WO2021047615A1 - 参考信号传输方法及通信装置 - Google Patents

参考信号传输方法及通信装置 Download PDF

Info

Publication number
WO2021047615A1
WO2021047615A1 PCT/CN2020/114615 CN2020114615W WO2021047615A1 WO 2021047615 A1 WO2021047615 A1 WO 2021047615A1 CN 2020114615 W CN2020114615 W CN 2020114615W WO 2021047615 A1 WO2021047615 A1 WO 2021047615A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
time
information
unit
time domain
Prior art date
Application number
PCT/CN2020/114615
Other languages
English (en)
French (fr)
Inventor
位祎
李雪茹
曲秉玉
张荻
龚名新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010943735.3A external-priority patent/CN112564873A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20862670.5A priority Critical patent/EP4024739A4/en
Publication of WO2021047615A1 publication Critical patent/WO2021047615A1/zh
Priority to US17/690,719 priority patent/US20220201715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technology, and in particular to a reference signal transmission method and communication device.
  • the channel state information of the channel can be obtained through the reference signal, and the network device can select more appropriate modulation and coding method and precoding information based on the channel state information.
  • a network device can obtain channel state information by receiving a sounding reference signal (SRS) sent by a terminal.
  • the SRS may be an aperiodic reference signal.
  • the network device configures the SRS resource set for the terminal device; when the network device triggers SRS through downlink control information (DCI), the terminal can be based on the value X of the timing offset (slotoffset) in the SRS resource set.
  • the SRS is sent on a time unit with a timing offset of X after the time unit where the DCI is located.
  • the present application provides a reference signal transmission method and communication device, which is beneficial to reduce resource overhead.
  • this application provides a reference signal transmission method.
  • the terminal device receives first information on a first time unit, and the first information is used to trigger the terminal device to send a reference signal RS; the terminal device sends RS on a second time unit; and the second time unit The unit starts with the first time unit, and in the time unit of valid uplink transmission, the time unit indicated by the timing offset indication n.
  • the timing offset indicator n is used to indicate that the first time unit is the start and the effective uplink transmission time unit is the time unit, and the timing offset indicator n indicates the first time unit and the second time unit.
  • the number of effective uplink transmission time units is smaller than the number of time units that start with the first time unit. Therefore, the In the embodiment, the number of bits required for the timing offset indication n is relatively small.
  • the multiple Any one of the first time units can also be used to trigger the terminal device to send the RS.
  • the timing offset indication n indicates the timing offset between the first time unit and the second time unit
  • the first time unit is also unique. Therefore, this embodiment can also improve the selection flexibility of the first time unit.
  • the network device selects the time unit that carries the data scheduling control information as the first time unit, so as to use the data scheduling control information to trigger the terminal device to send RS, avoiding additional sending of the first information to specifically trigger the terminal Resource waste caused by the device sending RS.
  • the network device it is beneficial for the network device to disperse the multiple first information that triggers multiple terminal devices to send RSs separately and send them on different first time units, avoiding sending multiple first information on the same first time unit. The resulting control channel congestion.
  • the second time unit starts with the first time unit, the m-th time unit in the time unit of valid uplink transmission, and m is equal to the value of the timing offset indicator n .
  • This timing offset indicates that the value of n is greater than zero.
  • the second time unit starts with the first time unit, and for the m-th time unit in the time unit of valid uplink transmission, m is equal to the value of the timing offset indication n plus 1.
  • the timing offset indicates that the value of n is greater than or equal to zero.
  • the second time unit starts with the first time unit, the m-th time unit in the time unit of valid uplink transmission, and m is determined based on the timing offset indicator n and the corresponding relationship. of.
  • the correspondence is the correspondence between each optional value of m and each optional value of the timing offset indication n, which can be determined in order based on the size of the index number of each optional value of m and the size of each optional value of n .
  • Each optional value or value range of m may be predefined, or configured by higher layer signaling, or configured by MAC-CE signaling.
  • the second time unit starts with the first time unit and is the mth time unit in the time unit of valid uplink transmission.
  • the first information is also used to indicate the timing offset indication n.
  • the first information includes a timing offset indication n. It can be seen that this embodiment is beneficial to enable the network device to flexibly determine the second time unit, the first time unit, and the timing offset indication n, and further increase the flexibility of selecting the first time unit.
  • the terminal device receives second information, and the second information is used to configure the timing offset indication n. It can be seen that in this implementation manner, the timing offset indication n is configured through the second information, which can ensure the flexibility of the selection of the first time unit and avoid increasing the overhead of the timing offset indication n in the first information.
  • the maximum value of the timing offset indication n is predefined, or the maximum value of the timing offset indication n is configured by higher layer signaling or media access control control unit MAC CE signaling , Or the maximum value of the timing offset indication n is determined by the ratio of uplink and downlink time units.
  • This implementation manner is beneficial for determining the value range of the timing offset indicator n and/or the number of bits occupied. Therefore, it is advantageous for the terminal device to be able to read the timing offset indication n from the first information or the second information.
  • the effective uplink transmission time unit is determined based on the ratio of uplink and downlink time units. With different ratios of uplink and downlink time units, the positions and numbers of time units for effective uplink transmission are different.
  • the effective time unit of uplink transmission is a time unit that starts with the first time unit and can be used for uplink transmission.
  • the effective uplink transmission time unit is: the uplink transmission time unit starting with the first time unit and/or the special time unit.
  • the various embodiments disclosed in this application can be applied to a time division duplex (TDD) system.
  • TDD time division duplex
  • the effective uplink transmission time unit is a time unit that meets one or more of the following characteristics: the time unit is a special time unit and/or an uplink time unit; the time unit occupied by the RS in the time unit The time domain resource offset between the domain resource and the time domain resource occupied by the first information is greater than or equal to the processing delay of the RS; the time domain resource occupied by the RS in the time unit is determined based on configuration information ; The number of time domain resources allowed for sending the RS in a time unit is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on configuration information.
  • This implementation manner is beneficial to ensure that the effective uplink transmission time unit can send the RS, and can also reduce the number of effective uplink transmission time units indicated by the timing offset indication n, thereby reducing the number of bits of the timing offset indication n .
  • the effective uplink transmission time unit is a time unit that starts with the first time unit and satisfies one or more of the above characteristics and can be used for uplink transmission.
  • This implementation manner is beneficial to ensure that the effective uplink transmission time unit can send the RS, and can also reduce the number of effective uplink transmission time units indicated by the timing offset indication n, thereby reducing the number of bits of the timing offset indication n .
  • the effective time unit of uplink transmission is a time unit that starts with the first time unit and meets one or more of the following characteristics and can be used for uplink transmission: the time unit is a special time unit And/or uplink time unit; in the time unit, the time domain resource offset between the time domain resource occupied by the RS and the time domain resource occupied by the first information is greater than or equal to the processing delay of the RS, time The time domain resources occupied by the RS in the unit are determined based on the configuration information.
  • the terminal device may set the number of time domain resources in the second time unit based on the configuration information.
  • the time domain resource used to transmit the RS is allowed to transmit part of the RS.
  • the terminal device may, based on the configuration information, allow use in the second time unit
  • the RS is sent by the time domain resource of the RS.
  • the second time unit when the subcarrier interval of the first information is different from the subcarrier interval of the RS, when the second time unit is determined based on the first time unit, it is necessary to determine the second time unit based on the subcarrier interval of the first information and the subcarrier interval of the RS.
  • Carrier spacing is converted. That is to say, the first time unit is converted to the third time unit based on the RS subcarrier interval, and the second time unit starts with the third time unit.
  • the timing offset indicates n The indicated time unit.
  • the third time unit is a time unit in a subcarrier of the RS.
  • the sub-carrier interval of the first information refers to the sub-carrier interval used to transmit the first information; the sub-carrier interval of the RS refers to the sub-carrier interval used to transmit the RS.
  • the timing offset indicator n indicates The time unit of "" can be: the terminal device converts the first time unit to the third time unit based on the subcarrier interval of the RS; starting with the third time unit, the mth time unit in the effective uplink transmission time unit , As the second time unit, the m is an integer determined according to the value of n.
  • the index of the second time unit is the index corresponding to the time unit of the effective uplink transmission starting from the first index.
  • the timing offset indicates the index indicated by n.
  • the first index is the index of the third time unit.
  • the index of the third time unit is the index corresponding to the third time unit when the first time unit is converted to the third time unit based on the subcarrier interval of the RS, and the third time unit is the time unit in the subcarrier of the RS.
  • this application also provides a reference signal transmission method.
  • a network device sends first information on a first time unit, and the first information is used to trigger the terminal device to send a reference signal RS; the network device receives RS on a second time unit; The second time unit starts with the first time unit, and among the time units of valid uplink transmission, the time unit indicated by the timing offset indication n.
  • the timing offset indication n Compared with the manner of indicating the timing offset between the first time unit and the second time unit, the number of bits required for the timing offset indication n in this embodiment is relatively small.
  • the multiple Any one of the first time units can also be used to trigger the terminal device to send the RS.
  • the timing offset indication n indicates the timing offset between the first time unit and the second time unit
  • the first time unit is also unique. Therefore, this embodiment can also improve the selection flexibility of the first time unit.
  • the network device selects the time unit that carries the data scheduling control information as the first time unit, so as to use the data scheduling control information to trigger the terminal device to send RS, avoiding additional sending of the first information to specifically trigger the terminal Resource waste caused by the device sending RS.
  • the network device it is beneficial for the network device to disperse the multiple first information that triggers multiple terminal devices to send RSs separately and send them on different first time units, avoiding sending multiple first information on the same first time unit. The resulting control channel congestion.
  • the second time unit starts with the first time unit, and in the m-th time unit in the time unit of valid uplink transmission, m is equal to the value of the timing offset indication n.
  • the timing offset indicates that the value of n is greater than zero.
  • the second time unit starts with the first time unit, and for the m-th time unit in the time unit of valid uplink transmission, m is equal to the value of the timing offset indication n plus 1.
  • the timing offset indicates that the value of n is greater than or equal to zero.
  • the second time unit starts with the first time unit, the m-th time unit in the time unit of valid uplink transmission, and m is determined based on the timing offset indicator n and the corresponding relationship. of.
  • the correspondence is the correspondence between each optional value of m and each optional value of the timing offset indication n, and may be determined based on the index number of each optional value of m and the index number of each optional value of m.
  • Each optional value or value range of m may be predefined, or configured by higher layer signaling, or configured by MAC-CE signaling.
  • the second time unit starts with the first time unit and is the mth time unit in the time unit of valid uplink transmission.
