WO2018201941A1 - 配置参数的方法及装置 - Google Patents

配置参数的方法及装置 Download PDF

Info

Publication number
WO2018201941A1
WO2018201941A1 PCT/CN2018/084378 CN2018084378W WO2018201941A1 WO 2018201941 A1 WO2018201941 A1 WO 2018201941A1 CN 2018084378 W CN2018084378 W CN 2018084378W WO 2018201941 A1 WO2018201941 A1 WO 2018201941A1
Authority
WO
WIPO (PCT)
Prior art keywords
bpl
parameter
type
base station
power control
Prior art date
Application number
PCT/CN2018/084378
Other languages
English (en)
French (fr)
Inventor
王亚飞
秦熠
张弛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18794169.5A priority Critical patent/EP3609244A4/en
Publication of WO2018201941A1 publication Critical patent/WO2018201941A1/zh
Priority to US16/674,716 priority patent/US20200068501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a method and apparatus for configuring parameters.
  • Massive multiple-input multiple-output (Massive MIMO) technology is one of the key technologies of the fifth generation wireless (5th generation, 5G, also known as New Radio (NR)) network in academia and industry. As a research and application hotspot.
  • 5th generation 5G, also known as New Radio (NR)
  • NR New Radio
  • FIG. 1 is a schematic diagram of beam transmission provided by an embodiment of the present application.
  • the base station and the terminal device perform beam scanning on different transmission directions, and introduce beam management technology for signal transmission and reception between the base station and the terminal device.
  • Beam beam for uplink power control. Therefore, how to control uplink power based on beam management technology is one of the technical problems to be solved.
  • the embodiment of the present invention provides a method and a device for configuring parameters, which can simplify the parameter configuration mode of the uplink power control and reduce the signaling overhead of the uplink power control.
  • the embodiment of the present application provides a method for configuring parameters, which may include:
  • the base station configures a power control parameter, where the power control parameter includes a first type parameter, and the first type parameter is configured based on a beam pair link BPL set;
  • the base station sends the power control parameter to a terminal device.
  • the embodiment of the present application can configure the first type parameter in the power control parameter based on the BPL set, and can reduce the signaling overhead consumed by the configuration of the power control parameter.
  • the power control parameter further includes a second type parameter, and the second type parameter is based on a BPL configuration.
  • the embodiment of the present application can configure the second type parameter of the power control parameter based on the BPL, which can improve the accuracy of the power control.
  • one BPL corresponds to a second type parameter.
  • the base station and the terminal device include N BPLs, where N is an integer greater than or equal to 2;
  • the method further includes:
  • the number of the BPL sets is M, M is an integer greater than or equal to 1, and the BPL set includes at least one of the BPLs.
  • one BPL set corresponds to one first type parameter, and the BPL in one BPL set uses the same first type parameter.
  • the first type parameter based on the BPL set configuration includes:
  • the first type parameter corresponds to the BPL set, and the BPL set includes a BPL that uses the same first type parameter.
  • the BPL between the base station and the terminal device may be divided into BPL sets, and then the power control parameters may be configured based on the BPL set, and the signaling overhead of configuring the power control parameters is reduced.
  • the second type parameter is based on a BPL configuration, including:
  • the second type parameter corresponds to the BPL, and one of the BPLs uses one of the second type parameters.
  • the method further includes:
  • the first information is used to indicate a type of the power control parameter.
  • the foregoing first information includes the identifier information of the BPL set corresponding to the first type parameter, and the identifier information of the BPL corresponding to the second type parameter.
  • the identifier information of the BPL set includes at least one of a set identifier Group ID, a set index Group Index, and a quasi-co-location QCL parameter.
  • the identifier information of the BPL includes at least one of an ID of the BPL, an index of the BPL, and a QCL parameter of the BPL.
  • the first type parameter includes: a path loss compensation factor Alpha, and a signal power P0 that the base station side desires to receive;
  • the second type of parameter includes: a closed loop power control parameter delta.
  • the first type parameter includes: a path loss compensation factor Alpha, a signal power P0 that the base station side desires to receive, and a closed loop power control parameter delta.
  • the signal power P0 that the base station side expects to receive includes a first part P01 and a second part P02, where the first type parameter includes P01 and a path loss compensation factor Alpha, and the second type parameter includes: P02 and closed loop power.
  • Control parameter delta the signal power P0 that the base station side expects to receive.
  • the method further includes:
  • the calculation mode includes a first calculation mode and a second calculation mode
  • the first calculation mode is to calculate a PL based on the BPL set, wherein a BPL of the BPL set uses the same PL;
  • the second calculation mode is to calculate a PL based on the BPL, wherein one of the BPLs uses one of the PLs.
  • the embodiment of the present application may configure a calculation mode of the downlink path loss estimation value PL, where the calculation mode may be that one BPL set maintains one PL, thereby reducing the resources consumed by the terminal device to calculate the PL, and reducing the signaling overhead of the uplink power control. .
  • the above calculation mode can also be that a BPL maintains a PL, thereby improving the control accuracy of the uplink power.
  • the sending, by the base station, the power control parameter to the terminal device includes:
  • the signaling includes at least one of radio resource control RRC signaling, system information, downlink control information DCI, and medium access control layer control message MAC CE.
  • the sending, by the base station, the first information to the terminal device includes:
  • the signaling includes at least one of RRC signaling, system information, DCI, and MAC CE.
  • a method of obtaining parameters which can include:
  • the terminal device Receiving, by the terminal device, a power control parameter sent by the base station, where the power control parameter includes a first type parameter, where the first type parameter is configured based on a beam pair link BPL set;
  • the terminal device determines an uplink power of the BPL according to the power control parameter.
  • the power control parameter further includes a second type parameter, and the second type parameter is based on a BPL configuration.
  • the first type parameter is based on a beam pair link BPL set configuration, including:
  • the first type parameter corresponds to the BPL set, and the BPL set includes a BPL that uses the same first type parameter.
  • the second type parameter based on the BPL configuration includes:
  • the second type parameter corresponds to the BPL, and one of the BPLs uses one of the second type parameters.
  • the method further includes:
  • the first information is used to indicate a type of the power control parameter.
  • the first type parameter includes: a path loss compensation factor Alpha, and a signal power P0 that the base station side desires to receive;
  • the second type of parameter includes: a closed loop power control parameter delta.
  • the first type parameter includes: a path loss compensation factor Alpha, a signal power P0 that the base station side desires to receive, and a closed loop power control parameter delta.
  • the signal power P0 that the base station side expects to receive includes a first part P01 and a second part P02, where the first type parameter includes P01 and a path loss compensation factor Alpha, and the second type parameter includes: P02 and closed loop power.
  • Control parameter delta the signal power P0 that the base station side expects to receive.
  • the method further includes:
  • the terminal device calculates, according to a calculation mode of the downlink path loss estimation value PL indicated by the base station, a PL corresponding to the BPL set, or a PL corresponding to the BPL;
  • the calculation mode includes a first calculation mode and a second calculation mode
  • the first calculation mode is to calculate a PL based on the BPL set, wherein a BPL of the BPL set uses the same PL;
  • the second calculation mode is to calculate a PL based on the BPL, wherein one of the BPLs uses one of the PLs.
  • a third aspect provides a base station, which can include:
  • a processor configured to configure a power control parameter, where the power control parameter includes a first type parameter, and the first type parameter is configured based on a beam pair link BPL set;
  • a transceiver configured to send the power control parameter of the processor configuration to a terminal device.
  • the power control parameter further includes a second type parameter, and the second type parameter is based on a BPL configuration.
  • the base station and the terminal device include N BPLs, where N is an integer greater than or equal to 2;
  • the processor is further configured to divide the BPL set according to the beam measurement result of the BPL;
  • the number of the BPL sets is M, M is an integer greater than or equal to 1, and the BPL set includes at least one of the BPLs.
  • the first type parameter based on the BPL set configuration includes:
  • the first type parameter corresponds to the BPL set, and the BPL set includes a BPL that uses the same first type parameter.
  • the second type parameter is based on a BPL configuration, including:
  • the second type parameter corresponds to the BPL, and one of the BPLs uses one of the second type parameters.
  • the transceiver is further configured to:
  • the first information is used to indicate a type of the power control parameter.
  • the first type parameter includes: a path loss compensation factor Alpha, and a signal power P0 that the base station side desires to receive;
  • the second type of parameter includes: a closed loop power control parameter delta.
  • the first type parameter includes: a path loss compensation factor Alpha, a signal power P0 that the base station side desires to receive, and a closed loop power control parameter delta.
  • the signal power P0 that the base station side expects to receive includes a first part P01 and a second part P02, where the first type parameter includes P01 and a path loss compensation factor Alpha, and the second type parameter includes: P02 and closed loop power.
  • Control parameter delta the signal power P0 that the base station side expects to receive.
  • the transceiver is further configured to:
  • the calculation mode includes a first calculation mode and a second calculation mode
  • the first calculation mode is to calculate a PL based on the BPL set, wherein a BPL of the BPL set uses the same PL;
  • the second calculation mode is to calculate a PL based on the BPL, wherein one of the BPLs uses one of the PLs.
  • a fourth aspect provides a terminal device, which may include:
  • a transceiver configured to receive a power control parameter sent by the base station, where the power control parameter includes a first type parameter, where the first type parameter is configured based on a beam pair link BPL set;
  • a processor configured to determine an uplink power of the BPL according to the power control parameter received by the transceiver.
  • the power control parameter further includes a second type parameter, and the second type parameter is based on a BPL configuration.
  • the first type parameter based on the BPL set configuration includes:
  • the first type parameter corresponds to the BPL set, and the BPL set includes a BPL that uses the same first type parameter.
  • the second type parameter based on the BPL configuration includes:
  • the second type parameter corresponds to the BPL, and one of the BPLs uses one of the second type parameters.
  • the transceiver is further configured to:
  • the first information is used to indicate a type of the power control parameter.
  • the first type parameter includes: a path loss compensation factor Alpha, and a signal power P0 that the base station side desires to receive;
  • the second type of parameter includes: a closed loop power control parameter delta.
  • the first type parameter includes: a path loss compensation factor Alpha, a signal power P0 that the base station side desires to receive, and a closed loop power control parameter delta.
  • the signal power P0 that the base station side expects to receive includes a first part P01 and a second part P02, where the first type parameter includes P01 and a path loss compensation factor Alpha, and the second type parameter includes: P02 and closed loop power.
  • Control parameter delta the signal power P0 that the base station side expects to receive.
  • the processor is further configured to calculate, according to a calculation mode of the downlink path loss estimation value PL indicated by the base station, a PL corresponding to the BPL set, or a PL corresponding to the BPL;
  • the calculation mode includes a first calculation mode and a second calculation mode
  • the first calculation mode is to calculate a PL based on the BPL set, wherein a BPL of the BPL set uses the same PL;
  • the second calculation mode is to calculate a PL based on the BPL, wherein one of the BPLs uses one of the PLs.
  • a fifth aspect provides a power control method, which can include:
  • the base station configures a mode of the sounding reference signal SRS transmission power of the terminal device
  • the base station configures an SRS transmission power of the terminal device according to a mode of the SRS transmission power.
  • the method further includes:
  • the base station configures at least two SRS resource groups
  • the mode in which the base station configures the SRS transmission power of the terminal device includes:
  • the base station configures a mode of SRS transmission power of the SRS resource group of the terminal device.
  • the mode of sending the SRS power includes using the same transmit power.
  • the SeNB sends the SRS transmission power of the terminal device according to the mode of the SRS transmission power, including:
  • the base station Configuring, by the base station, the SRS transmission power of the terminal device to be a predefined transmit power
  • the base station configures indication information of an SRS resource, where the indication information is used to indicate that the terminal device determines an SRS transmission power of the terminal device according to an SRS transmission power of the SRS resource.
  • the mode of sending the SRS power includes using the same transmit power.
  • the method further includes:
  • the base station instructs the terminal device to determine a minimum SRS transmission power in the SRS transmission power, and configures the SRS transmission power of the terminal device to be the minimum SRS transmission power.
  • the mode of sending the SRS power includes using the same transmit power and using different transmit powers between SRS resource groups;
  • the SeNB sends the SRS transmission power of the terminal device according to the mode of the SRS transmission power, including:
  • the base station configures an SRS transmission power corresponding to each SRS resource group in the at least two SRS resource groups
  • the SRS transmission power of the at least one SRS resource group of the at least two SRS resource groups is different from the SRS transmission power of other SRS resource groups;
  • the transmission power of all SRSs included in the same SRS resource group is the same.
