WO2021207968A1 - 信号传输方法及装置 - Google Patents
信号传输方法及装置 Download PDFInfo
- Publication number
- WO2021207968A1 WO2021207968A1 PCT/CN2020/084881 CN2020084881W WO2021207968A1 WO 2021207968 A1 WO2021207968 A1 WO 2021207968A1 CN 2020084881 W CN2020084881 W CN 2020084881W WO 2021207968 A1 WO2021207968 A1 WO 2021207968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- ratio
- terminal
- indication information
- comb tooth
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
Definitions
- This application relates to the field of communication technology, and in particular to a signal transmission method and device.
- a terminal may send a sound reference signal (SRS) to a base station so that the base station can obtain uplink channel state information (channel state information, CSI) through the received SRS, determine the downlink CSI according to the uplink CSI, and then determine the downlink CSI according to the uplink CSI.
- SRS sound reference signal
- the downlink CSI determines the precoding matrix, and the physical downlink shared channel (PDSCH) is precoded according to the precoding matrix and then sent to the terminal.
- the terminal can send SRS periodically. Assuming that the sending period of SRS is x milliseconds (ms), the preparation time for the base station to send PDSCH needs y ms. As shown in Figure 1, the base station sends PDSCH and receives SRS. The longest time interval is (x+y)ms. In the scenario of terminal mobility, since the channel between the terminal and the base station changes rapidly, the base station can measure the uplink CSI through the received SRS, and calculate the downlink CSI (denoted as the first downlink CSI) based on the uplink CSI. ), the first downlink CSI is already far from the downlink CSI when the PDSCH is sent (denoted as the second downlink CSI).
- the sending period of SRS is x milliseconds (ms)
- the base station sends PDSCH and receives SRS.
- the longest time interval is (x+y)ms.
- the base station can measure the uplink CSI through the received SRS, and calculate the downlink
- the precoding matrix determined according to the first downlink CSI is no longer the precoding matrix that best matches the second downlink CSI.
- This phenomenon may be referred to as channel aging. The aging of the channel will lead to the degradation of the reception quality of the PDSCH received by the terminal.
- the terminal can send a channel tracking reference signal (CT-RS) in the SRS transmission gap, and use CT-RS and SRS to jointly measure the uplink CSI, and calculate it based on the uplink CSI.
- CT-RS channel tracking reference signal
- Downlink CSI to obtain the instantaneous CSI of the terminal when the terminal is moving, and then determine the precoding matrix that more closely matches the current downlink CSI.
- the PDSCH sent to the terminal is precoded to avoid channel aging and improve The reception quality of the PDSCH received by the terminal.
- both SRS and CT-RS can adopt a comb structure in the frequency domain.
- the size of the comb teeth of the comb-tooth structure adopted by the SRS in Figure 2 is 3 (that is, the transmission period of the SRS in the frequency domain is 3 resource elements (RE)), and the comb-tooth structure adopted by the CT-RS is The size of the comb teeth is 60 (that is, the transmission period of the CT-RS in the frequency domain is 60 REs).
- the size of the comb teeth of the comb-tooth structure adopted by the CT-RS is large, while avoiding channel aging, the overhead of the CT-RS can also be effectively lowered.
- the CT-RS can be power boosted.
- the SRS performs energy enhancement, it dynamically indicates the energy value that the terminal needs to adjust (boost or decrease) through downlink control information (DCI). If CT-RS also uses this method for energy enhancement, it will increase the overhead of DCI.
- DCI downlink control information
- the embodiments of the present application provide a signal transmission method and device, which are used to avoid the problem of increasing the DCI overhead caused by dynamically indicating the energy value of the terminal CT-RS that needs to be adjusted (boosted or decreased) through the DCI.
- a signal transmission method which includes: a network device sends indication information for indicating X to a terminal, where X is the energy ratio of the first RS and the second RS; or, X is the PUSCH sent by the terminal and the first RS.
- the energy ratio of the second RS; or, X is the decibel value corresponding to the energy ratio of the first RS and the second RS; or, X is the decibel value corresponding to the energy ratio of the PUSCH sent by the terminal and the second RS; the first RS and the second RS Both RSs are used to measure CSI; the network device receives the first RS and the second RS from the terminal.
- the terminal can determine the transmission energy of the second RS according to the indication information sent by the network device, without the network device dynamically indicating the energy value of the second RS that needs to be adjusted (boosted or decreased) through DCI, so that Avoid increasing the overhead of DCI.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the first RS and/or the second RS; or, the indication information is specifically used to indicate that the first RS and the second RS correspond to each other.
- the ratio of the comb tooth size of the comb tooth structure This possible implementation provides a way to indirectly indicate X.
- the indication information is the value of X.
- This possible implementation provides a way to directly indicate X.
- the indication information is carried in RRC signaling or MAC CE signaling or DCI. This possible implementation provides multiple ways to carry indication information.
- the first RS and the second RS are used for joint CSI measurement.
- the first RS and the second RS can be used for joint measurement, thereby improving the reception quality of the PDSCH received by the terminal.
- the energy of the first RS is the energy of the first time domain unit
- the energy of the second RS is the energy of the second time domain unit
- the energy of the PUSCH is the energy of the third time domain unit. energy.
- X is specifically the ratio of the EPRE of the first RS to the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the first RS and the EPRE of the second RS. This possible implementation provides a possible meaning of X.
- X is specifically the ratio of the total transmission energy of the first RS to the total transmission energy of the second RS; or, X is specifically the total transmission energy of the first RS and the total transmission energy of the second RS.
- the ratio corresponds to the decibel value. This possible implementation provides another possible meaning of X.
- X is specifically the ratio of the EPRE of the PUSCH and the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the PUSCH and the EPRE of the second RS.
- This possible implementation provides yet another possible meaning of X.
- X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS; or, X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS.
- the decibel value is specifically the decibel value.
- a signal transmission method including: a terminal receives indication information for indicating X from a network device, where X is the energy ratio of the first RS and the second RS; or, X is the PUSCH sent by the terminal and the first RS.
- the energy ratio of the second RS is the decibel value corresponding to the energy ratio of the first RS and the second RS; or, X is the decibel value corresponding to the energy ratio of the PUSCH sent by the terminal and the second RS; the first RS and the second RS Both RSs are used to measure CSI; the terminal sends the first RS to the network device; the terminal determines the transmission energy of the second RS according to the indication information, and uses the transmission energy of the second RS to send the second RS to the network device.
- the terminal can determine the transmission energy of the second RS according to the indication information sent by the network device, without the need for the network device to dynamically indicate the energy value of the second RS that needs to be adjusted (boosted or decreased) through DCI, so that Avoid increasing the overhead of DCI.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the first RS and/or the second RS, and the terminal determines the transmission energy of the second RS according to the indication information, including: the terminal according to The indication information determines the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS, and determines X according to the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS, and determines the second RS according to X Send energy.
- the indication information is specifically used to indicate the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS, and the terminal determines the transmission energy of the second RS according to the indication information, including: the terminal determines the transmission energy of the second RS according to the first RS.
- the comb tooth size ratio of the comb tooth structure corresponding to one RS and the second RS determines X, and the transmission energy of the second RS is determined according to X.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the second RS, and the terminal determines the transmission energy of the second RS according to the indication information, including: the terminal according to the comb corresponding to the second RS The size of the comb teeth of the tooth structure determines X, and the transmission energy of the second RS is determined according to X.
- the indication information is the value of X
- the terminal determines the transmission energy of the second RS according to the indication information, including: the terminal determines X according to the indication information, and determines the transmission energy of the second RS according to X.
- the indication information is carried in RRC signaling or MAC CE signaling or DCI. This possible implementation provides multiple ways to carry indication information.
- the first RS and the second RS are used for joint CSI measurement.
- the first RS and the second RS can be used for joint measurement, thereby improving the reception quality of the PDSCH received by the terminal.
- the energy of the first RS is the energy of the first time domain unit
- the energy of the second RS is the energy of the second time domain unit
- the energy of the PUSCH is the energy of the third time domain unit. energy.
- X is specifically the ratio of the EPRE of the first RS to the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the first RS and the EPRE of the second RS. This possible implementation provides a possible meaning of X.
- X is specifically the ratio of the total transmission energy of the first RS to the total transmission energy of the second RS; or, X is specifically the total transmission energy of the first RS and the total transmission energy of the second RS.
- the ratio corresponds to the decibel value. This possible implementation provides another possible meaning of X.
- X is specifically the ratio of the EPRE of the PUSCH and the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the PUSCH and the EPRE of the second RS.
- This possible implementation provides yet another possible meaning of X.
- X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS; or, X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS.
- the decibel value is specifically the decibel value.
- a signal transmission device including: a processing unit and a communication unit; the processing unit is configured to send instruction information to the terminal through the communication unit, the instruction information is used to indicate X, where X is a first RS and a second RS Or, X is the energy ratio of the PUSCH sent by the terminal to the second RS; or, X is the decibel value corresponding to the energy ratio of the first RS and the second RS; or, X is the PUSCH sent by the terminal and the second RS
- the decibel value corresponding to the energy ratio of the RS; the first RS and the second RS are both used to measure CSI; the processing unit is also used to receive the first RS and the second RS from the terminal through the communication unit.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the first RS and/or the second RS; or, the indication information is specifically used to indicate that the first RS and the second RS correspond to each other.
- the first RS and the second RS are used for joint CSI measurement.
- X is specifically the ratio of the EPRE of the first RS to the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the first RS and the EPRE of the second RS.
- X is specifically the ratio of the total transmission energy of the first RS to the total transmission energy of the second RS; or, X is specifically the total transmission energy of the first RS and the total transmission energy of the second RS.
- the ratio corresponds to the decibel value.
- X is specifically the ratio of the EPRE of the PUSCH and the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the PUSCH and the EPRE of the second RS.
- X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS; or, X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS.
- the decibel value is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS.
- the indication information is the value of X.
- the indication information is carried in RRC signaling or MAC CE signaling or DCI.
- the energy of the first RS is the energy of the first time domain unit
- the energy of the second RS is the energy of the second time domain unit
- the energy of the PUSCH is the energy of the third time domain unit. energy.
- a signal transmission device including: a processing unit and a communication unit; the processing unit is configured to receive instruction information from a network device through the communication unit, the instruction information is used to indicate X, where X is a first RS and a second RS.
- the energy ratio of the RS; or, X is the energy ratio of the PUSCH and the second RS sent by the signal transmission device; or, X is the decibel value corresponding to the energy ratio of the first RS and the second RS; or, X is the energy ratio sent by the signal transmission device
- the decibel value corresponding to the energy ratio of the PUSCH and the second RS; the first RS and the second RS are both used to measure CSI; the processing unit is also used to send the first RS to the network device through the communication unit; the processing unit is also used to The transmission energy of the second RS is determined according to the indication information, and the transmission energy of the second RS is used to send the second RS to the network device through the communication unit.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the first RS and/or the second RS; the processing unit is specifically used to determine the first RS and the second RS according to the indication information.
- the comb tooth size ratio of the comb tooth structure corresponding to the RS, and X is determined according to the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS, and the transmission energy of the second RS is determined according to X.
- the indication information is specifically used to indicate the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS; the processing unit is specifically used to indicate the comb tooth size ratio corresponding to the first RS and the second RS.
- the comb tooth size ratio of the tooth structure determines X, and the transmission energy of the second RS is determined according to X.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the second RS; the processing unit is specifically configured to determine X according to the comb tooth size of the comb tooth structure corresponding to the second RS, And according to X, the transmission energy of the second RS is determined.
- the indication information is the value of X; the processing unit is specifically configured to determine X according to the indication information, and determine the transmission energy of the second RS according to X.
- the first RS and the second RS are used for joint CSI measurement.
- X is specifically the ratio of the EPRE of the first RS to the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the first RS and the EPRE of the second RS.
- X is specifically the ratio of the total transmission energy of the first RS to the total transmission energy of the second RS; or, X is specifically the total transmission energy of the first RS and the total transmission energy of the second RS.
- the ratio corresponds to the decibel value.
- X is specifically the ratio of the EPRE of the PUSCH and the EPRE of the second RS; or, X is specifically the decibel value corresponding to the ratio of the EPRE of the PUSCH and the EPRE of the second RS.
- X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS; or, X is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS.
- the decibel value is specifically the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS.
- the indication information is carried in RRC signaling or MAC CE signaling or DCI.
- the energy of the first RS is the energy of the first time domain unit
- the energy of the second RS is the energy of the second time domain unit
- the energy of PUSCH is the energy of the third time domain unit. energy.
- a signal transmission device which includes a processor.
- the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the first aspect.
- the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the signal transmission device or outside the signal transmission device.
- the processor includes a logic circuit and at least one of an input interface and an output interface.
- the output interface is used to execute the sending action in the corresponding method
- the input interface is used to execute the receiving action in the corresponding method.
- the signal transmission device further includes a communication interface and a communication bus, and the processor, memory, and communication interface are connected through the communication bus.
- the communication interface is used to perform the sending and receiving actions in the corresponding method.
- the communication interface may also be called a transceiver.
- the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
- the signal transmission device exists in the form of a chip product.
- a signal transmission device which includes a processor.
- the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the second aspect.
- the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the signal transmission device or outside the signal transmission device.
- the processor includes a logic circuit and at least one of an input interface and an output interface.
- the output interface is used to execute the sending action in the corresponding method
- the input interface is used to execute the receiving action in the corresponding method.
- the signal transmission device further includes a communication interface and a communication bus, and the processor, memory, and communication interface are connected through the communication bus.
- the communication interface is used to perform the sending and receiving actions in the corresponding method.
- the communication interface may also be called a transceiver.
- the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
- the signal transmission device exists in the form of a chip product.
- a communication system including: the signal transmission device provided in the third aspect and the signal transmission device provided in the fourth aspect.
- a chip including: a processor and an interface, the processor is coupled with the memory through the interface, and when the processor executes a computer program or instruction in the memory, any one of the first or second aspects is provided This method is executed.