  • the foregoing various implementation manners are beneficial to expand the selection range of the network device regarding the first time unit. Therefore, on the one hand, it is beneficial for the network device to select the time unit that carries the data scheduling control information as the first time unit, so as to use the data scheduling control information to trigger the terminal device to send the RS, avoiding additional sending of the first information to specifically trigger the terminal Resource waste caused by the device sending RS. On the other hand, it is beneficial for the network device to disperse the first information that triggers multiple terminal devices to send the RS respectively on different first time units to send, so as to avoid sending each first information on the same first time unit.
  • the control channel is congested.
  • the first information is also used to indicate the timing offset indication n.
  • the first information includes a timing offset indication n.
  • This implementation manner is beneficial for the network device to further expand the selection range of the first time unit according to different values of the time domain offset indication n, thereby further improving the flexibility of the network device for selecting the first time unit.
  • the network device sends second information, and the second information is used to configure the timing offset indication n. It can be seen that this embodiment configures the timing offset indication n through the second information, which is beneficial to ensure the flexibility of the first time unit selection while avoiding the increase of resource overhead in the first information.
  • the maximum value of the timing offset indication n is predefined, or the maximum value of the timing offset indication n is configured by higher layer signaling or media access control control unit MAC CE signaling , Or the maximum value of the timing offset indication n is determined by the ratio of uplink and downlink time units.
  • the network device may determine the value range of the timing offset indicator n or the value range of m based on the maximum value of the timing offset indicator n; the network device may indicate the value range of n based on the timing offset indicator n Or the value range of m above, determine the first time unit, the time domain offset indicator n, and the second time unit.
  • the effective uplink transmission time unit is determined based on the ratio of uplink and downlink time units.
  • the effective time unit of uplink transmission is a time unit that satisfies one or more of the following characteristics: the time unit is a special time unit and/or an uplink time unit; the time domain resources occupied by the RS in the time unit The time domain resource offset from the time domain resource occupied by the first information is greater than or equal to the processing delay of the RS; the time domain resource occupied by the RS in the time unit is determined based on configuration information; The number of time domain resources allowed in the unit to send the RS is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on configuration information.
  • the network device may set the time domain resources at the second time unit based on the configuration information.
  • the time domain resource used to receive the RS is allowed to receive part of the RS in the unit.
  • the effective time unit of uplink transmission is a time unit that satisfies one or more of the following characteristics: the time unit is an uplink time unit; The time domain resource offset between the time domain resources occupied by the RS and the time domain resources occupied by the first information is greater than or equal to the processing delay of the RS; the time domain resources occupied by the RS in the time unit are based on The configuration information is determined; the number of time domain resources allowed for sending the RS in a time unit is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on the configuration information
  • the K time domain resources before the first time domain resource occupied by the RS in the special time unit do not include the time domain resources for downlink transmission, and the K is greater than or equal to zero; the RS occupied in the special time unit
  • the time domain resource is located between the time domain resource L+1 and the time domain resource L+
  • N is reported by the terminal device, or configured by the network device, or predefined by the protocol.
  • the method further The method includes: the terminal device receives third information; the third information is used to indicate a time unit format; and the time unit format takes effect after the second time unit.
  • the terminal device after the terminal device receives the first information on the first time unit and before sending the RS on the second time unit, the The method further includes: the terminal device receives third information; the third information is used to indicate a time unit format, and the time unit format takes effect after the last time domain resource occupied by the RS in the second time unit .
  • the method after the network device sends the first information on the first time unit, and before the RS is received on the second time unit, the method It also includes: the network device sends third information; the third information is used to indicate a time unit format; and the time unit format takes effect after the second time unit.
  • the The method further includes: the network device sending third information; the third information is used to indicate a time unit format, and the time unit format takes effect after the last time domain resource occupied by the RS in the second time unit .
  • time unit format can take effect after the RS is sent, thereby helping to ensure the flexibility of the first time unit selection.
  • the time unit where the overlapping time domain resources are located is the time unit of effective uplink transmission of the RS. This is beneficial to the successful transmission of the high-priority RS.
  • this application also provides a reference signal transmission method for obtaining channel state information for downlink transmission.
  • the terminal device receives first information on a first time unit, and the first information is used to instruct the terminal device to receive the reference signal RS; the terminal device receives all information on the second time unit.
  • the RS; the second time unit starts with the first time unit, and among the time units of valid downlink transmission, the time unit indicated by the timing offset indication n.
  • the timing deviation in this embodiment is The shift indication n indicates the time unit in the time unit of valid downlink transmission. Compared with the manner in which the timing offset indication n indicates the timing offset between the first time unit and the second time unit, the timing offset in this embodiment is The number of bits required to indicate n is relatively small.
  • the second time unit starts with the first time unit, and is the mth time unit in the time unit of valid downlink transmission, and m is equal to the value of the timing offset indicator n .
  • This timing offset indicates that the value of n is greater than zero.
  • the second time unit starts with the first time unit, and for the m-th time unit in the time unit of valid downlink transmission, m is equal to the value of the timing offset indication n plus 1.
  • the timing offset indicates that the value of n is greater than or equal to zero.
  • the second time unit starts with the first time unit, and the m-th time unit in the effective downlink transmission time unit, m is determined based on the timing offset indicator n and the corresponding relationship. of.
  • the correspondence is the correspondence between each optional value of m and each optional value of the timing offset indication n, which can be determined in order based on the size of the index number of each optional value of m and the size of each optional value of n .
  • Each optional value or value range of m may be predefined, or configured by higher layer signaling, or configured by MAC-CE signaling.
  • the second time unit starts with the first time unit and is the m-th time unit in the time unit of valid downlink transmission.
  • the effective downlink transmission time unit is determined based on the ratio of uplink and downlink time units.
  • the effective time unit of downlink transmission is a time unit that starts with the first time unit and can be used for downlink transmission.
  • the effective downlink transmission time unit is: the uplink transmission time unit starting with the first time unit and/or the special time unit.
  • the various embodiments disclosed in this application can be applied to a time division duplex (TDD) system.
  • TDD time division duplex
  • the first information is also used to indicate the timing offset indication n.
  • the first information includes a timing offset indication n.
  • the terminal device receives second information, and the second information is used to configure the timing offset indication n.
  • the maximum value of the timing offset indication n is predefined, or the maximum value of the timing offset indication n is configured by higher layer signaling or media access control control unit MAC CE signaling , Or the maximum value of the timing offset indication n is determined by the ratio of uplink and downlink time units.
  • the effective time unit of downlink transmission is a time unit that satisfies one or more of the following characteristics:
  • the time unit is a special time unit and/or a downlink time unit
  • the time domain resource offset between the time domain resources occupied by the RS and the time domain resources occupied by the first information in the time unit is greater than or equal to the processing delay of the RS; the time domain resources occupied by the RS in the time unit Time domain resources are determined based on configuration information;
  • the number of time domain resources allowed for receiving the RS in a time unit is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on configuration information.
  • the effective time unit of downlink transmission is a time unit that starts with the first time unit and meets one or more of the above characteristics and can be used for downlink transmission.
  • the above two implementations are beneficial to ensure that the effective downlink transmission time unit can send the RS, and can also reduce the number of effective downlink transmission time units indicated by the timing offset indicator n, thereby reducing the timing offset indicator n Number of bits.
  • the effective time unit of downlink transmission is a time unit that starts with the first time unit and meets one or more of the following characteristics and can be used for downlink transmission: the time unit is a special time unit And/or a downlink time unit; the time domain resource offset between the time domain resource occupied by the RS and the time domain resource occupied by the first information in the time unit is greater than or equal to the processing delay of the RS, and the time The time domain resources occupied by the RS in the unit are determined based on the configuration information.
  • the terminal device may set the number of time domain resources in the second time unit based on the configuration information.
  • the time domain resource used to receive the RS is allowed to receive part of the RS.
  • the terminal device may, based on the configuration information, allow use in the second time unit
  • the RS is received by transmitting the time domain resource of the RS.
  • timing offset indication n indicates a valid downlink transmission time unit.
  • this application provides a reference signal transmission method.
  • the reference signal transmission method is explained from the perspective of the network device side.
  • the network device sends first information on the first time unit, where the first information is used to instruct the terminal device to receive the reference signal RS; the network device sends the RS on the second time unit; the second time unit is The first time unit is the start, and in the time unit of valid downlink transmission, the timing offset indicates the time unit indicated by n.
  • the effective downlink transmission time unit is determined based on the ratio of uplink and downlink time units.
  • the first information is also used to indicate the timing offset indication n.
  • the first information includes a timing offset indication n.
  • the network device sends second information, and the second information is used to configure the timing offset indication n.
  • the maximum value of the timing offset indication n is predefined, or the maximum value of the timing offset indication n is configured by higher layer signaling or media access control control unit MAC CE signaling , Or the maximum value of the timing offset indication n is determined by the ratio of uplink and downlink time units.
  • the effective time unit of downlink transmission is a time unit that satisfies one or more of the following characteristics:
  • the time unit is a special time unit and/or a downlink time unit
  • the time domain resource offset between the time domain resources occupied by the RS and the time domain resources occupied by the first information in the time unit is greater than or equal to the processing delay of the RS; the time domain resources occupied by the RS in the time unit Time domain resources are determined based on configuration information;
  • the number of time domain resources allowed for sending the RS in a time unit is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on configuration information.
  • this application also provides a communication device.
  • the communication device has part or all of the functions of the terminal device described in any one of the first aspect or the third aspect.
  • the function of the device may have the functions of some or all of the embodiments of the terminal device in the present application, or may have the function of independently implementing any of the embodiments of the present application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the communication unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a communication unit configured to receive first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • the communication unit is configured to send the RS on the second time unit
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processing unit, configured to determine the second time unit according to the first time unit and the timing offset indication n.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device may include:
  • a transceiver configured to receive first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • a transceiver configured to send the RS on the second time unit
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processor, configured to determine the second time unit according to the first time unit and the timing offset indication n.
  • the communication device may include:
  • a communication unit configured to receive first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the communication unit is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processor, configured to determine the second time unit according to the first time unit and the timing offset indication n.
  • the communication device may include:
  • a transceiver configured to receive first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the transceiver is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processor, configured to determine the second time unit according to the first time unit and the timing offset indication n.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least part or all of them may be arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with multiple application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (System on Chip). Whether each device is arranged independently on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • this application also provides a communication device.
  • the communication device has some or all of the functions of the network device in the method example described in any one of the second aspect or the fourth aspect.
  • the function of the communication device may have some or all of the functions in the embodiments of the present application, or may have the function of independently implementing any of the embodiments of the present application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a communication unit configured to send first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • the communication unit is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processing unit configured to determine the first time unit according to the second time unit, and the second time unit is a time unit for the terminal device to send the RS.
