WO2024094035A1 - 上行功控方法及通信装置 - Google Patents

上行功控方法及通信装置 Download PDF

Info

Publication number
WO2024094035A1
WO2024094035A1 PCT/CN2023/128931 CN2023128931W WO2024094035A1 WO 2024094035 A1 WO2024094035 A1 WO 2024094035A1 CN 2023128931 W CN2023128931 W CN 2023128931W WO 2024094035 A1 WO2024094035 A1 WO 2024094035A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
loss compensation
reference signal
proportional coefficient
value
Prior art date
Application number
PCT/CN2023/128931
Other languages
English (en)
French (fr)
Inventor
刘显达
高翔
张哲宁
胡丹
张旭
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024094035A1 publication Critical patent/WO2024094035A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the present application relates to the field of wireless communications, and in particular to an uplink power control method and a communication device.
  • multiple network devices can send the same data to the same terminal device on the same time-frequency resource at the same time, and the multi-channel signals carrying the data need to be coherently superimposed when they reach the terminal device through their respective spatial propagation paths, thereby improving the receiving performance of the terminal device.
  • the multiple network devices that transmit in coordination with each other need to obtain downlink channel information.
  • multiple network devices that cooperate with each other can receive the reference signal sent by the terminal device on the same time-frequency resource to obtain uplink channel information, and determine the downlink channel information based on the uplink channel information.
  • the uplink power control scheme of the existing terminal device cannot meet the receiving requirements of multiple network devices that cooperate with each other to obtain channel information. Therefore, how to optimize the uplink power control scheme of the terminal device to meet the receiving requirements of multiple network devices that cooperate with each other to obtain channel information is a problem that needs to be solved urgently.
  • the uplink power control method and communication device provided in the embodiments of the present application can optimize the uplink power control scheme of the terminal device to meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • an uplink power control method is provided, which can be executed by a first network device, or by a component of the first network device, such as a processor, a chip, or a chip system of the first network device, or by a logic module or software that can implement all or part of the functions of the first network device.
  • the following takes the method executed by the first network device as an example for description. The method includes:
  • the first network device generates first indication information and sends the first indication information to the terminal device.
  • the first indication information is used to indicate a path loss compensation proportional coefficient corresponding to each path loss reference signal among multiple path loss reference signals associated with the uplink signal.
  • the path loss compensation proportional coefficient is used by the terminal device to determine a path loss compensation value.
  • the path loss compensation value is used to determine a target transmission power for the uplink signal sent by the terminal device.
  • the first network device can indicate to the terminal device the path loss compensation proportional coefficient that meets the receiving requirements of multiple terminal devices in collaborative transmission, so that the path loss compensation value determined by the terminal device according to the path loss compensation proportional coefficient can not only improve the target transmission power of the uplink reference signal, but also reduce the interference to the signals sent by other terminal devices in the cell. Therefore, the target transmission power of the uplink signal determined by the terminal device according to the path loss compensation value can meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • the uplink power control scheme of the terminal device can be optimized to meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • an uplink power control method is provided, which can be executed by a terminal device, or by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device, or by a logic module or software that can implement all or part of the functions of the terminal device.
  • the following takes the method executed by the terminal device as an example for description. The method includes:
  • the terminal device receives first indication information from the first network device, where the first indication information is used to indicate a path loss compensation proportional coefficient corresponding to each path loss reference signal among multiple path loss reference signals associated with an uplink signal; the terminal device determines a path loss compensation value based on the first indication information; and the terminal device determines a target transmission power for sending the uplink signal based on the path loss compensation value.
  • the first network device can indicate to the terminal device that the cooperative transmission is satisfied through the first indication information.
  • the path loss compensation ratio coefficient that meets the receiving needs of multiple terminal devices, and then the path loss compensation value determined by the terminal device according to the path loss compensation ratio coefficient can not only improve the target transmission power of the uplink reference signal, but also reduce the interference to the signals sent by other terminal devices in the cell. Therefore, the target transmission power of the uplink signal determined by the terminal device according to the path loss compensation value can meet the receiving needs of multiple network devices in collaborative transmission to obtain channel information.
  • the uplink power control scheme of the terminal device can be optimized to meet the receiving needs of multiple network devices in collaborative transmission to obtain channel information.
  • the path loss compensation proportional coefficient corresponding to each of the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value. That is, the terminal device can determine the path loss compensation value according to the path loss proportional coefficients corresponding to all of the multiple path loss reference signals.
  • the path loss compensation proportional coefficient corresponding to the target path loss reference signal among the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the target path loss reference signal includes one path loss reference signal among the multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among the multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the terminal device can determine the path loss compensation value based on the path loss compensation proportional coefficient corresponding to one or more path loss reference signals among the multiple path loss reference signals.
  • the path loss compensation proportional coefficient may be a preset value, or a constant, or configured by a high-level parameter.
  • the first indication information is also used to indicate the total path loss compensation factor corresponding to the path loss compensation value.
  • the total path loss compensation factor is used to determine the actual path loss compensation value corresponding to the path loss compensation value.
  • the actual path loss compensation value is used to determine the target transmit power. That is, in the CJT scenario, the actual path loss compensation value can be determined by indicating a two-level path loss factor (including a total path loss compensation factor and a path loss compensation proportional coefficient).
  • the total path loss compensation factor can reuse the quantization method of the existing path loss compensation factor.
  • the first indication information includes one or more of the following:
  • the total path loss compensation factor being used to determine an actual path loss compensation value corresponding to the path loss compensation value, the actual path loss compensation value being used to determine a target transmission power
  • a first path loss compensation factor includes a path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals.
  • the sum of the path loss compensation proportional coefficients corresponding to each path loss reference signal in the multiple path loss reference signals is less than or equal to 1. In other words, this condition can limit the path loss compensation value from being too large or too small, so that the target transmission power determined by the terminal device can meet the SNR reception requirements of the weak station and balance the overall interference situation of the cell.
  • the path loss compensation proportional coefficient includes a first path loss compensation proportional coefficient.
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient includes a second path loss compensation proportional coefficient.
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the road loss compensation value may be a linear value or a logarithmic value.
  • the road loss compensation proportional coefficient indicated by the first indication information may be a road loss compensation proportional coefficient corresponding to a linear value or a logarithmic value.
  • the first indication information includes a first path loss compensation factor
  • the first path loss compensation factor includes a path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the first path loss compensation factor
  • the actual path loss compensation value corresponding to the path loss compensation value is ⁇ PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ is the total path loss compensation factor corresponding to the path loss compensation value, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) is the path loss compensation value, b is the identifier of the activated bandwidth part BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient is a first path loss compensation proportional coefficient
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is
  • the first path loss measurement value corresponding to the i-th path loss reference signal is Among them, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), as well as The following relationship is satisfied:
  • the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) can be limited from being too large or too small, so that the target transmission power determined by the terminal device can meet the SNR reception requirement of the weak station and balance the overall interference situation of the cell.
  • the path loss compensation proportional coefficient is a second path loss compensation proportional coefficient
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ i , and PL i satisfy the following relationship:
  • the path loss compensation value is the actual path loss compensation value corresponding to the path loss compensation value.
  • the path loss compensation proportional coefficient is the actual path loss compensation proportional coefficient. That is, in the CJT scenario, the first-level path loss factor (i.e., the path loss compensation proportional coefficient) can be used to determine the actual path loss compensation value, and there is no need to indicate the total path loss compensation factor, thereby saving indication overhead.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient
  • the first indication information includes a second path loss compensation proportional factor.
  • the second path loss compensation proportional factor includes an actual path loss compensation proportional coefficient corresponding to each path loss reference signal in multiple path loss reference signals.
  • the first indication information further includes identification information of each path loss reference signal in the multiple path loss reference signals.
  • the actual path loss compensation proportional coefficient includes a first actual path loss compensation proportional coefficient.
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient includes a second actual path loss compensation proportional coefficient.
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. Wherein, i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation ratio coefficient is an actual path loss compensation ratio coefficient
  • the first indication information includes a second path loss compensation factor
  • the second path loss compensation factor includes an actual path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the second path loss compensation factor.
  • the path loss compensation value is PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), b is an identifier of an activated BWP corresponding to an uplink signal, c is an identifier of a cell corresponding to an uplink signal, f is a carrier frequency of a cell corresponding to an uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is an index of an i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in a plurality of path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient is a first actual path loss compensation proportional coefficient
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is The first path loss measurement value corresponding to the i-th path loss reference signal.
  • the actual path loss compensation proportional coefficient is the second actual
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • the first indication information is also used to indicate: when the path loss compensation value determined by the terminal device is greater than or equal to the first threshold, the target transmit power is determined according to the first threshold. It can be understood that in the scheme of determining the path loss compensation value according to the path loss compensation proportional coefficient, there may be a situation where the determined path loss compensation value is too large. In other words, through this limiting condition, the target transmit power can be avoided from being too large, so that the target transmit power determined by the terminal device can not only meet the SNR reception requirements of the weak station, but also balance the overall interference situation of the cell.
  • the method provided by the first aspect further includes:
  • the first network device receives second indication information from the terminal device.
  • the second indication information is used to indicate the target path loss reference signal used by the terminal device to determine the path loss compensation value or the target calculation method of the path loss compensation value.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals. In other words, through the second indication information, the first network device can be informed of the target reference signal or the target calculation method of the path loss compensation value selected by the terminal device to determine the path loss compensation value.
  • the first network device determines that the target transmission power of the uplink signal sent by the terminal device does not meet the receiving requirements, the first network device can adjust the path loss compensation proportional coefficients corresponding to the multiple path loss reference signals according to the second indication information and the receiving parameters of the uplink signal, so that the target transmission power of the uplink signal meets the receiving requirements of multiple terminal devices of collaborative transmission to obtain channel information.
  • the target calculation method of the path loss compensation value is: calculating the maximum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals, or calculating the minimum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals, or calculating the average value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals.
  • the method provided by the first aspect further includes:
  • the first network device sends third indication information to the terminal device, wherein the third indication information is used to indicate the updated multiple path loss reference signals and the path loss compensation proportional coefficient corresponding to each of the updated multiple path loss reference signals;
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to the target reference signal.
  • the first network device can send an updated path loss compensation proportional coefficient and/or path loss reference signal to the terminal device through the third indication information, so as to further improve the receiving performance of multiple network devices of collaborative transmission by adjusting the target sending power of the uplink signal sent by the terminal device.
  • the reference signal includes one path loss reference signal among the multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among the multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the terminal device determines the path loss compensation value according to the first indication information, including: the terminal device determines the target path loss reference signal or the target calculation method of the path loss compensation value; the terminal device determines the path loss compensation proportional coefficient corresponding to the target path loss reference signal according to the first indication information, and determines the path loss compensation value according to the path loss compensation proportional coefficient corresponding to the target path loss reference signal; or, the terminal device determines the path loss compensation value according to the first indication information and the target calculation method.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals.
  • the target calculation method of the path loss compensation value is: calculating the maximum value of the path loss compensation values corresponding to each path loss reference signal among multiple path loss reference signals, or calculating the minimum value of the path loss compensation values corresponding to each path loss reference signal among multiple path loss reference signals, or calculating the average value of the path loss compensation values corresponding to each path loss reference signal among multiple path loss reference signals.
  • the method provided by the second aspect further includes:
  • the terminal device sends second indication information to the first network device.
  • the second indication information is used to indicate the target path loss reference signal or the target calculation method of the path loss compensation value used by the terminal device to determine the path loss compensation value.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals.
  • the method provided by the second aspect further includes:
  • the terminal device receives third indication information from the first network device.
  • the third indication information is used to indicate the updated A plurality of path loss reference signals, and a path loss compensation proportional coefficient corresponding to each of the plurality of updated path loss reference signals;
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the third indication information is used to indicate the updated path loss compensation proportional coefficient corresponding to the target reference signal.
  • the target path loss reference signal includes one path loss reference signal among multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among multiple path loss reference signals, and n and k are both integers greater than 1.
  • a communication device for implementing the various methods described above.
  • the communication device may be the first network device in the first aspect or any of its implementations, or a device including the first network device, or a device included in the first network device, such as a chip; or, the communication device may be the terminal device in the second aspect or any of its implementations, or a device including the terminal device, or a device included in the terminal device, such as a chip.
  • the communication device includes a module, unit, or means corresponding to the implementation of the above method, and the module, unit, or means may be implemented by hardware, software, or by executing the corresponding software implementation by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a processing module and a transceiver module.
  • the transceiver module which may also be referred to as a transceiver unit, is used to implement the sending and/or receiving functions in any of the above aspects and any possible implementations thereof.
  • the transceiver module may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module may be used to implement the processing functions in any of the above aspects and any possible implementations thereof.
  • the transceiver module includes a sending module and a receiving module, which are respectively used to implement the sending and receiving functions in any of the above aspects and any possible implementation methods thereof.
  • a communication device comprising: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device can be the first network device in the above first aspect or any implementation thereof, or a device including the above first network device, or a device included in the above first network device, such as a chip; or the communication device can be the terminal device in the above second aspect or any implementation thereof, or a device including the above terminal device, or a device included in the above terminal device, such as a chip.
  • a communication device comprising: a processor and a communication interface; the communication interface is used to communicate with a module outside the communication device; the processor is used to execute a computer program or instruction so that the communication device executes the method described in any of the above aspects.
  • the communication device can be the first network device in the above first aspect or any implementation thereof, or a device including the above first network device, or a device included in the above first network device, such as a chip; or the communication device can be the terminal device in the above second aspect or any implementation thereof, or a device including the above terminal device, or a device included in the above terminal device, such as a chip.
  • a communication device comprising: at least one processor; the processor is used to execute a computer program or instruction stored in a memory so that the communication device performs the method described in any of the above aspects.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the first network device in the above first aspect or any implementation thereof, or a device including the above first network device, or a device included in the above first network device, such as a chip; or the communication device may be the terminal device in the above second aspect or any implementation thereof, or a device including the above terminal device, or a device included in the above terminal device, such as a chip.
  • a computer-readable storage medium in which a computer program or instruction is stored.
  • the communication device can execute the method described in any one of the above aspects or any one of its implementation methods.
  • a computer program product comprising instructions, which, when executed on a communication device, enables the communication device to execute the method described in any one of the above aspects or any one of its implementations.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the above aspects or any of its implementation methods.
  • the communication device includes a memory for storing necessary program instructions and data.
  • the device when it is a chip system, it can be composed of a chip or include a chip and other discrete components. Device.
  • the communication device provided in any one of the third aspect to the ninth aspect is a chip
  • the above-mentioned sending action/function can be understood as output
  • the above-mentioned receiving action/function can be understood as input.
  • the technical effects brought about by any design method in the third to ninth aspects can refer to the technical effects brought about by different design methods in the above-mentioned first or second aspects, and will not be repeated here.
  • a communication method which includes the method described in the first aspect or any of its implementations, and the method described in the second aspect or any of its implementations.
  • a communication system which includes the first network device described in the above aspect and the terminal device described in the above aspect.
  • FIG1 is a schematic diagram of SRS transmission in a CJT scenario provided by an embodiment of the present application.
  • FIG2 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a base station provided in an embodiment of the present application.
  • FIG6 is a schematic flow chart of an uplink power control method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a first network device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • OFDM orthogonal frequency division multiplexing
  • UL transmission can refer to the terminal device sending an uplink signal to the network device.
  • DL transmission can refer to the network device sending a downlink signal to the terminal device.
  • the principle of OFDM technology is: divide multiple subchannels in the frequency domain, convert the data to be transmitted into serial and parallel, obtain multiple groups of data for parallel transmission, and then modulate each group of data to the subcarrier of each subchannel for transmission.
  • the data to be transmitted is transmitted through multiple subcarriers superimposed in space, wherein the multiple subcarriers are orthogonal to each other, and then the multiple subcarriers can be separated during reception, and then each subcarrier is demodulated separately to obtain the data to be transmitted.
  • the minimum frequency domain resource in the NR system is 1 subcarrier
  • the minimum time domain resource is 1 OFDM symbol.
  • the parameter sets supported by the NR system are shown in Table 1.
  • the first column is the subcarrier spacing (SCS) configuration ⁇
  • the second column represents the subcarrier spacing.
  • the uplink transmission in the NR system can be composed of multiple radio frames.
  • the 10 subframes in a wireless frame can be arranged in sequence.
  • the order of the 10 subframes in a wireless frame can be: subframe #0 to subframe #9.
  • the numbering and order of subframes #0 to subframe #9 are only exemplary.
  • the starting number can also be #1, and then a wireless frame includes subframe #1 to subframe #10.
  • the order of the 10 subframes can be in descending order, and then a wireless frame includes subframe #9 to subframe #0.
  • the embodiments of the present application do not specifically limit this.
  • the OFDM symbols may be arranged in chronological order as: OFDM symbol #0 to OFDM symbol #13.
  • frequency domain resources can be divided into resource elements (RE), resource blocks (RB), and bandwidth parts (BWP) according to their size, which are introduced below.
  • RE resource elements
  • RB resource blocks
  • BWP bandwidth parts
  • a subcarrier in the frequency domain and an OFDM symbol in the time domain can be defined as RE, where RE is the smallest granularity resource in the physical layer.
  • the NR system can define 12 consecutive subcarriers as one RB.
  • an RB can be called a physical resource block (PRB).
  • PRB physical resource block
  • the NR system can support terminal devices to work only in a part of the system bandwidth, namely, the BWP.
  • the BWP can be multiple RBs in the frequency domain resources corresponding to a carrier supported by a cell.
  • a cell covered by a network device such as a next-generation radio access network (NG-RAN) device in the NR system
  • NG-RAN next-generation radio access network
  • the cell allocates 40MHz bandwidth to carrier #1 and 60MHz bandwidth to carrier #2 respectively.
  • the BWP can be a 20MHz bandwidth in the 40MHz bandwidth corresponding to carrier #1.
  • the 20MHz bandwidth includes multiple RBs, and the terminal device can work only on the BWP.
  • the network can configure the working BWP for the terminal device through high-level signaling.
  • Each terminal device can be configured with 1 to 4 BWPs, but only one BWP is activated at any time. Except for radio resource management (RRM) measurements, the terminal device only sends and receives data on the activated BWP.
  • RRM radio resource management
  • carrier frequency “carrier”, “carrier frequency”, and “frequency point” have the same meaning.
  • carrier frequency “carrier”, “carrier frequency”, and “frequency point” can be expressed interchangeably, and are uniformly described here and will not be repeated below.
  • the reference signal may include an uplink reference signal and a downlink reference signal, wherein the uplink reference signal may be used to obtain uplink channel information, and the downlink reference signal may be used to obtain downlink channel information.
  • the uplink reference signal can also be used to determine the downlink channel information.
  • the uplink channel information obtained by the uplink reference signal can be used to determine the downlink channel information.
  • the uplink reference signal may include: a sounding reference signal (SRS), a positioning sounding reference signal (positioning SRS), an uplink demodulation reference signal (UL demodulation reference signal, UL-DMRS), or other uplink reference signals in the future, etc., which is not specifically limited in the embodiments of the present application.
  • SRS sounding reference signal
  • positioning SRS positioning sounding reference signal
  • UL demodulation reference signal UL demodulation reference signal
  • UL-DMRS uplink demodulation reference signal
  • the downlink reference signal may include: synchronization signal/physical broadcast channel block (SSB), channel state information reference signal (CSI-RS), DL-DMRS, tracking reference signal (TRS), positioning reference signal (PRS), or other downlink reference signals in the future, etc., which are not specifically limited in the embodiments of the present application.
  • SSB synchronization signal/physical broadcast channel block
  • CSI-RS channel state information reference signal
  • DL-DMRS DL-DMRS
  • TRS tracking reference signal
  • PRS positioning reference signal
  • the reference signal configuration may include relevant parameters for receiving or sending the reference signal.
  • the reference signal configuration may include resources for the terminal device to send or receive the reference signal.
  • the resources may include time domain resources and/or frequency domain resources.
  • beam is a communication resource.
  • the beam can be a wide beam, a narrow beam, or other types of beams.
  • the technology for forming the beam can be beamforming technology or other technical means.
  • the beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics can be regarded as a beam.
  • a beam can be formed by one or more antenna ports for transmitting data channels, control channels, reference signals, etc.
  • a transmit beam can refer to the distribution of signal strength formed in different directions of space after the signal is transmitted by the antenna
  • a receive beam can refer to the distribution of the antenna array to strengthen or weaken the reception of wireless signals in different directions of space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • beams can be represented by the quasi colocation (QCL) relationship of antenna ports.
  • QCL quasi colocation
  • Beams can be represented in the protocol by various signal identifiers, such as the resource identifier (identity, ID) of CSI-RS, the resource ID of SSB, the resource ID of TRS, the resource ID of PRS, or the resource ID of SRS.
  • resource identifier identity, ID
  • ID resource identifier
  • SSB resource identifier
  • TRS resource ID
  • PRS resource ID of PRS
  • SRS resource ID of SRS
  • the antenna port is a logical concept, which does not have a one-to-one correspondence with the physical antenna.
  • the antenna port is a logical unit formed by one or more physical antennas that transmit a signal or signal stream.
  • the antenna port can be distinguished by the reference signal: in DL transmission, the downlink channel corresponds to the downlink reference signal one-to-one; in UL transmission, the uplink channel corresponds to the uplink reference signal one-to-one. If a reference signal is transmitted through multiple physical antennas, then the multiple physical antennas correspond to the same antenna port; if two different reference signals are transmitted through the same physical antenna, then the antenna corresponds to two independent antenna ports.
  • the antenna port corresponding to CSI-RS can be called CSI-RS port
  • the antenna port corresponding to SRS can be called SRS port.
  • the channel traversed by the signal sent via the antenna port can be estimated by the reference signal corresponding to the antenna port.
  • the reference signal resource can be used in the NR system to represent the beam.
  • the reference signal can be configured in the form of resources, and a reference signal resource is a configuration unit.
  • the reference signal configuration may include multiple configuration units, that is, multiple reference signal resources. The following takes the SRS configuration as an example to introduce the reference signal configuration.
  • SRS configuration includes one or more SRS resource sets, or one or more SRS resources.
  • An SRS resource set may include one or more SRS resources.
  • An SRS resource may include one or more of the following:
  • one SRS resource can be configured with 1, 2, 4, or 8 antenna ports (hereinafter referred to as SRS ports).
  • Time domain position may include the index of the occupied OFDM symbol, or the starting position, etc.
  • the index of the number can indicate the number of OFDM symbols occupied by the SRS resource.
  • One SRS resource can be configured with 1, 2, 4, 8 or 12 OFDM symbols, and the starting position can be given by the field startPosition.
  • Frequency domain position may include the index of the occupied RB.
  • one SRS resource may occupy 4-272 RBs.
  • SRS resources can be divided into periodic, semi-persistent, or aperiodic types. Among them, for semi-persistent or periodic UL-SRS resources, the SRS resources may include a period and a time slot offset index (or time slot offset) specified for the terminal device.