- a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any one of the methods provided in the first aspect or the second aspect.
- a computer program product containing instructions is provided.
- the instructions When the instructions are run on a computer, the computer executes any one of the methods provided in the first aspect or the second aspect.
- Figure 1 is a schematic diagram of the time interval between receiving SRS and transmitting PDSCH by network equipment
- Figure 2 is a schematic diagram of time-frequency resources occupied by SRS and CT-RS;
- Figure 3 is a schematic diagram of a network architecture
- FIG. 4 is a schematic diagram of the distribution of signals or data of a comb-tooth structure in time-frequency resources
- FIG. 5 is an interaction flowchart of a signal transmission method provided by an embodiment of this application.
- FIG. 6 is a schematic diagram of the composition of a signal transmission device provided by an embodiment of the application.
- FIG. 7 and 8 are respectively schematic diagrams of the hardware structure of a signal transmission device provided by an embodiment of the application.
- FIG. 9 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
- FIG. 10 is a schematic diagram of the hardware structure of a network device provided by an embodiment of the application.
- A/B can mean A or B.
- “And/or” in this article is only an association relationship describing the associated objects, which means that there can be three kinds of relationships.
- a and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone. These three situations.
- “at least one” means one or more, and “plurality” means two or more.
- the words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
- the technical solutions of the embodiments of the present application can be applied to various communication systems.
- the communication systems in the embodiments of this application include, but are not limited to, long term evolution (LTE) systems, fifth-generation (5th-generation, 5G) systems, new radio (NR) systems, and wireless local area networks ( Wireless local area networks (WLAN) systems and future evolution systems or multiple communication integration systems.
- LTE long term evolution
- 5th-generation 5th-generation
- NR new radio
- WLAN Wireless local area networks
- future evolution systems or multiple communication integration systems wireless local area networks
- the 5G system can be a non-standalone (NSA) 5G system or a standalone (SA) 5G system.
- the network elements involved in the embodiments of the present application include network equipment and terminals.
- FIG. 3 shows a schematic diagram of a communication system to which the technical solution provided in this application is applicable.
- the communication system may include at least one network device (only one is shown in FIG. 3) and at least one terminal (four are shown in FIG. 3, namely terminal 1 to terminal 4).
- One or more of the terminals 1 to 4 can communicate with the network device to transmit data.
- the terminal in the embodiment of the present application may be any terminal that communicates with a network device.
- the network device is an entity on the network side that is used to send signals, or receive signals, or send signals and receive signals.
- the network device may be a device deployed in a radio access network (RAN) to provide a wireless communication function for the terminal, for example, it may be a base station.
- the network equipment may be various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points (access points, AP), etc., and may also include various forms of control nodes, such as network controllers.
- the control node may be connected to multiple base stations and configure resources for multiple terminals under the coverage of the multiple base stations.
- the names of devices with base station functions may be different.
- GSM global system for mobile communication
- CDMA code division multiple access
- BTS base transceiver stations
- BTS broadband code division multiple access
- NodeB base station
- WCDMA wideband code division multiple access
- eNB evolved NodeB
- gNB next generation node in an NR system.
- the network equipment can also be the wireless controller in the cloud radio access network (CRAN) scenario, the network equipment in the public land mobile network (PLMN) that will evolve in the future, and the transmission receiving node (transmission and receiving node). and reception point, TRP), etc.
- CRAN cloud radio access network
- PLMN public land mobile network
- TRP transmission receiving node
- the terminal is used to provide users with one or more of voice services and data connectivity services.
- the terminal is an entity on the user side that is used to receive signals, or send signals, or receive signals and send signals.
- the terminal can also be called user equipment (UE), terminal equipment, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile terminal, mobile equipment, user terminal, wireless communication equipment, user Agent or user device.
- UE user equipment
- the terminal can be a mobile station (MS), subscriber unit (subscriber unit), drone, Internet of things (IoT) equipment, wireless local area networks (WLAN) stations, ST), cellular phone, smart phone, cordless phone, wireless data card, tablet computer, session initiation protocol (SIP) phone, wireless local loop (WLL) ) Station, personal digital assistant (PDA) equipment, laptop computer, machine type communication (MTC) terminal, handheld device with wireless communication function, computing device or connected to wireless Other modem processing equipment, vehicle-mounted equipment, wearable equipment (also called wearable smart equipment).
- the terminal may also be a terminal in a next-generation communication system, for example, a terminal in a future evolved PLMN, a terminal in an NR system, and so on.
- the time domain unit is the resource unit in the time domain resource.
- the time domain unit in the embodiment of the present application is a collection of multiple consecutive orthogonal frequency division multiplexing (OFDM) symbols.
- the time domain unit may be a minislot (minislot), a time slot (slot), a subframe (subframe), a transmission time interval (TTI), etc.
- one slot contains 14 OFDM symbols.
- 1 slot contains 12 OFDM symbols.
- the time domain unit can also be referred to as a time unit, time domain granularity, and so on.
- the time-frequency unit is a resource unit in the time-frequency resource.
- the time-frequency unit may be an RE, a physical resource block (physical resource block, PRB), and so on.
- the comb-tooth structure can be used to represent the distribution of signals or data on frequency domain resources.
- the signals or data distributed according to the comb-tooth structure are evenly distributed on the frequency domain resources at equal intervals, that is, the signals or data distributed according to the comb-tooth structure are periodically distributed on the frequency domain resources.
- the period of the signal or data is the size of the comb teeth, which can be denoted as K.
- Comb K (combK) means the structure of the comb with a period of K. K is an integer greater than 1.
- the distribution of signals or data distributed according to comb 2 on frequency domain resources can be seen in (a) and (d) in Fig. 4.
- the signals or data distributed according to comb 3 are distributed in frequency domain.
- the distribution of resources can be seen in (b) and (e) in FIG. 4, and the distribution of signals or data distributed according to the comb 4 on the frequency domain resources can be seen in (c) and (f) in FIG. 4.
- Antenna port is a logical concept.
- One antenna port can correspond to one physical transmit antenna or multiple physical transmit antennas. In both cases, the receiver will not decompose the signal from the same antenna port. Regardless of whether the channel is formed by a single physical transmitting antenna or a combination of multiple physical transmitting antennas, the reference signal (RS) corresponding to this antenna port defines the antenna port. This reference signal can be used to obtain this Channel estimation of the antenna port.
- An antenna port is a channel, and channel estimation and data demodulation can be performed according to the reference signal corresponding to this antenna port.
- an embodiment of the present application provides a signal transmission method, as shown in FIG. 5, including:
- the network device sends instruction information to the terminal.
- the terminal receives the instruction information from the network device.
- the indication information is used to indicate X.
- X can be any of the following cases 1 to 4:
- Case 1 The energy ratio of the first RS and the second RS.
- X may specifically be: the ratio of the total transmission energy of the first RS to the total transmission energy of the second RS; or the ratio of the EPRE of the first RS to the EPRE of the second RS.
- the EPRE of the first RS is the ratio of the total energy of all REs occupied by the first RS to the number of all REs occupied by the first RS
- the EPRE of the second RS is the total energy of all REs occupied by the second RS and the total energy of all REs occupied by the second RS. 2.
- Case 2 The energy ratio between the PUSCH sent by the terminal and the second RS.
- X may specifically be: the ratio of the total transmission energy of the PUSCH to the total transmission energy of the second RS; or the ratio of the EPRE of the PUSCH to the EPRE of the second RS.
- the EPRE of the PUSCH is the ratio of the total energy of all REs occupied by the PUSCH to the number of all REs occupied by the PUSCH.
- X may specifically be: the decibel value corresponding to the ratio of the total transmission energy of the first RS to the total transmission energy of the second RS; or the decibel corresponding to the ratio of the EPRE of the first RS and the EPRE of the second RS value.
- X may specifically be: the decibel value corresponding to the ratio of the total transmission energy of the PUSCH and the total transmission energy of the second RS; or the decibel value corresponding to the ratio of the EPRE of the PUSCH and the EPRE of the second RS.
- Both the above-mentioned first RS and the second RS are used to measure CSI.
- the "ratio of A to B” may be: A/B, or B/A.
- the "energy ratio of the first RS and the second RS” may be: the energy of the first RS/the energy of the second RS, or the energy of the second RS/the energy of the first RS.
- the ratio of the EPRE of the first RS to the EPRE of the second RS may be: EPRE of the first RS/EPRE of the second RS, or EPRE of the second RS/EPRE of the first RS.
- the "decibel value corresponding to C” may refer to: 10*log 10 (C).
- the decibel value corresponding to the energy ratio of the first RS and the second RS may refer to: 10*log 10 (the energy ratio of the first RS and the second RS).
- the decibel value corresponding to the ratio of the EPRE of the first RS to the EPRE of the second RS may refer to: 10*log 10 (the ratio of the EPRE of the first RS to the EPRE of the second RS).
- the decibel value corresponding to the ratio of the EPRE of the first RS to the EPRE of the second RS may refer to: 10*log 10 (the ratio of the EPRE of the first RS to the EPRE of the second RS).
- the first RS may be SRS or Doppler tracking RS (DT-RS) or CT-RS.
- the second RS may also be SRS or DT-RS or CT-RS.
- the first RS may be a demodulation reference signal (DMRS), and the second RS may be an SRS or a DT-RS or a CT-RS.
- DMRS demodulation reference signal
- DT-RS or CT-RS can be an enhanced SRS.
- the DT-RS or CT-RS here is only an example, it can also be named with other names, and can refer to other RSs used for measuring CSI except SRS.
- the first RS and the second RS can be used to measure the uplink CSI, because after the uplink CSI is measured, the downlink CSI can be measured according to the disparity of the uplink and downlink channels. Therefore, it is also considered that the first RS and the second RS can be used to measure downlink CSI.
- the first RS and the second RS are essentially a sequence, for example, a ZC (Zadoff Chu) sequence, or a sequence obtained by modulating a gold sequence, or a sequence modulated by a gold sequence and then passing through other sequences. Sequence obtained after operation (for example, discrete Fourier transform (DFT)). Multiple elements can be included in a sequence. Exemplarily, each element may be a plural symbol. One or more elements are carried on one RE.
- a ZC Zadoff Chu sequence
- the first RS and the second RS are used to perform joint CSI measurement (that is, joint channel estimation), or in other words, the first RS and the second RS are two time-bundling RSs (that is, the first RS).
- the first RS and the second RS are RSs used for joint CSI measurement on two different time domain units).
- the first RS and the second RS may satisfy the following condition 1.
- Condition 1 The antenna port of the terminal corresponding to the RS port included in the second RS (that is, the RS port measured by the second RS) and the terminal corresponding to the RS port included in the first RS (that is, the RS port measured by the first RS)
- the antenna ports are at least partially identical.
- the antenna port of the terminal corresponding to the RS port included in the second RS is the same as the antenna port of the terminal corresponding to the RS port included in the first RS (denoted as case 1), or, the second RS includes The antenna port of the terminal corresponding to the RS port and the antenna port of the terminal corresponding to the RS port included in the first RS are all the same (denoted as case 2).
- case 1 specifically refers to a one-to-one correspondence between a part of RS ports included in the second RS and a part of RS ports included in the first RS
- case 2 specifically refers to all RS ports included in the second RS and all RS ports included in the first RS.
- There is a one-to-one correspondence and two RS ports with a corresponding relationship correspond to the antenna ports of the same terminal.
- the first RS and the second RS that meet the above condition 1 are generally adjacent in the time domain, for example, the first RS on time slot 0 and the second RS on time slot 5 in FIG. 2, or the time slot The first RS on 10 and the second RS on time slot 15, or the first RS on time slot 200 and the second RS on time slot 205, or the first RS on time slot 210 and the second RS on time slot 215 On the second RS.
- the energy of the first RS is the energy of the first time domain unit
- the energy of the second RS is the energy of the second time domain unit
- the energy of the PUSCH is the energy of the third time domain unit.
- the first time domain unit and the second time domain unit may be the same time domain unit or different time domain units
- the second time domain unit and the third time domain unit may be the same time domain unit, or Can be different time domain units.
- the time domain unit please refer to the above, and will not be repeated.
- the indication information is carried in radio resource control (radio resource control, RRC) signaling or medium access control (medium access control, MAC) control element (MAC control element, MAC CE) signaling or DCI.
- RRC radio resource control
- MAC medium access control
- MAC CE MAC control element
- the terminal sends the first RS to the network device.
- the network device receives the first RS from the terminal.
- the terminal determines the transmission energy of the second RS according to the indication information, and uses the transmission energy of the second RS to send the second RS to the network device.
- the network device receives the second RS from the terminal.
- step 502 and step 503 are in no particular order.
- the method further includes:
- the network device measures uplink CSI according to the first RS and the second RS.
- the terminal can determine the transmission energy of the second RS according to the indication information sent by the network device, without the network device dynamically indicating the energy value of the second RS that needs to be adjusted (boosted or decreased) through DCI, thereby It can avoid increasing the overhead of DCI.
- the terminal may determine X according to the instruction information, and determine the transmission energy of the second RS according to X.
- the first part the terminal determines X according to the instruction information.
- the terminal can determine X through the following method 1 or method 2 or method 3.
- the methods 1 to 3 will be described respectively. However, it should be noted that these methods are also applicable to scenarios where the energy of the first RS, the energy of the second RS, and the energy of the PUSCH are all total energy, and it is only necessary to replace and understand the corresponding parameters.
- Method 1 The terminal determines X according to the value of X.
- the indication information directly indicates the value of X, that is, the indication information is the value of X.
- X can be carried in RRC signaling or MAC CE signaling or DCI.
- the network device can update X periodically, or update X according to the channel quality.
- Manner 2 The terminal determines X according to the ratio of the comb tooth size of the comb tooth structure corresponding to the first RS and the second RS.
- Method 2 is applicable to Case 1 and Case 3 above.
- the indication information can indirectly indicate the value of X.
- the indication information is specifically used to indicate the size of the comb teeth of the comb tooth structure corresponding to the first RS and/or the second RS; or, the indication information is specifically used to indicate the comb teeth of the comb tooth structure corresponding to the first RS and the second RS.
