決定することが目的であるので、異なるTRP Txビームを測定(より詳細には、異なるTRP Txビームを通じて送信されるRSを測定)し、同一のTRP Txビームに対する反復的な測定は行わない。従って、P−2が設定された場合、同一の/1つのRS資源セット内でRS(例えば、CSI−RS)資源が送信/マッピングされるTxビームは資源別に異なる。ここで、異なるTRP Txビームの測定に用いられるRxビームは同一のビームに固定されることができ、以下、後述するP−3で決定/選択されたRxビームに該当することができる。
このようなP−2は、RRCシグナリングを通じて端末に設定される。例えば、P−2は、「ResourceRep(又はCSI−RS−ResourceRep) RRCパラメータ」が「OFF」に設定/指示されることにより端末に設定/指示されることができる。ここで、「ResourceRep RRCパラメータ」は「繰り返し(repetition)がON/OFF」されるか否かを指示するRRCパラメータに該当することができる。もし、「ResourceRep RRCパラメータ」が繰り返しONを指示する場合(すなわち、パラメータがONに設定される場合)、UEは、基地局が同一のRSセット内のRS資源別に固定されたTxビームを維持していると仮定することができ、繰り返しOFFを指示する場合(すなわち、パラメータがoffに設定される場合)、UEは、基地局が同一のRSセット内のRS資源別に固定されたTxビームを維持しないと仮定することができる。このとき、前記RSがCSI−RSである場合のResourceRep RRCパラメータは「CSI−RS-ResourceRep RRCパラメータ」と称することができる。CSI−RS資源セットと連係されたCSI−RS−ResourceRepは、空間ドメイン送信フィルタ(spatial domain transmission filter)(特に、空間ドメイン送信フィルタが同一か否か)と共に繰り返しが基地局でON/OFFされるか否かを定義/指示することができる(CSI-RS-ResourceRep parameter associated with a CSI-RS resource set defines whether a repetition in conjunction with spatial domain transmission filter is ON/OFF at gNB-side)。
もし、UEが「OFF」に設定された上位層パラメータCSI−RS-ResourceRepの設定を受けた場合(すなわち、P−2が設定される場合)、UEは、資源セット内のCSI−RS資源が全てのシンボルで同一のダウンリンク空間ドメイン送信フィルタ及び同一のポート数で送信されると仮定しないことができる(If the UE is configured with the higher-payer parameter CSI-RS-ResourceRep is set to ‘OFF’, the UE may not assume that the CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter and with same number of ports in every symbol)。
このようなP−2は、P−1よりさらに微細なビーム調整(refinement)のためにP−1より小さいTxビームセット(すなわち、より狭い範囲のビームセット)に対してUE測定が行われる。従って、P−2はP−1の特殊ケースとみなすことができる。
−P−3(手順):P−3は、UEがビームフォーミングを用いる場合、UE Rxビームを決定/変更するために同一のTRP Txビームに対するUEの(繰り返し)測定を活性化(enable)するのに用いられる。すなわち、このようなP−3は、UEが最適な/適切なRxビームを決定することが目的であるので、同一のTRP 「Tx」ビームを異なる「Rx」ビームを用いて「反復的に」測定/受信(より詳細には、同一のTRP Txビームを通じて送信されるRSを異なるRxビームを用いて測定)することができる。このとき、繰り返し測定される同一のTRP 「Tx」ビームはP−2を通じて事前に決定/選択されたTxビームでありうる。従って、P−3が設定された場合、同一のRS資源セット内でRS(例えば、CSI−RS)資源が送信/マッピングされるTxビームは資源別に同一でありうる。
このようなP−3は、RRCシグナリングを通じて端末に設定されることができる。例えば、P−3は「ResourceRep(又はCSI−RS−ResourceRep) RRCパラメータ」が「ON」に設定/指示されることにより端末に設定/指示されることができる。
もし、UEが「ON」に設定された上位層パラメータCSI−RS-ResourceRepの設定を受けた場合(すなわち、P−3が設定される場合)、UEは、資源セット内のCSI−RS資源は同一のダウンリンク空間ドメイン送信フィルタにより送信され、前記資源セット内のCSI−RS資源はそれぞれ異なるOFDMシンボルで送信されると仮定する(If the UE is configured with the higher-layer parameter CSI-RS-ResourceRep set to ‘on’, the UE may assume that the CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter, where the CSI-RS resources in the resource set are transmitted in different OFDM symbols.)。また、UEは、セット内の全てのCSI−RS資源が異なる周期性(periodicity)を有することを期待しない(The UE is not expected to receive different periodicity in CSI-RS-timeConfig and NrofPorts in every CSI-RS resource within the set.)。
手順P−2及びP−3は、TRP Txビーム及びUE Rxビームの同時変更の目的を達成するために、一緒に(jointly)(又は順次(sequentially))及び/又は複数回行われることができる。手順P−3には物理層手順が存在することも、しないこともある。また、UEに対する多重Tx/Rxビーム対の管理が支援されることができる。
前述した手順は全ての周波数帯域に適用でき、TRP当たり単一/複数のビームで用いられる。
以下ではULビーム管理手順に対して後述する。ULビーム管理手順は、前述したDLビーム管理手順と類似して定義されることができ、次のような種類に大別される:
−U−1(手順):UE Txビーム/TRP Rxビームの選択を支援するために、異なるUE Txビームに対するTRP測定を活性化(enable)するのに用いられる。このようなU−1は、前述したP−1に対応することができる。
−U−2(手順):inter/intra−TRP Rxビームを変更/選択するために異なるTRP Rxビームに対するTRP測定を活性化(enable)するのに用いられる。このようなU−2は、前述したP−2に対応することができる。
−U−3(手順):UEがビームフォーミングを用いる場合、UE Txビームを変更するために同一のTRP Rxビームに対する(反復的な)TRP測定を活性化(enable)するのに用いられる。このようなU−3は、前述したP−3に対応することができる。
このような手順に関して様々なTx/Rxビーム一致/符合/対応(correspondance)関連情報の指示が支援されることができる。
次のようなチャネル/RSに基づいてULビーム管理が行われる:
−PRACH