  • a base station which can include: a processor, a memory, a transceiver, and a bus system;
  • the memory, the processor and the transceiver are connected by the bus system;
  • the memory is for storing a set of program codes
  • the processor and the transceiver are configured to invoke program code stored in the memory to perform the method provided in the first aspect or the fifth aspect above.
  • a terminal device which can include: a processor, a memory, a transceiver, and a bus system;
  • the memory, the processor and the transceiver are connected by the bus system;
  • the memory is for storing a set of program codes
  • the processor and the transceiver are configured to invoke program code stored in the memory to perform the method provided by the second aspect above.
  • the embodiment of the present application provides a communication system, where the system includes the base station of the foregoing third aspect and the terminal device of the foregoing fourth aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal device, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, which includes a program designed to perform the above aspects.
  • the embodiment of the present application further provides a chip, which is coupled to a transceiver in a base station, and is used to implement the technical solution of the first aspect or the fifth aspect of the embodiment of the present application.
  • “coupled” in the context of the present application means that the two components are combined directly or indirectly with each other. This combination may be fixed or movable, which may allow for the transfer of fluid, electrical, electrical or other types of signals between the two components.
  • the embodiment of the present application further provides a chip, which is coupled to a transceiver in the terminal device, and is used to implement the technical solution of the second aspect of the embodiment of the present application.
  • a chip which is coupled to a transceiver in the terminal device, and is used to implement the technical solution of the second aspect of the embodiment of the present application.
  • the signaling overhead consumed by the configuration of the power control parameters can be reduced, and the applicability of the configuration of the power control parameters is improved.
  • FIG. 1 is a schematic diagram of beam transmission provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an embodiment of a method for configuring parameters according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a beam pair link provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an embodiment of uplink power control according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the manner of configuring parameters provided by the embodiments of the present application may be applicable to a long term evolution (LTE) system, or other wireless communication systems using various radio access technologies, for example, using code division multiple access (code division multiple access, CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (OFDM)
  • code division multiple access code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • FIG. 2 it is an infrastructure of a communication system provided by an embodiment of the present application.
  • the base station and the terminal device can perform data or signaling transmission through the wireless interface, including uplink transmission and downlink transmission.
  • the terminal device involved in the present application may be a device that provides voice and/or data connectivity to a user, including a wired terminal and a wireless terminal.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a mobile internet device (MID), a wearable device, and an e-book reader. Wait.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be a mobile station or an access point.
  • User equipment (UE) is a type of terminal equipment and is a name in the LTE system.
  • UE User equipment
  • the base station involved in the embodiment of the present application is a device deployed in a radio access network (RAN) to provide a wireless communication function for a terminal device.
  • RAN radio access network
  • the foregoing base station may include various forms of macro base stations, micro base stations, relay stations, access point base station controllers, transmission and reception nodes (TRPs), and the like.
  • the specific name of the base station may be different.
  • an evolved NodeB eNB
  • gNB new radio node B
  • the above-mentioned devices are collectively referred to as a base station.
  • the technical problem to be solved by the embodiment of the present application is based on the system architecture shown in FIG. 2, how to configure the power control parameters of the uplink power and how to indicate the power configured by the terminal device when the beam is used to control the uplink power based on the beam.
  • the control parameters are described.
  • the parameter configured by the method provided by the embodiment of the present application may specifically be a power control parameter of the uplink power control.
  • the power control parameters provided by the embodiments of the present application may include a path loss compensation factor Alpha, a closed loop power control parameter delta, and a signal power P0 that the base station side desires to receive. The following will briefly introduce the above power control parameters:
  • the path loss compensation factor is multiplied by the following downlink path loss estimate PL to compensate for the power loss of the uplink during transmission. Among them, when Alpha is less than 1, it is partial path loss compensation, and when Alpha is equal to 1, it is full path loss compensation.
  • the uplink power adjustment value dynamically transmitted by the base station side is indicated by a corresponding field in downlink control information (DCI).
  • DCI downlink control information
  • the signal power P0 (hereinafter referred to as P0) that the base station side expects to receive:
  • the signal power P0 expected by the base station side is determined based on the uplink noise or interference level, and the P0 value reflects the average interference level, or a relatively fixed noise level.
  • the open loop parameter is a parameter configured by the base station and delivered to the terminal device, and does not require feedback from the terminal device.
  • the open loop parameter has a large update period, and the open loop parameter can be sent to the terminal device through radio resource control (RRC) signaling or system message.
  • RRC radio resource control
  • the closed-loop parameter is configured by the base station and sent to the terminal device, and needs to be adjusted according to the feedback information of the terminal device or the measurement of the uplink channel.
  • the update period of the closed loop parameter is small, and the terminal device can be notified through the DCI.
  • the signal power P0 and the path loss compensation factor Alpha that the base station side expects to receive in the power control parameter may be an open loop parameter
  • the closed loop power control parameter delta may be a closed loop parameter
  • the 3rd generation partnership project (3GPP) proposal of NR discusses the proposed beam-specific power control schemes including:
  • Both the open loop parameter and the closed loop parameter can be configured based on a beam pair link (BPL).
  • BPL beam pair link
  • Both the open loop parameter and the closed loop parameter can be configured based on a beam. This scheme does not consider the gain of the base station side receive beam.
  • the BPL-based power control parameter configuration is configured to configure one set of open loop parameters or closed loop parameters for each BPL, or each set of open loop parameters of the BPL. Since there may be multiple BPLs between the base station and the terminal device, configuring a set of power control parameters for each BPL will bring a large signaling overhead. In addition, in the BPL between the base station and the terminal device, different BPLs may have the same open-loop parameter configuration, and no open-loop parameters need to be configured for each BPL. The above solution will bring waste of signaling resources for parameter configuration. .
  • the method and apparatus for configuring parameters provided by the embodiments of the present application will be described below with reference to FIG. 3 to FIG.
  • the method provided by the embodiment of the present application includes configuring an open-loop parameter and/or a closed-loop parameter of a BPL between a base station and a terminal device, and implementing control of uplink power of the BPL by configuring a power control parameter of the BPL.
  • FIG. 3 is a schematic flowchart diagram of an embodiment of a method for configuring parameters according to an embodiment of the present application.
  • the method for configuring parameters provided by the embodiment of the present application includes the following steps:
  • the base station configures power control parameters.
  • the base station may divide the BPL set based on beam measurements between the base station and the terminal device.
  • the base station and the terminal device include N BPLs, and N is an integer greater than or equal to 2.
  • FIG. 4 is a schematic diagram of a BPL provided by an embodiment of the present application.
  • the corresponding relationship between the received beam of the base station and the BPL established by the transmitter of the terminal device includes: one transmit beam of the terminal device corresponds to one receive beam of the base station, or one transmit beam of the terminal device corresponds to multiple receive beams of the base station (ie, At least two beams), or a plurality of transmit beams of the terminal device correspond to a plurality of receive beams of the base station, and the like.
  • one transmit beam on the terminal device side corresponds to three receive beams on the base station side, or one receive beam on the base station side corresponds to two transmit beams on the terminal device side.
  • the base station may divide the N BPLs between the terminal device and the base station into multiple BPL groups according to the beam measurement result, and use a group identity (group ID) or An explicit indication manner, such as a group index, indicates each BPL set, and the display indication may be indicated by a message or signaling to the terminal device, or by a quasi-co-location associated with the BPL.
  • the indication information such as the quasi co-located (QCL) parameter implicitly indicates a different BPL group.
  • the base station may divide the BPL set into a BPL between the base station and the terminal device according to the measured indicator value in the beam measurement result.
  • the base station may divide the BPLs with similar measurement index values into the same BPL set, and the BPLs with large difference values of the measurement indicators are divided into different BPL sets, etc., and are not limited herein.
  • the base station may also send the indication information by using the signaling, where the indication information is used to notify the terminal device of the grouping result of the BPL set.
  • the foregoing signaling may include RRC signaling, system information, DCI, MAC CE, and the like.
  • the foregoing signaling is only an example, and is not exhaustive, and may be determined according to actual application scenario requirements, and is not limited herein.
  • the above packet result may include a BPL correspondence relationship between the base station and the terminal device included in each BPL set, as shown in Table 1 below.
  • Table 1 is a schematic table of BPL packet results between a base station and a terminal device;
  • BPLgroup0 can include three BPLs, namely TX beam1 and RX beam1, TXbeam1 and RX beam2, and TX beam1 and RX beam3.
  • BPLgroup1 can include two BPLs, TX beam2 and RX beam4, and TXbeam3 and RX beam4.
  • BPLgroup2 can include four BPLs, TX beam4 and RX beam5, TXbeam4 and RX beam6, TXbeam5 and RX beam5, and TX beam5 and RX beam6.
  • the first type parameter may be configured based on the BPL set.
  • the parameter configured based on the BPL set may be referred to as a first type parameter.
  • a first type parameter corresponding to each BPL set may be configured.
  • all BPLs grouped into the same BPL set use the same first type parameter, that is, each BPL in the same BPL set uses the same first type parameter.
  • the three BPLs in BPLgroup0 use the same first type parameter, and the first type parameter is not required to be configured separately for each BPL, which saves the signaling overhead of configuring the first type parameter.
  • the first type parameter may include any one or more of parameters such as alpha, delta, and P0.
  • the base station can also configure the second type of parameters based on the BPL.
  • the parameter based on the BPL configuration may be referred to as a second type parameter, and specifically, the second type parameter corresponding to each BPL may be configured.
  • the second type of parameter may also include any one or more of parameters such as alpha, delta, and P0.
  • the above parameters such as alpha, delta, and P0 may be configured as the first type parameter or the second type parameter, but any of the above alpha, delta, and P0 parameters are not repeatedly configured. That is, the above alpha, delta, and P0 may be one of a first type parameter or a second type parameter.
  • the configuration manners of the first type parameter and the second type parameter may include the following multiple implementation manners:
  • the base station configuration may be configured according to the first type parameter of the BPL group, and may also configure the second type parameter corresponding to the BPL.
  • each BPL in the same BPL set may separately configure a set of second type parameters, that is, each BPL corresponds to a set of second type parameters.
  • the second type parameter may include any one or more of parameters such as alpha, delta, and P0, and the same parameter is not included in the first type parameter and the second type parameter selected in the uplink power control of any BPL.
  • the configuration results of the first type parameter and the second type parameter can be referred to any of the implementation modes shown in Table 2 below. Table 2 shows a configuration diagram of the first type parameter and the second type parameter:
  • the base station may configure all power control parameters based on the BPL Group, that is, the foregoing power control parameters (including alpha, delta, and P0) may be configured based on the BPL set.
  • the first type of parameters may include alpha, delta, and P0.
  • the power control parameters can be configured based on the BPL set, and it is not required to be separately configured for each BPL, and the operation is simple and the signaling overhead is smaller.
  • the value range of the P0 is large, and the parameters are semi-statically configured.
  • the P0 indicates that the terminal device needs to consume a large number of bits, and the signaling overhead of the parameter configuration is large.
  • P01 is based on the BPL group configuration, which can reduce the signaling overhead of parameter configuration.
  • P02 is based on the BPL configuration in the BPL group, which can improve the accuracy of power control.
  • the first type of parameters include: alpha, delta, one or more of the first portion P01 of P0.
  • the second type of parameters include: Alpha, one or more of the second portion P02 of P0, and delta, and the second type parameter is different from the first type parameter.
  • the configuration results of the first type parameter and the second type parameter can be referred to any one of the implementation modes shown in Table 3 below.
  • Table 3 is a configuration diagram of the first type parameter and the second type parameter:
  • the configuration shown in the foregoing Table 3 is only a partially feasible implementation manner, and may specifically include the configuration manner obtained by any combination of the foregoing alpha, P01, P02, and delta, and is not limited herein.
