WO2021093858A1 - 传输物理层协议数据单元的方法和装置 - Google Patents

传输物理层协议数据单元的方法和装置 Download PDF

Info

Publication number
WO2021093858A1
WO2021093858A1 PCT/CN2020/128724 CN2020128724W WO2021093858A1 WO 2021093858 A1 WO2021093858 A1 WO 2021093858A1 CN 2020128724 W CN2020128724 W CN 2020128724W WO 2021093858 A1 WO2021093858 A1 WO 2021093858A1
Authority
WO
WIPO (PCT)
Prior art keywords
ltf80mhz
ltf 80mhz
80mhz
ltf
part1
Prior art date
Application number
PCT/CN2020/128724
Other languages
English (en)
French (fr)
Inventor
梁丹丹
顾执
林伟
淦明
类先富
周正春
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022528099A priority Critical patent/JP2023502384A/ja
Priority to BR112022009246A priority patent/BR112022009246A2/pt
Priority to KR1020227019506A priority patent/KR20220098215A/ko
Priority to EP20886709.3A priority patent/EP4050829B1/en
Priority to EP23213885.9A priority patent/EP4358479A3/en
Publication of WO2021093858A1 publication Critical patent/WO2021093858A1/zh
Priority to US17/744,133 priority patent/US20220311566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of wireless communication technology, and more specifically, to a method and device for transmitting physical layer protocol data units.
  • IEEE 802.11ax The Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard has become difficult To meet user needs in terms of large throughput, low jitter, and low latency, there is an urgent need to develop the next-generation wireless local area network (WLAN) technology, that is, the IEEE 802.11be standard.
  • WLAN wireless local area network
  • IEEE 802.11be will use ultra-large bandwidths, such as 240MHz and 320MHz, to achieve ultra-high transmission rates and support scenarios for ultra-dense users. Then, for a larger channel bandwidth, how to design a long training field (LTF) sequence is a problem worthy of concern.
  • LTF long training field
  • This application provides a method and device for transmitting a physical layer protocol data unit, which can design a long training domain sequence for a larger channel bandwidth.
  • a method for transmitting a physical layer protocol data unit including: generating a physical layer protocol data unit PPDU, the PPDU includes a long training field, and the length of the frequency domain sequence of the long training field is greater than the first length
  • the first length is the length of the frequency domain sequence of the long training domain of the PPDU transmitted on a channel with a bandwidth of 160 MHz; the PPDU is sent on a target channel, wherein the bandwidth of the target channel is greater than 160 MHz.
  • the method of the embodiment of the present application can design a long training sequence or frequency domain sequence corresponding to a larger channel bandwidth, and can support the receiving end pair to transmit data on a larger channel bandwidth.
  • the long training sequence can be obtained based on the long training sequence of the existing channel bandwidth, and through simulation calculation, such as adjusting parameters, a long training sequence with better performance can be obtained.
  • the long training field can be obtained based on the long training sequence. According to the embodiment of the present application, not only can the actual larger channel bandwidth be satisfied, but also through exhaustive simulation of parameters, it is verified that the long training sequence provided by the embodiment of the present application has a smaller peak-to-average power value PAPR and better performance. In turn, the spectrum utilization rate of the system is improved.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 4x
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 4x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_4x , 0 23 , -HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x' ⁇ ; or, ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ HE-LTF80MHz_4x, 0 23
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 1x
  • the frequency domain sequence of the long training domain is: ⁇ HE-LTF80MHz_1x, 0 23 , HE-LTF80MHz_1x, 0 23 , -HE-LTF80MHz_1x ⁇ ; among them, HE-LTF80MHz_1x can be referred to in the specific embodiment section, and 0 23 represents 23 consecutive zeros.
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 1x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_1x , 0 23, HE-LTF80MHz_1x, 0 23, HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x ⁇ ; or, ⁇ - HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23 ,HE-LTF80MHz_1x ⁇ ;
  • HE-LTF80MHz_1x can refer to the specific embodiment section, 0 23 represents 23 consecutive 0s.
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, HE -LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE -LTF 80MHz_part5_2x , 0 23 , -HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x, -
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_2x ,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x, 0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE -LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE- LTF 80MHz_part5_2x , 0 23 , -HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , -HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x, -HE
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF160MHz_2x ,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x, 0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 , HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LT
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • another method for transmitting a physical layer protocol data unit includes: receiving a physical layer protocol data unit PPDU on a target channel, the PPDU including a long training field, and the frequency domain sequence of the long training field The length is greater than the first length, and the first length is the length of the frequency domain sequence of the long training domain of the PPDU transmitted on a channel with a bandwidth of 160 MHz, wherein the bandwidth of the target channel is greater than 160 MHz; and the PPDU is parsed.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 4x
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 4x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_4x , 0 23 , -HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x' ⁇ ; or, ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ HE-LTF80MHz_4x, 0 23
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 1x
  • the frequency domain sequence of the long training domain is: ⁇ HE-LTF80MHz_1x, 0 23 , HE-LTF80MHz_1x, 0 23 , -HE-LTF80MHz_1x ⁇ ; among them, HE-LTF80MHz_1x can be referred to in the specific embodiment section, and 0 23 represents 23 consecutive zeros.
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 1x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_1x , 0 23, HE-LTF80MHz_1x, 0 23, HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x ⁇ ; or, ⁇ - HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23 ,HE-LTF80MHz_1x ⁇ ;
  • HE-LTF80MHz_1x can refer to the specific embodiment section, 0 23 represents 23 consecutive 0s.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, HE -LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE -LTF 80MHz_part5_2x , 0 23 , -HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x, -
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_2x ,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x, 0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE -LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE- LTF 80MHz_part5_2x , 0 23 , -HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , -HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x, -HE
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF160MHz_2x ,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x, 0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 , HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LT
  • a device for transmitting a physical layer protocol data unit is provided, and the device is configured to execute the method provided in the first aspect.
  • the device may include a module for executing the first aspect and any one of the possible implementation manners of the first aspect.
  • a device for transmitting a physical layer protocol data unit is provided, and the device is configured to execute the method provided in the second aspect.
  • the device may include a module for executing the second aspect and any possible implementation manner of the second aspect.
  • a device for transmitting a physical layer protocol data unit including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the foregoing first aspect and any one of the possible implementation methods of the first aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is an access point.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in an access point.
  • the communication interface may be an input/output interface.
  • the device is a station.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a site.
  • the communication interface may be an input/output interface.
  • the device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a device for transmitting a physical layer protocol data unit including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing second aspect and any one of the possible implementation methods of the second aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is an access point.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in an access point.
  • the communication interface may be an input/output interface.
  • the device is a station.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a site.
  • the communication interface may be an input/output interface.
  • the device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus When the computer program is executed by an apparatus, the apparatus enables the apparatus to implement the first aspect and the method in any one of the possible implementation manners of the first aspect .
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus When the computer program is executed by an apparatus, the apparatus enables the apparatus to implement the second aspect and the method in any one of the possible implementation manners of the second aspect .
  • a computer program product containing instructions is provided, when the instructions are executed by a computer, the device implements the first aspect and the method provided in any one of the possible implementation manners of the first aspect.
  • a computer program product containing instructions which when executed by a computer, causes an apparatus to implement the second aspect and the method provided in any one of the possible implementation manners of the second aspect.
  • a communication system including the aforementioned access point and station.
  • FIG. 1 is a schematic diagram of a communication system applicable to the method of the embodiment of the present application
  • FIG. 2 is an internal structure diagram of an access point applicable to an embodiment of the present application
  • Figure 3 is a diagram of the internal structure of a site applicable to an embodiment of the present application.
  • Figure 4 is a schematic diagram of OFDMA resource block distribution under a bandwidth of 80MHz
  • FIG. 5 is a schematic flowchart of a method for transmitting a physical layer protocol data unit provided by an embodiment of the present application
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application
  • FIG. 7 is another schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • WLAN wireless local area network
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD Frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX WiMAX
  • the embodiment of this application can be applied to wireless local area network (WLAN), and the embodiment of this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 currently adopted by WLAN. Any agreement in a series of agreements.
  • the WLAN may include one or more basic service sets (BSS), and the network nodes in the basic service set include access points (AP) and stations (station, STA).
  • BSS basic service sets
  • AP access points
  • STA stations
  • the initiating device and the responding device in the embodiment of the present application may be a user station (STA) in a WLAN, and the user station may also be called a system, a user unit, an access terminal, a mobile station, a mobile station, a remote station, or a remote terminal.
  • STA user station
  • the STA can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless local area network (such as Wi-Fi) communication-enabled handheld devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Wi-Fi wireless local area network
  • the initiating device and the responding device in the embodiments of the present application may also be APs in the WLAN.
  • the AP can be used to communicate with the access terminal through a wireless local area network, and transmit the data of the access terminal to the network side, or transfer data from the network side. The data is transmitted to the access terminal.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the scenario system shown in FIG. 1 may be a WLAN system.
  • the WLAN system in FIG. 1 may include one or more APs and one or more STAs.
  • FIG. 1 takes one AP and three STAs as an example.
  • Various standards can be used for wireless communication between AP and STA. For example, single-user multiple-input multiple-output (SU-MIMO) technology or multi-user multiple-input multiple-output (MU) technology can be used between AP and STA.
  • SU-MIMO single-user multiple-input multiple-output
  • MU multi-user multiple-input multiple-output
  • -MIMO technology for wireless communication.
  • AP is also called wireless access point or hotspot.
  • APs are the access points for mobile users to enter the wired network. They are mainly deployed in homes, buildings, and campuses, and they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired network and wireless network, and its main function is to connect each wireless network client together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a wireless fidelity (wireless fidelity, WiFi) chip.
  • the AP may be a device supporting multiple WLAN standards such as 802.11.
  • Figure 2 shows the internal structure diagram of the AP product, where the AP can be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a media access control (media access control, MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used to process physical layer signals. Process MAC layer signals.
  • the 802.11 standard focuses on the PHY and MAC parts, and the embodiments of this application focus on the protocol design on the MAC and PHY.
  • STA products are usually terminal products that support the 802.11 series of standards, such as mobile phones, laptops, etc.
  • Figure 3 shows the structure of a single antenna STA.
  • STAs can also be multi-antenna, and can be two The device above the antenna.
  • the STA can include a physical layer (PHY) processing circuit and a media access control (media access control, MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used For processing MAC layer signals.
  • IEEE 802.11ax The Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard has become difficult To meet user needs in terms of large throughput, low jitter, and low latency, there is an urgent need to develop the next-generation wireless local area network (WLAN) technology, that is, the IEEE802.11be standard.
  • IEEE 802.11be continues to use the orthogonal frequency division multiple access (OFDMA) technology used in IEEE 802.11ax.
  • OFDMA technology is the basis of the orthogonal frequency division multiplexing (OFDM) technology.
  • the above-developed technology is a combination of OFDM technology and frequency division multiple access (FDMA) technology, which is suitable for multi-user access.
  • This technology has been adopted by LTE due to its simple implementation and high spectrum utilization.
  • International standards such as 5G and 5G are adopted.
  • OFDMA technology divides the physical channel into multiple resource blocks, each resource block includes multiple subcarriers (subchannels), and each user can occupy one resource block for data transmission. Therefore, multiple users can transmit in parallel, reducing the time overhead and collision probability of multiple users competing for access.
  • OFDMA technology because the sub-carriers overlap each other, the spectrum utilization rate is greatly improved.
  • IEEE 802.11be will use ultra-large bandwidths, such as 240MHz and 320MHz, to achieve ultra-high transmission rates and support scenarios for ultra-dense users.
  • the maximum bandwidth in the IEEE 802.11ax standard only supports 160MHz. Therefore, it is necessary to design a new long training domain sequence for a larger channel bandwidth.
  • the embodiments of the present application provide a method and device for transmitting a physical layer protocol data unit, which can design a long training domain sequence for a larger channel bandwidth.
  • Wireless communication signals have limited bandwidth.
  • the bandwidth can be divided into multiple frequency components within the channel bandwidth according to a certain frequency interval. These components are called subcarriers.
  • Resource block distribution can also be understood as the distribution of subcarriers carrying data, and different channel bandwidths can correspond to different tone plans.
  • OFDMA and multiple user multiple input multiple output (MU-MIMO) technology the AP divides the spectrum bandwidth into several resource units (RU).
  • the IEEE802.11ax protocol stipulates that the spectrum bandwidth of 20MHz, 40MHz, 80MHz and 160MHz is divided into multiple types of resource blocks, including 26 subcarrier resource blocks, 52 subcarrier resource blocks, 106 subcarrier resource blocks, and 242 subcarrier resource blocks (20MHz The largest resource block in the bandwidth), 484 subcarrier resource blocks (the largest resource block in a 40MHz bandwidth), 996 subcarrier resource blocks (the largest resource block in an 80MHz bandwidth), and a 1992 subcarrier resource block (the largest resource block in a 160MHz bandwidth).