−SRS
−DM−RS
TRPとUEはTx/Rxビーム対応性(correspondence)/一致性を有することができる。または、TRPはTx/Rxビーム一致/符合/対応(correspondence)を有しなく、そして/または、UEはTx/Rxビーム一致/符合/対応(correspondence)を有しないことがある。
UEは、CSI取得のために次のような特徴に設定されることができる:
−N(≧1)個のCSI報告セッティング(reporting settings)、M(≧1)個のRSセッティング、J(≧1)個のIMセッティング及びN個のCSI報告セッティングをM個のRSセッティング及びJ個のIMセッティングに連結するCSI測定セッティング(「測定連結(link)」とも称することができる)
−CSI報告セッティングは少なくとも次を含む:
−時間−ドメイン動作:非周期的又は周期的/半永久的(semi-persistent)
−少なくともPMI及びCQIに対する周波数単位
−報告されるCSIパラメータ(PMIが報告される場合、PMIタイプ(タイプがI又はII)及びコードブック構成)
−RSセッティングは少なくとも次を含む:
−時間−ドメイン動作:非周期的又は周期的/半永久的
−少なくともCSI−RSを含むRSタイプ
−K個の資源のRS資源セット
−IMセッティングは少なくとも次を含む:
−時間−ドメイン動作:非周期的又は周期的/半永久的
−CSI−IMを含むIMタイプ
−RSセッティング及びIMセッティングは併合されることができる
−CSI測定セッティングは少なくとも次を含む:
−1つのCSI報告セッティング
−1つのRSセッティング
−1つのIMセッティング
−CQIの場合、参照送信スキーム(scheme)設定
−すなわち、CSI測定セッティングは、特定CSI報告セッティング、特定RSセッティング及び/又は特定IMセッティングを互いに連結する機能を実行し、端末は、1つのCSI測定セッティングを通じて設定されたCSI報告セッティング、RSセッティング及び/又はIMセッティングが互いに連係/関連されたとみなすことができる。
UEは、好むCSI測定セッティングを選択するための動的指示を含む複数のCSI測定セッティングに設定される(RSセッティング内のK個の資源中の特定資源の選択を含む)。
UEは、最大L個のCSI測定を支援することができ、このとき、L値はUE性能(capability)に依存する。
NZP CSI−RS資源は、NRにおいて少なくともCSIを導出するために測定される周波数範囲(span)/時間期間内のREのセットにマッピングされるNZP CSI−RSポートのセットと定義される。複数のNZP CSI−RS資源は、少なくともCoMP及び多重ビームフォーミングされたCSI−RSベースの動作を支援するためにUEに設定されることができる。このとき、少なくともCoMPのための各NZP CSI−RS資源は異なる個数のCSI−RSポートを有する。
1つのNZP CSI−RS資源内で、又は2つ以上の資源の間に特定QCLパラメータセットに対するQCL仮定が行われることができる。
1つのNZP CSI−RS資源が2つ以上のCSIを導出するのに用いられ、複数のNZP CSI−RS資源が1つのCSIを導出するのに用いられることができる。
CSI−RSは、DL Txビームスイーピング及びUE Rxビームスイーピングを支援することができる。ここで、CSI−RSはP−1、P−2及びP−3に用いられることができる。
NR CSI−RSは次のマッピング構造を支援することができる:
− N_p個のCSI−RSポートは(サブ)時間単位(time unit)別にマッピングされることができる。(サブ)時間単位にわたって同一のCSI−RSアンテナポートがマッピングされることができる。ここで、「時間単位」は、設定された/参照ヌメロロジーでn≧1であるOFDMシンボルを意味する。時間単位を構成するOFDMシンボルは、時間ドメイン上で連続的に又は不継続的に位置する。ポート多重化(port multiplexing)方法としては、FDM、TDM、CDM又はそれらの多様な組み合わせなどが存在することができる。
−各時間単位は、サブ時間単位に分割される。分割方式としては、例えば、TDM、IFDMA(Interleaved FDMA)、参照OFDMシンボル長さ(サブキャリア間隔(spacing))と同一であるか、又はより短いOFDMシンボル長さ(すなわち、より大きいサブキャリア間隔)を有するOFDMシンボルレベルの分割方法があり、以外の他の方法も排除されない。
−このようなマッピング構造は多重パネル/Txチェーンを支援するのに用いられる。
−Tx及びRxビームスイーピングのための次のようなCSI−RSマッピングオプションが存在する:
1.オプション1:Txビームは、各時間単位内でサブ時間単位別に同一である。Txビームは、時間単位別に異なる。
2.オプション2:Txビームは、各時間単位内でサブ時間単位別に異なる。Txビームは、時間単位別に同一である。
3.オプション3(オプション1とオプション2の組み合わせ):1つの時間単位内でTxビームはサブ時間別に同一である。他の(another)時間単位内でTxビームはサブ時間別に異なる。個数及び周期観点から異なる時間単位が結合されることができる。
Txスイーピング及びRxスイーピングのいずれか1つのみが可能であることもある。前述したマッピング構造は1つ又は複数のCSI−RS資源構成に設定されることができる。
1.RSセッティング
DL Tx/RxビームスイーピングのためのCSI−RS支援と関連して前述したところによれば、NRは異なる運営目的(すなわち、MIMO CSIフィードバックのためのタイプ1とNZP CSI−DLビーム管理のためのタイプ2)の観点から異なる2つのNZP CSI−RS資源のタイプが定義されなければならない。従って、本明細書においては、DL Tx/RxビームスイーピングのためのCSI−RS支援と関連して前述したところにより、NRでは異なる運営目的(すなわち、MIMO CSIフィードバックのためのタイプ1及びDLビーム運営のためのタイプ2)の観点から異なる2種類のタイプのNZP CSI−RS資源を定義することを提案する。
1.1.タイプ1CSI−RS資源(MIMO CSIフィードバック用)
タイプ1CSI−RS資源は、特にFD−MIMO及びeFD−MIMO WIで開発されたMIMO CSIフィードバック機能に対してLTEに定義された構造に基づく。すなわち、UEがタイプ1CSI−RS資源の設定を受けた場合、該当資源は、granularity(細分性)と関連した任意の(サブ)時間単位に設定されず、LTEと類似して周期/オフセット(設定された場合、例えば、周期的CSI−RS)に設定される。また、このようなRSセッティングに連結された測定セッティングによって(LTEでのCSI手順コンセプトと類似)CRI(Class(クラス)BでK>1に設定された場合)、RI、PMI及びCQIが含まれた対応するCSIを共に導出するためにタイプ1CSI−RS資源で設定されたCSI−RSポート(又はCSI−RSポート数)が共に測定されることができる。
従って、タイプ1CSI−RS資源は、少なくともMIMO CSIフィードバック関連報告及びそれ以外の様々なケースに用いられることができる。
1.2.タイプ2CSI−RS資源(DLビーム運営用)
タイプ2CSI−RS資源は、DL Txビームスイーピング及びUE Rxビームスイーピングを支援するためにNRにおいて新しく導入されることができる。各時間単位は、複数のサブ時間単位に分割され、N_p個のCSI−RSポートは、(サブ)時間単位別にマッピングされ、同一のCSI−RSアンテナポートは(サブ)時間単位にわたってマッピングされる。