  • the communication unit may be a communication interface or an interface.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a transceiver configured to send first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • the transceiver is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processing unit, configured to determine the first time unit according to the second time unit.
  • the second time unit is a time unit for the terminal device to send the RS.
  • the communication device includes:
  • a communication unit configured to send first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the communication unit is further configured to send the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processing unit for determining the second time unit and the first time unit.
  • the second time unit is the time unit used for the terminal device to receive the RS or the time unit to send the RS.
  • the communication unit may be a communication interface or an interface.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a transceiver configured to send first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the transceiver is also used to send the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processor, configured to determine the second time unit and the first time unit.
  • the second time unit is a time unit for the terminal device to receive the RS or a time unit for the RS to be sent.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least part or all of them may be arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with multiple application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (System on Chip). Whether each device is arranged independently on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application also provides a processor configured to execute the foregoing various methods.
  • the processes of sending and receiving the information in the foregoing methods can be understood as the process of outputting the foregoing information by the processor and the process of receiving the inputted information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • sending the first information or RS mentioned in the foregoing method can be understood as the processor outputting the first information or RS.
  • receiving the first information or RS may be understood as the processor receiving the input first information or RS.
  • processor output and Operations such as receiving and inputting, rather than transmitting, sending and receiving operations directly performed by radio frequency circuits and antennas.
  • the foregoing processor may be a processor specifically configured to execute these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (Read Only Memory, ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM Read Only Memory
  • the embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • the present application also provides a communication system, which includes at least one terminal device and at least one network device of the foregoing aspect.
  • the system may also include other devices that interact with terminals or network devices in the solution provided in this application.
  • the present application provides a computer-readable storage medium for storing computer software instructions. When the instructions are executed by a computer, the method described in any one of the first or third aspects is implemented.
  • the present application provides a computer-readable storage medium for storing computer software instructions.
  • the instructions When the instructions are executed by a computer, the communication device realizes the method described in the second or fourth aspect.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first or third aspect.
  • this application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the second or fourth aspect above.
  • this application provides a chip system that includes a processor and an interface, the interface is used to obtain a program or instruction, and the processor is used to call the program or instruction to implement or support a terminal device Realize the functions involved in the first aspect or the third aspect, for example, determine or process at least one of the data and information involved in the above methods.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a chip system that includes a processor and an interface, the interface is used to obtain a program or instruction, and the processor is used to call the program or instruction to implement or support a network device
  • the function involved in the second aspect or the fourth aspect is realized, for example, at least one of the data and information involved in the above method is determined or processed.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • Figure 1 is a schematic diagram of an SRS triggering method
  • FIG. 2 is a schematic diagram of time slots based on an uplink and downlink time slot allocation ratio division according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a timing offset indication n provided in an embodiment of the present application for indicating a timing offset
  • FIG. 4 is a schematic diagram of a timing offset indicator n used to indicate a time unit of effective uplink transmission provided by an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 10 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 11 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another reference signal transmission method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of yet another reference signal transmission method provided by an embodiment of the present application.
  • FIG. 14 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 15 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 16 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of yet another reference signal transmission method provided by an embodiment of the present application.
  • FIG. 18 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 19 is another schematic diagram of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a special time unit provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a frame k provided by an embodiment of the present application.
  • the technical solution of the present application can be specifically applied to various communication systems.
  • the technical solution of this application can also be used in future networks, such as 5G systems, or new radio (NR) systems; or device-to-device (device to device).
  • 5G systems or new radio (NR) systems
  • NR new radio
  • device-to-device device to device
  • D2D device-to-device
  • M2M machine to machine
  • the network device may be a device with a wireless transceiver function or a chip that can be installed in the device.
  • the network device includes, but is not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller).
  • RNC Radio Network Controller
  • Node B Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved Node B, or home Node B) , HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and Reception point, TRP or transmission point, TP), etc., can also be equipment used in 5G, 6G or even 7G systems, such as gNB in NR system, or transmission point (TRP or TP), base station in 5G system
  • the network equipment may include a centralized unit (CU) and a distributed unit (DU, distributed unit).
  • the network device may also include a radio unit (RU).
  • CU implements some functions of network equipment
  • DU implements some functions of network equipment, for example, CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions, and DU implements Functions of radio link control (RLC), media access control (MAC) and physical (physical, PHY) layers. Since the information of the RRC layer will eventually become the information of the physical layer, or be transformed from the information of the physical layer, in this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical layers
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network (core network, CN), which is not limited here.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is the network equipment, and taking the network equipment as the base station as an example, the technical solutions provided by the embodiments disclosed in the present application are described.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, user agent or User device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, the wireless terminal in the aforementioned V2X car networking, or the wireless terminal type RSU, etc.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the term example is used to present the concept in a concrete way.
  • Reference signal includes, for example, but not limited to, channel state information reference signal (CSI-RS), synchronous signal broadcast channel block (synchronous signal/PBCH block, SSB), sounding reference signal (sounding) reference signal, SRS) etc.
  • CSI-RS channel state information reference signal
  • SSB synchronous signal broadcast channel block
  • SRS sounding reference signal
  • TRS tracking reference signal
  • the network equipment obtains the channel state information of the uplink transmission or the downlink transmission through the reference signal, so as to configure the corresponding modulation and coding method and precoding information for the terminal equipment.
  • the network device may trigger the terminal device to send a reference signal such as SRS to obtain channel state information for uplink transmission.
  • the network device can instruct the terminal device to receive reference signals such as CSI-RS, so as to obtain channel state information for downlink transmission.
  • DCI downlink control information
  • MAC-CE media access control control element
  • RRC Radio Resource Control
  • the first information is, for example, but not limited to, downlink control information (DCI), or downlink control signaling, or media access control control element (media access control control element). , MAC-CE) signaling, or RRC signaling, or other high-level signaling.
  • DCI downlink control information
  • media access control control element media access control control element
  • MAC-CE media access control control element
  • RRC Radio Resource Control
  • the high-level signaling may be, for example, but not limited to, one or more of radio resource control signaling dedicated to terminal equipment, cell-specific radio resource control signaling, or high-level parameters.
  • the first time unit is the time unit where the first information is located; or, the first time unit is the time unit where the control channel is detected, and the control channel carries the first information.
  • the second time unit is the time unit for the terminal device to send the RS.
  • the timing offset indication n is used to indicate the second time unit.
  • the second time unit is the time unit indicated by the timing offset indication n in the time unit of valid uplink transmission starting from the first time unit.
  • the effective time unit of uplink transmission is a time unit that is allowed to be used for (or can be used for, or can be used for) uplink transmission.
  • the effective time unit of uplink transmission is a time unit allowed to be used (or available or capable of being used for) uplink transmission of RS.
  • Time unit Uplink time unit, downlink time unit and special time unit
  • the time unit is, for example, but not limited to, one or more radio frames, or one or more subframes, or one or more time slots, or one or more mini slots, or one Or multiple sub-slots, or one or more symbols, or a time window formed by multiple frames or sub-frames, such as a system information (SI) window.
  • SI system information
  • the time domain resource is, for example, but not limited to, one or more ofdm symbols.
  • the time domain resources occupied by the RS can be indicated by the start symbol (or start position) and the number of symbols configured by the network device.
  • Symbols include uplink symbols and downlink symbols.
  • the uplink symbols can be called single carrier-frequency division multiple access (SC-FDMA) symbols or orthogonal frequency division multiple access (OFDM).
  • Symbol; the downlink symbol can be an OFDM symbol.
  • the communication system Based on the ratio of uplink and downlink time units, the communication system divides each time unit in the time domain into at least one of an uplink time unit, a downlink time unit, or a special time unit.
  • the uplink time unit is the time domain resource included as the time unit used for uplink transmission.
  • the time domain resource included in the downlink time unit is a time unit used for downlink transmission.
  • the special time unit is a time unit including time domain resources for uplink and downlink conversion.
  • Special time units for example, but not limited to, include uplink-downlink conversion time domain resources and time domain resources used for downlink transmission, or include uplink-downlink conversion time domain resources and uplink transmission time domain resources, or include uplink-downlink conversion time domain resources Domain resources, time domain resources used for downlink transmission, time domain resources used for uplink transmission, and so on.
  • FIG. 2 is a schematic diagram of a division based on an uplink and downlink time slot ratio provided by an embodiment of the present application.
  • D represents a downlink time slot
  • U represents an uplink time slot
  • S represents a special time slot.
  • slots 0 to 6 are downlink time slots
  • slot 7 is a special time slot
  • slots 8 and 9 are uplink time slots.
  • the terminal device receives the first information on the first time unit, and the first information is used to trigger the terminal device to send the reference signal RS; the terminal device sends the RS on the second time unit.
  • the second time unit is the time unit indicated by the timing offset indicator n in the time unit of valid uplink transmission starting from the first time unit.
  • TDD time division duplex
  • the timing offset indication n indicates the time unit in the time unit of valid uplink transmission. Compared with the manner in which the timing offset indication n indicates the timing offset between the first time unit and the second time unit, it can reduce The timing offset indicates the bit overhead of n.
  • this embodiment can also realize the flexibility of the selection of the first time unit (ie, the flexibility of RS triggering). Therefore, on the one hand, it is beneficial for the network device to select the time unit that carries the data scheduling control information as the first time unit, so as to use the data scheduling control information to trigger the terminal device to send the RS, avoiding additional sending of the first information to specifically trigger the terminal Resource waste caused by the device sending RS. On the other hand, it is beneficial for the network device to disperse and send the first information that triggers multiple terminal devices to send the RS respectively on different first time units, so as to avoid control channel congestion caused by sending on the same first time unit.
  • the timing offset indication n indicates the timing offset between the first time unit and the second time unit, as the first time unit is different, the timing offset between it and the second time unit is also Different, in order to realize the flexible selection of the first time unit, the timing offset indication n is expensive.
  • the second time unit is time slot 7.
  • the timing offset indicator n needs to be able to indicate the timing offset between any time slot from slot 0 to slot 7 and slot 7 respectively. It can be seen that the value range of the timing offset indication n needs to be from 0 to 7, that is, 3 bits are required to fully indicate.
  • the embodiment of the present application takes the time unit as a time slot as an example, assumes that the second time unit is slot7, and the effective time unit for uplink transmission is slot 7, slot 8, and slot 9 in Figure 4 .
  • the second time unit indicated by the timing offset indication n starts with the first time unit, which is a time unit in the time unit of valid uplink transmission, so the timing offset indication n has two bits, which can be a complete indication slot 7 to slot 9. Assuming that n is 00, it indicates the first time slot in it, namely slot 7; n is 01, it indicates the second time slot in it, namely slot 8; and n is 10, it indicates the third time slot in it, namely slot 9. Then, slot 7 starts with any time slot from slot 0 to slot 7, and the first time slot in the effective uplink transmission time slot, that is, if n is 00, slot 7 can be determined.