- the size ratio is specifically used to indicate the size of the comb teeth of the comb tooth structure corresponding to the first RS and/or the second RS.
- the method 2 may include in specific implementation: the terminal determines the comb teeth corresponding to the first RS and the second RS according to the indication information The comb tooth size ratio of the structure, and X is determined according to the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS.
- mode 2 may include the comb teeth corresponding to the first RS and the second RS indicated by the terminal according to the specific implementation.
- the ratio of the size of the comb teeth of the structure determines X.
- the ratio of the comb tooth size of the comb tooth structure corresponding to the first RS and the second RS is: the comb tooth size of the comb tooth structure corresponding to the first RS/the comb tooth size of the comb tooth structure corresponding to the second RS, then X can be: the first ratio, or the decibel value corresponding to the first ratio.
- the ratio of the comb tooth size of the comb tooth structure corresponding to the first RS and the second RS is: the comb tooth size of the comb tooth structure corresponding to the second RS/the comb tooth size of the comb tooth structure corresponding to the first RS, then X can It is: the second ratio, or, the decibel value corresponding to the second ratio.
- the first ratio refers to: EPRE of the first RS/EPRE of the second RS, or, EPRE of the PUSCH/EPRE of the second RS.
- the second ratio refers to: EPRE of the second RS/EPRE of the first RS, or EPRE of the second RS/EPRE of PUSCH.
- mode 2 can be implemented in the following mode 2.1.
- Manner 2.1 The terminal determines X according to the ratio of the comb tooth size of the comb tooth structure corresponding to the first RS and the second RS, and the corresponding relationship between X.
- the comb tooth size ratio of the comb tooth structure corresponding to the first RS and the second RS has a corresponding relationship with X, and the terminal determines X according to the corresponding relationship.
- the comb-tooth size of the comb-tooth structure corresponding to the first RS is K1
- the comb-tooth size of the comb-tooth structure corresponding to the second RS is K2
- X in the corresponding relationship may be different due to the difference in the rounding method and the difference in the number of digits reserved for the decimal point.
- Table 1 is just an example, and A and X may not be equal.
- a in the table can also be K2/K1, and the meaning and value of X can be adjusted accordingly. This application is not restricted.
- the corresponding relationship in mode 2.1 may be pre-configured or predefined or stipulated by the protocol, or configured by the network device for the terminal or negotiated and determined between the network device and the terminal, and is not limited in this application.
- the terminal can report the minimum value of X supported by the terminal to the network device when A is less than or equal to 1, and accordingly, the network device receives the X supported by the terminal from the terminal.
- the minimum value the value is less than or equal to 1. That is, the EPRE of the second RS has an upper limit.
- the network device can configure the corresponding relationship for the terminal based on the minimum value. For example, in the corresponding relationship, the values of X are configured to be greater than or equal to the minimum value. Exemplarily, the minimum value may be 1/8.
- the terminal may report the maximum value of X supported to the network device.
- the network device receives the maximum value of X supported by the terminal from the terminal, and the value is greater than 1.
- the EPRE of the second RS has a lower limit.
- the network device may configure the corresponding relationship for the terminal based on the maximum value.
- the value of X is configured to be less than the maximum value in the corresponding relationship.
- the maximum value may be 8.
- the terminal can report the minimum or maximum value of X supported by its own capabilities.
- Mode 2 if X is the above case 3, the ratio of the comb tooth size of the comb tooth structure corresponding to the first RS and the second RS is recorded as A.
- Mode 2 can be in any of the following modes 2.2 to 2.4 accomplish.
- Manner 2.2 The terminal determines X according to the corresponding relationship between A and X.
- a and X have a corresponding relationship, and the terminal determines X according to the corresponding relationship.
- X in the corresponding relationship may be different due to the difference in the rounding method and the difference in the number of digits reserved for the decimal point.
- Table 2 is only an example, and A and X can also be other values, which are not limited in this application.
- a in the table can also be K2/K1, and the meaning and value of X can be adjusted accordingly. This application is not restricted.
- the corresponding relationship in mode 2.2 may be pre-configured or predefined or stipulated by the protocol, or configured by the network device for the terminal, or negotiated and determined between the network device and the terminal, and is not limited in this application.
- the terminal can report the minimum value of X supported by the terminal to the network device when A is less than or equal to 1, and accordingly, the network device receives the X supported by the terminal from the terminal.
- the minimum value the value is less than or equal to 0. That is, the EPRE of the second RS has an upper limit.
- the terminal may report the maximum value of X supported by the network device.
- the network device receives the maximum value of X supported by the terminal from the terminal, and the value is greater than 0.
- the EPRE of the second RS has a lower limit.
- the network device may configure the corresponding relationship for the terminal based on the maximum value.
- the value of X is configured to be less than the maximum value in the corresponding relationship.
- the maximum value may be 2.
- the terminal can report the minimum or maximum value of X supported by its own capabilities.
- MAX is the function of taking the maximum value, and the meaning of B can be referred to mode 2.2, which will not be repeated.
- Manner 3 The terminal determines X according to the comb tooth size of the comb tooth structure corresponding to the second RS.
- Method 3 is applicable to Case 2 and Case 4.
- the indication information can indirectly indicate the value of X.
- the indication information is specifically used to indicate the comb tooth size of the comb tooth structure corresponding to the second RS.
- mode 3 can be implemented in the following mode 3.1.
- Manner 3.1 The terminal determines X according to the corresponding relationship between the comb tooth size of the comb tooth structure corresponding to the second RS and X.
- the comb tooth size of the comb tooth structure corresponding to the second RS has a corresponding relationship with X, and the terminal determines X according to the corresponding relationship.
- the value of X in the corresponding relationship may be different due to the difference in the rounding method and the difference in the number of digits reserved for the decimal point.
- Table 3 is only an example, and the comb tooth size of the comb tooth structure corresponding to the second RS and X can also be other values, and this application is not limited.
- Manner 3.1 may be pre-configured or predefined or stipulated by the protocol, or configured by the network device for the terminal or negotiated and determined between the network device and the terminal, and is not limited in this application.
- the terminal can report the minimum value of X supported by the network device. Accordingly, the network device receives the minimum value of X supported by the terminal from the terminal, and the value is less than or equal to 1. That is, the EPRE of the second RS has an upper limit.
- the network device can configure the corresponding relationship for the terminal based on the minimum value. For example, in the corresponding relationship, the values of X are configured to be greater than or equal to the minimum value. Exemplarily, the minimum value may be 1/8.
- Mode 3 if X is the above case 4, the comb tooth size of the comb tooth structure corresponding to the second RS is recorded as Z.
- Mode 3 can be implemented in any of the following modes 3.2 to 3.4.
- Manner 3.2 The terminal determines X according to the corresponding relationship between Z and X.
- Z and X have a corresponding relationship, and the terminal determines X according to the corresponding relationship.
- the value of X in the corresponding relationship may be different due to the difference in the rounding method and the difference in the number of digits reserved for the decimal point.
- Table 4 is only an example, and the comb tooth size of the comb tooth structure corresponding to the second RS may also be other values, which is not limited in this application.
- the terminal can report the minimum value of X supported by the network device (denoted as C, C is less than or equal to 0), and the network device receives the X supported by the terminal from the terminal.
- the minimum value That is, the EPRE of the second RS has an upper limit.
- the second part the terminal determines the transmission energy of the second RS according to X.
- the terminal determines the energy of the second RS according to the energy of the first RS and X.
- the total transmission energy of the first RS may be the total transmission energy on the first time domain unit (for example, time domain unit A), and the total transmission energy of the second RS may be the second time domain unit (for example, time domain unit A).
- EPRE of the first RS may be the EPRE on the first time domain unit (for example, the time domain unit C), and the EPRE of the second RS may be the EPRE on the second time domain unit (for example, the time domain unit D).
- the terminal determines the energy of the second RS according to the energy of the PUSCH sent by the terminal and X.
- the total transmission energy of the second RS may be the total transmission energy on the first time domain unit (for example, time domain unit E)
- the total transmission energy of the second RS may be the second time domain unit (for example, time domain unit F)
- EPRE of the second RS EPRE of PUSCH*X.
- the EPRE of the PUSCH may be the EPRE on the first time domain unit (for example, the time domain unit G), and the EPRE of the second RS may be the EPRE on the second time domain unit (for example, the time domain unit H).
- the PUSCH used to calculate the transmission energy of the second RS may be the PUSCH sent on the time domain unit 2.
- the time domain unit 2 is located before the time domain unit 1, and there are M (M is an integer greater than 0) time domain units between the time domain unit 1 and the time domain unit 2.
- M can be preset or predefined or stipulated by the protocol or configured by the network device, which is not limited in this application.
- M can be 1, 2, 4, and so on.
- the total transmission energy or EPRE of the second RS in time slot 5 may be determined according to the PUSCH transmitted in time slot 4.
- the time domain unit 2 is located before the time domain unit 1, and the time domain unit 2 is the time domain unit before the time domain unit 1 and that sends the PUSCH at the latest. That is to say, none of the terminals on the time domain unit between the time domain unit 1 and the time domain unit 2 sends a PUSCH.
- the time slot for transmitting PUSCH before and closest to time slot 5 is time slot 3
- the total transmission energy or EPRE of the second RS on time slot 5 can be based on the data transmitted on time slot 3.
- PUSCH OK is the time slot for transmitting PUSCH before and closest to time slot 5 based on the data transmitted on time slot 3.
- time domain unit 2 and time domain unit 1 are the same time domain unit.
- the total transmission energy or EPRE of the second RS in time slot 5 may be determined according to the PUSCH transmitted in time slot 5.
- the terminal can first determine whether the PUSCH is transmitted on time domain unit 1, and if so, use The PUSCH on the time domain unit 1 calculates the total transmission energy or EPRE of the second RS on the time domain unit 1. If not, in one case, the terminal calculates the total transmission energy or EPRE of the second RS on the time domain unit 1 by using the PUSCH sent by the terminal on the time domain unit that sent the PUSCH before the time domain unit 1 and last sent the PUSCH.
- the terminal judges whether the terminal on the time domain unit that is separated from the time domain unit 1 by M time domain units has transmitted the PUSCH, if so, it uses the PUSCH sent by the terminal on the time domain unit to calculate the time domain unit 1 The total transmission energy of the second RS or EPRE. If not, use the PUSCH sent by the terminal on the time domain unit that sent the PUSCH last and before the time domain unit 1 to calculate the total transmission energy of the second RS on the time domain unit 1. Or EPRE.
- the terminal determines the energy ratio of the first RS and the second RS according to X, and determines the transmission energy of the second RS according to the energy ratio of the first RS and the second RS.
- the terminal determines the energy ratio of the first RS and the second RS according to X, and determines the transmission energy of the second RS according to the energy ratio of the first RS and the second RS.
- the terminal determines the energy ratio of the PUSCH and the second RS according to X, and determines the transmission energy of the second RS according to the energy ratio of the PUSCH and the second RS.
- the terminal determines the energy ratio of the PUSCH and the second RS according to X, and determines the transmission energy of the second RS according to the energy ratio of the PUSCH and the second RS.
- step 504 it may include: the network device performs joint measurement according to the first RS carried on the first resource and the second RS carried on the second resource to obtain the downlink CSI when the network device sends the PDSCH, first The resource is the time-frequency resource occupied by the RS port included in the first RS, and the second resource is the time-frequency resource occupied by the RS port included in the second RS that has a corresponding relationship with the RS port included in the first RS.
- the process of joint measurement may include: the network device calculates the uplink CSI1 of the first time domain unit according to the first RS carried on the first resource, and calculates the downlink CSI1 according to the uplink CSI1;
- the second RS carried on the second resource calculates the uplink CSI2 of the second time domain unit, and calculates the downlink CSI2 based on the uplink CSI2; performs machine learning or linear/non-linear prediction based on the downlink CSI1 and downlink CSI2 to obtain when the network device sends PDSCH
- the downlink CSI is a time domain unit that sends the first RS
- the second time domain unit is a time domain unit that sends the second RS.
- the process of joint measurement may include: the network device calculates the uplink CSI1 of the first time domain unit according to the first RS carried on the first resource, and calculates the downlink CSI1 according to the uplink CSI1;
- the second RS carried on the second resource is calculated to obtain the uplink CSI2 of the second time domain unit, and the downlink CSI2 is calculated according to the uplink CSI2;
- the interpolation algorithm is used to calculate one or between the first time domain unit and the second time domain unit
- One or more uplink CSIs corresponding to multiple time-domain units are calculated according to the one or more uplink CSI corresponding downlink CSI; machine learning or linear/non-linear prediction is performed according to all the calculated downlink CSI to obtain when the network device sends PDSCH The downlink CSI.
- the process of joint measurement may include: the network device calculates the uplink CSI1 of the first time domain unit according to the first RS carried on the first resource, and calculates the downlink CSI1 according to the uplink CSI1;
- the second RS carried on the second resource calculates the uplink CSI2 of the second time domain unit, and calculates the downlink CSI2 according to the uplink CSI2; averages the downlink CSI1 and the downlink CSI2 to obtain the downlink CSI when the network device sends the PDSCH.
- the network device can use the reciprocity of the uplink and downlink channels to calculate the downlink CSI according to the uplink CSI.
- energy may be replaced with power, that is, the X may also be the power ratio of the first RS and the second RS or the power ratio of the PUSCH sent by the terminal and the second RS.
- the other parts can also be replaced with power for understanding.
- each network element for example, a network device and a terminal, includes at least one of a hardware structure and a software module corresponding to each function.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
- the embodiment of the present application may divide the network device and the terminal into functional units according to the foregoing method examples.
- each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
- FIG. 6 shows a possible structural diagram of the signal transmission device (denoted as the signal transmission device 60) involved in the above-mentioned embodiment.
- the signal transmission device 60 includes a processing unit 601 and
- the transceiver unit 602 may also include a storage unit 603.