Tx及びRxビームスイーピングのためにCSI−RSをマッピングするための前述した3種類のオプションに関しては、後述するようなオプション1のみを選択することにより十分であり、他のオプションの導入がなくても識別されたDLビーム運営手順P−1、P−2及びP−3を十分に支援可能である。
−オプション1:Txビームは、各時間単位内のサブ時間単位にわたって同一である。Txビームは時間単位別に異なる。
また、タイプ2CSI−RS資源は、主にDLビーム運営関連報告用として用いられ、このとき、必須の報告コンテンツは図11を参照して以下に後述する。従って、タイプ2CSI−RS資源は、少なくともDLビーム運営関連報告及びそれ以外の他のケースに用いられることができる。
上記のマッピング構造が1つ又は複数のCSI−RS資源に設定されるか否かに関する問題について、それぞれ設定されたCSI−RS資源は1つの時間単位に対応することを明確にするとともに、UEには複数のタイプ2CSI−RSの設定が可能であることを提案することができる。また、複数のOFDMシンボル(例えば、サブ時間単位で表現される、すなわち1つのOFDMシンボルは1つのサブ時間単位に該当/対応)はオプション1が複数のサブ時間単位にわたって適用されるときにのみ(UE Rxビームスイーピング目的)前記CSI−RS資源内に設定されることができる。
従って、本明細書においては、UEに対して複数のタイプ2CSI−RS資源の設定ができるように許与することを提案する。ここで、各設定されたCSI−RSは時間単位に対応することができる。さらに、複数のOFDMシンボル(例えば、サブ時間単位)は、複数のサブ時間単位にわたって前述したオプション1が適用される場合に限ってのみ前記CSI−RS資源内に設定されることができる。
タイプ2CSI−RS資源に対して必要なQCL指示は、初期接続関連の議論を考慮して提案されることができる。Rxビーム探索で適切なUE複雑性を支援するために、このようなタイプ2CSI−RS資源は少なくとも空間(spatial)QCLパラメータに対してMRS−x又はSSブロックに対する適切なQCL連結(linkage)が(初期接続関連の議論によって)設定される必要がある。
図11は、本発明の一実施形態によるタイプ2CSI−RS資源に対して必要なQCL連結/関係を例示した図である。特に、図11は、CSI−RS送信に用いられるTXRUが少なくともSFブロック方式でSSブロック内の信号送信に用いられることを考慮して、タイプ2CSI−RS資源に対して必要なQCL連結/関係について説明する。
図11に示すように、UEは、RRCにより4つのタイプ2CSI−RS資源(CSI−RS資源#1〜♯4)の設定を受けることができるが、CSI−RS資源#1及び#4のみがMAC CEにより活性化される(eFD−MIMOでNZP CSI−RS資源(すなわち、NRコンテキストでの「半永久的(semi-persistent)CSI−RS」)に対する活性化/解除として定義された類似した手順により)。このL2レベル活性化メカニズムにより、タイプ2CSI−RS資源のオーバーヘッドはgNB実現により合理的に制御されることができ、DLビーム運営に対するUE側の複雑性減少が共に達成できる。
従って、Rxビーム探索で適切なUE複雑性を支援するために、タイプ2CSI−RS資源は少なくとも空間QCLパラメータ(ビーム範囲/角度関連QCLパラメータ)に対してMRS−1又はSSブロックとの適切なQCL連結/関係が設定される必要がある。また、タイプ2CSI−RS資源に対するL2レベルの活性化/解除メカニズムを用いて、DLビーム運営のためのネットワーク側RSオーバーヘッド及びUE側複雑性減少を共に達成することができる。
2.IMセッティング
RS設定とIM設定が併合(merge)できるか否かに関連して、NRで支援される可能な全てのIM方法が専ら設定されたRSセッティングに基づいて動作する場合(例えば、全てのIM方法がRSセッティングで設定されたNZP CSI−RSの使用/抽出に基づく場合)でないと、RSセッティングとIMセッティングは互いに分離されなければならない。しかしながら、少なくともCSI−IMベースのIM方法は、gNBにより設定された分離されたIM資源をベースとするNRで支援されなければならず、分離されたJ(≧1)個のIMセッティングは合理的であり、測定セッティングにより指示可能であるので、柔軟性を有する。
従って、本明細書においては、少なくともCSI−IMベースのIM方法がNRで支援されなければならず、非周期的/半永久的/周期的CSI−RSセッティングと非周期的/半永久的/周期的IMセッティング間の組み合わせを含む柔軟な測定セッティングの支援を考慮して、RSセッティングとIMセッティングを分離することを提案する。
3.測定セッティング
前述したように、柔軟な測定セッティングを許容することはNRに好ましく、測定セッティングは、非周期的/半永久的/周期的CSI−RS設定と非周期的/半永久的/周期的IMセッティング間のいかなる組み合わせも支援することができる。より具体的には、半永久的又は周期的なCSI報告を考慮すると、L1/L2制御シグナリングを回避するか最小化するために半永久的又は周期的なIM資源が考慮される必要がある。また、非周期的なCSI−RSセッティングは非周期的CSI報告のために半永久的又は周期的なIM資源と関連することができる。逆に、半永久的又は周期的なCSI−RSは非周期的CSI報告のために非周期的なIM資源に関連することができる。さらに、周期的及び半永久的CSI報告も可能であるので、測定セッティング設定を支援するために必要な組み合わせの範囲を狭くするために全ての種類の可能な組み合わせが調査される必要がある。
非周期的/半永久的/周期的CSI報告、非周期的/半永久的/周期的CSI−RS、潜在的非周期的/半永久的/周期的IM資源間の全ての可能な組み合わせを調査して測定セッティング設定のために支援される必要範囲を狭くする必要がある。
4.報告セッティング
非周期的で、半永久的で、周期的なCSI報告が全てNRにおいて支援できる。前述した測定セッティング設定によって適切なCSI報告コンテンツが定義される必要がある。
もし、特定測定セッティングでタイプ1CSI−RS資源が指示される場合、該当報告コンテンツの基準はeFD−MIMO WIの結果を含んでLTEで支援される既存のCSI報告タイプでなければならない。
特定測定セッティングでタイプ2CSI−RS資源が指示される場合、DLビーム運営を支援するために必要な報告コンテンツによって該当報告コンテンツが決定されなければならない。図11に示すように、タイプ2CSI−RS資源内の各CSI−RSポートは異なるアナログビームに対応することができるので、対応する報告コンテンツは好まれるビーム方向を報告するための{CRI、ポートインデックス}のようにペアリングされた情報タイプになる。ビーム関連情報以外に、対応するビーム利得関連メトリックは共に報告される必要があり、RSRP、RSRQ又はCQIタイプなどのコンテンツを含んで共に報告される必要のあるメトリックの詳細は追加で研究される必要がある。
タイプ2CSI−RS資源が特定測定セッティングで指示されると、設定されたタイプ2CSI−RS資源内のCSI−RSポートに対応する少なくとも好まれるビーム方向情報は報告される必要があり、対応するビーム利得関連メトリックも共に報告される必要がある。
CSI取得のためのセッティング/設定の提案
1.RS(Resource/Reference Signal)セッティング(setting)
図12は、本発明の一実施形態によるCSI−RS送信方式を例示した図である。特に、図12(a)は、タイプ1CSI−RS送信方式を、図12(b)はタイプ2CSI−RS送信方式をそれぞれ例示する。