  • the foregoing P01 is configured based on the BPL group, and the implementation manner of the P2 based on the BPL configuration in the BPL group is applicable to the foregoing implementation manner 1 and implementation manner 2.
  • the base station sends the power control parameter to the terminal device.
  • the terminal device receives the foregoing power control parameter sent by the base station.
  • the terminal device determines an uplink power of the BPL according to the power control parameter.
  • the base station may send the foregoing power control parameters to the terminal device by using signaling.
  • the base station may send the first type parameter and the second type parameter by using one signaling, and may send the first type parameter and the second type parameter separately to the terminal device by using multiple signaling, and do not do this. limit.
  • the uplink power of each BPL may be determined according to the received power control parameter.
  • the base station may send the indication information (ie, the first information) to the terminal device by using the signaling, and notify the terminal device of the type of the power control parameter by using the first information, where the type of the power control parameter includes One type parameter and the second type parameter.
  • the base station may include that the foregoing signaling may include any one of RRC, system information, DCI, and MAC CE.
  • the base station may send the type indication information such as the group ID or the group index corresponding to the power control parameter P0 to the terminal device by using the signaling, to notify the terminal device that the power control parameter P0 is the first type parameter.
  • the base station may send the type indication information such as the BPL ID corresponding to the power control parameter delta to the terminal device to notify the terminal device that the power control parameter delta is the second type parameter or the like.
  • the base station may send the power control parameter and its type to the terminal device through a signaling, or may send the power control parameter and the power control parameter type to the terminal device separately through multiple signaling, and do not do this. limit.
  • the base station may also indicate, by using high layer signaling (eg, system information, RRC signaling, or MAC CE, etc.), a calculation mode of the terminal device downlink path loss estimation value PL, including the first calculation mode and the first Two calculation modes.
  • the first calculation mode is to calculate the PL based on the BPL set, that is, calculate the PL corresponding to each BPL set. Among them, all BPLs of a BPL set use the same PL, that is, one BPL group maintains one PL.
  • the second calculation mode described above is to calculate the PL based on the BPL, that is, calculate the PL corresponding to each BPL, wherein each BPL uses one PL, that is, each PL in the BPL group maintains one PL.
  • the terminal device receives the indication of the base station by using the high layer signaling
  • the PL corresponding to each BPL set or the PL corresponding to each BPL may be calculated according to the foregoing first calculation mode or the second calculation mode, and then the first type may be combined.
  • the parameter and the second type parameter calculate the uplink power of each BPL.
  • Table 4 below is another parameter configuration table obtained by combining the calculation mode of the PL in the parameter configuration mode shown in Table 2 above:
  • Table 5 below is another parameter configuration table obtained by combining the PL calculation mode in the parameter configuration mode shown in Table 3 above:
  • the PL corresponding to the configuration mode in the foregoing configuration manner may calculate the PL corresponding to the configuration mode, and The first type parameter and the second type parameter included in the configuration mode determine the uplink power of the BPL corresponding to the configuration mode.
  • the base station can implement the control of the uplink power of the terminal device by using the first type parameter configured according to the BPL set and the second type parameter configured by the BPL, and can reduce the power control parameter of the configuration uplink power.
  • the cost is increased, and the resource consumption of the uplink control is saved, and the applicability is higher.
  • the embodiment of the present application further provides an implementation manner of the uplink power control.
  • 5 is a schematic flowchart of an embodiment of an uplink power control according to an embodiment of the present application.
  • the method for uplink power control provided by the embodiment of the present application includes the following steps:
  • the base station configures a mode of SRS transmission power of the terminal device.
  • the SRS is used in a scene of beam sweeping.
  • the base station can configure the mode of the SRS transmission power of the terminal device.
  • the mode of the foregoing SRS transmission power may include using the same transmission power, that is, each of the beams transmitting the SRS uses the same transmission power.
  • the base station may also configure multiple different SRSs of the terminal device into multiple SRS resource groups, that is, the base station may configure at least two SRS resource groups.
  • Each of the at least two SRS resource groups includes at least one beam that transmits an SRS.
  • the mode of SRS transmission power in the foregoing SRS resource group may include using different transmission powers between SRS resource groups, and the same transmission power is used between SRSs in each SRS group.
  • the base station configures the SRS transmission power of the terminal device according to the mode of the SRS transmission power.
  • the terminal device may determine the minimum SRS transmit power in each SRS transmit power, and determine the sending of each SRS.
  • the power is the above minimum SRS transmission power. That is, each SRS transmission power is configured as the above-described minimum SRS transmission power.
  • the base station may also predefine one SRS transmission power, and configure each SRS transmission power to the above-mentioned predefined SRS transmission power.
  • the pre-defined SRS transmission power may be the transmission power corresponding to the first SRS resource, and is not limited herein.
  • the base station may also configure an indication information of the SRS resource, where the indication information of the SRS resource is used to indicate that the terminal equipment determines the transmission power of each SRS according to the transmission power of the SRS resource. That is, each SRS transmission power is the same as or related to the transmission power of the SRS resource, and is not limited herein.
  • the mode in which the base station can configure the SRS transmission power in each SRS resource group is to use the same transmission power and use different transmission powers between the SRS resource groups.
  • the SRS transmission power corresponding to each SRS resource group may be configured first, and then the SRS transmission power of each BPL in each SRS resource may be configured.
  • the SRS transmission power of at least one of the at least two SRS resource groups is different from the SRS transmission power of the other SRS resource group.
  • the base station may configure the SRS transmission power corresponding to one SRS resource group according to the configuration manner of the foregoing SRS transmission power, where the same SRS resource group has the same SRS transmission power.
  • the base station configures a power difference between the other SRS resource groups and the SRS resource group.
  • the SRSs corresponding to other SRS resource groups may be the same or different.
  • the SRS transmission power of each SRS resource group can be determined according to the foregoing implementation manner, and details are not described herein again.
  • the base station notifies the sending power of the terminal device SRS by signaling.
  • the terminal device determines, according to the notification of the base station, a transmit power of the SRS.
  • the embodiment of the present application can reduce the signaling overhead of the SRS transmission power configuration, and the applicability is higher.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station provided in this embodiment of the present application may include:
  • the processing unit 61 is configured to configure a power control parameter, where the power control parameter includes a first type parameter, and the first type parameter is configured based on a beam pair link BPL set.
  • the transceiver unit 62 is configured to send the power control parameter configured by the processing unit 61 to the terminal device.
  • the power control parameter further includes a second type parameter, the second type parameter being based on a BPL configuration.
  • the base station and the terminal device include N BPLs, where N is an integer greater than or equal to 2;
  • the processing unit 61 is further configured to: divide the BPL set according to the beam measurement result of the BPL;
  • the number of the BPL sets is M, M is an integer greater than or equal to 1, and the BPL set includes at least one of the BPLs.
  • the first type parameter based on a beam pair link BPL set configuration includes:
  • the first type parameter corresponds to the BPL set, and the BPL set includes a BPL that uses the same first type parameter.
  • the second type parameter is based on a BPL configuration, including:
  • the second type parameter corresponds to the BPL, and one of the BPLs uses one of the second type parameters.
  • the transceiver unit 62 is further configured to:
  • the first information is used to indicate a type of the power control parameter.
  • the first type parameter includes: a path loss compensation factor Alpha, and a signal power P0 that the base station side desires to receive;
  • the second type of parameter includes: a closed loop power control parameter delta.
  • the first type of parameters include: a path loss compensation factor Alpha, a signal power P0 that the base station side desires to receive, and a closed loop power control parameter delta.
  • the signal power P0 that the base station side expects to receive includes a first part P01 and a second part P02
  • the first type parameter includes P01 and a path loss compensation factor Alpha
  • the second type parameter includes: P02 and closed loop power control parameter delta.
  • the transceiver unit 62 is further configured to:
  • the calculation mode includes a first calculation mode and a second calculation mode
  • the first calculation mode is to calculate a PL based on the BPL set, wherein a BPL of the BPL set uses the same PL;
  • the second calculation mode is to calculate a PL based on the BPL, wherein one of the BPLs uses one of the PLs.
  • the base station provided by the embodiment of the present application may implement the implementation manner of the base station described in the foregoing steps in the foregoing embodiments, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device provided by the embodiment of the present application includes:
  • the transceiver unit 71 is configured to receive a power control parameter sent by the base station, where the power control parameter includes a first type parameter, and the first type parameter is configured based on a beam pair link BPL set.
  • the processing unit 72 is configured to determine an uplink power of the BPL according to the power control parameter received by the transceiver unit.
  • the power control parameter further includes a second type parameter, the second type parameter being based on a BPL configuration.
  • the first type parameter based on a beam pair link BPL set configuration includes:
  • the first type parameter corresponds to the BPL set, and the BPL set includes a BPL that uses the same first type parameter.
  • the second type parameter based on the BPL configuration includes:
  • the second type parameter corresponds to the BPL, and one of the BPLs uses one of the second type parameters.
  • the transceiver unit 71 is further configured to:
  • the first information is used to indicate a type of the power control parameter.
  • the first type parameter includes: a path loss compensation factor Alpha, and a signal power P0 that the base station side desires to receive;
  • the second type of parameter includes: a closed loop power control parameter delta.
  • the first type of parameters include: a path loss compensation factor Alpha, a signal power P0 that the base station side desires to receive, and a closed loop power control parameter delta.
  • the signal power P0 that the base station side expects to receive includes a first part P01 and a second part P02
  • the first type parameter includes P01 and a path loss compensation factor Alpha
  • the second type parameter includes: P02 and closed loop power control parameter delta.
  • the processing unit 71 is further configured to calculate, according to a calculation mode of the downlink path loss estimation value PL indicated by the base station, a PL corresponding to the BPL set, or a PL corresponding to the BPL;
  • the calculation mode includes a first calculation mode and a second calculation mode
  • the first calculation mode is to calculate a PL based on the BPL set, wherein a BPL of the BPL set uses the same PL;
  • the second calculation mode is to calculate a PL based on the BPL, wherein one of the BPLs uses one of the PLs.
  • the terminal device provided by the embodiment of the present application may implement the implementation manner of the terminal device described in each step in the foregoing embodiment, and details are not described herein again.
  • the base station can implement the control of the uplink power of the terminal device by using the first type parameter configured according to the BPL set and the second type parameter configured by the BPL, and can reduce the power control parameter of the configuration uplink power.
  • the cost is increased, and the resource consumption of the uplink control is saved, and the applicability is higher.
  • FIG. 8 is a schematic structural diagram of a communication device 40 according to an embodiment of the present application.
  • the communication device 40 provided by the embodiment of the present application includes a processor 401, a memory 402, a transceiver 403, and a bus system 404.
  • the processor 401, the memory 402 and the transceiver 403 are connected by a bus system 404.
  • the above memory 402 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 402 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), or Portable disc read-only memory (CD-ROM). Only one memory is shown in Fig. 8, and of course, the memory can be set to a plurality as needed.
  • the memory 402 may also be a memory in the processor 401, which is not limited herein.
  • Memory 402 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 401 controls the operation of the communication device 40.
  • the processor 401 may be one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 404 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 404 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 404 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • various buses are labeled as bus system 404 in FIG. For ease of representation, only the schematic drawing is shown in FIG.
  • Processor 401 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 401 or an instruction in a form of software.
  • the processor 401 may be a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 402, the processor 401 reads the information in the memory 402, performs the method steps of the terminal device described in FIG. 3 or FIG. 5 together with the hardware thereof, or performs the method steps of the terminal device in combination with the hardware thereof; Figure 5, or method steps of the base station described in the various embodiments above.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Abstract