- the schematic structural diagram shown in FIG. 6 may be used to illustrate the structure of the network equipment and the terminal involved in the foregoing embodiment.
- the processing unit 601 is used to control and manage the actions of the terminal.
- the processing unit 601 is used to support the terminal to execute the operation shown in FIG. 5 501-503, and some or all of the actions performed by the terminal in other processes described in the embodiments of this application.
- the processing unit 601 can communicate with other network entities through the transceiver unit 602, for example, with the network device shown in FIG. 5.
- the storage unit 603 is used to store the program code and data of the terminal.
- the signal transmission device 60 may be a terminal or a chip in the terminal.
- the processing unit 601 is used to control and manage the actions of the network device.
- the processing unit 601 is used to support the network device to execute the diagram. 501-504 in 5, and some or all of the actions performed by the network device in other processes described in the embodiments of this application.
- the processing unit 601 may communicate with other network entities through the transceiver unit 602, for example, communicate with the terminal shown in FIG. 5.
- the storage unit 603 is used to store the program code and data of the network device.
- the signal transmission device 60 may be a network device or a chip in the network device.
- the processing unit 601 may be a processor or a controller
- the transceiver unit 602 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and so on.
- the communication interface is a general term and may include one or more interfaces.
- the storage unit 603 may be a memory.
- the processing unit 601 may be a processor or a controller
- the transceiver unit 602 may be an input interface and/or output interface, a pin or a circuit, etc.
- the storage unit 603 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in a terminal or a network device.
- a storage unit for example, a register, a cache, etc.
- a storage unit for example, a read-only memory, a random access memory, etc. located outside the chip in a terminal or a network device.
- the transceiver unit may also be referred to as a communication unit.
- the antenna and control circuit with the transceiving function in the signal transmission device 60 can be regarded as the transceiving unit 602 of the signal transmission device 60, and the processor with processing function can be regarded as the processing unit 601 of the signal transmission device 60.
- the device for implementing the receiving function in the transceiver unit 602 may be regarded as a receiving unit, and the receiving unit is used to perform the receiving steps in the embodiment of the present application.
- the receiving unit in the network device may be used to receive the first RS and may also be used to receive the second RS, and the receiving unit in the terminal may be used to receive the indication information.
- the receiving unit can be a receiver, a receiver, a receiving circuit, and so on.
- the device for implementing the sending function in the transceiver unit 602 can be regarded as a sending unit, and the sending unit is used to execute the sending steps in the embodiment of the present application.
- the sending unit in the network device can be used to send indication information
- the sending unit in the terminal can be used to send the first RS, and can also be used to send the second RS.
- the transmitting unit can be a transmitter, a transmitter, a transmitting circuit, and so on.
- the integrated unit in FIG. 6 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods in the various embodiments of the present application.
- Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.
- the unit in FIG. 6 may also be referred to as a module, for example, the processing unit may be referred to as a processing module.
- the embodiment of the present application also provides a schematic diagram of the hardware structure of a signal transmission device.
- the signal transmission device includes a processor 701 and, optionally, a memory 702 connected to the processor 701.
- the processor 701 may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
- the processor 701 may also include multiple CPUs, and the processor 701 may be a single-CPU processor or a multi-CPU processor.
- the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
- the memory 702 may be a ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
- read-only memory EEPROM
- compact disc read-only memory, CD-ROM
- optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
- magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, and the embodiment of the present application does not impose any limitation on this.
- the memory 702 may exist independently, or may be integrated with the processor 701. Wherein, the memory 702 may contain computer program code.
- the processor 701 is configured to execute the computer program code stored in the memory 702, so as to implement the method provided in the embodiment of the present application.
- the signal transmission apparatus further includes a transceiver 703.
- the processor 701, the memory 702, and the transceiver 703 are connected by a bus.
- the transceiver 703 is used to communicate with other devices or a communication network.
- the transceiver 703 may include a transmitter and a receiver.
- the device used for implementing the receiving function in the transceiver 703 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
- the receiver in the network device can be used to receive the first RS and can also be used to receive the second RS, and the receiver in the terminal can be used to receive the indication information.
- the device used in the transceiver 703 to implement the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
- the transmitter in the network device can be used to send indication information
- the transmitter in the terminal can be used to send the first RS, and can also be used to send the second RS.
- FIG. 7 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
- the processor 701 is used to control and manage the actions of the terminal.
- the processor 701 is used to support the terminal to execute the terminal shown in FIG. 501-503, and some or all of the actions performed by the terminal in other processes described in the embodiments of this application.
- the processor 701 may communicate with other network entities through the transceiver 703, for example, communicate with the network device shown in FIG. 5.
- the memory 702 is used to store program codes and data of the terminal.
- the processor 701 is used to control and manage the actions of the network device.
- the processor 701 is used to support the network device to execute the diagram. 501-504 in 5, and some or all of the actions performed by the network device in other processes described in the embodiments of this application.
- the processor 701 may communicate with other network entities through the transceiver 703, for example, communication with the terminal shown in FIG. 5.
- the memory 702 is used to store program codes and data of the network device.
- the processor 701 includes a logic circuit and at least one of an input interface and an output interface.
- the output interface is used to execute the sending action in the corresponding method.
- the output interface in the network device can be used to send indication information
- the output interface in the terminal can be used to send the first RS, and can also be used to send the second RS.
- the input interface is used to perform the received action in the corresponding method.
- the input interface in the network device can be used to receive the first RS and can also be used to receive the second RS, and the input interface in the terminal can be used to receive indication information.
- FIG. 8 The schematic structural diagram shown in FIG. 8 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
- the processor 701 is used to control and manage the actions of the terminal.
- the processor 701 is used to support the terminal to execute the terminal shown in FIG. 501-503, and some or all of the actions performed by the terminal in other processes described in the embodiments of this application.
- the processor 701 may communicate with other network entities through at least one of an input interface and an output interface, for example, communicate with the network device shown in FIG. 5.
- the memory 702 is used to store program codes and data of the terminal.
- the processor 701 is used to control and manage the actions of the network device.
- the processor 701 is used to support the network device to execute the diagram. 501-504 in 5, and some or all of the actions performed by the network device in other processes described in the embodiments of this application.
- the processor 701 may communicate with other network entities through at least one of an input interface and an output interface, for example, communicate with the terminal shown in FIG. 5.
- the memory 702 is used to store program codes and data of the network device.