図12(a)に示すように、既存のCSI−RS設定方式は、CSI−RSポート数及び/又はシーケンス生成/スクランブリングパラメータが設定され、特定周期/オフセットが設定され(非周期的CSI−RSなどの場合は省略することができる)、各CSI−RS送信時点(instance)でCSI−RSが送信される周波数/時間資源位置(例えば、CSI−RS RE位置/パターン)は事前に(RRCシグナリングを通じて)設定される構造に従う。以下ではこのような方式/構造に従うCSI−RSを便宜上「タイプ1CSI−RS」と称する。
これに対して、図12(b)を参照すると、前述したように、特定CSI−RS資源設定が「(サブ)時間単位」関連設定によりさらに細分化され、(サブ)時間単位に対する端末の細部動作オプションなどがさらに設定されることもできる。以下ではこのような設定に従うCSI−RSを便宜上「タイプ2CSI−RS」と称する。
図12(b)に示すように、タイプ2CSI−RSも基本的にタイプ1CSI−RSのように周期/オフセットパラメータが設定されることができ(又は周期/オフセットパラメータの明示的設定が省略され、時間単位が現れる各時点に基づいて周期/オフセットパラメータが暗黙的に設定される方式も可能、例えば、集中的(bursty)に複数の時間単位が継続して現れる形態に設定/限定されることもでき、これは非周期的CSI−RS設定と連係されて該当CSI−RSバースト(burst)の開始時点などが設定/指示されることができる)、設定された周期/オフセットパラメータにより指示されるCSI−RSの各送信時点を基準に該当(サブ)時間単位内の詳細な送信時点を明示的に指示する付加的な(時間単位オフセット)パラメータが共に設定されることができる。そして/または、(基本(default)設定方法として)CSI−RSの各送信時点が各時間単位の開始時点に定義/設定/限定されることができる(図12(b)に示すように)。
時間単位内で複数のサブ時間単位が設定される。サブ時間単位は、図12(b)に示すように、(時間単位内で)常に継続的に(consecutive)位置/設定されるものに限定されることができる。あるいは、より柔軟にサブ時間単位が1つの時間単位内で追加的な周期/オフセットに設定できるようにこれに関連したパラメータが共に設定されることもできる。さらに他の方法としては、より柔軟に時間単位内のサブ時間単位の位置を指示する指示情報(例えば、ビットマップ形態の指示情報)が共に設定されることもできる。この場合、不規則的にサブ時間単位の位置設定支援が可能であるため、資源活用の柔軟性がより高いという利点がある。
以下、このようなタイプ1及びタイプ2CSI−RSが端末にどのような形態に設定され、これと連係してCSI−IM/測定/報告セッティング及び関連動作上にどのような制約条件が与えられるかについて説明する。さらに、これに基づいた効果的なCSI取得動作を提案する。
[RSセッティング(setting)案#1]−タイプ1及びタイプ2CSI−RSが明示的に区分されて設定される(各タイプによる細部連係動作もこれに依存して定義/設定される)
RSセッティング案#1によると、端末は、RSセッティング関連設定を受ける場合(configured with)、特定RSセッティングを識別するための識別子/ID(例えば、RSセッティング#1、#2、…など)を用いて/通じて少なくとも1つのRSセッティングの設定を受けることができる。
もし、端末がRSセッティング#1とRSセッティング#2の設定を受ける場合を仮定すると、各RSセッティングは次の例示のように独立的に/別途に設定される:
−RSセッティング#1は(サブ)時間単位などのパラメータが「ない/指示されない」形態に設定される
この場合、RSセッティング#1は既存の方式と類似し、RSセッティング#1がタイプ1CSI−RS形態であると通知する別途のインジケータが同伴設定されることができる。または、端末は、別途のインジケータがなくても暗黙的に(サブ)時間単位などと関連したパラメータが設定されていないことに基づいてRSセッティング#1がタイプ1CSI−RS形態であることを認識することもできる。
RSセッティング#1はMIMO CSIフィードバック目的に限定されることができる。例えば、RSセッティング#1は、CRI(CSI−RS Resource Indicator)、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)、及び/又はCQI(Channel Quality Indicator)などが含まれた形態の報告セッティング(reporting setting)のみと連結/連係されるように制限されることができる。そして/または、このようなRSセッティング#1は、測定セッティング(measurement setting)で必ず少なくとも1つの特定IMセッティング及び/又はCQI導出のためのTxスキーム(scheme)を含む仮定と共に指示されるべきであるものに限定されることができる(MIMO CSI導出の目的であるので)。従って、測定セッティングでは必ずこれに反しない設定のみが可能であり、端末もこれに反する設定は期待しない。
−RSセッティング#2は、(サブ)時間単位などのパラメータが「ある/指示された」形態に設定される
この場合、RSセッティング#2がタイプ2CSI−RS形態であると通知する別途のインジケータが同伴設定されることができる。または、端末は、別途のインジケータがなくても暗黙的に(サブ)時間単位などに関連したパラメータが設定されていることに基づいて前記RSセッティング#2がタイプ2CSI−RS形態であることを認識することができる。
ここで、RSセッティング#2は、P−1、P−2、及び/又はP−3ビーム運営(management)目的に使用/適用されるものに限定されることができる。例えば、RSセッティング#2は、端末がCRIのみを報告(及び/又はそれに対応するCQIなど、ビーム利得が反映された信号品質関連報告)するように限定された報告セッティング(reporting setting)と連結/連係されることができる。そして/または、RSセッティング#2は、端末が別途のビームID報告(ビームIDが定義されている場合にのみ)又は好む(サブ)時間単位インデックス報告など特定時点で測定されたCSI−RSに対する受信信号品質観点からの選好度を報告する形態の報告セッティングと連結/連係されることができる。そして/または、RSセッティング#2は、RS(例えば、CSI−RS)の(ポート別又はポートグループ別)RSRP(Reference Signal Received Power)などの長期(long-term)RSパワー値(及び/又はRSRQ(Reference Signal Received Quality)などの干渉量を考慮した長期RS受信品質値)を端末が報告する形態の報告セッティングと連結/連係されることができる。RSRQ形態のメトリックの計算時、端末は、設定されたRSセッティングと連結/連係されたIMセッティングを通じて干渉測定を行う。このとき、RSRQ形態のメトリックが特定ポート(又はポートグループ)単位で計算されるように設定されると、該当ポート(又はポートグループ)単位別に連結/連係されるIM資源が独立的に/異なるように設定されることができる。ポート(又はポートグループ)単位別に適用されたビームが異なるので、このように各ポート(又はポートグループ)単位別IM資源/セッティングを独立的に設定して柔軟性及び効率性を向上させることができる。
もし、P−3ビーム運営目的のためにも端末がRSRQ形態のメトリックを計算するように設定されると、設定されるIM資源もUEビームスキャニング/スイーピングのために繰り返される必要があり、このような繰り返しを考慮したIMセッティングが支援されることができる。例えば、IMセッティングでもタイプ2形態の(サブ)時間単位などに区分された複数の時点が設定可能に支援されることができる。ここで、より特徴的に、相互関連/連係されたRSセッティングとIMセッティングの資源位置は、全て同一の時点(又は特定n個の連続的な時点)の資源位置に設定される形態にのみ(例えば、FDM(のみ)適用できるようにするなど)限定される。このような細部提案動作は、以下後述する様々な実施形態(特に、RSセッティング案#2など)にも拡張適用できる。