  • Each RU is composed of continuous subcarriers, for example, a 26 subcarrier resource block is composed of 26 continuous subcarrier resource blocks.
  • Fig. 4 exemplarily shows a schematic diagram of a tone plan under a bandwidth of 80 MHz.
  • the left-band sub-carriers and the right-band sub-carriers are located at the edge of the transmission frequency band, which are used as guard sub-carriers to reduce the impact of transmission filtering on the data and pilot sub-carriers.
  • DC subcarriers are empty subcarriers (that is, subcarriers that do not carry data or information), and are used by mobile devices to locate the center of the OFDM frequency band.
  • Null subcarriers are subcarriers to which no information is allocated.
  • the left-band sub-carriers, right-band sub-carriers, DC sub-carriers, and empty sub-carriers can be collectively referred to as inter-RU residual sub-carriers (leftover tone).
  • the number of large RU sub-carriers corresponds to the multiple small RUs that can be accommodated and the residual inter-RU sub-carriers.
  • the total number of carriers is the same.
  • multi-user data packets are a combination of RUs of various sizes.
  • the AP allocates one RU to each user.
  • the optional RUs that may be allocated to the user are as follows:
  • An RU composed of 26 consecutive sub-carriers, including: 24 data sub-carriers and 2 pilot sub-carriers;
  • An RU composed of 52 consecutive sub-carriers, including: 48 data sub-carriers and 4 pilot sub-carriers;
  • An RU composed of 106 consecutive subcarriers, including: 24 data subcarriers and 2 pilot subcarriers;
  • An RU composed of 242 consecutive subcarriers, including: 234 data subcarriers and 8 pilot subcarriers;
  • An RU composed of 484 consecutive sub-carriers, including: 468 data sub-carriers and 16 pilot sub-carriers;
  • An RU composed of 996 consecutive sub-carriers, including: 980 data sub-carriers and 16 pilot sub-carriers.
  • the 160MHz tone plan can be regarded as composed of two 80MHz tone plans.
  • the 240MHz tone plan can be regarded as the composition of three 80MHz tone plans.
  • the 320MHz tone plan can be regarded as consisting of four 80MHz tone plans, which will not be repeated here.
  • the transmission mode of the HE-LTF sequence in the IEEE 802.11ax standard used for channel estimation can be divided into three modes: 1x, 2x, and 4x.
  • 4x mode means that the subcarrier number mapped by the HE-LTF sequence is the same as the sequence number of the subcarrier in the tone plan of the data part
  • the 2x mode means that the HE-LTF sequence number corresponds to the sequence number of 4x HE-LTF Divide by 2, that is, the subcarrier number mapped by the HE-LTF sequence is the same as half of the sequence number of the subcarrier in the tone plan of the data part
  • 1x mode means that the HE-LTF sequence number corresponds to 4x the sequence number of HE-LTF divided by Take 4, that is, the subcarrier number mapped by the HE-LTF sequence is the same as a quarter of the sequence number of the subcarrier in the tone plan of the data part.
  • the long training domain (LTF) sequence is the frequency domain sequence of the long training domain, and can also be referred to as the long training sequence for short.
  • the LTF sequence is mainly used for accurate frequency offset estimation and channel estimation.
  • different LTF sequences can be defined.
  • the high efficiency long training field (HE-LTF) sequence defined by IEEE 802.11ax supports a maximum channel bandwidth of 160 MHz.
  • the channel bandwidth targeted by this application is greater than 160MHz. Therefore, in order to facilitate the distinction, the embodiment of this application refers to the LTF sequence with a larger bandwidth supported by IEEE 802.11be as extremely high throughput-LTF (EHT-LTF). ).
  • EHT-LTF extremely high throughput-LTF
  • EHT-LTF extremely high throughput-LTF
  • the HE-LTF sequence under 20MHz channel bandwidth and 1x mode is marked as HE-LTF20MHz_1x
  • the HE-LTF sequence under 40MHz channel bandwidth and 1x mode is marked as HE-LTF40MHz_1x
  • the HE-LTF sequence under 80MHz channel bandwidth and 1x mode is marked as HE-LTF40MHz_1x
  • the LTF sequence is marked as HE-LTF80MHz_1x
  • the HE-LTF sequence under 160MHz channel bandwidth and 1x mode is marked as HE-LTF160MHz_1x.
  • HE-LTF20MHz_1x ⁇ 0,0,-1,0,0,0,+1,0,0,0,0,+1,0,0,0,-1,0,0,0,+1,0, 0,0,-1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,- 1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,-1,0,0 ,0,0,+1 ,0,0,0,0,-1,0,0,0,0,+1 ,0,0,0,0,-1,0,0,0,0,+1 ,0,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,0,-1,0,
  • HE-LTF40MHz_1x ⁇ +1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,0,-1,0, 0,0,+1,0,0,0,0,0,0,-1,0,0,0,0,0,0,+ 1,0,0,0,-1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,0, +1,0,0,0,0,+1,0,0,0,-1,0,0,0,0,0, +1,0,0,0,0,+1,0,0,0,0,
  • HE-LTF80MHz_1x ⁇ -1,0,0,0,-1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,+1,0,0,0,0,0,0,0,0,+ 1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1
  • HE-LTF160MHz_1x ⁇ HE-LTF80MHz_lower_1x,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HE-LTF80MHz_upper_1x ⁇ ;
  • HE-LTF80MHz_lower_1x ⁇ HE-LTF80MHz_left_1x,0,HE-LTF80MHz_right_1x ⁇ ;
  • HE-LTF80MHz_upper_1x ⁇ HE-LTF80MHz_left_1x,0,-HE-LTF80MHz_right_1x ⁇ ;
  • HE-LTF80MHz_left_1x ⁇ -1,0,0,0,-1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,0,-1,0,0,0,0,0,+ 1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1
  • HE-LTF80MHz_right_1x ⁇ 0,0,0,-1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,-1, 0,0,0,+1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,0,0, -1,0,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,0,0, -1,0,0,0,0,+1,0,0,
  • the HE-LTF sequence in the 20MHz channel bandwidth and 2x mode is marked as HE-LTF20MHz_2x
  • the HE-LTF sequence in the 40MHz channel bandwidth and 2x mode is marked as HE-LTF40MHz_2x
  • the HE-LTF sequence in the 80MHz channel bandwidth and 2x mode is marked as HE-LTF40MHz_2x.
  • the LTF sequence is marked as HE-LTF80MHz_2x
  • the HE-LTF sequence under 160MHz channel bandwidth and 2x mode is marked as HE-LTF160MHz_2x.
  • HE-LTF20MHz_2x ⁇ -1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0, -1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,
  • HE-LTF40MHz_2x ⁇ +1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0, -1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0, +1,0,+1,0,-1,0,-1,0,-1,0,-1,0, +1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0, +1,0,-1,0, +1,0,-1,0, +1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0,
  • HE-LTF80MHz_2x ⁇ +1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0, +1,0,+1,0,-1,0,-1,0,+1,0,+1,0, -1,0,+1,0,+1,0, -1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0, +1,0,-1
  • HE-LTF160MHz_2x ⁇ HE-LTF80MHz_lower_2x,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HE-LTF80MHz_upper_2x ⁇ ;
  • HE-LTF80MHz_lower_2x ⁇ HE-LTF 80MHz_part1_2x ,HE-LTF 80MHz_part2_2x ,HE-LTF 80MHz_part3_2x ,LTF 80MHz_part4_2x ,LTF 80MHz_part5_2x ⁇ ;
  • HE-LTF80MHz_upper_2x ⁇ HE-LTF 80MHz_part1_2x ,-HE-LTF 80MHz_part2_2x ,HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ⁇ ;
  • HE-LTF 80MHz_part1_2x ⁇ +1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0 ,+1,0,-1,0,-1,0,+1,0,+1,0 ,-1,0,+1,0,+1,0 ,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0 ,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0 ,+1,0,-1,0,+1,0,-1,0,-1,0 ,+1,0,-1,0,+1,0,-1,0,0 ,+1,0,-1,0,+1,0,-1,0,0,+1,0,-1,0,+1,0,-1,0,0,+1,0,-1,0,0,+1,0,-1,0,
  • HE-LTF 80MHz_part2_2x ⁇ +1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0 ,-1,0,+1,0 ,-1,0,+1,0 ,-1,0,+1,0,+1,0,-1,0,+1,0 ,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0 ,-1,0,+1,0,+1,0,+1,0,-1,0 ,-1,0,+1,0,+1,0,+1,0,-1,0 ,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,
  • HE-LTF 80MHz_part3_2x ⁇ +1,0,-1,0,-1,0,-1,0,+1,0,+1,0,0,+1,0,0,0,0,0,0 ,0 ,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1 ⁇ ;
  • HE-LTF 80MHz_part4_2x ⁇ 0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1 ,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1 ,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0
  • HE-LTF 80MHz_part5_2x ⁇ 0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,+1,0,-1,0,-1 ,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1,0,-1 ,0,+1,0,+1
  • the HE-LTF sequence under 20MHz channel bandwidth and 4x mode is marked as HE-LTF20MHz_4x
  • the HE-LTF sequence under 40MHz channel bandwidth and 4x mode is marked as HE-LTF40MHz_4x
  • the HE-LTF sequence under 80MHz channel bandwidth and 4x mode is marked as HE-LTF40MHz_4x
  • the LTF sequence is marked as HE-LTF80MHz_4x
  • the HE-LTF sequence in the 160MHz channel bandwidth and 4x mode is marked as HE-LTF160MHz_4x.
  • HE-LTF20MHz_4x ⁇ -1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1, +1,+1,-1,-1,-1,+1,+1,-1,+1,-1 ,+1,-1 ,+1,+1,-1,+1,-1,- 1,+1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,- 1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,-1,-1,+1, -1,-1,+1, +1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,+ 1,+1,+1,-1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,+1,-1,+1,-1,-1,
  • HE-LTF40MHz_4x ⁇ +1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,- 1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,+1,+1,-1,-1,+1, -1,+1,-1,+1,+1,-1,+1,+1,-1 ,-1,+1,+1,+1,-1 ,-1,-1,+1,+1,+1,-1 ,-1,-1,+1,+1,+1,-1 ,-1,-1,+1,+1,+1,-1 ,-1,-1,+1,+1,+1,-1 ,-1,-1,+1,+1,+1,-1 ,-1,-1,+1,+1,+1,-1 ,-1,-1,
  • HE-LTF80MHz_4x ⁇ +1,+1,-1,+1,-1,+1,-1,-1,+1,-1,-1,-1,+1,+1, -1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1 ,-1,+1,+1,+ 1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1, -1,+1,+1,+1, -1,+1,+1,+1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1
  • HE-LTF160MHz_4x ⁇ LTF 80MHz_lower_4x ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,LTF 80MHz_upper_4x ⁇ ;
  • HE-LTF 80MHz_lower_4x ⁇ HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x ⁇ ;
  • HE-LTF 80MHz_upper_4x ⁇ HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x ⁇ ;
  • HE-LTF80MHz_left_4x ⁇ +1,+1,-1,+1,-1,+1,-1,-1,+1,-1,-1,-1,+1,+1, -1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1 ,-1,+1,+1,+ 1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1, -1,+1,+1,+1, -1,+1,+1,+1, -1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,+1,
  • HE-LTF80MHz_right_4x ⁇ 0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,- 1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,-1,+1,+1,-1,-1 ,-1,-1,-1,-1,-1,-1,+ 1,-1,-1,+1,+1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+ 1,-1,-1,+1,+1,+1,-1,+1,+1,-1,+1,-1,-1,
  • Peak to average power ratio can refer to the ratio of the instantaneous peak power of a continuous signal to the average signal power within a symbol. It can be expressed by the following formula:
  • X i represents the time domain discrete value of a set of sequences
  • max(X i 2 ) represents the maximum value of the time domain discrete value squared
  • mean(X i 2 ) represents the average value of the time domain discrete value squared.
  • the OFDM system has the disadvantage of high PAPR, especially in the large bandwidth, more sub-carriers will lead to more severe PAPR, high PAPR will cause signal nonlinear distortion, reduce system performance, so when designing the sequence, the sequence is required The smaller the PAPR, the better.
  • a ⁇ +1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1 ,+1,-1,+1,+1,+1,-1,-1,+1,+1 ⁇
  • b ⁇ +1,+1, +1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1 ⁇ .
  • protocol can refer to standard protocols in the communication field, for example, it can include LTE protocol, NR protocol, WLAN protocol, and related protocols used in future communication systems. This application does not Make a limit.
  • pre-acquisition may include indication by device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device (for example, including sites and access points). This application does not make any specific implementation methods. limited.
  • the pre-defined can refer to the definition in the agreement.
  • the “saving” involved in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • STA can be the sender and AP can be the receiver
  • AP can be the sender and STA can be the receiver
  • other transmission scenarios for example, data between AP and AP
  • one AP can be used as the sender and the other AP can be used as the receiver
  • another example is the uplink transmission between STA and STA, where one STA can be used as the sender and the other STA can be used as the receiver. Therefore, the following describes the embodiments of the present application according to the sending end and the receiving end.
  • FIG. 5 is a schematic flowchart of a method 500 for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the method 500 shown in FIG. 5 may include the following steps.
  • the sending end generates a physical layer protocol data unit PPDU, the PPDU includes a long training domain, the length of the frequency domain sequence of the long training domain is greater than a first length, and the first length is the length of the PPDU transmitted on a channel with a bandwidth of 160 MHz.
  • S520 The sending end sends the PPDU on a target channel, where the bandwidth of the target channel is greater than 160 MHz.
  • the receiving end receives the PPDU on the target channel.
  • the method 500 may further include step S530.
  • S530 The receiving end parses the PPDU.
  • the specific analysis method please refer to the existing description, which is not limited.
  • the above-mentioned long training field may also be referred to as a long training field, which is uniformly represented by the long training field below.
  • the long training field corresponding to the bandwidth of the target channel is represented by EHT-LTF.
  • EHT-LTF is used to indicate that the next-generation WLAN technology can support a long training domain corresponding to a bandwidth greater than 160 MHz, and its specific name does not limit the protection scope of the embodiments of the present application.
  • the first length is used to represent the length of the frequency domain sequence corresponding to a bandwidth of 160 MHz.
  • the length of the frequency domain sequence of the long training domain is greater than the first length.
  • the length of the frequency domain sequence of the EHT-LTF is greater than the length of the frequency domain sequence of the HE-LTF with a channel bandwidth of 160 MHz.
  • a 160MHz HE-LTF can be formed by multiplying two 80MHz HE-LTF by a twiddle factor
  • a 240MHz EHT-LTF can be formed by three 80MHz HE-LTF multiplied by a twiddle factor.
  • 320MHz EHT-LTF can be spliced by 4 80MHz HE-LTF multiplied by the twiddle factor, so the length of the EHT-LTF frequency domain sequence is greater than that of the HE-LTF frequency domain sequence with a channel bandwidth of 160MHz length.
  • the length of the frequency domain sequence of the long training domain is greater than the first length, or it can also be understood that the number of frequency domain values of the EHT-LTF is greater than the number of frequency domain values of the HE-LTF of 160 MHz.
  • the length of the frequency domain sequence of the long training domain is greater than the first length, or it can also be understood that the number of subcarrier numbers corresponding to the EHT-LTF is greater than the number of subcarrier numbers corresponding to the 160MHz HE-LTF.
  • there are 3072 subcarriers in 240MHz bandwidth then the 3072 subcarriers correspond to 3072 frequency domain values
  • there are 1024 subcarriers in 160MHz bandwidth then the 1024 subcarriers correspond to 1024 frequency domain values.
  • the 240MHz EHT-LTF The number of frequency domain values is greater than the number of frequency domain values of the HE-LTF of 160 MHz, and the number of subcarrier numbers of the EHT-LTF of 240 MHz is greater than the number of subcarrier numbers of the HE-LTF of 160 MHz.
  • the bandwidth of the target channel is greater than 160 MHz. It should be understood that the bandwidth of the target channel may also be any bandwidth greater than 160 MHz, for example, the bandwidth of the target channel is 200 MHz, 240 MHz, 280 MHz, or 320 MHz, and so on.
  • the EHT-STF of the bandwidth of the target channel in the embodiment of the present application may be obtained through simulation calculation.
  • the sending end can be calculated by using a corresponding formula based on a sequence specified by the protocol (for example, the HE-LTF sequence in IEEE802.11ax).
  • the sending end may be calculated by using a corresponding formula based on a stored or newly generated sequence, which is not limited in the embodiment of the present application.
  • a long training sequence or frequency domain sequence corresponding to a larger channel bandwidth can be designed, which can support the receiving end pair to transmit data on a larger channel bandwidth.
  • the long training sequence can be obtained based on the long training sequence of the existing channel bandwidth, and through simulation calculation, such as adjusting parameters, a long training sequence with better performance can be obtained.
  • the long training field can be obtained based on the long training sequence. According to the embodiment of the present application, not only can the actual larger channel bandwidth be satisfied, but also through exhaustive simulation of parameters, it is verified that the long training sequence provided by the embodiment of the present application has a smaller peak-to-average power value PAPR and better performance. In turn, the spectrum utilization rate of the system is improved.
  • Case 1 The transmission mode is 4x mode
  • Embodiment 1 The sequence in IEEE 802.11ax can be used to construct the sequence in IEEE 802.11be, so as to make the compatibility stronger and easier to implement.