  • the SRS resource set may also include an SRS resource set identifier (e.g., SRS resource set ID), and the SRS resources also include an SRS resource identifier (e.g., SRS resource ID), a repetition factor of SRS transmission (field repetitionFactor), an offset of the SRS resources in the frequency domain, and a frequency modulation configuration of the SRS resources, etc.
  • SRS resource set ID e.g., SRS resource set ID
  • SRS resource ID e.g., SRS resource ID
  • a repetition factor of SRS transmission field repetitionFactor
  • offset of the SRS resources in the frequency domain e.g., a frequency modulation configuration of the SRS resources
  • the network device needs to obtain the channel information of each receiving antenna of the terminal device, and then each SRS port corresponds to a receiving antenna of the terminal device.
  • the antenna configuration of the terminal device can include two types, one is that the number of transmitting antennas is equal to the number of receiving antennas, that is, n transmitting antennas and n receiving antennas (abbreviated as nTnR), and the other is that the number of transmitting antennas is not equal to the number of receiving antennas (abbreviated as nTmR, n ⁇ m).
  • one SRS resource may be configured with n SRS ports, each SRS port corresponding to each receiving/transmitting antenna of the terminal device.
  • one SRS resource configuration includes 4 SRS ports.
  • m/n SRS resources are usually configured, and the m/n SRS resources may correspond to the m receiving antennas of the terminal device, and each SRS resource may be configured with n SRS ports.
  • 2 SRS resources may be configured, and the 2 SRS resources may correspond to the 4 receiving antennas of the terminal device, and each SRS resource may be configured with 2 SRS ports.
  • the network device can send the uplink reference signal configuration and the downlink reference signal configuration to the terminal device through high-level signaling.
  • the high-level signaling can be, for example, radio resource control (RRC) signaling or media access control (MAC) layer signaling, which is not specifically limited in the embodiments of the present application.
  • RRC radio resource control
  • MAC media access control
  • the terminal device can send an uplink reference signal on the configured activated BWP.
  • the following takes the example of the terminal device sending SRS to explain the existing uplink power control solution.
  • the transmit power PSRS,b,f,c (i, qs ,l) of the terminal device to send SRS at the transmission timing i, the serving cell c, the carrier frequency f, and the activated BWP b can be determined by formula (1).
  • the transmission timing is the time domain position of the SRS in the SRS resource
  • i can be the index of the time domain position of the SRS in the wireless frame (for example, the time slot index or the symbol index).
  • C can be the identifier of the serving cell.
  • f is the carrier frequency of the serving cell c.
  • b is the index of the activated BWP.
  • qs is the index of the SRS resource set or the SRS resource set ID.
  • l is the index of the power control state.
  • PCMAX,f,c (i) is related to the transmit capability of the terminal device and the carrier frequency/service cell.
  • PO_SRS,b,f,c (qs) can be determined according to the parameter set configured by the high-level signaling.
  • indicates the subcarrier spacing configuration.
  • M SRS,b,f,c (i) can be determined by the bandwidth of the currently activated BWP b and ⁇ .
  • ⁇ SRS,b,f,c (q s ) represents the path loss compensation factor corresponding to SRS in serving cell c, carrier frequency f, and activated BWP b.
  • the value range of ⁇ SRS,b,f,c (q s ) can be [0,1], for example, ⁇ 0,0.4,0.5,0.6,0.7,0.8,0.9,1 ⁇ .
  • ⁇ SRS,b,f,c (q s ) can be determined by RRC Signaling configuration.
  • PL b,f,c (q d ) represents the path loss compensation value corresponding to the SRS in the serving cell c, carrier frequency f, and activated BWP b, in decibels (dB).
  • PL b,f,c (q d ) can be the path loss measurement value corresponding to the index q d of the path loss reference signal (PL-RS), and PL b,f,c (q d ) is a value greater than 0.
  • the path loss reference signal can be the downlink reference signal in the "reference signal" above, such as SSB or CSI-RS.
  • the index q d of each path loss reference signal can be mapped to the index of a path loss reference signal resource.
  • the index q d of a path loss reference signal can be mapped to the index of an SSB resource, and the index of the SSB resource can be configured by the parameter ssb-Index; or, the index q d of a path loss reference signal can be mapped to the index of a CSI-RS resource, and the index of the CSI-RS resource can be configured by the parameter csi-RS-Index.
  • Pathloss referenceSignalPower-higher layer filtered RSRP Formula (2)
  • the parameter referenceSignalPower represents the transmission power of the downlink reference signal corresponding to the path loss reference signal configured by the higher layer signaling.
  • the parameter higher layer filtered RSRP represents the receiving power of the downlink reference signal after the higher layer filtering when the terminal device receives it.
  • the path loss reference signal index qd and the path loss reference signal resource ID can correspond one to one. That is, the path loss reference signal index qd can be determined according to the path loss reference signal resource ID, or the path loss reference signal resource ID can be determined according to the path loss reference signal index qd .
  • h b,f,c (i,l) represents the closed-loop control parameters of SRS in serving cell c, carrier frequency f, and activated BWP b.
  • the closed-loop control parameters are the dynamic power adjustment amounts indicated by the network device through downlink control information (DCI).
  • DCI downlink control information
  • the power control of SRS can comply with the closed-loop power control indication corresponding to the physical uplink shared channel (PUSCH), or can be determined by a separate closed-loop power control indication.
  • PUSCH physical uplink shared channel
  • the path loss compensation value PL b,f,c (q d ) is determined based on measuring a path loss reference signal corresponding to a cell or a network device.
  • the path loss compensation value PL b,f,c (q d ) corresponds to the path loss compensation value between the terminal device and a network device.
  • downlink CJT may refer to multiple network devices (also referred to as sites) sending the same data to the same terminal device on the same time-frequency resources at the same time, and the multi-channel signals carrying the data need to be coherently superimposed when reaching the terminal device through their respective spatial propagation paths, thereby improving the receiving performance of the terminal device.
  • coherent superposition may refer to the co-directional superposition of multiple signals, increasing the power of the signal received by the terminal device, and then obtaining power gain, thereby improving the receiving performance of the terminal device.
  • each network device can use precoding technology to process the data to be sent with the help of a precoding matrix that matches the respective downlink channel information, so that the precoded data to be sent is adapted to the requirements of coherent superposition, eliminating the influence of phase difference and/or frequency deviation, thereby ensuring that the multiple signals are coherently superimposed when they arrive at the terminal device.
  • the downlink channel information corresponding to each network device needs to be obtained by measuring the reference signal on the same time-frequency resource.
  • the reciprocity of uplink and downlink channels can be used to obtain downlink channel information through the uplink reference signal sent by the terminal device.
  • the terminal device sends an uplink reference signal (such as SRS) for downlink channel measurement, and multiple network devices that cooperate with each other in transmission can receive the uplink reference signal of the terminal device on the same time-frequency resource, thereby obtaining uplink channel information and determining the downlink channel information based on the uplink channel information.
  • an uplink reference signal such as SRS
  • the transmission power of the existing uplink reference signal is determined by a cell or network.
  • the path loss reference signal sent by the device can only meet the receiving needs of one of the network devices to obtain channel information, but cannot meet the receiving needs of multiple network devices in collaborative transmission to obtain channel information. If the receiving needs of multiple network devices in collaborative transmission to obtain channel information cannot be met, then it cannot be guaranteed that the multiple network devices in collaborative transmission can obtain their corresponding channel information, and further, it cannot be guaranteed that the multiple signals are coherently superimposed.
  • network device #1 and network device #2 are two cooperative network devices in the CJT scenario, and terminal device #1 is the target terminal device in the CJT scenario, that is, network device #1 and network device #2 simultaneously send the same data to terminal device #1 on the same time-frequency resource, and terminal device #2 is a terminal device that does not participate in CJT, but network device #1 provides services for terminal device #2.
  • the path loss compensation value PL b,f,c (q d ) between terminal device #1 and network device #1 is path loss compensation value #1
  • the path loss compensation value PL b,f,c (q d ) between terminal device #1 and network device #2 is path loss compensation value #2.
  • the path loss compensation value #1 is less than the path loss compensation value #2.
  • the SRS sent by terminal device #1 reaches network device #1 and network device #2 respectively through the air interface channel
  • terminal device #1 determines the transmission power of the SRS according to the path loss compensation value #1
  • the transmission power of the SRS can meet the receiving requirement of network device #1, but the transmission power of the SRS is too small for network device #2 (for example, the signal-to-noise ratio (SNR) is too low), and does not meet the SNR receiving requirement of network device #2
  • the transmission power of the SRS can meet the receiving requirement of network device #2, but the transmission power of the SRS is too large for network device #1, which may drown out the signal sent by terminal device #2, that is, the excessive transmission power of the S
  • SNR signal-to-noise ratio
  • an embodiment of the present application provides an uplink power control method, which can optimize the uplink power control scheme of a terminal device to meet the receiving needs of multiple network devices in collaborative transmission to obtain channel information.
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ): may represent a path loss compensation value.
  • Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in multiple path loss reference signals associated with the uplink signal, and n is an integer greater than 1.
  • the path loss compensation value may be an actual path loss compensation value.
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) may represent the actual path loss compensation value.
  • It can represent the total path loss compensation factor, and the value range of ⁇ is [0,1].
  • P can represent the target transmit power.
  • the path loss compensation proportional coefficient includes the first path loss compensation proportional coefficient or the second path loss compensation proportional coefficient.
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal can be used It indicates that the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal can be represented by ⁇ i .
  • the indexes of multiple path loss reference signals are Q d1 , Q d2 , ..., Q dn .
  • the first path loss ratio coefficient corresponding to each path loss reference signal in the multiple path loss reference signals is Examples are not given here one by one.
  • the specific implementation is not limited to this, for example, it can also be numbered consecutively starting from 0.
  • the indexes of multiple path loss reference signals are Q d0 , Q d1 ,..., Q dn-1 .
  • multiple parameters involve "serving cell c, carrier frequency f, and activated BWP b", such as path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ).
  • serving cell c, carrier frequency f, and activated BWP b are related to the time-frequency resources for sending uplink signals
  • the parameters related to "serving cell c, carrier frequency f, and activated BWP b" are described in the case of being limited to parameters corresponding to uplink signals, it is not necessary to repeatedly describe "serving cell c, carrier frequency f, and activated BWP b", for example, "PL b,f,c (Q d1 ,Q d2 ,...,Q dn )" and "PL(Q d1 ,Q d2 ,...,Q dn )" can be expressed interchangeably.
  • indication may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain information is called information to be indicated.
  • information to be indicated In the specific implementation process, there are many ways to indicate the information to be indicated, such as but not limited to, directly indicating the information to be indicated, such as the information to be indicated.
  • the information to be indicated may be an index of the information itself or the information to be indicated.
  • the information to be indicated may also be indirectly indicated by indicating other information, wherein the other information is associated with the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while the other part of the information to be indicated is known or agreed in advance.
  • the indication of specific information may also be achieved by means of the arrangement order of each piece of information agreed in advance (for example, stipulated by the protocol), thereby reducing the indication overhead to a certain extent.
  • the common parts of each piece of information may also be identified and indicated uniformly, so as to reduce the indication overhead caused by indicating the same information separately.
  • the specific indication method can also be various existing indication methods, such as but not limited to the above-mentioned indication methods and various combinations thereof.
  • the specific details of the various indication methods can refer to the prior art and will not be repeated herein.
  • the desired indication method can be selected according to specific needs.
  • the embodiment of the present application does not limit the selected indication method. In this way, the indication method involved in the embodiment of the present application should be understood to cover various methods that can enable the party to be indicated to obtain the information to be indicated.
  • the information to be indicated can be sent as a whole, or divided into multiple sub-information and sent separately, and the sending period and/or sending time of these sub-information can be the same or different.
  • the specific sending method is not limited in the embodiments of the present application.
  • the sending period and/or sending time of these sub-information can be predefined, for example, predefined according to a protocol, or can be configured by the transmitting device sending configuration information to the receiving device.
  • the configuration information can, for example, but not limited to, include radio resource control signaling, such as RRC signaling, MAC layer signaling, physical layer signaling, or DCI, or a combination of at least two.
  • Pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a first network device).
  • the embodiments of the present application do not limit the specific implementation method.
  • "saving” can mean saving in one or more memories.
  • the one or more memories can be set separately or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories can also be partially set separately and partially integrated in a decoder, a processor, or a communication device.
  • the type of memory can be any form of storage medium, which is not limited by the embodiments of the present application.
  • the “protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, it may include the long term evolution (LTE) protocol, the NR protocol, and related protocols used in future communication systems, and the embodiments of the present application are not limited to this.
  • LTE long term evolution
  • NR NR-Fi
  • A/B can represent A or B; "and/or” in the embodiments of the present application is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • multiple refers to two or more than two. "At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • a, b or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the words “first”, “second” and the like are used to distinguish the same items or similar items with substantially the same functions and effects. Those skilled in the art will understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not necessarily limit the differences.
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • system can be used interchangeably with "network”.
  • OFDMA system can realize such as Evolved Universal Wireless E-UTRA (evolved universal terrestrial radio access), ultra mobile broadband (UMB) and other wireless technologies.
  • E-UTRA is an evolved version of the universal mobile telecommunications system (UMTS).
  • the 3rd generation partnership project (3GPP) uses a new version of E-UTRA in LTE and various versions based on LTE evolution.
  • the 5G communication system is the next generation communication system under study.
  • the 5G communication system includes a non-standalone (NSA) 5G mobile communication system, a standalone (SA) 5G mobile communication system, or a NSA 5G mobile communication system and a SA 5G mobile communication system.
  • NSA non-standalone
  • SA standalone
  • SA 5G mobile communication system a SA 5G mobile communication system
  • the communication system can also be applied to future-oriented communication technologies, and the technical solutions provided in the embodiments of the present application are applicable.
  • the above-mentioned communication system applicable to the present application is only an example, and the communication system applicable to the present application is not limited to this. It is uniformly described here and will not be repeated below.
  • the communication architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. Ordinary technicians in this field can know that with the evolution of the communication architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • a communication system is provided in an embodiment of the present application, and the communication system includes a first network device and a terminal device.
  • the first network device is one of multiple network devices that cooperate with each other for transmission.
  • the multiple network devices that cooperate with each other for transmission may be multiple network devices in a CJT scenario.
  • a first network device generates first indication information and sends the first indication information to a terminal device.
  • the first indication information is used to indicate a path loss compensation proportional coefficient corresponding to each path loss reference signal among multiple path loss reference signals associated with an uplink signal.
  • the path loss compensation proportional coefficient is used by the terminal device to determine a path loss compensation value.
  • the path loss compensation value is used to determine a target transmission power for the terminal device to send an uplink signal.
  • the first network device can indicate to the terminal device the path loss compensation proportional coefficient that meets the receiving requirements of multiple terminal devices in collaborative transmission, so that the path loss compensation value determined by the terminal device according to the path loss compensation proportional coefficient can not only improve the target transmission power of the uplink reference signal, but also reduce the interference to the signals sent by other terminal devices in the cell. Therefore, the target transmission power of the uplink signal determined by the terminal device according to the path loss compensation value can meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • the uplink power control scheme of the terminal device can be optimized to meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • the terminal device in the embodiment of the present application may be a device for realizing a wireless communication function, such as a terminal or a chip that can be used in a terminal, etc.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a terminal agent or a terminal device, etc. in a 5G network or a future evolved public land mobile network (PLMN).
  • UE user equipment
  • PLMN public land mobile network
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device or a wearable device, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, etc.
  • the terminal device may be mobile or fixed.
  • the network device in the embodiment of the present application may be a device that communicates with the terminal device.
  • the network device may include a transmission and reception point (TRP), a base station, a remote radio unit (RRU) or a baseband unit (BBU) (also referred to as a digital unit (DU)) of a separated base station, a broadband network service gateway (BNG), a convergence switch, a non-3GPP access device, a relay station or an access point, etc.
  • TRP transmission and reception point
  • RRU remote radio unit
  • BBU baseband unit
  • BNG broadband network service gateway
  • FIG2 takes the first network device as an example of a base station for illustration, which is uniformly explained here and will not be repeated below.
  • the base station in the embodiment of the present application may be a base station in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB, for example, the CU is responsible for processing non-real-time protocols and services, and implements the functions of the RRC and packet data convergence protocol (PDCP) layers.
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, the MAC layer, and the physical (PHY) layer.
  • the AAU implements some physical layer processing functions, RF processing, and related functions of active antennas.
  • the network device can be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into a network device in the access network (radio access network, RAN), and the CU can also be divided into a network device in the core network (core network, CN), which is not limited in this application.
  • the first network device and the terminal device may be configured with multiple antennas to support massive multiple input multiple output (Massive-MIMO) technology.
  • the network device and the terminal device may support both single-user MIMO (SU-MIMO) technology and multi-user MIMO (MU-MIMO).
  • SU-MIMO single-user MIMO
  • MU-MIMO multi-user MIMO
  • SDMA space division multiple access
  • the network equipment and terminal equipment can also flexibly support single input single output (SISO) technology, single input multiple output (SIMO) and multiple input single output (MISO) technology to achieve various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing technologies, where the diversity technology may include but is not limited to transmit diversity (TD) technology and receive diversity (RD) technology, and the multiplexing technology may be spatial multiplexing technology.
  • SISO single input single output
  • SIMO single input multiple output
  • MISO multiple input single output
  • MISO multiple input single output
  • multiplexing technologies where the diversity technology may include but is not limited to transmit diversity (TD) technology and receive diversity (RD) technology, and the multiplexing technology may be spatial multiplexing technology.
  • the first network device and the terminal device in the embodiment of the present application may also be referred to as a communication device, which may be a general device or a dedicated device, and the embodiment of the present application does not specifically limit this.
  • the relevant functions of the terminal device or the first network device in the embodiment of the present application can be implemented by one device, or by multiple devices together, or by one or more functional modules in one device, and the embodiment of the present application does not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or virtualization functions instantiated on a platform (e.g., a cloud platform).
  • a platform e.g., a cloud platform
  • Figure 3 shows a schematic diagram of the structure of the communication device 300 provided in the embodiment of the present application.
  • the communication device 300 includes one or more processors 301, a communication line 302, and at least one communication interface (Figure 3 is only exemplary to include a communication interface 304 and a processor 301 as an example for explanation), and optionally may also include a memory 303.
  • Processor 301 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 302 may include a path for connecting different components.
  • the communication interface 304 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 304 may also be a transceiver circuit located in the processor 301 to implement signal input and signal output of the processor.
  • the memory 303 may be a device with a storage function.
  • it may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or a device that can be used to carry or store information with instructions or
  • the desired program code in the form of a data structure and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory can be independent and connected to the processor via the communication line 302.
  • the memory can also be integrated with the processor.
  • the memory 303 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 301.
  • the processor 301 is used to execute the computer-executable instructions stored in the memory 303, thereby implementing the uplink power control method provided in the embodiment of the present application.
  • the processor 301 may also perform functions related to the processing of the uplink power control method provided in the following embodiments of the present application, and the communication interface 304 is responsible for communicating with other devices or communication networks, which is not specifically limited in the embodiment of the present application.
  • the memory 303 in the embodiment of the present application may also be used to store information or parameters described in the following embodiments, such as first indication information.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the communication device 300 may include multiple processors, such as the processor 301 and the processor 308 in FIG3. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (such as computer program instructions).
  • the communication device 300 may further include an output device 305 and an input device 306.
  • the output device 305 communicates with the processor 301 and may display information in a variety of ways.
  • the communication device 300 can be a general device or a special device.
  • the communication device 300 can be a desktop computer, a portable computer, a network server, a PDA (personal digital assistant), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure as shown in FIG. 3.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 300.
  • Figure 4 is a specific structural form of the terminal device provided in an embodiment of the present application.
  • the functionality of the processor 301 in FIG. 3 may be implemented by the processor 410 in FIG. 4 .
  • the function of the communication interface 304 in FIG. 3 may be implemented by the antenna 1 , the antenna 2 , the mobile communication module 450 , the wireless communication module 460 , etc. in FIG. 4 .
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve the utilization rate of the antenna.
  • antenna 1 can be reused as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 450 can provide solutions for wireless communications including 2G/3G/4G/5G applied to terminal devices.
  • the mobile communication module 450 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), etc.
  • the mobile communication module 450 can receive electromagnetic waves from the antenna 1, and filter, amplify, and process the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 450 can also amplify the signal modulated by the modulation and demodulation processor, and convert it into electromagnetic waves for radiation through the antenna 1.
  • at least some of the functional modules of the mobile communication module 450 can be set in the processor 410.
  • at least some of the functional modules of the mobile communication module 450 can be set in the same device as at least some of the modules of the processor 410.
  • the wireless communication module 460 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 460 receives electromagnetic waves via the antenna 2, modulates the electromagnetic wave signal and performs filtering, and sends the processed signal to the processor 410.
  • the wireless communication module 460 may also receive a signal to be sent from the processor 410, modulate the signal, amplify the signal, and convert it into an electromagnetic wave for radiation via the antenna 2.
  • antenna 1 of the terminal device is coupled to mobile communication module 450, and antenna 2 is coupled to wireless communication module 460, so that the terminal device can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 303 in FIG. 3 may be implemented by the internal memory 421 in FIG. 4 or an external memory (eg, a Micro SD card) connected to the external memory interface 420 .
  • an external memory eg, a Micro SD card
  • the functionality of the output device 305 in Figure 3 may be implemented by the display screen 494 in Figure 4.
  • the display screen 494 includes a display panel.
  • the function of the input device 306 in FIG3 can be implemented by a mouse, a keyboard, a touch screen device, or a sensor module 480 in FIG4.
  • the terminal device may also include one or more of an audio module 470, a camera 493, an indicator 492, a motor 491, a button 490, a SIM card interface 495, a USB interface 430, a charging management module 440, a power management module 441, and a battery 442, which is not specifically limited in the embodiments of the present application.
  • the structure shown in FIG4 does not constitute a specific limitation on the terminal device.
  • the terminal device may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange the components differently.
  • the components shown in the figure may be implemented in hardware, software, or a combination of software and hardware.
  • Figure 5 is a specific structural form of the base station 50 provided in an embodiment of the present application.
  • the base station 50 includes one or more radio frequency units (such as RRU501) and one or more BBU502.
  • RRU501 can be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and can include at least one antenna system (i.e., antenna) 511 and a radio frequency unit 512.
  • the RRU501 is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals to baseband signals.
  • the function of the communication interface 304 in FIG. 3 can be implemented by the RRU501 in FIG. 5.
  • the BBU 502 is the control center of the first network device, which may also be called a processing unit, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU502 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network with a single access indication (such as an LTE network), or may respectively support wireless access networks with different access standards (such as an LTE network, a 5G network, or other networks).
  • the BBU502 also includes a memory 521 and a processor 522, and the memory 521 is used to store necessary instructions and data.
  • the processor 522 is used to control the first network device to perform necessary actions.
  • the memory 521 and the processor 522 can serve one or more single boards. In other words, a memory and a processor may be separately set on each single board. It may also be that multiple single boards share the same memory and processor.