そして/または、RSセッティング#2が少なくてもP−3ビーム運営目的(例えば、端末の受信ビーム決定目的)に使用/適用される場合、測定セッティングで(特定又は全ての)IMセッティングに連結されていないものに、そして/または(特定又は全ての)報告セッティングに連結されていないものに限定されることができ、UEはそれ以外の設定を期待しない。これは、「RSセッティングonly」モード形態などに定義/設定されて該当モードがトリガリングされるか、「報告及び/又はIMセッティングのない測定セッティング(measurement setting with no reporting and/or IM settings)」などの形態の設定が別途に提供されることができる。
すなわち、少なくともP−3ビーム運営目的でCSI−RS測定が設定/指示された端末は、同一のTxビームを通じて送信されるCSI−RS資源を繰り返し測定するが、これに対するいかなるCSI(例えば、CRI、RI、PMI及び/又はCQI)も基地局に報告しないことができる。それに対して、P−1又はP−2ビーム運営目的でCSI−RS測定が設定/指示された端末は、異なるTxビームを通じて送信されるCSI−RS資源を測定し、測定結果に応じたCSI(特に、CRI)を基地局に報告することができる。これは、「ON」に設定された「ResourceRep(又はCSI−RS−ResourceRep) RRCパラメータ」が設定/受信された端末はいかなるCSIも基地局に報告せず、「OFF」に設定された「ResourceRep(又はCSI−RS−ResourceRep) RRCパラメータ」が設定/受信された端末はRS(例えば、CSI−RS)を測定した結果に応じたCSI(特に、CRI)を基地局に報告できると表現することができる。その理由は、前述したように、P−1及びP−2手順は基地局が最適な(best)Txビームを選択することが目的であるため(すなわち、選択主体が基地局)端末のCSIフィードバックを必要とすることに対して、P−3手順の場合、端末が最適なRxビームを選択することが目的であるため(すなわち、選択主体が端末)CSIフィードバックを必ずしも必要とすることではないからである。しかしながら、これらに限定されるものではなく、前述したように、P−3ビーム運営目的に設定/指示された場合も端末は実施形態によってCSIを基地局に報告することができる。
従って、P−3ビーム運営目的でCSI−RS測定が設定/指示された端末は、「No report」を指示する「ReportQuantity」RRCパラメータが設定/指示されることができる。ここで、「ReportQuantity」RRCパラメータは、端末が報告しなければならないCSI関連情報を指示するRRCパラメータに該当する。
各端末が事前に(例えば、初期接続時)(各/特定周波数/キャリア別に)タイプ1CSI−RSを支援/実現するか及び/又はタイプ2CSI−RSを支援/実現するかを基地局に通知することができ(例えば、UE能力シグナリングなどを通じて)、基地局は、端末が支援/実現可能なタイプのCSI−RSのみが設定可能であるように制限されることができる。または、端末がタイプ1CSI−RSは必ず支援/実現すべきであると規定され、この場合は、端末はタイプ2CSI−RSの支援/実現可否のみを基地局に別途に通知することもできる。そして/または、端末がP−1、P−2、及び/又はP−3ビーム運営関連動作を支援/実現するか(及び/又は特定前述したU−1、U−2及び/又はU−3を含むULビーム運営手順関連動作を支援/実現するか)に対してUE能力シグナリング形態などで基地局に通知し、基地局はこれに基づいて端末支援/実現可能な動作内でのみ端末を設定するように制限されることができる。
そして/または、基地局が端末に(各/特定周波数/キャリア別に)RRCシグナリングなどの上位層信号によりタイプ1CSI−RSのみが設定されるか、タイプ2CSI−RSのみが設定されるか、又は上記例示のようにタイプ1とタイプ2CSI−RSが混合/組み合わされて設定されるかをUE特定設定(周波数/キャリア別に)形態で通知することができる。これにより、特定タイプのCSI−RSを設定するか否かを(半静的(semi-static)に)スイッチングする動作を支援することができる。このような動作は、特に具体的な各CSI−RS設定がRRCレベル以下で(例えば、MAC CE及び/又はL1シグナリングなど)制御される構造にさらに効果的に作用する。すなわち、基地局は、RRCレベルにCSI−RSタイプを予め設定した後、各CSI−RS設定に対してMAC CEに細部パラメータ制御/スイッチングを行うとき、RRCレベルに設定されたタイプのCSI−RSと連係/関連された細部パラメータのみを変更/アップデートすればよいので、端末の実現複雑度が一定のレベル以下に保証されるという効果が発生する。
[RSセッティング案#2]−特定条件(例えば、eMBB(enhanced Mobile BroadBand)サービス用途、ビーム運営関連動作が設定された場合など)下で、又は特定システム(例えば、NR)では、常にタイプ2CSI−RSのみが定義/設定/支援可能であるものに限定。
RSセッティング案#2によると、端末は、RSセッティング関連設定を受ける場合(configured with)、前述したRSセッティング案#1のように特定RSセッティングを識別するための識別子/ID(例えば、RSセッティング#1、#2、…など)を用いて/通じて少なくとも1つのRSセッティングの設定を受けることができる。ただ、RSセッティング案#2は、以下の実施形態で後述するように、RSセッティング案#1に比べてはるかに減少した個数のRSセッティングのみでも測定/報告セッティングでの設定方法によって様々な形態のCSI取得動作が設定できるという特徴がある。すなわち、RSセッティング案#2の場合、RSセッティングで最大限に汎用性があるように/広く/最小限に設定できるようにするが(このために、前記特定条件/システムの場合はタイプ2CSI−RSのみを設定可能に限定)、これに関する測定/報告セッティングで用途に合う細部パラメータを設定するので、より柔軟な形態のRSセッティングが可能である。
RSセッティング案#2の実施形態として、端末が次のように特定RSセッティング#1のみの統合設定を受けることにより、RSセッティング案#1で例示したRSセッティング#1と#2の目的を全て達成することができる:
図13及び図14は、本発明の一実施形態によるRSセッティング案を例示した図である。
RSセッティング#1は(サブ)時間単位などのパラメータがある/設定された/指示された形態に設定される。これは、RSセッティング#1がP−1、P−2、及び/又はP−3ビーム運営目的だけでなく、MIMO CSIフィードバック目的としても共通に利用できるようにするためである。
図13及び図14に示すように、このようなRSセッティング#1では基本的にCSI−RSポート数、CSI−RS RE位置/パターン、シーケンス生成/スクランブリングパラメータ、QCL関連パラメータ、周期/オフセット関連パラメータ、時間/サブ時間単位関連パラメータ(例えば、各CSI−RS周期によるCSI−RS時点を基準にした時間単位の間隔(interval)/開始地点/終了地点など、1つの時間単位内に存在するサブ時間単位数、各サブ時間単位の長さ/位置など(例えば、時間単位内で連続的か、周期的か、又はビットマップ形態で指示されて不規則的に位置するかなど)に関するパラメータ))のうち少なくとも1つが設定される。これよりさらに詳細な/具体的なCSI−RSポート割り当て情報(設定されたREパターンに対するTDM、FDM及び/又はCDM)、ポートナンバリング情報などは、該当RSセッティングでは設定されないという特徴を有する。そして/または、CSI−RSポート数情報も該当RSセッティングで設定されないことがあり、その後の測定セッティングなどを通じて具体的な設定が提供されることができる。