本申请实施例公开了一种配置参数的方法及装置,所述方法包括:基站配置功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;所述基站向终端设备发送所述功率控制参数。采用本申请实施例,具有可降低配置功率控制参数的信令开销的优点。

Description

配置参数的方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种配置参数的方法及装置。
背景技术
随着无线通信技术的发展,各种新的业务层出不穷,不同业务对资源的需求也不同,这就要求在未来无线网络中各种业务要能够更加高效地使用有限的资源。大规模天线技术(massive multiple-input multiple-output,Massive MIMO)技术作为第五代无线(5thgeneration,5G,也称新空口(New radio,NR))网络的关键技术之一在学术界和工业界作为研究和应用热点展开。
基于Massive MIMO技术中,基站的天线可形成不同传输方向的波束,终端设备的天线也可形成不同传输方向的波束。终端设备和基站可通过波束扫描建立数据传输,从而实现信号的空间复用和干扰隔离。如图1所示,图1是本申请实施例提供的波束传输的一示意图。基站与终端设备对不同传输方向的波束扫描,针对基站与终端设备之间的信号发送和接收,引入了波束管理技术。上行功率控制作为一种在保证终端设备的上行数据被网络设备正确接收的同时不会对相邻小区产生较大干扰的技术,在通信系统中具有举足轻重的作用。NR的标准讨论中已经同意基于波束(Beam)做上行功率控制,因此基于波束管理技术如何对上行功率进行控制是当前亟待解决的技术问题之一。
发明内容
本申请实施例提供一种配置参数的方法及装置,可简化上行功率控制的参数配置方式,降低上行功率控制的信令开销。
第一方面,本申请实施例提供了一种配置参数的方法,其可包括:
基站配置功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
所述基站向终端设备发送所述功率控制参数。
本申请实施例基于BPL集合配置功率控制参数中的第一类型参数,可减少功率控制参数的配置所消耗的信令开销。
可选的,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
本申请实施例可基于BPL配置功率控制参数的第二类型参数,可提高功率控制的准确性。
可选的,一个BPL对应一个第二类型参数。
可选的,所述基站与所述终端设备之间包括N个BPL,N为大于或者等于2的整数;
所述方法还包括:
所述基站根据所述BPL的波束测量结果,划分所述BPL集合;
其中,所述BPL集合的数目为M,M为大于或者等于1的整数,所述BPL集合包括至少一个所述BPL。
可选的,一个BPL集合对应一个第一类型参数,一个BPL集合中的BPL使用相同的第一类型参数。
可选的,所述第一类型参数基于BPL集合配置包括:
所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
本申请实施例可将基站与终端设备之间的BPL划分为BPL集合,进而可基于BPL集合配置功率控制参,降低了配置功率控制参数的信令开销。
可选的,所述第二类型参数基于BPL配置,包括:
所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
可选的,所述方法还包括:
所述基站向所述终端设备发送第一信息;
其中,所述第一信息用于指示所述功率控制参数的类型。
可选的,上述第一信息包括所述第一类型参数对应的BPL集合的标识信息,以及所述第二类型参数对应的BPL的标识信息。
可选的,所述BPL集合的标识信息包括:集合标识Group ID、集合索引Group Index以及准共址QCL参数中的至少一种。
可选的,所述BPL的标识信息包括:BPL的ID、BPL的Index以及BPL的QCL参数中的至少一种。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
所述第二类型参数包括:闭环功率控制参数delta。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
可选的,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
可选的,所述方法还包括:
所述基站指示所述终端设备的下行链路路损估计值PL的计算模式;
其中,所述计算模式包括第一计算模式和第二计算模式;
所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
本申请实施例可配置下行链路路损估计值PL的计算模式,上述计算模式可以是一个BPL集合维护一个PL,进而可降低终端设备计算PL所消耗的资源,减少上行功率控制的信令开销。上述计算模式还可以是一个BPL维护一个PL,进而可提高上行功率的控制准确性。
可选的,所述基站向终端设备发送所述功率控制参数包括:
所述基站通过信令向所述终端设备发送所述功率控制参数;
所述信令包括无线资源控制RRC信令、系统信息、下行控制信息DCI以及介质访问控 制层控制消息MAC CE中的至少一种。
可选的,所述基站向所述终端设备发送第一信息包括:
所述基站通过信令向所述终端设备发送所述第一信息;
其中,所述信令包括RRC信令、系统信息、DCI以及MAC CE中的至少一种。
第二方面,提供了一种获取参数的方法,其可包括:
终端设备接收基站发送的功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
所述终端设备根据所述功率控制参数确定BPL的上行功率。
可选的,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
可选的,所述第一类型参数基于波束对链路BPL集合配置包括:
所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
可选的,所述第二类型参数基于BPL配置包括:
所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
可选的,所述方法还包括:
所述终端设备接收所述基站发送的第一信息;
其中,所述第一信息用于指示所述功率控制参数的类型。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
所述第二类型参数包括:闭环功率控制参数delta。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
可选的,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
可选的,所述方法还包括:
所述终端设备根据所述基站指示的下行链路路损估计值PL的计算模式,计算BPL集合对应的PL,或者BPL对应的PL;
其中,所述计算模式包括第一计算模式和第二计算模式;
所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
第三方面提供了一种基站,其可包括:
处理器,用于配置功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
收发器,用于向终端设备发送所述处理器配置的所述功率控制参数。
可选的,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
可选的,所述基站与所述终端设备之间包括N个BPL,N为大于或者等于2的整数;
所述处理器还用于,根据所述BPL的波束测量结果,划分所述BPL集合;
其中,所述BPL集合的数目为M,M为大于或者等于1的整数,所述BPL集合包括至少一个所述BPL。
可选的,所述第一类型参数基于BPL集合配置包括:
所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
可选的,所述第二类型参数基于BPL配置,包括:
所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
可选的,所述收发器还用于:
向所述终端设备发送第一信息;
其中,所述第一信息用于指示所述功率控制参数的类型。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
所述第二类型参数包括:闭环功率控制参数delta。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
可选的,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
可选的,所述收发器还用于:
指示所述终端设备的下行链路路损估计值PL的计算模式;
其中,所述计算模式包括第一计算模式和第二计算模式;
所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
第四方面提供了一种终端设备,其可包括:
收发器,用于接收基站发送的功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
处理器,用于根据所述收发器接收的所述功率控制参数确定BPL的上行功率。
可选的,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
可选的,所述第一类型参数基于BPL集合配置包括:
所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
可选的,所述第二类型参数基于BPL配置包括:
所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
可选的,所述收发器还用于:
接收所述基站发送的第一信息;
其中,所述第一信息用于指示所述功率控制参数的类型。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
所述第二类型参数包括:闭环功率控制参数delta。
可选的,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
可选的,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
可选的,所述处理器还用于,根据所述基站指示的下行链路路损估计值PL的计算模式,计算BPL集合对应的PL,或者BPL对应的PL;
其中,所述计算模式包括第一计算模式和第二计算模式;
所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
第五方面提供了一种功率控制方法,其可包括:
基站配置终端设备的探测参考信号SRS发送功率的模式;
所述基站根据所述SRS发送功率的模式,配置所述终端设备的SRS发送功率。
可选的,所述方法还包括:
所述基站配置至少两个SRS资源组;
所述基站配置所述终端设备的SRS发送功率的模式包括:
所述基站配置所述终端设备的SRS资源组的SRS发送功率的模式。
可选的,所述SRS发送功率的模式包括使用相同的发送功率;
所述基站根据所述SRS发送功率的模式,配置所述终端设备的SRS发送功率包括:
所述基站配置所述终端设备的SRS发送功率配置为预定义的发送功率;或者
所述基站配置一个SRS资源的指示信息,所述指示信息用于指示所述终端设备根据所述SRS资源的SRS发送功率确定所述终端设备的SRS发送功率。
可选的,所述SRS发送功率的模式包括使用相同的发送功率;
所述方法还包括:
所述基站指示所述终端设备确定SRS发送功率中的最小SRS发送功率,并配置所述终端设备的SRS发送功率为所述最小SRS发送功率。
可选的,所述SRS发送功率的模式包括使用相同的发送功率以及SRS资源组间使用不同的发送功率;
所述基站根据所述SRS发送功率的模式,配置所述终端设备的SRS发送功率包括:
所述基站配置所述至少两个SRS资源组中每个SRS资源组对应的SRS发送功率;
其中,所述至少两个SRS资源组中至少一个SRS资源组的SRS发送功率与其他SRS资源组的SRS发送功率不同;
同一个SRS资源组中包括的所有SRS的发送功率均相同。
第六方面,提供了一种基站,其可包括:处理器、存储器、收发器和总线系统;
所述存储器、所述处理器和所述收发器通过所述总线系统连接;
所述存储器用于存储一组程序代码;
所述处理器和所述收发器用于调用所述存储器中存储的程序代码执行上述第一方面或者第五方面提供的方法。
第七方面,提供了一种终端设备,其可包括:处理器、存储器、收发器和总线系统;
所述存储器、所述处理器和所述收发器通过所述总线系统连接;
所述存储器用于存储一组程序代码;
所述处理器和所述收发器用于调用所述存储器中存储的程序代码执行上述第二方面提供的方法。
第八方面,本申请实施例提供了一种通信系统,该系统包括上述第三方面所述的基站和上述第四方面所述终端设备。