  • necessary circuits may be provided on each single board.
  • the function of the processor 301 in Figure 3 may be implemented by the processor 522 in Figure 5
  • the function of the memory 303 in Figure 3 may be implemented by the memory 521 in Figure 5.
  • the RRU 501 and the BBU 502 in FIG. 5 may be physically arranged together or physically arranged separately, for example, in a distributed base station, which is not specifically limited in the embodiment of the present application.
  • the uplink power control method provided in the embodiment of the present application will be described in detail below with reference to FIG. 6 .
  • an uplink power control method provided in an embodiment of the present application includes the following steps:
  • a first network device generates first indication information.
  • the first indication information is used to indicate a path loss compensation proportional coefficient corresponding to each path loss reference signal among multiple path loss reference signals associated with an uplink signal.
  • the path loss compensation proportional coefficient is used by a terminal device to determine a path loss compensation value.
  • the path loss compensation value is used to determine a target transmission power for an uplink signal sent by the terminal device.
  • the first network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the first network device.
  • the terminal device determines a path loss compensation value according to the first indication information.
  • the terminal device determines a target transmission power for sending an uplink signal according to the path loss compensation value.
  • the first network device may be any one of a plurality of network devices for collaborative transmission.
  • the plurality of network devices for collaborative transmission may be a plurality of network devices in a CJT scenario.
  • the plurality of network devices for collaborative transmission may interact with each other. That is, the first network device may obtain the interference situation in the cell corresponding to each of the plurality of network devices.
  • the interference situation in the cell may, for example, refer to: the number of other signals in the cell occupying the same time-frequency resources as the uplink signal.
  • the first network device may comprehensively consider the cell interference situation and the SNR requirement for each network device to receive the uplink signal to determine the uplink signal that can be transmitted.
  • the first indication information is generated by balancing the path loss compensation proportional coefficient of the uplink signal receiving power corresponding to each network device and the overall interference level of the cell.
  • the path loss compensation proportional coefficient corresponding to the path loss reference signal associated with the network device (or so-called weak station) with larger path loss between the terminal devices can be increased, and/or the path loss compensation proportional coefficients corresponding to other path loss reference signals can be reduced, thereby improving the SNR of the uplink signal received by the weak station.
  • the first network device can appropriately increase the path loss compensation ratio coefficient corresponding to the path loss reference signal associated with the weak station according to the number of the other signals.
  • the path loss compensation ratio coefficient corresponding to the path loss reference signal associated with the weak station is 0.5
  • the sum of the path loss compensation ratio coefficients corresponding to other path loss reference signals is 0.5.
  • each of the multiple network devices in the collaborative transmission can send a path loss reference signal to the terminal device.
  • the terminal device can receive multiple path loss reference signals.
  • multiple path loss reference signals can be associated with the uplink signal.
  • multiple path loss reference signals associated with the uplink signal can be determined based on the uplink signal.
  • the terminal device can determine multiple path loss reference signals associated with the uplink signal based on the index or resource ID of the uplink signal.
  • the multiple path loss reference signals associated with the uplink signal include one or more path loss reference signals sent by each of the multiple network devices in cooperative transmission. That is, each network device can send one or more path loss reference signals to the terminal device for path loss measurement.
  • each of the multiple network devices in collaborative transmission sends a path loss reference signal to the terminal device, which can be used to instruct the terminal device to determine a path loss compensation value according to the first indication information, and determine the target transmit power of the uplink signal according to the path loss compensation value. That is, when the terminal device receives multiple path loss reference signals, the target transmit power of the uplink signal sent by the terminal device is determined according to the first indication information. In this way, the terminal device can determine the timing of using the corresponding power control scheme in the CJT scenario.
  • the path loss compensation proportional coefficient is a preset value, or a constant, or is configured by high-level parameters, and this embodiment of the present application does not specifically limit this.
  • the uplink signal may include: an uplink reference signal, PUSCH, or a physical uplink control channel (physical uplink control channel, PUCCH), etc., which is not limited to the embodiments of the present application.
  • the path loss reference signal may be a downlink reference signal or an uplink reference signal used to obtain downlink channel information, which is not specifically limited in the embodiment of the present application.
  • the terminal device can determine the path loss measurement value corresponding to the path loss reference signal by using the above formula (2).
  • the path loss measurement value corresponding to the path loss reference signal can be the difference between the receiving power of the path loss reference signal received by the network device and the transmitting power of the path loss reference signal sent by the terminal device.
  • the path loss compensation proportional coefficient may be used to indicate a reduction ratio of a path loss measurement value corresponding to a path loss reference signal, wherein the path loss compensation proportional coefficient corresponding to each of the multiple path loss reference signals is less than 1, and the sum of the path loss compensation proportional coefficients corresponding to each of the multiple path loss reference signals is less than 1 or equal to 1.
  • the product of a path loss measurement value corresponding to a path loss reference signal and a path loss compensation proportional coefficient corresponding to the path loss reference signal can represent the path loss compensation value corresponding to the path loss reference signal.
  • the path loss compensation proportional coefficient #1 corresponding to path loss reference signal #1 is 0.1
  • the path loss compensation proportional coefficient #2 corresponding to path loss reference signal #2 is 0.2
  • the path loss compensation proportional coefficient #3 corresponding to path loss reference signal #3 is 0.4
  • the path loss compensation proportional coefficients #1 to #3 are all less than 1, and the sum of the path loss compensation proportional coefficients #1 to #3 is 0.7.
  • the terminal device can determine the path loss measurement value #1 (in dB) corresponding to the path loss reference signal #1, the path loss measurement value #2 (in dB) corresponding to the path loss reference signal #2, and the path loss measurement value #3 (in dB) corresponding to the path loss reference signal #3 according to formula (2).
  • the path loss compensation value corresponding to the path loss reference signal #1 is reduced to the original 0.1 of the path loss measurement value #1
  • the path loss compensation value corresponding to the path loss reference signal #2 is reduced to the original 0.2 of the path loss measurement value #2
  • the path loss compensation value corresponding to the path loss reference signal #3 is the path loss measurement value #3. Reduced to the original 0.4.
  • the path loss compensation ratio coefficient may be used to indicate the proportion of path loss compensation corresponding to one path loss reference signal among multiple path loss reference signals, wherein the path loss compensation ratio coefficient corresponding to each path loss reference signal among the multiple path loss reference signals is less than 1, and the sum of the path loss compensation ratio coefficients corresponding to each path loss reference signal among the multiple path loss reference signals is equal to 1.
  • the path loss compensation proportional coefficient #4 corresponding to path loss reference signal #4 is 0.3
  • the path loss compensation proportional coefficient #5 corresponding to path loss reference signal #5 is 0.2
  • the path loss compensation proportional coefficient #6 corresponding to path loss reference signal #6 is 0.5
  • the path loss compensation proportional coefficients #4 to #6 are all less than 1, and the sum of the path loss compensation proportional coefficients #4 to #6 is 1.
  • the path loss compensation proportional coefficient used by the terminal device to determine the path loss compensation value may be: the path loss compensation proportional coefficient corresponding to some or all of the path loss reference signals in the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the path loss compensation proportional coefficient corresponding to each of the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value. That is, the terminal device can determine the path loss compensation value according to the path loss proportional coefficient corresponding to each of the multiple path loss reference signals.
  • the path loss compensation proportional coefficient corresponding to the target path loss reference signal among the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the target path loss reference signal includes one path loss reference signal among the multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among the multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the terminal device can determine the path loss compensation value according to the path loss compensation proportional coefficient corresponding to one or more path loss reference signals among the multiple path loss reference signals.
  • the SRS transmission power is determined according to the actual path loss compensation value ⁇ SRS,b,f,c ( q s ) ⁇ PL b,f,c (q d ) corresponding to the path loss compensation value PL b,f,c (q d ). Therefore, according to whether the path loss compensation proportional coefficient is the actual path loss compensation proportional coefficient, the first indication information can be divided into case one and case two for introduction respectively.
  • the road loss compensation proportional coefficient is not the actual road loss compensation proportional coefficient, and the actual road loss compensation value is determined based on the road loss compensation value and the total road loss compensation factor.
  • the total path loss compensation factor is a configured total path loss compensation factor.
  • the configured total path loss compensation factor may include a total path loss compensation factor configured in the terminal device for a non-CJT scenario, such as a total path loss compensation factor ⁇ SRS,b,f,c (q s ) corresponding to SRS, a total path loss compensation factor corresponding to PUSCH, or a total path loss compensation factor corresponding to PUCCH, etc., which is not specifically limited in the embodiments of the present application.
  • the total path loss compensation factor may be a re-indicated total path loss compensation factor, wherein the total path loss compensation factor may be associated with an uplink signal.
  • the first indication information is also used to indicate a total path loss compensation factor corresponding to the path loss compensation value.
  • the total path loss compensation factor is used to determine an actual path loss compensation value corresponding to the path loss compensation value.
  • the actual path loss compensation value is used to determine the target transmission power.
  • the actual path loss compensation value may be the product of the path loss compensation value and the total compensation factor.
  • the actual path loss compensation value can be determined by indicating two levels of path loss factors (including the total path loss compensation factor and the path loss compensation ratio coefficient), wherein the total path loss compensation factor can reuse the existing quantization method of the path loss compensation factor.
  • the first indication information includes one or more of the following:
  • the total path loss compensation factor being used to determine an actual path loss compensation value corresponding to the path loss compensation value, the actual path loss compensation value being used to determine a target transmission power
  • a first path loss compensation factor includes a path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals.
  • the identification information of each path loss reference signal in the plurality of path loss reference signals can be used to determine the index corresponding to each path loss reference signal.
  • the index of the path loss reference signal has been introduced in the preamble of the specific implementation method "uplink power control scheme", which will not be repeated here.
  • the path loss compensation ratio coefficient in the first path loss compensation factor is similar to the total path loss compensation factor, which can be a quantized value.
  • the path loss compensation ratio coefficient in the first path loss compensation factor can be represented by ENUMERATED.
  • the sum of the path loss compensation proportional coefficients corresponding to each path loss reference signal in the multiple path loss reference signals is less than or equal to 1.
  • this condition can limit the path loss compensation value from being too large or too small, so that the target transmission power determined by the terminal device takes into account the SNR reception requirements of the weak station and balances the overall interference situation of the cell.
  • the path loss compensation proportional coefficient includes a first path loss compensation proportional coefficient.
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient includes a second path loss compensation proportional coefficient.
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the road loss compensation value may be a linear value or a logarithmic value.
  • the road loss compensation proportional coefficient indicated by the first indication information may be a road loss compensation proportional coefficient corresponding to a linear value or a logarithmic value.
  • the second path loss measurement value may be a dB value or a dBm value.
  • the first indication information includes a first path loss compensation factor, the first path loss compensation factor including a path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals, and the path loss compensation value is determined according to the first path loss compensation factor.
  • the actual path loss compensation value corresponding to the path loss compensation value is ⁇ PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ is the total path loss compensation factor corresponding to the path loss compensation value, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) is the path loss compensation value, b is the identifier of the activated bandwidth part BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the plurality of path loss reference signals, and n is an integer greater than 1.
  • the total path loss compensation factor ⁇ may be quantized in the “uplink power control scheme” in the preamble of the specific implementation method. That is, ⁇ 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ .
  • the first path loss measurement value is a linear value and the first path loss compensation proportional coefficient is a path loss compensation proportional coefficient corresponding to the linear value as an example to introduce the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) in the implementation of the present application.
  • the path loss compensation proportional coefficient is a first path loss compensation proportional coefficient
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is
  • the first path loss measurement value corresponding to the i-th path loss reference signal is Among them, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), as well as The relationship between can be expressed by formula (3).
  • Formula (3) is as follows:
  • the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) can be limited to be too large or too small, so that the target transmission power determined by the terminal device not only takes into account the SNR reception requirements of the weak station, but also balances the interference situation of the entire cell. It should be understood that It may be less than 1, that is, the path loss compensation proportional coefficient may be used to indicate the reduction ratio of a path loss measurement value corresponding to a path loss reference signal. It may be equal to 1, that is, the path loss compensation ratio coefficient may be used to indicate the proportion of the path loss compensation corresponding to one path loss reference signal among multiple path loss reference signals.
  • the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) can be limited from being too large or too small, so that the target transmission power determined by the terminal device not only takes into account the SNR reception requirement of the weak station, but also balances the overall interference situation of the cell.
  • the second path loss measurement value is a logarithmic value and the second path loss compensation proportional coefficient is a path loss compensation proportional coefficient corresponding to the logarithmic value as an example to introduce the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) in the implementation of the present application.
  • the path loss compensation proportional coefficient is a second path loss compensation proportional coefficient
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • the relationship between PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ i , and PL i can be expressed by formula (5) or formula (6).
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) ⁇ 1 ⁇ PL 1 + ⁇ 2 ⁇ PL 2 +...+ ⁇ n ⁇ PL n
  • A ⁇ 1 + ⁇ 2 +...+ ⁇ n-1 , A ⁇ 1.
  • the first path loss compensation ratio coefficient is Take the following as an example to illustrate the quantitative configuration method of the road loss compensation proportional coefficient.
  • the quantized value of the path loss compensation proportional coefficient is determined according to the number of the plurality of path loss reference signals.
  • the quantized value of the path loss compensation proportional coefficient is as follows:
  • the value of includes one or more values of 0, 0.25, 0.5, 0.75, 1.
  • 0.25 and 0.75 may also be replaced by 0.2 and 0.8, or by 0.3 and 0.7, respectively.
  • the value of includes one or more values of 0, 0.25, 0.33, 0.5, and 1.
  • the above The possible values include 0.33, which can also be a decimal of any precision of 1/3.
  • the value of includes one or more values of 0, 0.17, 0.2, 0.25, 0.3, 0.33, 1;
  • the quantized value of the path loss compensation proportional coefficient may be independent of the number of the configured multiple path loss reference signals.
  • the quantized value of the path loss compensation proportional coefficient is: The value of includes one or more values of 0, 0, 17, 0.2, 0.25, 0.3, 0.33, 0.5, 0.75, 1;
  • the above is only an exemplary description, and the number of multiple path loss reference signals can be 5, 6, or more, and the quantized value of the path loss compensation proportional coefficient can also be any other numerical value between [0, 1].
  • the embodiment of the present application does not make specific limitations on this.
  • the quantized value of the second path loss compensation proportional coefficient ⁇ i can refer to the above-mentioned first path loss compensation proportional coefficient The relevant examples are not repeated here.
  • the transmission power of the SRS sent by the terminal device can be determined by formula (7).
  • Formula (7) is as follows:
  • the road loss compensation proportional coefficient may be the actual road loss compensation proportional coefficient
  • the actual road loss compensation value may be the road loss compensation value
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value.
  • the path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient. That is, in the CJT scenario, the first-level path loss factor (i.e., the path loss compensation proportional coefficient) can be used to determine the actual path loss compensation value, and there is no need to indicate the total path loss compensation factor, thereby saving indication overhead.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient
  • the first indication information includes a second path loss compensation proportional factor, wherein the second path loss compensation proportional factor includes an actual path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the path loss compensation ratio coefficient in the second path loss compensation factor is similar to the first path loss compensation factor and can be configured in a quantized value manner.
  • the path loss compensation ratio coefficient in the second path loss compensation factor can be represented by the parameter ENUMERATED.
  • the first indication information further includes identification information of each path loss reference signal in the multiple path loss reference signals. It can be understood that the identification information of each path loss reference signal in the multiple path loss reference signals has been introduced in detail in case 1 and will not be repeated here.
  • the actual path loss compensation proportional coefficient includes a first actual path loss compensation proportional coefficient.
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient includes a second actual path loss compensation proportional coefficient.
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. Wherein, i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the first path loss measurement value can be a linear value
  • the second path loss measurement value can be a logarithmic value
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation ratio coefficient is an actual path loss compensation ratio coefficient
  • the first indication information includes a second path loss compensation factor
  • the second path loss compensation factor includes an actual path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the second path loss compensation factor.
  • the path loss compensation value is PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), b is the identifier of the activated BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the plurality of path loss reference signals, and n is an integer greater than 1.
  • case 2 does not need to calculate the actual path loss compensation factor through the total path loss compensation factor
  • the path loss compensation proportional coefficient is the actual path loss compensation proportional coefficient. That is, the path loss compensation proportional coefficient can be used to indicate the actual reduction ratio of the path loss measurement value corresponding to a path loss reference signal; or, the path loss compensation proportional coefficient can be used to indicate the actual proportion of the path loss compensation corresponding to a path loss reference signal.
  • the first path loss measurement value is a linear value and the first actual path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient corresponding to the linear value as an example to introduce the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) in the implementation of the present application.
  • the actual path loss compensation proportional coefficient is a first actual path loss compensation proportional coefficient
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is
  • the first path loss measurement value corresponding to the i-th path loss reference signal is Among them, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), as well as The relationship between can be expressed by formula (8).
  • formula (9) can be used to indicate that the path loss compensation value determined by the terminal device is the maximum value of the path loss compensation values corresponding to multiple path loss reference signals.
  • the first actual path loss compensation ratio coefficient is The quantized value of indicates the quantitative configuration method of the path loss compensation proportional coefficient.
  • the first actual path loss compensation ratio coefficient can be a uniform quantization value in the range of [0,1], wherein the quantization step size is 0.1 or 0.05.
  • the first actual path loss compensation ratio coefficient The quantized value of can be determined according to the number of multiple path loss reference signals. Among them, for example, the first actual path loss compensation ratio coefficient as follows:
  • ⁇ i ⁇ 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 ⁇ ;
  • the first actual path loss compensation ratio coefficient as follows:
  • the value of ⁇ i is independent of the number of configured path loss measurement reference signals, and the value of ⁇ i includes one or more of 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.
  • ⁇ i one or more of ⁇ 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ , where 0 and 1 may be discarded.
  • the quantized value of the second actual path loss compensation proportional coefficient ⁇ i can refer to the above-mentioned first actual path loss compensation proportional coefficient The relevant examples are not repeated here.
  • the second path loss measurement value is a logarithmic value and the second actual path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient corresponding to the logarithmic value as an example to introduce the path loss compensation value PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) in the implementation of the present application.
  • the actual path loss compensation proportional coefficient is a second actual path loss compensation proportional coefficient
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • the relationship between PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ i , and PL i can be expressed by formula (10).
  • the second actual path loss compensation ratio coefficient is ⁇ i and the first actual path loss compensation ratio coefficient Similarly, please refer to the first actual path loss compensation ratio coefficient The relevant instructions will not be repeated here.
  • the quantized value of the second actual path loss compensation proportional coefficient ⁇ i may be a uniform quantized value in the range of [0, 1], wherein the quantization step is 0.1 or 0.05.
  • the transmission power of the SRS transmitted by the terminal device can be determined by formula (12).
  • Formula (12) is as follows:
  • the method for determining the path loss compensation value corresponding to the above situation one and situation two may be agreed upon by the protocol; or, the method for determining the path loss compensation value corresponding to the above situation one and situation two may be pre-defined or pre-configured by the terminal device; or, the method for determining the path loss compensation value corresponding to the above situation one and situation two may be negotiated in advance between the terminal device and the first network device, and the embodiments of the present application do not make specific limitations on this.
  • the first indication information may be carried by RRC signaling, MAC layer signaling, or DCI, which is not specifically limited in the embodiments of the present application.
  • case 1 and case 2 respectively introduce corresponding solutions for the terminal device to determine the path loss compensation value according to the first indication information, which will not be described in detail here.
  • the following introduces several other solutions.
  • the terminal device can determine the path loss compensation value by itself according to the first indication information.
  • the terminal device can use a high path loss compensation value, a low path loss compensation value, or an intermediate path loss compensation value according to its own energy consumption and/or perception of the environment in which it is located.
  • the following is divided into case three and case four to introduce the corresponding scheme for the terminal device to determine the path loss compensation value by itself, depending on whether the terminal device uses the path loss compensation proportional coefficient corresponding to each path loss reference signal.
  • the terminal device determines the path loss compensation value by itself according to the path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the terminal device determines a target calculation method for the path loss compensation value; the terminal device determines the path loss compensation value according to the first indication information and the target calculation method.
  • the target calculation method for the path loss compensation value is: calculating the maximum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals, or calculating the minimum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals, or calculating the average value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals.
  • the terminal device when the terminal device itself consumes less energy and is in a poor wireless channel environment, the terminal device can decide to adopt a high path loss compensation value strategy, that is, the target calculation method of the path loss compensation value is: calculate the maximum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals.
  • the maximum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals can be determined by formula (9) or formula (11) in case 2.
  • the terminal device when the terminal device itself has high energy consumption and is in a good wireless channel environment, the terminal device can decide to adopt a low path loss compensation value strategy, that is, the target calculation method of the path loss compensation value is: calculate the minimum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals.
  • the minimum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals can be determined by formula (13) or formula (14).
  • ⁇ i may be the second path loss compensation proportional coefficient in case one; or, ⁇ i may be the second actual path loss compensation proportional coefficient in case two.
  • the terminal device can also decide to adopt the strategy of the intermediate path loss compensation value, that is, the target calculation method of the path loss compensation value is: calculate the average value of the path loss compensation value corresponding to each path loss reference signal in multiple path loss reference signals.
  • the average value of the path loss compensation value corresponding to each path loss reference signal in multiple path loss reference signals can be determined by formula (15) or formula (16).
  • ⁇ i may be the second path loss compensation proportional coefficient in case one; or, ⁇ i may be the second actual path loss compensation proportional coefficient in case two.
  • the terminal device determines the path loss compensation value by itself according to the path loss compensation proportional coefficient corresponding to the target path loss reference signal among the multiple path loss reference signals.
  • the terminal device determines the path loss compensation value according to the first indication information, including: the terminal device determines a target path loss reference signal; the terminal device determines a path loss compensation proportional coefficient corresponding to the target path loss reference signal according to the first indication information; the terminal device determines the path loss compensation value according to the path loss compensation proportional coefficient corresponding to the target path loss reference signal.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals. That is, the terminal device can determine the path loss compensation value according to the path loss compensation proportional coefficient corresponding to the target path loss reference signal.
  • the terminal device selects the i-th path loss reference signal as the target reference signal.
  • the first path loss compensation ratio coefficient corresponding to the i-th path loss reference signal is The first path loss measurement value corresponding to the i-th path loss reference signal is The path loss compensation value determined by the terminal device according to the first indication information is Alternatively, the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i , the second path loss measurement value corresponding to the i-th path loss reference signal is PL i , and the path loss compensation value determined by the terminal device according to the first indication information is ⁇ i ⁇ PL i .
  • case 2 is similar to case 1, except that ⁇ i is represented by the first actual path loss compensation proportional coefficient corresponding to the ith path loss reference signal, and ⁇ i is represented by the second actual path loss compensation proportional coefficient corresponding to the ith path loss reference signal, which will not be repeated here.
  • the target path loss reference signal includes k path loss reference signals among the multiple path loss reference signals.