  • the number of bits of the timing offset indication n is 2 bits to indicate the second time unit, but the number of bits of the timing offset indication n in FIG. 3 needs to be 3 bits to indicate the first time unit. Two time units, so the overhead of the timing offset indication n in the embodiment shown in FIG. 4 is smaller.
  • multiple first time units can also be flexibly used to trigger the terminal device to send RS respectively, which avoids timing shifts.
  • n and the second time unit are relatively certain, only the same first time unit can be selected to trigger multiple terminal devices to send RS, resulting in a network device that needs to send multiple first information in the same first time unit Congestion problem.
  • FIG. 5 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the uplink channel information can be obtained by measuring the RS sent by the terminal device.
  • the reciprocity of the uplink and downlink channel information can be used to obtain the downlink channel information.
  • the terminal device can also measure the RS sent by the network device and report the measurement result to the network device, so that the network device can obtain the channel state information of the downlink transmission.
  • the reciprocity of the uplink and downlink channel information can be used to obtain the uplink Channel information.
  • Figure 2 Figure 3, Figure 4, Figure 7, Figure 9, Figure 11 have the same uplink and downlink time slot ratio.
  • Figures 4 to 11 take time slots as examples, and effective uplink transmission time slots are time slots that can be used for uplink transmission, such as special time slots and uplink time slots.
  • the difference between the reference signal transmission method for measuring the downlink channel and the reference signal transmission method for measuring the uplink channel is that the "effective uplink transmission time slot" in the relevant example in the reference signal transmission method for measuring the uplink channel needs to be modified to OK "Effective downlink transmission time slot", please refer to the relevant content described in Figure 17 to Figure 19.
  • FIG. 6 is a schematic flowchart of a reference signal transmission method according to an embodiment of the present application.
  • the reference signal transmission method may include the following steps:
  • the network device sends first information on the first time unit, and the terminal device receives the first information on the first time unit, where the first information is used to trigger the terminal device to send an RS;
  • the terminal device sends the RS on the second time unit, and the network device receives the RS on the second time unit.
  • the second time unit starts with the first time unit, and among the time units of valid uplink transmission, the time unit indicated by the timing offset indicator n.
  • the second time unit is the mth time unit in the time unit of valid uplink transmission starting with the first time unit.
  • m is equal to n+1, and the n+1 represents the value of the timing offset indication n plus one.
  • m is used to indicate the order of the second time unit in the time unit of the effective uplink transmission starting with the first time unit.
  • the first time unit is slot 0; starting with slot 0, the time units for valid uplink transmission are slot 7, slot 8, and slot 9; the value of the timing offset indicator n is 0 ;
  • the first information is DCI.
  • the network device sends the DCI on slot 0, and the DCI is used to trigger the terminal device to send the RS.
  • the terminal device receives the DCI on slot 0.
  • the terminal device starts with slot 0, and the first time unit (that is, m is equal to 1, and the value of n is 0) in the time units of valid uplink transmission (that is, slot 7, slot 8, and slot 9), that is, slot 7 Up, send RS.
  • the network device receives the RS on slot 7, and can obtain the channel state information of the uplink transmission.
  • the network device sends DCI on slot 7, and the DCI is used to trigger the terminal device to send RS.
  • the terminal device receives the DCI on slot 7. Start with slot 7, and the first time unit of the effective uplink transmission time unit (that is, slot 7, slot 8, and slot 9) is slot 7. Therefore, the terminal device sends the RS on slot 7, and the network device receives the RS on slot 7, and then obtains channel state information for downlink transmission.
  • the first time The unit can be flexibly selected (for example, any time slot from slot 0 to slot 7 can be used to trigger the terminal device to send RS). Therefore, on the one hand, it is beneficial for the network device to select the time unit that carries the data scheduling control information as the first time unit, so as to use the data scheduling control information to trigger the terminal device to send the RS, avoiding additional sending of the first information to specifically trigger the terminal Resource waste caused by the device sending RS. On the other hand, it is beneficial for the network device to disperse the first information that triggers multiple terminal devices to send RSs separately and send it on different first time units, so as to avoid sending multiple first information on the same first time unit.
  • the control channel is congested.
  • FIG. 8 is a schematic diagram of a time slot divided based on another uplink and downlink time slot ratio provided by an embodiment of the present application.
  • D represents a downlink time slot
  • U represents an uplink time slot
  • S represents a special time slot.
  • the network device sends DCI on slot 2
  • the DCI is used to trigger the terminal device to send RS.
  • the terminal device receives DCI on slot 2, and determines that the effective uplink transmission time slots starting with slot 2 are: slot 3, slot 4, slot 8, and slot 9.
  • the terminal determines to start with slot 2, and the first slot in the effective uplink transmission slot is slot 3, and the RS is sent on slot 3.
  • the network device receives RS on slot 3.
  • the terminal device determines to start with slot 3 according to the timing offset indication n, and the first slot in the effective uplink transmission slot is still slot 3. That is, the terminal device receives the DCI on slot 3, and the DCI is used to trigger the terminal device to send the RS. The terminal device also sends an RS on slot 3, and the network device also receives the RS on slot 3.
  • the first time unit is slot 6
  • the value of the timing offset indication n is 0, and m is equal to 1.
  • the effective time slots for uplink transmission are slot 8, slot 9.
  • the terminal device determines to start with slot 6, and the first time slot in the effective uplink transmission time slot is slot 8. That is, the terminal device receives the DCI on slot 6, and the DCI is used to trigger the terminal device to send the RS.
  • the terminal device sends RS on slot 8.
  • the network device also receives the RS on slot 8.
  • the timing offset indication is that the value of n is 0, and m is equal to 1.
  • the effective time slots for uplink transmission are slot 8, slot 9.
  • the terminal device determines to start with slot 7, and the first slot in the effective uplink transmission time slot is slot 8. That is, the terminal device receives the DCI on slot 7, and the DCI is used to trigger the terminal device to send the RS.
  • the terminal device sends RS on slot 8.
  • the network device also receives the RS on slot 8.
  • time slot schematic diagram shown in FIG. 8 is different from the time slot schematic diagram shown in FIG. 7, the time slot schematic diagram shown in FIG. 8 can also realize the flexible selection of the first time unit and help reduce the timing offset indication n The bit overhead.
  • the relevant time slot schematic diagrams in the embodiments disclosed in this application are used for illustration, and the ratio of uplink and downlink time slots is not limited.
  • the second time unit is the mth time unit in the time unit of valid uplink transmission starting with the first time unit.
  • m is the value of timing offset indicating n.
  • the timing offset indicates that n is not equal to zero.
  • the second time unit is a valid uplink transmission time slot starting from slot 0
  • the first time slot in the middle is slot 7.
  • the second time unit is the third time slot in the effective uplink transmission time slot starting with slot 0, That is slot 9.
  • the second time unit is the mth time unit in the time unit of valid uplink transmission starting with the first time unit.
  • the corresponding relationship may be determined based on the size of the index number of each optional value of m and the size of each optional value of n in order.
  • each optional value or value range of m may be predefined, or configured by higher layer signaling, or configured by MAC-CE signaling.
  • the value of the high-level signaling configuration m belongs to the set M, and the set M is ⁇ 1, 3, 4, 5 ⁇ , and the possible values of the timing offset indication n are: 0, 1, 2, 3, then m
  • the corresponding relationship between the value of and the value of the time domain offset indication n is: m is the value of the n+1th element in the set M.
  • the second time unit starts with slot 0 in frame k-1
  • the fourth time slot in the effective uplink transmission time slot is slot 9 in frame k-1.
  • the second time unit starts with slot 3 in frame k-1
  • is the fifth time slot in the effective uplink transmission time slot that is, slot 3 in frame k.
  • the second time unit starts with the first time unit and is the mth time unit in the time unit of valid uplink transmission.
  • the second time slot in the time slots namely slot 8.
  • the first time unit is slot 5
  • the first time unit can be different, that is, the first time unit that triggers the RS can be flexibly selected.
  • the number of effective uplink transmission time slots between the first time unit and the second time unit is less than the number of time slots between the first time unit and the second time unit. The number of time slots, thereby reducing the bit overhead occupied by the timing offset indication n.
  • FIG. 12 is a schematic flowchart of another reference signal transmission method according to an embodiment of the present application.
  • the difference between the reference signal transmission method shown in FIG. 12 and the reference signal transmission method shown in FIG. 6 is that the first information in FIG. 12 is also used to indicate the timing offset indication n.
  • a network device sends first information on a first time unit, where the first information is used to trigger a terminal device to send RS and the first information is also used to indicate a timing offset indication n; the terminal device receives on the first time unit First information
  • the first information is, for example, but not limited to, DCI, or downlink control signaling, or MAC-CE signaling, or RRC signaling, or other high-level signaling.
  • the terminal device may determine the timing offset indication n based on, for example, but not limited to, the timing offset indication field or the trigger indication field carried in the first information.
  • the first information may be included in DCI, or downlink control signaling, or MAC-CE signaling, or RRC signaling, or other high-level signaling.
  • the first information can be used to trigger the terminal device to send the RS, and can also be used to determine the timing offset indication n.
  • the timing offset indication n may be an explicit indication, or an implicit indication, or a combination of the two indications.
  • the terminal device sends the RS in the second time unit, and the network device receives the RS in the second time unit.
  • the second time unit is the time unit indicated by the timing offset indicator n in the time unit of valid uplink transmission starting from the first time unit.
  • the reference signal transmission method shown in FIG. 12 is beneficial to enable the network device to flexibly determine the second time unit, the first time unit, and the timing offset indication n, which further increases the flexibility of the selection of the first time unit.
  • the network device select the time unit that carries the data scheduling control information as the first time unit, so as to use the data scheduling control information to trigger the terminal device to send RS, avoiding additional sending of the first information to specifically trigger the terminal Resource waste caused by the device sending RS.
  • the network device it is beneficial for the network device to disperse the first information that triggers multiple terminal devices to send RSs separately and send it on different first time units, so as to avoid sending multiple first information on the same first time unit.
  • the control channel is congested.
  • FIG. 13 is a schematic flowchart of yet another reference signal transmission method according to an embodiment of the present application.
  • the difference between the reference signal transmission method shown in FIG. 13 and the reference signal transmission method shown in FIG. 6 is that the reference signal transmission method shown in FIG. 13 informs the terminal device of the timing offset indication n through the second information.
