WO2018228228A9 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2018228228A9
WO2018228228A9 PCT/CN2018/089665 CN2018089665W WO2018228228A9 WO 2018228228 A9 WO2018228228 A9 WO 2018228228A9 CN 2018089665 W CN2018089665 W CN 2018089665W WO 2018228228 A9 WO2018228228 A9 WO 2018228228A9
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
frequency band
precoding matrix
precoding
indication
Prior art date
Application number
PCT/CN2018/089665
Other languages
English (en)
French (fr)
Other versions
WO2018228228A1 (zh
Inventor
刘显达
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18818721.5A priority Critical patent/EP3627747A4/en
Publication of WO2018228228A1 publication Critical patent/WO2018228228A1/zh
Publication of WO2018228228A9 publication Critical patent/WO2018228228A9/zh
Priority to US16/711,645 priority patent/US11233549B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an information transmission method and apparatus.
  • the base station configures, by using the high layer signaling, the relevant parameters of the sounding reference signal (SRS) for the terminal (for example, the time-frequency resource location of the SRS, the number of ports, etc.); the terminal is based on the relevant parameters of the SRS.
  • SRS sounding reference signal
  • the base station obtains channel estimation information (CSI) used in the uplink data transmission by receiving and measuring the SRS to obtain channel estimation information, where the CSI includes a Rank Indicator (RI), Precoding Matrix Indicators (PMI) and Channel Quality Indicators (CQIs); thus, the base station can notify the terminal of the CSI, so that the terminal can use the CSI to transmit uplink data.
  • CSI channel estimation information
  • RI Rank Indicator
  • PMI Precoding Matrix Indicators
  • CQIs Channel Quality Indicators
  • the method for notifying the precoding matrix in the uplink data transmission is to divide the entire system bandwidth into multiple subbands, and use multiple precoding matrix indications to notify the precoding matrix used for transmitting data on each subband one by one, when the system bandwidth is compared.
  • the signaling overhead used to notify the precoding matrix is large.
  • Embodiments of the present invention provide a data transmission method and apparatus, which are used to divide a part of bandwidth included in a system bandwidth used for transmitting data into multiple frequency bands, and use different precoding indication information to notify data transmitted on different frequency bands.
  • the precoding matrix, the bandwidth other than the part of the bandwidth is used as a frequency band to perform precoding indication information notification, thereby reducing the signaling overhead used to notify the precoding matrix.
  • an embodiment of the present invention provides a data transmission method, in which a terminal device may receive precoding indication information, where the precoding indication information includes K first indications and second indications; Determining K first precoding matrices according to the K first indications and determining a second precoding matrix according to the second indication, where K is a positive integer, and the terminal device uses the K first precoding matrix pairs on the K first frequency bands Transmitting the data to perform precoding, obtaining the precoded first data, and precoding the data sent on the second frequency band by using the second precoding matrix to obtain the precoded second data; the terminal device may be in the The precoded first data is transmitted on the K first frequency bands and the terminal device may transmit the precoded second data on the second frequency band.
  • the K first frequency bands are located in a partial frequency band of the scheduling frequency band of the physical uplink shared channel PUSCH, and the second frequency band is all frequency bands except the K first frequency bands in the scheduling frequency band of the PUSCH, where the K first The bandwidth occupied by each of the first frequency bands in the frequency band is smaller than the bandwidth occupied by the second frequency band.
  • the embodiment can simultaneously indicate precoding matrices of K first frequency bands and second frequency bands, and can optimize precoding while reducing signaling overhead.
  • the choice of matrix thereby improving the signal-to-noise ratio of the transmitted data and the performance of frequency selective scheduling.
  • the second indication may be a rank indication
  • the network device may notify the terminal according to the rank indicated by the rank and the reference signal resource used by the terminal before sending the reference signal resource in the second frequency band by using a predefined or higher layer signaling manner.
  • the precoding matrix determines a precoding matrix for transmitting the PUSCH on the second frequency band.
  • the base station may determine the rank of the transmitted PUSCH by receiving and measuring the non-precoded reference signal resource sent by the terminal, and notify the terminal to transmit the rank of the PUSCH by using the foregoing rank indication.
  • the terminal sends a pre-coded reference signal resource while transmitting a pre-coded reference signal resource
  • the base station can obtain the uplink channel information by receiving and measuring the un-precoded reference signal resource, thereby determining
  • the rank rank of the PUSCH transmission is indicated to the terminal, and the terminal can determine the precoding matrix on the second frequency band based only on the rank.
  • the precoded reference signal resource transmitted on the second frequency band includes 4 ports, and if the rank of the PUSCH transmission included in the precoding indication information is 3, the port 0 included in the reference signal resource may be
  • the precoding matrix used by port 1 and port 2 is used as a precoding matrix on the second frequency band.
  • a port selection rule needs to be predefined, for example, according to the port number from low to high.
  • each of the first indications of the K first indications may include M reference signal resource indications, where M is a positive integer.
  • the determining, by the terminal device, the K first precoding matrices according to the K first indications may include: for each of the M reference signal resource indications included in each first indication, the terminal device may determine that the M reference signal resource indications are indicated The M reference signal resources, the terminal device may determine a first precoding matrix according to the M reference signal resources.
  • the M reference signal resources are M reference signal resources of the N reference signal resources sent by the terminal device before receiving the precoding indication information, where N is a positive integer greater than or equal to M.
  • the implementation may use the M reference signal resource indications to determine the first precoding matrix of a first frequency band, and does not need to introduce additional signaling, thereby saving signaling overhead.
  • the N reference signal resources sent by the terminal device include a non-precoded reference signal resource and N-1 precoded reference signal resources, and the number of ports of each precoded reference signal resource is 1.
  • the base station determines that the rank of the PUSCH transmission is 3 according to the unprecoded reference signal resource, and then selects three reference signal resources from the N-1 precoded reference signal resources, and the three reference signal resources are used.
  • the reference signal resource indicates the SRI as the first indication, and the terminal may determine the three reference signal resources according to the three SRIs included in the first indication, and further determine a first by using a precoding matrix used on the three reference signal resources.
  • the precoding matrix is used as a precoding matrix corresponding to the first frequency band.
  • each of the first indications of the K first indications may include a precoding matrix indication
  • the terminal device determines, according to the K first indications, the K first precoding matrices, including For a precoding matrix indication included in each of the first indications, the terminal device may determine a first precoding matrix according to the correspondence between the precoding matrix indication and the precoding matrix. That is, the terminal device may determine a precoding matrix from the uplink codebook configured by the base station according to the index value indicated by the precoding matrix indication, as the first precoding matrix used for transmitting data in a first frequency band in the PUSCH scheduling band. With this embodiment, only a part of the frequency bands in the PUSCH scheduling frequency band correspond to the first indication, thereby saving the overhead of signaling the frequency band precoding matrix.
  • the second indication may include M reference signal resource indications, where the M indications included in the second indication indicate that the M reference signal resources may be included with a first indication.
  • the indication is different; the terminal device determines the second precoding matrix according to the second indication, the method includes: the terminal device determines the M reference signal resources indicated by the M reference signal resource indications; and the terminal device determines, according to the M reference signal resources, a second precoding matrix; the M reference signal resources are M reference signal information resources of the N reference signal resources sent before the terminal device receives the precoding indication information, where N is a positive integer greater than or equal to M.
  • the reference signal resources indicated by the M reference signal resource indications may be different from the reference signal resources indicated by the M reference signal resource indications included in the first indication.
  • the second frequency band corresponds to only one second indication, thereby saving the overhead of signaling the precoding matrix used for transmitting data on each frequency band.
  • the second indication is a precoding matrix indication
  • the terminal device determines the second precoding matrix according to the second indication, including: the terminal device according to the precoding matrix Determining a correspondence with the precoding matrix to determine a second precoding matrix.
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH may be determined in a predefined manner or a high layer signaling manner.
  • the terminal device is pre-defined or the base station notifies the terminal device by high layer signaling, the value of the number of RBs included in each frequency band, the value of the number K of the first frequency band, and the K first frequency bands.
  • the number of each frequency band, the m RBs are scheduled RBs or consecutive RBs in the scheduling band of the PUSCH, and the terminal device acquires the bandwidth of the scheduling band of the PUSCH by using the resource indication information, and includes according to a preset rule and each frequency band.
  • the value of the number m of RBs determines the number of each frequency band, for example, the number of the frequency bands is sorted according to the frequency from high to low, and then the positions of the K first frequency bands in the scheduling frequency band are determined according to the predefined number of each frequency band. .
  • the base station can indicate that one of the high layer signaling is included A field of bits that informs the locations of the K first frequency bands in the scheduling band of the PUSCH. It can be understood that, in the embodiment of the present application, the number of bits used to indicate the positions of the K first frequency bands in the scheduling frequency band of the PUSCH is rounded up based on the calculation result.
  • the field of bits indicates the position of the K first frequency bands in the scheduling band of the PUSCH.
  • the base station may indicate that the scheduling bandwidth of the PUSCH is divided into m subbands of the first frequency band by using the high layer signaling, and the K first frequency bands are included in the PUSCH, where the K first frequency bands correspond to the K in the DCI.
  • the base station further indicates by including one of the higher layer signaling
  • the bit field indicates the position of the K first frequency bands in the scheduling bandwidth, and the number of RBs included in each of the first frequency bands is determined according to the total number of RBs occupied by the PUSCH, that is, each of the first The number of RBs included in the frequency band is L/m.
  • m is 2 RBs
  • the value of K is 2
  • the two numbers are #0 and #1.
  • the terminal device learns that the scheduling frequency band is 10 consecutive RBs in a certain frequency range according to the resource scheduling indication information, The terminal device may further know that the two first frequency bands include the four RBs with the highest frequency position, and the terminal device determines the location of the first frequency band. In doing so, the overhead of signaling the precoding matrix of the band can be saved to the utmost.
  • the position indication information of the K first frequency bands is dynamically indicated by the base station, that is, the precoding indication information further includes location indication information of the K first frequency bands, and the terminal device determines the K according to the location indication information.
  • the terminal may determine the size of each frequency band in the scheduling frequency band according to the number of bits used by the location indication information field, the value of K, and the size of the scheduling frequency band.
  • the size of the frequency band is the same as the size of the first frequency band, and then determining The frequency ranges of the K first indications, the number of bits used by the location indication information field and the value of K need to be predefined in the terminal device or the base station notifies the terminal device by high layer signaling.
  • the location indication information is determined according to the size of the scheduling frequency band of the PUSCH and the field size of the location indication information. In this case, the number of RBs included in each first frequency band is related to the value of K and the size of the scheduling frequency band.
  • the number of bits required for the location indication information is configured as The value of P is determined according to the number of bits and the value of K used in the location indication information field that is predefined in the terminal device or notified by the base station to the terminal device through high layer signaling, that is, the size of the frequency band is scheduled according to resources.
  • the size of the scheduling bandwidth determined by the indication information changes dynamically.
  • the position of the K first frequency bands in the scheduling frequency band of the PUSCH includes consecutive K frequency bands with the lowest frequency position in the scheduling frequency band of the PUSCH as the starting position, and the frequency in the scheduling frequency band of the PUSCH The highest position is used as the continuous K frequency bands of the starting position.
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH may further include K frequency bands whose frequency bands are odd in the scheduling frequency band of the PUSCH, and the frequency band number of the PUSCH scheduling frequency band is even K frequency bands, the position indication information of the K first frequency bands is used to indicate one of the above cases. In doing so, while optimizing the selection of the precoding matrix, the overhead of signaling the precoding matrix of the band can be saved to the utmost.
  • the precoding matrix used by the terminal for determining the uplink data transmission may not be the most preferred precoding matrix because the terminal fails to acquire information that the base station is interfered with.
  • the base station may only notify the information of the part of the bandwidth that is most severely interfered to optimize the precoding matrix used by the terminal for determining the uplink data transmission, and use one indication signaling for the remaining part of the bandwidth to determine the precoding matrix selected by the terminal as the transmitting uplink.
  • the precoding matrix used by the data may not be the most preferred precoding matrix because the terminal fails to acquire information that the base station is interfered with.
  • the base station may only notify the information of the part of the bandwidth that is most severely interfered to optimize the precoding matrix used by the terminal for determining the uplink data transmission, and use one indication signaling for the remaining part of the bandwidth to determine the precoding matrix selected by the terminal as the transmitting uplink.
  • the precoding matrix used by the data may not be the most preferred precoding matrix because the terminal fails to acquire information that the base station is interfered with.
  • the embodiment of the present invention further provides a data transmission method, in which the network device may send precoding indication information, where the precoding indication information includes K first indications, and the K first An indication is used to indicate K first precoding matrices, K is a positive integer; the precoding indication information further includes a second indication, the second indication is used to indicate the second precoding matrix; and the network device receives the K first a precoded first data on a frequency band and a precoded second data on a second frequency band, wherein the precoding matrix used in the first data is K first precoding matrices;
  • the K first frequency bands are located in a partial frequency band in a scheduling frequency band of the physical uplink shared signal PUSCH; the precoding matrix used by the second data is a second precoding matrix; and the second frequency band is in the scheduling frequency band of the PUSCH For all frequency bands except the K first frequency bands, each of the K first frequency bands occupies less bandwidth than the second frequency band.
  • the base station notifies the precoding matrix used by the scheduling band of the PUSCH by using K first frequency bands and one second frequency band, compared with the precoding matrix that currently notifies all frequency bands in the scheduling frequency band one by one.
  • the signaling overhead used to inform the precoding matrix can be reduced.
  • the second indication may be a rank indication
  • the network device may notify the terminal according to the rank indicated by the rank indication and the reference signal resource sent by the terminal on the second frequency band in a predefined manner or a high layer signaling manner.
  • the precoding matrix used is used to determine the precoding matrix on the second frequency band.
  • the base station needs to determine the rank of the transmitted PUSCH by receiving and measuring the reference signal resources that are not precoded.
  • each of the first indications of the K first indications includes M reference signal resource indications, where M is a positive integer; and each of the first indications includes M reference signal resource indications for indicating M references. a signal resource; the M reference signal resources are M reference signal resources among the N reference signal resources received by the network device before transmitting the precoding indication information, where N is a positive integer greater than or equal to M.
  • the first indication notified by the network device includes M reference signal resource indications, so that the terminal may use the M reference signal resource indications to determine the first precoding matrix of the first frequency band, and does not need to introduce additional signaling. Therefore, signaling overhead can be saved.
  • each of the first indications of the K first indications includes a precoding matrix indication; each of the first indications includes a precoding matrix.
  • a precoding matrix indication may be used to determine a first precoding matrix indication, which may further reduce signaling overhead.
  • the second indication includes M reference signal resource indications, where the M indications included in the second indication may be different from the M reference signal resource indications included in a first indication;
  • the M indication reference resource resources included in the second indication are used to indicate M reference signal resources;
  • the M reference signal resources are M out of the N reference signal resources received by the network device before transmitting the precoding indication information.