  • n is the number of path loss reference signals among the multiple path loss reference signals
  • n and k are both integers greater than 1.
  • the terminal device may determine the path loss compensation value according to the target calculation method of the path loss compensation value corresponding to the target path loss reference signal.
  • the target path loss reference signal includes the first path loss reference signal and the second path loss reference signal
  • the target calculation method of the path loss compensation value is: calculate the maximum value of the path loss compensation values corresponding to each path loss reference signal in the multiple path loss reference signals
  • the path loss compensation proportional coefficient is the second path loss compensation proportional coefficient.
  • the path loss compensation value determined by the terminal device according to the first indication information is max( ⁇ 1 ⁇ PL 1 , ⁇ 2 ⁇ PL 2 ).
  • ⁇ 1 is the second path loss compensation proportional coefficient corresponding to the first path loss reference signal
  • PL 1 is the second path loss measurement value corresponding to the first path loss reference signal
  • ⁇ 2 is the second path loss compensation proportional coefficient corresponding to the second path loss reference signal
  • PL 2 is the second path loss measurement value corresponding to the second path loss reference signal.
  • the first indication information is also used to indicate that: when the path loss compensation value determined by the terminal device is greater than or equal to the first threshold, the target transmission power is determined according to the first threshold. It can be understood that in the scheme of determining the path loss compensation value according to the path loss compensation proportional coefficient in Cases 1 to 4, there may be a situation where the determined path loss compensation value is too large. In other words, through this limiting condition, it is possible to avoid the target transmission power being too large, so that the target transmission power determined by the terminal device can not only meet the SNR reception requirements of the weak station, but also balance the overall interference situation of the cell.
  • the first threshold may be indicated by the first network device; or the first threshold may be determined by the terminal device.
  • the first threshold may be max(PL 1 , PL 2 , . . . , PL n ). It can be the first path loss measurement value, and PL i can be the second path loss measurement value.
  • the terminal device determines the target transmission power of the uplink signal similarly to formula (1).
  • the following describes the corresponding solutions for determining the path loss compensation value corresponding to the above-mentioned cases 1 to 4.
  • the target transmission power for sending the uplink signal determined by the terminal device can be determined by formula (17).
  • Formula (17) is as follows:
  • P represents the target transmission power of the uplink signal.
  • PCMAX represents the maximum transmit power configured by the terminal device on the time-frequency resources for sending uplink signals.
  • Uplink Power Control Scheme in the preamble of the specific implementation method, which will not be repeated here.
  • PO represents nominal power or power reference value, which is the target receiving power value expected by the network device.
  • uplink power control scheme in the preamble of the specific implementation method, which will not be repeated here.
  • represents the subcarrier spacing configuration.
  • M represents the number of RBs occupied by the uplink signal resource when sending the uplink signal.
  • Uplink Power Control Scheme the uplink Power Control Scheme
  • represents the total path loss compensation factor
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) represents the path loss compensation value corresponding to the uplink signal.
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn )
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) please refer to the relevant description of the above situation 1, which will not be repeated here.
  • h represents a closed-loop control parameter corresponding to the uplink signal.
  • uplink power control scheme in the preamble of the specific implementation method, which will not be repeated here.
  • the target transmission power for transmitting the uplink signal determined by the terminal device may be determined by formula (18).
  • Formula (18) is as follows:
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) in formula (16) can refer to the relevant description of the above situation 2, and other parameters in formula (18) can refer to the relevant description in formula (18), which will not be repeated here.
  • Target transmission power in Case 3 and Case 4 can be determined by Formula (17) and Formula (18).
  • Formula (17) and Formula (18) are examples, please refer to the above description of Formula (17) and Formula (18), which will not be repeated here.
  • step S602 the method provided in the embodiment of the present application further includes:
  • the terminal device sends a second indication message to the first network device. Accordingly, the first network device receives the second indication message from the terminal device.
  • the second indication message is used to indicate the target path loss reference signal used by the terminal device to determine the path loss compensation value or the target calculation method of the path loss compensation value.
  • the first network device can be informed of the target reference signal selected by the terminal device to determine the path loss compensation value or the target calculation method of the path loss compensation value.
  • the first network device determines that the target transmission power of the uplink signal sent by the terminal device does not meet the receiving requirements, the first network device can adjust the path loss compensation proportional coefficients corresponding to the multiple path loss reference signals according to the second indication message and the receiving parameters of the uplink signal, so that the target transmission power of the uplink signal meets the receiving requirements of multiple terminal devices of collaborative transmission to obtain channel information.
  • the second indication information may be carried by a power headroom report (PHR); or, the second indication information may be carried by uplink control information (UCI), which is not specifically limited in the embodiments of the present application.
  • PHR power headroom report
  • UCI uplink control information
  • the first network device sends third indication information to the terminal device. Accordingly, the terminal device receives the third indication information from the first network device.
  • the third indication information is used to indicate the updated multiple path loss reference signals and the path loss compensation proportional coefficient corresponding to each of the updated multiple path loss reference signals;
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to the target reference signal.
  • the first network device can send an updated path loss compensation proportional coefficient and/or path loss reference signal to the terminal device through the third indication information, so as to further improve the receiving performance of multiple network devices of collaborative transmission by adjusting the target sending power of the uplink signal sent by the terminal device.
  • the third indication information may be carried by RRC signaling, MAC layer signaling, or DCI, which is not specifically limited in the embodiments of the present application.
  • the first network device can indicate to the terminal device the path loss compensation proportional coefficient that meets the receiving requirements of multiple terminal devices in collaborative transmission, so that the path loss compensation value determined by the terminal device according to the path loss compensation proportional coefficient can not only improve the target transmission power of the uplink reference signal, but also reduce the interference to the signals sent by other terminal devices in the cell. Therefore, the target transmission power of the uplink signal determined by the terminal device according to the path loss compensation value can meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • the uplink power control scheme of the terminal device can be optimized to meet the receiving requirements of multiple network devices in collaborative transmission to obtain channel information.
  • the actions of the terminal device in the above steps S601 to S606 can be performed by the processor 301 in the communication device 300 shown in Figure 3 calling the application code stored in the memory 303 to instruct the communication device 300 to execute, and the actions of the first network device in the above steps S601 to S606 can be performed by the processor 301 in the communication device 300 shown in Figure 3 calling the application code stored in the memory 303 to instruct the communication device 300 to execute, and the embodiment of the present application does not impose any restrictions on this.
  • the embodiment of the present application also provides a communication device, which is used to implement the above various methods.
  • the communication device can be the first network device in the above method embodiment, or a device including the above first network device, or a component that can be used for the first network device; or, the communication device can be the terminal device in the above method embodiment, or a device including the above terminal device, or a component that can be used for the terminal device.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the embodiment of the present application can divide the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be understood that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • FIG7 shows a schematic diagram of the structure of a first network device 700.
  • the first network device 700 includes a transceiver module 701 and a processing module 702.
  • the transceiver module 701 which may also be referred to as a transceiver unit, is used to implement a transceiver function, and may be, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 702 is used to generate the first indication information, which is used to indicate the path loss compensation proportional coefficient corresponding to each path loss reference signal among the multiple path loss reference signals associated with the uplink signal, and the path loss compensation proportional coefficient is used by the terminal device to determine the path loss compensation value, and the path loss compensation value is used to determine the target sending power of the terminal device to send the uplink signal; the transceiver module 701 is used to send the first indication information to the terminal device.
  • the path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the path loss compensation ratio coefficient corresponding to the target path loss reference signal among the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the target path loss reference signal includes one path loss reference signal among the multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among the multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the first indication information is further used to indicate a total path loss compensation factor corresponding to the path loss compensation value, wherein the total path loss compensation factor is used to determine an actual path loss compensation value corresponding to the path loss compensation value, and the actual path loss compensation value is used to determine the target transmission power.
  • the first indication information includes one or more of the following:
  • the total path loss compensation factor being used to determine an actual path loss compensation value corresponding to the path loss compensation value, the actual path loss compensation value being used to determine a target transmission power
  • a first path loss compensation factor includes a path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals.
  • the sum of the path loss compensation proportional coefficients corresponding to each path loss reference signal in the multiple path loss reference signals is less than or equal to 1.
  • the path loss compensation proportional coefficient includes a first path loss compensation proportional coefficient.
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient includes a second path loss compensation proportional coefficient.
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the first indication information includes a first path loss compensation factor
  • the first path loss compensation factor includes a path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the first path loss compensation factor
  • the actual path loss compensation value corresponding to the path loss compensation value is ⁇ PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ is the total path loss compensation factor corresponding to the path loss compensation value, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) is the path loss compensation value, b is the identifier of the activated bandwidth part BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the plurality of path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient is a first path loss compensation proportional coefficient
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is The first path loss measurement value corresponding to the i-th path loss reference signal.
  • the path loss compensation proportional coefficient is a second path loss compensation proportional coefficient
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ i , and PL i satisfy the following relationship:
  • the road loss compensation value is an actual road loss compensation value corresponding to the road loss compensation value, wherein the road loss compensation proportional coefficient is an actual road loss compensation proportional coefficient.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient
  • the first indication information includes a second path loss compensation proportional factor.
  • the second path loss compensation proportional factor includes an actual path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals.
  • the first indication information when the path loss compensation value is the actual path loss compensation value corresponding to the path loss compensation value, and the path loss compensation proportional coefficient is the actual path loss compensation proportional coefficient, the first indication information also includes identification information of each path loss reference signal in multiple path loss reference signals.
  • the actual path loss compensation proportional coefficient includes a first actual path loss compensation proportional coefficient.
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient includes a second actual path loss compensation proportional coefficient.
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. Where i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, n is an integer greater than 1.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation ratio coefficient is an actual path loss compensation ratio coefficient
  • the first indication information includes a second path loss compensation factor
  • the second path loss compensation factor includes an actual path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the second path loss compensation factor.
  • the path loss compensation value is PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), b is the identifier of the activated BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the plurality of path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient is the first actual path loss compensation proportional coefficient
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is The first path loss measurement value corresponding to the i-th path loss reference signal. PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), as well as The following relationship is satisfied:
  • the actual path loss compensation proportional coefficient is the second actual path loss compensation proportional coefficient
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • the first indication information is also used to indicate that when the path loss compensation value determined by the terminal device is greater than or equal to a first threshold, the target transmission power is determined based on the first threshold.
  • the transceiver module 701 is further used to receive second indication information from a terminal device.
  • the second indication information is used to indicate a target path loss reference signal or a target calculation method of the path loss compensation value used by the terminal device to determine the path loss compensation value.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals.
  • the target calculation method of the path loss compensation value is: calculating the maximum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals, or calculating the minimum value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals, or calculating the average value of the path loss compensation values corresponding to each path loss reference signal in multiple path loss reference signals.
  • the transceiver module 701 is further used to send third indication information to the terminal device.
  • the third indication information is used to indicate the updated multiple path loss reference signals and the path loss compensation proportional coefficient corresponding to each path loss reference signal in the updated multiple path loss reference signals;
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the third indication information is used to indicate the updated path loss compensation proportional coefficient corresponding to the target reference signal.
  • the target path loss reference signal includes one path loss reference signal among multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the first network device 700 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” here can refer to a specific ASIC, a circuit, a processor and a memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
  • the first network device 700 can take the form of the communication device 300 shown in Figure 3.
  • the processor 301 in the communication device 300 shown in FIG. 3 may call the computer-executable instructions stored in the memory 303 so that the communication device 300 executes the uplink power control method in the above method embodiment.
  • the functions/implementation process of the transceiver module 701 and the processing module 702 in FIG. 7 can be implemented by the processor 301 in the communication device 300 shown in FIG. 3 calling the computer execution instructions stored in the memory 303.
  • the functions/implementation process of the processing module 702 in FIG. 7 can be implemented by the processor 301 in the communication device 300 shown in FIG. 3 calling the computer execution instructions stored in the memory 303
  • the functions/implementation process of the transceiver module 701 in FIG. 7 can be implemented by the communication device 300 shown in FIG. 3
  • the communication interface 304 in the device 300 is implemented.
  • the first network device 700 provided in the embodiment of the present application can execute the above-mentioned uplink power control method, the technical effects that can be obtained can refer to the above-mentioned method embodiment and will not be repeated here.
  • FIG8 shows a schematic diagram of the structure of a terminal device 800.
  • the terminal device 800 includes a transceiver module 801 and a processing module 802.
  • the transceiver module 801 which may also be referred to as a transceiver unit, is used to implement a transceiver function, and may be, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 801 is used to receive the first indication information from the first network device, and the first indication information is used to indicate the path loss compensation proportional coefficient corresponding to each path loss reference signal among multiple path loss reference signals associated with the uplink signal; the processing module 802 is used to determine the path loss compensation value according to the first indication information; the processing module 802 is also used to determine the target sending power for sending the uplink signal according to the path loss compensation value.
  • the path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the path loss compensation ratio coefficient corresponding to the target path loss reference signal among the multiple path loss reference signals is used by the terminal device to determine the path loss compensation value.
  • the target path loss reference signal includes one path loss reference signal among the multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among the multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the first indication information is further used to indicate a total path loss compensation factor corresponding to the path loss compensation value, wherein the total path loss compensation factor is used to determine an actual path loss compensation value corresponding to the path loss compensation value, and the actual path loss compensation value is used to determine the target transmission power.
  • the first indication information includes one or more of the following:
  • the total path loss compensation factor being used to determine an actual path loss compensation value corresponding to the path loss compensation value, the actual path loss compensation value being used to determine a target transmission power
  • a first path loss compensation factor includes a path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals.
  • the sum of the path loss compensation proportional coefficients corresponding to each path loss reference signal in the multiple path loss reference signals is less than or equal to 1.
  • the path loss compensation proportional coefficient includes a first path loss compensation proportional coefficient.
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient includes a second path loss compensation proportional coefficient.
  • the second path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the first indication information includes a first path loss compensation factor
  • the first path loss compensation factor includes a path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the first path loss compensation factor
  • the actual path loss compensation value corresponding to the path loss compensation value is ⁇ PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ is the total path loss compensation factor corresponding to the path loss compensation value, PL b,f,c (Q d1 ,Q d2 ,...,Q dn ) is the path loss compensation value, b is the identifier of the activated bandwidth part BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the plurality of path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation proportional coefficient is a first path loss compensation proportional coefficient
  • the first path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is The first path loss measurement value corresponding to the i-th path loss reference signal.
  • the path loss compensation proportional coefficient is the second path loss compensation proportional coefficient
  • the i-th path loss reference signal corresponds to the i-th path loss reference signal.
  • the second path loss compensation ratio coefficient is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), ⁇ i , and PL i satisfy the following relationship:
  • the road loss compensation value is an actual road loss compensation value corresponding to the road loss compensation value, wherein the road loss compensation proportional coefficient is an actual road loss compensation proportional coefficient.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation proportional coefficient is an actual path loss compensation proportional coefficient
  • the first indication information includes a second path loss compensation proportional factor.
  • the second path loss compensation proportional factor includes an actual path loss compensation proportional coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals.
  • the first indication information when the path loss compensation value is the actual path loss compensation value corresponding to the path loss compensation value, and the path loss compensation proportional coefficient is the actual path loss compensation proportional coefficient, the first indication information also includes identification information of each path loss reference signal in multiple path loss reference signals.
  • the actual path loss compensation proportional coefficient includes a first actual path loss compensation proportional coefficient.
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the first path loss measurement value corresponding to the i-th path loss reference signal.
  • the first path loss measurement value is a linear value. i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient includes a second actual path loss compensation proportional coefficient.
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is used to multiply the second path loss measurement value corresponding to the i-th path loss reference signal.
  • the second path loss measurement value is a logarithmic value. Wherein, i ⁇ 1,...,n ⁇ , n is the number of path loss reference signals in the multiple path loss reference signals, and n is an integer greater than 1.
  • the path loss compensation value is an actual path loss compensation value corresponding to the path loss compensation value
  • the path loss compensation ratio coefficient is an actual path loss compensation ratio coefficient
  • the first indication information includes a second path loss compensation factor
  • the second path loss compensation factor includes an actual path loss compensation ratio coefficient corresponding to each path loss reference signal in a plurality of path loss reference signals
  • the path loss compensation value is determined according to the second path loss compensation factor.
  • the path loss compensation value is PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), b is the identifier of the activated BWP corresponding to the uplink signal, c is the identifier of the cell corresponding to the uplink signal, f is the carrier frequency of the cell corresponding to the uplink signal, Q di in Q d1 ,Q d2 ,...,Q dn is the index of the i-th path loss reference signal, i ⁇ 1,2,...,n ⁇ , n is the number of path loss reference signals in the plurality of path loss reference signals, and n is an integer greater than 1.
  • the actual path loss compensation proportional coefficient is the first actual path loss compensation proportional coefficient
  • the first actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is The first path loss measurement value corresponding to the i-th path loss reference signal. PL b,f,c (Q d1 ,Q d2 ,...,Q dn ), as well as The following relationship is satisfied:
  • the actual path loss compensation proportional coefficient is the second actual path loss compensation proportional coefficient
  • the second actual path loss compensation proportional coefficient corresponding to the i-th path loss reference signal is ⁇ i
  • the second path loss measurement value corresponding to the i-th path loss reference signal is PL i .
  • the first indication information is also used to indicate that when the path loss compensation value determined by the terminal device is greater than or equal to a first threshold, the target transmission power is determined based on the first threshold.
  • the processing module 802 determines the path loss reference value according to the first indication information, specifically including: determining a target calculation method for a target path loss reference signal or a path loss compensation value; determining a path loss compensation proportional coefficient corresponding to the target path loss reference signal according to the first indication information, and determining the path loss compensation value according to the path loss compensation proportional coefficient corresponding to the target path loss reference signal; or, determining the path loss compensation value according to the first indication information and the target calculation method.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals.
  • the target calculation method for the path loss compensation value is: calculating the maximum value of the path loss compensation values corresponding to each of the multiple path loss reference signals, or calculating the minimum value of the path loss compensation values corresponding to each of the multiple path loss reference signals, or calculating the average of the path loss compensation values corresponding to each of the multiple path loss reference signals. Mean.
  • the transceiver module 801 is further used to send a second indication information to the first network device.
  • the second indication information is used to indicate the target path loss reference signal used by the terminal device to determine the path loss compensation value or the target calculation method of the path loss compensation value.
  • the target path loss reference signal includes a path loss reference signal among multiple path loss reference signals.
  • the transceiver module 801 is further used to receive third indication information from the first network device.
  • the third indication information is used to indicate the updated multiple path loss reference signals and the path loss compensation proportional coefficient corresponding to each of the updated multiple path loss reference signals;
  • the third indication information is used to indicate an updated path loss compensation proportional coefficient corresponding to each path loss reference signal in the multiple path loss reference signals.
  • the third indication information is used to indicate the updated path loss compensation proportional coefficient corresponding to the target reference signal.
  • the target path loss reference signal includes one path loss reference signal among multiple path loss reference signals.
  • the target path loss reference signal includes k path loss reference signals among multiple path loss reference signals. 1 ⁇ k ⁇ n, n is the number of path loss reference signals among the multiple path loss reference signals, and n and k are both integers greater than 1.
  • the terminal device 800 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” may refer to a specific ASIC, a circuit, a processor and a memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
  • the terminal device 800 can take the form of the communication device 300 shown in Figure 3.
  • the processor 301 in the communication device 300 shown in FIG. 3 may call the computer-executable instructions stored in the memory 303 so that the communication device 300 executes the uplink power control method in the above method embodiment.
  • the functions/implementation processes of the transceiver module 801 and the processing module 802 in FIG8 can be implemented by the processor 301 in the communication device 300 shown in FIG3 calling the computer execution instructions stored in the memory 303.
  • the functions/implementation processes of the processing module 802 in FIG8 can be implemented by the processor 301 in the communication device 300 shown in FIG3 calling the computer execution instructions stored in the memory 303
  • the functions/implementation processes of the transceiver module 801 in FIG8 can be implemented by the communication interface 304 in the communication device 300 shown in FIG3.
  • the terminal device 800 provided in this embodiment can execute the above-mentioned uplink power control method, the technical effects that can be obtained can refer to the above-mentioned method embodiments and will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of the two.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into an SoC (system on chip) or an ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • it can further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), PLDs (programmable logic devices), or logic circuits that implement dedicated logic operations.
  • FPGA field programmable gate arrays
  • PLDs programmable logic devices
  • the hardware can be any one or any combination of a CPU, a microprocessor, a digital signal processing (DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, a SoC, an FPGA, a PLD, a dedicated digital circuit, a hardware accelerator or a non-integrated discrete device, which can run the necessary software or not rely on the software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • SoC SoC
  • FPGA field-programmable gate array
  • PLD programmable gate array
  • a dedicated digital circuit a hardware accelerator or a non-integrated discrete device
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), which includes a processor for implementing the method in any of the above method embodiments.
  • the communication device also includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of chips, or it may include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • an embodiment of the present application further provides a computer-readable storage medium, which stores a computer program or instruction, and when the computer-readable storage medium is run on a communication device, the communication device can execute the method described in any of the above method embodiments or any of its implementation methods.
  • an embodiment of the present application further provides a communication system, which includes the first network device described in the above method embodiment and the terminal device described in the above method embodiment.