  • the second information may be MAC CE signaling or higher layer signaling.
  • the reference signal transmission method includes:
  • the network device sends second information, where the second information is used to configure a timing offset indication n; the terminal device receives the second information.
  • the network device sends the first information in the first time unit, where the first information is used to trigger the terminal device to send the RS; the terminal device receives the first information in the first time unit.
  • the terminal device sends the RS on the second time unit, and the network device receives the RS on the second time unit; the second time unit starts with the first time unit, and the time unit of the effective uplink transmission is offset Indicates the time unit indicated by n.
  • the timing offset indication n is configured by the second information, which can avoid adding a new field to the first information to carry the timing offset indication n.
  • the effective uplink transmission time The first time unit indicated by the timing offset indication n in the unit is slot 7, or the second time unit indicated by the timing offset indication n is slot 8, or the third time unit indicated by the timing offset indication n All time units are also slot 9. That is to say, the reference signal transmission method shown in FIG. 13 can still ensure the flexibility of the first time unit selection when the second information is configured with the timing offset indication n, thereby facilitating the use of the first information of the scheduling data. Trigger the terminal device to send RS.
  • the first time slot indicated by the timing offset indicator n in the effective uplink transmission time slot is slot 3.
  • the second time slot indicated by the timing offset indication n is slot 4, or the third time slot indicated by the timing offset indication n is also slot 8, and so on. Therefore, when the network device requires the terminal device to send RS on slot 3, slot 4, or slot 8, even if the timing offset indication n is configured by the second information, any time slot from slot 0 to slot 3 can be used as the first time slot.
  • One time unit to send the first message can be seen that, for the time slot schematic diagram shown in FIG. 8 or FIG. 10, the reference signal transmission method shown in FIG. 13 can also improve the flexibility of the first time unit selection, which is beneficial to avoid resources caused by additional transmission of the first information. waste.
  • the maximum value of the timing offset indication n is N
  • the maximum value N of the time domain offset indication n may be predefined, or the N may be determined by higher layer signaling or media access control.
  • the control unit is configured by MAC CE signaling, or the N is determined by the ratio of uplink and downlink time units.
  • the maximum value N of the timing offset indication n is determined by the total number of special time units and uplink time units in a TDD system frame.
  • the total number of special time units and uplink time units in a TDD system frame is x
  • the time slot diagram of a system frame is shown in Figure 7, Figure 9 or Figure 11, and the total number of special time slots and uplink time slots is three. Therefore, the maximum value of n, N, is equal to 2 (the timing offset indicates that n is greater than or equal to zero) or equal to 3 (the timing offset indicates that n is greater than zero).
  • the time slot diagram of a system frame is shown in Figure 8 or Figure 10.
  • the total number of special time slots and uplink time slots is 4, so the maximum value of n is 3 (the timing offset indicates that n is greater than or equal to zero. ) Or 4 (the timing offset indicates that n is greater than zero).
  • the network device and/or the terminal device determine the number of bits required for the timing offset indication n through the value of N.
  • the network device and/or the terminal device determine the value range of the timing offset indication n according to the value of N.
  • the network device determines the first time unit, the timing offset indication n, and the second time unit according to the value of N.
  • the terminal device reads the timing offset indication n from the first information or the second information according to the value of N or the number of bits of the timing offset indication n.
  • the value range of the timing offset indicator n and/or the number of bits occupied by the timing offset indicator n are predefined, or configured by higher layer signaling, or by media access
  • the control unit is configured by MAC CE signaling.
  • the network device determines the first time unit, the timing offset indicator n, and the second time unit based on the value range of the timing offset indicator n and/or the number of bits occupied by the timing offset indicator n.
  • the terminal device reads the timing offset indication n from the first information or the second information based on the value range of the timing offset indication n and/or the number of bits occupied by the timing offset indication n.
  • the value range of the timing offset indication n is ⁇ 0,1,2,3 ⁇ .
  • the terminal device receives the first information on the first time unit, and can read the timing offset indication n as 2 from the first information according to the number of bits occupied by the timing offset indication n.
  • the terminal device determines m according to the relationship between n and m described in the foregoing embodiments and the timing offset indication 2.
  • the terminal device may send the RS on the mth time unit among the time units of valid uplink transmission starting with the first time unit.
  • m is the time unit sequence of the second time unit in the time unit of the effective uplink transmission starting with the first time unit.
  • the value range of m can be predefined, or configured by higher layer signaling or MAC CE signaling, or determined by the ratio of uplink and downlink time units.
  • the value range of m is set M, the set M is ⁇ m 0 , m 1 , m 2 ,..., m Y-1 ⁇ , Y is greater than zero, then the timing offset indicates that n requires at most A bit can completely indicate all possible values of m.
  • each value in the set M and the value of the timing offset indication n may be one-to-one in the order of index numbers.
  • the network device determines the first time unit, the timing offset indication n, and the second time unit based on the value range of m and the corresponding relationship between m and n.
  • the value range of the terminal device m and the corresponding relationship between m and n, the first time unit, and the timing offset indication n in the first information or the second information determine the second time unit.
  • the terminal device determines the second time unit according to the first time unit and the timing offset indication n, including: the terminal device determines the number of bits occupied by the timing offset indication n according to the value range of m; the terminal device determines the number of bits occupied by the timing offset indication n according to the timing offset Indicate the number of bits occupied by n, interpret the timing offset indication n and the m corresponding to the timing offset indication n from the first information; the terminal device determines the second time unit according to the m and the first time unit.
  • the effective time unit of uplink transmission is determined based on the ratio of uplink and downlink time units.
  • the effective time unit of uplink transmission starts with the first time unit and is a time unit that can be used for uplink transmission in a time unit configuration determined based on the ratio of uplink and downlink time units.
  • the effective time unit of uplink transmission is a special time unit and an uplink time unit, or the effective time unit of uplink transmission is a special time unit and an uplink time unit starting from the first time unit.
  • the special time unit includes time domain resources used for uplink transmission.
  • the effective uplink transmission time slot is a special time slot and an uplink time slot.
  • the effective uplink transmission time slots in the foregoing FIG. 4 are: a time slot marked S and a time slot marked U, that is, slot 7, slot 8, and slot 9.
  • the effective time unit of uplink transmission is a special time unit, or a special time unit starting from the first time unit.
  • the special time unit includes time domain resources used for uplink transmission.
  • the effective uplink transmission time slot is a special time slot.
  • the effective uplink transmission time slots in the above-mentioned Figure 4, Figure 7, Figure 9, and Figure 11 are: the time slot marked as S, such as slot 7.
  • the effective uplink transmission time slots are: time slots marked as S, such as slot 3 and slot 8.
  • the effective uplink transmission time unit is an uplink time unit. Taking the time unit as the time slot as an example, the effective uplink transmission time slot is the uplink time slot. Then, in this embodiment, the effective uplink transmission time slots in the above-mentioned FIG. 4, FIG. 7, FIG. 9, and FIG. 11 are: the time slot marked as U, that is, slot 8, slot 9. The effective uplink transmission time slots in the above Figures 8 and 10 are: the time slots marked as U, namely slot 4 and slot 9.
  • the effective time unit of uplink transmission is a time unit that satisfies the following characteristics: the time domain between the time domain resource occupied by the RS and the time domain resource occupied by the first information in the time unit
  • the resource offset is greater than or equal to the processing delay of the RS; the time domain resources occupied by the RS in the time unit are determined based on configuration information.
  • the effective uplink transmission time unit is: starting with the first time unit, a time unit that satisfies the characteristic among the time units available for uplink transmission.
  • the time unit that can be used for uplink transmission is a time unit including time domain resources used for uplink transmission, such as a special time unit or an uplink time unit.
  • the processing delay of the RS includes at least the detection delay of the first information and the preparation delay of the RS.
  • the processing delay of the RS is, for example, but not limited to, the minimum time interval between the last symbol in the time domain resources occupied by the first information that triggers the RS and the first symbol in the time domain resources occupied by the RS.
  • the first information is included in, for example, but not limited to, DCI, or downlink control signaling, or MAC-CE signaling.
  • the time domain resource occupied by the first information that triggers the RS is the time domain resource occupied by the DCI or signaling containing the first information, or the time domain resource occupied by the DCI or signaling where the first information is located .
  • the first information is, for example, but not limited to, DCI, or downlink control signaling, or MAC-CE signaling, and the first information carries a trigger indication.
  • the time domain resource occupied by the first information that triggers the RS is the time domain resource occupied by DCI or the above-mentioned signaling.
  • the minimum time interval is in units of symbols
  • the minimum time interval is between the last symbol in the time domain resources occupied by the first information that triggers the RS and the first symbol in the time domain resources occupied by the RS
  • the number of symbols is determined in combination with the minimum sub-carrier spacing.
  • the minimum subcarrier interval is the smallest subcarrier interval of the subcarrier interval of the first information and the subcarrier interval of the RS.
  • the terminal device determines the effective uplink transmission time unit starting from the first time unit according to the above characteristics; the terminal device determines the timing deviation from the effective uplink transmission time unit Shift the second time unit indicated by n.
  • the RS is an SRS
  • high-level signaling configures a set of SRS resources for the terminal device (also referred to as SRS configuration information).
  • the SRS resource set specifies on which time domain resources in a time unit the SRS can transmit the SRS. Assuming that the SRS resource set is configured with the time domain resources occupied by the SRS as the last 7 symbols in a slot, the time domain resources occupied by the first information are the first two symbols in a slot, and a slot includes 14 symbols , The processing delay of SRS is 28 symbols, and m is equal to the value of n plus 1.
  • the terminal device receives the first information on slot 3, and the first information is used to trigger the terminal device to send the SRS.
  • the terminal device needs to consider the above characteristics. Since the processing delay of SRS is 28 symbols, the effective uplink transmission time slot needs to be at least one time slot away from slot 3 to meet the time between the time domain resources occupied by the first information and the time domain resources occupied by the SRS.
  • the domain resource offset is greater than or equal to the processing delay of the SRS.
  • the time domain resource offset between slot 4 and slot 3 cannot meet this characteristic, so slot 4 does not belong to the effective uplink transmission time slot starting with slot 3.
  • the time domain resource offset between slot 8, slot 9 and the time slot available for uplink transmission in the next system frame and slot 3 can meet this characteristic, so starting with slot 3, the effective uplink transmission time slot It is: slot 8, slot 9 and the time slot available for uplink transmission in the next system frame. Therefore, the terminal device can determine the second time slot in the effective uplink transmission time slot, namely slot 9, starting with slot 3 according to the timing offset indication n in the first information or the second information. Therefore, the terminal device can send SRS on slot 9.