  • EHT-LTF160MHz_4x ⁇ +HE-LTF80MHz_4x,0 23 ,+HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF160MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 160MHz bandwidth EHT-LTF sequence in the 4x mode is 6.9295dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x',0 23 , ⁇ HE-LTF80MHz_4x ⁇ , through computer search, traverse the PAPR of all possible sequences, Select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x',0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 4x mode is 7.8474dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x ⁇ , search through the computer, traverse the PAPR of all possible sequences, from Select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 7.9354dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x',0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x' ⁇ , search through the computer, traverse the PAPR of all possible sequences , Select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x',0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.0238dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x',0 23 , ⁇ HE-LTF80MHz_4x',0 23 , ⁇ HE-LTF80MHz_4x' ⁇ , search by computer and traverse all possible sequences PAPR, select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x',0 23 ,-HE-LTF80MHz_4x',0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.9900dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x' ⁇ , search through the computer, traverse the PAPR of all possible sequences, Select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 7.9354dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x ⁇ , search and traverse by computer
  • the PAPR of all possible sequences, selecting the sequence with the smaller PAPR from all possible sequences, can be determined:
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 9.2954dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x',0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x' ⁇ , search by computer , Traverse the PAPR of all possible sequences, and select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x',0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 8.9288dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x',0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x ⁇ , search by computer, Traverse the PAPR of all possible sequences and select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x',0 23 ,-HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x',0 23 ,-HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x',0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 9.2472dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x' ⁇ , search by computer, Traverse the PAPR of all possible sequences and select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,-HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x,0 23 ,HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 9.2954dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF160MHz_4x,0 23 , ⁇ HE-LTF80MHz_4x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF240MHz_4x ⁇ HE-LTF160MHz_4x,0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF160MHz_4x, 0 23 , HE-LTF80MHz_4x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 4x mode is 7.8474dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 , ⁇ HE-LTF160MHz_4x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF160MHz_4x ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,HE-LTF160MHz_4x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 7.9354dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF160MHz_4x',0 23 ,-HE-LTF80MHz_4x ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF160MHz_4x', 0 23 , HE-LTF80MHz_4x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.2241dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x,0 23 ,-HE-LTF160MHz_4x' ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x,0 23 ,HE-LTF160MHz_4x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.2241dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF160MHz_4x',0 23 ,HE-LTF160MHz_4x' ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF160MHz_4x', 0 23 , -HE-LTF160MHz_4x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.0238dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF80MHz_4x',0 23 ,-HE-LTF160MHz_4x ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF80MHz_4x', 0 23 , HE-LTF160MHz_4x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.0401dB.
  • EHT-LTF240MHz_4x ⁇ HE-LTF160MHz_4x,0 23 ,-HE-LTF80MHz_4x' ⁇ ; or,
  • EHT-LTF240MHz_4x ⁇ -HE-LTF160MHz_4x,0 23 ,HE-LTF80MHz_4x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the 4x mode is 8.9900dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF160MHz_4x,0 23 , ⁇ HE-LTF160MHz_4x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF320MHz_4x ⁇ HE-LTF160MHz_4x,0 23 ,HE-LTF160MHz_4x ⁇ , or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF160MHz_4x, 0 23 , -HE-LTF160MHz_4x ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 9.5100dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF160MHz_4x,0 23 ,HE-LTF160MHz_4x' ⁇ , or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF160MHz_4x,0 23 ,-HE-LTF160MHz_4x' ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 4x mode is 9.2499dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF160MHz_4x', 0 23 , HE-LTF160MHz_4x ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF160MHz_4x', 0 23 , -HE-LTF160MHz_4x ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 8.9288dB.
  • EHT-LTF320MHz_4x ⁇ HE-LTF160MHz_4x', 0 23 , HE-LTF160MHz_4x' ⁇ ; or,
  • EHT-LTF320MHz_4x ⁇ -HE-LTF160MHz_4x', 0 23 , -HE-LTF160MHz_4x' ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the 4x mode is 9.7162dB.
  • Embodiment 2 The new sequence can be used to construct a sequence in IEEE 802.11be, so as to obtain a better LTF sequence.
  • a Golay complementary pair is used to construct an 80 MHz sequence.
  • the newly constructed LTF sequence with a bandwidth of 80 MHz in the 4x mode is recorded as EHT-LTF80MHz_4x.
  • a ⁇ +1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,-1 ,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1 ⁇
  • b ⁇ +1,+1,+1, -1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1 ,+1,+1,-1,-1 ⁇ .
  • EHT-LTF80MHz_4x ⁇ +1,a,b,+1,+1,a,-b,+1,b,+1,a,b,-1,-1,-a,b,+1,+ 1,a,b,+1,+1,a,-b,+1,b,+1,-a,-b,+1,+1,a,-b,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,-1,-1,0,0,0,0,+1, +1,-1,+1,+1,+1,+1,a,b,+1,+ 1,a,-b,+1,a,-1,a,b,-1,-1,-a,b,-1,+1,-a,-b,-1,-1,-a ,b,+1,-b,-1,a,b,-1,-1,-1,-a,b,+1,-b,-1,-1,-a,b,-1 ⁇ .
  • the PAPR of the 80MHz bandwidth EHT-LTF sequence in the 4x mode is 6.3675dB.
  • the EHT-LTF160MHz_4x, EHT-LTF240MHz_4x, and EHT-LTF320MHz_4x can be constructed according to a similar method to the first embodiment above.
  • the PAPR of the newly constructed EHT-LTF160MHz_4x is 6.6551dB
  • the PAPR of the newly constructed EHT-LTF240MHz_4x is 7.3411dB
  • the PAPR of the newly constructed EHT-LTF320MHz_4x is 8.2556dB.
  • EHT-LTF80MHz_4x can be directly cached or stored locally, and when used, EHT-LTF80MHz_4x can be directly obtained locally.
  • the third embodiment can be further optimized on the basis of the sequence obtained in the second embodiment above.
  • the flood algorithm is used to optimize each of the newly constructed sequences in the second embodiment above, and the following optimized sequences are obtained:
  • the PAPR of the optimized EHT-LTF80MHz_4x is 5.8830dB.
  • the PAPR of the optimized EHT-LTF160MHz_4x is 6.3939dB.
  • the PAPR of the optimized EHT-LTF240MHz_4x is 6.6898dB.
  • EHT-LTF320MHz_4x ⁇ -1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1 ,1 ,-1,1,1,1,-1,-1,1,-1,1,-1,1 ,1,1,1,-1,-1,1,-1,1 ,1,1,1,-1,1,-1,1 ,1,1,1,-1,1,-1,1 ,1,1,-1,-1,1,-1,1 ,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1, 1,-1,-1,-1,1,-1,-1,1,1,-1
  • the PAPR of the optimized EHT-LTF320MHz_4x is 7.8652dB.
  • the PAPR of the sequence obtained in the second embodiment is lower than the PAPR of the sequence obtained in the first embodiment
  • the PAPR of the sequence obtained in the third embodiment is lower than that of the embodiment. 2.
  • the first embodiment utilizes the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement.
  • Golay complementary pairs are used to construct a new sequence with a bandwidth of 80 MHz, and a new sequence is constructed based on the newly constructed sequence. A sequence with a smaller PAPR and better performance can be obtained, thereby improving the spectrum utilization of the system.
  • the sequence in IEEE 802.11ax can be used to construct the sequence in IEEE 802.11be, thereby making the compatibility stronger and easier to implement.
  • EHT-LTF160MHz_1x ⁇ HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x' ⁇ ; or,
  • EHT-LTF160MHz_1x ⁇ -HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x' ⁇ .
  • the PAPR of the 160MHz bandwidth EHT-LTF sequence in the above 1x mode is 4.8623dB.
  • EHT-LTF240MHz_1x ⁇ HE-LTF80MHz_left_1x,0 23 , ⁇ HE-LTF80MHz_right_1x,0 23 , ⁇ HE-LTF80MHz_left_1x,0, ⁇ HE-LTF80MHz_right_1x,0 23 , ⁇ HE-LTF80MHz_left_1x ,0 23 , ⁇ HE-LTF80MHz_right_1x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_1x ⁇ HE-LTF80MHz_left_1x,0 23 ,HE-LTF80MHz_right_1x,0 23 ,HE-LTF80MHz_left_1x,0,HE-LTF80MHz_right_1x,0 23 ,-HE-LTF80MHz_left_1x,0 23 ,-HE-LTF80MHz, or
  • EHT-LTF240MHz_1x ⁇ -HE-LTF80MHz_left_1x,0 23 ,-HE-LTF80MHz_right_1x,0 23 ,-HE-LTF80MHz_left_1x,0,-HE-LTF80MHz_right_1x,0 23 ,HE-LTF80MHz_left_1x,0 23 ,HE-LTF80MHz_right_1x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 1x mode is 6.3317dB.
  • EHT-LTF240MHz_1x ⁇ HE-LTF80MHz_1x,0 23 , ⁇ HE-LTF80MHz_1x,0 23 , ⁇ HE-LTF80MHz_1x ⁇ , through computer search, traverse the PAPR of all possible sequences, from Select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_1x ⁇ HE-LTF80MHz_1x, 0 23 , HE-LTF80MHz_1x, 0 23 , -HE-LTF80MHz_1x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 1x mode is 6.3317dB.
  • EHT-LTF320MHz_1x ⁇ HE-LTF80MHz_1x,0 23 , ⁇ HE-LTF80MHz_1x,0 23 , ⁇ HE-LTF80MHz_1x,0 23 , ⁇ HE-LTF80MHz_1x ⁇ , search and traverse by computer
  • the PAPR of all possible sequences, selecting the sequence with the smaller PAPR from all possible sequences, can be determined:
  • EHT-LTF320MHz_1x ⁇ HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ -HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ -HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ -HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ -HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x ⁇ ; or
  • EHT-LTF320MHz_1x ⁇ HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x,0 23 ,-HE-LTF80MHz_1x ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 1x mode is 5.022dB.
  • EHT-LTF240MHz_1x ⁇ HE-LTF160MHz_1x,0 23 , ⁇ HE-LTF80MHz_1x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF240MHz_1x ⁇ HE-LTF160MHz_1x,0 23 ,-HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF240MHz_1x ⁇ -HE-LTF160MHz_1x,0 23 ,HE-LTF80MHz_1x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 1x mode is 6.6482dB.
  • EHT-LTF240MHz_1x ⁇ HE-LTF160MHz_1x',0 23 ,-HE-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF240MHz_1x ⁇ -HE-LTF160MHz_1x', 0 23 , HE-LTF80MHz_1x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 1x mode is 6.3570dB.
  • EHT-LTF240MHz_1x ⁇ HE-LTF160MHz_1x,0 23 ,-HE-LTF160MHz_1x' ⁇ ; or,
  • EHT-LTF240MHz_1x ⁇ -HE-LTF160MHz_1x,0 23 ,HE-LTF160MHz_1x' ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 1x mode is 6.3570dB.
  • EHT-LTF240MHz_1x ⁇ HE-LTF80MHz_1x,0 23 , ⁇ HE-LTF160MHz_1x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF240MHz_1x ⁇ HE-LTF80MHz_1x,0 23 ,-HE-LTF160MHz_1x ⁇ ; or,
  • EHT-LTF240MHz_1x ⁇ -HE-LTF80MHz_1x,0 23 ,HE-LTF160MHz_1x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 1x mode is 6.6482dB.
  • EHT-LTF320MHz_1x ⁇ HE-LTF160MHz_1x,0 23 ,HE-LTF160MHz_1x' ⁇ , or,
  • EHT-LTF320MHz_1x ⁇ -HE-LTF160MHz_1x,0 23 ,-HE-LTF160MHz_1x' ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 1x mode is 5.2021dB.
  • EHT-LTF320MHz_1x ⁇ HE-LTF160MHz_1x,0 23 , ⁇ HE-LTF160MHz_1x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select PAPR from all possible sequences A smaller sequence can be determined:
  • EHT-LTF320MHz_1x ⁇ HE-LTF160MHz_1x,0 23 ,HE-LTF160MHz_1x ⁇ , or,
  • EHT-LTF320MHz_1x ⁇ -HE-LTF160MHz_1x,0 23 ,-HE-LTF160MHz_1x ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 1x mode is 7.8726dB.
  • Embodiment 5 The new sequence can be used to construct the sequence in 802.11be, so as to obtain a better LTF sequence.
  • Step 1 Define the set of quadratic Boolean functions Func:
  • the sequence pair (a, b) is a pair of binary Golay complementary pair.
  • a(2:126) means taking the 2nd to 126th positions of the sequence a
  • b(2:126) means taking the 2nd to 126th positions of the sequence b.
  • Step 4 Perform the 0 insertion operation on the sequence seq251, that is, insert 3 0s between every two elements to obtain the LTF sequence seq1001 to be screened with a bandwidth of 80 MHz in 1x mode.
  • Step 5 Since there are 128 functions in the Boolean function set Func, a total of 128 seq1001 can be obtained, and the sequence with the lowest comprehensive PAPR can be obtained through computer search.
  • the last obtained LTF sequence of 80MHz bandwidth in 1x mode is recorded as EHT-LTF80MHz_1x,
  • EHT-LTF80MHz_1x ⁇ 1,0,0,0,-1,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0 ,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,-1,0,
  • the PAPR of the 80MHz bandwidth EHT-LTF sequence in the above-mentioned newly constructed 1x mode is 4.1087dB.
  • EHT-LTF160MHz_1x EHT-LTF240MHz_1x
  • EHT-LTF320MHz_1x can be constructed according to a similar method to the first embodiment above.
  • EHT-LTF160MHz_1x ⁇ EHT-LTF80MHz_1x,0 23 ,EHT-LTF80MHz_1x' ⁇ ; or,
  • EHT-LTF160MHz_1x ⁇ -EHT-LTF80MHz_1x,0 23 ,-EHT-LTF80MHz_1x' ⁇ .
  • the PAPR of the 160MHz bandwidth EHT-LTF sequence in the above newly constructed 1x mode is 4.6977dB.
  • EHT-LTF240MHz_1x ⁇ EHT-LTF80MHz_1x,0 23 ,EHT-LTF80MHz_1x,0 23 ,-EHT-LTF80MHz_1x ⁇ ; or,
  • EHT-LTF240MHz_1x ⁇ -EHT-LTF80MHz_1x, 0 23 , -EHT-LTF80MHz_1x, 0 23 , EHT-LTF80MHz_1x ⁇ .
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the newly constructed 1x mode is 6.4813dB.
  • EHT-LTF320MHz_1x ⁇ EHT-LTF160MHz_1x,0 23 ,EHT-LTF160MHz_1x' ⁇ ; or,
  • EHT-LTF320MHz_1x ⁇ -EHT-LTF160MHz_1x,0 23 ,-EHT-LTF160MHz_1x' ⁇ .
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the newly constructed 1x mode is 5.8346dB.
  • EHT-LTF80MHz_1x and/or EHT-LTF160MHz_1x can be directly cached or stored locally, and when used, EHT-LTF80MHz_1x and/or EHT-LTF160MHz_1x can be directly obtained locally.
  • sequence performance analysis obtained by each embodiment in the second case is as follows:
  • the PAPR of the sequence obtained in the fifth embodiment is lower than that of the sequence obtained in the fourth embodiment.
  • the fourth embodiment uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement.
  • the fifth embodiment uses the Boolean function set to newly construct a sequence with a bandwidth of 80 MHz, and constructs a new sequence based on the newly constructed sequence, which can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the sequence in IEEE 802.11ax can be used to construct the sequence in IEEE 802.11be, so as to make the compatibility stronger.
  • HE-LTF80MHz_2x HE-LTF80MHz_2x
  • EHT-LTF160MHz_2x ⁇ HE- LTF 80MHz_part1_2x, ⁇ HE-LTF 80MHz_part2_2x, ⁇ HE-LTF 80MHz_part3_2x, ⁇ HE-LTF 80MHz_part4_2x, ⁇ HE-LTF 80MHz_part5_2x, 0 23, ⁇ HE -LTF 80MHz_part1_2x , ⁇ HE-LTF 80MHz_part2_2x , ⁇ HE-LTF 80MHz_part3_2x , ⁇ HE-LTF 80MHz_part4_2x , ⁇ HE-LTF 80MHz_part5_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select PAPR from all possible sequences A small sequence can be determined:
  • EHT-LTF160MHz_2x ⁇ HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ⁇ ; or,
  • EHT-LTF160MHz_2x (-HE-LTF 80MHz_part1_2x ,-HE-LTF 80MHz_part2_2x ,-HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ,0 23 , -HE-LTF 80MHz ,-HE-LT2 80MHz ,-HE-LTF 80MHz_part1_2x -LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ⁇ .
  • the PAPR of the 160MHz bandwidth EHT-LTF sequence in the above 2x mode is 6.2436dB.
  • EHT-LTF160MHz_2x ⁇ HE- LTF 80MHz_part1_2x, ⁇ HE-LTF 80MHz_part2_2x, ⁇ HE-LTF 80MHz_part3_2x, ⁇ HE-LTF 80MHz_part4_2x, ⁇ HE-LTF 80MHz_part5_2x, 0 23, ⁇ HE-LTF 80MHz_part1_2x , ⁇ HE-LTF 80MHz_part2_2x , ⁇ HE-LTF 80MHz_part3_2x , ⁇ HE-LTF 80MHz_part4_2x , ⁇ HE-LTF 80MHz_part5_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and get the PAPR from all possible sequences Obtain the following sequence:
  • EHT-LTF160MHz_2x (HE-LTF 80MHz_part1_2x ,HE-LTF 80MHz_part2_2x ,HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ,0 23 ,HE-LTF 80MHz ,-HE-LTF 80MHz_part 80MHz_part3_2x ,-HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ⁇ ; or,
  • EHT-LTF160MHz_2x ⁇ - HE- LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ⁇ .
  • the PAPR of the 160MHz bandwidth EHT-LTF sequence in the above 2x mode is 6.6341dB.
  • EHT-LTF240MHz_2x ⁇ HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x ,-HE-:TF 80MHz_part5_2x ,0 23 ,-HE-LTF 80MHz_part1_2x ,HE-LTF 80MHz_part2_2x ,HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part4_2x ,-HE-LT2 80MHz
  • EHT-LTF240MHz_2x (-HE-LTF 80MHz_part1_2x ,HE-LTF 80MHz_part2_2x ,-HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ,0 23 ,-HE-LTF 80MHz ,-HE-LTF 80MHz ,-HE-LTF 80MHz ,-HE-LTF 80MHz_part2_2x -LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ,0 23 ,HE-LTF 80MHz_part1_2x , -HE-LTF 80MHz_part2_2x ,-HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part3_2x , -HE-LTF 80MHz _part-LT2 80MHz ;
  • the PAPR of the 240MHz bandwidth EHT-LTF sequence in the above 2x mode is 7.1771dB.
  • EHT-LTF320MHz_2x ⁇ HE- LTF 80MHz_part1_2x, ⁇ HE-LTF 80MHz_part2_2x, ⁇ HE-LTF 80MHz_part3_2x, ⁇ HE-LTF 80MHz_part4_2x, ⁇ HE-LTF 80MHz_part5_2x, 0 23, ⁇ HE -LTF 80MHz_part1_2x , ⁇ HE-LTF 80MHz_part2_2x , ⁇ HE-LTF 80MHz_part3_2x , ⁇ HE-LTF 80MHz_part4_2x , ⁇ HE-LTF 80MHz_part5_2x ,0 23 , ⁇ HE-LTF 80MHz_part1_2xF _part -LTF 80MHz_part1_2x , ⁇ HE2-LT2 80MHz , ⁇ HE2-LT2 80MHz, ⁇ HE2-LT2 80MHz, ⁇ HE2-LT2 80MHz, ⁇ HE2-LT2 80MHz, ⁇ HE2-LT2 80MHz
  • EHT-LTF320MHz_2x ⁇ HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, - HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-
  • EHT-LTF320MHz_2x ⁇ - HE- LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ,0 23 ,HE-LTF 80MHz_part1_2x ,-HE-LTF 80MHz_part2_HE2x ,HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part3_2x ,0HE-LTF 80MHz , 0 23 LTF 80MHz_part1_2x ,-HE-LT