  • the above embodiments it can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the process or function according to the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more servers that can be integrated with the medium. Available media can be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., DVDs), or semiconductor media (e.g., solid state disks (SSDs)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供上行功控方法及通信装置,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。方法包括:第一网络设备生成第一指示信息,并向终端设备发送该第一指示信息。其中,第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。该路损补偿比例系数用于终端设备确定路损补偿值。该路损补偿值用于确定终端设备发送上行信号的目标发送功率。

Description

上行功控方法及通信装置
本申请要求于2022年11月04日提交国家知识产权局、申请号为202211381632.8、申请名称为“上行功控方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及上行功控方法及通信装置。
背景技术
在下行(downlink,DL)的协作联合传输(coordinated joint transmission,CJT)中,多个网络设备可以同时在同一时频资源上向同一个终端设备发送相同的数据,并且承载该数据的多路信号经过各自的空间传播路径到达终端设备时需要是相干叠加的,从而可以提升终端设备的接收性能。其中,为保证多路信号到达终端设备时是相干叠加的,彼此协作传输的多个网络设备需要获取下行信道信息。
为解决该问题,彼此协作传输的多个网络设备可以在同一个时频资源上接收终端设备发送的参考信号以获取上行信道信息,并根据上行信道信息确定下行信道信息。然而,现有的终端设备的上行功控方案无法满足协作传输的多个网络设备获取信道信息的接收需求。因此,如何优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求,是目前亟待解决的问题。
发明内容
本申请实施例提供的上行功控方法及通信装置,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种上行功控方法,该方法可以由第一网络设备执行,也可以由第一网络设备的部件,例如第一网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一网络设备功能的逻辑模块或软件实现。以下以该方法由第一网络设备执行为例进行说明。该方法包括:
第一网络设备生成第一指示信息,并向终端设备发送该第一指示信息。其中,第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。该路损补偿比例系数用于终端设备确定路损补偿值。该路损补偿值用于确定终端设备发送上行信号的目标发送功率。
由于本申请实施例中,通过第一指示信息,第一网络设备可以向终端设备指示满足协作传输的多个终端设备的接收需求的路损补偿比例系数,进而使得终端设备根据该路损补偿比例系数确定的路损补偿值,不仅可以提高上行参考信号的目标发送功率,还可以减少对小区内其他终端设备发送的信号的干扰。因此,终端设备根据该路损补偿值确定的上行信号的目标发送功率可以满足协作传输的多个网络设备获取信道信息的接收需求。综上,基于本申请实施例提供的上行功控方法,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。
第二方面,提供一种上行功控方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。以下以该方法由终端设备执行为例进行说明。该方法包括:
终端设备接收来自第一网络设备的第一指示信息,该第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;终端设备根据第一指示信息确定路损补偿值;终端设备根据该路损补偿值确定发送该上行信号的目标发送功率。
由于本申请实施例中,通过第一指示信息,第一网络设备可以向终端设备指示满足协作传输 的多个终端设备的接收需求的路损补偿比例系数,进而使得终端设备根据该路损补偿比例系数确定的路损补偿值,不仅可以提高上行参考信号的目标发送功率,还可以减少对小区内其他终端设备发送的信号的干扰。因此,终端设备根据该路损补偿值确定的上行信号的目标发送功率可以满足协作传输的多个网络设备获取信道信息的接收需求。综上,基于本申请实施例提供的上行功控方法,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。
可选地,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。也就是说,终端设备可以根据多个路损参考信号中所有路损参考信号对应的路损比例系数确定路损补偿值。
或者,可选地,多个路损参考信号中的目标路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。也就是说,终端设备可以根据多个路损参考信号中的一个或多个路损参考信号对应的路损补偿比例系数确定路损补偿值。
可选地,路损补偿比例系数可以是预设的值,或者常数,或者由高层参数配置的。
结合上述第一方面或第二方面,在一种可能的实现方式中,第一指示信息还用于指示路损补偿值对应的总路损补偿因子。其中,总路损补偿因子用于确定该路损补偿值对应的实际路损补偿值。该实际路损补偿值用于确定目标发送功率。也就是说,在CJT场景中,可以采用两级路损因子(包括总路损补偿因子和路损补偿比例系数)指示的方式,确定实际路损补偿值。其中,总路损补偿因子可以复用现有路损补偿因子的量化方式。
结合上述第一方面或第二方面,在一种可能的实现方式中,第一指示信息包括以下一项或多项:
多个路损参考信号中每个路损参考信号的标识信息;
路损补偿值对应的总路损补偿因子,该总路损补偿因子用于确定路损补偿值对应的实际路损补偿值,该实际路损补偿值用于确定目标发送功率;
或者,第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。
结合上述第一方面或第二方面,在一种可能的实现方式中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于或等于1。也就是说,通过该条件可以限制路损补偿值过大或过小,从而使得终端设备确定的目标发送功率既满足弱站的SNR接收需求,又可以平衡小区整体的干扰情况。
结合上述第一方面或第二方面,在一种可能的实现方式中,路损补偿比例系数包括第一路损补偿比例系数。其中,第i个路损参考信号对应的第一路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,路损补偿比例系数包括第二路损补偿比例系数。其中,第i个路损参考信号对应的第二路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n大于1的整数。
也就是说,本申请实施例中,路损补偿值可以是线性值,也可以是对数值。第一指示信息指示的路损补偿比例系数可以是线性值对应的路损补偿比例系数,也可以是对数值对应的路损补偿比例系数。
结合上述第一方面或第二方面,在一种可能的实现方式中,第一指示信息包括第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,路损补偿值是根据该第一路损补偿因子确定的。其中,路损补偿值对应的实际路损补偿值为α·PLb,f,c(Qd1,Qd2,…,Qdn),α为路损补偿值对应的总路损补偿因子,PLb,f,c(Qd1,Qd2,…,Qdn)为路损补偿值,b为发送上行信号对应的激活带宽部分BWP的标识,c为发送上行信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引, i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
结合上述第一方面或第二方面,在一种可能的实现方式中,路损补偿比例系数为第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
其中,
或者,其中, 也就是说,由于以及可以限制路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)过大或过小,从而使得终端设备确定的目标发送功率既满足弱站的SNR接收需求,又可以平衡小区整体的干扰情况。
结合上述第一方面或第二方面,在一种可能的实现方式中,路损补偿比例系数为第二路损补偿比例系数,第i个路损参考信号对应的第二路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
PLb,f,c(Qd1,Qd3,…,Qdn)=α1·PL12·PL2+…+αn·PLn,其中,α12+…+αn≤1;
或者,PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+(1-A)·PLn,其中,A=α12+…+αn-1,A≤1。
结合上述第一方面或第二方面,在一种可能的实现方式中,路损补偿值为该路损补偿值对应的实际路损补偿值。其中,路损补偿比例系数为实际路损补偿比例系数。也就是说,在CJT场景中,可以采用一级路损因子(即路损补偿比例系数)确定实际路损补偿值,不需要指示总路损补偿因子,进而可以节省指示开销。
结合上述第一方面或第二方面,在一种可能的实现方式中,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿比例因子。其中,第二路损补偿比例因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数。
可选地,在路损补偿值为该路损补偿值对应的实际路损补偿值,且路损补偿比例系数为实际路损补偿比例系数的情况下,第一指示信息还包括多个路损参考信号中每个路损参考信号的标识信息。
结合上述第一方面或第二方面,在一种可能的实现方式中,实际路损补偿比例系数包括第一实际路损补偿比例系数。其中,第i个路损参考信号对应的第一实际路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,实际路损补偿比例系数包括第二实际路损补偿比例系数。其中,第i个路损参考信号对应的第二实际路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。其中,i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
结合上述第一方面或第二方面,在一种可能的实现方式中,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿因子,该第二路损补偿因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数,该路损补偿值是根据该第二路损补偿因子确定的。其中,该路损补偿值为PLb,f,c(Qd1,Qd2,…,Qdn),b为发送上行信号对应的激活BWP的标识,c为发送上信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
结合上述第一方面或第二方面,在一种可能的实现方式中,实际路损补偿比例系数为第一实际路损补偿比例系数,第i个路损参考信号对应的第一实际路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
或者,
结合上述第一方面或第二方面,在一种可能的实现方式中,实际路损补偿比例系数为第二实 际路损补偿比例系数,第i个路损参考信号对应的第二实际路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
PLd,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn
或者,PLb,f,c(Qd1,Qd2,…,Qdn)=max(α1·PL12·PL2,…,αn·PLn)。
结合上述第一方面或第二方面,在一种可能的实现方式中,第一指示信息还用于指示:在终端设备确定的路损补偿值大于或等于第一阈值的情况下,目标发送功率是根据该第一阈值确定的。可以理解,在根据路损补偿比例系数确定路损补偿值的方案中,可能存在确定的路损补偿值过大的情况。也就是说,通过该限定条件,可以避免目标发送功率也就是说,该限定条件可以避免目标发送功率过大,可以避免目标发送功率过大,进而使得终端设备确定的目标发送功率既满足弱站的SNR接收需求,又可以平衡小区整体的干扰情况。
结合上述第一方面,在一种可能的实现方式中,第一方面提供的方法,还包括:
第一网络设备接收来自终端设备的第二指示信息。其中,第二指示信息用于指示该终端设备确定路损补偿值所使用的目标路损参考信号或路损补偿值的目标计算方式。目标路损参考信号包括多个路损参考信号中的一个路损参考信号。也就是说,通过第二指示信息,可以告知第一网络设备终端设备确定路损补偿值所选择的目标参考信号或者路损补偿值的目标计算方式。如果第一网络设备确定终端设备发送上行信号的目标发送功率不满足接收需求,第一网络设备可以根据第二指示信息和上行信号的接收参数,调整多个路损参考信号对应的路损补偿比例系数,以使得上行信号的目标发送功率满足协作传输的多个终端设备获取信道信息的接收需求。
可选地,路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值。
结合上述第一方面,在一种可能的实现方式中,第一方面提供的方法,还包括:
第一网络设备向终端设备发送第三指示信息。其中,第三指示信息用于指示更新后的多个路损参考信号,以及更新后的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;
或者,第三指示信息用于指示多个路损参考信号中每个路损参考信号对应的更新后的路损补偿比例系数。
或者,第三指示信息用于指示目标参考信号对应的更新后的路损补偿比例系数。
也就是说,第一网络设备可以通过第三指示信息向终端设备发送更新后的路损补偿比例系数和/或路损参考信号,以通过调整终端设备发送上行信号的目标发送功率,进一步提高协作传输的多个网络设备的接收性能。
可选地,参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。
结合上述第二方面,在一种可能的实现方式中,终端设备根据第一指示信息确定路损补偿值,包括:终端设备确定目标路损参考信号或路损补偿值的目标计算方式;终端设备根据第一指示信息确定目标路损参考信号对应的路损补偿比例系数,以及根据目标路损参考信号对应的路损补偿比例系数确定路损补偿值;或者,终端设备根据第一指示信息以及目标计算方式确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值。
结合上述第二方面,在一种可能的实现方式中,第二方面提供的方法,还包括:
终端设备向第一网络设备发送第二指示信息。其中,该第二指示信息用于指示该终端设备确定路损补偿值所使用的目标路损参考信号或路损补偿值的目标计算方式。目标路损参考信号包括多个路损参考信号中的一个路损参考信号。
结合上述第二方面,在一种可能的实现方式中,第二方面提供的方法,还包括:
终端设备接收来自第一网络设备的第三指示信息。其中,该第三指示信息用于指示更新后的 多个路损参考信号,以及更新后的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;
或者,该第三指示信息用于指示多个路损参考信号中每个路损参考信号对应的更新后的路损补偿比例系数。
或者,该第三指示信息用于指示目标参考信号对应的更新后的路损补偿比例系数。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或其任一实现方式中的第一网络设备,或者包含上述第一网络设备的装置,或者上述第一网络设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或其任一实现方式中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块和收发模块。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。
在一些可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或其任一实现方式中的第一网络设备,或者包含上述第一网络设备的装置,或者上述第一网络设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或其任一实现方式中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片。
第五方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或其任一实现方式中的第一网络设备,或者包含上述第一网络设备的装置,或者上述第一网络设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或其任一实现方式中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片。
第六方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面或其任一实现方式中的第一网络设备,或者包含上述第一网络设备的装置,或者上述第一网络设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或其任一实现方式中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面或其任一实现方式所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行上述任一方面或其任一实现方式所述的方法。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面或其任一实现方式中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立 器件。
可以理解的是,第三方面至第九方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出,上述的接收动作/功能可以理解为输入。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,在此不再赘述。
第十方面,提供一种通信方法,该通信方法包括上述第一方面或其任一实现方式所述的方法,以及上述第二方面或其任一实现方式所述的方法。
第十一方面,提供一种通信系统,该通信系统包括上述方面所述的第一网络设备和上述方面所述的终端设备。
附图说明
图1是本申请实施例提供的一种CJT场景中的SRS传输示意图;
图2是本申请实施例提供的一种通信系统的架构示意图;
图3是本申请实施例提供的一种通信装置的结构示意图;
图4是本申请实施例提供的一种终端设备的结构示意图;
图5是本申请实施例提供的一种基站的结构示意图;
图6是本申请实施例提供的一种上行功控方法流程示意图;
图7是本申请实施例提供的一种第一网络设备的结构示意图;
图8是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
为方便理解本申请实施例提供的技术方案,首先给出本申请相关技术的简要介绍。简要介绍如下:
第一,新无线(new radio,NR)系统的时频域资源
目前,在NR系统的上行(uplink,UL)和DL的传输方案中,均可以使用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术。其中,UL传输可以是指终端设备向网络设备发送上行信号。DL传输可以是指网络设备向终端设备发送下行信号。OFDM技术的原理为:在频域内划分多个子信道,将待传输的数据进行串并转换,得到并行传输的多组数据,之后将每组数据调制到每个子信道的子载波(subcarrier)上进行传输。因此在时域上,待传输的数据通过多个在空间中叠加的子载波进行传输,其中多个子载波之间彼此正交,进而接收时可以将多个子载波分离,之后分别对每个子载波进行解调,从而得到待传输的数据。也就是说,NR系统中的最小频域资源为1个子载波,最小的时域资源为1个OFDM符号。
1.1、通用概念
NR系统的时域以时间单位Tc=1/(Δfmax·Nf)表示。其中,Δfmax=480×103Hz,Nf=4096。
常数κ=Ts/Tc=64。其中,Ts=1/(Δfref·Nf,ref),Δfref=15×103Hz,Nf,ref=2048。
1.2、参数集(numerology)
NR系统支持的参数集如表1所示。在表1中,第一列为子载波间隔(subcarrier space,SCS)配置μ,第二列表示子载波间隔。
表1
1.3、时域资源
NR系统中的上行传输可以组成多个无线帧(frame)。其中,每个无线帧的持续时间为Tf=(ΔfmaxNf/100)=10ms。每个无线帧可以由十个持续时间为Tsf=(ΔfmaxNf/1000)=1ms的子帧组 成。一个无线帧内的10个子帧可以顺序排列。示例性的,一个无线帧内的10个子帧的先后排序可以为:子帧#0~子帧#9。可以理解,子帧#0~子帧#9中的编号和先后顺序仅是示例性的,例如编号的起始还可以是#1,进而一个无线帧包括子帧#1~子帧#10。又例如10个子帧的先后排序可以是降序的,进而一个无线帧包括子帧#9~子帧#0,本申请实施例对此不作具体限定。
在一个时隙内包括14个OFDM符号的情况下,OFDM符号可以按时间先后排序为:OFDM符号#0~OFDM符号#13。
表2
表3
1.4、频域资源
NR系统中,根据频域资源的大小可以分为资源元素(resource element,RE)、资源块(resource block,RB)、以及带宽部分(bandwidth part,BWP),下面分别介绍。
1.4.1、RE
在NR系统中可以将频域上的一个子载波,时域上的一个OFDM符号定义为RE。其中,RE是物理层最小粒度的资源。
1.4.2、RB
在频域内,无论子载波间隔是多少,NR系统可以将12个连续的子载波定义为一个RB。其中,在物理层中,RB可以称为物理资源块(physical resource block,PRB)。
1.4.3、BWP
NR系统可以支持终端设备仅工作在系统带宽中的一部分,即BWP。或者,BWP可以是一个小区支持的一个载波对应的频域资源内的多个RB。示例性的,网络设备(例如NR系统中的下一代无线接入网(next-generation radio access network,NG-RAN)设备)覆盖的一个小区可以支持2个载波频率(以下简称载波#1和载波#2),该小区分别为载波#1分配40MHz的带宽和载波#2分配60MHz的带宽,BWP可以是载波#1对应的40MHz带宽中的20MHz带宽,该20MHz带宽包括多个RB,终端设备可以仅在BWP上工作。
在NR系统中,终端设备通过初始接入过程接入网络之后,网络可以通过高层信令为终端设备配置工作BWP,每个终端设备可以配置1~4个BWP,但在任意时刻仅有一个BWP是激活的。除无线资源管理(radio resource management,RRM)测量之外,终端设备仅在激活BWP上收发数据。
应理解,本申请实施例中,“载波频率”、“载波”、“载频”、以及“频点”之间含义相同。换言之,“载波频率”、“载波”、“载频”、以及“频点”之间可以相互替换表述,在此统一说明,以下不再赘述。
还应理解,本申请实施例中,“编号”与“索引”之间含义相同。换言之,“编号”与“索引”之间可以相互替换表述,在此统一说明,以下不再赘述。
第二,参考信号
本申请实施例中,参考信号可以包括上行参考信号和下行参考信号。其中,上行参考信号可以用于获取上行信道信息,下行参考信号可以用于获取下行信道信息。
可选地,上行参考信号还可以用于确定下行信道信息。其中,对于具有上下行信道互易性的通信系统(例如时分双工(time division duplex,TDD)通信系统),由于上行传输和下行传输采用同一个信道,进而通过上行参考信号获取的上行信道信息,可以确定下行信道信息。
可选地,上行参考信号可以包括:探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning SRS)、上行解调参考信号(UL demodulation reference signal,UL-DMRS)、或者未来的其他上行参考信号等,本申请实施例对此不作具体限定。
可选地,下行参考信号可以包括:同步信号/物理层广播信道块(synchronization signal/physical broadcast channel block,SSB)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、DL-DMRS、跟踪参考信号(tracking reference signal,TRS)、定位参考信号(positioning reference signal,PRS)、或者未来的其他下行参考信号等,本申请实施例对此不作具体限定。
第三,参考信号配置
本申请实施例中,参考信号配置可以包括接收或发送参考信号的相关参数。其中,参考信号配置可以包括终端设备发送或接收参考信号的资源。该资源可以包括时域资源和/或频域资源。
下面在介绍参考信号资源之前,先介绍波束和天线端口(antenna port)。
在NR系统中,引入波束的概念。其中,波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选地,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束可以由一个或多个天线端口所形成,用于传输数据信道,控制信道和参考信号等。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。可以理解,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在目前的NR协议中,波束可通过天线端口准共址(quasi colocation,QCL)关系体现,具体地,两个同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系,即协议中的QCL-Type D:{spatial Rx parameter}。波束在协议中具体地可以通过各种信号的标识来表示,例如CSI-RS的资源标识(identity,ID),SSB的资源ID,TRS的资源ID,PRS的资源ID、或者SRS的资源ID等。
还应理解,上述天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系,天线端口是由发射一个信号或信号流的一个或多个物理天线形成的逻辑单元。其中,天线端口可以通过参考信号区分:在DL传输中,下行信道与下行参考信号一一对应;在UL传输中,上行信道与上行参考信号一一对应。如果通过多根物理天线来传输一个参考信号,那么该多根物理天线对应同一天线端口;如果两个不同的参考信号通过同一物理根天线传输,那么该天线对应两个独立的天线端口。示例性的,对应CSI-RS的天线端口可以称为CSI-RS端口,对应SRS的天线端口可以称为SRS端口。
也就是说,经由天线端口发送的信号所经历的信道,可以通过天线端口对应的参考信号来估计。
可以理解,由于波束在协议中具体地可以通过各种信号的标识来表示,因此NR系统中可以使用参考信号资源用于表示波束。其中,参考信号可以是以资源的形式配置的,一个参考信号资源即为一个配置单元。参考信号配置可以包括多个配置单元,即多个参考信号资源。下面以SRS配置为例,介绍参考信号配置。
SRS配置:包括一个或多个SRS资源集(resource set),或者一个或多个SRS资源。其中,一个SRS资源集可以包括一个或多个SRS资源。一个SRS资源可以包括以下一项或多项:
(1)、天线端口数:在NR系统中,一个SRS资源可以配置1个、2个、4个、或者8个天线端口(以下称为SRS端口)。
(2)、时域位置:可以包括占用的OFDM符号的索引、或者起始位置等。其中,OFDM符 号的索引可以指示SRS资源占用的OFDM符号的个数,一个SRS资源可以配置1个、2个、4个、8个或者12个OFDM符号,起始位置可以由字段startPosition给出。
(3)、频域位置:可以包括占用的RB的索引。其中,在NR系统中,一个SRS资源可以占用4-272个RB。
(4)、时域类型:在NR系统中,SRS资源可以分为周期(periodic)、半持续(semi-persistent)、或者非周期(aperiodic)几种类型。其中,对于半持续性或者周期性的UL-SRS资源,SRS资源可以包括为终端设备指定的周期以及时隙偏移索引(或者称为时隙偏移量)。
可选地,SRS资源集还可以包括SRS资源集标识(例如SRS resource set ID),SRS资源还包括SRS资源标识(例如SRS resource ID)、SRS传输的重复因子(字段repetitionFactor)、SRS资源在频域上的偏移、以及SRS资源的调频配置等,具体描述可以参见技术规范(technology standard,TS)38.211,在此不再赘述。
应理解,在使用SRS获取下行信道信息的情况下,网络设备需要得到终端设备每个接收天线的信道信息,进而每个SRS端口对应终端设备的一个接收天线。其中,终端设备的天线配置可以包括两种类型,一种是发射天线的个数与接收天线的个数相等,即n个发射天线与n个接收天线(简称为nTnR),另一种是发射天线的个数与接收天线的个数不相等(简称为nTmR,n≠m)。
可选地,对于nTnR配置的终端设备,一个SRS资源可以配置n个SRS端口,每个SRS端口与终端设备的每个接收/发送天线相对应。其中,示例性的,对于4T4R配置的终端设备,一个SRS资源配置包括4个SRS端口。
可选地,对于nTmR配置的终端设备,通常配置m/n个SRS资源,m/n个SRS资源可以对应终端设备的m个接收天线,每个SRS资源可以配置n个SRS端口。其中,示例性的,对于2T4R配置的终端设备,可以配置2个SRS资源,该2个SRS资源可以对应终端设备的4个接收天线,每个SRS资源可以配置2个SRS端口。
应理解,上述参考信号配置可以是由网络配置。其中,网络设备可以通过高层信令向终端设备发送上行参考信号配置和下行参考信号配置。高层信令例如可以是无线资源控制(radio resource control,RRC)信令,或者媒体访问控制(media access control,MAC)层信令,本申请实施例对此不作具体限定。
第四,上行功控方案
终端设备可以在配置的激活BWP上发送上行参考信号。下面以终端设备发送SRS为例,说明现有上行功控方案。
TS 38.213中定义了终端设备发送SRS的发送功率。其中,终端设备在发送时机i、服务小区c、载波频率f、以及激活BWP b上发送SRS的发送功率PSRS,b,f,c(i,qs,l)可以由公式(1)确定。发送时机为SRS资源中SRS的时域位置,i可以为无线帧内SRS的时域位置的索引(例如时隙索引或符号索引)。c可以为服务小区的标识。f为服务小区c的载波频率。b为激活BWP的索引。qs为SRS资源集的索引或SRS资源集ID。l为功控状态的索引。