  • the effective time unit of uplink transmission is a time unit that satisfies the following characteristics: the number of time domain resources allowed for sending the RS in the time unit is greater than or equal to the time domain resources occupied by the RS The number of time domain resources occupied by the RS is determined based on configuration information.
  • the configuration information can configure the RS pattern.
  • the RS pattern is used to determine the time-frequency resources occupied by the RS.
  • the terminal device has four antennas, and the configuration information can configure 4 resources to measure the channels between each antenna and the network device.
  • the time domain resources occupied by the RS are all time domain resources starting from the first resource to the end of the fourth resource, that is, including the resource interval. For example, assuming that each resource is 1 symbol and Y is equal to 1, the terminal device can determine that the number of time domain resources occupied by the RS is 7 symbols based on the configuration information.
  • the effective uplink transmission time unit is: starting with the first time unit, a time unit that satisfies the characteristic among the time units available for uplink transmission.
  • the time unit that can be used for uplink transmission is a time unit including uplink transmission resources, such as a special time unit or an uplink time unit.
  • the SRS resource set is configured with the number of time domain resources occupied by the SRS as 7 symbols, and m is equal to the value of n plus 1, and the special time slot allows for sending SRS
  • the number of time-domain resources is 6 symbols, and the number of time-domain resources allowed for sending SRS in the uplink time slot is greater than 7 symbols.
  • the terminal device After the terminal device receives the first information on slot 0, it determines that slot 0 is the start, and the effective uplink transmission time slot that meets the above characteristics is slot 4 and slot 9.
  • the terminal device according to the first information or the second information
  • the effective uplink transmission time unit may be determined based on one or more of the characteristics described in the foregoing embodiments. That is, starting with the first time unit, the effective uplink transmission time unit is: starting with the first time unit, a time unit that satisfies one or more of the above characteristics among the time units available for uplink transmission.
  • the characteristics that the time unit of effective uplink transmission needs to meet are: 1) the time unit is a special time unit and an uplink time unit; 2) the time domain resources occupied by the RS in the time unit and the time domain resources occupied by the first information
  • the time-domain resource offset between time-domain resources is greater than or equal to the processing delay of the RS; the time-domain resources occupied by the RS in the time unit are determined based on configuration information; and 3) the time unit is allowed to be used
  • the number of time domain resources for sending the RS is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on configuration information.
  • the SRS resource set is configured with the time domain resources occupied by SRS as the last 7 symbols in a slot, and the time domain resources occupied by the first information are the first two symbols in a slot.
  • the slot includes 14 symbols, the processing delay of SRS is 28 symbols, the value of m is equal to n plus 1, and the number of time domain resources allowed for sending SRS in a special time slot is less than 7 symbols.
  • the terminal device receives first information on slot 8 in frame k-1, and the first information is used to trigger the terminal device to send an SRS.
  • the terminal equipment needs to determine the effective uplink transmission time slot starting from slot 8 in frame k-1 based on the above three characteristics of 1), 2), and 3).
  • the time slots that can be used for uplink transmission that satisfy characteristic 1) are: slot 8 and slot 9 in frame k-1 and slot 3, slot 4, and frame k in frame k. slot 8, slot 9, and special time slots and uplink time slots in subsequent frames, etc.;
  • the time slots that can be used for uplink transmission meet the characteristics 1) And the time slots of feature 3) are: slot 9 in frame k-1, slot 4 and slot 9 in frame k, and uplink time slots in subsequent frames, etc.;
  • the time slot for effective uplink transmission needs to be at least one time slot away from slot 8 in frame k-1, so starting with slot 8 in frame k-1, it can be used for uplink transmission
  • the time slots satisfying the characteristics 1), 2), and 3) of the time slots are: slot 4 and slot 9 in frame k, and uplink time slots in subsequent frames, and so on.
  • the terminal device determines to start with slot 8 in frame k-1, and determine the second one of the effective uplink transmission time slots.
  • the time slot is slot 9 in frame k.
  • the terminal device may allow the time domain resource used to transmit the RS to transmit the partial RS in the second time unit based on the configuration information.
  • the second time unit when the second time unit is determined based on the first time unit, it is necessary to perform conversion based on the subcarrier interval of the first information and the subcarrier interval of the RS.
  • the subcarrier interval of the first information refers to the subcarrier interval used to transmit the first information;
  • the subcarrier interval of RS refers to the subcarrier interval used to transmit the RS.
  • the terminal device determines that starting with the first time unit, the time unit indicated by the timing offset indicator n in the time unit of the valid uplink transmission is the second time unit, as in the foregoing embodiments.
  • the terminal device When the subcarrier interval of the first information is different from the RS subcarrier interval, the terminal device also needs to convert the first time unit to the third time unit based on the RS subcarrier interval, and then determine the third time unit as In the initial, valid time unit of uplink transmission, the timing offset indicates the time unit indicated by n.
  • the timing offset indicator n indicates "Time unit” can be: the terminal equipment converts the first time unit to the third time unit in the subcarrier of the RS based on the subcarrier interval of the RS; the terminal equipment determines the effective uplink transmission time starting from the third time unit
  • the m-th time unit in the unit serves as the second time unit, and the m is an integer determined according to n.
  • the index of the second time unit is the index corresponding to the time unit of the effective uplink transmission starting from the first index.
  • the timing offset indicates the index indicated by n.
  • the first index is the index of the third time unit.
  • the index of the third time unit is the index corresponding to the time unit in the subcarrier of the RS converted from the first time unit.
  • the terminal device can determine the time slot indicated by the timing offset indicator n in the effective uplink transmission time slot starting with slot 2 as the time slot for sending the RS.
  • the schematic diagrams of the time slots shown in the above figures are described with an example that the subcarrier interval of the first information is the same as the subcarrier interval of the RS. If the sub-carrier interval of the first information is different from the RS sub-carrier interval, the time slot diagrams in the above illustrations are the time slot diagrams in the RS sub-carriers. In this way, the first time unit in the related explanations of the diagrams is actually It is the third time unit in the RS subcarrier.
  • the above content explains the reference signal transmission method for measuring the uplink channel.
  • the embodiment of the present application also provides a reference signal transmission method for measuring the downlink channel.
  • FIG. 17 is a schematic flowchart of yet another reference signal transmission method according to an embodiment of the present application. As shown in FIG. 17, the reference signal transmission method includes the following steps:
  • the network device sends first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS; the terminal device receives the first information on the first time unit;
  • the network device sends the RS on the second time unit; the terminal device receives the RS on the second time unit; the second time unit starts with the first time unit and is valid In the time unit of the downlink transmission, the time unit indicated by the timing offset indication n.
  • the timing offset indication n indicates the time unit in the effective downlink transmission time unit. Compared with the manner in which the timing offset indication n indicates the timing offset between the first time unit and the second time unit, it can reduce The timing offset indicates the bit overhead of n.
  • the timing offset indication n indicates the timing offset between the first time unit and the second time unit
  • the timing offset indication n is used to indicate the timing offset, and the number of bits required is relatively large. As shown in Figure 18, assuming that the network device determines that the first time unit is slot 0 and the second time unit is slot 5, then the timing offset between slot 0 and slot 5 is 5. Therefore, the timing offset indication n needs Only 3 bits can indicate the slot 5 to the terminal device.
  • the timing offset indication n is used to indicate the time unit in the time unit of the effective downlink transmission starting with the first time unit.
  • the timing offset indicator n requires two bits (that is, the timing offset indicator n is equal to 11, and m is equal to n+ 1), to indicate the slot 5. It can be seen that, compared with FIG. 18, in the embodiment of FIG. 19, the overhead of the number of bits of the timing offset indication n is also smaller.
  • the second time unit starts with the first time unit
  • the time unit indicated by the timing offset indicator n in the time unit of the effective downlink transmission may be: the second time unit is The first time unit is the start, the m-th time unit in the effective downlink transmission time unit, m is equal to the value of n, or the value of n plus 1, or m is determined based on the value range of m and n value.
  • the second time unit starts with the first time unit and is the m-th time unit in the time unit of valid downlink transmission.
  • the first information is used to indicate the timing offset indication n.
  • the first information includes a timing offset indication n.
  • the network device also sends second information, and the second information is used to configure the timing offset indication n.
  • the network device may determine the first time unit according to the timing offset indication n and the second time unit.
  • the maximum value of the timing offset indication n is predefined, or the maximum value of the timing offset indication n is configured by higher layer signaling or media access control control unit MAC CE signaling , Or the maximum value of the timing offset indication n is determined by the ratio of uplink and downlink time units.
  • the value range and the number of bits occupied by the timing offset indicator n are predefined, or configured by higher layer signaling, or by MAC CE signaling of the media access control control unit Configured.
  • the effective downlink transmission time unit is a time unit that meets one or more of the following characteristics, or starts with the first time unit, and the effective downlink transmission time unit is the first time unit As a starting point, a time unit that meets one or more of the following characteristics among the time units available for downlink transmission:
  • the time unit is a special time unit and/or a downlink time unit
  • the time domain resource offset between the time domain resources occupied by the RS and the time domain resources occupied by the first information in the time unit is greater than or equal to the processing delay of the RS; the time domain resources occupied by the RS in the time unit Time domain resources are determined based on configuration information;
  • the number of time domain resources allowed for sending the RS in a time unit is greater than or equal to the number of time domain resources occupied by the RS, and the number of time domain resources occupied by the RS is determined based on configuration information.
  • the number of effective downlink transmission time units starting with the first time unit is relatively small, so that the bits required for the timing offset indication n can be further reduced. number.
  • the special time unit may be a time unit including time domain resources for flexible transmission.
  • RRC signaling can be used to indicate that the time domain resource for flexible transmission is the time domain resource for uplink transmission or the time domain resource for downlink transmission; or, according to service requirements, the time domain resource for flexible transmission is dynamically indicated as the time domain for uplink transmission.
  • Resources or time domain resources for downlink transmission For example, the DCI signaling indicates that the time domain resource for flexible transmission is the time domain resource for uplink transmission or the time domain resource for downlink transmission.
  • a time slot includes 14 symbols.
  • symbols 0 to 6 are downlink transmission symbols
  • symbols 7 to 12 are flexible transmission symbols
  • symbol 13 is an uplink transmission symbol.
  • Symbols 7 to 12 may be indicated as symbols for uplink transmission or symbols for downlink transmission based on RRC signaling or DCI signaling.
  • the flexible transmission symbol may also be referred to as a flexible symbol. It is also understandable that in the embodiments of the present application, "time-domain resource for flexible transmission" can be replaced with “flexible symbol”.
  • time-domain resources that are flexibly transmitted in the special time unit can be used as the guard interval, so that the reserved guard interval is used to avoid the interference caused by the uplink and downlink transmission conversion.