- the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal (denoted as terminal 90) and a network device (denoted as network device 100). For details, refer to FIG. 9 and FIG. 10 respectively.
- FIG. 9 is a schematic diagram of the hardware structure of the terminal 90.
- the terminal 90 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
- the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program. For example, it is used to control the terminal to execute 501-503 in Figure 5, and the implementation of this application Some or all of the actions performed by the terminal in the other processes described in the example.
- the memory is mainly used to store software programs and data.
- the control circuit also referred to as a radio frequency circuit
- the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
- the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit, and the control circuit performs radio frequency processing on the baseband signal
- the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
- the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
- the processor converts the baseband signal into data and The data is processed.
- FIG. 9 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
- the processor may include a baseband processor and a central processing unit.
- the baseband processor is mainly used to process communication protocols and communication data.
- the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
- the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
- the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as a bus.
- the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
- the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
- the central processor can also be expressed as a central processing circuit or a central processing chip.
- the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
- the network device in the embodiment of the present application may be a complete entity, or may be a form in which a centralized unit (CU) and a distributed unit (DU) are separated.
- FIG. 10 shows a schematic diagram of the hardware structure of a network device 100.
- the network device 100 may include CU1001 and DU1002.
- it further includes an active antenna unit (AAU) 1003.
- AAU active antenna unit
- CU realizes part of the functions of network equipment
- DU realizes part of the functions of network equipment.
- the CU is responsible for processing non-real-time protocols and services, and implements the functions of the RRC layer and the packet data convergence protocol (PDCP) layer.
- the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, the MAC layer, and the physical (physical, PHY) layer.
- RLC radio link control
- MAC the MAC layer
- PHY physical (physical, PHY) layer.
- AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas.
- the CU can be divided into network devices in the RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited here.
- the network device 100 shown in FIG. 10 can perform some or all of the actions performed by the network device in the other processes described in the embodiments of the present application, as well as steps 501 to 504 in FIG. 5.
- the operations, functions, or operations and functions of each module in the network device 100 are respectively set to implement the corresponding processes in the foregoing method embodiments.
- each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
- the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
- FIG. 9 For other descriptions about the processor in FIG. 9, reference may be made to the descriptions about the processor in FIG. 7 and FIG. 8, and details are not repeated here.
- the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
- the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
- An embodiment of the present application also provides a communication system, including: the above-mentioned network device and a terminal.
- the embodiment of the present application also provides a chip, including: a processor and an interface, the processor is coupled with the memory through the interface, and when the processor executes the computer program or instruction in the memory, any one of the methods provided in the above embodiments is implement.
- the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- a software program it can be implemented in the form of a computer program product in whole or in part.
- the computer program product includes one or more computer instructions.
- the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
- the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种信号传输方法及装置,涉及通信技术领域。该方法中,网络设备向终端发送指示信息,终端向网络设备发送第一RS,并根据指示信息确定第二RS的发送能量,采用第二RS的发送能量向网络设备发送第二RS。其中,第一RS和第二RS均用于测量CSI。指示信息用于指示X,X为第一RS和第二RS的能量比值,或,X为终端发送的PUSCH和第二RS的能量比值,或,X为第一RS和第二RS的能量比值对应的分贝值,或,X为终端发送的PUSCH和第二RS的能量比值对应的分贝值。该方法中,网络设备不需要通过DCI动态的指示第二RS需要调整(提升或降低)的能量值,从而可以避免增加DCI的开销。
Description
本申请涉及通信技术领域,尤其涉及一种信号传输方法及装置。
现有技术中,终端可以向基站发送探测参考信号(sound reference signal,SRS),以便基站通过接收到的SRS获取上行信道状态信息(channel state information,CSI),根据上行CSI确定下行CSI,进而根据下行CSI确定预编码矩阵,根据预编码矩阵对物理下行共享信道(physical downlink shared channel,PDSCH)进行预编码后向终端发送。
一种情况下,终端可以周期性的发送SRS,假设SRS的发送周期为x毫秒(ms),基站发送PDSCH的准备时间需要y ms,则如图1所示,基站发送PDSCH与接收SRS之间的时间间隔最长为(x+y)ms。在终端移动(mobility)的场景中,由于终端和基站之间的信道变化较快,基站通过接收到的SRS可以测量得到上行CSI,根据该上行CSI计算得到下行CSI(记为第一下行CSI),第一下行CSI已经与发送PDSCH时的下行CSI(记为第二下行CSI)相差较远。相应的,根据第一下行CSI确定的预编码矩阵已经不是与第二下行CSI最佳匹配的预编码矩阵了,这种现象可以称为信道老化(channel aging)。信道老化会导致终端接收PDSCH的接收质量下降。
为了避免信道老化,参见图2,终端可以在SRS的发送间隙发送信道跟踪参考信号(channel tracking reference signal,CT-RS),并采用CT-RS和SRS联合测量上行CSI,根据该上行CSI计算得到下行CSI,从而在终端移动的场景下,获取终端的瞬时CSI,进而确定与当前下行CSI更加匹配的预编码矩阵,根据该预编码矩阵对发送给终端的PDSCH进行预编码,避免信道老化,提高终端接收PDSCH的接收质量。其中,SRS和CT-RS在频域上均可以采用梳齿(comb)结构,SRS和CT-RS采用的梳齿结构的梳齿的大小越大,SRS和CT-RS在频域上越稀疏。例如,图2中SRS采用的梳齿结构的梳齿的大小为3(即SRS在频域上的发送周期为3个资源元素(resource element,RE)),CT-RS采用的梳齿结构的梳齿的大小为60(即CT-RS在频域上的发送周期为60个RE)。当CT-RS采用的梳齿结构的梳齿的大小较大时,在避免信道老化的同时,还可以有效较低CT-RS的开销。
在CT-RS采用的梳齿结构的梳齿的大小较大时,为了获取高质量的上行CSI,可以对CT-RS进行能量提升(power boost)。SRS在进行能量提升时,是通过下行控制信息(downlink control information,DCI)动态的指示终端需要调整(提升或降低)的能量值。若CT-RS也采用该方法进行能量提升,会增加DCI的开销。
发明内容
本申请实施例提供了一种信号传输方法及装置,用于避免通过DCI动态的指示终端CT-RS需要调整(提升或降低)的能量值,导致的增加DCI开销的问题。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种信号传输方法,包括:网络设备向终端发送用于指示X的指示信息,X为第一RS和第二RS的能量比值;或者,X为终端发送的PUSCH和第二RS的能量比值;或者,X为第一RS和第二RS的能量比值对应的分贝值;或者,X为终端发送的PUSCH 和第二RS的能量比值对应的分贝值;第一RS和第二RS均用于测量CSI;网络设备从终端接收第一RS和第二RS。第一方面提供的方法,终端可以根据网络设备发送的指示信息确定第二RS的发送能量,而不需要网络设备通过DCI动态的指示第二RS需要调整(提升或降低)的能量值,从而可以避免增加DCI的开销。
在一种可能的实现方式中,指示信息具体用于指示第一RS和/或第二RS对应的梳齿结构的梳齿大小;或者,指示信息具体用于指示第一RS和第二RS对应的梳齿结构的梳齿大小比值。该种可能的实现方式,提供了一种间接指示X的方式。
在一种可能的实现方式中,指示信息为X的值。该种可能的实现方式,提供了一种直接指示X的方式。
在一种可能的实现方式中,指示信息携带在RRC信令或MAC CE信令或DCI中。该种可能的实现方式,提供了多种承载指示信息的方式。
在一种可能的实现方式中,第一RS和第二RS用于进行CSI联合测量。该种可能的实现方式,第一RS和第二RS可以用于进行联合测量,从而提高终端接收PDSCH的接收质量。
在一种可能的实现方式中,第一RS的能量为第一时域单元上的能量,第二RS的能量为第二时域单元上的能量,PUSCH的能量为第三时域单元上的能量。
在一种可能的实现方式中,X具体为第一RS的EPRE和第二RS的EPRE的比值;或者,X具体为第一RS的EPRE和第二RS的EPRE的比值对应的分贝值。该种可能的实现方式,提供了一种X可能的含义。
在一种可能的实现方式中,X具体为第一RS的总发送能量和第二RS的总发送能量的比值;或者,X具体为第一RS的总发送能量和第二RS的总发送能量的比值对应的分贝值。该种可能的实现方式,提供了另一种X可能的含义。
在一种可能的实现方式中,X具体为PUSCH的EPRE和第二RS的EPRE的比值;或者,X具体为PUSCH的EPRE和第二RS的EPRE的比值对应的分贝值。该种可能的实现方式,提供了又一种X可能的含义。
在一种可能的实现方式中,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值;或者,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值对应的分贝值。该种可能的实现方式,提供了再一种X可能的含义。
第二方面,提供了一种信号传输方法,包括:终端从网络设备接收用于指示X的指示信息,X为第一RS和第二RS的能量比值;或者,X为终端发送的PUSCH和第二RS的能量比值;或者,X为第一RS和第二RS的能量比值对应的分贝值;或者,X为终端发送的PUSCH和第二RS的能量比值对应的分贝值;第一RS和第二RS均用于测量CSI;终端向网络设备发送第一RS;终端根据指示信息确定第二RS的发送能量,并采用第二RS的发送能量向网络设备发送第二RS。第二方面提供的方法,终端可以根据网络设备发送的指示信息确定第二RS的发送能量,而不需要网络设备通过DCI动态的指示第二RS需要调整(提升或降低)的能量值,从而可以避免增加DCI的开销。
在一种可能的实现方式中,指示信息具体用于指示第一RS和/或第二RS对应的梳齿结构的梳齿大小,终端根据指示信息确定第二RS的发送能量,包括:终端根据指示信息确定第一RS和第二RS对应的梳齿结构的梳齿大小比值,并根据第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X,根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息具体用于指示第一RS和第二RS对应的梳齿结构的梳齿大小比值,终端根据指示信息确定第二RS的发送能量,包括:终端根据第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X,根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息具体用于指示第二RS对应的梳齿结构的梳齿大小,终端根据指示信息确定第二RS的发送能量,包括:终端根据第二RS对应的梳齿结构的梳齿大小确定X,根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息为X的值,终端根据指示信息确定第二RS的发送能量,包括:终端根据指示信息确定X,根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息携带在RRC信令或MAC CE信令或DCI中。该种可能的实现方式,提供了多种承载指示信息的方式。
在一种可能的实现方式中,第一RS和第二RS用于进行CSI联合测量。该种可能的实现方式,第一RS和第二RS可以用于进行联合测量,从而提高终端接收PDSCH的接收质量。
在一种可能的实现方式中,第一RS的能量为第一时域单元上的能量,第二RS的能量为第二时域单元上的能量,PUSCH的能量为第三时域单元上的能量。
在一种可能的实现方式中,X具体为第一RS的EPRE和第二RS的EPRE的比值;或者,X具体为第一RS的EPRE和第二RS的EPRE的比值对应的分贝值。该种可能的实现方式,提供了一种X可能的含义。
在一种可能的实现方式中,X具体为第一RS的总发送能量和第二RS的总发送能量的比值;或者,X具体为第一RS的总发送能量和第二RS的总发送能量的比值对应的分贝值。该种可能的实现方式,提供了另一种X可能的含义。
在一种可能的实现方式中,X具体为PUSCH的EPRE和第二RS的EPRE的比值;或者,X具体为PUSCH的EPRE和第二RS的EPRE的比值对应的分贝值。该种可能的实现方式,提供了又一种X可能的含义。
在一种可能的实现方式中,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值;或者,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值对应的分贝值。该种可能的实现方式,提供了再一种X可能的含义。
第三方面,提供了一种信号传输装置,包括:处理单元和通信单元;处理单元,用于通过通信单元向终端发送指示信息,指示信息用于指示X,X为第一RS和第二RS的能量比值;或者,X为终端发送的PUSCH和第二RS的能量比值;或者,X为第一RS和第二RS的能量比值对应的分贝值;或者,X为终端发送的PUSCH和第二RS的能量比值对应的分贝值;第一RS和第二RS均用于测量CSI;处理单元,还用于通过通信单元从终端接收第一RS和第二RS。
在一种可能的实现方式中,指示信息具体用于指示第一RS和/或第二RS对应的梳齿结构的梳齿大小;或者,指示信息具体用于指示第一RS和第二RS对应的梳齿结构的梳齿大小比值。
在一种可能的实现方式中,第一RS和第二RS用于进行CSI联合测量。