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 2x mode is 7.5506dB.
  • EHT-LTF320MHz_2x ⁇ HE- LTF 80MHz_part1_2x, ⁇ HE-LTF 80MHz_part2_2x, ⁇ HE-LTF 80MHz_part3_2x, ⁇ HE-LTF 80MHz_part4_2x, ⁇ HE-LTF 80MHz_part5_2x, 0 23, ⁇ HE-LTF 80MHz_part1_2x , ⁇ HE-LTF 80MHz_part2_2x , ⁇ HE-LTF 80MHz_part3_2x , ⁇ HE-LTF 80MHz_part4_2x , ⁇ HE-LTF 80MHz_part5_2x ,0 23 , ⁇ HE-LTF 80MHz_part1_2xF 80MHz , ⁇ HE-LTF 80MHz_part1_2xF 80MHz , ⁇ HE-LTF 80MHz_part1_2xF 80MHz , ⁇ HE-LTF 80MHz_part1_2xF ⁇ HE-LTF 80MHz_part4_
  • EHT-LTF320MHz_2x ⁇ HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, - HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE
  • EHT-LTF320MHz_2x ⁇ - HE- LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x, HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ,0 23 ,HE-LTF 80MHz_part1_2x ,-HE-LTF 80MHz_part2_HE2x ,HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part3_2x ,0HE-LTF 80MHz , 0 23 LTF 80MHz_part1_2x ,-HE-LT
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 2x mode is 8.1128dB.
  • EHT-LTF320MHz_2x (HE-LTF 80MHz_part1_2x ,HE-LTF 80MHz_part2_2x ,-HE-LTF 80MHz_part3_2x ,HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ,0 23 ,HE- LTFx 80MHz,HE-LTFx 80MHz , HE-LTF 80MHz, HE-LTF 80MHz_part-1 HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2
  • EHT-LTF320MHz_2x ⁇ -HE-LTF 80MHz_part1_2x ,-HE-LTF 80MHz_part2_2x ,HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part4_2x ,-HE-LTF 80MHz_part5_2x ,0 23 ,-HE- LT2 80MHz,-HE -LT2 80MHz ,-HE-LTF 80MHz -LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part4_2x ,HE-LTF 80MHz_part5_2x ,0 23 ,-HE-LTF 80MHz_part1_2x ,-HE-LTF 80MHz_part2_2x ,HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz_part3_2x ,-HE-LTF 80MHz , 23 HE-LTF 80MHz_
  • the PAPR of the 320MHz bandwidth EHT-LTF sequence in the above 2x mode is 6.9188dB.
  • the above sequence can be compatible with the 240MHz situation.
  • the 240MHz can be formed by splicing three consecutive 80MHz or three non-contiguous 80MHz splicing, which is not limited in the embodiment of the application. .
  • the LTF sequence of 80 MHz bandwidth in 2x mode in IEEE 802.11ax can be denoted as HE-LTF80MHz_2x
  • the LTF sequence of 160 MHz bandwidth in 2x mode in IEEE 802.11ax can be denoted as HE-LTF160MHz_2x.
  • EHT-LTF240MHz_2x ⁇ HE-LTF80MHz_2x,0 23 , ⁇ HE-LTF160MHz_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF240MHz_2x ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ; or,
  • EHT-LTF240MHz_2x ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ;
  • the PAPR of the 240MHz bandwidth LTF sequence in the 2x mode is 7.8417dB.
  • EHT-LTF240MHz_2x ⁇ HE-LTF160MHz_2x,0 23 , ⁇ HE-LTF80MHz_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF240MHz_2x ⁇ HE-LTF160MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ; or,
  • EHT-LTF240MHz_2x ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ;
  • the PAPR of the 240MHz bandwidth LTF sequence in the 2x mode is 7.8106dB.
  • EHT-LTF240MHz_2x ⁇ HE-LTF80MHz_2x,0 23 , ⁇ HE-LTF80MHz_2x,0 23 , ⁇ HE-LTF80MHz_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, from Select the sequence with the smaller PAPR from all possible sequences to determine:
  • EHT-LTF240MHz_2x ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or,
  • EHT-LTF240MHz_2x ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ;
  • the PAPR of the 240MHz bandwidth LTF sequence in the 2x mode is 7.8417dB.
  • EHT-LTF320MHz_2x ⁇ HE-LTF160MHz_2x,0 23 , ⁇ HE-LTF160MHz_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF320MHz_2x ⁇ HE-LTF160MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ; or,
  • EHT-LTF320MHz_2x ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ;
  • the PAPR of the 320MHz bandwidth LTF sequence in the above 2x mode is 9.6810dB.
  • EHT-LTF320MHz_2x ⁇ HE-LTF160MHz_2x,0 23 , ⁇ HE-LTF160MHz_2x ⁇ , search through the computer, traverse the PAPR of all possible sequences, and select the PAPR from all possible sequences.
  • a small sequence can be determined:
  • EHT-LTF320MHz_2x ⁇ HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or,
  • EHT-LTF320MHz_2x ⁇ -HE-LTF160MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ;
  • the PAPR of the 320MHz bandwidth LTF sequence in the above 2x mode is 9.3908dB.
  • EHT-LTF320MHz_2x ⁇ HE-LTF80MHz_2x,0 23 , ⁇ HE-LTF80MHz_2x,0 23 , ⁇ HE-LTF80MHz_2x,0 23 , ⁇ HE-LTF80MHz_2x ⁇ , search and traverse by computer
  • the PAPR of all possible sequences, selecting the sequence with the smaller PAPR from all possible sequences, can be determined:
  • EHT-LTF320MHz_2x ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or,
  • EHT-LTF320MHz_2x ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ;
  • EHT-LTF320MHz_2x ⁇ HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ; or,
  • EHT-LTF320MHz_2x ⁇ -HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ;
  • the PAPR of the 320MHz bandwidth LTF sequence in the above 2x mode is 9.0869dB.
  • the above sequence can be compatible with the 240MHz situation.
  • the 240MHz can be formed by splicing three consecutive 80MHz or three non-contiguous 80MHz splicing, which is not limited in the embodiment of the application. .
  • the embodiment of the application uses the sequence in the existing IEEE 802.11ax standard to construct a new sequence, which is more compatible and easy to implement, and can obtain a sequence with a smaller PAPR and better performance, thereby improving the spectrum utilization of the system.
  • the embodiment of the present application provides a device for transmitting a physical layer protocol data unit.
  • the device is used to implement the steps or processes corresponding to the receiving end in the foregoing method embodiments.
  • the device is used to implement the steps or procedures corresponding to the sending end in the foregoing method embodiments.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the apparatus 600 may include a communication unit 610 and a processing unit 620.
  • the communication unit 610 can communicate with the outside, and the processing unit 620 is used for data processing.
  • the communication unit 610 may also be referred to as a communication interface or a transceiving unit.
  • the device 600 can implement the steps or procedures performed by the sending end corresponding to the foregoing method embodiment, wherein the processing unit 620 is configured to perform operations related to the processing of the sending end in the foregoing method embodiment
  • the communication unit 610 is configured to perform operations related to the sending and receiving of the transmitting end in the foregoing method embodiment.
  • the processing unit 620 is configured to: generate a physical layer protocol data unit PPDU, the PPDU includes a long training domain, the length of the frequency domain sequence of the long training domain is greater than a first length, and the first length is The length of the frequency domain sequence of the long training domain transmitted on the 160 MHz channel; the communication unit 610 is configured to send the PPDU on the target channel, where the bandwidth of the target channel is greater than 160 MHz.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 4x
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 4x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x' ⁇ ; or, ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ -HE-LTF80MHz_4x, 0 23
  • the bandwidth of the target channel is 240MHz
  • the transmission mode for the 1x mode the frequency-domain long training sequence field is: ⁇ HE-LTF80MHz_1x, 0 23 , HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x ⁇ ;
  • HE-LTF80MHz_1x can refer to the method embodiment part, 0 23 represents 23 consecutive 0s.
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 1x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,HE -LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x ⁇ ; or, ⁇ - HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23, HE-LTF80MHz_1x ⁇ ; wherein, HE-LTF80MHz_1x may Refer to the method embodiment section, 0 23 means 23 consecutive 0s.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x , -HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , -HE-LTF 80MHz_part4_2x , HE-LTF 80MHz_part5_2x , 0 23 , HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , -HE-LTF 80MHz_part4_2x , -HE-LTF 80MHz_part4_2x , -HE-LTF 80MHz_part1_part1_2x, -0-HE 23 80MHz, -0-LT , HE-LTF 80MHz_part2_2x, HE- LTF 80MHz_part3_
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ HE -LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; where 0 23 means continuous For 23
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x , -HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x , -HE-
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF160MHz_2x, 0 23 , -HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ HE -LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,HE-LTF
  • the device 600 can implement steps or processes corresponding to the receiving end in the above method embodiment, wherein the communication unit 610 is configured to perform the receiving and sending-receiving related information in the above method embodiment. Operation, the processing unit 620 is configured to perform processing-related operations on the receiving end in the foregoing method embodiment.
  • the communication unit 610 is configured to: receive a physical layer protocol data unit PPDU on a target channel, the PPDU includes a long training field, the length of the frequency domain sequence of the long training field is greater than a first length, and the first length It is the length of the frequency domain sequence of the long training domain transmitted on a channel with a bandwidth of 160 MHz, where the bandwidth of the target channel is greater than 160 MHz; the processing unit 620 is configured to: parse the PPDU.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 4x
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 4x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x' ⁇ ; or, ⁇ -HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , -HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ HE-LTF80MHz_4x, 0 23 , HE-LTF80MHz_4x', 0 23 , HE-LTF80MHz_4x, 0 23 , -HE-LTF80MHz_4x' ⁇ ; or, ⁇ -HE-LTF80MHz_4x, 0 23
  • the bandwidth of the target channel is 240MHz
  • the transmission mode for the 1x mode the frequency-domain long training sequence field is: ⁇ HE-LTF80MHz_1x, 0 23 , HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x ⁇ ;
  • HE-LTF80MHz_1x can refer to the method embodiment part, 0 23 represents 23 consecutive 0s.
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 1x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_1x,0 23 ,HE-LTF80MHz_1x,0 23 ,HE -LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x ⁇ ; or, ⁇ - HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23, -HE-LTF80MHz_1x, 0 23, HE-LTF80MHz_1x ⁇ ; wherein, HE-LTF80MHz_1x may Refer to the method embodiment section, 0 23 means 23 consecutive 0s.
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x , -HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , -HE-LTF 80MHz_part4_2x , HE-LTF 80MHz_part5_2x , 0 23 , HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , -HE-LTF 80MHz_part4_2x , -HE-LTF 80MHz_part4_2x , -HE-LTF 80MHz_part1_part1_2x, -0-HE 23 80MHz, -0-LT , HE-LTF 80MHz_part2_2x, HE- LTF 80MHz_part3_
  • the bandwidth of the target channel is 240MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF80MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,-HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ HE -LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x ⁇ ; where 0 23 means continuous For 23
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF 80MHz_part1_2x , HE-LTF 80MHz_part2_2x , HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x, 0 23, HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x, -HE-LTF 80MHz_part3_2x, -HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x, 0 23, -HE-LTF 80MHz_part1_2x, HE-LTF 80MHz_part2_2x , -HE-LTF 80MHz_part3_2x , HE-LTF 80MHz_part4_2x , -HE-
  • the bandwidth of the target channel is 320MHz
  • the transmission mode is 2x
  • the frequency domain sequence of the long training domain is any one of the following: ⁇ HE-LTF160MHz_2x, 0 23 , -HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ HE-LTF160MHz_2x,0 23 ,HE-LTF160MHz_2x ⁇ ; or, ⁇ -HE-LTF160MHz_2x,0 23 ,-HE-LTF160MHz_2x ⁇ ; or, ⁇ HE -LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 ,-HE-LTF80MHz_2x,0 23 , HE-LTF80MHz_2x ⁇ ; or, ⁇ -HE-LTF80MHz_2x,0 23 ,HE-LTF80MHz_2x,0 23 ,HE-LT
  • the device 600 here is embodied in the form of a functional unit.
  • the term "unit” here can refer to application specific integrated circuits (ASICs), electronic circuits, processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups). Processor, etc.) and memory, merged logic circuits, and/or other suitable components that support the described functions.
  • ASICs application specific integrated circuits
  • processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups).
  • the apparatus 600 may be specifically the sending end in the foregoing embodiment, and may be used to execute each process and/or step corresponding to the sending end in the foregoing method embodiment, or, The apparatus 600 may be specifically the receiving end in the foregoing embodiment, and may be used to execute each process and/or step corresponding to the receiving end in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the device 600 of each of the foregoing solutions has the function of implementing the corresponding steps performed by the sending end in the foregoing method, or the device 600 of each of the foregoing solutions has the function of implementing the corresponding steps performed by the receiving end of the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the communication unit can be replaced by a transceiver (for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver. Machine replacement), other units, such as the processing unit, etc., can be replaced by a processor, and perform the transceiver operations and related processing operations in each method embodiment respectively.
  • the above-mentioned communication unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 6 may be the receiving end or the sending end in the foregoing embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the communication unit may be an input/output circuit or a communication interface; the processing unit is a processor or microprocessor or integrated circuit integrated on the chip. There is no limitation here.
  • FIG. 7 shows an apparatus 700 for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the device 700 includes a processor 710 and a transceiver 720.
  • the processor 710 and the transceiver 720 communicate with each other through an internal connection path, and the processor 710 is configured to execute instructions to control the transceiver 720 to send signals and/or receive signals.
  • the device 700 may further include a memory 730, and the memory 730, the processor 710, and the transceiver 720 communicate with each other through an internal connection path.
  • the memory 730 is used to store instructions, and the processor 710 can execute the instructions stored in the memory 730.
  • the apparatus 700 is configured to implement various processes and steps corresponding to the sending end in the foregoing method embodiment.
  • the apparatus 700 is configured to implement various processes and steps corresponding to the receiving end in the foregoing method embodiments.
  • the apparatus 700 may be specifically the transmitting end or the receiving end in the foregoing embodiment, or may be a chip or a chip system.
  • the transceiver 720 may be the transceiver circuit of the chip, which is not limited here.
  • the apparatus 700 may be used to execute various steps and/or processes corresponding to the sending end or the receiving end in the foregoing method embodiments.
  • the memory 730 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 710 may be used to execute instructions stored in the memory, and when the processor 710 executes the instructions stored in the memory, the processor 710 is used to execute each step of the method embodiment corresponding to the sending end or the receiving end. And/or process.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • the processors in the embodiments of the present application may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • FIG. 8 shows an apparatus 800 for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the device 800 includes a processing circuit 810 and a transceiver circuit 820.
  • the processing circuit 810 and the transceiver circuit 820 communicate with each other through an internal connection path, and the processing circuit 810 is used to execute instructions to control the transceiver circuit 820 to send signals and/or receive signals.
  • the device 800 may further include a storage medium 830, and the storage medium 830 communicates with the processing circuit 810 and the transceiver circuit 820 through internal connection paths.
  • the storage medium 830 is used to store instructions, and the processing circuit 810 can execute the instructions stored in the storage medium 830.
  • the apparatus 800 is used to implement various processes and steps corresponding to the sending end in the foregoing method embodiment.
  • the apparatus 800 is configured to implement various processes and steps corresponding to the receiving end in the foregoing method embodiments.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 5 In the method.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in FIG. 5 In the method.
  • the present application also provides a system, which includes the aforementioned one or more stations and one or more access points.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Detergent Compositions (AREA)
  • Error Detection And Correction (AREA)