  • N is a positive integer greater than or equal to M.
  • the second indication is a precoding matrix indication
  • the precoding matrix indication is used to indicate the second precoding matrix
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH may be determined in a predefined manner or a high layer signaling manner.
  • the precoding indication information further includes location indication information of the K first frequency bands, where the location indication information is used to indicate a location of the K first frequency bands in a scheduling frequency band of the PUSCH.
  • the network device pre-defining the location of the K first frequency bands in the scheduling frequency band of the PUSCH may include consecutive K frequency bands with the lowest frequency position in the scheduling frequency band of the PUSCH as the starting location, and scheduling of the PUSCH. The highest frequency position of the scheduling band of the PUSCH is used as the continuous K frequency bands of the start position in the frequency band.
  • the terminal device may select one of the two types of locations according to the location indication information as the location of the K first frequency bands in the scheduling frequency band of the PUSCH.
  • the value of the number m of RBs included in each frequency band, the value of the number K of the first frequency band, and each of the K first frequency bands are predefined in the terminal device or the base station is notified by the higher layer signaling.
  • the number of the frequency bands, the m RBs are scheduled RBs or consecutive RBs in the scheduling band of the PUSCH, and the terminal equipment acquires the bandwidth of the scheduling band of the PUSCH by using the resource indication information, and includes the RB according to a preset rule and each frequency band.
  • the value of the number m determines the number of each frequency band.
  • the number of the frequency band is sorted according to the frequency from high to low, and then the positions of the K first frequency bands in the scheduling frequency band are determined according to the predefined number of each frequency band.
  • the base station can indicate that one of the high layer signaling is included A field of bits that informs the locations of the K first frequency bands in the scheduling band of the PUSCH. For example, m is 2 RBs, the value of K is 2, and the two numbers are #0 and #1.
  • the terminal device learns that the scheduling frequency band is 10 consecutive RBs in a certain frequency range according to the resource scheduling indication information, The terminal device may further know that the two first frequency bands include the four RBs with the highest frequency position, and the terminal device determines the location of the first frequency band.
  • the number of bits used to indicate the positions of the K first frequency bands in the scheduling frequency band of the PUSCH is The calculation results are based on rounding up. Like in Rounding up on the basis of use
  • the field of bits indicates the position of the K first frequency bands in the scheduling band of the PUSCH.
  • the base station may indicate that the scheduling bandwidth of the PUSCH is divided into m subbands of the first frequency band by using the high layer signaling, and the K first frequency bands are included in the PUSCH, where the K first frequency bands correspond to the K in the DCI.
  • the base station further indicates by including one of the higher layer signaling
  • the bit field indicates the position of the K first frequency bands in the scheduling bandwidth, and the number of RBs included in each of the first frequency bands is determined according to the total number of RBs occupied by the PUSCH, that is, each of the first The number of RBs included in the frequency band is L/m.
  • the position of the K first frequency bands in the scheduling frequency band of the PUSCH includes consecutive K frequency bands with the lowest frequency position in the scheduling frequency band of the PUSCH as the starting position, or the frequency in the scheduling frequency band of the PUSCH.
  • the highest position is used as the continuous K frequency bands of the starting position.
  • the embodiment of the present invention further provides a data transmission apparatus, which has the function of implementing the data transmission method according to the first aspect or the second aspect.
  • the above functions can be implemented by hardware or by executing corresponding software through hardware.
  • the above hardware or software includes one or more units corresponding to the above functions.
  • the data transmission device may include a receiving unit, a determining unit, a pre-encoding unit, and a transmitting unit, or the data transmitting device may include a transmitting unit and a receiving unit.
  • an embodiment of the present invention further provides a terminal device, where the terminal device may include a processor, a memory, a transmitter, and a receiver, where the memory stores an instruction when the instruction is run by the processor. And causing the terminal device to perform the data transmission method according to the first aspect; wherein the terminal device receives precoding indication information by using the receiver, and sends the first frequency band by using the transmitter The precoded first data and the precoded second data are transmitted on the second frequency band.
  • an embodiment of the present invention further provides a network device, where the network device includes a processor, a memory, a transmitter, and a receiver, where the memory stores an instruction, when the instruction is executed by the processor, Having the network device perform the data transmission method of the second aspect; wherein the network device transmits precoding indication information by the transmitter; and receives, by the receiver, a pre-transmission sent on the K first frequency bands The encoded first data and the precoded second data transmitted on the second frequency band.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when it is run on a computer, implements the data transmission method according to the first aspect. Can be executed.
  • an embodiment of the present invention further provides a computer program product, where the data transmission method provided by the second aspect is implemented when an instruction in the computer program product is executed by a processor.
  • the embodiment of the present invention further provides a computer program product, which can implement the data transmission method provided in any one of the foregoing second aspects when the instructions in the computer program product are executed by the processor.
  • the embodiment of the present invention further provides a data transmission system, where the data transmission system includes a terminal device and a network device, where the terminal device is configured to perform the data transmission method according to the first aspect; The data transmission method described in the second aspect above is performed.
  • an embodiment of the present invention provides a chip system, where the chip system includes a processor for supporting a terminal device to implement the functions involved in the foregoing first aspect, for example, processing data involved in the foregoing method and/or Or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system may further include a receiver and a transmitter for interacting with other devices.
  • FIG. 1 is a schematic diagram of a scheduling frequency band according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another scheduling frequency band according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a scheduling frequency band according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of locations of three first frequency bands according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another data transmission apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • UMTS Universal Mobile Telecommunication System
  • LTE Long Term Evolution
  • 5G fifth generation mobile communication technology
  • NR New Radio
  • D2D device to device
  • M2M machine to machine
  • the communication involved in the embodiment of the present invention may be between the base station and the terminal, or between the base station and the base station, such as between the macro base station and the small base station, or between the terminal and the terminal, such as D2D. Communication in the network.
  • the embodiment of the present application takes the communication between the base station and the user equipment as an example.
  • the user equipment may refer to a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem, which can be accessed via a radio access network (eg, RAN, radio access) Network) communicates with one or more core networks.
  • a radio access network eg, RAN, radio access
  • the user equipment can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, and can also be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device, such as Personal Communication Service (PCS) telephone, cordless telephone, Session Initiation Protocol (SIP) telephone, Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA) Etc., they exchange language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the user equipment may also be referred to as a mobile station (MS), a mobile terminal, a subscriber unit (Sub), a subscriber station (Subscriber Station, SS), and a mobile station (Mobile Station).
  • MS mobile station
  • Subscriber Station Subscriber Station
  • SS Subscriber Station
  • Mobile Station Mobile Station
  • the remote station (Remote Station, RS), access point (AP), remote terminal (RT), access terminal (AT), user terminal (User Terminal; UT)
  • the user agent (User Agent, UA), the terminal device (User Device, UD), etc., are not limited in this application.
  • the network device may include a base station, a Transmission Reception Point (TRP), or a radio frequency unit, such as a Radio Radio Unit (RRU).
  • a base station may refer to a device in an access network that communicates with a terminal over an air interface over one or more sectors, which may coordinate attribute management of the air interface.
  • the base station may be a base station in GSM or CDMA, such as a base transceiver station (BTS), or a base station in WCDMA, such as a NodeB, or an evolved base station in LTE, such as an eNB or an e.
  • -NodeB (evolutional Node B), which may also be a base station in a 5G system, or a base station in a future network, etc., which is not limited in this application.
  • the base station may also be a relay device or other network element device with a base station function.
  • the base station In uplink data transmission, the base station needs to perform channel estimation by receiving and measuring a reference signal, thereby determining precoding indication information used for uplink data transmission.
  • the reference signal used by the base station to determine the quality of the uplink channel includes a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the time-frequency resource of the terminal transmitting the reference signal is determined according to relevant configuration parameters of the reference signal resource.
  • the relevant configuration parameters of the reference signal resource may include each parameter shown in Table 1.
  • the reference signal resource may further include other configuration parameters, for example, the number of ports of the reference signal resource.
  • the configuration parameters of the reference signal resource may be configured by the base station to the terminal by using high layer signaling.
  • SRS parameter name meaning Signaling type srs-BandwidthConfig Maximum SRS bandwidth in the cell Cell specific srs-SubframeConfig Subframe group in the cell that may send SRS Cell specific srs-Bandwidth SRS bandwidth of a UE UE specific freqDomainPosition Frequency domain location UE specific srs-HoppingBandwidth Frequency jump size UE specific Duration Single SRS/cycle SRS UE specific srs-ConfigIndex Period and subframe offset UE specific transmissionComb Transmission comb compensation UE specific cyclicShift Cyclic shift UE specific
  • the terminal transmits the reference signal resource based on the reference signal resource configured by the base station and the related configuration parameter of the reference signal resource; the base station may perform channel estimation by receiving and measuring the reference signal resource, so that the base station may allocate the terminal
  • the specific frequency domain resource performs uplink data transmission, and the allocated frequency domain resource is indicated to the terminal by using Downlink Control Information (DCI); the terminal sends uplink data based on the frequency domain resource indicated in the DCI information.
  • DCI Downlink Control Information
  • the DCI is control information indicating that the base station indicates the behavior of the user equipment (User Equipment, UE) in the physical layer.
  • the high-level signaling may also be used for the base station to indicate the control information of the UE, and the high-level signaling is higher than the physical layer for indicating and controlling the related UE, for example, a Radio Resource Control (RRC) message.
  • RRC Radio Resource Control
  • the precoding matrix is notified in the uplink data transmission by dividing the entire system bandwidth into multiple frequency bands, and using multiple precoding matrix indications to notify the precoding matrix used for transmitting data on each frequency band one by one, when the frequency band is scheduled. When it is large, it will cause a large signaling overhead for notifying the precoding matrix.
  • the frequency domain resource allocated by the base station is part or all of the frequency domain resource in the system bandwidth, and the frequency domain resource allocated by the base station may also be referred to as the scheduling frequency band of the physical uplink shared channel PUSCH, and the frequency domain resource allocated by the base station may be a resource block.
  • a resource block group (RBG) is allocated for granularity.
  • the RBG includes a resource block set of N consecutive resource blocks (RBs). That is, the system bandwidth is divided into N frequency bands of size RBG.
  • the base station may select, by its own scheduling algorithm, whether each of the frequency domain parts is allocated to the terminal, and address the RBG through a bitmap, and each bit in the bitmap corresponds to indicate whether an RBG is allocated to the terminal. For example, FIG.
  • FIG. 1 is a schematic diagram of a scheduling frequency band according to an embodiment of the present invention.
  • the divided frequency domain resources form 3 RBGs (each RBG includes 2 RB)
  • the bitmap contains 3 bits
  • each bit indicates whether an RBG is scheduled.
  • the scheduling band consists of all assigned RBGs indicated in the scheduling information.
  • the precoding resource block group includes at least one consecutive RB, and each RB included in the PRG adopts a fixed precoding matrix, that is, a precoding matrix in a frequency band corresponding to the PRG. It does not change with frequency, and the scheduling band carrying uplink data may include multiple RBGs or PRGs. How many RBGs or how many RRGs the system bandwidth is divided can be predefined by the system or notified by the higher layer. Since the scheduling band can include multiple PRGs, different precoding information can be used on different PRGs. For frequency domain selective scheduling, the base station needs to determine the precoding matrix used on each PRG, and how many PRGs need to indicate how many Precoding information leads to excessive signaling overhead.
  • the embodiment of the invention provides a data transmission method and device, which helps to reduce the signaling overhead required by the base station to notify the precoding information.
  • the terminal may determine the scheduling frequency band from the system bandwidth according to the scheduling information sent by the base station.
  • the scheduling bandwidth is a frequency domain range between the scheduled resource block with the highest frequency position and the lowest resource block with the lowest frequency position determined according to the scheduling information in the system bandwidth.
  • the scheduling band may be divided into L frequency domain portions, and the size of each frequency domain portion may be referred to as one frequency band.
  • the terminal may determine the number of RBs included in one frequency band by using a system-predefined manner or information indicated by the high-level signaling, where each RB included in one frequency band adopts the same pre-coding matrix.
  • one frequency band is divided into one frequency domain part of the L frequency domain parts, where L is a positive integer.
  • Each of the first frequency bands may correspond to one of the scheduled frequency bands of the PUSCH; the second frequency band may include multiple frequency bands, and the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band.
  • FIG. 2 is a schematic diagram of another scheduling frequency band according to an embodiment of the present invention.
  • the system bandwidth includes 10 RBs, and the terminal can determine the scheduling information according to the scheduling information sent by the base station.
  • the scheduling band of the PUSCH is the first 6 RBs. If one frequency band includes two RBs, the scheduling frequency band may include three frequency bands, and the precoding indication information includes two first indications and one second indication, and two predefined ones are defined.
  • the position of the first frequency band is the first two frequency bands in the scheduling frequency band, and the two first frequency bands are respectively band #0 and band #1, and one second band is band #2.
  • the scheduling bandwidth is all scheduled resource blocks determined by the scheduling information in the system bandwidth.
  • the scheduling frequency band may be divided into L resource block sets, L is a positive integer, and each resource block set includes different resource blocks, and each resource block set may be referred to as a frequency band, and the terminal may be in a predefined manner according to the system. Or determining the number of resource blocks included in one frequency band by using the information indicated by the high layer signaling, wherein the data transmitted on each resource block included in one frequency band adopts the same precoding matrix.
  • Each of the first frequency bands is one of the L frequency bands in the scheduling band of the PUSCH; the second frequency band may include a plurality of frequency bands, and the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band.
  • the base station may notify the terminal device of the precoding information of the partial frequency band, and not all the frequency bands except the part of the frequency band in the scheduling frequency band are not dynamically notified, that is, all the frequency bands except the partial frequency band are performing uplink data.
  • the precoding information used by the terminal to transmit reference signal resources on these frequency bands is still used. It can be seen that the embodiment only dynamically indicates the precoding information of the partial frequency band, which helps to reduce the signaling overhead compared with the precoding information that dynamically indicates all frequency bands.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 3, the data transmission method may include the following steps:
  • the terminal device receives precoding indication information.
  • the precoding indication information includes K first indications and a second indication
  • the terminal device determines, according to the K first indications, K first precoding matrices, and determines a second precoding matrix according to the second indication.
  • K is a positive integer.
  • the terminal device performs precoding on the data sent by the K first frequency bands by using the K first precoding matrices to obtain precoded first data, and sends the second frequency band by using the second precoding matrix.
  • the data is precoded to obtain the precoded second data.
  • the terminal device sends the precoded first data on the K first frequency bands, and sends the precoded second data on a second frequency band.