すなわち、RSセッティングを通じては代表的にCSI−RSが送信されるRE位置情報だけがまず設定され、該当RE位置に実際にどのポート/シーケンス/信号が送信されるかは測定セッティングなどを通じて柔軟に設定される。
その後の測定セッティングでRSセッティングをP−1、P−2及び/又はP−3ビーム運営目的と連係/連結させる場合、例えば、図13に示すように、それぞれ設定されたCSI−RSポートに「No (時間ドメイン上での) CDM」が適用されるように限定されることができる。図13において、異なるパターンを有する小さい正方形で表現された資源単位ではそれぞれ異なるCSI−RSポートが送信されることができる(すなわち、各CSI−RSポートは特定単一サブ時間単位でのみ送信される)。このように、各CSI−RSポート間に(時間ドメイン上で)CDMが適用されずにTDMが適用されることが、P−1、P−2、及び/又はP−3ビーム運営目的に(特に、各サブ時間単位別に異なるTxアナログビームが適用された場合に)より適合することができる。また、ビーム運営目的上、各サブ時間単位別にCSI−RSを測定し、好むサブ時間単位インデックスなどを報告するように設定された場合、端末は、各サブ時間単位別の単一CSI−RSポートの測定だけでも設定された動作を実行することができる。従って、「No (時間−ドメイン上での)CDM」に限定しても基地局が意図した目的を達成するのに十分であるので、このような限定により端末実現複雑度が適正レベルに効果的に維持できる。
そして/または、RSセッティング#1が少なくともP−3ビーム運営目的(例えば、端末の受信ビーム決定目的)に使用/適用される場合、測定セッティングで(特定又は全ての)IMセッティングに連結されないものに、及び/又は(特定又は全ての)報告セッティングに連結されないものに限定されることができ、UEは、それ以外の設定を期待しない。これは、「RSセッティングonly」モード形態などに定義/設定されて該当モードがトリガリングされるか、「報告及び/又はIMセッティングのない測定セッティング(measurement setting with no reporting and/or IM settings)」などの形態の設定が別途に提供されることができる。
すなわち、少なくともP−3ビーム運営目的でCSI−RS測定が設定/示された端末は、同一のTxビームを通じて送信されるCSI−RS資源を繰り返し測定するが、これに対するいかなるCSI(例えば、CRI、RI、PMI及び/又はCQI)も基地局に報告しないことができる。それに対して、P−1又はP−2ビーム運営目的でCSI−RS測定が設定/指示された端末は、異なるTxビームを通じて送信されるCSI−RS資源を測定し、測定結果に応じたCSI(特に、CRI)を基地局に報告することができる。これは、「ON」に設定された「ResourceRep(又はCSI−RS−ResourceRep) RRCパラメータ」が設定/受信された端末は、いかなるCSIも基地局に報告せず、「OFF」に設定された「ResourceRep(又はCSI−RS−ResourceRep) RRCパラメータ」が設定/受信された端末は、RS(例えば、CSI−RS)を測定した結果に応じたCSI(特に、CRI)を基地局に報告することができると表現できる。その理由は、前述したように、P−1及びP−2手順は、基地局が最適な(best)Txビームを選択することが目的であるため(すなわち、選択主体が基地局)、端末のCSIフィードバックを必要とするに対して、P−3手順の場合、端末が最適なRxビームを選択することが目的であるので(すなわち、選択主体が端末)、CSIフィードバックを必ずしも必要とすることではないからである。しかしながら、これらに限定されるものではなく、前述したように、P−3ビーム運営目的に設定/指示された場合も端末は実施形態によってCSIを基地局に報告することができる。
従って、P−3ビーム運営目的でCSI−RS測定が設定/指示された端末は、「No report」を指示する「ReportQuantity」RRCパラメータが設定/指示されることができる。ここで、「ReportQuantity」RRCパラメータは、端末が報告しなければならないCSI関連情報を指示するRRCパラメータに該当する。
または、測定セッティングで該当RSセッティング#1をMIMO CSIフィードバック目的と連結/連係させるとき、図14に示すように、設定されたCSI−RSポートそれぞれに「CDM長さx(時間ドメインを含む)」を適用し、ポート間にTDMされることによる測定時間不一致(mismatch)が発生することを防止することができる。すなわち、各CSI−RSポートは、多数のサブ時間単位にわたって(時間ドメインの)CDMなどを通じてスプレッド(spread)されて送信されることができる。
図14は、これを例示するものであり、図14において同一のパターンを有する小さい正方形は全て同一のCSI−RSポートが送信される資源単位(又は資源位置)を意味する。図13に示すように、同一のパターンの資源は各時間単位区間内でスプレッドされている(すなわち、複数のサブ時間単位にわたってスプレッドされている)。また、図14に示すように、異なるパターンで表現された異なるCSI−RSポートは同一の資源位置で重複して送信されることができる。これは、CDM方式適用によるシーケンス/コード−ドメイン分離により、各CSI−RSポートから送信される信号間送信資源の位置が重なるにもかかわらず、CSI−RSポート別に分離された送受信が可能であることを意味する。
そして/または、該当RSセッティング#1と連係/関連された測定セッティングで必ず少なくとも1つの特定IMセッティング及び/又はCQI導出のためのTxスキームを含む仮定が共に指示されなければならないものに限定されることができる(MIMO CSI導出目的であるので)。従って、基地局は、測定セッティングでこれに反しない設定だけ可能であり、端末もこれに反する設定は期待しない。
以上で説明した内容は実施形態にすぎず、その他、他の用途/目的によりRSセッティング案#2のように統合された(unified)CSI−RS設定を提供し、それに対する/関連する測定/報告セッティングなどで様々な用途に設定/適用する活用/変形実施形態も本発明の思想に含まれる。
また他の一例として、RSセッティング案#2によると、CSI−RS設定時にRSセッティングは常に時間/サブ時間単位関連パラメータ(例えば、各CSI−RS周期によるCSI−RS時点を基準にした時間単位との間隔(interval)/開始地点/終了地点など、1つの時間単位内に存在するサブ時間単位数及び/又は各サブ時間単位の長さ/位置など(例えば、時間単位内で連続的か、周期的か、又はビットマップ形態で指示されて不規則的に位置するかなど)に関連したパラメータ)のうち少なくとも1つを常に含むように定義されることができる。この場合、基地局が従来のMIMO CSIフィードバック用マルチポートCSI−RS資源を設定しようとする場合、基地局は、例えば、時間単位の間隔を1サブフレームに、1つの時間単位内に存在するサブ時間単位の数を1個に、該当CSI−RS設定上の周期/オフセットによって指示される各CSI−RS送信時点を時間/サブ時間単位のスタート点に定義/設定することにより従来のレガシCSI−RS設定をそのまま/類似するように設定することができる。
従って、RSセッティング案#2をタイプ2CSI−RS設定のみに従うように限定するが、タイプ1CSI−RS設定も包括可能にsuper−set形態に設計されることにより、上記のレガシCSI−RS設定も提供することができる。