  • the effective uplink transmission time unit is a time unit that satisfies the characteristics described in the foregoing embodiment and one or more of the characteristics shown in Embodiment 1 and Embodiment 2 below.
  • the time domain resource offset between the time domain resources occupied by the RS and the time domain resources occupied by the first information is satisfied, which is greater than or equal to the processing delay of the RS and the time unit that satisfies the time unit in Embodiment 1 is the time for valid uplink transmission. unit.
  • the number of time domain resources allowed to be used for transmitting the RS is greater than or equal to the number of time domain resources occupied by the RS and that the time unit in Embodiment 2 is a time unit for effective uplink transmission.
  • the number of time-domain resources allowed to be used for transmitting the RS is greater than or equal to the number of time-domain resources occupied by the RS and that the time unit in Embodiment 1 and Embodiment 2 is a time unit for effective uplink transmission. .
  • the number of time domain resources allowed to be used to send the RS is greater than or equal to the number of time domain resources occupied by the RS, the time domain resources occupied by the RS in a time unit, and the amount occupied by the first information
  • the time domain resource offset between the time domain resources is greater than or equal to the processing delay of the RS
  • the time unit that satisfies Embodiment 1 and Embodiment 2 is a valid uplink transmission time unit.
  • the special time unit that satisfies Embodiment 1 is a time unit for effective uplink transmission.
  • the special time unit that satisfies Embodiment 2 is a time unit for effective uplink transmission, and so on, the embodiment of the present application does not limit the combination of the characteristics that need to be satisfied.
  • Embodiment 1 The characteristics described in Embodiment 1 and Embodiment 2 are explained below.
  • the K time domain resources before the first time domain resource occupied by the RS in the special time unit do not include the time domain resources for downlink transmission, and K is greater than or equal to zero.
  • the embodiment of the present application can determine whether the special time unit is a valid time unit for uplink transmission according to the uplink and downlink characteristics of the K time domain resources before the first time domain resource occupied by the RS.
  • the first time domain resource occupied by the RS may also be referred to as the starting time domain resource or starting position of the RS.
  • the first symbol, or start symbol, or start symbol position occupied by RS may also be referred to as the starting time domain resource or starting position of the RS.
  • the special time unit is a valid time unit for uplink transmission; if the special time unit The K time domain resources before the first time domain resource of the RS include at least one downlink transmission time domain resource, then the special time unit is not a valid uplink transmission time unit, or it is called the special time unit is invalid.
  • the time unit of uplink transmission, or the special time unit is the time unit of uplink transmission that is not available.
  • Embodiment 1 In a special time unit, the offset between the last downlink transmission time domain resource before the first time domain resource occupied by the RS and the first time domain resource occupied by the RS is greater than K .
  • the special time unit is a valid uplink transmission time unit; if in a special time unit, the offset between the last downlink transmission time domain resource before the first time domain resource occupied by the RS and the first time domain resource occupied by the RS If it is less than or equal to K, the special time unit is not a valid time unit for uplink transmission.
  • the K may be configured by the network device, for example, but not limited to, the network device configuration K is equal to 2 or the network device configuration K is equal to 4.
  • the cyclic prefix contained in each time domain resource has a longer duration. Therefore, the first time domain resource occupied by the RS is the same as the first time domain resource.
  • the time domain resources of the last downlink transmission before the resource may not be reserved between time domain resources, and the interference problem of uplink and downlink conversion can still be avoided.
  • K is greater than or equal to zero. In another possible implementation, K is greater than zero.
  • the K may be reported by the terminal capability, or configured by the network device, or pre-defined by the protocol.
  • the time slot shown in Figure 22 is taken as an example. Assuming that the starting symbol of the RS is symbol 7 and K is equal to 2, then the 2 symbols before the symbol 7 The symbols are: symbol 5 and symbol 6. Since both symbols 5 and 6 are symbols for downlink transmission, this time slot is an invalid uplink transmission time slot. Assuming that the starting symbol of RS is symbol 9 and K is equal to 2, then the two symbols before the symbol 9 are symbol 7 and symbol 8, respectively. Since neither symbol 7 nor symbol 8 is a symbol for downlink transmission, this time slot is a valid uplink transmission time slot.
  • the time slot shown in Figure 22 is taken as an example, assuming that the starting symbol of the RS is the symbol 7 in Figure 22 and K is equal to 2, then the last symbol of the downlink transmission before the symbol 7 It is symbol 6. Since the offset between symbol 6 and symbol 7 is 1, which is less than K, this time slot is an invalid uplink transmission time slot. Assuming that the starting symbol of the RS is the symbol 9 in Figure 22 and K is equal to 2, then the last symbol of the downlink transmission before the symbol 9 is the symbol 6, because the offset between the symbol 6 and the symbol 9 is 3, which is greater than K , So this time slot is a valid uplink transmission time slot.
  • the offset between the first time domain resource of the RS and the time domain resource of the previous downlink transmission in the time unit, or the K time domain resources before the first time domain resource of the RS The uplink and downlink characteristics are used to determine whether a special time unit is a valid uplink transmission time unit, which helps to reserve time for uplink and downlink conversion, thereby avoiding interference problems during uplink and downlink switching.
  • the time domain resources occupied by the RS in the special time unit are between the time domain resources L+1 and the time domain resources L+N, and N is greater than or equal to 0;
  • the time domain resource L is the control resource set where the third information is located The last time domain resource of CORESET; the third information is used to indicate the time unit format.
  • the special time unit is a valid uplink transmission time unit, otherwise, the special time unit is invalid The time unit of the (or unavailable) uplink transmission.
  • the third information may be a slot format indicator (SFI) DCI.
  • the DCI format of the SFI DCI may be, for example, but not limited to DCI format 2_0.
  • the SFI DCI may be a DCI scrambled using a slot format indicator-radio network tempory identity (SFI-RNTI).
  • SFI-RNTI slot format indicator-radio network tempory identity
  • the time slot format of the normal cyclic prefix may be as shown in Table 2.
  • a time domain resource is a symbol
  • the symbol occupied by RS is symbol 8 and symbol 9 as shown in Figure 22 (that is, the start symbol of RS is symbol 8 and the end symbol is symbol 9), and the CORESET where SFI DCI is located
  • the last symbol of is symbol 6, and N is equal to 4.
  • symbol 8 and symbol 9 occupied by RS are located between the last symbol 6 to symbol 10 of CORESET where SFI DCI is located, then the flexible time slot shown in Figure 22 is valid The time unit of the uplink transmission.
  • the N may be reported by the terminal capability, or configured by the network device, or pre-defined by the protocol.
  • N is equal to N 2 .
  • N 2 is the PUSCH preparation time of physical uplink shared channel (PUSCH) timing capability 1 as shown in Table 3, or the PUSCH preparation time of PUSCH timing capability 2 as shown in Table 4.
  • PUSCH physical uplink shared channel
  • is the identifier of the system parameter, and the value of ⁇ is related to the subcarrier spacing, as shown in Table 5 below.
  • U represents an uplink symbol
  • D represents a downlink symbol
  • F represents a flexible symbol.
  • a slot format can include downlink symbols, uplink symbols, and flexible symbols.
  • time unit format refers to the position information of downlink symbols, uplink symbols, and flexible symbols in the time unit.
  • a slot includes 14 symbols, the first 10 symbols are downlink symbols, the last 2 symbols are uplink symbols, and the remaining two symbols in the middle are flexible symbols. The details are shown in Table 2 in the manual.
  • this second embodiment can consider whether the special time unit is a valid uplink transmission time unit based on the relationship between the processing delay of the terminal equipment (such as the preparation time of the PUSCH) and the time domain resources occupied by the RS, which is beneficial to While sending RS as much as possible, it also avoids the problem of resource waste caused by sending RS. In addition, it is also beneficial to solve the ambiguity problem that the terminal device and the network device cannot know whether the special time unit is used for uplink transmission or downlink transmission.
  • one or more characteristics may be combined to determine whether the time unit is a valid uplink transmission time unit. That is, the above-mentioned various characteristics can be applied to determine the effective uplink transmission time unit starting with the first time unit, and then determine the second time unit in combination with the timing offset indication n.
  • the special time unit that satisfies Embodiment 1 is a time unit for effective uplink transmission
  • the special time unit that satisfies Embodiment 2 is a time unit for effective uplink transmission
  • the special time unit that satisfies Embodiments 1 and 2 It is the time unit of effective uplink transmission.
  • the reference signal transmission method further includes: the terminal device receives the third information; third The information is used to indicate the time unit format; the time unit format takes effect after the second time unit, or the time unit format takes effect after the last time domain resource occupied by the RS in the second time unit.
  • the third information may be a slot format indicator (SFI) DCI.
  • the second time unit is a special time unit.
  • the third information is used to indicate to modify the flexible time domain resource in the special time unit to the time domain resource for downlink transmission or to modify the flexible time domain resource in the special time unit to the time domain resource for uplink transmission.
  • the time unit format to take effect after the second time unit may be: change the special time after the second time unit The unit is modified to the time unit of downlink transmission, or the flexible time domain resource in the special time unit after the second time unit is modified to the time domain resource of downlink transmission.
  • the time unit format may take effect after the last time domain resource occupied by the RS in the second time unit. The following are: modifying the flexible time domain resource after the last time domain resource occupied by the RS in the second time unit to the time domain resource for downlink transmission, and modifying the special time unit after the second time unit to the time unit for downlink transmission.
  • the frame k shown in FIG. 23 includes 10 time slots as an example, where time slots 0 to 6 are time slots for downlink transmission, and time slots 7 to 9 are special time slots. Furthermore, suppose that the symbol composition in time slot 7 to time slot 9 is as shown in Fig. 22, and the first symbol occupied by RS is symbol 9, and K is equal to 2. Based on the method described in the above-mentioned embodiment 1, according to the occupancy of RS The first symbol can determine that time slot 7 to time slot 9 are valid uplink transmission time slots.
  • the terminal device determines to send RS on time slot 8 but receives SFI DCI on time slot 6.
  • the SFI DCI indicates that special time slot 7, special time slot 8, and special time slot 9 are modified as time slots for downlink transmission.
  • the terminal device will still send the RS on the special time slot 8, and the terminal device will modify the symbols 11 to 13 after the last symbol of the RS (ie symbol 10) to symbols for downlink transmission, and modify the time slot 9 to Time slot for downlink transmission.
  • the terminal device will modify the time slot 9 to a time slot for downlink transmission, but the time slot 7 and the time slot 8 will not be modified, and the terminal device will still send the RS on the time slot 8.