第九方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十一方面,本申请实施例还提供了一种芯片,该芯片与基站中的收发器耦合,用于执行本申请实施例第一方面或者第五方面的技术方案。应理解,在本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间通信。
第十二方面,本申请实施例还提供了一种芯片,该芯片与终端设备中的收发器耦合,用于执行本申请实施例第二方面的技术方案。应理解,在本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间通信。
通过实施本申请实施例,可降低功率控制参数的配置所消耗的信令开销,提高功率控制参数的配置的适用性。
附图说明
图1是本申请实施例提供的波束传输的一示意图;
图2是本申请实施例提供的通信系统的一种基础架构;
图3是本申请实施例提供的配置参数的方法的一实施例流程示意图;
图4是本申请实施例提供的波束对链路的示意图;
图5是本申请实施例提供的上行功率控制的实施例流程示意图;
图6是本申请实施例提供的终端设备的结构示意图;
图7是本申请实施例提供的基站的结构示意图;
图8是本申请实施例提供的通信设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例提供的配置参数的方式可以适用于长期演进(long term evolution,LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址(code division multiple access,CDMA),频分多址(frequency division multiple access,FDMA),时分多址(time division multiple access,TDMA),正交频分多址(orthogonal frequency division multiple access,OFDMA),单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)等接入技术的系统,还适用于后续的演进系统,如上述5G系统(或称NR系统)等。参见图2,是本申请实施例提供的通信系统的一种基础架构。基站和终端设备通过无线接口可以进行数据或者信令的传输,包括上行传输和下行传输。本申请所涉及到的终端设备可以为向用户提供语音和/或数据连通性的设备(device),包括有线终端和无线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以为移动电话、计算机、平板电脑、个人数码助理(personal digital assistant,PDA)、移动互联网设备(mobile Internet device,MID)、可穿戴设备和电子书阅读器(e-book reader)等。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站(mobile station)、接入点(access point)。用户设备(user equipment,UE)即为终端设备的一种,是在LTE系统中的称谓。为方便描述,本申请后续的描述中,上面提到的设备将以终端设备为例进行说明。本申请实施例所涉及到的基站是一种部署在无线接入网(radio access network,RAN)中用以为终端设备提供无线通信功能的装置。上述基站可以包括各种形式的宏基站,微基站,中继站,接入点基站控制器,收发节点(transmission reception point,TRP)等等。在采用不同的无线接入技术的系统中,基站的具体名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB),在后续的演进系统中,还可以称为新无线节点B(new radio nodeB,gNB)。为方便描述,本申请后续的描述中,上面提到的设备统称为基站。
本申请实施例所要解决的技术问题是基于上述图2所示的系统架构,在基于波束(beam)对上行功率进行控制时,基站如何配置上行功率的功率控制参数以及如何指示终端设备配置的功率控制参数进行描述。
本申请实施例提供的方法所配置的参数具体可为上行功率控制的功率控制参数。本申请实施例提供的功率控制参数可包括路损补偿因子Alpha、闭环功率控制参数delta、基站侧期望接收到的信号功率P0。下面将简要介绍一下以上功率控制参数:
1、路损补偿因子Alpha(可记为α,以下将以Alpha进行描述):
路损补偿因子乘以下行链路路损估计值PL用于补偿上行链路在传输过程中的功率损耗。其中,Alpha小于1时为部分路损补偿,Alpha等于1时为全路损补偿。
2、闭环功率控制参数delta(可记为Δ,以下将以delta进行描述):
基站侧下发的动态指示终端设备的上行功率调整值,由下行控制信息(downlink control information,DCI)中的相应的字段指示。
3、基站侧期望接收到的信号功率P0(以下简称P0):
基站侧期望接收到的信号功率P0基于上行噪声或者干扰水平确定,P0值反映了平均 的干扰水平,或相对固定的噪声水平。
开环参数为基站配置并下发给终端设备的参数,不需要终端设备反馈。开环参数的更新周期较大,开环参数可通过无线资源控制(radio resource control,RRC)信令或者系统消息下发给终端设备。闭环参数为基站配置并下发给终端设备,需要根据终端设备的反馈信息或上行信道的测量进行调整的参数。闭环参数的更新周期较小,可通过DCI通知终端设备。
在一些可行的实施方式中,上述功率控制参数中基站侧期望接收到的信号功率P0和路损补偿因子Alpha可以为开环参数,上述闭环功率控制参数delta可以为闭环参数。
目前,在NR的第三代合作伙伴项目(3rdgeneration partnership project,3GPP)提案讨论已提出的波束特定(beam-specific)的功率控制方案主要包括:
方案一:开环参数和闭环参数都可以基于波束对链路(beam pair link,BPL)来配置。然而这样子配置开环参数和闭环参数所消耗的信令开销大,适用性低。
方案二:开环参数和闭环参数都可以基于波束(beam)来配置。该方案未考虑基站侧接收波束的增益。
在上述技术方案中,基于BPL的功率控制参数配置是每个BPL配置一套开环参数或者闭环参数,或者每个BPL配置一套开环参数。由于基站与终端设备之间可能存在多条BPL,因此,每个BPL配置一套功率控制参数将带来较大的信令开销。此外,在基站与终端设备之间的BPL中,不同的BPL可能会具有相同的开环参数配置,不需要针对每个BPL配置一次开环参数,上述方案将带来参数配置的信令资源浪费。
下面将结合图3至图8对本申请实施例提供的配置参数的方法及装置进行描述。本申请实施例提供的方法包括对基站与终端设备之间的BPL的开环参数和/或闭环参数进行配置,通过BPL的功率控制参数配置实现对BPL的上行功率的控制。
参见图3,是本申请实施例提供的配置参数的方法的一实施例流程示意图。本申请实施例提供的配置参数的方法包括步骤:
S301,基站配置功率控制参数。
在一些可行的实施方式中,基站可基于基站与终端设备之间的波束测量结果划分BPL集合。其中,上述基站与终端设备之间包括N个BPL,N为大于或者等于2的整数。如图4,是本申请实施例提供的BPL示意图。其中,上述基站的收波束与终端设备的发波束建立的BPL的对应关系包括:终端设备的一个发波束对应基站的一个收波束,或者终端设备的一个发波束对应基站的多个收波束(即至少两个波束),或者终端设备的多个发波束对应基站的多个收波束等。例如,终端设备侧的一个发波束对应基站侧的三个收波束,或者基站侧的一个收波束对应终端设备侧的两个发波束等。
在一些可行的实施方式中,基站可根据上述波束测量结果,将终端设备与基站之间的N个BPL划分为多个BPL集合(BPL group),并以集合标识(group identity,group ID)或者集合索引(group index)等显式指示的方式对各个BPL集合进行指示,所述显示指示的方式可以是通过消息或者信令的形式向终端设备进行指示,或者通过与BPL相关联的准共址(quasi co-located,QCL)参数等指示信息隐式表示不同的BPL group。
可选的,在一些可行的实施方式中,基站可根据波束测量结果中的测量指标值对基站 与终端设备之间的BPL划分BPL集合。例如,基站可将测量指标值相近的BPL划分在同一个BPL集合,测量指标值差值较大的BPL划分在不同的BPL集合等,在此不做限制。
具体实现中,基站还可通过信令下发指示信息,其中,该指示信息用于通知终端设备上述BPL集合的分组结果。其中,上述信令可包括RRC信令、系统信息、DCI以及MAC CE等。上述信令仅是举例,而非穷举,具体可根据实际应用场景需求确定,在此不做限制。上述分组结果中可包括每个BPL集合中包括的基站与终端设备之间的BPL的对应关系,如下表1所示。表1为基站与终端设备之间的BPL分组结果的一示意表;
表1
Figure PCTCN2018084378-appb-000001
如上表1所示,BPLgroup0中可包括3个BPL,分别是TX beam1与RX beam1、TXbeam1与RX beam2,以及TX beam1与RX beam3。BPLgroup1中可包括2个BPL,分别是TX beam2与RX beam4和TXbeam3与RX beam4。BPLgroup2中可包括4个BPL,分别是TX beam4与RX beam5、TXbeam4与RX beam6,TXbeam5与RX beam5,以及TX beam5与RX beam6。
在一些可行的实施方式中,基站将基站与终端设备之间的BPL进行分组之后,可基于BPL集合配置第一类型参数。在本申请实施例中,基于BPL集合配置的参数可称为第一类型参数。具体的可配置每个BPL集合对应的第一类型参数。其中,分组为同一个BPL集合的所有BPL使用相同的第一类型参数,即,同一个BPL集合中的每个BPL使用相同的第一类型参数。例如,BPLgroup0中的3个BPL均使用相同的第一类型参数,无需每个BPL单独配置第一类型参数,节省了配置第一类型参数的信令开销。需要说明的是,第一类型参数可包括alpha,delta以及P0等参数中的任意一个或者多个。
进一步的,基站还可基于BPL配置第二类型参数。在本申请实施例中,基于BPL配置的参数可称为第二类型参数,具体可配置每个BPL对应的第二类型参数。第二类型参数也可包括alpha,delta以及P0等参数中的任意一个或者多个。需要说明的是,上述alpha,delta以及P0等参数可配置为第一类型参数也可配置为第二类型参数,但是上述alpha,delta以及P0中任一参数不重复配置。即,上述alpha,delta以及P0可为第一类型参数或者第二类型参数中的一种。第一类型参数和第二类型参数的配置方式可包括如下多种实现方式:
实现方式一:
在一些可行的实施方式中,基站配置基于BPL Group的第一类型参数之外,还可配置上述BPL对应的第二类型参数。在本申请实施例中,同一个BPL集合中的每个BPL可单独配置一套第二类型参数,即,每个BPL对应一套第二类型参数。上述第二类型参数可包括alpha,delta以及P0等参数中的任意一个或者多个,并且任一BPL的上行功率控制时所选的第一类型参数和第二类型参数中不包括相同的参数。例如,第一类型参数和第二类型 参数的配置结果可参见如下表2所示的实现方式中的任一种。表2为第一类型参数和第二类型参数的一配置示意表:
表2
Figure PCTCN2018084378-appb-000002
需要说明的是,上述表2中所示配置方式仅是部分可行的实现方式,具体还可包括上述alpha,P0以及delta的任意组合得到的配置方式,在此不做限制。
实现方式二:
需要说明的是,在一些可行的实施方式中,基站可基于BPL Group配置所有的功率控制参数,即上述功率控制参数(包括alpha,delta以及P0)均可基于BPL集合配置。第一类型参数可包括alpha,delta以及P0。此时,功率控制参数均可基于BPL集合配置,无需每个BPL单独配置,操作简单,信令开销更小。
实现方式三:
在一些可行的实现方式中,上述参数P0也可分成两部分进行配置,例如,P0=P01+P02。例如,在一些可行的实施方式中,P0的取值范围较大,且属于半静态配置的参数,将P0指示给终端设备所需消耗可比特数较多,参数配置的信令开销大。若将P0划分为P01和P02,其中,P01的取值用于确定P0的大概取值范围,P02的取值范围较小,对P0的取值在P01的基础上进行微调。其中,P01基于BPL group配置,可降低参数配置的信令开销,P02基于BPL group内的BPL配置,可提高功率控制的准确性。第一类型参数包括:alpha、delta、P0的第一部分P01中的一个或者多个。第二类型参数包括:Alpha、P0的第二部分P02以及delta中的一个或者多个,并且第二类型参数与第一类型参数不同。例如,第一类型参数和第二类型参数的配置结果可参见如下表3所示的实现方式中的任一种。表3为第一类型参数和第二类型参数的配置示意表:
表3
Figure PCTCN2018084378-appb-000003