  • the K first frequency bands are located in a partial frequency band in a scheduling frequency band of the physical uplink shared signal PUSCH, that is, the K first frequency bands are partial frequency bands in a scheduling frequency band of the PUSCH.
  • a first frequency band may include a frequency band, and data transmitted on each RB in the first frequency band adopts the same precoding matrix.
  • the second frequency band is all frequency bands except the K first frequency bands in the scheduling frequency band of the PUSCH, and each of the K first frequency bands occupies less bandwidth than the second frequency band.
  • the signaling only needs to notify the K precoding matrices corresponding to the first frequency band by using the K first indications, so the precoding of each PRG in the scheduling frequency band of the PUSCH is signaled. Compared with the matrix, the signaling overhead can be saved.
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH may be determined in a predefined manner or a high layer signaling manner.
  • the location of the K first frequency bands is dynamically indicated by the base station, that is, the precoding indication information further includes location indication information of the K first frequency bands, where the location indication information is used to indicate K The location of a frequency band in the scheduling band of the PUSCH.
  • the value of the number m of RBs included in each frequency band, the value of the number K of the first frequency band, and each of the K first frequency bands are predefined in the terminal device or the base station is notified by the higher layer signaling.
  • the number of the frequency bands, the m RBs are scheduled RBs or consecutive RBs in the scheduling band of the PUSCH, and the terminal equipment acquires the bandwidth of the scheduling band of the PUSCH by using the resource indication information, and includes the RB according to a preset rule and each frequency band.
  • the value of the number m determines the number of each frequency band.
  • the number of the frequency band is sorted according to the frequency from high to low, and then the positions of the K first frequency bands in the scheduling frequency band are determined according to the predefined number of each frequency band.
  • the base station can indicate that one of the high layer signaling is included A field of bits that informs the locations of the K first frequency bands in the scheduling band of the PUSCH. For example, m is 2 RBs, the value of K is 2, and the two numbers are #0 and #1.
  • the terminal device learns that the scheduling frequency band is 10 consecutive RBs in a certain frequency range according to the resource scheduling indication information, The terminal device may further know that the two first frequency bands include the four RBs with the highest frequency position, and the terminal device determines the location of the first frequency band.
  • the base station may indicate that one of the high layer signaling is included.
  • a bit field indicating the position of the K first frequency bands in the scheduling frequency band of the PUSCH that is, the number of bits used to indicate the positions of the K first frequency bands in the scheduling frequency band of the PUSCH is The calculation results are based on rounding up.
  • the base station may indicate that the scheduling bandwidth of the PUSCH is divided into m subbands of the first frequency band by using the high layer signaling, and the K first frequency bands are included in the PUSCH, where the K first frequency bands correspond to the K in the DCI.
  • the base station further indicates by including one of the higher layer signaling
  • the bit field indicates the position of the K first frequency bands in the scheduling bandwidth, and the number of RBs included in each of the first frequency bands is determined according to the total number of RBs occupied by the PUSCH, that is, each of the first The number of RBs included in the frequency band is L/m.
  • FIG. 4 is a schematic diagram of a scheduling frequency band according to an embodiment of the present invention.
  • the scheduling frequency band includes 10 RBs, and each frequency band may include one RB.
  • the system pre-defined band #3, band #4, and band #5 are respectively the first band (ie, RB#2, RB#3, and RB#4 are respectively the first band), and the remaining RBs are the second band. That is, the terminal may determine, by using the foregoing information and the scheduling information, that the K first frequency bands are respectively the third to fifth RBs of the scheduling frequency band, and using the data transmission method of FIG. 1, the terminal sends data using the third to fifth RBs.
  • the precoding matrices are respectively the three first precoding matrices indicated by the three first indications.
  • the precoding indication information further needs to include location information of the three first frequency bands. Since the scheduling frequency band includes 10 RBs, the location information may indicate the location information of the three first frequency bands by using log 2 10 bit numbers. , understand that the location information is also available Bits to indicate position information of the three first frequency bands, that is, 4 bit numbers to indicate position information of the three first frequency bands, for example, 0010 indicates that the first one of the three first indications indicates The first frequency band to which the precoding matrix is applied is the third RB; 0011 indicates that the first frequency band applicable to the precoding matrix indicated by the second first indication of the three first indications is the fourth RB; 0100 indicates three The first frequency band to which the precoding matrix indicated by the third first indication in the first indication applies is the fifth RB.
  • the positions of the K first frequency bands in the scheduling frequency band of the PUSCH may further define, in addition to the K first RBs corresponding to the K RBs, the scheduling of the K first frequency bands in the PUSCH.
  • An optional location in the band is notified in a predefined manner or the terminal determines, according to the manner determined by the high layer signaling, that the location of the K first frequency bands in the scheduling frequency band of the PUSCH includes the scheduling frequency band of the PUSCH.
  • the lowest frequency position is the K first frequency bands as the starting position, and the K first frequency bands are taken as the K consecutive frequency bands with the highest frequency position in the scheduling band of the PUSCH as the K first frequency bands.
  • the terminal device may determine one of the two locations as the location of the K first frequency bands in the scheduling frequency band of the PUSCH according to the location indication information.
  • FIG. 5 is a schematic diagram of positions of three first frequency bands according to an embodiment of the present invention.
  • the positions of the three first frequency bands are optional, and one is a frequency from a scheduling frequency band including the PUSCH.
  • the first three RBs are low to high, and the other is the last three RBs of the frequency in the scheduled frequency band including the PUSCH from high to low.
  • the location indication information is 1, selecting three RBs including a frequency from low to high in the scheduling frequency band of the PUSCH as the three first frequency bands; when the location indication information is 0, selecting to include the PUSCH
  • the three frequency bands of the frequency in the scheduling band from high to low are taken as three first frequency bands.
  • the base station dynamically notifies the precoding matrix used in the K first frequency bands, and needs to use the second indication to notify the precoding matrix used on the frequency bands other than the K first frequency bands in the scheduling frequency band, that is, the notification Two precoding matrices.
  • the second indication may be a rank indication, that is, the base station may notify the terminal device of the precoding information of the partial frequency band (for example, the K first frequency bands) (the precoding matrix indicated by the K first indications), and the scheduling frequency band All the frequency bands except the part of the frequency band are not dynamically notified.
  • the second frequency band all the bands except the K first frequency bands in the scheduling band of the PUSCH are referred to as the second frequency band. That is, when the second indication is the rank indication, the system may notify the terminal according to the rank indication and the precoding matrix used by the terminal to transmit the reference signal resource in the second frequency band by means of pre-defined or high-level signaling notification.
  • a precoding matrix for transmitting the PUSCH on the second frequency band is determined.
  • the terminal needs to send a reference signal resource that is not pre-coded in addition to the pre-coded reference information resource, so that the base station can determine the rank of the PUSCH according to the unprecoded reference signal resource.
  • the rank indication RI is used to notify the terminal.
  • the terminal may use the precoding information used by the terminal to transmit the precoded reference signal resource on the second frequency band to determine the precoding matrix used by the PUSCH to transmit on the second frequency band.
  • the reference signal sent by the terminal may be a frequency selective precoding method or a non-frequency selective precoding method (ie, a wideband precoding method).
  • the terminal device determines the precoding matrix on the second frequency band by using the following steps: the terminal acquires the reference signal resource sent by the terminal on the second frequency band; the terminal acquires the rank of the transmitted PUSCH determined by the base station; and the terminal determines that the reference signal resource corresponds to a precoding matrix; the terminal determines a precoding matrix used for transmitting the PUSCH on the second frequency band according to the precoding matrix and the rank.
  • the rank of the PUSCH is the maximum number of data streams that the base station scheduling terminal can transmit.
  • each port may adopt a precoding matrix (ie, one column vector in the precoding matrix of the reference signal resource), and assume that the base station determines the rank of the PUSCH at this time. If the rank is 3, the precoding matrix used by port 0, port 1, and port 2 is the precoding matrix used by the terminal to transmit the PUSCH in the second frequency band determined by the terminal when the reference signal resource is transmitted on the second frequency band.
  • a precoding matrix ie, one column vector in the precoding matrix of the reference signal resource
  • each of the first indications of the K first indications may include M reference signal resource indications, where M is a positive integer.
  • the terminal device determines, according to the K first indications, the K first precoding matrices, which may include:
  • the terminal device determines the M reference signal resources indicated by the M reference signal resources, and determining one according to the M reference signal resources First precoding matrix;
  • the M reference signal resources are M reference signal information resources of the N reference signal resources sent before the terminal device receives the precoding indication information.
  • the determining, by the terminal device, a first precoding matrix according to the M reference signal resources may include: determining, by the terminal device, the M precoding matrices used by the terminal device to send the M reference signal resources;
  • the terminal device determines a first precoding matrix according to the M precoding matrices.
  • the number of ports configured for the M reference signal resources is 1, and the precoding matrix used by the terminal to transmit the M reference signal resources is as follows:
  • a first precoding matrix determined according to the M precoding matrices may be a combination of the above column vectors into a matrix as a first precoding matrix.
  • determining, by the terminal device, a first precoding matrix according to the M reference signal resources may include: aggregating the M reference signal resources into one reference signal resource, where the reference signal resource corresponds to The precoding matrix is a first precoding matrix, and the aggregation rule is not limited in the embodiment of the present invention.
  • each of the first indications of the K first indications includes a precoding matrix indication
  • Determining, by the terminal device, the K first precoding matrices according to the K first indications including:
  • the terminal device determines a first precoding matrix according to the correspondence between the first precoding matrix and the precoding matrix, and may select, by the terminal device, the index value from the uplink codebook according to the index value indicated by the precoding matrix indication.
  • the precoding matrix corresponding to the index value.
  • the second indication includes M reference signal resource indications, where the M indications included in the second indication may be different from the M reference signal resource indications included in the first indication. And determining, by the terminal device, the second precoding matrix according to the second indication, where: the terminal device determines the M reference signal resources indicated by the M reference signal resource indications; the terminal device determines the first according to the M reference signal resources. a second precoding matrix; the M reference signal resources are M reference signal information resources of the N reference signal resources sent before the terminal device receives the precoding indication information.
  • the second indication is a precoding matrix indication
  • the terminal device determines the second precoding matrix according to the second indication, where the terminal device indicates, according to the precoding matrix, A correspondence between the coding matrices determines a second precoding matrix.
  • FIG. 6 is a schematic flowchart of another data transmission method according to an embodiment of the present invention. As shown in FIG. 6, the data transmission method is illustrated from a network device side. Specifically, FIG. 6 is shown in FIG.
  • the data transmission method can include the following steps:
  • the network device sends precoding indication information.
  • the precoding indication information includes K first indications, where the K first indications are used to indicate K first precoding matrices, and the precoding indication information further includes a second indication, where the second indication is used to indicate Two precoding matrices, K is a positive integer;
  • the network device receives the precoded first data on the K first frequency bands and the precoded second data on the second frequency band.
  • the precoding matrix used by the first data is K first precoding matrices; wherein the K first frequency bands are located in a partial frequency band in a scheduling frequency band of the physical uplink shared signal PUSCH.
  • the precoding matrix used by the second data is a second precoding matrix; the second frequency band is all frequency bands except the K first frequency bands in the scheduling band of the PUSCH, and each of the K first frequency bands The bandwidth occupied by one frequency band is smaller than the bandwidth occupied by the second frequency band.
  • the base station can notify the precoding matrix of the K first frequency bands and the second frequency band in the scheduling frequency band of the PUSCH, without first notifying the precoding matrix of all frequency bands in the scheduling frequency band, thereby reducing the precoding matrix. Notifies the signaling overhead used by the precoding matrix.
  • the second indication on the second frequency band may be a rank indication
  • the network device may notify the terminal according to the manner in which the terminal sends the reference signal resource on the second frequency band before the terminal in a predefined manner or a high-level signaling manner.
  • the precoding matrix and the rank indicated by the rank indication determine the second precoding matrix.
  • each of the first indications of the K first indications includes M reference signal resource indications, where M is a positive integer; and each of the first indications includes M reference signal resource indications for indicating M references. a signal resource; the M reference signal resources are M reference signal resources among the N reference signal resources received by the network device before transmitting the precoding indication information, where N is a positive integer greater than or equal to M.
  • the first indication notified by the network device includes M reference signal resource indications, so that the terminal may use the M reference signal resource indications to determine the first precoding matrix of the first frequency band, and does not need to introduce additional signaling. Therefore, signaling overhead can be saved.
  • each of the first indications of the K first indications includes a precoding matrix indication; each of the first indications includes a precoding matrix.
  • a precoding matrix indication may be used to determine a first precoding matrix indication, which may further reduce signaling overhead.
  • the second indication includes M reference signal resource indications, where the M indication reference resource indications included in the second indication may be different from the M reference signal resource indications included in the first indication; the second indication includes The M reference signal resource indications are used to indicate M reference signal resources; the M reference signal resources are M reference signal resources among the N reference signal resources received by the network device before transmitting the precoding indication information, N Is a positive integer greater than or equal to M.
  • the second indication is a precoding matrix indication
  • the precoding matrix indication is used to indicate the second precoding matrix
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH may be determined in a predefined manner or in a manner of high layer signaling.
  • the precoding indication information further includes location indication information of the K first frequency bands, where the location indication information is used to indicate a location of the K first frequency bands in a scheduling frequency band of the PUSCH.
  • the position of the K first frequency bands in the scheduling frequency band of the PUSCH includes consecutive K frequency bands with the lowest frequency position in the scheduling frequency band of the PUSCH as the starting position, and the scheduling frequency band of the PUSCH
  • the position where the frequency of the scheduling band of the PUSCH is the highest is the continuous K frequency bands of the start position, and a position is determined from the position indication information.
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH may further include K frequency bands whose frequency bands are odd in the scheduling frequency band of the PUSCH, and the frequency band number of the PUSCH scheduling frequency band is even K frequency bands, the position indication information of the K first frequency bands is used to indicate one of the above cases. In doing so, while optimizing the selection of the precoding matrix, the overhead of signaling the precoding matrix of the band can be saved to the utmost.
  • the precoding matrix used by the uplink data transmission determined by the terminal may not be the most preferred precoding matrix, because the terminal fails to acquire the information that the base station is interfered with.
  • the base station may only notify the information of the part of the bandwidth that is most severely interfered to optimize the precoding matrix used by the terminal for determining the uplink data transmission, and use one indication signaling for the remaining part of the bandwidth to determine the precoding matrix selected by the terminal as the transmitting uplink.
  • the precoding matrix used by the data may not be the most preferred precoding matrix, because the terminal fails to acquire the information that the base station is interfered with.
  • the base station may only notify the information of the part of the bandwidth that is most severely interfered to optimize the precoding matrix used by the terminal for determining the uplink data transmission, and use one indication signaling for the remaining part of the bandwidth to determine the precoding matrix selected by the terminal as the transmitting uplink.