Abstract

本申请提供了一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计长训练域序列。该方法包括:生成物理层协议数据单元PPDU,该PPDU包括长训练域,该长训练域的频域序列的长度大于第一长度,该第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度;在目标信道上发送所述PPDU,其中,该目标信道的带宽大于160MHz。

Description

传输物理层协议数据单元的方法和装置
本申请要求于2019年11月15日提交中国专利局、申请号为201911121641.1、申请名称为“传输物理层协议数据单元的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2020年01月15日提交中国专利局、申请号为202010043533.3、申请名称为“传输物理层协议数据单元的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及传输物理层协议数据单元的方法和装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长,用户对通信服务质量的需求也越来越高,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求,因此,迫切需要发展下一代无线局域网(wireless local area network,WLAN)技术,即IEEE 802.11be标准。
与IEEE 802.11ax不同,IEEE 802.11be将采用超大带宽,例如240MHz和320MHz,以实现超高传输速率和支持超密用户的场景。那么,针对更大的信道带宽,如何设计长训练域(long training field,LTF)序列,是一个值得关心的问题。
发明内容
本申请提供一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计长训练域序列。
第一方面,提供了一种传输物理层协议数据单元的方法,包括:生成物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度;在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
本申请实施例的方法能够设计更大信道带宽所对应的长训练序列或者说频域序列,可以支持接收端对在更大信道带宽上传输数据。该长训练序列可以基于现有信道带宽的长训练序列得到,并且,通过仿真计算,例如调节参数,可以获得性能较好的长训练序列。长训练域可以基于该长训练序列得到。根据本申请实施例,不仅可以满足实际中的更大信道带宽,而且通过对参数进行穷举仿真,验证了本申请实施例提供的长训练序列,峰均功率值PAPR较小,性能较优,进而提高系统的频谱利用率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见具体实施例部分。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见具体实施例部分。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为1x模式,所述长训练域的频域序列为:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见具体实施例部分,0 23表示连续的23个0。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为1x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或者,{-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见具体实施例部分,0 23表示连续的23个0。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见具体实施例部分。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见具体实施例部分。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者, {HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
第二方面,提供了另一种传输物理层协议数据单元的方法,包括:在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;解析所述PPDU。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见具体实施例部分。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见具体实施例部分。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为1x模式,所述长训练域的频域序列为:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见具体实施例部分,0 23表示连续的23个0。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为1x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或者,{-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见具体实施例部分,0 23表示连续的23个0。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见具体实施例部分。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见具体实施例部分。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者, {HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
第三方面,提供一种传输物理层协议数据单元的装置,所述装置用于执行上述第一方面提供的方法。具体地,所述装置可以包括用于执行第一方面以及第一方面任一种可能实现方式的模块。
第四方面,提供一种传输物理层协议数据单元的装置,所述装置用于执行上述第二方面提供的方法。具体地,所述装置可以包括用于执行第二方面以及第二方面任一种可能实现方式的模块。
第五方面,提供一种传输物理层协议数据单元的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供一种传输物理层协议数据单元的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出 电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第一方面以及第一方面任一种可能实现方式中的方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第二方面以及第二方面任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第一方面以及第一方面任一种可能实现方式中提供的方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第二方面以及第二方面任一种可能实现方式中提供的方法。
第十一方面,提供一种通信系统,包括如前所述的接入点和站点。
附图说明
图1是适用于本申请实施例的方法的通信系统的示意图;
图2是适用于本申请实施例的接入点的内部结构图;
图3是适用于本申请实施例的站点的内部结构图;
图4是80MHz带宽下OFDMA资源块分布的示意图;
图5是本申请实施例提供的传输物理层协议数据单元的方法的示意性流程图;
图6是本申请实施例提供的传输物理层协议数据单元的装置的示意性框图;
图7是本申请实施例提供的传输物理层协议数据单元的装置的另一示意性框图;
图8是本申请实施例提供的传输物理层协议数据单元的装置的又一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wireless local area network,WLAN)通信系统,全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
以下作为示例性说明,仅以WLAN系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
具体而言,本申请实施例可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例可以适用于WLAN当前采用的电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。
具体地,本申请实施例中发起设备和响应设备可以是WLAN中用户站点(STA),该用户站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
另外,本申请实施例中的发起设备和响应设备也可以是WLAN中AP,AP可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示的场景系统可以是WLAN系统,图1的WLAN系统可以包括一个或者多个AP,和一个或者多个STA,图1以一个AP和三个STA为例。AP和STA之间可以通过各种标准进行无线通信。例如,AP和STA之间可以采用单用户多入多出(single-user multiple-input multiple-output,SU-MIMO)技术或多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。
其中,AP也称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11等多种WLAN制式的设备。图2示出了AP产品的内部结构图,其中,AP可以是多天线的,也可以是单天线的。图2中,AP包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。802.11标准关注PHY和MAC部分,本申请实施例关注在MAC和PHY上的协议设计。
其中,STA产品通常为支持802.11系列标准的终端产品,如手机、笔记本电脑等,图3示出了单个天线的STA结构图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图3中,STA可以包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
随着移动互联网的发展和智能终端的普及,数据流量快速增长,用户对通信服务质量的需求也越来越高,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求,因此,迫切需要发展下一代无线局域网(wireless local area network,WLAN)技术,即IEEE802.11be标准。IEEE 802.11be继续沿用IEEE 802.11ax中使用的正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,OFDMA技术是在正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的基础之上发展起来的,是OFDM技术和频分多址(frequency division multiple access,FDMA)技术结合而成的一种 适用于多用户接入的技术,该技术因为实现简单、频谱利用率高已经被LTE和5G等国际标准采纳。OFDMA技术将物理信道划分为多个资源块,每个资源块包括多个子载波(子信道),每个用户可以占用一个资源块进行数据传输。因此,多个用户可以并行传输,降低了多用户竞争接入的时间开销和冲突概率。在OFDMA技术中,因为子载波相互重叠,所以极大提高了频谱利用率。
与IEEE 802.11ax不同,IEEE 802.11be将采用超大带宽,例如240MHz和320MHz,以实现超高传输速率和支持超密用户的场景。IEEE 802.11ax标准中的带宽最大仅支持160MHz。因此,需要针对更大的信道带宽,设计新的长训练域序列。有鉴于此,本申请实施例提供了一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计长训练域序列。
为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行简单介绍。
1、子载波
无线通信信号都是有限带宽的,利用OFDM技术可以在信道带宽内按照一定频率间隔将带宽分成多个频率分量,这些分量被称为子载波。
2、资源块分布(tone plan)
资源块分布也可以理解为承载数据的子载波分布,不同的信道带宽可以对应的不同的tone plan。在应用OFDMA及多用户多入多出(multiple user multiple input multiple output,MU-MIMO)技术时,AP会将频谱带宽划分为若干个资源块(resource unit,RU)。IEEE802.11ax协议规定对于20MHz、40MHz、80MHz和160MHz的频谱带宽划分成多类资源块,其中包括26子载波资源块、52子载波资源块、106子载波资源块、242子载波资源块(20MHz带宽内最大资源块)、484子载波资源块(40MHz带宽内最大资源块)、996子载波资源块(80MHz带宽内最大资源块)、和1992子载波资源块(160MHz带宽内最大资源块)。每个RU由连续的子载波组成,比如26子载波资源块是由26个连续的子载波资源块组成。需要说明的是,不同的总带宽所能支持的RU的种类和数量不相同,但是在同一带宽下,可以支持混合类型的资源块。图4示例性示出了80MHz带宽下的tone plan的示意图。其中,左边带子载波以及右边带子载波位于传输频带的边缘处,其作为防护子载波,以减轻传输滤波对数据和导频子载波的影响。直流子载波是内容为空(empty)的子载波(即不携带数据或信息的子载波),移动设备用之以定位OFDM频带的中心。空子载波是未分配信息的子载波。左边带子载波、右边带子载波、直流子载波、空子载波可以统称为RU间残留子载波(leftover tone),大的RU子载波个数和对应其中可容纳的多个小RU以及小RU间残留子载波个数总和相同。
OFDMA系统中,多用户的数据包是多种大小的RU组合而成,AP分配给每个用户一个RU,可能分配给用户的可选RU有如下几种:
(1)连续26个子载波组成的RU,包括:24个数据子载波和2个pilot导频子载波;
(2)连续52个子载波组成的RU,包括:48个数据子载波和4个pilot导频子载波;
(3)连续106个子载波组成的RU,包括:24个数据子载波和2个pilot导频子载波;
(4)连续242个子载波组成的RU,包括:234个数据子载波和8个pilot导频子载波;
(5)连续484个子载波组成的RU,包括:468个数据子载波和16个pilot导频子载波;
(6)连续996个子载波组成的RU,包括:980个数据子载波和16个pilot导频子载波。
其中,484-RU是在40MHz的多用户传输中使用,而996-RU是在80MHz或160MHz的多用户传输中使用。应理解,160MHz的tone plan可以看作2个80MHz的tone plan组成。240MHz的tone plan可以看作3个80MHz的tone plan组成。320MHz的tone plan可以看作4个80MHz的tone plan组成,此处不再赘述。
基于上述tone plan,可以将用于信道估计的、IEEE 802.11ax标准中HE-LTF序列的传输模式分为1x、2x和4x三种模式。其中,4x模式是指,HE-LTF序列映射的子载波号和数据部分的tone plan中的子载波的序号相同;而2x模式是指,HE-LTF序列号对应于4x HE-LTF的序号数除以2,即HE-LTF序列映射的子载波号和数据部分的tone plan中的子载波的序号的一半相同;1x模式是指,HE-LTF序列号对应于4x HE-LTF的序号数除以4,即HE-LTF序列映射的子载波号和数据部分的tone plan中的子载波的序号的四分之一相同。
3、长训练域序列
长训练域(LTF)序列是长训练域的频域序列,也可简称为长训练序列。LTF序列主要用于精确的频率偏差估计和信道估计。针对不同的最大信道带宽,可以定义不同的LTF序列。例如,IEEE 802.11ax所定义的高效长训练域(high efficiency long training field,HE-LTF)序列支持最大为160MHz的信道带宽。本申请针对的信道带宽大于160MHz,因此,为便于区分,本申请实施例将IEEE 802.11be支持的更大带宽的LTF序列称为极高吞吐量长训练字段(extremely high throughput-LTF,EHT-LTF)。应理解,EHT-LTF用于表示下一代WLAN技术中支持大于160MHz带宽的长训练字段或长训练域,其具体名称不对本申请实施例的保护范围造成限定。
对于IEEE 802.11ax标准中的HE-LTF序列,可以按照不同的模式设计如下:
(1)1x模式
本申请将20MHz信道带宽、1x模式下的HE-LTF序列记为HE-LTF20MHz_1x,将40MHz信道带宽、1x模式下的HE-LTF序列记为HE-LTF40MHz_1x,将80MHz信道带宽、1x模式下的HE-LTF序列记为HE-LTF80MHz_1x,将160MHz信道带宽、1x模式下的HE-LTF序列记为HE-LTF160MHz_1x。
HE-LTF20MHz_1x={0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0};
HE-LTF40MHz_1x={+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0, +1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1};
HE-LTF80MHz_1x={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0, +1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1};
HE-LTF160MHz_1x={HE-LTF80MHz_lower_1x,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HE-LTF80MHz_upper_1x};
HE-LTF80MHz_lower_1x={HE-LTF80MHz_left_1x,0,HE-LTF80MHz_right_1x};
HE-LTF80MHz_upper_1x={HE-LTF80MHz_left_1x,0,-HE-LTF80MHz_right_1x};
HE-LTF80MHz_left_1x={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0};
HE-LTF80MHz_right_1x={0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1}。
(2)2x模式
本申请将20MHz信道带宽、2x模式下的HE-LTF序列记为HE-LTF20MHz_2x,将40MHz信道带宽、2x模式下的HE-LTF序列记为HE-LTF40MHz_2x,将80MHz信道带宽、2x模式下的HE-LTF序列记为HE-LTF80MHz_2x,将160MHz信道带宽、2x模式下的HE-LTF序列记为HE-LTF160MHz_2x。
HE-LTF20MHz_2x={-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,0,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1};
HE-LTF40MHz_2x={+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,0,0,0,0,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1};
HE-LTF80MHz_2x={+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1, 0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,0,0,0,0,0,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1};
HE-LTF160MHz_2x={HE-LTF80MHz_lower_2x,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HE-LTF80MHz_upper_2x};
HE-LTF80MHz_lower_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,LTF 80MHz_part4_2x,LTF 80MHz_part5_2x};
HE-LTF80MHz_upper_2x={HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};
HE-LTF 80MHz_part1_2x={+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1, 0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0};
HE-LTF 80MHz_part2_2x={+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0};
HE-LTF 80MHz_part3_2x={+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,0,0,0,0,0,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1};
HE-LTF 80MHz_part4_2x={0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1};
HE-LTF 80MHz_part5_2x={0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1}。
(3)4x模式
本申请将20MHz信道带宽、4x模式下的HE-LTF序列记为HE-LTF20MHz_4x,将40MHz信道带宽、4x模式下的HE-LTF序列记为HE-LTF40MHz_4x,将80MHz信道带宽、4x模式下的HE-LTF序列记为HE-LTF80MHz_4x,将160MHz信道带宽、4x模式下的HE-LTF序列记为HE-LTF160MHz_4x。
HE-LTF20MHz_4x={-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1, +1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,+1,-1,+1,+1,+1,0,0,0,-1,+1,-1,+1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1};
HE-LTF40MHz_4x={+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,0,0,0,0,0,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1};
HE-LTF80MHz_4x={+1,+1,-1,+1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1, -1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,0,0,0,0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1};
HE-LTF160MHz_4x={LTF 80MHz_lower_4x,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,LTF 80MHz_upper_4x};
HE-LTF 80MHz_lower_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x};
HE-LTF 80MHz_upper_4x={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x};
HE-LTF80MHz_left_4x={+1,+1,-1,+1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1, +1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,0,0};
HE-LTF80MHz_right_4x={0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1}。
4、峰均功率比
峰均功率比(peak to average power ratio,PAPR),可以指一个符号内,连续信号瞬 间功率峰值与信号功率平均值之比。可以用如下公式表示:
Figure PCTCN2020128724-appb-000001
其中,X i,表示一组序列的时域离散值;max(X i 2),表示时域离散值平方的最大值;mean(X i 2),表示时域离散值平方的平均值。
OFDM系统具有高PAPR的缺点,尤其是在大带宽下,更多的子载波导致更为严重的PAPR,高PAPR将会导致信号非线性失真,降低系统性能,所以在设计序列时,要求序列的PAPR越小越好。
5、Golay互补对(Golay complementary pair)
令a=(a(0),…a(N-1))和b=(b(0),…b(N-1))为长度为N的二元序列。其非周期互相关函数定义如下:
Figure PCTCN2020128724-appb-000002
1≤τ<N。如果C a,b(0)=0,则称a和b正交。当a=b时,称C a,b(τ)为a的非周期自相关函数,简记为C a(τ)。
若存在长度为N的两条序列a和b满足以下关系:
C a(τ)+C b(τ)=0,
则称a和b为Golay互补对。
示例性地,N=2时,a={1,1},b={1,-1}。
示例性地,N=10时,a={1,1,-1,1,-1,1,-1,-1,1,1},b={1,1,-1,1,1,1,1,1,-1,-1}。
示例性地,N=26时,a={+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1},b={+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1}。
需要说明的是,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议、WLAN协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,本申请实施例中,“预先获取”可包括由设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括站点和接入点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还需要说明的是,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上; “A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
下面将结合附图详细说明本申请提供的技术方案。本申请实施例可以应用于多个不同的场景下,包括图1所示的场景,但并不限于该场景。示例性地,对于上行传输,STA可以作为发送端,AP可以作为接收端;对于下行传输,AP可以作为发送端,STA可以作为接收端;对于其他传输场景,例如,AP和AP之间的数据传输,其中一个AP可以作为发送端,另一个AP可以作为接收端;又例如,STA和STA之间的上行传输,其中一个STA可以作为发送端,另一个STA可以作为接收端。因此,下面按照发送端和接收端对本申请实施例进行描述。
图5是本申请实施例提供的传输物理层协议数据单元的方法500的示意性流程图。图5所示的方法500可以包括如下步骤。
S510,发送端生成物理层协议数据单元PPDU,该PPDU包括长训练域,该长训练域的频域序列的长度大于第一长度,该第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度;
S520,发送端在目标信道上发送该PPDU,其中,该目标信道的带宽大于160MHz。
相应地,接收端在目标信道上接收PPDU。
可选地,方法500还可以包括步骤S530。S530,接收端解析PPDU。关于具体的解析方式可参考现有描述,对此不做限定。
上述长训练域也可以称为长训练字段,下文统一用长训练域表示。
在本申请实施例中,为区分传统长训练域和IEEE 802.11ax中的HE-LTF,将目标信道的带宽对应的长训练域用EHT-LTF表示。应理解,EHT-LTF用于表示下一代WLAN技术中能够支持带宽大于160MHz所对应的长训练域,其具体名称不对本申请实施例的保护范围造成限定。
在本申请实施例中,用第一长度表示带宽为160MHz对应的频域序列的长度。长训练域的频域序列长度大于第一长度,换句话说,上述方法500中,EHT-LTF的频域序列的长度大于信道带宽为160MHz的HE-LTF的频域序列的长度。例如,160MHz的HE-LTF可以由2个80MHz的HE-LTF乘以旋转因子之后拼接而成的,240MHz的EHT-LTF可以由3个80MHz的HE-LTF乘以旋转因子之后拼接而成的,或者,320MHz的EHT-LTF可以由4个80MHz的HE-LTF乘以旋转因子之后拼接而成的,故EHT-LTF的频域序列的长度大于信道带宽为160MHz的HE-LTF的频域序列的长度。
长训练域的频域序列长度大于第一长度,或者也可以理解为,EHT-LTF的频域值的数量大于160MHz的HE-LTF的频域值的数量。长训练域的频域序列长度大于第一长度,或者也可以理解为,EHT-LTF对应的子载波号的数量大于160MHz的HE-LTF对应的子载波号的数量。示例性地,240MHz带宽共有3072个子载波,那么该3072个子载波对应3072个频域值,160MHz带宽共有1024个子载波,那么该1024个子载波对应1024个频域值,因此,240MHz的EHT-LTF的频域值的数量大于160MHz的HE-LTF的频域值的数,240MHz的EHT-LTF的子载波号的数量大于160MHz的HE-LTF的子载波号的数量。
在本申请实施例中,目标信道的带宽大于160MHz。应理解,目标信道的带宽也可以 为大于160MHz的任何带宽,例如,目标信道的带宽为200MHz、240MHz、280MHz、或320MHz等等。
本申请实施例的目标信道的带宽的EHT-STF,可以是通过仿真计算得到。例如,发送端可以基于协议规定的序列(例如IEEE 802.11ax中的HE-LTF序列),采用相应公式计算得到。又如,发送端可以基于已存储的或者新生成的序列,采用相应公式计算得到,本申请实施例对此不做限定。
基于上述技术方案,能够设计更大信道带宽所对应的长训练序列或者说频域序列,可以支持接收端对在更大信道带宽上传输数据。该长训练序列可以基于现有信道带宽的长训练序列得到,并且,通过仿真计算,例如调节参数,可以获得性能较好的长训练序列。长训练域可以基于该长训练序列得到。根据本申请实施例,不仅可以满足实际中的更大信道带宽,而且通过对参数进行穷举仿真,验证了本申请实施例提供的长训练序列,峰均功率值PAPR较小,性能较优,进而提高系统的频谱利用率。
考虑到存在三种不同的模式(1x模式、2x模式和4x模式),可以分别设计对应的EHT-LTF。因此,下面分不同情况详细介绍本申请实施例的方法。在本申请实施例中,关于IEEE 802.11ax中的序列的具体形式可参见前面的描述,后续不再赘述。
情况一、传输模式为4x模式
实施例一、可以利用IEEE 802.11ax中的序列构建IEEE 802.11be中的序列,从而使兼容性更强,且易于实现。
1、利用IEEE 802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中4x模式下80MHz带宽的LTF序列记作HE-LTF80MHz_4x,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x}。为了构造其他序列,先构造HE-LTF80MHz_4x’。具体而言,根据HE-LTF80MHz_4x构造HE-LTF80MHz_4x’,其中,HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x}。关于IEEE 802.11ax中的序列具体可以参照前面的描述,此处不再赘述。
(1)构造4x模式下160MHz带宽的LTF序列,记作EHT-LTF160MHz_4x。
在一种可能的实现方式中,令EHT-LTF160MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF160MHz_4x={+HE-LTF80MHz_4x,0 23,+HE-LTF80MHz_4x’};或,
EHT-LTF160MHz_4x={-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’}。
上述4x模式下160MHz带宽的EHT-LTF序列的PAPR为6.9295dB。
(2)构造4x模式下240MHz带宽的LTF序列,记作EHT-LTF240MHz_4x。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’,0 23,±HE-LTF80MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23, HE-LTF80MHz_4x}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为7.8474dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF240MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为7.9354dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x’,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.0238dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x’,0 23,±HE-LTF80MHz_4x’,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x’}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.9900dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为7.9354dB。
(3)构造4x模式下320MHz带宽的LTF序列,记作EHT-LTF320MHz_4x。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为9.2954dB。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为8.9288dB。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x};或,
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为9.2472dB。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或,
EHT-LTF320MHz_4x={-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为9.2954dB。
2、利用IEEE 802.11ax中160MHz的序列和802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中4x模式下160MHz带宽的LTF序列记作HE-LTF160MHz_4x,HE-LTF160MHz_4x={HE-LTF160MHz_left_4x,0,HE-LTF160MHz_right_4x}。为了构造其他序列,先构造HE-LTF160MHz_4x’。具体而言,根据HE-LTF160MHz_4x构造HE-LTF160MHz_4x’,其中,HE-LTF160MHz_4x’={HE-LTF160MHz_left_4x,0,-HE-LTF160MHz_right_4x}。关于IEEE802.11ax中的序列具体可以参照前面的描述,此处不再赘述。