在一种可能的实现方式中,X具体为第一RS的EPRE和第二RS的EPRE的比值;或者,X具体为第一RS的EPRE和第二RS的EPRE的比值对应的分贝值。
在一种可能的实现方式中,X具体为第一RS的总发送能量和第二RS的总发送能量的 比值;或者,X具体为第一RS的总发送能量和第二RS的总发送能量的比值对应的分贝值。
在一种可能的实现方式中,X具体为PUSCH的EPRE和第二RS的EPRE的比值;或者,X具体为PUSCH的EPRE和第二RS的EPRE的比值对应的分贝值。
在一种可能的实现方式中,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值;或者,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值对应的分贝值。
在一种可能的实现方式中,指示信息为X的值。
在一种可能的实现方式中,指示信息携带在RRC信令或MAC CE信令或DCI中。
在一种可能的实现方式中,第一RS的能量为第一时域单元上的能量,第二RS的能量为第二时域单元上的能量,PUSCH的能量为第三时域单元上的能量。
第四方面,提供了一种信号传输装置,包括:处理单元和通信单元;处理单元,用于通过通信单元从网络设备接收指示信息,指示信息用于指示X,X为第一RS和第二RS的能量比值;或者,X为信号传输装置发送的PUSCH和第二RS的能量比值;或者,X为第一RS和第二RS的能量比值对应的分贝值;或者,X为信号传输装置发送的PUSCH和第二RS的能量比值对应的分贝值;第一RS和第二RS均用于测量CSI;处理单元,还用于通过通信单元向网络设备发送第一RS;处理单元,还用于根据指示信息确定第二RS的发送能量,并采用第二RS的发送能量通过通信单元向网络设备发送第二RS。
在一种可能的实现方式中,指示信息具体用于指示第一RS和/或第二RS对应的梳齿结构的梳齿大小;处理单元,具体用于根据指示信息确定第一RS和第二RS对应的梳齿结构的梳齿大小比值,并根据第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X,根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息具体用于指示第一RS和第二RS对应的梳齿结构的梳齿大小比值;处理单元,具体用于根据第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X,并根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息具体用于指示第二RS对应的梳齿结构的梳齿大小;处理单元,具体用于根据第二RS对应的梳齿结构的梳齿大小确定X,并根据X确定第二RS的发送能量。
在一种可能的实现方式中,指示信息为X的值;处理单元,具体用于根据指示信息确定X,并根据X确定第二RS的发送能量。
在一种可能的实现方式中,第一RS和第二RS用于进行CSI联合测量。
在一种可能的实现方式中,X具体为第一RS的EPRE和第二RS的EPRE的比值;或者,X具体为第一RS的EPRE和第二RS的EPRE的比值对应的分贝值。
在一种可能的实现方式中,X具体为第一RS的总发送能量和第二RS的总发送能量的比值;或者,X具体为第一RS的总发送能量和第二RS的总发送能量的比值对应的分贝值。
在一种可能的实现方式中,X具体为PUSCH的EPRE和第二RS的EPRE的比值;或者,X具体为PUSCH的EPRE和第二RS的EPRE的比值对应的分贝值。
在一种可能的实现方式中,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值;或者,X具体为PUSCH的总发送能量和第二RS的总发送能量的比值对应的分贝值。
在一种可能的实现方式中,指示信息携带在RRC信令或MAC CE信令或DCI中。
在一种可能的实现方式中,第一RS的能量为第一时域单元上的能量,第二RS的能量 为第二时域单元上的能量,PUSCH的能量为第三时域单元上的能量。
第五方面,提供了一种信号传输装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于信号传输装置内,也可以位于信号传输装置外。
在一种可能的实现方式中,处理器包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,信号传输装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,信号传输装置以芯片的产品形态存在。
第六方面,提供了一种信号传输装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第二方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于信号传输装置内,也可以位于信号传输装置外。
在一种可能的实现方式中,处理器包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,信号传输装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,信号传输装置以芯片的产品形态存在。
第七方面,提供了一种通信系统,包括:第三方面提供的信号传输装置和第四方面提供的信号传输装置。
第八方面,提供了一种芯片,包括:处理器和接口,处理器通过接口与存储器耦合,当处理器执行存储器中的计算机程序或指令时,使得第一方面或第二方面提供的任意一种方法被执行。
第九方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面或第二方面提供的任意一种方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面或第二方面提供的任意一种方法。
第三方面至第十方面中的任一种实现方式所带来的技术效果可参见第一方面或第二方面中对应实现方式所带来的技术效果,此处不再赘述。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方案不矛盾的前提下,均可以进行组合。
图1为网络设备接收SRS与发送PDSCH的时间间隔示意图;
图2为一种SRS和CT-RS占据的时频资源示意图;
图3为一种网络架构示意图;
图4为梳齿结构的信号或数据在时频资源中的分布示意图;
图5为本申请实施例提供的信号传输方法的交互流程图;
图6为本申请实施例提供的一种信号传输装置的组成示意图;
图7和图8分别为本申请实施例提供的一种信号传输装置的硬件结构示意图;
图9为本申请实施例提供的一种终端的硬件结构示意图;
图10为本申请实施例提供的一种网络设备的硬件结构示意图。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例的技术方案可以应用于各种通信系统。例如:本申请实施例中的通信系统包括但不限于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、新无线(new radio,NR)系统,无线局域网(wireless local area networks,WLAN)系统以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,NSA)的5G系统或独立组网(standalone,SA)的5G系统。
本申请实施例涉及的网元包括网络设备和终端。示例性的,参见图3,图3示出了本申请提供的技术方案所适用的一种通信系统的示意图。该通信系统可以包括至少一个网络设备(图3中仅示出了1个)和至少一个终端(图3中示出了4个,分别为终端1至终端4)。终端1至终端4中的一个或多个终端可以与网络设备通信,从而传输数据。本申请实施例中的终端可以为与网络设备通信的任意一个终端。
其中,网络设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,RAN)中为终端提供无线通信功能的装置,例如可以为基站。网络设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)等,也可以包括各种形式的控制节点,如网络控制器。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中可以称为基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中可以称为基站(NodeB),LTE系统中可以称为演进型基站(evolved NodeB, eNB或eNodeB),NR系统中可以称为下一代基站节点(next generation node base station,gNB),本申请对基站的具体名称不作限定。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备、传输接收节点(transmission and reception point,TRP)等。
终端用于向用户提供语音服务和数据连通性服务中的一种或多种,终端是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端还可以称为用户设备(user equipment,UE)、终端设备、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是移动站(mobile station,MS)、用户单元(subscriber unit)、无人机、物联网(internet of things,IoT)设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端还可以为下一代通信系统中的终端,例如,未来演进的PLMN中的终端,NR系统中的终端等。
为了使得本申请更加的清楚,首先对本申请中涉及到的部分概念作简单介绍。
1、时域单元
时域单元为时域资源中的资源单位。本申请实施例中的时域单元为多个连续的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的集合。例如,时域单元可以为迷你时隙(minislot)、时隙(slot)、子帧(subframe)、传输时间间隔(transmission time interval,TTI)等。
在NR系统中,对于常规(normal)循环前缀(cyclic prefix,CP),1个时隙包含14个OFDM符号。对于扩展(extended)CP,1个时隙包含12个OFDM符号。
时域单元也可以称为时间单元,时域粒度等。
2、时频单元
时频单元为时频资源中的资源单位。示例性的,时频单元可以为RE、物理资源块(physical resource block,PRB)等。
3、梳齿(comb)结构
梳齿结构可以用于表示信号或数据在频域资源上的分布方式。按照梳齿结构分布的信号或数据等间隔均匀分布在频域资源上,也就是说,按照梳齿结构分布的信号或数据周期性的分布在频域资源上。该信号或数据的周期为梳齿的大小,可以记为K。梳齿K(combK)即表示周期为K的梳齿结构。K为大于1的整数。
示例性的,参见图4,按照梳齿2分布的信号或数据在频域资源上的分布可参见图4中的(a)和(d),按照梳齿3分布的信号或数据在频域资源上的分布可参见图4中的(b)和(e),按照梳齿4分布的信号或数据在频域资源上的分布可参见图4中的(c)和(f)。
4、天线端口(antenna port)
天线端口是逻辑上的概念,一个天线端口可以对应一个物理发射天线,也可以对应多个物理发射天线。在这两种情况下,接收机(receiver)都不会去分解来自同一个天线端口的信号。不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(reference signal,RS)就定义了这个天线端口,根据这个参考信号可以得到这个天线端口的信道估计。一个天线端口就是一个信道,根据这个天线端口对应的参考信号可以进行信道估计和数据解调。
以上是对本申请实施例中涉及到的部分概念所做的简单介绍。
为了解决背景技术中提出的问题,本申请实施例提供了一种信号传输方法,如图5所示,包括:
501、网络设备向终端发送指示信息。相应的,终端从网络设备接收指示信息。
其中,指示信息用于指示X。X可以为以下情况1至情况4中的任意一种:
情况1:第一RS和第二RS的能量比值。
在情况1下,X具体可以为:第一RS的总发送能量和第二RS的总发送能量的比值;或者,第一RS的EPRE和第二RS的EPRE的比值。
其中,第一RS的EPRE为第一RS占用的所有RE的总能量与第一RS占用的所有RE的个数的比值,第二RS的EPRE为第二RS占用的所有RE的总能量与第二RS占用的所有RE的个数的比值。
情况2:终端发送的PUSCH和第二RS的能量比值。
在情况2下,X具体可以为:PUSCH的总发送能量和第二RS的总发送能量的比值;或者,PUSCH的EPRE和第二RS的EPRE的比值。
其中,PUSCH的EPRE为PUSCH占用的所有RE的总能量与PUSCH占用的所有RE的个数的比值。
情况3:第一RS和第二RS的能量比值对应的分贝(dB)值。
在情况3下,X具体可以为:第一RS的总发送能量和第二RS的总发送能量的比值对应的分贝值;或者,第一RS的EPRE和第二RS的EPRE的比值对应的分贝值。
情况4:终端发送的PUSCH和第二RS的能量比值对应的分贝值。
在情况4下,X具体可以为:PUSCH的总发送能量和第二RS的总发送能量的比值对应的分贝值;或者,PUSCH的EPRE和第二RS的EPRE的比值对应的分贝值。
上述第一RS和第二RS均用于测量CSI。
在本申请实施例的描述中,“A和B的比值”可以为:A/B,或,B/A。例如,“第一RS和第二RS的能量比值”可以为:第一RS的能量/第二RS的能量,或,第二RS的能量/第一RS的能量。再例如,“第一RS的EPRE和第二RS的EPRE的比值”可以为:第一RS的EPRE/第二RS的EPRE,或,第二RS的EPRE/第一RS的EPRE。其余相似的描述类似,不再赘述。
在本申请实施例的描述中,“C对应的分贝值”可以是指:10*log
10(C)。例如,“第一RS和第二RS的能量比值对应的分贝值”可以是指:10*log
10(第一RS和第二RS的能量比值)。再例如,“第一RS的EPRE和第二RS的EPRE的比值对应的分贝值”可以是指:10*log
10(第一RS的EPRE和第二RS的EPRE的比值)。其余相似的描述类似,不再赘述。
其中,能够用于测量CSI的RS均可以作为本申请实施例中的第一RS或第二RS。在一 种情况下,第一RS可以为SRS或多普勒跟踪RS(doppler tracking RS,DT-RS)或CT-RS。第二RS也可以为SRS或DT-RS或CT-RS。在另一种情况下,第一RS可以为解调参考信号(demodulation reference signal,DMRS),第二RS可以为SRS或DT-RS或CT-RS。
其中,DT-RS或CT-RS可以是一种增强的SRS。这里的DT-RS或CT-RS仅为举例,其还可以用其他名称命名,可以指代除SRS之外的其他用于测量CSI的RS。
第一RS和第二RS可以用于测量上行CSI,由于测量得到上行CSI之后,可以根据上下行信道的互异性测量得到下行CSI。因此,也认为第一RS和第二RS可以用于测量下行CSI。
其中,第一RS和第二RS实质上是一个序列,例如,ZC(Zadoff Chu)序列,或,由金(gold)序列经过调制后得到的序列,或由gold序列调制得到的序列再经过其他操作(例如,离散傅里叶变换(discrete fourier transform,DFT))后得到的序列。一个序列中可以包括多个元素。示例性的,每个元素可以为一个复数符号。一个或多个元素承载在一个RE上。
可选的,第一RS和第二RS用于进行CSI联合测量(也就是联合信道估计),或者说,第一RS和第二RS为时间绑定(time bundling)的两个RS(即第一RS和第二RS为在两个不同的时域单元上的用于CSI联合测量的RS)。
可选的,为了进行CSI联合测量,第一RS和第二RS可以满足以下条件1。
条件1:第二RS包含的RS端口(即第二RS测量的RS端口)所对应的终端的天线端口与第一RS包含的RS端口(即第一RS测量的RS端口)所对应的终端的天线端口至少部分相同。
在条件1中,第二RS包含的RS端口所对应的终端的天线端口与第一RS包含的RS端口所对应的终端的天线端口部分相同(记为情况1),或,第二RS包含的RS端口所对应的终端的天线端口与第一RS包含的RS端口所对应的终端的天线端口全部相同(记为情况2)。
其中,情况1具体是指第二RS包含的部分RS端口与第一RS包含的部分RS端口一一对应,情况2具体是指第二RS包含的全部RS端口与第一RS包含的全部RS端口一一对应,具有对应关系的两个RS端口对应相同的终端的天线端口。
其中,满足上述条件1的第一RS和第二RS一般在时域上相邻,例如,图2中的时隙0上的第一RS和时隙5上的第二RS,或者,时隙10上的第一RS和时隙15上的第二RS,或者,时隙200上的第一RS和时隙205上的第二RS,或者,时隙210上的第一RS和时隙215上的第二RS。
可选的,第一RS的能量为第一时域单元上的能量,第二RS的能量为第二时域单元上的能量,PUSCH的能量为第三时域单元上的能量。其中,第一时域单元和第二时域单元可以为相同的时域单元,也可以为不同的时域单元,第二时域单元和第三时域单元可以为相同的时域单元,也可以为不同的时域单元。关于时域单元的描述可参见上文,不再赘述。
可选的,指示信息携带在无线资源控制(radio resource control,RRC)信令或媒体接入控制(medium access control,MAC)控制元素(MAC control element,MAC CE)信令或DCI中。
502、终端向网络设备发送第一RS。相应的,网络设备从终端接收第一RS。
503、终端根据指示信息确定第二RS的发送能量,并采用第二RS的发送能量向网络 设备发送第二RS。相应的,网络设备从终端接收第二RS。
步骤502和步骤503的执行顺序不分先后。
可选的,在步骤502和步骤503之后,参见图5,该方法还包括:
504、网络设备根据第一RS和第二RS测量上行CSI。
本申请实施例提供的方法,终端可以根据网络设备发送的指示信息确定第二RS的发送能量,而不需要网络设备通过DCI动态的指示第二RS需要调整(提升或降低)的能量值,从而可以避免增加DCI的开销。
上述步骤503在具体实现时,终端可以根据指示信息确定X,根据X确定第二RS的发送能量。
以下通过第一部分和第二部分对终端根据指示信息确定X的过程和根据X确定第二RS的发送能量的过程分别进行说明。
第一部分:终端根据指示信息确定X。
第一部分中,终端可以通过以下方式1或方式2或方式3确定X。以下以第一RS的能量、第二RS的能量、以及PUSCH的能量均为EPRE为例,对方式1至方式3分别进行说明。但是需要说明的是,这些方式同样适用于第一RS的能量、第二RS的能量、以及PUSCH的能量均为总能量的场景,只需将相应的参数作替换理解即可。
方式1:终端根据X的值确定X。
在方式1下,指示信息直接指示X的值,即指示信息为X的值。X可以携带在RRC信令或MAC CE信令或DCI中。网络设备可以周期性的更新X,也可以根据信道质量更新X。
方式2:终端根据第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X。
方式2适用于上述情况1和上述情况3。
在方式2下,指示信息可以间接指示X的值。其中,指示信息具体用于指示第一RS和/或第二RS对应的梳齿结构的梳齿大小;或者,指示信息具体用于指示第一RS和第二RS对应的梳齿结构的梳齿大小比值。
若指示信息用于指示第一RS和/或第二RS对应的梳齿结构的梳齿大小,方式2在具体实现时可以包括:终端根据指示信息确定第一RS和第二RS对应的梳齿结构的梳齿大小比值,并根据第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X。
若指示信息用于指示第一RS和第二RS对应的梳齿结构的梳齿大小比值,方式2在具体实现时可以包括:终端根据指示信息指示的第一RS和第二RS对应的梳齿结构的梳齿大小比值确定X。
其中,“第一RS和第二RS对应的梳齿结构的梳齿大小比值”为:第一RS对应的梳齿结构的梳齿大小/第二RS对应的梳齿结构的梳齿大小,则X可以为:第一比值,或,第一比值对应的分贝值。“第一RS和第二RS对应的梳齿结构的梳齿大小比值”为:第二RS对应的梳齿结构的梳齿大小/第一RS对应的梳齿结构的梳齿大小,则X可以为:第二比值,或,第二比值对应的分贝值。
其中,第一比值是指:第一RS的EPRE/第二RS的EPRE,或,PUSCH的EPRE/第二RS的EPRE。第二比值是指:第二RS的EPRE/第一RS的EPRE,或,第二RS的EPRE/PUSCH的EPRE。
在方式2下,若X为上述情况1,方式2可以通过以下方式2.1实现。
方式2.1:终端根据第一RS和第二RS对应的梳齿结构的梳齿大小比值,与X之间的对应关系确定X。
在方式2.1下,第一RS和第二RS对应的梳齿结构的梳齿大小比值与X具有对应关系,终端根据该对应关系确定X。
示例性的,若第一RS对应的梳齿结构的梳齿大小为K1,第二RS对应的梳齿结构的梳齿大小为K2,且第一RS和第二RS对应的梳齿结构的梳齿大小比值为:A=K1/K2。一种A和X之间的对应关系可以参见表1。该情况下,若A=1/3,则X=1/3。
表1