  • the precoding matrix used by the data may not be the most preferred precoding matrix, because the terminal fails to acquire the information that the base station is
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • the data transmission apparatus may sample the data transmission method corresponding to FIG. 3, and specifically, the data transmission apparatus may include the following units:
  • the receiving unit 301 is configured to receive precoding indication information, where the precoding indication information includes K first indications and a second indication.
  • a determining unit 302 configured to determine K first precoding matrices according to the K first indications, and determine a second precoding matrix according to the second indication, where K is a positive integer;
  • the encoding unit 303 is configured to perform precoding on the K first frequency bands by using the K first precoding matrices to obtain precoded first data, and use the second precoding matrix pair The data transmitted on the two frequency bands is precoded to obtain the precoded second data.
  • the K first frequency bands are located in a partial frequency band of a scheduling frequency band of a physical uplink shared channel PUSCH; the second frequency band is all frequency bands except the K first frequency bands in a scheduling frequency band of the PUSCH, Each of the K first frequency bands occupies less bandwidth than the second frequency band.
  • the sending unit 304 is configured to send the precoded first data on the K first frequency bands, and send the precoded second data on the second frequency band.
  • each of the K first indications includes M reference signal resource indications, where M is a positive integer.
  • the determining unit 302 determines, according to the K first indications, that the K first precoding matrices are: determining, according to the M reference signal resource indications included in each of the first indications, the M The reference signal resources indicate the indicated M reference signal resources, and determine a first precoding matrix according to the M reference signal resources.
  • the M reference signal resources are M reference signal resources of the N reference signal resources sent before the terminal device receives the precoding indication information, where N is a positive integer greater than or equal to M.
  • each of the K first indications includes a precoding matrix indication.
  • the determining unit 302 determines, according to the K first indications, the K first precoding matrices, specifically: a precoding matrix indication included for each of the first indications, where the terminal device is configured according to The one precoding matrix indicates a correspondence with the precoding matrix to determine a first precoding matrix.
  • the second indication includes M reference signal resource indications, where the M indications included in the second indication may be different from the M reference signal resource indications included in the first indication.
  • determining, by the determining unit 302, the second precoding matrix according to the second indication is: determining M reference signal resources indicated by the M reference signal resource indications; determining, according to the M reference signal resources Second precoding matrix.
  • the M reference signal resources are M reference signal information resources of the N reference signal resources sent before the terminal device receives the precoding indication information, where N is a positive integer greater than or equal to M.
  • the second indication is a precoding matrix indication.
  • the determining unit 302 determines, according to the second indication, that the second precoding matrix is specifically: determining a second precoding matrix according to the correspondence between the precoding matrix and the precoding matrix.
  • the precoding indication information further includes location indication information of the K first frequency bands, and the terminal device determines, according to the location indication information, a location of the K first frequency bands in a scheduling frequency band of the PUSCH. .
  • the location of the K first frequency bands in the scheduling frequency band of the PUSCH includes consecutive K frequency bands with the lowest frequency position in the scheduling frequency band of the PUSCH as the starting location, or in the PUSCH The position in the scheduling band in which the frequency of the scheduling band of the PUSCH is the highest is taken as the continuous K bands of the starting position.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • the data transmission apparatus may sample the data transmission method corresponding to FIG. 6 .
  • the data transmission apparatus may include the following units. :
  • the sending unit 401 is configured to send precoding indication information, where the precoding indication information includes K first indications and a second indication, where the K first indications are used to indicate K first precoding matrices, where K is A positive integer; the second indication is used to indicate a second precoding matrix.
  • the receiving unit 402 is configured to receive the pre-coded first data on the K first frequency bands, and receive the pre-coded second data on the second frequency band.
  • the precoding matrix used by the first data is the K first precoding matrices; and the precoding matrix used by the second data is the second precoding matrix.
  • the K first frequency bands are located in a partial frequency band of a scheduling frequency band of the physical uplink shared signal PUSCH; the second frequency band is all frequency bands except the K first frequency bands in the scheduling frequency band of the PUSCH, Each of the K first frequency bands occupies less bandwidth than the second frequency band.
  • each of the K first indications includes M reference signal resource indications, where M is a positive integer; and each of the first indications includes M reference signal resource indications for indicating M Reference signal resources; the M reference signal resources are M reference signal resources among the N reference signal resources received by the network device before transmitting the precoding indication information, and N is a positive integer greater than or equal to M.
  • each first indication of the K first indications includes a precoding matrix indication; and each of the first indications includes a precoding matrix indication for indicating a first precoding matrix.
  • the second indication includes M reference signal resource indications, where the M indication reference resource indications included in the second indication may be different from the M reference signal resource indications included in the first indication; the second indication The M reference signal resource indications are used to indicate M reference signal resources; the M reference signal resources are M reference signal resources among the N reference signal resources received by the network device before transmitting the precoding indication information.
  • N is a positive integer greater than or equal to M.
  • the second indication is a precoding matrix indication
  • the precoding matrix indication is used to indicate a second precoding matrix
  • the precoding indication information further includes location indication information of the K first frequency bands, where the location indication information is used to indicate a location of the K first frequency bands in a scheduling frequency band of the PUSCH.
  • the location of the K first frequency bands determined in the scheduling band of the PUSCH according to the location indication information may be consecutive K frequency bands in which the lowest frequency position in the scheduling frequency band of the PUSCH is used as a starting location, Or, in the scheduling band of the PUSCH, a position where the frequency of the scheduling band of the PUSCH is the highest is a continuous K frequency band of the starting position.
  • the precoding matrix used by the terminal for determining the uplink data transmission may not be the most preferred precoding matrix because the terminal fails to acquire information that the base station is interfered with.
  • the base station may only notify the information of the part of the bandwidth that is most severely interfered to optimize the precoding matrix used by the terminal for determining the uplink data transmission, and use one indication signaling for the remaining part of the bandwidth to determine the precoding matrix selected by the terminal as the transmitting uplink.
  • the precoding matrix used by the data may be the most preferred precoding matrix because the terminal fails to acquire information that the base station is interfered with.
  • the base station may only notify the information of the part of the bandwidth that is most severely interfered to optimize the precoding matrix used by the terminal for determining the uplink data transmission, and use one indication signaling for the remaining part of the bandwidth to determine the precoding matrix selected by the terminal as the transmitting uplink.
  • the precoding matrix used by the data may not be the most preferred precoding matrix because the terminal fails to acquire information that the base station is interfered with.