2.IMセッティング
端末は、IMセッティング関連設定を受ける場合(configured with)、特定IMセッティングを識別するための識別子/ID(例えば、IMセッティング#1、#2、…など)を通じて/用いて少なくとも1つのIMセッティングの設定を受けることができる。
IMセッティングで設定可能なパラメータとしては、実施形態として特定CSI−IM資源RE位置/パターン(例えば、特定時間/周波数ドメイン上のN個REの集合、Nは事前に固定されるか、基地局が設定可能、例えば、N=4)関連パラメータ、周期/オフセット関連パラメータ(非周期的CSI−IMが支援/適用される場合、周期及び/又はオフセットパラメータは省略することができ、基地局からトリガされる時点に従うように動作が定義/設定される)の少なくとも1つが存在する。そして/または、CSI−IM資源ベースIMセッティングの以外にも、特定RSベース(例えば、設定されたRSセッティングID♯k)を参照/指示する形態でIMセッティングを適用するように設定方式が限定される。
測定セッティングで特定IMセッティングを参照する形態に設定する場合は、以下のように、i)IMセッティングをMIMO CSIフィードバック目的に設定する場合と、ii)IMセッティングをP−1、P−2及び/又はP−3ビーム運営を目的に設定する場合に大別される。
i)測定セッティングで特定IMセッティングがMIMO CSIフィードバック目的と連係/連結される場合、必ず少なくとも1つの特定RSセッティング及び/又はCQI導出のためのTxスキームを含む仮定が共に指示されなければならないものに限定されることができる(MIMO CSI導出目的であるので)。従って、測定セッティングで、基地局はこれに反しない設定だけ可能であり、端末もこれに反する設定を期待しない。
ii)測定セッティングで特定IMセッティングがP−1、P−2、及び/又はP−3ビーム運営目的と連結/連係される場合(特に、少なくともP−3ビーム運営目的の場合)、測定セッティングで該当特定IMセッティングは(特定又は全ての)RSセッティング及び/又は(特定又は全ての)報告セッティングと連結されないものに限定されることができ、UEはこれに反する設定を期待しない。これは、「RSセッティングonly」モード形態などに定義/設定されて該当モードがトリガリングされるか、「報告及び/又はIMセッティングのない測定セッティング」などの形態の設定が別途に提供されることができる。
その他、P−1及び/又はP−2ビーム運営目的において、特定IMセッティングが特定測定セッティングにより参照/設定されるようにすることができる。この場合、端末がビーム運営関連報告を行うとき、参照/設定されたIMセッティングによる干渉測定も行ってCQIのようなチャネル品質関連メトリックを導出し、導出されたメトリックが大きい(すなわち、好まれる)ビームID/インデックス及び/又はサブ時間単位インデックスなどを基地局に報告するように定義/設定される。このとき、端末は、前記CQIのようなチャネル品質関連メトリック値(又は特定量子化したメトリック値)を共に基地局に報告するように定義/設定される。
3.測定セッティング
端末は、測定セッティング関連設定を受ける場合(configured with)、特定測定セッティングを識別するための識別子/ID(例えば、測定セッティング#1、#2、…など)を通じて/用いて少なくとも1つの測定セッティングの設定を受けることができる。
測定セッティングで設定可能なパラメータとしては、実施形態としてRSセッティング#ID、IMセッティング#ID、報告セッティング#ID、及び/又はCQI導出のためのTxスキームが含まれる仮定などのパラメータ/情報のうち少なくとも1つが存在することができる。
測定セッティングが(MIMO) CSI報告を目的とする場合、前述した「RSセッティング案#1」に従うと、測定セッティングにはタイプ1CSI−RS形態のみが設定されるように限定されることができる。また、測定セッティングが(MIMO) CSI報告を目的とする場合、前述した「RSセッティング案#2」に従うと、測定セッティングは少なくとも1つのRSセッティングを含み、図14に示すように、各RSセッティングを通じて設定されたCSI−RSポートに「CDM長さx(時間ドメインを含む)」を適用して、ポート間にTDMされることによる測定時間不一致の発生を防止することができる(すなわち、各CSI−RSポートは複数のサブ時間単位にわたって(時間ドメイン)CDMなどを通じてスプレッドされて送信される)。そして/または、(この場合に)測定セッティングでは、必ず少なくとも1つのIMセッティング及び/又はCQI導出のためのTxスキームが含まれる仮定が共に指示されなければならないものに限定されることができる(MIMO CSI導出目的であるので)。従って、測定セッティングで、基地局は、これに反しない設定だけ可能であり、端末もこれに反する設定は期待しない。
または、測定セッティングがP−1、P−2、及び/又はP−3ビーム運営関連報告を目的とする場合、前述した「RSセッティング案#1」に従うと、測定セッティングにはタイプ2CSI−RS形態のみが設定されるように限定されることができる。また、測定セッティングがP−1、P−2、及び/又はP−3ビーム運営関連報告を目的とする場合、前述した「RSセッティング案#2」に従うと、測定セッティングは少なくとも1つのRSセッティングを含み、図13に示すように各RSセッティングを通じて設定されたCSI−RSポートに「No (時間ドメイン)CDM」が適用されるように限定されることができる。そして/または、測定セッティングが少なくともP−3ビーム運営目的(例えば、端末の受信ビーム決定目的)に使用/適用される場合、測定セッティングで(特定又は全ての)RSセッティングは、(特定又は全ての)IMセッティング及び/又は(特定又は全ての)報告セッティングと連結されないものに限定され、UEもこれに反する設定を期待しない。
これは、「RSセッティングonly」モード形態などに定義/設定されて該当モードがトリガリングされるか、「報告及び/又はIMセッティングのない測定セッティング(measurement setting with no reporting and/or IM settings)」のような形態の設定が別途に提供されることができる。
それ以外に、本明細書の他の部分で言及された測定セッティング関連提案動作も全て本測定セッティング関連動作として包含/設定/適用されることは言うまでもない。
4.報告セッティング
端末は、報告セッティング関連設定を受ける場合(configured with)、特定報告セッティングを識別するための識別子/ID(例えば、報告セッティング#1、#2、…など)を通じて/用いて少なくとも1つの報告セッティングの設定を受けることができる。
報告セッティングで設定可能なパラメータとしては、実施形態として周期的又は非周期的報告モードインジケータ及び/又はそれに関連した報告パラメータ(例えば、周期的報告のための周期/オフセット/資源位置/送信フォーマット関連パラメータ、非周期的報告のための資源位置/送信フォーマット関連パラメータ)などの情報/パラメータのうち少なくとも1つが存在する。
それ以外に、本明細書の他の部分で言及された報告セッティング関連提案動作なども全て本報告セッティング関連動作として包含/設定/適用されることは言うまでもない。
図15は、本発明の一実施形態によるUEのCSI−RS資源受信方法を例示したフローチャートである。本フローチャートと関連して前述した説明/実施形態が全て同一/類似するように適用されることができ、重複する説明は省略する。