A | 1/2 | 1/3 | 1/4 | 1/6 | 1/8 |
X | 1/2 | 1/3 | 1/4 | 1/6 | 1/8 |
需要说明的是,对应关系中的X的值可能会因为四舍五入方法的不同与小数点保留位数的不同而不同。表1仅仅是示例,A与X也可以不相等。表中的A也可以为K2/K1,X的含义以及值作相应调整即可。本申请不作限制。
方式2.1中的对应关系可以为预配置的或预定义的或协议规定的或网络设备为终端配置的或网络设备和终端协商确定的,本申请不作限制。
若方式2.1中的对应关系为网络设备为终端配置的,在A小于等于1的情况下,终端可以向网络设备上报支持的X的最小值,相应的,网络设备从终端接收终端支持的X的最小值,该值小于等于1。也就是说,第二RS的EPRE有上限。该情况下,网络设备可以基于该最小值为终端配置对应关系。例如,在对应关系中将X的值配置的均大于或等于该最小值。示例性的,该最小值可以为1/8。
在A大于1的情况下,终端可以向网络设备上报支持的X的最大值,相应的,网络设备从终端接收终端支持的X的最大值,该值大于1。也就是说,第二RS的EPRE有下限。该情况下,网络设备可以基于该最大值为终端配置对应关系。例如,在对应关系中将X的值配置的均小于该最大值。示例性的,该最大值可以为8。
其中,终端可以根据自身能力上报支持的X的最小值或最大值。
在方式2下,若X为上述情况3,将第一RS和第二RS对应的梳齿结构的梳齿大小比值记为A,方式2可以通过以下方式2.2至方式2.4中的任意一种方式实现。
方式2.2:终端根据A与X之间的对应关系确定X。
在方式2.2下,A与X具有对应关系,终端根据该对应关系确定X。
示例性的,若A=K1/K2,A与X之间的对应关系可以参见表2。K1、K2的含义可参见方式2.1。该情况下,若A=1/2,则X=-3dB。
表2
A | 1/2 | 1/3 | 1/4 | 1/6 | 1/8 |
X | -3dB | -4.77dB | -6dB | -7.78dB | -9dB |
需要说明的是,对应关系中的X的值可能会因为四舍五入方法的不同与小数点保留位数的不同而不同。表2仅仅是示例,A以及X也可以为其他值,本申请不作限制。表中的A也可以为K2/K1,X的含义以及值作相应调整即可。本申请不作限制。
方式2.2中的对应关系可以为预配置的或预定义的或协议规定的或网络设备为终端配置的或网络设备和终端协商确定的,本申请不作限制。
若方式2.2中的对应关系为网络设备为终端配置的,在A小于等于1的情况下,终端可以向网络设备上报支持的X的最小值,相应的,网络设备从终端接收终端支持的X的最小值,该值小于等于0。也就是说,第二RS的EPRE有上限。该情况下,网络设备可以基于B为终端配置对应关系。例如,在对应关系中将X的值配置的均大于或等于B。示例性的,B=-6。
在A大于1的情况下,终端可以向网络设备上报支持的X的最大值,相应的,网络设备从终端接收终端支持的X的最大值,该值大于0。也就是说,第二RS的EPRE有下限。该情况下,网络设备可以基于该最大值为终端配置对应关系。例如,在对应关系中将X的值配置的均小于该最大值。示例性的,该最大值可以为2。
其中,终端可以根据自身能力上报支持的X的最小值或最大值。
方式2.3:终端采用X=10*log
10(A)计算X。
方式2.4:终端采用X=MAX(10*log
10(A),B)计算X。
其中,MAX为取最大值函数,B的含义可参见方式2.2,不再赘述。
方式3:终端根据第二RS对应的梳齿结构的梳齿大小确定X。
方式3适用于情况2和情况4。
在方式3下,指示信息可以间接指示X的值。其中,指示信息具体用于指示第二RS对应的梳齿结构的梳齿大小。
在方式3下,若X为上述情况2,方式3可以通过以下方式3.1实现。
方式3.1:终端根据第二RS对应的梳齿结构的梳齿大小,与X之间的对应关系确定X。
在方式3.1下,第二RS对应的梳齿结构的梳齿大小与X具有对应关系,终端根据该对应关系确定X。
示例性的,一种第二RS对应的梳齿结构的梳齿大小,和X的对应关系可以参见表3。该情况下,若第二RS对应的梳齿结构的梳齿大小为8,则X=1/2。
表3
需要说明的是,对应关系中的X的值可能会因为四舍五入方法的不同与小数点保留位数的不同而不同。表3仅仅是示例,第二RS对应的梳齿结构的梳齿大小以及X也可以为其他值本申请不作限制。
方式3.1中的对应关系可以为预配置的或预定义的或协议规定的或网络设备为终端配置的或网络设备和终端协商确定的,本申请不作限制。
若方式3.1中的对应关系为网络设备为终端配置的,终端可以向网络设备上报支持的X的最小值,相应的,网络设备从终端接收终端支持的X的最小值,该值小于等于1。也就是说,第二RS的EPRE有上限。该情况下,网络设备可以基于该最小值为终端配置对应关系。例如,在对应关系中将X的值配置的均大于或等于该最小值。示例性的,该最小值可以为1/8。
在方式3下,若X为上述情况4,将第二RS对应的梳齿结构的梳齿大小记为Z,方式3可以通过以下方式3.2至方式3.4中的任意一种方式实现。
方式3.2:终端根据Z与X之间的对应关系确定X。
在方式3.2下,Z与X具有对应关系,终端根据该对应关系确定X。
示例性的,一种Z与X之间的对应关系可以参见表4。该情况下,若Z=8,则X=-9dB。
表4
需要说明的是,对应关系中的X的值可能会因为四舍五入方法的不同与小数点保留位数的不同而不同。表4仅仅是示例,第二RS对应的梳齿结构的梳齿大小也可以为其他值,本申请不作限制。
若方式3.2中的对应关系为网络设备为终端配置的,终端可以向网络设备上报支持的X的最小值(记为C,C小于等于0),相应的,网络设备从终端接收终端支持的X的最小值。也就是说,第二RS的EPRE有上限。该情况下,网络设备可以基于C为终端配置对应关系。例如,在对应关系中将X的值配置的均大于或等于C。示例性的,C=-16。
方式3.3:终端采用X=10*log
10(Z)计算X。
方式3.4:终端采用X=MAX(10*log
10(Z),C)计算X。
第二部分:终端根据X确定第二RS的发送能量。
在上述情况1下,终端根据第一RS的能量和X确定第二RS的能量。
例如,若X=第二RS的总发送能量/第一RS的总发送能量,则第二RS的总发送能量=第一RS的总发送能量*X。其中,第一RS的总发送能量可以为第一时域单元(例如,时域单元A)上的总发送能量,第二RS的总发送能量可以为第二时域单元(例如,时域单元B)上的总发送能量。
再例如,若X=第二RS的EPRE/第一RS的EPRE,则第二RS的EPRE=第一RS的EPRE*X。“*”表示“乘以”。其中,第一RS的EPRE可以为第一时域单元(例如,时域单元C)上的EPRE,第二RS的EPRE可以为第二时域单元(例如,时域单元D)上的EPRE。
在情况1下,示例性的,参见图2,若时隙0上的第一RS和时隙5上的第二RS进行CSI联合测量,假设X=第二RS的EPRE/第一RS的EPRE=0.8,时隙0上的第一RS的EPRE为10,则终端可以确定时隙5上的第二RS的EPRE为8。
在情况1下,示例性的,参见图2,若时隙0上的第一RS和时隙5上的第二RS进行CSI联合测量,假设X=第二RS的总发送能量/第一RS的总发送能量=0.8,时隙0上的第一RS的总发送能量为500,则终端可以确定时隙5上的第二RS的总发送能量为400,进而可以确定时隙5上的第二RS的EPRE。
在上述情况2下,终端根据终端发送的PUSCH的能量和X确定第二RS的能量。
例如,若X=第二RS的总发送能量/PUSCH的总发送能量,则第二RS的总发送能量=PUSCH的总发送能量*X。其中,PUSCH的总发送能量可以为第一时域单元(例如,时域单元E)上的总发送能量,第二RS的总发送能量可以为第二时域单元(例如,时域单元F)上的总发送能量。
再例如,若X=第二RS的EPRE/PUSCH的EPRE,则第二RS的EPRE=PUSCH的EPRE*X。其中,PUSCH的EPRE可以为第一时域单元(例如,时域单元G)上的EPRE,第二RS的EPRE 可以为第二时域单元(例如,时域单元H)上的EPRE。
在情况2下,示例性的,参见图2,若在时隙5之前,终端在时隙4上发送了PUSCH,假设X=第二RS的EPRE/PUSCH的EPRE=0.8,时隙4上的PUSCH的EPRE为10,则终端可以确定时隙5上的第二RS的EPRE为8,进而可以确定时隙5上的第二RS的EPRE。
在情况2下,示例性的,参见图2,若在时隙5之前,终端在时隙4上发送了PUSCH,假设X=第二RS的总发送能量/PUSCH的总发送能量,时隙4上的PUSCH的总发送能量为500,则终端可以确定时隙5上的第二RS的总发送能量为400,进而可以确定时隙5上的第二RS的EPRE。
在情况2下,若终端在时域单元1发送第二RS,则用于计算第二RS的发送能量的PUSCH可以为时域单元2上发送的PUSCH。
在第一种情况下,时域单元2位于时域单元1之前,时域单元1和时域单元2之间间隔M(M为大于0的整数)个时域单元。M的值可以为预设的或预定义的或协议规定的或网络设备配置的,本申请不作限制。例如,M可以为1、2、4等。示例性的,若M为1,则时隙5上的第二RS的总发送能量或EPRE可以根据时隙4上发送的PUSCH确定。
在第二种情况下,时域单元2位于时域单元1之前,时域单元2为时域单元1之前的、且最晚发送PUSCH的时域单元。也就是说,时域单元1和时域单元2之间的时域单元上终端均未发送PUSCH。示例性的,若时隙5之前、且距离时隙5最近的发送PUSCH的时隙为时隙3,则时隙5上的第二RS的总发送能量或EPRE可以根据时隙3上发送的PUSCH确定。
在第三种情况下,时域单元2和时域单元1为同一个时域单元。示例性的,时隙5上的第二RS的总发送能量或EPRE可以根据时隙5上发送的PUSCH确定。
需要说明的是,终端在确定采用哪个时域单元上的PUSCH计算时域单元1上的第二RS的总发送能量或EPRE时,可以先判断时域单元1上是否发送PUSCH,若是,则采用时域单元1上的PUSCH计算时域单元1上的第二RS的总发送能量或EPRE。若否,一种情况下,终端采用时域单元1之前的、且最晚发送PUSCH的时域单元上终端发送的PUSCH计算时域单元1上的第二RS的总发送能量或EPRE。另一种情况下,终端判断与时域单元1间隔M个时域单元的时域单元上终端是否发送了PUSCH,若是,则采用该时域单元上终端发送的PUSCH计算时域单元1上的第二RS的总发送能量或EPRE,若否,则采用时域单元1之前的、且最晚发送PUSCH的时域单元上终端发送的PUSCH计算时域单元1上的第二RS的总发送能量或EPRE。
在情况3下,终端根据X确定第一RS和第二RS的能量比值,根据第一RS和第二RS的能量比值确定第二RS的发送能量,具体可参见情况1的相关描述,不再赘述。
在情况4下,终端根据X确定PUSCH和第二RS的能量比值,根据PUSCH和第二RS的能量比值确定第二RS的发送能量,具体可参见情况2的相关描述,不再赘述。
上述步骤504在具体实现时,可以包括:网络设备根据承载在第一资源上的第一RS和承载在第二资源上的第二RS进行联合测量得到网络设备发送PDSCH时的下行CSI,第一资源为第一RS包含的RS端口占用的时频资源,第二资源为与第一RS包含的RS端口具有对应关系的第二RS包含的RS端口占用的时频资源。
在第一种可能的实现方式中,联合测量的过程可以包括:网络设备根据承载在第一资源上的第一RS计算得到第一时域单元的上行CSI1,根据上行CSI1计算得到下行CSI1; 根据承载在第二资源上的第二RS计算得到第二时域单元的上行CSI2,根据上行CSI2计算得到下行CSI2;根据下行CSI1和下行CSI2进行机器学习或者线性/非线性预测得到网络设备发送PDSCH时的下行CSI。其中,第一时域单元为发送第一RS的时域单元,第二时域单元为发送第二RS的时域单元。
在第二种可能的实现方式中,联合测量的过程可以包括:网络设备根据承载在第一资源上的第一RS计算得到第一时域单元的上行CSI1,根据上行CSI1计算得到下行CSI1;根据承载在第二资源上的第二RS计算得到第二时域单元的上行CSI2,根据上行CSI2计算得到下行CSI2;采用插值算法计算得到第一时域单元和第二时域单元之间的一个或多个时域单元对应的一个或多个上行CSI,根据该一个或多个上行CSI计算对应的下行CSI;根据计算得到的全部下行CSI进行机器学习或者线性/非线性预测得到网络设备发送PDSCH时的下行CSI。
在第三种可能的实现方式中,联合测量的过程可以包括:网络设备根据承载在第一资源上的第一RS计算得到第一时域单元的上行CSI1,根据上行CSI1计算得到下行CSI1;根据承载在第二资源上的第二RS计算得到第二时域单元的上行CSI2,根据上行CSI2计算得到下行CSI2;对下行CSI1和下行CSI2取平均得到网络设备发送PDSCH时的下行CSI。
在上述实施例中,网络设备可以利用上下行信道的互异性根据上行CSI计算得到下行CSI。
在上述实施例中,能量可以替换为功率,也就是说,所述X也可以为第一RS和第二RS的功率比值或者所述终端发送的PUSCH和所述第二RS的功率比值。其他部分也替换为功率进行理解即可。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,网络设备和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图6示出了上述实施例中所涉及的信号传输装置(记为信号传输装置60)的一种可能的结构示意图,该信号传输装置60包括处理单元601和收发单元602,还可以包括存储单元603。图6所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端的结构。
当图6所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理单元601用于对终端的动作进行控制管理,例如,处理单元601用于支持终端执行图5中的501-503,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。处理单 元601可以通过收发单元602与其他网络实体通信,例如,与图5中示出的网络设备通信。存储单元603用于存储终端的程序代码和数据。
当图6所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,信号传输装置60可以是终端,也可以是终端内的芯片。
当图6所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理单元601用于对网络设备的动作进行控制管理,例如,处理单元601用于支持网络设备执行图5中的501-504,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。处理单元601可以通过收发单元602与其他网络实体通信,例如,与图5中示出的终端通信。存储单元603用于存储网络设备的程序代码和数据。
当图6所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,信号传输装置60可以是网络设备,也可以是网络设备内的芯片。
其中,当信号传输装置60为终端或网络设备时,处理单元601可以是处理器或控制器,收发单元602可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元603可以是存储器。当信号传输装置60为终端内的芯片或网络设备内的芯片时,处理单元601可以是处理器或控制器,收发单元602可以是输入接口和/或输出接口、管脚或电路等。存储单元603可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端或网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
其中,收发单元也可以称为通信单元。信号传输装置60中的具有收发功能的天线和控制电路可以视为信号传输装置60的收发单元602,具有处理功能的处理器可以视为信号传输装置60的处理单元601。可选的,收发单元602中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤。例如,网络设备中的接收单元可以用于接收第一RS,还可以用于接收第二RS,终端中的接收单元可以用于接收指示信息。接收单元可以为接收机、接收器、接收电路等。收发单元602中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤。例如,网络设备中的发送单元可以用于发送指示信息,终端中的发送单元可以用于发送第一RS,还可以用于发送第二RS。发送单元可以为发送机、发送器、发送电路等。
图6中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图6中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种信号传输装置的硬件结构示意图,参见图7或图8,该信号传输装置包括处理器701,可选的,还包括与处理器701连接的存储器702。
处理器701可以是一个通用中央处理器(central processing unit,CPU)、微处理 器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器701也可以包括多个CPU,并且处理器701可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器702可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器702可以是独立存在,也可以和处理器701集成在一起。其中,存储器702中可以包含计算机程序代码。处理器701用于执行存储器702中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图7,信号传输装置还包括收发器703。处理器701、存储器702和收发器703通过总线相连接。收发器703用于与其他设备或通信网络通信。可选的,收发器703可以包括发射机和接收机。收发器703中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。例如,网络设备中的接收机可以用于接收第一RS,还可以用于接收第二RS,终端中的接收机可以用于接收指示信息。收发器703中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。例如,网络设备中的发射机可以用于发送指示信息,终端中的发射机可以用于发送第一RS,还可以用于发送第二RS。
基于第一种可能的实现方式,图7所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图7所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器701用于对终端的动作进行控制管理,例如,处理器701用于支持终端执行图5中的501-503,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。处理器701可以通过收发器703与其他网络实体通信,例如,与图5中示出的网络设备通信。存储器702用于存储终端的程序代码和数据。
当图7所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器701用于对网络设备的动作进行控制管理,例如,处理器701用于支持网络设备执行图5中的501-504,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。处理器701可以通过收发器703与其他网络实体通信,例如,与图5中示出的终端的通信。存储器702用于存储网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器701包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作。例如,网络设备中的输出接口可以用于发送指示信息,终端中的输出接口可以用于发送第一RS,还可以用于发送第二RS。输入接口用于执行相应方法中的接收的动作。例如,网络设备中的输入接口可以用于接收第一RS,还可以用于接收第二RS,终端中的输入接口可以用于接收指示信息。
基于第二种可能的实现方式,参见图8,图8所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图8所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器701用于对终端的动作进行控制管理,例如,处理器701用于支持终端执行图5中的501-503,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。处理器701可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图5中示出的网络设备通信。存储器702用于存储终端的程序代码和数据。
当图8所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器701用于对网络设备的动作进行控制管理,例如,处理器701用于支持网络设备执行图5中的501-504,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。处理器701可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图5中示出的终端通信。存储器702用于存储网络设备的程序代码和数据。