需要说明的是,上述表3中所示配置方式仅是部分可行的实现方式,具体还可包括上述alpha,P01,P02以及delta的任意组合得到的配置方式,在此不做限制。上述P01基于BPL group配置,P02基于BPL group内的BPL配置的实现方式适用于上述实现方式一和实现方式二。
S302,基站向终端设备发送所述功率控制参数。
终端设备接收基站发送的上述功率控制参数。
S303,终端设备根据所述功率控制参数确定BPL的上行功率。
在一些可行的实施方式中,基站可通过信令将上述功率控制参数下发给终端设备。可选的,基站可通过一条信令下发第一类型参数和第二类型参数,也可通过多条信令将第一类型参数和第二类型参数分开下发给终端设备,在此不做限制。终端设备通过信令接收到基站通知的第一类型参数和第二类型参数之后,则可根据接收到的功率控制参数确定各个BPL的上行功率。
可选的,基站还可通过信令向终端设备下发指示信息(即第一信息),通过上述第一信息将功率控制参数的类型通知给终端设备,其中,上述功率控制参数的类型包括第一类型参数和第二类型参数。例如,基站可其中,上述信令可包括:RRC、系统信息、DCI以及MAC CE中的任意一种。具体实现中,例如,基站可通过信令将功率控制参数P0对应的group ID或者group index等类型指示信息发送给终端设备,以通知终端设备功率控制参数P0为第一类型参数。或者基站可通过将功率控制参数delta对应的BPL ID等类型指示信息发送给终端设备,以通知终端设备功率控制参数delta为第二类型参数等。
可行的,基站可将功率控制参数及其类型通过一条信令下发给终端设备,也可将功率控制参数和功率控制参数的类型通过多条信令分开下发给终端设备,在此不做限制。
在一些可行的实施方式中,基站还可通过高层信令(例如系统信息、RRC信令或者MAC CE等)指示终端设备下行链路路损估计值PL的计算模式,包括第一计算模式和第二计算模式。第一计算模式为基于BPL集合计算PL,即计算每个BPL集合对应的PL。其中,一个BPL集合的所有BPL使用同一个PL,即一个BPL group维护一个PL。上述第二计算模式为基于BPL计算PL,即,计算每个BPL对应的PL,其中,每个BPL使用一个PL,即BPL group内的每个BPL维护一个PL。终端设备通过高层信令接收到基站的指示之后,则可根据上述第一计算模式或者第二计算模式计算每个BPL集合对应的PL,或者每个BPL对应的PL,进而可结合上述第一类型参数和第二类型参数计算每个BPL的上行功率。如下表4,是在上述表2所示的参数配置方式中,结合PL的计算模式得到的另一参数配置表:
表4
Figure PCTCN2018084378-appb-000004
如下表5,是在上述表3所示的参数配置方式中,结合PL的计算模式得到的另一参数配置表:
表5
Figure PCTCN2018084378-appb-000005
具体实现中,终端设备根据信令确定基站所指示的上述表4或表5包含的信息之后,则可根据上述任一配置方式中PL的计算模块计算该配置方式对应的PL,进而可结合该配置方式包括的第一类型参数和第二类型参数确定该配置方式对应的BPL的上行功率。
在本申请实施例中,基站可通过基于BPL集合配置的第一类型参数和基于BPL配置的第二类型参数,实现对终端设备的上行功率的控制,可降低配置上行功率的功率控制参数的信令开销,节省上行控制的资源消耗,适用性更高。
此外,针对探测参考信号(sounding reference signal,SRS)功率的控制,本申请实施例还提供了一种上行功率控制的实现方式。参见图5是本申请实施例提供的上行功率控制的实施例流程示意图,本申请实施例提供的上行功率控制的方法包括步骤:
S501,基站配置终端设备的SRS发送功率的模式。
在一些可行的实现方式中,SRS用于波束扫描(beam sweeping)的场景。基站可配置终端设备的SRS发送功率的模式。
其中,上述SRS发送功率的模式可包括使用相同的发送功率,即每个发送SRS的波束使用相同的发送功率。
进一步的,在一些可行的实现方式中,基站还可将终端设备的多个不同的SRS配置为多个SRS资源组,即基站可配置至少两个SRS资源组。其中,上述至少两个SRS资源组中每个SRS资源组包括至少一个发送SRS的波束。上述SRS资源组中的SRS发送功率的模式可包括SRS资源组之间使用不同的发送功率,每个SRS组中的SRS之间使用相同的发送功率。
S502,基站根据所述SRS发送功率的模式,配置所述终端设备的SRS发送功率。
在一些可行的实现方式中,基站配置各个SRS资源组中的SRS发送功率的模式为使用相同的发送功率,则终端设备可确定各个SRS发送功率中的最小SRS发送功率,并确定各个SRS的发送功率为上述最小SRS发送功率。即,每个SRS发送功率均配置为上述最小SRS发送功率。可行的,基站也可预定义一个SRS发送功率,并将每个SRS发送功率均配置为上述预定义的SRS发送功率。其中,上述预定义的SRS发送功率可为第一个SRS资源对应的发送功率等,在此不做限制。此外,基站也可配置一个SRS资源的指示信息,上述SRS资源的指示信息用于指示终端设备根据上述SRS资源的发送功率确定各个SRS的发送功率。即每个SRS发送功率均与上述SRS资源的发送功率相同或者相关等,在此不做限制。
进一步的,在一些可行的实现方式中,基站可配置各个SRS资源组中的SRS发送功率的模式为使用相同的发送功率并且SRS资源组间使用不同的发送功率。基站配置各个SRS发送功率时,可首先配置各个SRS资源组对应的SRS发送功率,进而可配置每个SRS资源中的各个BPL的SRS发送功率。其中,上述至少两个SRS资源组中至少一个SRS资源组的SRS的发送功率与其他SRS资源组的SRS的发送功率不同。基站可根据上述SRS发送功率的配置方式配置一个SRS资源组对应的SRS发送功率,其中,同一个SRS资源组具有相同的SRS发送功率。进一步的,基站配置其他SRS资源组与该SRS资源组间的功率差。其中,其他SRS资源组对应的SRS可相同,也可不同。每个SRS资源组的SRS发送功率均可根据上述实现方式确定,在此不再赘述。
S503,基站通过信令通知终端设备SRS的发送功率。
S504,终端设备根据所述基站的通知确定SRS的发送功率。
本申请实施例可降低SRS发送功率配置的信令开销,适用性更高。
参见图6,图6是本申请实施例提供的一种基站的结构示意图。本申请实施例提供的基站可包括:
处理单元61,用于配置功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置。
收发单元62,用于向终端设备发送所述处理单元61配置的所述功率控制参数。
在一些可行的实施方式中,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
在一些可行的实施方式中,所述基站与所述终端设备之间包括N个BPL,N为大于或者等于2的整数;
所述处理单元61还用于,用于根据所述BPL的波束测量结果,划分所述BPL集合;
其中,所述BPL集合的数目为M,M为大于或者等于1的整数,所述BPL集合包括至少一个所述BPL。
在一些可行的实施方式中,所述第一类型参数基于波束对链路BPL集合配置包括:
所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
在一些可行的实施方式中,所述第二类型参数基于BPL配置,包括:
所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
在一些可行的实施方式中,所述收发单元62还用于:
向所述终端设备发送第一信息;
其中,所述第一信息用于指示所述功率控制参数的类型。
在一些可行的实施方式中,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
所述第二类型参数包括:闭环功率控制参数delta。
在一些可行的实施方式中,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
在一些可行的实施方式中,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
在一些可行的实施方式中,所述收发单元62还用于:
指示所述终端设备的下行链路路损估计值PL的计算模式;
其中,所述计算模式包括第一计算模式和第二计算模式;
所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
具体实现中,本申请实施例提供的基站可执行上述实施例中各个步骤所描述的基站的实现方式,在此不再赘述。
参见图7,图7是本申请实施例提供的一种终端设备的结构示意图。本申请实施例提供的终端设备包括:
收发单元71,用于接收基站发送的功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置。
处理单元72,用于根据所述收发单元接收的所述功率控制参数确定BPL的上行功率。
在一些可行的实施方式中,所述功率控制参数还包括第二类型参数,所述第二类型参 数基于BPL配置。
在一些可行的实施方式中,所述第一类型参数基于波束对链路BPL集合配置包括:
所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
在一些可行的实施方式中,所述第二类型参数基于BPL配置包括:
所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
在一些可行的实施方式中,所述收发单元71还用于:
接收所述基站发送的第一信息;
其中,所述第一信息用于指示所述功率控制参数的类型。
在一些可行的实施方式中,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
所述第二类型参数包括:闭环功率控制参数delta。
在一些可行的实施方式中,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
在一些可行的实施方式中,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
在一些可行的实施方式中,所述处理单元71,还用于根据所述基站指示的下行链路路损估计值PL的计算模式,计算BPL集合对应的PL,或者BPL对应的PL;
其中,所述计算模式包括第一计算模式和第二计算模式;
所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
具体实现中,本申请实施例提供的终端设备可执行上述实施例中各个步骤所描述的终端设备的实现方式,在此不再赘述。
在本申请实施例中,基站可通过基于BPL集合配置的第一类型参数和基于BPL配置的第二类型参数,实现对终端设备的上行功率的控制,可降低配置上行功率的功率控制参数的信令开销,节省上行控制的资源消耗,适用性更高。
请参见图8,图8是本申请实施例提供的一种通信设备40的结构示意图。如图8所示,本申请实施例提供的通信设备40包括处理器401、存储器402、收发器403和总线系统404。
其中,上述处理器401、存储器402和收发器403通过总线系统404连接。
上述存储器402用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器402包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图8中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器402也可以是处理器401中的存储器,在此不做限制。
存储器402存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它 们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器401控制通信设备40的操作,处理器401可以是一个或多个中央处理器(central processing unit,CPU),在处理器401是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信设备40的各个组件通过总线系统404耦合在一起,其中总线系统404除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图8中将各种总线都标为总线系统404。为便于表示,图8中仅是示意性画出。
上述本申请实施例提供的图3或如图5,或者上述各个实施例揭示的终端设备的方法;或者上述本申请实施例提供的图3或如图5,或者上述各个实施例的基站的方法可以应用于处理器401中,或者由处理器401实现。处理器401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器401可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器402,处理器401读取存储器402中的信息,结合其硬件执行图3或者图5,或者上述各个实施例所描述的终端设备的方法步骤;或者结合其硬件执行图3或者图5,或者上述各个实施例所描述的基站的方法步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (38)