(1)构造4x模式下240MHz带宽的LTF序列,记作EHT-LTF240MHz_4x。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF160MHz_4x,0 23,±HE-LTF80MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF160MHz_4x,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF240MHz_4x={-HE-LTF160MHz_4x,0 23,HE-LTF80MHz_4x}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为7.8474dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF160MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF160MHz_4x};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF160MHz_4x}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为7.9354dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF160MHz_4x’,0 23,±HE-LTF80MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF160MHz_4x’,0 23,-HE-LTF80MHz_4x};或,
EHT-LTF240MHz_4x={-HE-LTF160MHz_4x’,0 23,HE-LTF80MHz_4x}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.2241dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x,0 23,±HE-LTF160MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x,0 23,-HE-LTF160MHz_4x’};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x,0 23,HE-LTF160MHz_4x’}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.2241dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF160MHz_4x’,0 23,±HE-LTF160MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF160MHz_4x’,0 23,HE-LTF160MHz_4x’};或,
EHT-LTF240MHz_4x={-HE-LTF160MHz_4x’,0 23,-HE-LTF160MHz_4x’}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.0238dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF80MHz_4x’,0 23,±HE-LTF160MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF80MHz_4x’,0 23,-HE-LTF160MHz_4x};或,
EHT-LTF240MHz_4x={-HE-LTF80MHz_4x’,0 23,HE-LTF160MHz_4x}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.0401dB。
在一种可能的实现方式中,令EHT-LTF240MHz_4x={±HE-LTF160MHz_4x,0 23,±HE-LTF80MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_4x={HE-LTF160MHz_4x,0 23,-HE-LTF80MHz_4x’};或,
EHT-LTF240MHz_4x={-HE-LTF160MHz_4x,0 23,HE-LTF80MHz_4x’}。
上述4x模式下240MHz带宽的EHT-LTF序列的PAPR为8.9900dB。
(2)构造4x模式下320MHz带宽的LTF序列,记作EHT-LTF320MHz_4x。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF160MHz_4x,0 23,±HE-LTF160MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF160MHz_4x,0 23,HE-LTF160MHz_4x},或,
EHT-LTF320MHz_4x={-HE-LTF160MHz_4x,0 23,-HE-LTF160MHz_4x}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为9.5100dB。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF160MHz_4x,0 23,±HE-LTF160MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF160MHz_4x,0 23,HE-LTF160MHz_4x’},或,
EHT-LTF320MHz_4x={-HE-LTF160MHz_4x,0 23,-HE-LTF160MHz_4x’}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为9.2499dB。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF160MHz_4x’,0 23,±HE-LTF160MHz_4x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的 序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF160MHz_4x’,0 23,HE-LTF160MHz_4x};或,
EHT-LTF320MHz_4x={-HE-LTF160MHz_4x’,0 23,-HE-LTF160MHz_4x}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为8.9288dB。
在一种可能的实现方式中,令EHT-LTF320MHz_4x={±HE-LTF160MHz_4x’,0 23,±HE-LTF160MHz_4x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_4x={HE-LTF160MHz_4x’,0 23,HE-LTF160MHz_4x’};或,
EHT-LTF320MHz_4x={-HE-LTF160MHz_4x’,0 23,-HE-LTF160MHz_4x’}。
上述4x模式下320MHz带宽的EHT-LTF序列的PAPR为9.7162dB。
实施例二、可以利用新序列构建IEEE 802.11be中的序列,从而获得更优的LTF序列。
在本申请实施例中,利用Golay互补对(Golay complementary pair)构造80MHz的序列。本申请实施例将新构造的4x模式下80MHz带宽的LTF序列记作EHT-LTF80MHz_4x。
令EHT-LTF80MHz_4x={k 1,x 106,k 2,G 1,k 3,y 106,k 4,k 5,x 106,k 6,G 2,k 7,-y 106,k 8,a(1:13),-1,0 5,1,a(14:26),k 9,x 106,k 10,G 3,k 11,y 106,k 12,k 13,-x 106,k 14,G 4,k 15,y 106,k 16},其中,x 106={a,b,1,1,a,-b},y 106={a,b,-1,-1,-a,b},k i∈{1,-1},i∈{1,2,…,16},G j∈{±a,±b},j∈{1,2,3,4},a和b是长度为26的Golay互补对,a(1:13)表示取序列a的第1位至第13位,a(14:26)表示取序列a的第14位至第26位。具体地,a={+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1},b={+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1}。
通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF80MHz_4x={+1,a,b,+1,+1,a,-b,+1,b,+1,a,b,-1,-1,-a,b,+1,+1,a,b,+1,+1,a,-b,+1,b,+1,-a,-b,+1,+1,a,-b,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,0,0,0,0,0,+1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,a,b,+1,+1,a,-b,+1,a,-1,a,b,-1,-1,-a,b,-1,+1,-a,-b,-1,-1,-a,b,+1,-b,-1,a,b,-1,-1,-a,b,-1}。
上述4x模式下80MHz带宽的EHT-LTF序列的PAPR为6.3675dB。
基于新构造的EHT-LTF80MHz_4x,可以按照上述实施例一类似的方法,分别构造EHT-LTF160MHz_4x、EHT-LTF240MHz_4x以及EHT-LTF320MHz_4x。新构造的EHT-LTF160MHz_4x的PAPR为6.6551dB,新构造的EHT-LTF240MHz_4x的PAPR为7.3411dB,新构造的EHT-LTF320MHz_4x的PAPR为8.2556dB。
可选地,可以将上述EHT-LTF80MHz_4x直接缓存或存储在本地,当使用时,直接从本地获取EHT-LTF80MHz_4x即可。
应理解,上述方法仅是示例性说明,本申请并未限定于此,任何可以得到上述EHT-LTF80MHz_4x的方法都属于本申请实施例保护的范围。
实施例三、可以在上述实施例二所获得的序列的基础之上,进一步优化。
利用洪水算法对上述实施例二中新构造的各个序列进行优化,分别获得下列优化后的序列:
Figure PCTCN2020128724-appb-000003
{0,0,1,0,1,0,-0.99,1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0,1,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,0,1,1,-0.99,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,1,1,0.13,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,0,1,1,1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,1,-0.99,0,1,0,1,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,1,0.99,0,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0.9,0,0,1,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,1,1,1,1,0,1,1,1,1,-0,0,0,1,1,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,0,1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0,1,0,1,1,1,1,1,1,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,0,1,1,1,1,0,1,1,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0,1,1,0,0,1,0,1,0,1,1,1,1,1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0.9,1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,0,1,1,1,1,0,1,1,0,0,-0.1,1,0,0,1,1,0,1,0,1,0};
优化后的EHT-LTF80MHz_4x的PAPR为5.8830dB。
EHT-LTF160MHz_4x={-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1, -1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1, 1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1};
优化后的EHT-LTF160MHz_4x的PAPR为6.3939dB。
Figure PCTCN2020128724-appb-000004
{1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,-0.5,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,1,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0.75,0,1,0,0,0,0.875,1,-0.125,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0, 1,1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,-0.5,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,-0.5,1,0,1,-0.5,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0.5,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0, 1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,0.5,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,-0.5,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,-0.9375,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,-0.5,0,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0};
优化后的EHT-LTF240MHz_4x的PAPR为6.6898dB。
EHT-LTF320MHz_4x={-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1, 1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,1,-1,-1,1,1, -1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1, 1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,1}。
优化后的EHT-LTF320MHz_4x的PAPR为7.8652dB。
综上所述,情况一中的各个实施例所获得的序列性能分析如下:
表一
Figure PCTCN2020128724-appb-000005
由上述表一可以看出,对于大于160MHz的信道带宽而言,实施例二所获得序列的PAPR低于实施例一所获得的序列的PAPR,实施例三所获得的序列的PAPR低于实施例二所获得的序列的PAPR。实施例一利用现有IEEE 802.11ax标准中的序列构造新序列, 兼容性更强,且易于实现。实施例二和实施例三利用Golay互补对新构造80MHz带宽的序列,并基于新构造的序列构造新序列,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
情况二、传输模式为1x模式
实施例四、可以利用IEEE 802.11ax中的序列构建IEEE 802.11be中的序列,从而使兼容性更强,且易于实现。
1、利用IEEE 802.11ax中80MHz的序列进行构造。
与情况一类似,可以将IEEE 802.11ax中1x模式下80MHz带宽的LTF序列记作HE-LTF80MHz_1x,HE-LTF80MHz_1x={HE-LTF80MHz_left_1x,0,HE-LTF80MHz_right_1x}。为了构造其他序列,先构造HE-LTF80MHz_1x’。具体而言,根据HE-LTF80MHz_1x构造HE-LTF80MHz_1x’,其中,HE-LTF80MHz_1x’={HE-LTF80MHz_left_1x,0,-HE-LTF80MHz_right_1x}。关于IEEE802.11ax中的序列具体可以参照前面的描述,此处不再赘述。
(1)构造1x模式下160MHz带宽的LTF序列,记作EHT-LTF160MHz_1x。
在一种可能的实现方式中,令EHT-LTF160MHz_1x={±HE-LTF80MHz_1x,0 23,±HE-LTF80MHz_1x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF160MHz_1x={HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x’};或,
EHT-LTF160MHz_1x={-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x’}。
上述1x模式下160MHz带宽的EHT-LTF序列的PAPR为4.8623dB。
(2)构造1x模式下240MHz带宽的LTF序列,记作EHT-LTF240MHz_1x。
在一种可能的实现方式中,令EHT-LTF240MHz_1x={±HE-LTF80MHz_left_1x,0 23,±HE-LTF80MHz_right_1x,0 23,±HE-LTF80MHz_left_1x,0,±HE-LTF80MHz_right_1x,0 23,±HE-LTF80MHz_left_1x,0 23,±HE-LTF80MHz_right_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_1x={HE-LTF80MHz_left_1x,0 23,HE-LTF80MHz_right_1x,0 23,HE-LTF80MHz_left_1x,0,HE-LTF80MHz_right_1x,0 23,-HE-LTF80MHz_left_1x,0 23,-HE-LTF80MHz_right_1x};或,
EHT-LTF240MHz_1x={-HE-LTF80MHz_left_1x,0 23,-HE-LTF80MHz_right_1x,0 23,-HE-LTF80MHz_left_1x,0,-HE-LTF80MHz_right_1x,0 23,HE-LTF80MHz_left_1x,0 23,HE-LTF80MHz_right_1x}。
上述1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.3317dB。
在一种可能的实现方式中,令EHT-LTF240MHz_1x={±HE-LTF80MHz_1x,0 23,±HE-LTF80MHz_1x,0 23,±HE-LTF80MHz_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_1x={HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x}。
上述1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.3317dB。
(3)构造1x模式下320MHz带宽的LTF序列,记作EHT-LTF320MHz_1x。
在一种可能的实现方式中,令EHT-LTF320MHz_1x={±HE-LTF80MHz_1x,0 23,±HE-LTF80MHz_1x,0 23,±HE-LTF80MHz_1x,0 23,±HE-LTF80MHz_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_1x={HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或,
EHT-LTF320MHz_1x={-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};或,
EHT-LTF320MHz_1x={HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};或,
EHT-LTF320MHz_1x={-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或,
EHT-LTF320MHz_1x={HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};或,
EHT-LTF320MHz_1x={-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或,
EHT-LTF320MHz_1x={-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};或
EHT-LTF320MHz_1x={HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x}。
上述1x模式下320MHz带宽的EHT-LTF序列的PAPR为5.0022dB。
2、利用IEEE 802.11ax中160MHz的序列和802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中1x模式下160MHz带宽的LTF序列记作HE-LTF160MHz_1x,HE-LTF160MHz_1x={HE-LTF160MHz_left_1x,0,HE-LTF160MHz_right_1x}。为了构造其他序列,先构造HE-LTF160MHz_1x’。具体而言,根据HE-LTF160MHz_1x构造HE-LTF160MHz_1x’,其中,HE-LTF160MHz_1x’={HE-LTF160MHz_left_1x,0,-HE-LTF160MHz_right_1x}。关于IEEE802.11ax中的序列具体可以参照前面的描述,此处不再赘述。
(1)构造1x模式下240MHz带宽的LTF序列,记作EHT-LTF240MHz_1x。
在一种可能的实现方式中,令EHT-LTF240MHz_1x={±HE-LTF160MHz_1x,0 23,±HE-LTF80MHz_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_1x={HE-LTF160MHz_1x,0 23,-HE-LTF80MHz_1x};或,
EHT-LTF240MHz_1x={-HE-LTF160MHz_1x,0 23,HE-LTF80MHz_1x}。
上述1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.6482dB。
在一种可能的实现方式中,令EHT-LTF240MHz_1x={±HE-LTF160MHz_1x’,0 23,±HE-LTF80MHz_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_1x={HE-LTF160MHz_1x’,0 23,-HE-LTF80MHz_1x};或,
EHT-LTF240MHz_1x={-HE-LTF160MHz_1x’,0 23,HE-LTF80MHz_1x}。
上述1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.3570dB。
在一种可能的实现方式中,令EHT-LTF240MHz_1x={±HE-LTF160MHz_1x,0 23,±HE-LTF160MHz_1x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_1x={HE-LTF160MHz_1x,0 23,-HE-LTF160MHz_1x’};或,
EHT-LTF240MHz_1x={-HE-LTF160MHz_1x,0 23,HE-LTF160MHz_1x’}。
上述1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.3570dB。
在一种可能的实现方式中,令EHT-LTF240MHz_1x={±HE-LTF80MHz_1x,0 23,±HE-LTF160MHz_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_1x={HE-LTF80MHz_1x,0 23,-HE-LTF160MHz_1x};或,
EHT-LTF240MHz_1x={-HE-LTF80MHz_1x,0 23,HE-LTF160MHz_1x}。
上述1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.6482dB。
(2)构造1x模式下320MHz带宽的LTF序列,记作EHT-LTF320MHz_1x。
在一种可能的实现方式中,令EHT-LTF320MHz_1x={±HE-LTF160MHz_1x,0 23,±HE-LTF160MHz_1x’},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_1x={HE-LTF160MHz_1x,0 23,HE-LTF160MHz_1x’},或,
EHT-LTF320MHz_1x={-HE-LTF160MHz_1x,0 23,-HE-LTF160MHz_1x’}。
上述1x模式下320MHz带宽的EHT-LTF序列的PAPR为5.2021dB。
在另一种可能的实现方式中,令EHT-LTF320MHz_1x={±HE-LTF160MHz_1x,0 23,±HE-LTF160MHz_1x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_1x={HE-LTF160MHz_1x,0 23,HE-LTF160MHz_1x},或,
EHT-LTF320MHz_1x={-HE-LTF160MHz_1x,0 23,-HE-LTF160MHz_1x}。
上述1x模式下320MHz带宽的EHT-LTF序列的PAPR为7.8726dB。
实施例五、可以利用新序列构建802.11be中的序列,从而获得更优的LTF序列。
利用布尔函数集构造80MHz的序列。
示例性地,可以按照下列步骤构造:
步骤一、定义二次布尔函数集Func:
Figure PCTCN2020128724-appb-000006
步骤二、遍历地从Func中取一个函数f(x 1,x 2,…x 7),并通过f(x 1,x 2,…x 7)构造g(x 1,x 2,…x 7)=f+x 1。计算函数f(x 1,x 2,…x 7)与g(x 1,x 2,…x 7)的真值表,分别记做序列
Figure PCTCN2020128724-appb-000007
Figure PCTCN2020128724-appb-000008
Figure PCTCN2020128724-appb-000009
则序列对(a,b)是一对二元Golay互补对。
步骤三、定义seq125a=a(2:126),seq125b=b(2:126),seq251={seq125a,0,seq125b}。其中,a(2:126)表示取序列a的第2位至第126位,b(2:126)表示取序列b的第2位至第126位。
步骤四、对序列seq251进行插0操作,即每两个元素之间插入3个0,得到1x模式下80MHz带宽的待筛选的LTF序列seq1001。
步骤五、由于布尔函数集Func中共有128个函数,故总共可以得到128条seq1001,通过计算机搜索,获得综合PAPR最低的序列。本申请实施例将最后获得的1x模式下80MHz带宽的LTF序列记作EHT-LTF80MHz_1x,
EHT-LTF80MHz_1x={1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1}。
上述新构造的1x模式下80MHz带宽的EHT-LTF序列的PAPR为4.1087dB。
基于新构造的LTF80MHz_1x,可以按照上述实施例一类似的方法,分别构造EHT-LTF160MHz_1x、EHT-LTF240MHz_1x以及EHT-LTF320MHz_1x。
EHT-LTF160MHz_1x={EHT-LTF80MHz_1x,0 23,EHT-LTF80MHz_1x’};或,
EHT-LTF160MHz_1x={-EHT-LTF80MHz_1x,0 23,-EHT-LTF80MHz_1x’}。
上述新构造的1x模式下160MHz带宽的EHT-LTF序列的PAPR为4.6977dB。
EHT-LTF240MHz_1x={EHT-LTF80MHz_1x,0 23,EHT-LTF80MHz_1x,0 23,-EHT-LTF80MHz_1x};或,
EHT-LTF240MHz_1x={-EHT-LTF80MHz_1x,0 23,-EHT-LTF80MHz_1x,0 23,EHT-LTF80MHz_1x}。
上述新构造的1x模式下240MHz带宽的EHT-LTF序列的PAPR为6.4813dB。
EHT-LTF320MHz_1x={EHT-LTF160MHz_1x,0 23,EHT-LTF160MHz_1x’};或,
EHT-LTF320MHz_1x={-EHT-LTF160MHz_1x,0 23,-EHT-LTF160MHz_1x’}。
上述新构造的1x模式下320MHz带宽的EHT-LTF序列的PAPR为5.8346dB。
可选地,可以将上述EHT-LTF80MHz_1x和/或EHT-LTF160MHz_1x直接缓存或存储在本地,当使用时,直接从本地获取EHT-LTF80MHz_1x和/或EHT-LTF160MHz_1x即可。
应理解,上述方法仅是示例性说明,本申请并未限定于此,任何可以得到上述EHT-LTF80MHz_1x和/或EHT-LTF160MHz_1x的方法都属于本申请实施例保护的范围。
综上所述,情况二中的各个实施例所获得的序列性能分析如下:
表二
Figure PCTCN2020128724-appb-000010
由上述表二可以看出,对于大于或等于160MHz的信道带宽而言,实施例五所获得序列的PAPR低于实施例四所获得的序列的PAPR。实施例四利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现。实施例五利用布尔函数集新构造80MHz带宽的序列,并基于新构造的序列构造新序列,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
情况三、传输模式为2x模式
在情况三中,可以利用IEEE 802.11ax中的序列构建IEEE 802.11be中的序列,从而使兼容性更强。
1、利用IEEE 802.11ax中80MHz的序列进行构造。
在本申请实施例中,可以将IEEE 802.11ax中2x模式下80MHz带宽的LTF序列记作HE-LTF80MHz_2x,HE-LTF80MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x}。关于IEEE 802.11ax中的序列具体可以参照前面的描述,此处不再赘述。
(1)构造2x模式下160MHz带宽的LTF序列,记作EHT-LTF160MHz_2x。
在一种可能的实现方式中,令EHT-LTF160MHz_2x={±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF160MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或,
EHT-LTF160MHz_2x={-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x}。
上述2x模式下160MHz带宽的EHT-LTF序列的PAPR为6.2436dB。
在另一种可能的实现方式中,令EHT-LTF160MHz_2x={±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中可得获得下列序列:
EHT-LTF160MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或,
EHT-LTF160MHz_2x={-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x}。
上述2x模式下160MHz带宽的EHT-LTF序列的PAPR为6.6341dB。
(2)构造2x模式下240MHz带宽的LTF序列,记作EHT-LTF240MHz_2x。
在一种可能的实现方式中,令
Figure PCTCN2020128724-appb-000011
Figure PCTCN2020128724-appb-000012
Figure PCTCN2020128724-appb-000013
通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_2x={HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-:TF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,
EHT-LTF240MHz_2x={-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x, -HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};
上述2x模式下240MHz带宽的EHT-LTF序列的PAPR为7.1771dB。
(3)构造2x模式下320MHz带宽的LTF序列,记作EHT-LTF320MHz_2x。
在一种可能的实现方式中,令EHT-LTF320MHz_2x={±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,
EHT-LTF320MHz_2x={-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x}。
上述2x模式下320MHz带宽的EHT-LTF序列的PAPR为7.5506dB。
在另一种可能的实现方式中,令EHT-LTF320MHz_2x={±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x,0 23,±HE-LTF 80MHz_part1_2x,±HE-LTF 80MHz_part2_2x,±HE-LTF 80MHz_part3_2x,±HE-LTF 80MHz_part4_2x,±HE-LTF 80MHz_part5_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中可以选取下列序列:
EHT-LTF320MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x, HE-LTF 80MHz_part5_2x};或者,
EHT-LTF320MHz_2x={-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x}。
上述2x模式下320MHz带宽的EHT-LTF序列的PAPR为8.1128dB。
在一种可能的实现方式中,当考虑搜索范围小的时候,可以得到下列序列:
EHT-LTF320MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x},或者
EHT-LTF320MHz_2x={-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x}
上述2x模式下320MHz带宽的EHT-LTF序列的PAPR为6.9188dB。
可选地,上述序列可以兼容240MHz的情形,该240MHz可以是由连续的3个80MHz拼接而成的,也可以是由非连续的3个80MHz拼接而成的,本申请实施例对此不作限定。
2、利用IEEE 802.11ax中160MHz的序列和802.11ax中80MHz的序列进行构造。
在本申请实施例中,可以将IEEE 802.11ax中2x模式下80MHz带宽的LTF序列记作HE-LTF80MHz_2x,将IEEE 802.11ax中2x模式下160MHz带宽的LTF序列记作HE-LTF160MHz_2x。关于IEEE 802.11ax中的序列具体可以参照前面的描述,此处不再赘述。
(1)构造2x模式下240MHz带宽的LTF序列,记作EHT-LTF240MHz_2x。
在一种可能的实现方式中,令EHT-LTF240MHz_2x={±HE-LTF80MHz_2x,0 23,±HE-LTF160MHz_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_2x={HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
EHT-LTF240MHz_2x={-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};
上述2x模式下240MHz带宽的LTF序列的PAPR为7.8417dB。
在一种可能的实现方式中,令EHT-LTF240MHz_2x={±HE-LTF160MHz_2x,0 23,±HE-LTF80MHz_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_2x={HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