另外,本申请实施例还提供了一种终端(记为终端90)和网络设备(记为网络设备100)的硬件结构示意图,具体可分别参见图9和图10。
图9为终端90的硬件结构示意图。为了便于说明,图9仅示出了终端的主要部件。如图9所示,终端90包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端执行图5中的501-503,以及本申请实施例中所描述的其他过程中的终端执行的动作中的部分或全部动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据(例如,第一RS、第二RS)时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据(例如,指示信息)发送到终端时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理 器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
本申请实施例中的网络设备可以为一个完整的实体,还可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的形态。若为后者,图10示出了一种网络设备100的硬件结构示意图。网络设备100可包括CU1001和DU1002。可选的,还包括有源天线单元(active antenna unit,AAU)1003。
其中,CU实现网络设备的部分功能,DU实现网络设备的部分功能。比如,CU负责处理非实时协议和服务,实现RRC层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
应理解,图10所示的网络设备100能够执行图5中的501-504,以及本申请实施例中所描述的其他过程中的网络设备执行的动作中的部分或全部动作。网络设备100中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。图9中的关于处理器的其他描述可参见图7和图8中的与处理器相关的描述,不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述网络设备和终端。
本申请实施例还提供了一种芯片,包括:处理器和接口,处理器通过接口与存储器耦合,当处理器执行存储器中的计算机程序或指令时,使得上述实施例提供的任意一种方法被执行。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线 (digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (32)
- 一种信号传输方法,其特征在于,包括:网络设备向终端发送指示信息,所述指示信息用于指示X,所述X为第一参考信号RS和第二RS的能量比值;或者,所述X为所述终端发送的物理上行共享信道PUSCH和所述第二RS的能量比值;或者,所述X为所述第一RS和所述第二RS的能量比值对应的分贝值;或者,所述X为所述终端发送的PUSCH和所述第二RS的能量比值对应的分贝值;所述第一RS和所述第二RS均用于测量信道状态信息CSI;所述网络设备从所述终端接收所述第一RS和所述第二RS。
- 根据权利要求1所述的方法,其特征在于,所述指示信息具体用于指示所述第一RS和/或所述第二RS对应的梳齿结构的梳齿大小;或者,所述指示信息具体用于指示所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值。
- 根据权利要求1所述的方法,其特征在于,所述指示信息为X的值。
- 一种信号传输装置,其特征在于,包括:处理单元和通信单元;所述处理单元,用于通过所述通信单元向终端发送指示信息,所述指示信息用于指示X,所述X为第一参考信号RS和第二RS的能量比值;或者,所述X为所述终端发送的物理上行共享信道PUSCH和所述第二RS的能量比值;或者,所述X为所述第一RS和所述第二RS的能量比值对应的分贝值;或者,所述X为所述终端发送的PUSCH和所述第二RS的能量比值对应的分贝值;所述第一RS和所述第二RS均用于测量信道状态信息CSI;所述处理单元,还用于通过所述通信单元从所述终端接收所述第一RS和所述第二RS。
- 根据权利要求4所述的信号传输装置,其特征在于,所述指示信息具体用于指示所述第一RS和/或所述第二RS对应的梳齿结构的梳齿大小;或者,所述指示信息具体用于指示所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值。
- 根据权利要求4所述的信号传输装置,其特征在于,所述指示信息为X的值。
- 根据权利要求1-6任一项所述的方法或信号传输装置,其特征在于,所述第一RS和所述第二RS用于进行CSI联合测量。
- 根据权利要求1-7任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述第一RS的每资源元素能量EPRE和所述第二RS的EPRE的比值;或者,所述X具体为所述第一RS的EPRE和所述第二RS的EPRE的比值对应的分贝值。
- 根据权利要求1-7任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述第一RS的总发送能量和所述第二RS的总发送能量的比值;或者,所述X具体为所述第一RS的总发送能量和所述第二RS的总发送能量的比值对应的分贝值。
- 根据权利要求1-7任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述PUSCH的EPRE和所述第二RS的EPRE的比值;或者,所述X具体为所述PUSCH的EPRE和所述第二RS的EPRE的比值对应的分贝值。
- 根据权利要求1-7任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述PUSCH的总发送能量和所述第二RS的总发送能量的比值;或者,所述X具体为所述PUSCH的总发送能量和所述第二RS的总发送能量的比值对应的分贝值。
- 根据权利要求1-11任一项所述的方法或信号传输装置,其特征在于,所述指示信息携带在无线资源控制RRC信令或媒体接入控制控制元素MAC CE信令或下行控制信息DCI中。
- 根据权利要求1-12任一项所述的方法或信号传输装置,其特征在于,所述第一RS的能量为第一时域单元上的能量,所述第二RS的能量为第二时域单元上的能量,所述PUSCH的能量为第三时域单元上的能量。
- 一种信号传输装置,其特征在于,包括:处理器和与所述处理器连接的存储器;所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述信号传输装置实现如权利要求1至权利要求3以及权利要求7至权利要求13中的任一项所述的方法。
- 一种信号传输方法,其特征在于,包括:终端从网络设备接收指示信息,所述指示信息用于指示X,所述X为第一参考信号RS和第二RS的能量比值;或者,所述X为所述终端发送的物理上行共享信道PUSCH和所述第二RS的能量比值;或者,所述X为所述第一RS和所述第二RS的能量比值对应的分贝值;或者,所述X为所述终端发送的PUSCH和所述第二RS的能量比值对应的分贝值;所述第一RS和所述第二RS均用于测量信道状态信息CSI;所述终端向所述网络设备发送所述第一RS;所述终端根据所述指示信息确定所述第二RS的发送能量,并采用所述第二RS的发送能量向所述网络设备发送所述第二RS。
- 根据权利要求15所述的方法,其特征在于,所述指示信息具体用于指示所述第一RS和/或所述第二RS对应的梳齿结构的梳齿大小,所述终端根据所述指示信息确定所述第二RS的发送能量,包括:所述终端根据所述指示信息确定所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值,并根据所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值确定X;所述终端根据X确定所述第二RS的发送能量。
- 根据权利要求15所述的方法,其特征在于,所述指示信息具体用于指示所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值,所述终端根据所述指示信息确定所述第二RS的发送能量,包括:所述终端根据所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值确定X,并根据X确定所述第二RS的发送能量。
- 根据权利要求15所述的方法,其特征在于,所述指示信息具体用于指示所述第二RS对应的梳齿结构的梳齿大小,所述终端根据所述指示信息确定所述第二RS的发送能量,包括:所述终端根据所述第二RS对应的梳齿结构的梳齿大小确定X,并根据X确定所述第二RS的发送能量。
- 根据权利要求15所述的方法,其特征在于,所述指示信息为X的值,所述终端根据所述指示信息确定所述第二RS的发送能量,包括:所述终端根据所述指示信息确定X,并根据X确定所述第二RS的发送能量。
- 一种信号传输装置,其特征在于,包括:处理单元和通信单元;所述处理单元,用于通过所述通信单元从网络设备接收指示信息,所述指示信息用于指示X,所述X为第一参考信号RS和第二RS的能量比值;或者,所述X为所述信号传输装置发送的物理上行共享信道PUSCH和所述第二RS的能量比值;或者,所述X为所述第一RS和所述第二RS的能量比值对应的分贝值;或者,所述X为所述信号传输装置发送的PUSCH和所述第二RS的能量比值对应的分贝值;所述第一RS和所述第二RS均用于测量信道状态信息CSI;所述处理单元,还用于通过所述通信单元向所述网络设备发送所述第一RS;所述处理单元,还用于根据所述指示信息确定所述第二RS的发送能量,并采用所述第二RS的发送能量通过所述通信单元向所述网络设备发送所述第二RS。
- 根据权利要求20所述的信号传输装置,其特征在于,所述指示信息具体用于指示所述第一RS和/或所述第二RS对应的梳齿结构的梳齿大小;所述处理单元,具体用于根据所述指示信息确定所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值,并根据所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值确定X,根据X确定所述第二RS的发送能量。
- 根据权利要求20所述的信号传输装置,其特征在于,所述指示信息具体用于指示所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值;所述处理单元,具体用于根据所述第一RS和所述第二RS对应的梳齿结构的梳齿大小比值确定X,并根据X确定所述第二RS的发送能量。
- 根据权利要求20所述的信号传输装置,其特征在于,所述指示信息具体用于指示所述第二RS对应的梳齿结构的梳齿大小;所述处理单元,具体用于根据所述第二RS对应的梳齿结构的梳齿大小确定X,并根据X确定所述第二RS的发送能量。
- 根据权利要求20所述的信号传输装置,其特征在于,所述指示信息为X的值;所述处理单元,具体用于根据所述指示信息确定X,并根据X确定所述第二RS的发送能量。
- 根据权利要求15-24任一项所述的方法或信号传输装置,其特征在于,所述第一RS和所述第二RS用于进行CSI联合测量。
- 根据权利要求15-25任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述第一RS的每资源元素能量EPRE和所述第二RS的EPRE的比值;或者,所述X具体为所述第一RS的EPRE和所述第二RS的EPRE的比值对应的分贝值。
- 根据权利要求15-25任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述第一RS的总发送能量和所述第二RS的总发送能量的比值;或者,所述X具体为所述第一RS的总发送能量和所述第二RS的总发送能量的比值对应的分贝值。
- 根据权利要求15-25任一项所述的方法或信号传输装置,其特征在于,所述X具体为所述PUSCH的EPRE和所述第二RS的EPRE的比值;或者,所述X具体为所述PUSCH的EPRE和所述第二RS的EPRE的比值对应的分贝值。
- 根据权利要求15-25任一项所述的方法或信号传输装置,其特征在于,所述 X具体为所述PUSCH的总发送能量和所述第二RS的总发送能量的比值;或者,所述X具体为所述PUSCH的总发送能量和所述第二RS的总发送能量的比值对应的分贝值。
- 根据权利要求15-29任一项所述的方法或信号传输装置,其特征在于,所述指示信息携带在无线资源控制RRC信令或媒体接入控制控制元素MAC CE信令或下行控制信息DCI中。
- 根据权利要求15-30任一项所述的方法或信号传输装置,其特征在于,所述第一RS的能量为第一时域单元上的能量,所述第二RS的能量为第二时域单元上的能量,所述PUSCH的能量为第三时域单元上的能量。
- 一种信号传输装置,其特征在于,包括:处理器和与所述处理器连接的存储器;所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述信号传输装置实现如权利要求15至权利要求19以及权利要求25至权利要求31中的任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080099013.2A CN115336310A (zh) | 2020-04-15 | 2020-04-15 | 信号传输方法及装置 |
PCT/CN2020/084881 WO2021207968A1 (zh) | 2020-04-15 | 2020-04-15 | 信号传输方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/084881 WO2021207968A1 (zh) | 2020-04-15 | 2020-04-15 | 信号传输方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021207968A1 true WO2021207968A1 (zh) | 2021-10-21 |
Family
ID=78084864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/084881 WO2021207968A1 (zh) | 2020-04-15 | 2020-04-15 | 信号传输方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115336310A (zh) |
WO (1) | WO2021207968A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104704872A (zh) * | 2013-06-19 | 2015-06-10 | 华为技术有限公司 | 一种通信质量测量的方法和装置 |
CN106961689A (zh) * | 2016-01-11 | 2017-07-18 | 北京展讯高科通信技术有限公司 | 参考信号的传输方法及装置、接收方法及装置 |
US20190190581A1 (en) * | 2016-08-12 | 2019-06-20 | Qualcomm Incorporated | Techniques for channel state information acquisition in new radio technology |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109150337B (zh) * | 2017-06-16 | 2020-09-11 | 华为技术有限公司 | 一种干扰功率测量方法及设备 |
CN117439723A (zh) * | 2018-05-11 | 2024-01-23 | 华为技术有限公司 | 通信的方法和通信装置 |
CN110719137B (zh) * | 2018-07-13 | 2021-10-15 | 华为技术有限公司 | 一种信道质量通知方法、接收方法和装置 |
-
2020
- 2020-04-15 CN CN202080099013.2A patent/CN115336310A/zh active Pending
- 2020-04-15 WO PCT/CN2020/084881 patent/WO2021207968A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104704872A (zh) * | 2013-06-19 | 2015-06-10 | 华为技术有限公司 | 一种通信质量测量的方法和装置 |
CN106961689A (zh) * | 2016-01-11 | 2017-07-18 | 北京展讯高科通信技术有限公司 | 参考信号的传输方法及装置、接收方法及装置 |
US20190190581A1 (en) * | 2016-08-12 | 2019-06-20 | Qualcomm Incorporated | Techniques for channel state information acquisition in new radio technology |
Non-Patent Citations (1)
Title |
---|
ERICSSON: "Further Enhancements on MIMO for NR", 3GPP DRAFT; RP-191049 FURTHER ENHANCEMENTS ON MIMO FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, CA, USA; 20190603 - 20190606, 2 June 2019 (2019-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051747263 * |
Also Published As
Publication number | Publication date |
---|---|
CN115336310A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020143647A1 (zh) | 传输信道状态信息的方法和装置 | |
WO2018127066A1 (zh) | 一种上行测量信号的指示方法及装置 | |
WO2020134944A1 (zh) | 干扰测量的方法和通信装置 | |
WO2020029942A1 (zh) | 波束测量的方法和装置 | |
WO2021093858A1 (zh) | 传输物理层协议数据单元的方法和装置 | |
US12095698B2 (en) | Signal transmission method and device | |
WO2018202098A1 (zh) | 无线通信的方法、网络设备和终端设备 | |
WO2018082672A1 (zh) | 一种上行测量参考信号传输方法、装置和系统 | |
WO2021031048A1 (zh) | 一种通信方法及装置 | |
WO2021098355A1 (zh) | Csi测量方法及装置 | |
WO2022078115A1 (zh) | 功率确定方法、装置、终端及网络侧设备 | |
WO2019096278A1 (zh) | 信号测量的方法和设备 | |
WO2021062766A1 (zh) | 一种干扰测量上报的方法和通信装置 | |
WO2022147735A1 (zh) | 确定发送功率的方法及装置 | |
WO2018201941A1 (zh) | 配置参数的方法及装置 | |
WO2024094035A1 (zh) | 上行功控方法及通信装置 | |
WO2020156562A1 (zh) | 通信方法和装置 | |
WO2020192719A1 (zh) | 更新波束的方法与通信装置 | |
WO2018132944A1 (zh) | 信号传输方法和设备 | |
WO2021062795A1 (zh) | 一种通信方法及装置 | |
WO2020043002A1 (zh) | 一种空间复用方法及装置 | |
WO2020227853A1 (en) | Method and network device for rank selection | |
WO2021207968A1 (zh) | 信号传输方法及装置 | |
WO2022228117A1 (zh) | 一种确定ptrs图案的方法和装置 | |
WO2022161487A1 (zh) | 参考信号图案的确定方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20931162 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20931162 Country of ref document: EP Kind code of ref document: A1 |