  • FIG. 9 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • the device may be a user equipment, or may be a chip or a circuit, such as a chip or a circuit that can be disposed on the terminal device.
  • the user equipment can correspond to the terminal in the above method.
  • the device can include a processor 910 and a memory 920.
  • the memory 920 is configured to store instructions for executing the instructions stored by the memory 920 to implement the steps or embodiments in the method corresponding to FIG. 3 above.
  • the device may further include an input port 940 and an output port 950. Further, the device may further include a bus system 930, wherein the processor 910, the memory 920, the input port 940, and the output port 950 may be connected by a bus system 930.
  • the processor 910 is configured to execute the instructions stored in the memory 920 to control the input port 940 to receive signals, and control the output port 950 to send signals to complete the steps of the terminal device in the above method.
  • the input port 940 and the output port 950 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 920 may be integrated in the processor 910 or may be separately provided from the processor 910.
  • the functions of the input port 940 and the output port 950 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 910 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code of the function of the input port 940 and the output port 950, which is to be implemented by the processor 910, is stored in a memory.
  • the general purpose processor implements the functions of the processor 910, the input port 940 and the output port 950 by executing code in the memory.
  • FIG. 10 is a schematic structural diagram of a user equipment provided by the present application.
  • the user equipment can be adapted to the above data transmission system.
  • Figure 10 shows only the main components of the user equipment.
  • the user equipment includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing data transmission method embodiment.
  • the memory is mainly used to store software programs and data, such as storing the above precoding indication information.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 10 shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the user equipment may include a plurality of baseband processors to accommodate different network standards, and the user equipment may include a plurality of central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 1001 of the user equipment, and the processor having the processing function is regarded as the processing unit 1002 of the user equipment.
  • the user equipment includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 1001 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1001 is regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • FIG. 11 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • the device may be a network device, or may be a chip or a circuit, such as a chip that can be disposed in a network device or Circuit.
  • the network device corresponds to the network device in the above method.
  • the device can include a processor 1110 and a memory 1120.
  • the memory 1120 is configured to store instructions
  • the processor 1110 is configured to execute the instructions stored in the memory 1120 to enable the device to implement the steps and implementations in the foregoing method corresponding to FIG. 6.
  • the network may further include an input port 1140 and an output port 1150. Still further, the network can also include a bus system 1130.
  • the processor 1110, the memory 1120, the input port 1140, and the output port 1150 are connected by a bus system 1130.
  • the processor 1110 is configured to execute an instruction stored in the memory 1120 to control the input port 1140 to receive a signal, and control the output port 1150 to send a signal.
  • the steps of the network device in the above method are completed.
  • the input port 1140 and the output port 1150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output ports.
  • the memory 1120 may be integrated in the processor 1110 or may be separately provided from the processor 1110.
  • the functions of the input port 1140 and the output port 1150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 1110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code for the functions of the processor 1110, the input port 1140 and the output port 1150 is stored in a memory, and the general purpose processor implements the functions of the processor 1110, the input port 1140 and the output port 1150 by executing code in the memory.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present application, and may be a schematic structural diagram of a base station. As shown in FIG. 12, the network device can be applied to the above data transmission system.
  • the network device includes one or more radio frequency units, such as a remote radio unit (RRU) 1201 and one or more baseband units (BBUs) (also referred to as digital units, DUs). 1202.
  • RRU 1201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 12011 and a radio frequency unit 12012.
  • the RRU 1201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 1201 and the BBU 1202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 1202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 1202 may be configured by one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may support different access technologies respectively. Access Network.
  • the BBU 1202 also includes a memory 12021 and a processor 12022.
  • the memory 12021 is used to store necessary instructions and data.
  • the memory 12021 stores precoding indication information and the like in the above embodiment.
  • the processor 12022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 12021 and the processor 12022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the embodiment of the present application further provides a communication system, including the foregoing network device and one or more terminals.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration. Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本发明实施例提供了一种数据传输方法及装置,终端设备可以接收预编码指示信息,所述预编码指示信息包括K个第一指示和一个第二指示;终端设备根据K个第一指示确定K个第一预编码矩阵,并根据所述第二指示确定第二预编码矩阵,K为正整数;所述终端设备使用所述K个第一预编码矩阵对K个第一频带上发送的数据进行预编码,得到预编码后的第一数据,以及使用所述第二预编码矩阵对第二频带上发送的数据进行预编码,得到预编码后的第二数据,K个第一频带位于物理上行共享信道PUSCH的调度频带中的部分频带;所述第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带。该实施方式,可以降低通知预编码矩阵所使用的信令开销。

Description

信息传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法及装置。
背景技术
目前,通信系统中,上行或下行数据的传输需要基于接收和测量参考信号获取的信道估计信息。例如,上行数据传输中,基站通过高层信令为终端配置发送探测参考信号(Sounding Reference Signal,SRS)的相关参数(例如,SRS的时频资源位置、端口数等);终端基于SRS的相关参数向基站发送SRS;基站通过接收并测量该SRS获得信道估计信息,从而确定上行数据传输中所使用的信道状态信息(Channel State Information,CSI),该CSI中包含秩指示(Rank Indicator,RI)、预编码矩阵指示(Precoding Matrix Indicators,PMI)和信道质量指示(Channel Quality Indicator,CQI);从而,基站可以将该CSI通知给终端,使得终端可以利用该CSI进行上行数据的发送。
其中,上行数据传输中预编码矩阵的通知方式是通过将整个系统带宽划分为多个子带,并使用多个预编码矩阵指示逐一通知每个子带上发送数据使用的预编码矩阵,当系统带宽较大时,会导致通知预编码矩阵所使用的信令开销较大。
发明内容
本发明实施例提供一种数据传输方法及装置,通过将发送数据所使用的系统带宽包含的部分带宽划分为多个频带,并使用不同的预编码指示信息通知不同的频带上发送的数据所使用的预编码矩阵,除该部分带宽之外的带宽作为一个频带进行预编码指示信息的通知,从而降低通知预编码矩阵所使用的信令开销。
第一方面,本发明实施例提供了一种数据传输方法,该数据传输方法中,终端设备可以接收预编码指示信息,该预编码指示信息包括K个第一指示和第二指示;终端设备可以根据该K个第一指示确定K个第一预编码矩阵以及根据第二指示确定第二预编码矩阵,K为正整数,终端设备使用该K个第一预编码矩阵对K个第一频带上发送的数据进行预编码,获得预编码后的第一数据,以及利用该第二预编码矩阵对第二频带上发送的数据进行预编码,得到预编码后的第二数据;终端设备可以在该K个第一频带上发送预编码后的第一数据以及终端设备可以在第二频带上发送该预编码后的第二数据。其中,K个第一频带位于物理上行共享信道PUSCH的调度频带中的部分频带,第二频带为PUSCH的调度频带中除所述K个第一频带之外的所有频带,所述K个第一频带中每个第一频带所占的带宽小于所述第二频带所占的带宽。
与通常指示每个调度频带中的所有频带的预编码矩阵相比,该实施方式可以同时指示K个第一频带和第二频带的预编码矩阵,在降低信令开销的同时,可以优化预编码矩阵的选择,从而提高发送数据的信噪比和频率选择性调度的性能。
可选的,该第二指示可以为秩指示,网络设备可以通过预定义或高层信令通知的方式, 通知终端根据该秩指示的秩以及终端之前在第二频带上发送参考信号资源时所使用的预编码矩阵来确定在第二频带上发送PUSCH的预编码矩阵。其中,基站可以通过接收和测量终端发送的未经过预编码的参考信号资源来确定传输PUSCH的秩,通过上述秩指示来告知终端传输PUSCH的秩。
例如,终端在发送N个经过预编码的参考信号资源的同时,发送一个未经过预编码的参考信号资源,基站可以通过接收并测量该未经过预编码的参考信号资源获得上行信道信息,进而确定PUSCH传输的秩rank并指示给该终端,该终端可以仅根据该秩来确定第二频带上的预编码矩阵。例如,假设在第二频带上发送的经过预编码的参考信号资源包含4个端口,假设预编码指示信息中包括的PUSCH传输的秩为3,则可以将该参考信号资源中包含的端口0、端口1、端口2采用的预编码矩阵作为第二频带上的预编码矩阵。其中,需预定义一种端口选择规则,例如按照端口号从低到高的方式进行选择。
作为一种可选的实施方式,该K个第一指示中的每一个第一指示可以包括M个参考信号资源指示,M为正整数。终端设备根据该K个第一指示确定K个第一预编码矩阵,可以包括:针对每一个第一指示所包括的M各参考信号资源指示,终端设备可以确定该M个参考信号资源指示所指示的M个参考信号资源,终端设备可以根据该M个参考信号资源确定一个第一预编码矩阵。其中,该M个参考信号资源为终端设备在接收预编码指示信息之前发送的N个参考信号资源中的M个参考信号资源,N为大于或等于M的正整数。该实施方式可以采用M个参考信号资源指示来确定一个第一频带的第一预编码矩阵,不需要额外引入其他信令,从而可以节省信令开销。
例如,终端设备发送的N个参考信号资源中包括一个未经过预编码的参考信号资源和N-1个经过预编码的参考信号资源,且每个经过预编码的参考信号资源的端口数为1,基站根据该未经过预编码的参考信号资源确定PUSCH传输的秩为3,则可以从该N-1个经过预编码的参考信号资源中选择3个参考信号资源,将该3个参考信号资源的参考信号资源指示SRI作为第一指示,终端可以根据该第一指示包括的3个SRI确定出该3个参考信号资源,进而通过该3个参考信号资源上使用的预编码矩阵确定一个第一预编码矩阵,作为对应第一频带上的预编码矩阵。
作为另一种可选的实施方式,该K个第一指示中的每一个第一指示可以包括一个预编码矩阵指示,终端设备根据该K个第一指示确定K个第一预编码矩阵,包括:针对每一个第一指示包括的一个预编码矩阵指示,终端设备都可以根据预编码矩阵指示与预编码矩阵的对应关系确定一个第一预编码矩阵。即终端设备可以根据该预编码矩阵指示所指示的索引值从基站配置的上行码本中确定一个预编码矩阵,作为PUSCH调度频带中一个第一频带上发送数据所使用的第一预编码矩阵。通过本实施例,PUSCH调度频带中的只有部分频带对应了第一指示,从而节省了使用信令通知频带预编码矩阵的开销。
相应的,作为一种可选的实施方式,第二指示可以包括M个参考信号资源指示,其中,第二指示包括的M个参考信号资源指示可以与一个第一指示包括的M个参考信号资源指示不同;终端设备根据所述第二指示确定第二预编码矩阵,包括:终端设备确定该M个参考信号资源指示所指示的M个参考信号资源;终端设备根据所述M个参考信号资源确定第二预编码矩阵;该M个参考信号资源为终端设备接收预编码指示信息之前发送的N个参 考信号资源中的M个参考信号信息资源,N为大于等于M的正整数。该实施方式中,M个参考信号资源指示所指示的参考信号资源与第一指示中包含的M个参考信号资源指示所指示的参考信号资源可以不相同。通过本实施例,第二频带只对应一个第二指示,从而节省了使用信令通知各个频带上发送数据使用的预编码矩阵的开销。
相应的,作为另一种可选的实施方式,第二指示为一个预编码矩阵指示,所述终端设备根据所述第二指示确定第二预编码矩阵,包括:终端设备根据所述预编码矩阵指示与预编码矩阵的对应关系,确定第二预编码矩阵。
可选的,该数据传输方法中,该K个第一频带在PUSCH的调度频带中的位置可以以预定义的方式或者高层信令通知的方式来确定。例如,预先定义在终端设备中或者基站通过高层信令通知该终端设备,每个频带包含的RB的个数m的取值、第一频带的个数K的取值和K个第一频带中每个频带的编号,该m个RB为被调度的RB或者为PUSCH的调度频带中连续的RB,终端设备通过资源指示信息获取PUSCH的调度频带的带宽,并根据预设规则和每个频带包含RB的个数m的取值确定每个频带的编号,如频带的编号根据频率由高到低排序,进而根据预定义的每个频带的编号,确定K个第一频带在调度频带中的位置。基站可以通过指示高层信令中一个包含的