其中,公式(1)中的各参数定义如下:
PCMAX,f,c(i):表示终端设备在发送时机i、服务小区c、以及载波频率f上配置的最大发送功率,PCMAX,f,c(i)与终端设备的发送能力,以及载波频率/服务小区有关。
PO_SRS,b,f,c(qs):表示标称功率或功率基准值,是网络设备所期望的目标接收功率值。其中,PO_SRS,b,f,c(qs)可以根据高层信令配置的参数集合确定。
μ:表示子载波间隔配置。
MSRS,b,f,c(i):表示在发送时机i、服务小区c、载波频率f、以及激活BWP b上,SRS资源占用的RB个数,MSRS,b,f,c(i)可以由当前激活BWP b的带宽以及μ确定。
αSRS,b,f,c(qs):表示SRS在服务小区c、载波频率f、以及激活BWP b上对应的路损补偿因子。其中,αSRS,b,f,c(qs)取值范围可以是[0,1],例如{0,0.4,0.5,0.6,0.7,0.8,0.9,1}。αSRS,b,f,c(qs)可以由RRC 信令配置。示例性的,αSRS,b,f,c(qs)可以由参数Alpha指示,Alpha::=ENUMERATED{alpha0,alpha04,alpha05,alpha06,alpha07,alpha08,alpha09,alpha1},Alpha是RRC变量名称,ENUMERATED表征αSRS,b,f,c(qs)的量化值。可以理解,通过配置αSRS,b,f,c(qs)对应的量化值的方式,可以减少αSRS,b,f,c(qs)的指示开销。
PLb,f,c(qd):表示SRS在服务小区c、载波频率f、以及激活BWP b上对应的路损补偿值,单位为分贝(dB)。其中,PLb,f,c(qd)可以是路损参考信号(path loss reference signal,PL-RS)的索引qd对应的路损测量值,并且PLb,f,c(qd)为大于0的值。路损参考信号可以是上文“参考信号”中的下行参考信号,例如SSB或者CSI-RS。每个路损参考信号的索引qd可以映射到一个路损参考信号资源的索引。示例性的,一个路损参考信号的索引qd可以映射到一个SSB资源的索引,SSB资源的索引可以由参数ssb-Index配置;或者,一个路损参考信号的索引qd可以映射到一个CSI-RS资源的索引,CSI-RS资源的索引可以由参数csi-RS-Index配置。
其中,路损测量值Pathloss可以通过公式(2)确定,公式(2)如下:
Pathloss=referenceSignalPower-higher layer filtered RSRP       公式(2)
在公式(2)中,参数referenceSignalPower表示高层信令配置的路损参考信号对应的下行参考信号的发送功率。参数higher layer filtered RSRP表示终端设备接收该下行参考信号时经过高层滤波后的接收功率。
可以理解,路损参考信号的索引qd与路损参考信号资源ID之间可以一一对应。也就是说,可以根据路损参考信号资源ID确定路损参考信号的索引qd,或者可以根据路损参考信号的索引qd确定路损参考信号资源ID。
αSRS,b,f,c(qs)·PLb,f,c(qd):表示PLb,f,c(qd)对应的实际路损补偿值。
hb,f,c(i,l):表示SRS在服务小区c、载波频率f、激活BWP b上的闭环控制参数。其中,闭环控制参数是网络设备通过下行控制信息(downlink control information,DCI)指示的动态功率调整量。SRS的功率控制可以遵从物理上行共享信道(physical uplink shared channel,PUSCH)对应的闭环功控指示,也可以通过单独的闭环功控指示确定,具体可以参见TS 38.213中的相关描述,在此不再赘述。
应理解,上述上行功控方案中,路损补偿值PLb,f,c(qd)是根据测量一个小区或者一个网络设备对应的路损参考信号确定的。也就是说,该路损补偿值PLb,f,c(qd)对应的是终端设备与一个网络设备之间的路损补偿值。
第五,下行CJT
本申请实施例中,下行CJT可以是指多个网络设备(还可以称为站点)同时在相同的时频资源上向同一个终端设备发送相同的数据,并且承载该数据的多路信号在经过各自的空间传播路径到达终端设备时需要是相干叠加的,从而提升该终端设备的接收性能。其中,相干叠加可以是指多路信号同向叠加,增加终端设备接收信号的功率,进而获得功率增益,从而可以提升终端设备的接收性能。
可以理解,为保证多路信号的相干叠加,应减小多路信号之间的相位差和/频偏。这就需要彼此协作传输的多个网络设备获取各自对应的下行信道信息,并分别对待发送数据进行处理,以减少多路信号之间的相位差和/或频偏。例如,每个网络设备可以采用预编码技术,借助与各自下行信道信息相匹配的预编码矩阵来对待发送数据进行处理,使得经过预编码的待发送数据与相干叠加的需求相适配,消除相位差和/或频偏的影响,从而保证多路信号到达终端设备时是相干叠加的。此外,考虑到信道对相位和频率的影响会随时间和频率发生变化,每个网络设备对应的下行信道信息需要是测量同一时频资源上的参考信号得到的。
为保证彼此协作传输的多个网络设备可以获取各自对应的下行信道信息,可以利用上下行信道互易性,通过终端设备发送的上行参考信号获取下行信道信息。具体为:终端设备发送用于下行信道测量的上行参考信号(例如SRS),彼此协作传输的多个网络设备可以在同一个时频资源上接收终端设备的上行参考信号,进而获取上行信道信息,并根据上行信道信息确定下行信道信息。
然而,如上文“上行功控方案”所述,现有的上行参考信号的发送功率是由一个小区或网络 设备下发的路损参考信号确定的,仅能满足其中一个网络设备获取信道信息的接收需求,无法满足协作传输的多个网络设备获取信道信息的接收需求,若无法满足协作传输的多个网络设备获取信道信息的接收需求,则无法保证彼此协作传输的多个网络设备可以获取各自对应的信道信息,进而无法保证多路信号是相干叠加的。
进一步的,以图1所示的CJT场景中的SRS传输为例说明。其中,如图1所示,网络设备#1和网络设备#2是CJT场景中的两个协作网络设备,终端设备#1是CJT场景中的目标终端设备,即网络设备#1和网络设备#2同时在相同的时频资源上向终端设备#1发送相同的数据,终端设备#2为不参与CJT的终端设备,但网络设备#1为终端设备#2提供服务。终端设备#1与网络设备#1之间的路损补偿值PLb,f,c(qd)为路损补偿值#1,终端设备#1与网络设备#2之间的路损补偿值PLb,f,c(qd)为路损补偿值#2。假设终端设备#1与网络设备#1之间的无线传播环境较好(路损较小),终端设备#1与网络设备#2之间的无线传播环境较差(路损较大),因此路损补偿值#1小于路损补偿值#2。当终端设备#1发送的SRS经过空口信道分别到达网络设备#1和网络设备#2时,如果终端设备#1根据路损补偿值#1确定SRS的发送功率,该SRS的发送功率可以满足网络设备#1的接收需求,但该SRS的发送功率对于网络设备#2偏小(例如信噪比(signal-to-noise ratio,SNR)过低),不满足网络设备#2的SNR接收需求;如果终端设备#1根据路损补偿值#2确定SRS的发送功率,该SRS的发送功率可以满足网络设备#2的接收需求,但该SRS的发送功率对于网络设备#1偏大,可能会淹没终端设备#2发送的信号,即SRS的发送功率过大会增加网络设备#1接收其他终端设备的信号的干扰,不满足网络设备#1的干扰接收需求。
基于此,本申请实施例提供一种上行功控方法,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
为了便于理解本申请实施例,在介绍本申请实施例之前,先做出以下几点说明。
1、为方便理解和说明,首先对本申请实施例中涉及到的主要参数分别说明如下:
PLb,f,c(Qd1,Qd2,…,Qdn):可以表示路损补偿值。其中,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为上行信号关联的多个路损参考信号中路损参考信号的个数,n为大于1的整数。路损补偿值可以是实际路损补偿值,在路损补偿值为实际路损补偿值的情况下,PLb,f,c(Qd1,Qd2,…,Qdn)可以表示实际路损补偿值。
α:可以表示总路损补偿因子,α的取值范围为[0,1]。
α·PLb,f,c(Qd1,Qd2,…,Qdn):在路损补偿值不是实际路损补偿值的情况下,可以表示实际路损补偿值。
P:可以表示目标发送功率。
路损补偿比例系数:路损补偿比例系数包括第一路损补偿比例系数或第二路损补偿比例系数。其中,第i个路损参考信号对应的第一路损补偿比例系数可以使用表示,第i个路损参考信号对应的第二路损补偿比例系数可以使用αi表示。
2、在本申请实施例中,为便于描述,在涉及编号时,可以从1开始连续编号。例如多个路损参考信号的索引为Qd1,Qd2,…,Qdn。以此类推,多个路损参考信号中每个路损参考信号对应的第一路损比例系数为这里不再一一举例说明。当然,具体实现时不限于此,例如,也可以从0开始连续编号。例如多个路损参考信号的索引为Qd0,Qd1,…,Qdn-1。应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
3、本申请实施例中,多个参数涉及“服务小区c、载波频率f、以及激活BWP b”,例如路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)。由于“服务小区c、载波频率f、以及激活BWP b”与发送上行信号的时频资源有关,因此在限定为上行信号对应的参数的情况下,对涉及“服务小区c、载波频率f、以及激活BWP b”的参数进行描述时,可以不用对“服务小区c、载波频率f、以及激活BWP b”进行重复描述,例如“PLb,f,c(Qd1,Qd2,…,Qdn)”与“PL(Qd1,Qd2,…,Qdn)”可以相互替换表述。
4、在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文的第一指示信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息 本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
应理解,待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请实施例不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令、物理层信令、或者DCI中的一种或者至少两种的组合。
5、“预先定义”或“预先配置”可以通过在设备(例如,包括终端设备和第一网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请实施例对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请实施例并不对此限定。
6、本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括长期演进(long term evolution,LTE)协议、NR协议以及应用于未来的通信系统中的相关协议,本申请实施例对此不做限定。
7、本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者第一网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者第一网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
8、在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请实施例中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A、B可以是单数或者复数。并且,在本申请实施例的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无 线陆地接入(evolved universal terrestrial radio access,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,3GPP)在LTE和基于LTE演进的各种版本是使用E-UTRA的新版本。5G通信系统是正在研究当中的下一代通信系统。其中,5G通信系统包括非独立组网(non-standalone,简称NSA)的5G移动通信系统,独立组网(standalone,简称SA)的5G移动通信系统,或者,NSA的5G移动通信系统和SA的5G移动通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
此外,本申请实施例描述的通信架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,为本申请实施例提供的一种通信系统,该通信系统包括第一网络设备和终端设备。其中,第一网络设备彼此协作传输的多个网络设备中的一个。彼此协作传输的多个网络设备可以是CJT场景中的多个网络设备。
一种可能的实现方式中,第一网络设备生成第一指示信息,并向终端设备发送该第一指示信息。其中,第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。该路损补偿比例系数用于终端设备确定路损补偿值。该路损补偿值用于确定终端设备发送上行信号的目标发送功率。
上述方案的具体实现将在下述实施例中详细阐述,在此不再赘述。
由于本申请实施例中,通过第一指示信息,第一网络设备可以向终端设备指示满足协作传输的多个终端设备的接收需求的路损补偿比例系数,进而使得终端设备根据该路损补偿比例系数确定的路损补偿值,不仅可以提高上行参考信号的目标发送功率,还可以减少对小区内其他终端设备发送的信号的干扰。因此,终端设备根据该路损补偿值确定的上行信号的目标发送功率可以满足协作传输的多个网络设备获取信道信息的接收需求。综上,基于本申请实施例提供的上行功控方法,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。
可选地,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,终端设备可以是移动的,也可以是固定的。
可选地,本申请实施例中的网络设备(例如第一网络设备)可以是与终端设备通信的设备。该网络设备可以包括传输接收点(transmission and reception point,TRP)、基站、分离式基站的拉远射频单元(remote radio unit,RRU)或基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))、宽带网络业务网关(broadband network gateway,BNG),汇聚交换机、非3GPP接入设备、中继站或接入点等。其中,图2中以第一网络设备为基站为例进行示意,在此统一说明,以下不再赘述。此外,本申请实施例中的基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基 站收发信台(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)中的NB(Node B)、LTE中的eNB或eNodeB(evolutional NodeB)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器或者5G通信系统中的基站(例如下一代节点B(gNodeB,gNB))、或者未来演进网络中的基站等,在此不作具体限定。
可选地,在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
可选地,在本申请实施例中,第一网络设备和终端设备均可以配置有多根天线,以支持大规模多输入多输出(massive multiple input multiple output,Massive-MIMO)技术。进一步来说,网络设备和终端设备既可以支持单用户MIMO(single-user MIMO,SU-MIMO)技术,也可以支持多用户MIMO(multi-user MIMO,MU-MIMO)。其中,MU-MIMO技术可以基于空分多址(space division multiple access,SDMA)技术来实现。由于配置有多根天线,网络设备和终端设备还可以灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input multiple Output,SIMO)和多入单出(multiple input single output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括但不限于发射分集(transmit diversity,TD)技术和接收分集(receive diversity,RD)技术,复用技术可以为空间复用(spatial multiplexing)技术。
可选地,本申请实施例中的第一网络设备与终端设备也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选地,本申请实施例中的终端设备或第一网络设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端设备或第一网络设备的相关功能可以通过图3中的通信装置300来实现。图3所示为本申请实施例提供的通信装置300的结构示意图。该通信装置300包括一个或多个处理器301,通信线路302,以及至少一个通信接口(图3中仅是示例性的以包括通信接口304,以及一个处理器301为例进行说明),可选的还可以包括存储器303。
处理器301可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路302可包括一通路,用于连接不同组件之间。
通信接口304,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,收发模块可以是收发器、收发机一类的装置。可选地,通信接口304也可以是位于处理器301内的收发电路,用以实现处理器的信号输入和信号输出。
存储器303可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或 数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路302与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器303用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器303中存储的计算机执行指令,从而实现本申请实施例中提供的上行功控方法。
或者,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的上行功控方法的处理相关的功能,通信接口304负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选地,本申请实施例中的存储器303还可以用于存储下述实施例中所描述的信息或参数,例如第一指示信息。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置300可以包括多个处理器,例如图3中的处理器301和处理器308。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置300还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。
上述的通信装置300可以是一个通用装置或者是一个专用装置。例如通信装置300可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或具有图3中类似结构的设备。本申请实施例不限定通信装置300的类型。
结合图3所示的通信装置300的结构示意图,以通信装置300为图3中的终端设备为例,示例性的,图4为本申请实施例提供的终端设备的一种具体结构形式。
其中,在一些实施例中,图3中的处理器301的功能可以通过图4中的处理器410实现。
在一些实施例中,图3中的通信接口304的功能可以通过图4中的天线1,天线2,移动通信模块450,无线通信模块460等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块450可以提供应用在终端设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块450可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块450可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块450还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块450的至少部分功能模块可以被设置于处理器410中。在一些实施例中,移动通信模块450的至少部分功能模块可以与处理器410的至少部分模块被设置在同一个器件中。
无线通信模块460可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块460经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器410。无线通信模块460还可以从处理器410接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备的天线1和移动通信模块450耦合,天线2和无线通信模块460耦合,使得终端设备可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图3中的存储器303的功能可以通过图4中的内部存储器421或者外部存储器接口420连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图3中的输出设备305的功能可以通过图4中的显示屏494实现。显示屏494包括显示面板。
在一些实施例中,图3中的输入设备306的功能可以通过鼠标、键盘、触摸屏设备或图4中的传感器模块480来实现。在一些实施例中,如图4所示,该终端设备还可以包括音频模块470、摄像头493、指示器492、马达491、按键490、SIM卡接口495、USB接口430、充电管理模块440、电源管理模块441和电池442中的一个或多个,本申请实施例对此不作具体限定。
可以理解的是,图4所示的结构并不构成对终端设备的具体限定。比如,在本申请另一些实施例中,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
或者,结合图3所示的通信装置300的结构示意图,以通信装置300为图2中的第一网络设备,第一网络设备为基站为例,示例性的,图5为本申请实施例提供的基站50的一种具体结构形式。
其中,该基站50包括一个或多个射频单元(如RRU501)、以及一个或多个BBU502。
RRU501可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天馈系统(即天线)511和射频单元512。该RRU501主要用于射频信号的收发以及射频信号与基带信号的转换。在一些实施例中,图3中的通信接口304的功能可以通过图5中的RRU501实现。
该BBU502为第一网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一些实施例中,该BBU502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网络)。该BBU502还包括存储器521和处理器522,该存储器521用于存储必要的指令和数据。该处理器522用于控制第一网络设备进行必要的动作。该存储器521和处理器522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。其中,在一些实施例中,图3中的处理器301的功能可以通过图5中的处理器522实现,图3中的存储器303的功能可以通过图5中的存储器521实现。
可选的,图5中的RRU501与BBU502可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站,本申请实施例对此不作具体限定。
下面将结合图6,对本申请实施例提供的上行功控方法进行展开说明。
应理解,本申请下述实施例中各个设备之间的信号名字或信号中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以图2所示的第一网络设备与终端设备进行交互为例,如图6所示,为本申请实施例提供的一种上行功控方法,包括如下步骤:
S601、第一网络设备生成第一指示信息。其中,第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。路损补偿比例系数用于终端设备确定路损补偿值。路损补偿值用于确定终端设备发送上行信号的目标发送功率。
S602、第一网络设备向终端设备发送该第一指示信息。相应地,终端设备接收来自第一网络设备的第一指示信息。
S603、终端设备根据第一指示信息确定路损补偿值。
S604、终端设备根据路损补偿值确定发送上行信号的目标发送功率。
下面分别对上述步骤S601~S604进行详细说明。
对于步骤S601:
可选地,第一网络设备可以是协作传输的多个网络设备中的任一个网络设备。其中,协作传输的多个网络设备可以是CJT场景中的多个网络设备。协作传输的多个网络设备之间可以交互。也就是说,第一网络设备可以获取该多个网络设备中每个网络设备对应的小区内的干扰情况,小区内的干扰情况例如可以是指:小区内与上行信号占用相同时频资源的其他信号的数量。进而,第一网络设备可以综合考虑小区干扰情况以及每个网络设备接收上行信号的SNR需求,以确定可 以平衡每个网络设备对应的上行信号接收功率和小区整体干扰水平的路损补偿比例系数,从而生成第一指示信息。
示例性的,在小区内没有与上行信号占用相同时频资源的其他信号的情况下,可以增加与终端设备之间路损较大的网络设备(或者称为弱站)关联的路损参考信号对应的路损补偿比例系数,和/或,减少其他路损参考信号对应的路损补偿比例系数,从而提高弱站接收上行信号的SNR。
可以理解,在小区内存在与上行信号占用相同时频资源的其他信号的情况下,第一网络设备可以根据该其他信号的数量适度提升弱站关联的路损参考信号对应的路损补偿比例系数。例如,弱站关联的路损参考信号对应的路损补偿比例系数为0.5,其他路损参考信号对应的路损补偿比例系数之和为0.5。
可以理解,在CJT场景中,协作传输的多个网络设备中每个网络设备可以向终端设备发送路损参考信号。相应地,终端设备可以接收多个路损参考信号。其中,多个路损参考信号可以与上行信号关联。也就是说,根据上行信号可以确定该上行信号关联的多个路损参考信号。可以理解,终端设备可以根据上行信号的索引或者资源ID确定该上行信号关联的多个路损参考信号。
可选地,上行信号关联的多个路损参考信号包括协作传输的多个网络设备中每个网络设备发送的一个或多个路损参考信号。也就是说,每个网络设备可以向终端设备发送一个或多个路损参考信号,以用于路损测量。
可选地,协作传输的多个网络设备中每个网络设备向终端设备发送路损参考信号可以用于指示终端设备根据第一指示信息确定路损补偿值,以及根据该路损补偿值确定上行信号的目标发送功率。也就是说,在终端设备接收多个路损参考信号的情况下,终端设备发送上行信号的目标发送功率是根据第一指示信息确定的。如此,终端设备可以确定使用CJT场景下对应的功控方案的时机。
可选地,路损补偿比例系数是预设的值,或者常数,或者由高层参数配置的,本申请实施例对此不作具体限定。
可选地,上行信号可以包括:上行参考信号、PUSCH、或者物理上行控制信道(physical uplink control channel,PUCCH)等,本申请实施例对此不作限定。
可选地,路损参考信号可以是下行参考信号或者用于获取下行信道信息的上行参考信号,本申请实施例对此不作具体限定。
可以理解,具体实施方式前序的“参考信号”部分已详细描述了上行参考信号和下行参考信号,在此不再赘述。
应理解,在路损参考信号为下行参考信号的情况下,终端设备可以通过上述公式(2)确定该路损参考信号对应的路损测量值。在路损参考信号为用于获取下行信道信息的上行参考信号的情况下,该路损参考信号对应的路损测量值可以是网络设备接收该路损参考信号的接收功率与终端设备发送该路损参考信号的发送功率之间的差值。
可选地,路损补偿比例系数可以用于指示一个路损参考信号对应的路损测量值的缩减比例。其中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数小于1,并且多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于1或等于1。
应理解,一个路损参考信号对应的路损测量值与该路损参考信号对应的路损补偿比例系数的乘积可以表示该路损参考信号对应的路损补偿值。
示例性的,以多个路损参考信号包括路损参考信号#1、路损参考信号#2以及路损参考信号#3,路损参考信号#1对应的路损补偿比例系数#1为0.1,路损参考信号#2对应的路损补偿比例系数#2为0.2,路损参考信号#3对应的路损补偿比例系数#3为0.4为例,路损补偿比例系数#1~#3均小于1,且路损补偿比例系数#1~#3之和为0.7。
进一步的,终端设备可以根据公式(2)确定路损参考信号#1对应的路损测量值#1(单位为dB),路损参考信号#2对应的路损测量值#2(单位为dB),路损参考信号#3对应的路损测量值#3(单位为dB),结合上述路损补偿比例系数#1~#3,可以得到:在终端设备确定路损补偿值时,路损参考信号#1对应的路损补偿值为路损测量值#1缩减到原来的0.1,路损参考信号#2对应的路损补偿值为路损测量值#2缩减到原来的0.2,路损参考信号#3对应的路损补偿值为路损测量值#3 缩减到原来的0.4。
或者,可选地,路损补偿比例系数可以用于指示多个路损参考信号中一个路损参考信号对应的路损补偿的占比。其中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数小于1,并且多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和等于1。
示例性的,以多个路损参考信号包括路损参考信号#4、路损参考信号#5以及路损参考信号#6,路损参考信号#4对应的路损补偿比例系数#4为0.3,路损参考信号#5对应的路损补偿比例系数#5为0.2,路损参考信号#6对应的路损补偿比例系数#6为0.5为例,路损补偿比例系数#4~#6均小于1,且路损补偿比例系数#4~#6之和为1。
可选地,路损补偿比例系数用于终端设备确定路损补偿值可以是:多个路损参考信号中部分或全部的路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。
一种可能的实现方式中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。也就是说,终端设备可以根据多个路损参考信号中每个路损参考信号对应的路损比例系数确定路损补偿值。
另一种可能的实现方式中,多个路损参考信号中的目标路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。也就是说,终端设备可以根据多个路损参考信号中的一个或多个路损参考信号对应的路损补偿比例系数确定路损补偿值。