EHT-LTF240MHz_2x={-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};
上述2x模式下240MHz带宽的LTF序列的PAPR为7.8106dB。
在一种可能的实现方式中,令EHT-LTF240MHz_2x={±HE-LTF80MHz_2x,0 23,±HE-LTF80MHz_2x,0 23,±HE-LTF80MHz_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF240MHz_2x={HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,
EHT-LTF240MHz_2x={-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};
上述2x模式下240MHz带宽的LTF序列的PAPR为7.8417dB。
(2)构造2x模式下320MHz带宽的LTF序列,记作EHT-LTF320MHz_2x。
在一种可能的实现方式中,令EHT-LTF320MHz_2x={±HE-LTF160MHz_2x,0 23,±HE-LTF160MHz_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_2x={HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
EHT-LTF320MHz_2x={-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};
上述2x模式下320MHz带宽的LTF序列的PAPR为9.6810dB。
在一种可能的实现方式中,令EHT-LTF320MHz_2x={±HE-LTF160MHz_2x,0 23,±HE-LTF160MHz_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_2x={HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,
EHT-LTF320MHz_2x={-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};
上述2x模式下320MHz带宽的LTF序列的PAPR为9.3908dB。
在一种可能的实现方式中,令EHT-LTF320MHz_2x={±HE-LTF80MHz_2x,0 23,±HE-LTF80MHz_2x,0 23,±HE-LTF80MHz_2x,0 23,±HE-LTF80MHz_2x},通过计算机搜索,遍历所有可能的序列的PAPR,从所有可能的序列中选取PAPR较小的序列,可以确定:
EHT-LTF320MHz_2x={HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,
EHT-LTF320MHz_2x={-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};
EHT-LTF320MHz_2x={HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
EHT-LTF320MHz_2x={-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};
上述2x模式下320MHz带宽的LTF序列的PAPR为9.0869dB。
可选地,上述序列可以兼容240MHz的情形,该240MHz可以是由连续的3个80MHz拼接而成的,也可以是由非连续的3个80MHz拼接而成的,本申请实施例对此不作限定。
本申请实施例利用现有IEEE 802.11ax标准中的序列构造新序列,兼容性更强,且易于实现,能够获得PAPR较小、性能较优的序列,进而提高系统的频谱利用率。
以上,结合图1至图5,详细说明了本申请实施例提供的传输物理层协议数据单元的方法。
本申请实施例提供了一种传输物理层协议数据单元的装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的接收端对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的发送端对应的步骤或流程。
以下,结合图6至图8,详细说明本申请实施例提供的传输物理层协议数据单元的装置。
图6是本申请实施例提供的传输物理层协议数据单元的装置的示意性框图。如图6所示,该装置600可以包括通信单元610和处理单元620。通信单元610可以与外部进行通信,处理单元620用于进行数据处理。通信单元610还可以称为通信接口或收发单元。
在一种可能的设计中,该装置600可实现对应于上文方法实施例中的发送端执行的步骤或者流程,其中,处理单元620用于执行上文方法实施例中发送端的处理相关的操作,通信单元610用于执行上文方法实施例中发送端的收发相关的操作。
示例性地,处理单元620用于:生成物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长训练域的频域序列长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的长训练域的频域序列的长度;通信单元610用于:在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
可选地,所述目标信道的带宽为240MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见方法实施例部分。
可选地,所述目标信道的带宽为320MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见方法实施例部分。
可选地,所述目标信道的带宽为240MHz,传输模式为1x模式,所述长训练域的频域序列为:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见方法实施例部分,0 23表示连续的23个0。
可选地,所述目标信道的带宽为320MHz,传输模式为1x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或者,{-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见方法实施例部分,0 23表示连续的23个0。
可选地,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见方法实施例部分。
可选地,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
可选地,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见方法实施例部分。
可选地,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者, {-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
在又一种可能的设计中,该装置600可实现对应于上文方法实施例中的接收端执行的步骤或者流程,其中,通信单元610用于执行上文方法实施例中接收端的收发相关的操作,处理单元620用于执行上文方法实施例中接收端的处理相关的操作。
示例性地,通信单元610用于:在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长练域的频域序列长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的长训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;处理单元620用于:解析所述PPDU。
可选地,所述目标信道的带宽为240MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见方法实施例部分。
可选地,所述目标信道的带宽为320MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,{-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,HE-LTF80MHz_left_4x和HE-LTF80MHz_right_4x可参见方法实施例部分。
可选地,所述目标信道的带宽为240MHz,传输模式为1x模式,所述长训练域的频域序列为:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见方法实施例部分,0 23表示连续的23个0。
可选地,所述目标信道的带宽为320MHz,传输模式为1x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或者,{-HE-LTF80MHz_1x,0 23, -HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};其中,HE-LTF80MHz_1x可参见方法实施例部分,0 23表示连续的23个0。
可选地,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见方法实施例部分。
可选地,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
可选地,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,{-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};其中,0 23表示连续的23个0,HE-LTF 80MHz_part1_2x、HE-LTF 80MHz_part2_2x、HE-LTF 80MHz_part3_2x、HE-LTF 80MHz_part4_2x以及HE-LTF 80MHz_part5_2x可参见方法实施例部分。
可选地,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:{HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,{-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,{HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23, HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,{-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};其中,0 23表示连续的23个0,HE-LTF80MHz_2x和HE-LTF160MHz_2x可参见方法实施例部分。
应理解,这里的装置600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的发送端,可以用于执行上述方法实施例中与发送端对应的各个流程和/或步骤,或者,装置600可以具体为上述实施例中的接收端,可以用于执行上述方法实施例中与接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置600具有实现上述方法中发送端所执行的相应步骤的功能,或者,上述各个方案的装置600具有实现上述方法中接收端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图6中的装置可以是前述实施例中的接收端或发送端,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图7示出了本申请实施例提供的传输物理层协议数据单元的装置700。该装置700包括处理器710和收发器720。其中,处理器710和收发器720通过内部连接通路互相通信,该处理器710用于执行指令,以控制该收发器720发送信号和/或接收信号。
可选地,该装置700还可以包括存储器730,该存储器730与处理器710、收发器720通过内部连接通路互相通信。该存储器730用于存储指令,该处理器710可以执行该存储器730中存储的指令。在一种可能的实现方式中,装置700用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置700用于实现上述方法实施例中的接收端对应的各个流程和步骤。
应理解,装置700可以具体为上述实施例中的发送端或接收端,也可以是芯片或者芯片系统。对应的,该收发器720可以是该芯片的收发电路,在此不做限定。具体地,该装置700可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。可选地,该存储器730可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型 的信息。该处理器710可以用于执行存储器中存储的指令,并且当该处理器710执行存储器中存储的指令时,该处理器710用于执行上述与发送端或接收端对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8示出了本申请实施例提供的传输物理层协议数据单元的装置800。该装置800包括处理电路810和收发电路820。其中,处理电路810和收发电路820通过内部连接通路互相通信,该处理电路810用于执行指令,以控制该收发电路820发送信号和/或接收信号。
可选地,该装置800还可以包括存储介质830,该存储介质830与处理电路810、收发电路820通过内部连接通路互相通信。该存储介质830用于存储指令,该处理电路810可以执行该存储介质830中存储的指令。在一种可能的实现方式中,装置800用于实现上 述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置800用于实现上述方法实施例中的接收端对应的各个流程和步骤。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图5所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图5所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个站点以及一个或多个接入点。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种传输物理层协议数据单元的方法,其特征在于,包括:
    生成物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度;
    在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
  2. 一种传输物理层协议数据单元的方法,其特征在于,包括:
    在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;
    解析所述PPDU。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或者,
    {-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x};
    其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,
    HE-LTF80MHz_left_4x={+1,+1,-1,+1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1, +1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,0,0};
    HE-LTF80MHz_right_4x={0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1}。
  4. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或者,
    {-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,
    {HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,
    {-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};
    其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,
    HE-LTF80MHz_left_4x={+1,+1,-1,+1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1, +1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,0,0};
    HE-LTF80MHz_right_4x={0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1}。
  5. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,传输模式为1x模式,所述长训练域的频域序列为:
    {HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};
    其中,HE-LTF80MHz_1x={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1},0 23表示连续的23个0。
  6. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,传输模式为1x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或者,
    {-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23, HE-LTF80MHz_1x};
    其中,HE-LTF80MHz_1x={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1},0 23表示连续的23个0。
  7. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,
    {-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x, -HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,
    {HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};或者,
    {HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
    {-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};或者,
    {HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};
    其中,0 23表示连续的23个0,HE-LTF80MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};HE-LTF160MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};
    HE-LTF 80MHz_part1_2x={+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0};
    HE-LTF 80MHz_part2_2x={+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0};
    HE-LTF 80MHz_part3_2x={+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,0,0,0,0,0,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1};
    HE-LTF 80MHz_part4_2x={0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0, +1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1};
    HE-LTF 80MHz_part5_2x={0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1}。
  8. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,
    {-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,
    {HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
    {-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,
    {HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,
    {-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
    {HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
    {HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};
    其中,0 23表示连续的23个0,HE-LTF80MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x}; HE-LTF160MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};
    HE-LTF 80MHz_part1_2x={+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0};
    HE-LTF 80MHz_part2_2x={+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0};
    HE-LTF 80MHz_part3_2x={+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,0,0,0,0,0,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1};
    HE-LTF 80MHz_part4_2x={0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1};
    HE-LTF 80MHz_part5_2x={0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0, +1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1}。
  9. 一种传输物理层协议数据单元的装置,其特征在于,包括:
    处理单元,用于生成物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度;
    通信单元,用于在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
  10. 一种传输物理层协议数据单元的装置,其特征在于,包括:
    收发单元,用于在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括长训练域,所述长练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的长训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;
    通信单元,用于解析所述PPDU。
  11. 根据权利要求9或10所述的装置,其特征在于,所述目标信道的带宽为240MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x};或者,
    {-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x};
    其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,
    HE-LTF80MHz_left_4x={+1,+1,-1,+1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1, -1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,0,0};
    HE-LTF80MHz_right_4x={0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1}。
  12. 根据权利要求9或10所述的装置,其特征在于,所述目标信道的带宽为320MHz,传输模式为4x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};或者,
    {-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,
    {HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’,0 23,HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’};或者,
    {-HE-LTF80MHz_4x,0 23,-HE-LTF80MHz_4x’,0 23,-HE-LTF80MHz_4x,0 23,HE-LTF80MHz_4x’};
    其中,HE-LTF80MHz_4x={HE-LTF80MHz_left_4x,0,HE-LTF80MHz_right_4x},HE-LTF80MHz_4x’={HE-LTF80MHz_left_4x,0,-HE-LTF80MHz_right_4x},0 23表示连续的23个0,
    HE-LTF80MHz_left_4x={+1,+1,-1,+1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1, +1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,0,0};
    HE-LTF80MHz_right_4x={0,0,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1, +1,-1,-1,+1,-1,+1,-1,+1}。
  13. 根据权利要求9或10所述的装置,其特征在于,所述目标信道的带宽为240MHz,传输模式为1x模式,所述长训练域的频域序列为:
    {HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};
    其中,HE-LTF80MHz_1x={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1},0 23表示连续的23个0。
  14. 根据权利要求9或10所述的装置,其特征在于,所述目标信道的带宽为320MHz,传输模式为1x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x};或者,
    {-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,-HE-LTF80MHz_1x,0 23,HE-LTF80MHz_1x};
    其中,HE-LTF80MHz_1x={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1},0 23表示连续的23个0。
  15. 根据权利要求9或10所述的装置,其特征在于,所述目标信道的带宽为240MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,
    {-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,
    {HE-LTF80MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,HE-LTF160MHz_2x};或者,
    {HE-LTF160MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
    {-HE-LTF160MHz_2x,0 23,HE-LTF80MHz_2x};或者,
    {HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};
    其中,0 23表示连续的23个0,HE-LTF80MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};HE-LTF160MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};
    HE-LTF 80MHz_part1_2x={+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0};
    HE-LTF 80MHz_part2_2x={+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0};
    HE-LTF 80MHz_part3_2x={+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,0,0,0,0,0,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1};
    HE-LTF 80MHz_part4_2x={0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0, -1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1};
    HE-LTF 80MHz_part5_2x={0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1}。
  16. 根据权利要求9或10所述的装置,其特征在于,所述目标信道的带宽为320MHz,传输模式为2x模式,所述长训练域的频域序列为以下任意一项:
    {HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};或者,
    {-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x,0 23,-HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,-HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,-HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};或者,
    {HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
    {-HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,
    {HE-LTF160MHz_2x,0 23,HE-LTF160MHz_2x};或者,
    {-HE-LTF160MHz_2x,0 23,-HE-LTF160MHz_2x};或者,
    {HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
    {HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x};或者,
    {-HE-LTF80MHz_2x,0 23,-HE-LTF80MHz_2x,0 23,HE-LTF80MHz_2x,0 23, HE-LTF80MHz_2x};
    其中,0 23表示连续的23个0,HE-LTF80MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x};HE-LTF160MHz_2x={HE-LTF 80MHz_part1_2x,HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,HE-LTF 80MHz_part5_2x,0 23,HE-LTF 80MHz_part1_2x,-HE-LTF 80MHz_part2_2x,HE-LTF 80MHz_part3_2x,HE-LTF 80MHz_part4_2x,-HE-LTF 80MHz_part5_2x};
    HE-LTF 80MHz_part1_2x={+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0};
    HE-LTF 80MHz_part2_2x={+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0};
    HE-LTF 80MHz_part3_2x={+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,0,0,0,0,0,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1};
    HE-LTF 80MHz_part4_2x={0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1};
    HE-LTF 80MHz_part5_2x={0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0, -1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1}。
  17. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至8中任一项所述的方法的指令。
  19. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现如权利要求1至8中任一项所述的方法。
PCT/CN2020/128724 2019-11-15 2020-11-13 传输物理层协议数据单元的方法和装置 WO2021093858A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022528099A JP2023502384A (ja) 2019-11-15 2020-11-13 物理層プロトコルデータユニットを伝送するための方法および装置
BR112022009246A BR112022009246A2 (pt) 2019-11-15 2020-11-13 Método e aparelho para transmitir unidade de dados de protocolo de camada física
KR1020227019506A KR20220098215A (ko) 2019-11-15 2020-11-13 물리 계층 프로토콜 데이터 유닛을 전송하는 방법 및 장치
EP20886709.3A EP4050829B1 (en) 2019-11-15 2020-11-13 Method and device for transmitting physical layer protocol data unit
EP23213885.9A EP4358479A3 (en) 2019-11-15 2020-11-13 Method and apparatus for transmitting physical layer protocol data unit
US17/744,133 US20220311566A1 (en) 2019-11-15 2022-05-13 Method and Apparatus for Transmitting Physical Layer Protocol Data Unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911121641 2019-11-15
CN201911121641.1 2019-11-15
CN202010043533.3A CN112821998A (zh) 2019-11-15 2020-01-15 传输物理层协议数据单元的方法和装置
CN202010043533.3 2020-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/744,133 Continuation US20220311566A1 (en) 2019-11-15 2022-05-13 Method and Apparatus for Transmitting Physical Layer Protocol Data Unit