まず、UEは、基地局から複数のCSI−RS資源が含まれたCSI−RS資源セットの設定を受ける(S1510)。このようなCSI−RS資源セットは、CSI報告のためのRS(resource)セッティングにより端末に設定され、RSセッティングは上位層シグナリングを通じて端末に受信される。
次に、UEは、前記複数のCSI−RS資源を受信することができる(S1520)。
次に、UEは、複数のCSI−RS資源が同一又は異なるビームを通じて送信されるか否かに関する設定に基づいて前記複数のCSI−RS資源の測定結果として取得したCSIを基地局に報告することができる(S1530)。
より詳細には、もし、前記複数のCSI−RS資源の異なる送信ビーム(Txビーム)による送信が(UEに)設定された場合(すなわち、P−1又はP−2目的のCSI取得手順の場合)、UEは、前記複数のCSI−RS資源に対するCRIを基地局に報告することができる。すなわち、UEは、異なる送信ビームを通じて送信されたCSI−RS資源を測定/推定して、最も性能がよい/最適なCSI−RS資源を選択し、これに該当する/対応するCRIをCSIとして基地局に報告することができる。この場合、基地局は、端末から送信されたCRIに基づいて前記異なる送信ビームのうち少なくとも1つの送信ビームを前記端末に対するデータ/信号送信に用いる送信ビームとして選択することができる。特に、基地局は、端末から送信されたCRIに対応するCSI−RS資源送信に用いられた送信ビームを前記端末に対する送信に用いるビームとして選択することができる。ここで、CSIの報告方式は、前記CSI−RS資源セッティングに関連したCSI報告セッティングにより端末に設定され、前記CSI報告セッティングは、上位層シグナリングを通じて端末に受信される。このようなCSI報告セッティングとRSセッティング間の連結関係は、UEに(上位層シグナリングにより)設定される測定セッティングにより指示されることができる。
または、逆に、もし、複数のCSI−RS資源の同一の送信ビームによる送信が(UEに)設定された場合(すなわち、P−3目的のCSI取得手順の場合)、UEは、前記複数のCSI−RS資源に対する前記CRIを基地局に報告しないことができる。これは、P−3目的のCSI取得手順の場合、UEのRxビームを選択/決定/変更することが目的であるからである。ここで、前記CSI−RS資源に関連して「No report」がUEに設定された場合(例えば、「No report」に設定されたReportQuantity RRCパラメータが端末に設定/受信された場合)、UEは、前記CRIを含むいかなるCSIも基地局に報告しないことができる(すなわち、何のCSIも報告しない)。
複数のCSI−RS資源がこのような送信ビームを通じて送信される場合、UEは、複数のCSI−RS資源に対する測定結果に基づいてUEの受信ビームを決定/選択することができる。より詳細には、UEは、複数のCSI−RS資源を異なる受信ビームを用いて受信/測定し、前記複数のCSI−RS資源に対する測定結果に基づいて異なる受信ビームのうち最適な性能を有する少なくとも1つの受信ビームを決定/選択することができる。
UEの受信ビームと基地局の送信ビームは一緒に(jointly)/同時に選択されるか(例えば、1つのCSI取得手順により)、予め設定された順序に従って順次選択されることができる(例えば、異なるCSI取得手順により)。ここで、予め設定された順序は、送信ビームから前記受信ビームへの順序で決定される(例えば、P−2手順を行って基地局の送信ビームを決定し、決定/選択された基地局の送信ビームを(同一の送信ビームとして)用いてP−3手順を行ってUEの受信ビームを決定)。
本発明が適用できる装置一般
図16は、本発明の一実施形態による無線通信装置のブロック構成図を例示する。
図16に示すように、無線通信システムは、基地局(eNB)1610と基地局1610領域内に位置する複数の端末(UE)1620を含む。
基地局1610は、プロセッサ(processor)1611、メモリ(memory)1612及びRFユニット(radio frequency unit)1613を含む。プロセッサ1611は、以上で提案された機能、過程及び/又は方法を実現する。無線インタフェースプロトコルの階層は、プロセッサ1611により実現されることができる。メモリ1612は、プロセッサ1611に接続され、プロセッサ1611を駆動するための多様な情報を保存する。RFユニット1613は、プロセッサ1611に接続され、無線信号を送信及び/又は受信する。
端末1620は、プロセッサ1621、メモリ1622及びRFユニット1623を含む。プロセッサ1621は、前述した実施形態で提案された機能、過程及び/又は方法を実現する。無線インタフェースプロトコルの階層は、プロセッサ1621により実現されることができる。メモリ1622は、プロセッサ1621に接続され、プロセッサ1621を駆動するための多様な情報を保存する。RFユニット1623は、プロセッサ1621に接続され、無線信号を送信及び/又は受信する。
メモリ1612、1622は、プロセッサ1611、1621の内部又は外部に位置し、周知の多様な手段でプロセッサ1611、1621に接続される。また、基地局1610及び/又は端末1620は、1つのアンテナ(single antenna)又は複数のアンテナ(multiple antenna)を有することができる。
以上で説明された実施形態は本発明の構成要素と特徴が所定の形態に結合されたものである。各構成要素または特徴は、別途の明示的な言及がない限り、選択的なものとして考慮されなければならない。各構成要素または特徴は他の構成要素や特徴と結合されない形態に実施できる。また、一部の構成要素及び/又は特徴を結合して本発明の実施形態を構成することも可能である。本発明の実施形態で説明される動作の順序は変更可能である。ある実施形態の一部の構成や特徴は他の実施形態に含まれることができ、または他の実施形態の対応する構成または特徴と置き換えることができる。特許請求の範囲で明示的な引用関係がない請求項を結合して実施形態を構成するか、または出願後の補正により新たな請求項に含めることができることは明らかである。
一方、本発明における「A及び/又はB」は、A及び/又はBの少なくとも1つを意味すると解釈することができる。
本発明に従う実施形態は多様な手段、例えば、ハードウェア、ファームウェア(firmware)、ソフトウェア、またはそれらの結合などにより具現化できる。ハードウェアによる具現化の場合、本発明の一実施形態は1つまたはそれ以上のASICs(application specific integrated circuits)、DSPs(digital signal processors)、DSPDs(digital signal processing devices)、PLDs(programmable logic devices)、FPGAs(field programmable gate arrays)、プロセッサ、コントローラ、マイクロコントローラ、マイクロ・プロセッサなどにより具現化できる。
ファームウェアやソフトウェアによる具現化の場合、本発明の一実施形態は以上で説明された機能または動作を遂行するモジュール、手続、関数などの形態に具現化できる。ソフトウェアコードは、メモリに格納されてプロセッサにより駆動できる。前記メモリは、前記プロセッサ内部または外部に位置し、既に公知である多様な手段により前記プロセッサとデータをやり取りすることができる。
本発明は、本発明の必須的特徴を逸脱しない範囲で他の特定の形態に具体化できることは当業者に明らかである。したがって、前述した詳細な説明は全ての面から制約的に解釈されてはならず、例示的なものとして考慮されなければならない。本発明の範囲は添付の請求項の合理的解釈により決定されなければならず、本発明の等価的範囲内での全ての変更は本発明の範囲に含まれる。