可以理解,结合具体实施方式前序部分“上行功控方案”关于SRS的发送功率的相关介绍,SRS的发送功率是根据路损补偿值PLb,f,c(qd)对应的实际路损补偿值αSRS,b,f,c(qs)·PLb,f,c(qd)确定的。因此,根据路损补偿比例系数是否为实际路损补偿比例系数,第一指示信息可以分为情况一和情况二分别进行介绍。
情况一:
在情况一中,路损补偿比例系数不是实际路损补偿比例系数,实际路损补偿值是根据路损补偿值和总路损补偿因子确定的。
一种可能的实现方式中,总路损补偿因子为已配置的总路损补偿因子。其中,已配置的总路损补偿因子可以包括终端设备中已配置的用于非CJT场景的总路损补偿因子,例如SRS对应的总路损补偿因子αSRS,b,f,c(qs),PUSCH对应的总路损补偿因子,或者PUCCH对应的总路损补偿因子等,本申请实施例对此不作具体限定。
另一种可能的实现方式中,总路损补偿因子可以是重新指示的总路损补偿因子。其中,该总路损补偿因子可以与上行信号相关联。
可选地,第一指示信息还用于指示路损补偿值对应的总路损补偿因子。其中,总路损补偿因子用于确定路损补偿值对应的实际路损补偿值。实际路损补偿值用于确定目标发送功率。示例性的,实际路损补偿值可以是路损补偿值与总补偿因子的乘积。
也就是说,在CJT场景中,可以采用两级路损因子(包括总路损补偿因子和路损补偿比例系数)指示的方式,确定实际路损补偿值。其中,总路损补偿因子可以复用现有路损补偿因子的量化方式。
可选地,第一指示信息包括以下一项或多项:
多个路损参考信号中每个路损参考信号的标识信息;
路损补偿值对应的总路损补偿因子,该总路损补偿因子用于确定路损补偿值对应的实际路损补偿值,该实际路损补偿值用于确定目标发送功率;
或者,第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。
其中,多个路损参考信号中每个路损参考信号的标识信息可以用于确定每个路损参考信号对应的索引。路损参考信号的索引已在具体实施方式前序部分“上行功控方案”进行了介绍,此处不再赘述。
其中,第一路损补偿因子中的路损补偿比例系数与总路损补偿因子类似,可以采用量化值的 方式进行配置。例如,如具体实施方式前序部分“上行功控方案”所述,第一路损补偿因子中的路损补偿比例系数可以通过ENUMERATED表征。
可选地,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于或等于1。也就是说,通过该条件可以限制路损补偿值过大或过小,从而使得终端设备确定的目标发送功率既考虑了弱站的SNR接收需求,又可以平衡小区整体的干扰情况。
可选地,路损补偿比例系数包括第一路损补偿比例系数。其中,第i个路损参考信号对应的第一路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,路损补偿比例系数包括第二路损补偿比例系数。其中,第i个路损参考信号对应的第二路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
也就是说,本申请实施例中,路损补偿值可以是线性值,也可以是对数值。第一指示信息指示的路损补偿比例系数可以是线性值对应的路损补偿比例系数,也可以是对数值对应的路损补偿比例系数。
可选地,第二路损测量值可以是dB值或者dBm值。
可选地,第一指示信息包括第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,路损补偿值是根据该第一路损补偿因子确定的。其中,路损补偿值对应的实际路损补偿值为α·PLb,f,c(Qd1,Qd2,…,Qdn),α为路损补偿值对应的总路损补偿因子,PLb,f,c(Qd1,Qd2,…,Qdn)为路损补偿值,b为发送上行信号对应的激活带宽部分BWP的标识,c为发送上行信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
可选地,总路损补偿因子α可以采用具体实施方式前序部分“上行功控方案”中的量化方式。也就是说,α∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1}。
下面以第一路损测量值为线性值,第一路损补偿比例系数为线性值对应的路损补偿比例系数为例,介绍本申请实施中的路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)。
可选地,路损补偿比例系数为第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间的关系可以通过公式(3)表示。公式(3)如下:
其中,也就是说,由于可以限制路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)过大或过小,从而使得终端设备确定的目标发送功率既考虑了弱站的SNR接收需求,又可以平衡小区整体的干扰情况。应理解,可以小于1,即路损补偿比例系数可以用于指示一个路损参考信号对应的路损测量值的缩减比例。可以等于1,即路损补偿比例系数可以用于指示多个路损参考信号中一个路损参考信号对应的路损补偿的占比。
可选地,在的情况下,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间的关系还可以通过公式(4)表示。公式(4)如下:
其中,也就是说,由于可以限制路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)过大或过小,从而使得终端设备确定的目标发送功率既考虑了弱站的SNR接收需求,又可以平衡小区整体的干扰情况。
一种可能的实现方式中,第i个路损参考信号对应的第一路损测量值可以是根据路损测量值Pathloss=referenceSignalPoweri-higher layer filtered RSRPi确定的线性值。
另一种可能的实现方式中,第i个路损参考信号对应的第一路损测量值可以是根据路损测量值Pathloss=higher layer filtered RSRPi-referenceSignalPowei确定的线性值。其中,或者,也就是说,通过Pathloss= higher layer filtered RSRPi-referenceSignalPoweri计算得到的第一路损测量值,以及通过该第一路损测量值得到的PLb,f,c(Qd1,Qd2,…,Qdn)可以降低路损补偿值,进而降低发送上行参考信号的目标发送功率,进而可以降低协作传输的多个网络设备之间的干扰。
下面以第二路损测量值为对数值,第二路损补偿比例系数为对数值对应的路损补偿比例系数为例,介绍本申请实施中的路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)。
可选地,路损补偿比例系数为第二路损补偿比例系数,第i个路损参考信号对应的第二路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间的关系可以通过公式(5)或公式(6)表示。
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn   公式(5)
其中,α12+…+αn≤1。
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+(1-A)·PLn 公式(6)
其中,A=α12+…+αn-1,A≤1。
一种可能的实现方式中,第i个路损参考信号对应的第二路损测量值PLi可以是根据路损测量值Pathloss=referenceSignalPoweri-higherlayerfiltered RSRPi确定的对数值。
另一种可能的实现方式中,第i个路损参考信号对应的第二路损测量值PLi可以是根据路损测量值Pathloss=higher layer filtered RSRPi-referenceSignalPoweri确定的对数值。
下面以第一路损补偿比例系数为例说明路损补偿比例系数的量化配置方式。
可选地,路损补偿比例系数的量化值是根据多个路损参考信号的数量确定的。其中,示例性的,路损补偿比例系数的量化值如下:
(1)当配置的多个路损测量参考信号的数量为2时:
可选地,的取值包括0,0.25,0.5,0.75,1中的一个值或者多个值。
可选地,针对公式(5),或者,或者,或者,
可选地,上述可能取值中包括的0.25和0.75也可以分别替换为0.2和0.8,或者,分别替换为0.3和0.7。
(2)当配置的多个路损测量参考信号的数量为3时:
可选地,的取值包括0,0.25,0.33,0.5,1中的一个值或者多个值。
可选地,针对公式(5),或者,或者,或者,
可选地,针对公式(6),或者,或者,
可选地,上述可能取值中包括的0.33也可以为1/3的任意精度的小数。
(4)当配置的多个路损测量参考信号的数量为4时:
可选地,的取值包括0,0.17,0.2,0.25,0.3,0.33,1中的一个值或者多个值;
可选地,针对公式(5)和公式(6),或者,或者,或者,或者,
或者,可选地,路损补偿比例系数的量化值可以与配置的多个路损参考信号的数量无关。其中,示例性的,路损补偿比例系数的量化值为:的取值包括0,0,17,0.2,0.25,0.3,0.33,0.5,0.75,1中的一个值或者多个值;
可选地,
或者,或者,
可以理解,以上仅是示例性说明,多个路损参考信号的数量好为可以是5、6、或者更多个,路损补偿比例系数的量化值还可以是[0,1]之间其他的任意数值,本申请实施例对此不作具体限定。
应理解,第二路损补偿比例系数αi的量化值可以参见上述第一路损补偿比例系数的相关示例,此处不再赘述。
示例性的,终端设备发送SRS的发送功率可以通过公式(7)确定。公式(7)如下:
情况二:
在情况二中,路损补偿比例系数可以是实际路损补偿比例系数,实际路损补偿值可以是路损补偿值。
可选地,路损补偿值为路损补偿值对应的实际路损补偿值。其中,路损补偿比例系数为实际路损补偿比例系数。也就是说,在CJT场景中,可以采用一级路损因子(即路损补偿比例系数)确定实际路损补偿值,不需要指示总路损补偿因子,进而可以节省指示开销。
可选地,路损补偿值为路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿比例因子。其中,第二路损补偿比例因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数。
可选地,第二路损补偿因子中的路损补偿比例系数与第一路损补偿因子类似,可以采用量化值的方式进行配置。例如,如具体实施方式前序部分“上行功控方案”所述,第二路损补偿因子中的路损补偿比例系数可以通过参数ENUMERATED表征。
可选地,在路损补偿值为该路损补偿值对应的实际路损补偿值,且路损补偿比例系数为实际路损补偿比例系数的情况下,第一指示信息还包括多个路损参考信号中每个路损参考信号的标识信息。可以理解,多个路损参考信号中每个路损参考信号的标识信息已在情况一中详细介绍,此处不再赘述。
可选地,实际路损补偿比例系数包括第一实际路损补偿比例系数。其中,第i个路损参考信号对应的第一实际路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,实际路损补偿比例系数包括第二实际路损补偿比例系数。其中,第i个路损参考信号对应的第二实际路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。其中,i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
应理解,第一路损测量值和第二路损测量值已在上文中详细介绍,此处不再赘述。
可以理解,线性值与对数值之间的转换。示例性的,第一路损测量值可以是线性值,第二路损测量值可以是对数值。
可选地,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿因子,该第二路损补偿因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数,该路损补偿值是根据该第二路损补偿因子确定的。其中,该路损补偿值为PLb,f,c(Qd1,Qd2,…,Qdn),b为发送上行信号对应的激活BWP的标识,c为发送上信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
也就是说,情况二相对于情况一,区别在于:情况二不需要通过总路损补偿因子计算实际路损补偿因子,并且路损补偿比例系数为实际路损补偿比例系数。即,路损补偿比例系数可以用于指示一个路损参考信号对应的路损测量值的实际缩减比例;或者,路损补偿比例系数可以用于指示一个路损参考信号对应的路损补偿的实际占比。
下面以第一路损测量值为线性值,第一实际路损补偿比例系数为线性值对应的实际路损补偿比例系数为例,介绍本申请实施中的路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)。
可选地,实际路损补偿比例系数为第一实际路损补偿比例系数,第i个路损参考信号对应的第一实际路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间的关系可以通过公式(8)表示。
公式(8)中,
或者,可选地,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间的关系可以通过公式(9)表示。公式(9)如下:
其中,公式(9)可以用于表示终端设备确定的路损补偿值为多个路损参考信号对应的路损补偿值中的最大值。
下面以第一实际路损补偿比例系数的量化值说明路损补偿比例系数的量化配置方式。
可选地,第一实际路损补偿比例系数的量化值可以是[0,1]范围中的均匀量化值。其中,量化步长为0.1或者0.05。
可选地,第一实际路损补偿比例系数的量化值可以是根据多个路损参考信号的数量确定的。其中,示例性的,第一实际路损补偿比例系数如下:
(1)当配置的多个路损测量参考信号的数量为2时:
αi∈{0,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1};
或者αi∈{0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95};
或者
或者αi∈{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1};
其中,上述量化值的集合中,0和1可以舍弃。
(2)当配置的多个路损测量参考信号的数量为3时:
αi∈{0,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,1};
或者αi∈{0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5};
或者
或者
或者
或者
其中,上述量化值的集合中,0和1可以舍弃。
(3)当配置的多个路损测量参考信号的数量为4时:
αi∈{0,0.05,0.1,0.12,0.15,0.18,0.2,0.22,0.25,0.3,0.4,0.5,1};
或者
或者
其中,上述量化值的集合中,0和1可以舍弃。
或者,可选地,第一实际路损补偿比例系数如下:
当配置的多个路损测量参考信号的数量为2时,αi∈{0,0.25,0.5,0.75,1},或者αi∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1};
当配置的多个路损测量参考信号的数量为3时,αi∈{0,0.25,0.33,0.5,1},或者αi∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1};
当配置的多个路损测量参考信号的数量为4时,αi∈{0,0.2,0.25,0.4,1},或者αi∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1}。
或者,可选的,αi的取值与配置的路损测量参考信号的数量无关,αi的取值包括0,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.6,0.7,0.8,0.9,1中的一个或者多个。
可选的,αi∈{0,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.6,0.7,0.8,0.9,1}中的一个或者多个,其中,0和1可以舍弃。
应理解,第二实际路损补偿比例系数αi的量化值可以参见上述第一实际路损补偿比例系数的相关示例,此处不再赘述。
下面以第二路损测量值为对数值,第二实际路损补偿比例系数为对数值对应的实际路损补偿比例系数为例,介绍本申请实施中的路损补偿值PLb,f,c(Qd1,Qd2,…,Qdn)。
可选地,实际路损补偿比例系数为第二实际路损补偿比例系数,第i个路损参考信号对应的第二实际路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中, PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间的关系可以通过公式(10)表示。公式(10)如下:
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn     公式(10)
应理解,第二实际路损补偿比例系数为αi与上述第一实际路损补偿比例系数相类似,可以参见第一实际路损补偿比例系数的相关说明,此处不再赘述。
或者,可选地,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间的关系可以通过公式(11)表示。公式(11)如下:
PLb,f,c(Qd1,Qd2,…,Qdn)=max(α1·PL12·PL2,…,αn·PLn)    公式(11)
可选地,在公式(11)中,第二实际路损补偿比例系数αi的量化值可以是[0,1]范围中的均匀量化值。其中,量化步长为0.1或者0.05。
示例性的,终端设备发送SRS的发送功率可以通过公式(12)确定。公式(12)如下:
应理解,上述情况一和情况二对应的路损补偿值的确定方式可以是协议约定的;或者,上述情况一和情况二对应的路损补偿值的确定方式可以是终端设备预先定义或预先配置的;或者,上述情况一和情况二对应的路损补偿值的确定方式可以是终端设备与第一网络设备事先协商的,本申请实施例对此不作具体限定。
对于步骤S602:
可选地,第一指示信息可以由RRC信令、MAC层信令、或者DCI承载,本申请实施例对此不作具体限定。
对于步骤S603:
可以理解,上述情况一和情况二分别介绍了终端设备根据第一指示信息确定路损补偿值的相应方案,此处不再赘述。下面介绍其他几种方案。
应理解,终端设备根据第一指示信息可以自行确定路损补偿值。其中,终端设备可以根据自身能耗和/或所处环境的感知,采用高路损补偿值、低路损补偿值、或者中间路损补偿值。下面根据终端设备是否使用了每个路损参考信号对应的路损补偿比例系数,分为情况三和情况四介绍终端设备自行确定路损补偿值的相应方案。
情况三:
在情况三中,终端设备根据多个路损参考信号中每个路损参考信号对应的路损补偿比例系数自行确定路损补偿值。
可选地,终端设备确定路损补偿值的目标计算方式;终端设备根据第一指示信息以及目标计算方式确定路损补偿值。其中,路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值。
例如,当终端设备自身能耗较少,且所处无线信道环境较差的情况下,终端设备可以自行决定采用高路损补偿值的策略,即路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值。其中,计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值可以通过情况二中的公式(9)或公式(11)确定。
应理解,公式(9)中的还可以是情况一中的第一路损补偿比例系数。公式(11)中的αi还可以是情况一中的第二路损补偿比例系数。
又例如,当终端设备自身能耗较高,且所处无线信道环境良好的情况下,终端设备可以自行决定采用低路损补偿值的策略,即路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值。其中,计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值可以通过公式(13)或公式(14)确定。
在公式(13)中,可以是情况一中的第一路损补偿比例系数;或者,可以是情况二中的第 一实际路损补偿比例系数。
PLb,f,c(Qd1,Qd2,…,Qdn)=min(α1·PL12·PL2,…,αn·PLn)   公式(14)
在公式(14)中,αi可以是情况一的第二路损补偿比例系数;或者,αi可以是情况二中的第二实际路损补偿比例系数。
又例如,当终端设备自身能耗以及所处无线信道环境良好的情况下,终端设备也可以自行决定采用中间路损补偿值的策略,即路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值。其中,计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值可以通过公式(15)或公式(16)确定。
在公式(15)中,可以是情况一中的第一路损补偿比例系数;或者,可以是情况二中的第一实际路损补偿比例系数。
PLb,f,c(Qd1,Qd2,…,Qdn)=average(α1·PL12·PL2,…,αn·PLn)   公式(16)
在公式(16)中,αi可以是情况一中的第二路损补偿比例系数;或者,αi可以是情况二中的第二实际路损补偿比例系数。
情况四:
在情况四中,终端设备根据多个路损参考信号中的目标路损参考信号对应的路损补偿比例系数自行确定路损补偿值。
可选地,终端设备根据第一指示信息确定路损补偿值,包括:终端设备确定目标路损参考信号;终端设备根据第一指示信息确定目标路损参考信号对应的路损补偿比例系数;终端设备根据目标路损参考信号对应的路损补偿比例系数确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。也就是说,终端设备可以根据目标路损参考信号对应的路损补偿比例系数确定路损补偿值。
示例性的,以情况一为例,假设终端设备选择第i个路损参考信号为目标参考信号。其中,第i个路损参考信号对应的第一路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为终端设备根据第一指示信息确定的路损补偿值为或者,第i个路损参考信号对应的第二路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi,终端设备根据第一指示信息确定的路损补偿值为αi·PLi
可以理解,情况二与情况一类似,不同之处在于表示为第i个路损参考信号对应的第一实际路损补偿比例系数,αi表示为第i个路损参考信号对应的第二实际路损补偿比例系数,此处不再赘述。
可选地,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。其中,1<k<n,n为多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。终端设备可以根据目标路损参考信号对应的路损补偿值的目标计算方式确定路损补偿值。
示例性的,以目标路损参考信号包括第1个路损参考信号和第2个路损参考信号,路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,路损补偿比例系数为第二路损补偿比例系数为例,终端设备根据第一指示信息确定的路损补偿值为max(α1·PL12·PL2)。其中,α1为第1个路损参考信号对应的第二路损补偿比例系数,PL1为第1个路损参考信号对应的第二路损测量值,α2第2个路损参考信号对应的第二路损补偿比例系数,PL2为第2个路损参考信号对应的第二路损测量值。
可选地,第一指示信息还用于指示:在终端设备确定的路损补偿值大于或等于第一阈值的情况下,目标发送功率是根据该第一阈值确定的。可以理解,在情况一~情况四中根据路损补偿比例系数确定路损补偿值的方案中,可能存在确定的路损补偿值过大的情况。也就是说,通过该限定条件,可以避免目标发送功率过大,进而使得终端设备确定的目标发送功率既满足弱站的SNR接收需求,又可以平衡小区整体的干扰情况。
可选地,第一阈值可以是第一网络设备指示的;或者,第一阈值可以是终端设备确定的。其中,示例性的,第一阈值可以是或者,第一阈值可以是max(PL1,PL2,…,PLn)。可以是第一路损测量值,PLi可以是第二路损测量值。
对于步骤S604:
可选地,终端设备确定上行信号的目标发送功率与公式(1)类似。下面根据上述情况一~情况四对应的确定路损补偿值的相应方案,分别进行说明。
情况一:
可选地,终端设备确定的发送上行信号的目标发送功率可以通过公式(17)确定。公式(17)如下:
其中,公式(17)中的各参数定义如下:
P表示上行信号的目标发送功率。
PCMAX表示终端设备在发送上行信号的时频资源上配置的发最大发送功率,具体可以参见具体实施方式前序部分“上行功控方案”的相关说明,在此不再赘述。
PO表示标称功率或功率基准值,是网络设备所期望的目标接收功率值,具体可以参见具体实施方式前序部分“上行功控方案”的相关说明,在此不再赘述。
μ表示子载波间隔配置。
M表示发送上行信号时该上行信号资源所占用的RB个数,具体可以参见具体实施方式前序部分“上行功控方案”的相关说明,在此不再赘述。
α表示总路损补偿因子。
PLb,f,c(Qd1,Qd2,…,Qdn)表示该上行信号对应的路损补偿值,PLb,f,c(Qd1,Qd2,…,Qdn)可以参见上文情况一的相关说明,在此不再赘述。
h表示上行信号对应的闭环控制参数,具体可以参见具体实施方式前序部分“上行功控方案”的相关说明,在此不再赘述。
情况二:
可选地,终端设备确定的发送上行信号的目标发送功率可以通过公式(18)确定。公式(18)如下:
其中,公式(16)中的PLb,f,c(Qd1,Qd2,…,Qdn)可以参见上文情况二的相关说明,公式(18)中的其他参数可以参见公式(18)中的相关说明,在此不再赘述。
可以理解,情况三和情况四中的目标发送功率可以通过公式(17)和公式(18)确定,具体可以参加上文关于公式(17)和公式(18)的相关说明,此处不再赘述。
可选地,在步骤S602之后,本申请实施例提供的方法,还包括:
S605、终端设备向第一网络设备发送第二指示信息。相应地,第一网络设备接收来自终端设备的第二指示信息。其中,第二指示信息用于指示终端设备确定路损补偿值所使用的目标路损参考信号或路损补偿值的目标计算方式。也就是说,通过第二指示信息,可以告知第一网络设备终端设备确定路损补偿值所选择的目标参考信号或者路损补偿值的目标计算方式。如果第一网络设备确定终端设备发送上行信号的目标发送功率不满足接收需求,第一网络设备可以根据第二指示信息和上行信号的接收参数,调整多个路损参考信号对应的路损补偿比例系数,以使得上行信号的目标发送功率满足协作传输的多个终端设备获取信道信息的接收需求。
可选地,第二指示信息可以由功率余量上报(power headroom report,PHR)承载;或者,第二指示信息可以由上行控制信息(uplink control information,UCI)承载,本申请实施例对此不作具体限定。
S606、第一网络设备向终端设备发送第三指示信息。相应地,终端设备接收来自第一网络设备的第三指示信息。其中,第三指示信息用于指示更新后的多个路损参考信号,以及更新后的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;
或者,第三指示信息用于指示多个路损参考信号中每个路损参考信号对应的更新后的路损补偿比例系数。
或者,第三指示信息用于指示目标参考信号对应的更新后的路损补偿比例系数。
也就是说,第一网络设备可以通过第三指示信息向终端设备发送更新后的路损补偿比例系数和/或路损参考信号,以通过调整终端设备发送上行信号的目标发送功率,进一步提高协作传输的多个网络设备的接收性能。
可选地,第三指示信息可以由RRC信令、MAC层信令、或者DCI承载,本申请实施例对此不作具体限定。
由于本申请实施例中,通过第一指示信息,第一网络设备可以向终端设备指示满足协作传输的多个终端设备的接收需求的路损补偿比例系数,进而使得终端设备根据该路损补偿比例系数确定的路损补偿值,不仅可以提高上行参考信号的目标发送功率,还可以减少对小区内其他终端设备发送的信号的干扰。因此,终端设备根据该路损补偿值确定的上行信号的目标发送功率可以满足协作传输的多个网络设备获取信道信息的接收需求。综上,基于本申请实施例提供的上行功控方法,可以优化终端设备的上行功控方案以满足协作传输的多个网络设备获取信道信息的接收需求。
其中,上述步骤S601至S606中的终端设备的动作可以由图3所示的通信装置300中的处理器301调用存储器303中存储的应用程序代码以指令通信装置300执行,上述步骤S601至S606中的第一网络设备的动作可以由图3所示的通信装置300中的处理器301调用存储器303中存储的应用程序代码以指令通信装置300执行,本申请实施例对此不作任何限制。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一网络设备,或者包含上述第一网络设备的装置,或者为可用于第一网络设备的部件;或者,该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。应理解,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一网络设备为例,图7示出了一种第一网络设备700的结构示意图。该第一网络设备700包括收发模块701和处理模块702。收发模块701,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块702,用于生成第一指示信息,该第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,该路损补偿比例系数用于终端设备确定路损补偿值,该路损补偿值用于确定终端设备发送上行信号的目标发送功率;收发模块701,用于向终端设备发送该第一指示信息。
在一些实施例中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。
在一些实施例中,多个路损参考信号中的目标路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为所述多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。
在一些实施例中,第一指示信息还用于指示路损补偿值对应的总路损补偿因子。其中,总路损补偿因子用于确定该路损补偿值对应的实际路损补偿值。该实际路损补偿值用于确定目标发送功率。
在一些实施例中,第一指示信息包括以下一项或多项:
多个路损参考信号中每个路损参考信号的标识信息;
路损补偿值对应的总路损补偿因子,该总路损补偿因子用于确定路损补偿值对应的实际路损补偿值,该实际路损补偿值用于确定目标发送功率;
或者,第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。
在一些实施例中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于或等于1。
在一些实施例中,路损补偿比例系数包括第一路损补偿比例系数。其中,第i个路损参考信号对应的第一路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,路损补偿比例系数包括第二路损补偿比例系数。其中,第i个路损参考信号对应的第二路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,第一指示信息包括第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,路损补偿值是根据该第一路损补偿因子确定的。其中,路损补偿值对应的实际路损补偿值为α·PLb,f,c(Qd1,Qd2,…,Qdn),α为路损补偿值对应的总路损补偿因子,PLb,f,c(Qd1,Qd2,…,Qdn)为路损补偿值,b为发送上行信号对应的激活带宽部分BWP的标识,c为发送上行信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,路损补偿比例系数为第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