Figure PCTCN2018089665-appb-000001
个比特的字段,通知K个第一频带在所述PUSCH的调度频带中的位置。可以理解的,本申请实施例中,用于表示K个第一频带在所述PUSCH的调度频带中的位置的比特个数为在计算结果的基础上向上取整。比如在
Figure PCTCN2018089665-appb-000002
的基础上向上取整,即表示为
Figure PCTCN2018089665-appb-000003
采用
Figure PCTCN2018089665-appb-000004
个比特的字段来表示K个第一频带在PUSCH的调度频带中的位置。例如,基站可以通过高层信令指示PUSCH的调度带宽被划分为m个大小为第一频带的子带,且PUSCH中包含K个第一频带,其中,所述K个第一频带对应DCI中K个预编码矩阵指示信息,且m>K;基站进一步通过指示高层信令中的一个包含
Figure PCTCN2018089665-appb-000005
个比特的字段通知K个第一频带在所述调度带宽中的位置,每个所述第一个频带中包含的RB个数根据PUSCH所占的RB总数L确定,即每个所述第一频带中包含的RB个数为L/m。
例如,m为2个RB,K的取值为2且2个编号为#0和#1,当终端设备根据资源调度指示信息获知调度频带为某一频率范围内连续的10个RB,此时终端设备可进一步获知2个第一频带包含了频率位置最高的4个RB,此时终端设备确定了第一频带的位置。这样做,可以最大限度的节省信令通知频带预编码矩阵的开销。
可选的,该K个第一频带的位置指示信息由基站动态指示的,即预编码指示信息还包括K个第一频带的位置指示信息,终端设备根据所述位置指示信息确定所述K个第一频带在所述PUSCH的调度频带中的位置。其中,终端可以根据位置指示信息字段所使用的比特数、K的取值和调度频带的大小确定调度频带中的每个频带的大小,此时频带的大小和第一频带的大小相同,进而确定该K个第一指示作用的频域范围,该位置指示信息字段所使用的比特数和K的取值需要预先定义在终端设备中或者基站通过高层信令通知给该终端设备。该位置指示信息是根据PUSCH的调度频带的大小和位置指示信息的字段大小来确定的,此时每个第一频带包含的RB数与K的取值和调度频带的大小有关。假设该位置指 示信息需要的比特数被配置为
Figure PCTCN2018089665-appb-000006
P的取值根据预先定义在终端设备中或者基站通过高层信令通知给该终端设备的位置指示信息字段所使用的比特数和K的取值确定,也就是说,频带的大小会根据资源调度指示信息确定的调度带宽的大小动态改变。
其中,K个第一频带在所述PUSCH的调度频带中的位置包括所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,和所述PUSCH的调度频带中将频率最高的位置作为起始位置的连续K个频带。可选的,该K个第一频带在PUSCH的调度频带中的位置还可以包括所述PUSCH的调度频带中频带编号为奇数的K个频带,和所述PUSCH的调度频带中频带编号为偶数的K个频带,该K个第一频带的位置指示信息用于指示上述情况中的一种。这样做,在兼顾到优化预编码矩阵选择的同时,可以最大限度的节省信令通知频带预编码矩阵的开销。终端确定的上行数据传输所使用的预编码矩阵可能不是最优选的预编码矩阵,这是由于终端未能获取基站受到干扰情况的信息。基站可以只通知受到干扰情况最为严重的部分带宽的信息以优化终端确定的上行数据传输所使用的预编码矩阵,并且对于其余的部分带宽使用一个指示信令确定终端选择的预编码矩阵为发送上行数据所使用的预编码矩阵。
第二方面,本发明实施例还提供了一种数据传输方法,该数据传输方法中,网络设备可以发送预编码指示信息,所述预编码指示信息包括K个第一指示,所述K个第一指示用于指示K个第一预编码矩阵,K为正整数;预编码指示信息还包括一个第二指示,所述第二指示用于指示第二预编码矩阵;网络设备接收在K个第一频带上的经过预编码后的第一数据以及在第二频带上的经过预编码后的第二数据,第一数据所使用的预编码矩阵为K个第一预编码矩阵;其中,所述K个第一频带位于物理上行共享信号PUSCH的调度频带中的部分频带中;第二数据所使用的预编码矩阵为第二预编码矩阵;第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带,所述K个第一频带中每个第一频带所占的带宽小于所述第二频带所占的带宽。可见,该实施方式中,基站以K个第一频带和一个第二频带的方式来通知PUSCH的调度频带所使用的预编码矩阵,与目前逐个通知调度频带中所有频带的预编码矩阵相比,可以降低通知预编码矩阵所使用的信令开销。
可选的,第二指示可以为秩指示,网络设备可以以预定义的方式或者高层信令通知方式,通知终端根据该秩指示所指示的秩以及终端之前在第二频带上发送参考信号资源时所使用的预编码矩阵来确定第二频带上的预编码矩阵。其中,基站需要通过接收和测量未经过预编码的参考信号资源来确定传输PUSCH的秩。
可选的,K个第一指示中的每一个第一指示包括M个参考信号资源指示,M为正整数;所述每一个第一指示包括的M个参考信号资源指示用于指示M个参考信号资源;所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。该实施方式中,网络设备通知的第一指示包括M个参考信号资源指示,使得终端可以采用M个参考信号资源指示来确定一个第一频带的第一预编码矩阵,不需要额外引入其他信令,从而可以节省信令开销。
可选的,K个第一指示中的每一个第一指示包括一个预编码矩阵指示;所述每一个第一指示包括的一个预编码矩阵。该通知方式,可以采用一个预编码矩阵指示来确定一个第一预编码矩阵指示,可以进一步的降低信令开销。
相应的,可选的,第二指示包括M个参考信号资源指示,其中,该第二指示包括的M个参考信号资源指示可以与一个第一指示包括的M个参考信号资源指示不同;所述第二指示包括的M个参考信号资源指示用于指示M个参考信号资源;所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
可选的,第二指示为一个预编码矩阵指示,所述预编码矩阵指示用于指示第二预编码矩阵。
可选的,该K个第一频带在PUSCH的调度频带中的位置可以以预定义的方式或者高层信令通知的方式来确定。
可选的,该预编码指示信息还包括K个第一频带的位置指示信息,位置指示信息用于指示所述K个第一频带在所述PUSCH的调度频带中的位置。例如,网络设备预定义该K个第一频带在PUSCH的调度频带中的位置可以包括所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,和所述PUSCH的调度频带中将所述PUSCH的调度频带的频率最高的位置作为起始位置的连续K个频带。终端设备可以根据位置指示信息从上述两种位置中选择一种,作为该K个第一频带在PUSCH的调度频带中的位置。
例如,预先定义在终端设备中或者基站通过高层信令通知给该终端设备每个频带包含RB的个数m的取值、第一频带的个数K的取值和K个第一频带中每个频带的编号,该m个RB为被调度的RB或者为PUSCH的调度频带中连续的RB,终端设备通过资源指示信息获取PUSCH的调度频带的带宽,并根据预设规则和每个频带包含RB的个数m的取值确定每个频带的编号,如频带的编号根据频率由高到低排序,进而根据预定义的每个频带的编号,确定K个第一频带在调度频带中的位置。基站可以通过指示高层信令中一个包含的
Figure PCTCN2018089665-appb-000007
个比特的字段,通知K个第一频带在所述PUSCH的调度频带中的位置。例如,m为2个RB,K的取值为2且2个编号为#0和#1,当终端设备根据资源调度指示信息获知调度频带为某一频率范围内连续的10个RB,此时终端设备可进一步获知2个第一频带包含了频率位置最高的4个RB,此时终端设备确定了第一频带的位置。这样做,可以最大限度的节省信令通知频带预编码矩阵的开销。可以理解的,本申请实施例中,用于表示K个第一频带在所述PUSCH的调度频带中的位置的比特个数为在
Figure PCTCN2018089665-appb-000008
的计算结果的基础上向上取整。比如在
Figure PCTCN2018089665-appb-000009
的基础上向上取整,即表示为
Figure PCTCN2018089665-appb-000010
采用
Figure PCTCN2018089665-appb-000011
个比特的字段来表示K个第一频带在PUSCH的调度频带中的位置。例如,基站可以通过高层信令指示PUSCH的调度带宽被划分为m个大小为第一频带的子带,且PUSCH中包含K个第一频带,其中,所述K个第一频带对应DCI中K个预编码矩阵指示信息,且m>K;基站进一步通过指示高层信令中的一个包含
Figure PCTCN2018089665-appb-000012
个比特的字段通知K个第一频带在所述调度带宽中的位置,每个所述第一个频带中包含的RB个数根据PUSCH所占的RB总数L确定,即每个所述第一频带中包含的RB个数为L/m。
其中,K个第一频带在所述PUSCH的调度频带中的位置包括所述PUSCH的调度频 带中将频率最低的位置作为起始位置的连续K个频带,或者所述PUSCH的调度频带中将频率最高的位置作为起始位置的连续K个频带。
第三方面,本发明实施例还提供了一种数据传输装置,该数据传输装置具有实现上述第一方面或第二方面所述的数据传输方法的功能。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。上述硬件或软件包括一个或多个与上述功能相对应的单元。例如,该数据传输装置可以包括接收单元、确定单元、预编码单元以及发送单元,或者该数据传输装置可以包括发送单元和接收单元。
第四方面,本发明实施例还提供了一种终端设备,该终端设备可以包括处理器、存储器、发送器和接收器,所述存储器中存储指令,当所述指令被所述处理器运行时,使得所述终端设备执行第一方面所述的数据传输方法;其中,所述终端设备通过所述接收器接收预编码指示信息,以及通过所述发送器在所述K个第一频带上发送所述预编码后的第一数据以及在所述第二频带上发送所述预编码后的第二数据。
第五方面,本发明实施例还提供了一种网络设备,该网络设备包括处理器、存储器、发送器和接收器,所述存储器中存储指令,当所述指令被所述处理器运行时,使得所述网络设备执行第二方面所述的数据传输方法;其中,所述网络设备通过所述发送器发送预编码指示信息;以及通过所述接收器接收K个第一频带上发送的经过预编码后的第一数据以及第二频带上发送的经过预编码后的第二数据。
第六方面,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现上述第一方面所述的数据传输方法能够被执行。
第七方面,本发明实施例还提供了一种计算机程序产品,当所述计算机程序产品中的指令被处理器执行时,可以实现上述第二方面提供的数据传输方法。
第八方面,本发明实施例还提供了一种计算机程序产品,当所述计算机程序产品中的指令被处理器执行时,可以实现上述第二方面中任一项提供的数据传输方法。
第九方面,本发明实施例还提供了一种数据传输系统,该数据传输系统包括终端设备和网络设备,该终端设备用于执行上述第一方面所述的数据传输方法;该网络设备用于执行上述第二方面所述的数据传输方法。
第十方面,本发明实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述第一方面中所涉及的功能,例如,处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。在另一种可能的设计中,所述芯片系统还可以包括接收器和发送器,用于与其他设备进行交互。
附图说明
图1是本发明实施例提供的一种调度频带的示意图;
图2是本发明实施例提供的另一种调度频带的示意图;
图3是本发明实施例提供的一种数据传输方法的流程示意图;
图4是本发明实施例提供的一种调度频带的示意图;
图5为本发明实施例提供的一种3个第一频带的位置示意图;
图6是本发明实施例提供的另一种数据传输方法的流程示意图;
图7是本发明实施例提供的一种数据传输装置的结构示意图;
图8是本发明实施例提供的另一种数据传输装置的结构示意图;
图9为本发明实施例提供的一种设备的结构示意图;
图10为本发明实施例提供的一种终端设备的结构示意图;
图11为本发明实施例提供的另一设备的结构示意图;
图12为本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
应理解,本申请的技术方案可具体应用于各种通信系统中,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、长期演进(Long Term Evolution,LTE)系统等,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如第五代移动通信技术(The Fifth Generation Mobile Communication Technology,5G)系统,也可以称为新天线(New Radio,NR)系统,端到端(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
本发明实施例中涉及的通信既可以是基站和终端之间的,也可以是基站和基站之间的,比如宏基站和小基站之间的,还可以是终端和终端之间的,比如D2D网络中的通信。本申请实施例以基站与用户设备之间的通信为例。其中,该用户设备可以是指无线终端、有线终端。该无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,其可以经无线接入网(如RAN,radio access network)与一个或多个核心网进行通信。例如,该用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,如个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等,它们与无线接入网交换语言和/或数据。可选的,该用户设备还可以称为移动台(Mobile Station,MS)、移动终端(mobile terminal)、订户单元(Subscriber Unit,SU)、订户站(Subscriber Station,SS),移动站(Mobile Station,MB)、远程站(Remote Station,RS)、接入点(Access Point,AP)、远程终端(Remote Terminal,RT)、接入终端(Access Terminal,AT)、用户终端(User Terminal;UT)、用户代理(User Agent,UA)、终端设备(User Device,UD)等,本申请不做限定。
在本申请中,网络设备可以包括基站、发送接收点(Transmission Reception Point,TRP)或者射频单元,如射频拉远单元(Remote Radio Unit,RRU)等。基站可以是指接入网中在空中接口上通过一个或多个扇区与终端通信的设备,其可协调对空中接口的属性管理。 例如,该基站可以是GSM或CDMA中的基站,如基站收发台(base transceiver station,BTS),也可以是WCDMA中的基站,如NodeB,还可以是LTE中的演进型基站,如eNB或e-NodeB(evolutional Node B),还可以是5G系统中的基站,或未来网络中的基站,等等,本申请不做限定。可选的,该基站还可以是中继设备,或者具备基站功能的其他网元设备。
在上行数据传输中,基站需要通过接收并测量参考信号进行信道估计,从而确定上行数据传输所使用的预编码指示信息。其中,基站用于确定上行信道质量的参考信号包括探测参考信号(Sounding Reference Signal,SRS)。终端发送参考信号的时频资源根据参考信号资源的相关配置参数确定。
其中,参考信号资源的相关配置参数可以包括表1所示的各参数。可选的,该参考信号资源还可以包括其他配置参数,例如,参考信号资源的端口数。可选的,参考信号资源的这些配置参数可以由基站通过高层信令配置给终端。
表1
SRS参数名称 含义 信令类型
srs-BandwidthConfig 小区中最大的SRS带宽 小区特定
srs-SubframeConfig 小区中可能发送SRS的子帧组 小区特定
srs-Bandwidth 一个UE的SRS带宽 UE特定
freqDomainPosition 频域位置 UE特定
srs-HoppingBandwidth 频率跳变大小 UE特定
duration 单个SRS/周期的SRS UE特定
srs-ConfigIndex 周期和子帧偏置 UE特定
transmissionComb 传输梳状补偿 UE特定
cyclicShift 循环移位 UE特定
例如,上行传输机制中,终端基于基站配置的参考信号资源以及参考信号资源的相关配置参数,发送参考信号资源;基站可以通过接收并测量参考信号资源进行信道估计,从而,基站可以为该终端分配特定的频域资源进行上行数据传输,并将分配的频域资源通过下行链路控制信息(Downlink Control Information,DCI)指示给该终端;终端基于该DCI信息中指示的频域资源发送上行数据。
其中,DCI是物理层中基站指示用户设备(User Equipment,UE)行为的控制信息。同时,高层信令也可以用于基站指示UE行为的控制信息,高层信令是高于物理层的用于控制和管理相关UE的指示信息,例如,无线资源控制(Radio Resource Control,RRC)信令。通常的,上行数据传输中预编码矩阵的通知方式是通过将整个系统带宽划分为多个频带,并使用多个预编码矩阵指示逐一通知每个频带上发送数据使用的预编码矩阵,当调度频带较大时,会导致通知预编码矩阵所使用的信令开销较大。
其中,基站分配的频域资源为系统带宽中的部分或者全部频域资源,基站分配的频域资源也可以称为物理上行共享信道PUSCH的调度频带,该基站分配的频域资源可以以资源块组(Resource Block Group,RBG)为粒度进行分配,RBG包含连续的N个资源块(Resource Block,RB)的资源块集合;也就是说,系统带宽中被划分为N个大小为RBG 的频域部分,基站可以通过自身的调度算法选择每个所述频域部分是否分配给所述终端,并通过位图对RBG编址,位图中的每个比特都对应指示一个RBG是否被分配给终端(例如,图1为本发明实施例提供的一种调度频带的示意图,如图1所示,假设系统带宽为6个RB,此时划分的频域资源形成3个RBG(每个RBG包括2个RB),则位图中包含3个比特,每个比特分别表示一个RBG是否被调度,举例说明,位图为001时,RBG#2被调度,位图为111时,RBG#0、RBG#1、RBG#2被调度),进而通过指示该位图通知所述终端调度信息。相应的,调度频带由调度信息中指示的所有被分配的RBG组成。
其中,预编码资源块组(Precoding Resource block Group,PRG)内包含至少一个连续的RB,PRG内包含的每个RB上都采用固定的预编码矩阵,即该PRG对应的频带内的预编码矩阵不会随着频率的变化而变化,承载上行数据的调度频带可以包括多个RBG或者PRG。系统带宽被划分为多少个RBG或者多少个RRG可以由系统预定义或高层通知。由于调度频带可以包括多个PRG,不同的PRG上可以采用不同的预编码信息,对于频域选择性调度,基站需要确定每个PRG上使用的预编码矩阵,有多少个PRG就需要指示多少个预编码信息,导致信令开销过大。
本发明实施例提供一种数据传输方法及装置,有助于降低基站通知预编码信息所需要的信令开销。
本发明实施例中,终端可以根据基站下发的调度信息,从系统带宽中确定出调度频带。调度带宽为系统带宽中根据调度信息确定的频率位置最高的被调度的资源块和频率位置最低的被调度的资源块之间的频域范围。该调度频带可以被划分为L个频域部分,每个频域部分的大小可以称为一个频带。终端可以通过系统预定义的方式或者高层信令指示的信息确定一个频带包括的RB的数目,其中,一个频带中包括的各RB采用相同的预编码矩阵。本发明实施例中,一个频带为将调度频带划分为L个频域部分的其中一个频域部分,其中L为正整数。其中,每一个第一频带可以对应PUSCH的调度频带中的其中一个频带;第二频带可以包括多个频带,此时第二频带的带宽大于第一频带的带宽。
例如,请参阅图2,图2是本发明实施例提供的另一种调度频带的示意图,如图2所示,假设系统带宽包括10个RB,根据基站下发的调度信息,终端可以确定出PUSCH的调度频带为前6个RB,假设一个频带包括两个RB,则该调度频带可以包括3个频带,假设预编码指示信息包括2个第一指示和一个第二指示,并预定义两个第一频带的位置为调度频带中的前两个频带,则2个第一频带分别为频带#0和频带#1,一个第二频带为频带#2。
可选的,调度带宽为系统带宽中根据调度信息确定的所有被调度资源块。该调度频带可以被划分为L个资源块集合,L为正整数,每个资源块集合包含的资源块互不相同,每个资源块集合可以称为一个频带,终端可以根据系统预定义的方式或者通过高层信令的指示的信息确定一个频带包括的资源块的数目,其中,一个频带中包括的各资源块上发送的数据采用相同的预编码矩阵。每一个第一频带为PUSCH的调度频带中L个频带中的一个频带;第二频带可以包括多个频带,第二频带的带宽大于第一频带的带宽。该数据传输方法中,基站可以通知终端设备部分频带的预编码信息,而将调度频带中除该部分频带之外的所有频带不进行动态通知,即该部分频带之外的所有频带在进行上行数据传输时,依旧 采用终端在这些频带上发送参考信号资源时所采用的预编码信息。可见,该实施方式只动态指示部分频带的预编码信息,与动态指示所有频带的预编码信息相比,有助于降低信令开销。
请参阅图3,图3是本发明实施例提供的一种数据传输方法的流程示意图,如图3所示,该数据传输方法可以包括以下步骤:
S101、终端设备接收预编码指示信息;