Publications (1)

Publication Number Publication Date
WO2021093858A1 true WO2021093858A1 (zh) 2021-05-20

Family

ID=75852957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128724 WO2021093858A1 (zh) 2019-11-15 2020-11-13 传输物理层协议数据单元的方法和装置

Country Status (7)

Country Link
US (1) US20220311566A1 (zh)
EP (2) EP4050829B1 (zh)
JP (1) JP2023502384A (zh)
KR (1) KR20220098215A (zh)
CN (2) CN116743334B (zh)
BR (1) BR112022009246A2 (zh)
WO (1) WO2021093858A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766483A (zh) * 2020-06-05 2021-12-07 华为技术有限公司 传输/接收物理层协议数据单元的方法和装置
CN113839752B (zh) * 2020-06-08 2023-08-22 华为技术有限公司 传输/接收物理层协议数据单元的方法和装置
CN113923082B (zh) * 2020-07-10 2023-03-10 华为技术有限公司 传输ppdu的方法及相关装置
CN116015579B (zh) * 2020-08-03 2023-12-08 华为技术有限公司 一种传输物理层协议数据单元的方法及装置
CN114070697B (zh) * 2020-08-05 2023-02-10 华为技术有限公司 一种传输物理层协议数据单元的方法及装置
CN114697176A (zh) * 2020-12-26 2022-07-01 华为技术有限公司 信息传输方法及装置
CN115604849A (zh) * 2021-07-12 2023-01-13 华为技术有限公司(Cn) 一种通信方法及通信装置
CN116760679B (zh) * 2023-08-17 2023-11-03 上海朗力半导体有限公司 物理层参数配置方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138870A (zh) * 2011-11-22 2013-06-05 华为技术有限公司 数据传输方法和数据传输装置
US20160007325A1 (en) * 2014-07-04 2016-01-07 Newracom, Inc. Downlink physical layer protocol data unit format in a high efficiency wireless lan
CN107210987A (zh) * 2015-02-04 2017-09-26 Lg电子株式会社 在无线通信系统中用于多用户发送和接收的方法及其装置
US20190268805A1 (en) * 2015-03-25 2019-08-29 Newracom, Inc. Long training field sequence construction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205743A1 (zh) * 2013-06-27 2014-12-31 华为技术有限公司 长训练序列生成方法、发送信号方法和装置
CN105120520B (zh) * 2015-07-17 2019-04-19 魅族科技(中国)有限公司 无线局域网络中数据传输的方法和设备
US10856311B2 (en) * 2018-03-06 2020-12-01 Qualcomm Incorporated Systems and methods of communicating via sub-bands in wireless communication networks
US20190289612A1 (en) * 2018-03-16 2019-09-19 Qualcomm Incorporated Wireless communication via a large bandwidth channel
CN117880038A (zh) * 2018-03-31 2024-04-12 华为技术有限公司 一种信息传输方法及装置
US20220278771A1 (en) * 2019-08-12 2022-09-01 Lg Electronics Inc. Method by which multi-ru receives ldpc-tone-mapped ppdu in wireless lan system, and apparatus
US11962447B2 (en) * 2020-05-13 2024-04-16 Lg Electronics Inc. 4X LTF sequence for 80MHz band

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138870A (zh) * 2011-11-22 2013-06-05 华为技术有限公司 数据传输方法和数据传输装置
US20160007325A1 (en) * 2014-07-04 2016-01-07 Newracom, Inc. Downlink physical layer protocol data unit format in a high efficiency wireless lan
CN107210987A (zh) * 2015-02-04 2017-09-26 Lg电子株式会社 在无线通信系统中用于多用户发送和接收的方法及其装置
US20190268805A1 (en) * 2015-03-25 2019-08-29 Newracom, Inc. Long training field sequence construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS : "P802.11 -Standard for Information Technology --Telecommunications and Information Exchange Between Systems Local and Met… Project Active P802.11 -Standard for Information Technology --Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks --Specific Requirem", IEEE, 11 December 2013 (2013-12-11), XP055811806, Retrieved from the Internet <URL:https://standards.ieee.org/project/802_11.html> *

Also Published As

Publication number Publication date
EP4050829A4 (en) 2022-12-28
EP4358479A3 (en) 2024-05-08
KR20220098215A (ko) 2022-07-11
EP4358479A2 (en) 2024-04-24
CN116743334A (zh) 2023-09-12
CN116743334B (zh) 2024-03-01
EP4050829A1 (en) 2022-08-31
CN112821998A (zh) 2021-05-18
US20220311566A1 (en) 2022-09-29
EP4050829B1 (en) 2024-01-03
JP2023502384A (ja) 2023-01-24
BR112022009246A2 (pt) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2021093858A1 (zh) 传输物理层协议数据单元的方法和装置
US11368339B2 (en) Sounding reference signal transmission method, network device and terminal device
EP3637842B1 (en) Method of transmitting and receiving information, network device and terminal device
US20230013454A1 (en) Data transmission method and apparatus
WO2018082457A1 (zh) 配置参考信号的方法和装置
JP2022532754A (ja) 物理層プロトコルデータユニットを送受信するための方法および装置
WO2020221321A1 (zh) 通信方法以及通信装置
JP2020509686A (ja) 通信方法、ネットワークデバイス、および端末デバイス
US10187825B2 (en) Data transmission method and apparatus
TW201931923A (zh) 資源配置的方法和設備
US11817980B2 (en) Method and apparatus for transmitting physical layer protocol data unit
TW201919427A (zh) 無線通訊方法、終端和網路設備
US10038764B2 (en) Data transmission method and apparatus
US20240090006A1 (en) Wireless communication method and network device
WO2020056775A1 (zh) 反馈信息、接收信息的方法和设备
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
WO2022151771A1 (zh) 一种bwp的确定方法及装置
WO2021244373A1 (zh) 传输物理层协议数据单元的方法和装置
WO2024027637A1 (zh) 资源确定方法、装置、终端及网络侧设备
WO2023011617A1 (zh) 一种获取信息的方法和装置
WO2021207968A1 (zh) 信号传输方法及装置
CN117083950A (zh) 一种传输需求指示的方法和装置
CA3157199A1 (en) Resource determining method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886709

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022528099

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009246

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020886709

Country of ref document: EP

Effective date: 20220527

ENP Entry into the national phase

Ref document number: 20227019506

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022009246

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220512