其中,
或者,其中,
在一些实施例中,路损补偿比例系数为第二路损补偿比例系数,第i个路损参考信号对应的第二路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn,其中,α12+…+αn≤1;
或者,PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+(1-A)·PLn,其中,A=α12+…+αn-1,A≤1。
在一些实施例中,路损补偿值为该路损补偿值对应的实际路损补偿值。其中,路损补偿比例系数为实际路损补偿比例系数。
在一些实施例中,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿比例因子。其中,第二路损补偿比例因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数。
在一些实施例中,在路损补偿值为该路损补偿值对应的实际路损补偿值,且路损补偿比例系数为实际路损补偿比例系数的情况下,第一指示信息还包括多个路损参考信号中每个路损参考信号的标识信息。
在一些实施例中,实际路损补偿比例系数包括第一实际路损补偿比例系数。其中,第i个路损参考信号对应的第一实际路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,实际路损补偿比例系数包括第二实际路损补偿比例系数。其中,第i个路损参考信号对应的第二实际路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。其中,i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n 为大于1的整数。
在一些实施例中,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿因子,该第二路损补偿因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数,该路损补偿值是根据该第二路损补偿因子确定的。其中,该路损补偿值为PLb,f,c(Qd1,Qd2,…,Qdn),b为发送上行信号对应的激活BWP的标识,c为发送上信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,实际路损补偿比例系数为第一实际路损补偿比例系数,第i个路损参考信号对应的第一实际路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
或者,
在一些实施例中,实际路损补偿比例系数为第二实际路损补偿比例系数,第i个路损参考信号对应的第二实际路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn
或者,PLb,f,c(Qd1,Qd2,…,Qdn)=max(α1·PL12·PL2,…,αn·PLn)。
在一些实施例中,第一指示信息还用于指示:在终端设备确定的路损补偿值大于或等于第一阈值的情况下,目标发送功率是根据该第一阈值确定的。
在一些实施例中,收发模块701,还用于接收来自终端设备的第二指示信息。其中,第二指示信息用于指示该终端设备确定路损补偿值所使用的目标路损参考信号或路损补偿值的目标计算方式。目标路损参考信号包括多个路损参考信号中的一个路损参考信号。
在一些实施例中,路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值。
在一些实施例中,收发模块701,还用于向终端设备发送第三指示信息。其中,第三指示信息用于指示更新后的多个路损参考信号,以及更新后的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;
或者,第三指示信息用于指示多个路损参考信号中每个路损参考信号对应的更新后的路损补偿比例系数。
或者,第三指示信息用于指示目标参考信号对应的更新后的路损补偿比例系数。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为所述多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该第一网络设备700以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一网络设备700可以采用图3所示的通信装置300的形式。
比如,图3所示的通信装置300中的处理器301可以通过调用存储器303中存储的计算机执行指令,使得通信装置300执行上述方法实施例中的上行功控方法。
具体的,图7中的收发模块701和处理模块702的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现。或者,图7中的处理模块702的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现,图7中的收发模块701的功能/实现过程可以通过图3中所示的通信装 置300中的通信接口304来实现。
由于本申请实施例提供的第一网络设备700可执行上述上行功控方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的终端设备为例,图8示出了一种终端设备800的结构示意图。该终端设备800包括收发模块801和处理模块802。收发模块801,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块801,用于接收来自第一网络设备的第一指示信息,该第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;处理模块802,用于根据第一指示信息确定路损补偿值;处理模块802,还用于根据该路损补偿值确定发送该上行信号的目标发送功率。
在一些实施例中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。
在一些实施例中,多个路损参考信号中的目标路损参考信号对应的路损补偿比例系数用于终端设备确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为所述多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。
在一些实施例中,第一指示信息还用于指示路损补偿值对应的总路损补偿因子。其中,总路损补偿因子用于确定该路损补偿值对应的实际路损补偿值。该实际路损补偿值用于确定目标发送功率。
在一些实施例中,第一指示信息包括以下一项或多项:
多个路损参考信号中每个路损参考信号的标识信息;
路损补偿值对应的总路损补偿因子,该总路损补偿因子用于确定路损补偿值对应的实际路损补偿值,该实际路损补偿值用于确定目标发送功率;
或者,第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。
在一些实施例中,多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于或等于1。
在一些实施例中,路损补偿比例系数包括第一路损补偿比例系数。其中,第i个路损参考信号对应的第一路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,路损补偿比例系数包括第二路损补偿比例系数。其中,第i个路损参考信号对应的第二路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,第一指示信息包括第一路损补偿因子,该第一路损补偿因子包括多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,路损补偿值是根据该第一路损补偿因子确定的。其中,路损补偿值对应的实际路损补偿值为α·PLb,f,c(Qd1,Qd2,…,Qdn),α为路损补偿值对应的总路损补偿因子,PLb,f,c(Qd1,Qd2,…,Qdn)为路损补偿值,b为发送上行信号对应的激活带宽部分BWP的标识,c为发送上行信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,路损补偿比例系数为第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
其中,
或者,其中,
在一些实施例中,路损补偿比例系数为第二路损补偿比例系数,第i个路损参考信号对应的第 二路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn,其中,α12+…+αn≤1;
或者,PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+(1-A)·PLn,其中,A=α12+…+αn-1,A≤1。
在一些实施例中,路损补偿值为该路损补偿值对应的实际路损补偿值。其中,路损补偿比例系数为实际路损补偿比例系数。
在一些实施例中,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿比例因子。其中,第二路损补偿比例因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数。
在一些实施例中,在路损补偿值为该路损补偿值对应的实际路损补偿值,且路损补偿比例系数为实际路损补偿比例系数的情况下,第一指示信息还包括多个路损参考信号中每个路损参考信号的标识信息。
在一些实施例中,实际路损补偿比例系数包括第一实际路损补偿比例系数。其中,第i个路损参考信号对应的第一实际路损补偿比例系数用于与第i个路损参考信号对应的第一路损测量值相乘。第一路损测量值为线性值。i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
或者,可选地,实际路损补偿比例系数包括第二实际路损补偿比例系数。其中,第i个路损参考信号对应的第二实际路损补偿比例系数用于与第i个路损参考信号对应的第二路损测量值相乘。第二路损测量值为对数值。其中,i∈{1,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,路损补偿值为该路损补偿值对应的实际路损补偿值,路损补偿比例系数为实际路损补偿比例系数,第一指示信息包括第二路损补偿因子,该第二路损补偿因子包括多个路损参考信号中每个路损参考信号对应的实际路损补偿比例系数,该路损补偿值是根据该第二路损补偿因子确定的。其中,该路损补偿值为PLb,f,c(Qd1,Qd2,…,Qdn),b为发送上行信号对应的激活BWP的标识,c为发送上信号对应的小区的标识,f为发送上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为多个路损参考信号中路损参考信号的个数,n为大于1的整数。
在一些实施例中,实际路损补偿比例系数为第一实际路损补偿比例系数,第i个路损参考信号对应的第一实际路损补偿比例系数为第i个路损参考信号对应的第一路损测量值为其中,PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
或者,
在一些实施例中,实际路损补偿比例系数为第二实际路损补偿比例系数,第i个路损参考信号对应的第二实际路损补偿比例系数为αi,第i个路损参考信号对应的第二路损测量值为PLi。其中,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn
或者,PLb,f,c(Qd1,Qd2,…,Qdn)=max(α1·PL12·PL2,…,αn·PLn)。
在一些实施例中,第一指示信息还用于指示:在终端设备确定的路损补偿值大于或等于第一阈值的情况下,目标发送功率是根据该第一阈值确定的。
在一些实施例中,处理模块802根据第一指示信息确定路损参考值,具体包括:确定目标路损参考信号或路损补偿值的目标计算方式;根据第一指示信息确定目标路损参考信号对应的路损补偿比例系数,以及根据目标路损参考信号对应的路损补偿比例系数确定路损补偿值;或者,根据第一指示信息以及目标计算方式确定路损补偿值。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。路损补偿值的目标计算方式为:计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值,或者计算多个路损参考信号中每个路损参考信号对应的路损补偿值的平 均值。
在一些实施例中,收发模块801,还用于向第一网络设备发送第二指示信息。其中,第二指示信息用于指示该终端设备确定路损补偿值所使用的目标路损参考信号或路损补偿值的目标计算方式。目标路损参考信号包括多个路损参考信号中的一个路损参考信号。
在一些实施例中,收发模块801,还用于接收来自第一网络设备的第三指示信息。其中,第三指示信息用于指示更新后的多个路损参考信号,以及更新后的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;
或者,该第三指示信息用于指示多个路损参考信号中每个路损参考信号对应的更新后的路损补偿比例系数。
或者,该第三指示信息用于指示目标参考信号对应的更新后的路损补偿比例系数。其中,目标路损参考信号包括多个路损参考信号中的一个路损参考信号。或者,目标路损参考信号包括多个路损参考信号中的k个路损参考信号。1<k<n,n为所述多个路损参考信号中路损参考信号的个数,n和k均为大于1的整数。
在本申请实施例中,该终端设备800以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备800可以采用图3所示的通信装置300的形式。
比如,图3所示的通信装置300中的处理器301可以通过调用存储器303中存储的计算机执行指令,使得通信装置300执行上述方法实施例中的上行功控方法。
具体的,图8中的收发模块801和处理模块802的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现。或者,图8中的处理模块802的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现,图8中的收发模块801的功能/实现过程可以通过图3中所示的通信装置300中的通信接口304来实现。
由于本实施例提供的终端设备800可执行上述上行功控方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
应理解,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选地,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方法实施例或其任一实现方式所述的方法。
可选地,本申请实施例还提供一种通信系统,该通信系统包括上述方法实施例所述的第一网络设备和上述方法实施例所述的终端设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种上行功控方法,其特征在于,所述方法包括:
    生成第一指示信息,所述第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,所述路损补偿比例系数用于终端设备确定路损补偿值,所述路损补偿值用于确定所述终端设备发送所述上行信号的目标发送功率;
    向所述终端设备发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息还用于指示所述路损补偿值对应的总路损补偿因子,所述总路损补偿因子用于确定所述路损补偿值对应的实际路损补偿值,所述实际路损补偿值用于确定所述目标发送功率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息包括以下一项或多项:
    所述多个路损参考信号中每个路损参考信号的标识信息;
    所述路损补偿值对应的总路损补偿因子,所述总路损补偿因子用于确定所述路损补偿值对应的实际路损补偿值,所述实际路损补偿值用于确定所述目标发送功率;
    或者,第一路损补偿因子,所述第一路损补偿因子包括所述多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于或等于1。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述路损补偿比例系数包括第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数用于与所述第i个路损参考信号对应的第一路损测量值相乘,所述第一路损测量值为线性值;
    或者,所述路损补偿比例系数包括第二路损补偿比例系数,所述第i个路损参考信号对应的第二路损补偿比例系数用于与所述第i个路损参考信号对应的第二路损测量值相乘,所述第二路损测量值为对数值;
    其中,i∈{1,…,n},n为所述多个路损参考信号中路损参考信号的个数,n为大于1的整数。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一指示信息还用于指示:在所述终端设备确定的路损补偿值大于或等于第一阈值的情况下,所述目标发送功率是根据所述第一阈值确定的。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备确定所述路损补偿值所使用的目标路损参考信号或所述路损补偿值的目标计算方式,其中,所述目标路损参考信号包括所述多个路损参考信号中的一个路损参考信号。
  8. 一种上行功控方法,其特征在于,所述方法包括:
    接收来自第一网络设备的第一指示信息,所述第一指示信息用于指示上行信号关联的多个路损参考信号中每个路损参考信号对应的路损补偿比例系数;
    根据所述第一指示信息确定路损补偿值;
    根据所述路损补偿值确定发送所述上行信号的目标发送功率。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息还用于指示所述路损补偿值对应的总路损补偿因子,所述总路损补偿因子用于确定所述路损补偿值对应的实际路损补偿值,所述实际路损补偿值用于确定所述目标发送功率。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一指示信息包括以下一项或多项:
    所述多个路损参考信号中每个路损参考信号的标识信息;
    所述路损补偿值对应的总路损补偿因子,所述总路损补偿因子用于确定所述路损补偿值对应的实际路损补偿值,所述实际路损补偿值用于确定所述目标发送功率;
    或者,第一路损补偿因子,所述第一路损补偿因子包括所述多个路损参考信号中每个路损参考信号对应的路损补偿比例系数。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述多个路损参考信号中每个路损参考信号对应的路损补偿比例系数之和小于或等于1。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,所述路损补偿比例系数包括第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数用于与所述第i个路损参考信号对应的第一路损测量值相乘,所述第一路损测量值为线性值;
    或者,所述路损补偿比例系数包括第二路损补偿比例系数,所述第i个路损参考信号对应的第二路损补偿比例系数用于与所述第i个路损参考信号对应的第二路损测量值相乘,所述第二路损测量值为对数值;
    其中,i∈{1,…,n},n为所述多个路损参考信号中路损参考信号的个数,n为大于1的整数。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第一指示信息还用于指示:在确定的路损补偿值大于或等于第一阈值的情况下,所述目标发送功率是根据所述第一阈值确定的。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第二指示信息,所述第二指示信息用于指示确定所述路损补偿值所使用的目标路损参考信号或所述路损补偿值的目标计算方式,其中,所述目标路损参考信号包括所述多个路损参考信号中的一个路损参考信号。
  15. 根据权利要求8-14中任一项所述的方法,其特征在于,所述第一指示信息包括第一路损补偿因子,所述第一路损补偿因子包括所述多个路损参考信号中每个路损参考信号对应的路损补偿比例系数,所述路损补偿值是根据所述第一路损补偿因子确定的;
    所述路损补偿值对应的实际路损补偿值为α·PLb,f,c(Qd1,Qd2,…,Qdn),α为所述路损补偿值对应的总路损补偿因子,PLb,f,c(Qd1,Qd2,…,Qdn)为所述路损补偿值,b为发送所述上行信号对应的激活带宽部分BWP的标识,c为发送所述上行信号对应的小区的标识,f为发送所述上行信号对应的小区的载波频率,Qd1,Qd2,…,Qdn中的Qdi为第i个路损参考信号的索引,i∈{1,2,…,n},n为所述多个路损参考信号中路损参考信号的个数,n为大于1的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述路损补偿比例系数为第一路损补偿比例系数,第i个路损参考信号对应的第一路损补偿比例系数为所述第i个路损参考信号对应的第一路损测量值为PLb,f,c(Qd1,Qd2,…,Qdn)、以及之间满足如下关系:
    其中,
    或者,其中,
  17. 根据权利要求15所述的方法,其特征在于,所述路损补偿比例系数为第二路损补偿比例系数,第i个路损参考信号对应的第二路损补偿比例系数为αi,所述第i个路损参考信号对应的第二路损测量值为PLi,PLb,f,c(Qd1,Qd2,…,Qdn)、αi、以及PLi之间满足如下关系:
    PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+αn·PLn,其中,α12+…+αn≤1;
    或者,PLb,f,c(Qd1,Qd2,…,Qdn)=α1·PL12·PL2+…+(1-A)·PLn,其中,A=α12+…+αn-1,A≤1。
  18. 根据权利要求8-15任一项所述的方法,其特征在于,根据所述第一指示信息确定所述路损补偿值,包括:
    确定目标路损参考信号或所述路损补偿值的目标计算方式,所述目标路损参考信号包括所述多个路损参考信号中的一个路损参考信号,所述路损补偿值的目标计算方式为:计算所述多个路损参考信号中每个路损参考信号对应的路损补偿值中的最大值,或者计算所述多个路损参考信号中每个路损参考信号对应的路损补偿值中的最小值,或者计算所述多个路损参考信号中每个路损参考信号对应的路损补偿值的平均值;
    根据所述第一指示信息确定所述目标路损参考信号对应的路损补偿比例系数,并根据所述目标路损参考信号对应的路损补偿比例系数确定所述路损补偿值;
    或者,根据所述第一指示信息以及所述目标计算方式确定所述路损补偿值。
  19. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-7任一项所述的上行功控方法。
  20. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求8-18任一项所述的上行功控方法。
  21. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合;所述处理器,用于执行所述存储器中存储的计算机程序,使得所述通信装置执行如权利要求1-7中任一项所述的上行功控方法,或者使得所述通信装置执行如权利要求8-18中任一项所述的上行功控方法。
  22. 一种通信装置,其特征在于,包括:
    处理器和接口电路;其中,所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令,使得所述通信装置执行如权利要求1-7中任一项所述的上行功控方法,或者使得所述通信装置执行如权利要求8-18中任一项所述的上行功控方法。
  23. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述收发器用于所述通信装置和其他通信装置之间进行信息交互,所述处理器执行程序指令,使得所述通信装置执行如权利要求1-7中任一项所述的上行功控方法,或者使得所述通信装置执行如权利要求8-18中任一项所述的上行功控方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-7中任一项所述的上行功控方法,或者使得所述计算机执行如权利要求8-18中任一项所述的上行功控方法。
  25. 一种芯片系统,其特征在于,包括:至少一个处理器和接口,所述至少一个处理器通过所述接口与存储器耦合,当所述至少一个处理器执行所述存储器中的计算机程序或指令时,使得权利要求1-7中任一项所述的方法被执行;或者,使得权利要求8-18中任一项所述的方法被执行。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-7中任一项所述的上行功控方法,或者使得所述计算机执行如权利要求8-18中任一项所述的上行功控方法。
  27. 一种通信系统,其特征在于,所述通信系统包括第一网络设备和终端设备,其中,所述第一网络设备用于执行如权利要求1-7中任一项所述的上行功控方法,所述终端设备用于执行如权利要求8-18中任一项所述的上行功控方法。
PCT/CN2023/128931 2022-11-04 2023-10-31 上行功控方法及通信装置 WO2024094035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211381632.8 2022-11-04
CN202211381632.8A CN117998555A (zh) 2022-11-04 2022-11-04 上行功控方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024094035A1 true WO2024094035A1 (zh) 2024-05-10

Family

ID=90898036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128931 WO2024094035A1 (zh) 2022-11-04 2023-10-31 上行功控方法及通信装置

Country Status (2)

Country Link
CN (1) CN117998555A (zh)
WO (1) WO2024094035A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118660334A (zh) * 2024-08-20 2024-09-17 荣耀终端有限公司 一种路损的获取方法和设备、通信装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695261A (zh) * 2011-03-22 2012-09-26 中国移动通信集团公司 上行功率控制方法、装置及系统
CN102740434A (zh) * 2011-04-15 2012-10-17 上海贝尔股份有限公司 一种进行上行功率控制的方法和装置
CN102811478A (zh) * 2011-05-31 2012-12-05 华为技术有限公司 一种路损补偿方法和基站及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695261A (zh) * 2011-03-22 2012-09-26 中国移动通信集团公司 上行功率控制方法、装置及系统
CN102740434A (zh) * 2011-04-15 2012-10-17 上海贝尔股份有限公司 一种进行上行功率控制的方法和装置
CN102811478A (zh) * 2011-05-31 2012-12-05 华为技术有限公司 一种路损补偿方法和基站及用户设备

Also Published As

Publication number Publication date
CN117998555A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
EP3516896B1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
EP3552333B1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
CN109890080B (zh) 一种信息传输方法及设备
CN114928386B (zh) 一种上报终端设备能力的方法和通信装置
CN111385042B (zh) 干扰测量的方法和通信装置
US20210091834A1 (en) Beam training method and communications apparatus
EP3637875B1 (en) Power control method and device
CN108810964B (zh) 功率余量的上报方法和装置
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
CN114175743B (zh) 一种用于信号发送的方法、装置以及用于信号接收的方法、装置
WO2024094035A1 (zh) 上行功控方法及通信装置
US12101214B2 (en) Compressed channel aware tone reservation signaling for peak-to-average power ratio reduction
EP4059278A1 (en) Full power uplink transmission enhancement
CN116783840A (zh) 对多trp场景中波束组报告的增强
KR20230157979A (ko) 무선 통신 시스템에서 업링크 제어 정보의 송신을 위한 디폴트 빔 및 경로 손실 기준 신호를 선택하는 방법 및 장치
CN114868443A (zh) 对探测参考信号(srs)传输信令进行增强的方法和设备
WO2022147735A1 (zh) 确定发送功率的方法及装置
CN115298968A (zh) 用于使用天线之间的发射功率差进行通信的通信装置和方法
CN111510935B (zh) 一种上行信号发送方法、接收方法、装置及系统
EP3614576B1 (en) Rank indication reporting method and device, and indication method and device
WO2022151433A1 (zh) 一种传输信号的方法及装置
CN111869269A (zh) 通信方法、通信装置和系统
WO2020192360A1 (zh) 通信方法及装置
CN108271240B (zh) 一种用于功率调整的ue、基站中的方法和装置
CN113518447A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884963

Country of ref document: EP

Kind code of ref document: A1