该预编码指示信息中包括K个第一指示和一个第二指示;
S102、终端设备根据所述K个第一指示确定K个第一预编码矩阵,以及根据第二指示确定一个第二预编码矩阵。
其中,K为正整数。
S103、终端设备使用所述K个第一预编码矩阵对K个第一频带上发送的数据进行预编码,得到预编码后的第一数据;以及使用第二预编码矩阵对第二频带上发送的数据进行预编码,得到预编码后的第二数据。
S104、终端设备在所述K个第一频带上发送所述预编码后的第一数据,以及在第二频带上发送所述预编码后的第二数据。
其中,该K个第一频带位于物理上行共享信号PUSCH的调度频带中的部分频带,也就是说,该K个第一频带为PUSCH的调度频带中的部分频带。其中,一个第一频带可以包括一个频带,该第一频带中的每个RB上发送的数据采用相同的预编码矩阵。第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带,K个第一频带中每个第一频带所占的带宽小于第二频带所占的带宽。
可见,该数据传输方法中,信令只需要通过K个第一指示来通知K个第一频带对应的预编码矩阵即可,所以,与信令通知PUSCH的调度频带中每个PRG的预编码矩阵相比,可以节省信令开销。
作为一种可选的实施方式,该K个第一频带在PUSCH的调度频带中的位置可以以预定义的方式或者高层信令通知的方式来确定。
作为另一种可选的实施方式,该K个第一频带的位置由基站动态指示,即预编码指示信息还包括K个第一频带的位置指示信息,该位置指示信息用于指示K个第一频带在所述PUSCH的调度频带中的位置。
例如,预先定义在终端设备中或者基站通过高层信令通知给该终端设备每个频带包含RB的个数m的取值、第一频带的个数K的取值和K个第一频带中每个频带的编号,该m个RB为被调度的RB或者为PUSCH的调度频带中连续的RB,终端设备通过资源指示信息获取PUSCH的调度频带的带宽,并根据预设规则和每个频带包含RB的个数m的取值确定每个频带的编号,如频带的编号根据频率由高到低排序,进而根据预定义的每个频带的编号,确定K个第一频带在调度频带中的位置。基站可以通过指示高层信令中一个包含的
Figure PCTCN2018089665-appb-000013
个比特的字段,通知K个第一频带在所述PUSCH的调度频带中的位置。例如,m为2个RB,K的取值为2且2个编号为#0和#1,当终端设备根据资源调度指示信息获 知调度频带为某一频率范围内连续的10个RB,此时终端设备可进一步获知2个第一频带包含了频率位置最高的4个RB,此时终端设备确定了第一频带的位置。这样做,可以最大限度的节省信令通知频带预编码矩阵的开销。可以理解的,本申请实施例中,基站可以通过指示高层信令中一个包含的
Figure PCTCN2018089665-appb-000014
个比特的字段,通知K个第一频带在所述PUSCH的调度频带中的位置,即用于表示K个第一频带在所述PUSCH的调度频带中的位置的比特个数为在
Figure PCTCN2018089665-appb-000015
的计算结果的基础上向上取整。例如,基站可以通过高层信令指示PUSCH的调度带宽被划分为m个大小为第一频带的子带,且PUSCH中包含K个第一频带,其中,所述K个第一频带对应DCI中K个预编码矩阵指示信息,且m>K;基站进一步通过指示高层信令中的一个包含
Figure PCTCN2018089665-appb-000016
个比特的字段通知K个第一频带在所述调度带宽中的位置,每个所述第一个频带中包含的RB个数根据PUSCH所占的RB总数L确定,即每个所述第一频带中包含的RB个数为L/m。
例如,请参阅图4,图4是本发明实施例提供的一种调度频带的示意图,如图4所示,该调度频带包括10个RB,每个频带可以包括一个RB。假设系统预定义了频带#3、频带#4、频带#5分别为第一频带(即RB#2、RB#3、RB#4分别为第一频带),其余的RB为第二频带。即终端可以通过上述信息结合调度信息确定K个第一频带分别为该调度频带的第三至第五个RB,采用图1的数据传输方法,终端在第三至第五个RB上发送数据使用的预编码矩阵分别为三个第一指示所指示的三个第一预编码矩阵。
其中,该预编码指示信息还需要包括这三个第一频带的位置信息,由于调度频带包括10个RB,因此,位置信息可用log 2 10个比特数来指示这三个第一频带的位置信息,可以理解,该位置信息也可用
Figure PCTCN2018089665-appb-000017
个比特来指示这三个第一频带的位置信息,即4个比特数来指示这三个第一频带的位置信息,例如,0010表示三个第一指示中的第一个第一指示所指示的预编码矩阵适用的第一频带为第三个RB;0011表示三个第一指示中的第二个第一指示所指示的预编码矩阵适用的第一频带为第四个RB;0100表示三个第一指示中的第三个第一指示所指示的预编码矩阵适用的第一频带为第五个RB。
可选的,K个第一频带在所述PUSCH的调度频带中的位置除了上述的K个第一频带对应K个RB外,还可以广义的预定义K个第一频带在所述PUSCH的调度频带中可选的位置。可选的,两种可选的位置通过预定义的方式或者终端根据高层信令确定的方式告知终端K个第一频带在所述PUSCH的调度频带中的位置包括所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带作为K个第一频带,和所述PUSCH的调度频带中将频率最高的位置作为起始位置的连续K个频带作为K个第一频带。终端设备可以根据位置指示信息从上述两种位置中确定其中一种位置作为PUSCH的调度频带中的K个第一频带的位置。
例如,图5为本发明实施例提供的一种3个第一频带的位置示意图,该3个第一频带的位置可选的有两种,一种是包括所述PUSCH的调度频带中频率从低到高的前3个RB,另一种是包括所述PUSCH的调度频带中频率从高到低的后三个RB。当该位置指示信息为 1时,选择包括所述PUSCH的调度频带中频率从低到高的3个RB作为该3个第一频带;当该位置指示信息为0时,选择包括所述PUSCH的调度频带中频率从高到低的3个频带作为3个第一频带。
其中,基站动态通知K个第一频带上使用的预编码矩阵,对于调度频带中除K个第一频带外的频带上所使用的预编码矩阵,还需要采用第二指示进行通知,即通知第二预编码矩阵。
可选的,第二指示可以为秩指示,即基站可以通知终端设备部分频带(例如K个第一频带)的预编码信息(K个第一指示所指示的预编码矩阵),而将调度频带中除该部分频带之外的所有频带不进行动态通知(本发明实施例中,将PUSCH的调度频带中除K个第一频带之外的所有频带称为第二频带)。也就是说,第二指示为秩指示时,系统可以通过预定义或者高层信令通知的方式,通知终端根据该秩指示以及终端在第二频带上发送参考信号资源时所使用的预编码矩阵来确定在第二频带上发送PUSCH的预编码矩阵。
该实施方式中,需要终端除了发送多个经过预编码的参考信息资源外,还需要发送一个未经过预编码的参考信号资源,使得基站可以根据该未经过预编码的参考信号资源确定PUSCH的秩,利用秩指示RI来通知给终端。进而,终端可以利用该秩结合终端在第二频带上发送经过预编码的参考信号资源时所采用的预编码信息来确定PUSCH在第二频带上发送所使用的预编码矩阵。
其中,终端发送的参考信号可以采用频率选择性预编码方法,也可以采用非频率选择性预编码方法(即宽带预编码方法)。
具体的,终端设备确定第二频带上的预编码矩阵可以通过以下步骤:终端获取终端在第二频带上发送的参考信号资源;终端获取基站确定的发送PUSCH的秩;终端确定该参考信号资源对应的预编码矩阵;终端根据该预编码矩阵和该秩确定第二频带上发送PUSCH所使用的预编码矩阵。其中,PUSCH的秩即为基站调度终端能够发送的数据流的最大数。
例如,假设该参考信号资源包含4个端口,每个端口都可以相应的采用一个预编码矩阵(即该参考信号资源的预编码矩阵中的一个列向量),假设此时基站确定了PUSCH的秩rank为3,则终端在第二频带上发送该参考信号资源时,端口0,端口1,端口2所采用的预编码矩阵即为终端确定的第二频带上发送PUSCH所使用的预编码矩阵。
作为一种可选的实施方式,该K个第一指示中每一个第一指示可以包括M个参考信号资源指示,M为正整数。相应的,步骤S102中,终端设备根据该K个第一指示确定K个第一预编码矩阵,可以包括:
针对所述每一个第一指示包括的M个参考信号资源指示,所述终端设备确定所述M个参考信号资源指示所指示的M个参考信号资源,并根据所述M个参考信号资源确定一个第一预编码矩阵;
所述M个参考信号资源为所述终端设备接收预编码指示信息之前发送的N个参考信号资源中的M个参考信号信息资源。
作为一种可选的实施方式,终端设备根据M个参考信号资源确定一个第一预编码矩阵, 可以包括:终端设备确定终端设备发送该M个参考信号资源时所使用的M个预编码矩阵;
终端设备根据该M个预编码矩阵来确定一个第一预编码矩阵。
例如,M个参考信号资源配置的端口数均为1,终端发送该M个参考信号资源时所采用的预编码矩阵分别为下表所示:
Figure PCTCN2018089665-appb-000018
则根据该M个预编码矩阵确定的一个第一预编码矩阵可以为将上述列向量合并为一个矩阵,作为一个第一预编码矩阵。
作为另一种可选的实施方式,终端设备根据M个参考信号资源确定一个第一预编码矩阵,可以包括:将该M个参考信号资源聚合为一个参考信号资源,该参考信号资源所对应的预编码矩阵就为一个第一预编码矩阵,该聚合规则本发明实施例不做限定。
作为另一种可选的实施方式,K个第一指示中的每一个第一指示包括一个预编码矩阵指示;
所述终端设备根据所述K个第一指示确定K个第一预编码矩阵,包括:
针对所述每一个第一指示包括的一个预编码矩阵指示,所述终端设备根据所述一个预编码矩阵指示与预编码矩阵的对应关系确定一个第一预编码矩阵。
其中,终端设备根据所述一个预编码矩阵指示与预编码矩阵的对应关系确定一个第一预编码矩阵,可以为终端设备根据该预编码矩阵指示所指示的索引值,从上行码本中选择该索引值对应的预编码矩阵。
相应的,作为一种可选的实施方式,第二指示包括M个参考信号资源指示,其中,第二指示包括的M个参考信号资源指示可以与第一指示包括的M个参考信号资源指示不同;终端设备根据所述第二指示确定第二预编码矩阵,包括:终端设备确定所述M个参考信号资源指示所指示的M个参考信号资源;终端设备根据所述M个参考信号资源确定第二预编码矩阵;所述M个参考信号资源为所述终端设备接收预编码指示信息之前发送的N个参考信号资源中的M个参考信号信息资源。
作为另一种可选的实施方式,第二指示为一个预编码矩阵指示,所述终端设备根据所述第二指示确定第二预编码矩阵,包括:终端设备根据所述预编码矩阵指示与预编码矩阵的对应关系,确定第二预编码矩阵。
请参阅图6,图6是本发明实施例提供的另一种数据传输方法的流程示意图,如图6所示,该数据传输方法是从网络设备侧进行阐述的,具体的,图6所示的数据传输方法可以包括以下步骤:
S201、网络设备发送预编码指示信息;
其中,该预编码指示信息包括K个第一指示,所述K个第一指示用于指示K个第一预编码矩阵,预编码指示信息还包括第二指示,该第二指示用于指示第二预编码矩阵,K为正整数;
S202、网络设备接收在K个第一频带上的经过预编码后的第一数据以及在第二频带上的经过预编码后的第二数据。
其中,第一数据所使用的预编码矩阵为K个第一预编码矩阵;其中,所述K个第一频带位于物理上行共享信号PUSCH的调度频带中的部分频带。第二数据所使用的预编码矩阵为第二预编码矩阵;第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带,K个第一频带中每个第一频带所占的带宽小于第二频带所占的带宽。
可见,该实施方式中,基站可以通知PUSCH的调度频带中的K个第一频带和一个第二频带的预编码矩阵,而不需要一一通知调度频带中所有频带的预编码矩阵,从而降低了通知预编码矩阵所使用的信令开销。
可选的,第二频带上的第二指示可以为秩指示,网络设备可以以预定义的方式或者高层信令通知的方式,通知终端根据终端之前在第二频带上发送参考信号资源时所使用的预编码矩阵以及该秩指示所指示的秩来确定第二预编码矩阵。
可选的,K个第一指示中的每一个第一指示包括M个参考信号资源指示,M为正整数;所述每一个第一指示包括的M个参考信号资源指示用于指示M个参考信号资源;所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。该实施方式中,网络设备通知的第一指示包括M个参考信号资源指示,使得终端可以采用M个参考信号资源指示来确定一个第一频带的第一预编码矩阵,不需要额外引入其他信令,从而可以节省信令开销。
可选的,K个第一指示中的每一个第一指示包括一个预编码矩阵指示;所述每一个第一指示包括的一个预编码矩阵。该通知方式,可以采用一个预编码矩阵指示来确定一个第一预编码矩阵指示,可以进一步的降低信令开销。
可选的,第二指示包括M个参考信号资源指示,其中,第二指示包括的M个参考信号资源指示可以与第一指示包括的M个参考信号资源指示不同;所述第二指示包括的M个参考信号资源指示用于指示M个参考信号资源;所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
可选的,第二指示为一个预编码矩阵指示,所述预编码矩阵指示用于指示第二预编码矩阵。
其中,该K个第一频带在PUSCH的调度频带中的位置可以以预定义的方式或者高层信令通知的方式来确定。
可选的,该预编码指示信息还包括K个第一频带的位置指示信息,位置指示信息用于指示所述K个第一频带在所述PUSCH的调度频带中的位置。
其中,K个第一频带在所述PUSCH的调度频带中的位置包括所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,和所述PUSCH的调度频带中将所述PUSCH的调度频带的频率最高的位置作为起始位置的连续K个频带,由位置指示信息从中确定出一种位置。可选的,该K个第一频带在PUSCH的调度频带中的位置还可以包括所述PUSCH的调度频带中频带编号为奇数的K个频带,和所述PUSCH的调度频带中频带编号为偶数的K个频带,该K个第一频带的位置指示信息用于指示上述情况中的一种。这样做,在兼顾到优化预编码矩阵选择的同时,可以最大限度的节省信令通知频带预编码矩阵的开销。
其中,终端确定的上行数据传输所使用的预编码矩阵可能不是最优选的预编码矩阵,这是由于终端未能获取基站受到干扰情况的信息。基站可以只通知受到干扰情况最为严重的部分带宽的信息以优化终端确定的上行数据传输所使用的预编码矩阵,并且对于其余的部分带宽使用一个指示信令确定终端选择的预编码矩阵为发送上行数据所使用的预编码矩阵。
请参阅图7,图7是本发明实施例提供的一种数据传输装置的结构示意图,该数据传输装置可以采样上述图3对应的数据传输方法,具体的,该数据传输装置可以包括以下单元:
接收单元301,用于接收预编码指示信息,所述预编码指示信息包括K个第一指示和一个第二指示;
确定单元302,用于根据所述K个第一指示确定K个第一预编码矩阵,并根据所述第二指示确定第二预编码矩阵,K为正整数;
编码单元303,用于使用所述K个第一预编码矩阵对K个第一频带上发送的数据进行预编码,得到预编码后的第一数据,以及使用所述第二预编码矩阵对第二频带上发送的数据进行预编码,得到预编码后的第二数据。
其中,所述K个第一频带位于物理上行共享信道PUSCH的调度频带中的部分频带;所述第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带,K个第一频带中每个第一频带所占的带宽小于第二频带所占的带宽。
发送单元304,用于在所述K个第一频带上发送所述预编码后的第一数据,以及在所述第二频带上发送所述预编码后的第二数据。
可选地,所述K个第一指示中的每一个第一指示包括M个参考信号资源指示,M为正整数。
进一步可选地,所述确定单元302根据所述K个第一指示确定K个第一预编码矩阵具体为:针对所述每一个第一指示包括的M个参考信号资源指示,确定所述M个参考信号资源指示所指示的M个参考信号资源,并根据所述M个参考信号资源确定一个第一预编码矩阵。
其中,所述M个参考信号资源为所述终端设备接收预编码指示信息之前发送的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
可选地,所述K个第一指示中的每一个第一指示包括一个预编码矩阵指示。
进一步可选地,所述确定单元302根据所述K个第一指示确定K个第一预编码矩阵具体为:针对所述每一个第一指示包括的一个预编码矩阵指示,所述终端设备根据所述一个预编码矩阵指示与预编码矩阵的对应关系确定一个第一预编码矩阵。
可选地,所述第二指示包括M个参考信号资源指示,其中,第二指示包括的M个参考信号资源指示可以与第一指示包括的M个参考信号资源指示不同。
进一步可选地,确定单元302根据所述第二指示确定第二预编码矩阵具体为:确定所述M个参考信号资源指示所指示的M个参考信号资源;根据所述M个参考信号资源确定第二预编码矩阵。
其中,所述M个参考信号资源为所述终端设备接收预编码指示信息之前发送的N个参 考信号资源中的M个参考信号信息资源,N为大于等于M的正整数。
可选地,所述第二指示为一个预编码矩阵指示。
进一步可选地,所述确定单元302根据所述第二指示确定第二预编码矩阵具体为:根据所述预编码矩阵指示与预编码矩阵的对应关系,确定第二预编码矩阵。
可选地,所述预编码指示信息还包括所述K个第一频带的位置指示信息,终端设备根据所述位置指示信息确定所述K个第一频带在所述PUSCH的调度频带中的位置。
可选地,所述K个第一频带在所述PUSCH的调度频带中的位置包括所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,或者在所述PUSCH的调度频带中将所述PUSCH的调度频带的频率最高的位置作为起始位置的连续K个频带。
请参阅图8,图8是本发明实施例提供的一种数据传输装置的结构示意图,该数据传输装置可以采样上述图图6对应的数据传输方法,具体的,该数据传输装置可以包括以下单元:
发送单元401,用于发送预编码指示信息,所述预编码指示信息包括K个第一指示和一个第二指示,所述K个第一指示用于指示K个第一预编码矩阵,K为正整数;所述第二指示用于指示第二预编码矩阵。
接收单元402,用于接收在K个第一频带上的经过预编码后的第一数据,以及接收在第二频带上的经过预编码后的第二数据。
其中,所述第一数据所使用的预编码矩阵为所述K个第一预编码矩阵;所述第二数据所使用的预编码矩阵为所述第二预编码矩阵。
其中,所述K个第一频带位于物理上行共享信号PUSCH的调度频带中的部分频带;所述第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带,K个第一频带中每个第一频带所占的带宽小于第二频带所占的带宽。
可选地,所述K个第一指示中的每一个第一指示包括M个参考信号资源指示,M为正整数;所述每一个第一指示包括的M个参考信号资源指示用于指示M个参考信号资源;所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
可选地,所述K个第一指示中的每一个第一指示包括一个预编码矩阵指示;所述每一个第一指示包括的一个预编码矩阵指示用于指示一个第一预编码矩阵。
可选地,所述第二指示包括M个参考信号资源指示,其中,第二指示包括的M个参考信号资源指示可以与第一指示包括的M个参考信号资源指示不同;所述第二指示包括的M个参考信号资源指示用于指示M个参考信号资源;所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
可选地,所述第二指示为一个预编码矩阵指示,所述预编码矩阵指示用于指示第二预编码矩阵。
可选地,所述预编码指示信息还包括所述K个第一频带的位置指示信息,所述位置指示信息用于指示所述K个第一频带在所述PUSCH的调度频带中的位置。
可选地,根据位置指示信息所确定的K个第一频带在所述PUSCH的调度频带中的位置可以为所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,或者为所述PUSCH的调度频带中将所述PUSCH的调度频带的频率最高的位置作为起始位置的连续K个频带。
这样做,在兼顾到优化预编码矩阵选择的同时,可以最大限度的节省信令通知频带预编码矩阵的开销。终端确定的上行数据传输所使用的预编码矩阵可能不是最优选的预编码矩阵,这是由于终端未能获取基站受到干扰情况的信息。基站可以只通知受到干扰情况最为严重的部分带宽的信息以优化终端确定的上行数据传输所使用的预编码矩阵,并且对于其余的部分带宽使用一个指示信令确定终端选择的预编码矩阵为发送上行数据所使用的预编码矩阵。
根据前述方法,图9为本发明实施例提供的一种设备的结构示意图,如图9所示,该设备可以为用户设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。该用户设备可以对应上述方法中的终端。
该设备可以包括处理器910和存储器920。该存储器920用于存储指令,该处理器910用于执行该存储器920存储的指令,以实现如上图3对应的方法中的步骤或实施方式。
进一步的,该设备还可以包括、输入口940和输出口950。进一步的,该设备还可以进一步包括总线系统930,其中,处理器910、存储器920、输入口940和输出口950可以通过总线系统930相连。
处理器910用于执行该存储器920存储的指令,以控制输入口940接收信号,并控制输出口950发送信号,完成上述方法中终端设备的步骤。其中,输入口940和输出口950可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器920可以集成在所述处理器910中,也可以与所述处理器910分开设置。
作为一种实现方式,输入口940和输出口950的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器910可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器910,输入口940和输出口950功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器910,输入口940和输出口950的功能。