  1. 一种配置参数的方法,其特征在于,包括:
    基站配置功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
    所述基站向终端设备发送所述功率控制参数。
  2. 如权利要求1所述的方法,其特征在于,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
  3. 如权利要求1或2所述的方法,其特征在于,所述基站与所述终端设备之间包括N个BPL,N为大于或者等于2的整数;
    所述方法还包括:
    所述基站根据所述BPL的波束测量结果,划分所述BPL集合;
    其中,所述BPL集合的数目为M,M为大于或者等于1的整数,所述BPL集合包括至少一个所述BPL。
  4. 如权利要求3所述的方法,其特征在于,所述第一类型参数基于BPL集合配置包括:
    所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
  5. 如权利要求3或4所述的方法,其特征在于,所述第二类型参数基于BPL配置,包括:
    所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述基站向所述终端设备发送第一信息;
    其中,所述第一信息用于指示所述功率控制参数的类型。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
    所述第二类型参数包括:闭环功率控制参数delta。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
  9. 如权利要求1-6任一项所述的方法,其特征在于,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha, 所述第二类型参数包括:P02以及闭环功率控制参数delta。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述基站指示所述终端设备的下行链路路损估计值PL的计算模式;
    其中,所述计算模式包括第一计算模式和第二计算模式;
    所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
    所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
  11. 一种获取参数的方法,其特征在于,包括:
    终端设备接收基站发送的功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
    所述终端设备根据所述功率控制参数确定BPL的上行功率。
  12. 如权利要求11所述的方法,其特征在于,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一类型参数基于波束对链路BPL集合配置包括:
    所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
  14. 如权利要求11或12所述的方法,其特征在于,所述第二类型参数基于BPL配置包括:
    所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述基站发送的第一信息;
    其中,所述第一信息用于指示所述功率控制参数的类型。
  16. 如权利要求11-15任一项所述的方法,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
    所述第二类型参数包括:闭环功率控制参数delta。
  17. 如权利要求11-15任一项所述的方法,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
  18. 如权利要求11-15任一项所述的方法,其特征在于,基站侧期望接收到的信号功 率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
  19. 如权利要求11-18任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述基站指示的下行链路路损估计值PL的计算模式,计算BPL集合对应的PL,或者BPL对应的PL;
    其中,所述计算模式包括第一计算模式和第二计算模式;
    所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
    所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
  20. 一种基站,其特征在于,包括:
    处理器,用于配置功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
    收发器,用于向终端设备发送所述处理器配置的所述功率控制参数。
  21. 如权利要求20所述的基站,其特征在于,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
  22. 如权利要求20或21所述的基站,其特征在于,所述基站与所述终端设备之间包括N个BPL,N为大于或者等于2的整数;
    所述处理器还用于,根据所述BPL的波束测量结果,划分所述BPL集合;
    其中,所述BPL集合的数目为M,M为大于或者等于1的整数,所述BPL集合包括至少一个所述BPL。
  23. 如权利要求22所述的基站,其特征在于,所述第一类型参数基于BPL集合配置包括:
    所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
  24. 如权利要求22或23所述的基站,其特征在于,所述第二类型参数基于BPL配置,包括:
    所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
  25. 如权利要求20-24任一项所述的基站,其特征在于,所述收发器还用于:
    向所述终端设备发送第一信息;
    其中,所述第一信息用于指示所述功率控制参数的类型。
  26. 如权利要求20-25任一项所述的基站,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
    所述第二类型参数包括:闭环功率控制参数delta。
  27. 如权利要求20-25任一项所述的基站,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
  28. 如权利要求20-25任一项所述的基站,其特征在于,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
  29. 如权利要求20-28任一项所述的基站,其特征在于,所述收发器还用于:
    指示所述终端设备的下行链路路损估计值PL的计算模式;
    其中,所述计算模式包括第一计算模式和第二计算模式;
    所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
    所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
  30. 一种终端设备,其特征在于,包括:
    收发器,用于接收基站发送的功率控制参数,所述功率控制参数包括第一类型参数,所述第一类型参数基于波束对链路BPL集合配置;
    处理器,用于根据所述收发器接收的所述功率控制参数确定BPL的上行功率。
  31. 如权利要求30所述的终端设备,其特征在于,所述功率控制参数还包括第二类型参数,所述第二类型参数基于BPL配置。
  32. 如权利要求30或31所述的终端设备,其特征在于,所述第一类型参数基于BPL集合配置包括:
    所述第一类型参数对应于所述BPL集合,所述BPL集合包括的BPL使用相同的所述第一类型参数。
  33. 如权利要求30或31所述的终端设备,其特征在于,所述第二类型参数基于BPL配置包括:
    所述第二类型参数对应所述BPL,一个所述BPL使用一个所述第二类型参数。
  34. 如权利要求30-33任一项所述的终端设备,其特征在于,所述收发器还用于:
    接收所述基站发送的第一信息;
    其中,所述第一信息用于指示所述功率控制参数的类型。
  35. 如权利要求30-34任一项所述的终端设备,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0;
    所述第二类型参数包括:闭环功率控制参数delta。
  36. 如权利要求30-34任一项所述的终端设备,其特征在于,所述第一类型参数包括:路损补偿因子Alpha、基站侧期望接收到的信号功率P0和闭环功率控制参数delta。
  37. 如权利要求30-34所述的终端设备,其特征在于,基站侧期望接收到的信号功率P0包括第一部分P01和第二部分P02,所述第一类型参数包括P01和路损补偿因子Alpha,所述第二类型参数包括:P02以及闭环功率控制参数delta。
  38. 如权利要求30-37任一项所述的终端设备,其特征在于,
    所述处理器还用于,根据所述基站指示的下行链路路损估计值PL的计算模式,计算BPL集合对应的PL,或者BPL对应的PL;
    其中,所述计算模式包括第一计算模式和第二计算模式;
    所述第一计算模式为基于所述BPL集合计算PL,其中,所述BPL集合的BPL使用相同的所述PL;
    所述第二计算模式为基于所述BPL计算PL,其中,一个所述BPL使用一个所述PL。
PCT/CN2018/084378 2017-05-05 2018-04-25 配置参数的方法及装置 WO2018201941A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18794169.5A EP3609244A4 (en) 2017-05-05 2018-04-25 METHOD AND DEVICE FOR CONFIGURING PARAMETERS
US16/674,716 US20200068501A1 (en) 2017-05-05 2019-11-05 Parameter configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710312104.X 2017-05-05
CN201710312104.XA CN108811059B (zh) 2017-05-05 2017-05-05 配置参数的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,716 Continuation US20200068501A1 (en) 2017-05-05 2019-11-05 Parameter configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018201941A1 true WO2018201941A1 (zh) 2018-11-08