该设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图10为本申请提供的一种用户设备的结构示意图。该用户设备可适上述数据传输系统中。为了便于说明,图10仅示出了用户设备的主要部件。如图10所示,用户设备包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述数据传输方法实施例中所描述的动作。存储器主要用于存储 软件程序和数据,例如存储上述预编码指示信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为用户设备的收发单元1001,将具有处理功能的处理器视为用户设备的处理单元1002。如图10所示,用户设备包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元示例性的,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,图11为本发明实施例提供的另一设备的结构示意图,如图11所示,该设备可以为网络设备,也可以为芯片或电路,如可设置于网络设备内的芯片或电路。该网络设备对应上述方法中的网络设备。该设备可以包括处理器1110和存储器1120。该存储器1120用于存储指令,该处理器1110用于执行该存储器1120存储的指令,以使所述设备实现前述如图6对应的方法中的步骤及实施方式。
进一步的,该网络还可以包括输入口1140和输出口1150。再进一步的,该网络还可以包括总线系统1130。
其中,处理器1110、存储器1120、输入口1140和输出口1150通过总线系统1130相连,处理器1110用于执行该存储器1120存储的指令,以控制输入口1140接收信号,并控制输出口1150发送信号,完成上述方法中网络设备的步骤。其中,输入口1140和输出口1150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器1120可以集成在所述处理器1110中,也可以与所述处理器1110分开设置。
作为一种实现方式,输入口1140和输出口1150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器1110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器1110,输入口1140和输出口1150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器1110,输入口1140和输出口1150的功能。
所述设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图12为本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图12所示,该网络设备可应用于上述数据传输系统中。该网络设备包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1202。所述RRU1201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线12011和射频单元12012。所述RRU1201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU1201与BBU1202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU1202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU1202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU1202还包括存储器12021和处理器12022。所述存储器12021用以存储必要的指令和数据。例如存储器12021存储上述实施例中的预编码指示信息等。所述处理器12022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器12021和处理器12022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简 称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备接收预编码指示信息,所述预编码指示信息包括K个第一指示和一个第二指示;
    所述终端设备根据所述K个第一指示确定K个第一预编码矩阵,并根据所述第二指示确定第二预编码矩阵,K为正整数;
    所述终端设备使用所述K个第一预编码矩阵对K个第一频带上发送的数据进行预编码,得到预编码后的第一数据,以及使用所述第二预编码矩阵对第二频带上发送的数据进行预编码,得到预编码后的第二数据;
    其中,所述K个第一频带位于物理上行共享信道PUSCH的调度频带中的部分频带;
    所述第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带;
    所述终端设备在所述K个第一频带上发送所述预编码后的第一数据,以及在所述第二频带上发送所述预编码后的第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述K个第一指示中的每一个第一指示包括M个参考信号资源指示,M为正整数;
    所述终端设备根据所述K个第一指示确定K个第一预编码矩阵,包括:
    针对所述每一个第一指示包括的M个参考信号资源指示,所述终端设备确定所述M个参考信号资源指示所指示的M个参考信号资源,并根据所述M个参考信号资源确定一个第一预编码矩阵;
    所述M个参考信号资源为所述终端设备接收预编码指示信息之前发送的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
  3. 根据权利要求1所述的方法,其特征在于,所述K个第一指示中的每一个第一指示包括一个预编码矩阵指示;
    所述终端设备根据所述K个第一指示确定K个第一预编码矩阵,包括:
    针对所述每一个第一指示包括的一个预编码矩阵指示,所述终端设备根据所述一个预编码矩阵指示与预编码矩阵的对应关系确定一个第一预编码矩阵。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第二指示包括M个参考信号资源指示;
    所述终端设备根据所述第二指示确定第二预编码矩阵,包括:
    所述终端设备确定所述M个参考信号资源指示所指示的M个参考信号资源;
    所述终端设备根据所述M个参考信号资源确定第二预编码矩阵;
    所述M个参考信号资源为所述终端设备接收预编码指示信息之前发送的N个参考信号资源中的M个参考信号信息资源,N为大于等于M的正整数。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述第二指示为一个预编码矩阵指示,所述终端设备根据所述第二指示确定第二预编码矩阵,包括:
    所述终端设备根据所述预编码矩阵指示与预编码矩阵的对应关系,确定第二预编码矩阵。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述预编码指示信息还包括所述K个第一频带的位置指示信息,所述终端设备根据所述位置指示信息确定所述K个第一频带在所述PUSCH的调度频带中的位置。
  7. 根据权利要求6所述的方法,其特征在于,所述K个第一频带在所述PUSCH的调度频带中的位置包括所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,或者在所述PUSCH的调度频带中将所述PUSCH的调度频带的频率最高的位置作为起始位置的连续K个频带。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述K个第一频带中每个第一频带所占的带宽小于所述第二频带所占的带宽。
  9. 一种数据传输方法,其特征在于,包括:
    网络设备发送预编码指示信息,所述预编码指示信息包括K个第一指示和一个第二指示,所述K个第一指示用于指示K个第一预编码矩阵,K为正整数;所述第二指示用于指示第二预编码矩阵;
    所述网络设备接收在K个第一频带上的经过预编码后的第一数据,以及接收在第二频带上的经过预编码后的第二数据;
    所述第一数据所使用的预编码矩阵为所述K个第一预编码矩阵;所述第二数据所使用的预编码矩阵为所述第二预编码矩阵;
    其中,所述K个第一频带位于物理上行共享信号PUSCH的调度频带中的部分频带;
    所述第二频带为所述PUSCH的调度频带中除所述K个第一频带之外的所有频带。
  10. 根据权利要求9所述的方法,其特征在于,所述K个第一指示中的每一个第一指示包括M个参考信号资源指示,M为正整数;所述每一个第一指示包括的M个参考信号资源指示用于指示M个参考信号资源;
    所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述K个第一指示中的每一个第一指示包括一个预编码矩阵指示;所述每一个第一指示包括的一个预编码矩阵指示用于指示一个第一预编码矩阵。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述第二指示包括M个参考信号资源指示;所述第二指示包括的M个参考信号资源指示用于指示M个参考信号资源;
    所述M个参考信号资源为所述网络设备在发送预编码指示信息之前接收的N个参考信号资源中的M个参考信号资源,N为大于等于M的正整数。
  13. 根据权利要求9至11任一项所述的方法,其特征在于,所述第二指示为一个预编码矩阵指示,所述预编码矩阵指示用于指示第二预编码矩阵。
  14. 根据权利要求9至13任一项所述的方法,其特征在于,所述预编码指示信息还包括所述K个第一频带的位置指示信息,所述位置指示信息用于指示所述K个第一频带在所述PUSCH的调度频带中的位置。
  15. 根据权利要求14所述的方法,其特征在于,所述K个第一频带在所述PUSCH的调度频带中的位置为所述PUSCH的调度频带中将频率最低的位置作为起始位置的连续K个频带,或者为所述PUSCH的调度频带中将所述PUSCH的调度频带的频率最高的位置作为起始位置的连续K个频带。
  16. 根据权利要求9至15任一项所述的方法,其特征在于,所述K个第一频带中每个第一频带所占的带宽小于所述第二频带所占的带宽。
  17. 一种终端设备,其特征在于,包括处理器、存储器、发送器和接收器,
    所述存储器中存储指令,当所述指令被所述处理器运行时,使得所述终端设备执行所述权利要求1至8中任一项所述的数据传输方法,
    其中,所述终端设备通过所述接收器接收预编码指示信息,通过所述发送器在K个第一频带上发送预编码后的第一数据以及在第二频带上发送预编码后的第二数据。
  18. 一种网络设备,其特征在于,包括处理器、存储器、发送器和接收器,
    所述存储器中存储指令,当所述指令被所述处理器运行时,使得所述网络设备执行所述权利要求9至16中任一项所述的数据传输方法;
    其中,所述网络设备通过所述发送器发送预编码指示信息,通过所述接收器接收K个第一频带上发送的经过预编码后的第一数据以及第二频带上发送的经过预编码后的第二数据。
  19. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现所述权利要求1至8任一项所述的数据传输方法被执行。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现所述权利要求9至16任一项所述的数据传输方法被执行。
PCT/CN2018/089665 2017-06-16 2018-06-01 信息传输方法及装置 WO2018228228A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18818721.5A EP3627747A4 (en) 2017-06-16 2018-06-01 INFORMATION TRANSFER METHOD AND DEVICE
US16/711,645 US11233549B2 (en) 2017-06-16 2019-12-12 Information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710463305.X 2017-06-16
CN201710463305.XA CN109150471B (zh) 2017-06-16 2017-06-16 信息传输方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/711,645 Continuation US11233549B2 (en) 2017-06-16 2019-12-12 Information transmission method and apparatus

Publications (2)

Publication Number Publication Date
WO2018228228A1 WO2018228228A1 (zh) 2018-12-20
WO2018228228A9 true WO2018228228A9 (zh) 2019-08-22

Family

ID=64658920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089665 WO2018228228A1 (zh) 2017-06-16 2018-06-01 信息传输方法及装置

Country Status (4)

Country Link
US (1) US11233549B2 (zh)
EP (1) EP3627747A4 (zh)
CN (1) CN109150471B (zh)
WO (1) WO2018228228A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668368B (zh) * 2018-04-12 2022-06-03 中兴通讯股份有限公司 分配调度子带的方法、装置、设备及可读存储介质
WO2020037616A1 (zh) * 2018-08-23 2020-02-27 北京小米移动软件有限公司 混合自动重传请求反馈方法及装置、用户设备和基站
CN111278120B (zh) * 2019-01-11 2022-07-19 维沃移动通信有限公司 上行信道的配置方法、传输方法、网络侧设备及终端
WO2021026679A1 (en) * 2019-08-09 2021-02-18 Qualcomm Incorporated Sub-band specific sounding reference signal resource indicator indication for non-codebook based frequency-selective uplink precoding
CN113056003B (zh) * 2019-12-26 2024-03-22 大唐移动通信设备有限公司 一种通信方法和装置
CN115136699A (zh) * 2020-02-14 2022-09-30 华为技术有限公司 一种信息发送方法、信息接收方法和装置
CN113824481B (zh) * 2020-06-19 2023-03-28 华为技术有限公司 上行传输方法、装置、芯片系统及存储介质
CN114584187A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 一种数据检测方法及通信装置
EP4331296A1 (en) * 2021-04-30 2024-03-06 QUALCOMM Incorporated Frequency selective precoder indication in wireless communications

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991794B1 (ko) 2007-12-31 2010-11-03 엘지전자 주식회사 셀간 간섭 감소 방법
KR101573072B1 (ko) * 2008-08-27 2015-12-01 엘지전자 주식회사 무선통신 시스템에서 제어정보 전송방법
KR101328790B1 (ko) * 2008-10-20 2013-11-13 인터디지탈 패튼 홀딩스, 인크 반송파 집적 방법
KR101588731B1 (ko) * 2009-02-20 2016-01-26 엘지전자 주식회사 Sc-fdma가 적용된 상향링크 mimo 시스템에 있어서, pmi 통지 방법
US20110110455A1 (en) 2009-04-23 2011-05-12 Qualcomm Incorporated Rank and precoding indication for mimo operation
CN105162508B (zh) 2010-04-01 2018-05-29 Lg电子株式会社 在无线接入系统中收发信道状态信息报告的方法和装置
CN102237958B (zh) * 2010-05-07 2013-10-16 电信科学技术研究院 一种基于pucch上报csi的方法及装置
CN102271031B (zh) * 2011-08-09 2018-02-06 中兴通讯股份有限公司 一种信道信息反馈的方法和系统
KR20150100648A (ko) * 2012-12-20 2015-09-02 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 효율적인 피드백 전송 방법 및 이를 위한 장치
WO2015096083A1 (en) 2013-12-26 2015-07-02 Telefonaktiebolaget L M Ericsson (Publ) Precoding in a wireless communication network
US20200213053A1 (en) * 2017-09-11 2020-07-02 Robert Mark Harrison Precoding and multi-layer transmission using reference signal resource subsets

Also Published As

Publication number Publication date
WO2018228228A1 (zh) 2018-12-20
EP3627747A1 (en) 2020-03-25
EP3627747A4 (en) 2020-06-03
US20200119783A1 (en) 2020-04-16
US11233549B2 (en) 2022-01-25
CN109150471A (zh) 2019-01-04
CN109150471B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2018228228A9 (zh) 信息传输方法及装置
US11153055B2 (en) CSI-RS measurement method and indication method, network device, and terminal
US11139936B2 (en) Data transmission method, terminal device, and network device
TWI692261B (zh) 資料傳輸方法、基地台和終端
CN110999477B (zh) 信息指示方法及相关设备
US20220173774A1 (en) Transmission precoding matrix indication method and device
CN108631999B (zh) 信令的发送方法,装置和系统
WO2018228504A1 (zh) 功率控制方法及装置
WO2019062217A1 (zh) 数据传输方法、终端设备以及网络设备
CN111817798B (zh) 一种信道测量方法和通信装置
CN108282296B (zh) 一种参考信号传输方法及装置
WO2020155119A1 (zh) 上报信道状态信息的方法和装置
JP2022543534A (ja) コードブックサブセットの決定方法及び装置、ユーザデバイス
WO2018201402A1 (zh) 确定上行信号的传输参数的方法、终端和网络设备
WO2019136871A1 (zh) 通信的方法、网络设备和终端设备
TW201906445A (zh) 波束管理方法、網路設備和終端
CN111867078A (zh) 上行信号传输方法、调度信息确定方法和相关设备
CN115104263A (zh) 通信方法和通信装置
US11381288B2 (en) Communication method, network device, and terminal device
WO2018202168A1 (zh) 信息传输方法及装置
US10469135B2 (en) Transmission control methods and transmission control apparatus
WO2019137299A1 (zh) 通信的方法和通信设备
CN114465648A (zh) 通信方法和通信装置
CN112054831B (zh) 信道状态信息的反馈方法及装置
WO2019218906A1 (zh) 预编码矩阵指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018818721

Country of ref document: EP

Effective date: 20191218