Family

ID=64015814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084378 WO2018201941A1 (zh) 2017-05-05 2018-04-25 配置参数的方法及装置

Country Status (4)

Country Link
US (1) US20200068501A1 (zh)
EP (1) EP3609244A4 (zh)
CN (1) CN108811059B (zh)
WO (1) WO2018201941A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062852A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 上行功率控制方法、装置及存储介质
EP4353025A1 (en) * 2021-06-11 2024-04-17 Telefonaktiebolaget LM Ericsson (publ) Method and network node for uplink power control in wireless communication networks
US11909496B2 (en) * 2021-11-23 2024-02-20 Qualcomm Incorporated Beam switching in near-field operations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750428A (zh) * 2005-11-02 2006-03-22 中兴通讯股份有限公司 高速共享控制信道和高速共享信息信道功率控制实现方法
CN101677255A (zh) * 2008-09-19 2010-03-24 中兴通讯股份有限公司 功率控制参数传递方法、装置以及终端
CN103945504A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 功率控制方法及设备
WO2016200454A2 (en) * 2015-03-20 2016-12-15 Qualcomm Incorporated Method and apparatus for satellite user terminal antenna pointing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559240B2 (ja) * 2005-01-13 2010-10-06 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線基地局、無線回線制御局及び電力制御方法
US8583160B2 (en) * 2009-05-04 2013-11-12 Qualcomm Incorporated Uplink power control for wireless communication
CN102917436B (zh) * 2011-08-02 2017-03-15 上海贝尔股份有限公司 在共小区标识的异构网络中进行上行功率控制的方法
KR102016685B1 (ko) * 2011-10-19 2019-08-30 삼성전자 주식회사 무선통신 시스템에서 상향링크 제어 방법 및 장치
KR102118693B1 (ko) * 2013-06-24 2020-06-03 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 적응적 송신 빔 패턴 결정 장치 및 방법
US11595905B2 (en) * 2017-03-22 2023-02-28 Idac Holdings, Inc. Methods for performing power control in new radio (NR) systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750428A (zh) * 2005-11-02 2006-03-22 中兴通讯股份有限公司 高速共享控制信道和高速共享信息信道功率控制实现方法
CN101677255A (zh) * 2008-09-19 2010-03-24 中兴通讯股份有限公司 功率控制参数传递方法、装置以及终端
CN103945504A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 功率控制方法及设备
WO2016200454A2 (en) * 2015-03-20 2016-12-15 Qualcomm Incorporated Method and apparatus for satellite user terminal antenna pointing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609244A4 *

Also Published As

Publication number Publication date
CN108811059B (zh) 2021-08-31
EP3609244A4 (en) 2020-04-15
US20200068501A1 (en) 2020-02-27
CN108811059A (zh) 2018-11-13
EP3609244A1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
US9998999B2 (en) Techniques for coordinated uplink power control
EP2761940B1 (en) Techniques for uplink power control
JP6784262B2 (ja) 基地局、無線端末、及びこれらの方法
JP2023532239A (ja) 複数のtrpへのアップリンク送信のための電力制御
JP7074848B2 (ja) 複数のベースグラフを用いたtbs判定
WO2018171666A1 (zh) 信息收发方法和设备
WO2018201941A1 (zh) 配置参数的方法及装置
WO2021031048A1 (zh) 一种通信方法及装置
US11063734B2 (en) Configuration of periodic signals in a time division duplex communication system
WO2022022517A1 (zh) 确定传输功率的方法及装置
JP2024515496A (ja) 非コードブックベースのマルチtrpのpuschのためのシステムと方法
WO2019096278A1 (zh) 信号测量的方法和设备
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
US20230171704A1 (en) Communication method and apparatus
CN111771338B (zh) 用于物理上行链路共享信道跳频分配的方法和装置
WO2021062836A1 (zh) 功率调整方法及装置
WO2020034969A1 (zh) 信号传输方法、波束确定方法及其装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2019096273A1 (zh) 一种信息发送、接收的方法及装置
EP4055756A1 (en) Methods for determining minimum scheduling offset application delay
WO2019096316A1 (zh) 通信方法、通信装置和系统
WO2024020822A1 (zh) 上行功率控制方法、装置、设备及存储介质
US20210234730A1 (en) Methods and Devices for Channel Estimation
WO2023202530A1 (zh) 一种功率确定方法、装置、芯片及模组设备
WO2024026858A1 (zh) 上行数据发送、上行数据接收装置以及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794169

Country of ref document: EP

Effective date: 20191104