  • the time unit format takes effect on other special time units other than the second time unit, that is, other special time units other than the second time unit can be modified to time units for downlink transmission.
  • the terminal device will modify the time slot 7 and the time slot 9 to the time slot for downlink transmission, but the time slot 8 will not be modified, and the terminal device will still send the RS on the time slot 8.
  • the RS can still be sent on the special time unit, and the data other than the special time unit can be sent Other part or all of the special time units or flexible time domain resources are modified to the time units or time domain resources for downlink transmission, thereby ensuring flexibility in the selection of the first time unit.
  • the terminal device determines the effective uplink transmission time unit of the RS based on the above characteristics that the effective uplink transmission time unit needs to meet, if the time domain resource occupied by the RS is compared with another RS When the occupied time domain resources overlap and the priority of the RS is higher than the priority of the other RS, the time unit where the overlapped time domain resource is located is the time unit of effective uplink transmission of the RS.
  • the time unit of the overlapping time domain resource is the invalidity of the RS
  • the time unit of uplink transmission can be abandoned, or the second time unit of sending the RS can be re-determined (for example, after the time unit where the overlapping time domain resources are located, a valid uplink transmission time unit is determined).
  • the multiple RSs refer to RSs used for different functions.
  • the priority order is: RS used for antenna switching (antenna switching) has a higher priority than RS used for codebook transmission/non-codebook transmission, and is used for codebook transmission/non-codebook transmission. The priority of the RS used for this transmission is higher than that of the RS used for beam management.
  • the second The time unit is an effective uplink transmission time unit for the RS; if the time domain resources occupied by the RS overlap with the time domain resources occupied by the RS of other functions, the priority of the RS is lower than the priority of the RS of other functions Level, the second time unit is an invalid (or unavailable) uplink transmission time unit for the RS.
  • the terminal device determines to transmit the RS for antenna switching in this time slot 8 according to the reference signal transmission method described in this application.
  • the time domain resources occupied by the RS used for antenna switching and the time domain resources occupied by the RS used for codebook transmission/non-codebook transmission overlap on symbol 9 in time slot 8. Because of the priority of the RS used for antenna switching The priority is higher than the priority of the RS used for codebook transmission/non-codebook transmission, so the time slot 8 is still a valid uplink transmission time unit for the RS used for antenna switching. Therefore, the terminal device can still RS is transmitted in this time slot 8.
  • the terminal device determines to transmit an RS for codebook transmission/non-codebook transmission in this time slot 8 according to the reference signal transmission method described in this application.
  • the time domain resources occupied by the RS used for antenna switching and the time domain resources occupied by the RS used for codebook transmission/non-codebook transmission overlap on symbol 9 in time slot 8. Because of the priority of the RS used for antenna switching The level is higher than the priority of the RS used for codebook transmission/non-codebook transmission, so the time slot 8 is an invalid uplink transmission time unit for the RS used for codebook transmission/non-codebook transmission.
  • the terminal device When determining the second time unit of the RS for codebook transmission/non-codebook transmission, the terminal device needs to exclude time slot 8 as an invalid uplink transmission time unit, that is, determine that the second time unit is time slot 9.
  • the RS used for codebook transmission/non-codebook transmission is sent on slot 9.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
  • the network device and the terminal may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 20 is a schematic structural diagram of an apparatus provided by an embodiment of the application.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the apparatus may include one or more processors 2001.
  • the processor 2001 may also be referred to as a processing unit, and may implement the functions of a network device or a terminal device in the method provided in the embodiment of the present application.
  • the processor 2001 may be a general-purpose processor or a special-purpose processor.
  • the processor 2001 may be referred to as a processing unit, and controls the device 2000.
  • the processor 2001 may also store an instruction 2003, and the instruction 2003 may be executed by the processor, so that the apparatus 2000 executes the method described in the foregoing method embodiment.
  • the processor 2001 may include a communication unit for implementing receiving and sending functions.
  • the communication unit may be a transceiver circuit, or an interface, or an interface circuit.
  • the processor 2001 may implement the method executed by the network device or the method executed by the terminal device in the method provided in the embodiments of the present application through the communication unit.
  • the device 2000 may include one or more memories 2002, on which instructions 2004 may be stored.
  • the instructions may be executed on the processor, so that the device 2000 executes the method described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the processor 2001 and the memory 2002 can be provided separately or integrated together.
  • the device 2000 may further include a transceiver 2005 and an antenna 2006.
  • the transceiver 2005 may be referred to as a communication unit, a transceiver, a transceiver circuit or a transceiver, etc., for implementing the transceiver function.
  • a device for example, a chip, an integrated circuit, a wireless device, a circuit module, or a terminal in a terminal
  • a device includes:
  • a communication unit configured to receive first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • the communication unit is configured to send the RS on the second time unit
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the timing in this embodiment is The offset indication n indicates the time unit in the time unit of valid uplink transmission. Compared with the manner in which the timing offset indication n indicates the timing offset between the first time unit and the second time unit, in this embodiment The timing offset indicates that the number of bits required for n is relatively small.
  • the communication device further includes a processing unit configured to determine a second time unit according to the first time unit, where the second time unit is a time unit for the terminal device to send the RS.
  • a device for example, a chip, an integrated circuit, a wireless device, a circuit module, or a terminal in a terminal
  • a device includes:
  • a communication unit configured to receive first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the communication unit is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the number of effective downlink transmission time units between the first time unit and the second time unit is less than the number of time units between the first time unit and the second time unit, it is offset from the timing.
  • the number of bits required for the timing offset indication n in this embodiment is relatively small.
  • the communication device further includes a processing unit configured to determine a second time unit according to the first time unit, where the second time unit is a time unit for the terminal device to send the RS.
  • an apparatus 2000 for example, network equipment, base station, DU or CU, TRP or baseband chip
  • an apparatus 2000 includes:
  • a communication unit configured to send first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • the communication unit is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processing unit, configured to determine the first time unit according to the second time unit.
  • an apparatus 2000 for example, network equipment, base station, DU or CU, TRP or baseband chip
  • an apparatus 2000 includes:
  • a communication unit configured to send first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the communication unit is further configured to send the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processing unit configured to determine the first time unit according to the second time unit, and the second time unit is a time unit for the terminal device to receive the RS.
  • an apparatus 2000 for example, a chip, an integrated circuit, a wireless device, a circuit module, or a terminal in a terminal
  • an apparatus 2000 may include:
  • a transceiver configured to receive first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • a transceiver configured to send the RS on the second time unit
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processor, configured to determine the second time unit according to the first time unit and the timing offset indication n.
  • the number of effective uplink transmission time units between the first time unit and the second time unit is less than the number of time units between the first time unit and the second time unit, it is offset from the timing Compared with the manner in which the indication n indicates the timing offset between the first time unit and the second time unit, the number of bits required for the timing offset indication n in this embodiment is relatively small.
  • the communication device further includes a processing unit configured to determine a second time unit according to the first time unit, where the second time unit is a time unit for the terminal device to send the RS.
  • a device 2000 for example, a chip, an integrated circuit, a wireless device, a circuit module, or a terminal in a terminal
  • a device 2000 may include:
  • a transceiver configured to receive first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the transceiver is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processing unit configured to determine a second time unit according to the first time unit, where the second time unit is a time unit for the terminal device to send the RS.
  • a device 2000 for example, network equipment, base station, DU or CU, TRP or baseband chip
  • a device 2000 may include:
  • a transceiver configured to send first information on a first time unit, where the first information is used to trigger the terminal device to send a reference signal RS;
  • the transceiver is further configured to receive the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indicator n among the time units of valid uplink transmission starting from the first time unit.
  • the communication device further includes a processing unit, configured to determine the first time unit according to the second time unit.
  • the second time unit is a time unit for the terminal device to send the RS.
  • the number of effective uplink transmission time units between the first time unit and the second time unit is less than the number of time units between the first time unit and the second time unit, it is offset from the timing Compared with the manner in which the indication n indicates the timing offset between the first time unit and the second time unit, the number of bits required for the timing offset indication n in this embodiment is relatively small.
  • the communication device further includes a processing unit configured to determine a second time unit according to the first time unit, where the second time unit is a time unit for the terminal device to send the RS.
  • a device 2000 for example, network equipment, base station, DU or CU, TRP or baseband chip
  • a device 2000 may include:
  • a transceiver configured to send first information on a first time unit, where the first information is used to instruct the terminal device to receive a reference signal RS;
  • the transceiver is also used to send the RS on the second time unit;
  • the second time unit is the time unit indicated by the timing offset indication n among the time units of valid downlink transmission starting from the first time unit.
  • the communication device further includes a processor, configured to determine the first time unit according to the second time unit, and the second time unit is a time unit for the terminal device to receive the RS.
  • the communication device further includes a processing unit configured to determine a second time unit according to the first time unit, where the second time unit is a time unit for the terminal device to send the RS.
  • Figure 21 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the scenario shown in FIG. 5.
  • FIG. 21 only shows the main components of the terminal device.
  • the terminal device includes a processor 2112, a memory, a control circuit, an antenna, and an input and output device.
  • the processor 2112 is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 2112 can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 21 only shows a memory and a processor 2112. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor 2112 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. Execute the software program and process the data of the software program.
  • the terminal device may include multiple baseband processors to adapt to different network standards
  • the terminal device may include multiple central processors to enhance its processing capabilities
  • the various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function may be regarded as the communication unit 2111 of the terminal device, and the processor with the processing function may be regarded as the processing unit 2112 of the terminal device.
  • the terminal device includes a communication unit 2111 and a processing unit 2112.
  • the communication unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the device for implementing the receiving function in the communication unit 2111 can be regarded as the receiving unit
  • the device for implementing the sending function in the communication unit 2111 can be regarded as the sending unit, that is, the communication unit 2111 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种参考信号传输方法及通信装置。该参考信号传输方法中,第二时间单元为以第一时间单元为起始的,有效的上行传输的时间单元或有效的下行传输的时间单元中时序偏移指示n所指示的时间单元。其中,第一时间单元用于接收第一信息,第一信息用于触发终端设备发送参考信号;第二时间单元用于终端设备发送参考信号。与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式有利于改善第一时间单元选择的灵活性,并节省时序偏移指示n所需的比特数。

Description

参考信号传输方法及通信装置
本申请要求于2019年9月10日提交中国专利局、申请号为201910855178.7、申请名称为“参考信号传输方法及通信装置”的中国专利申请的优先权,以及要求于2020年9月9日提交中国专利局、申请号为202010943735.3、申请名称为“参考信号传输方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号传输方法及通信装置。
背景技术
通信系统中可通过参考信号获得信道的信道状态信息,网络设备能够基于信道状态信息,选择更加合适的调制编码方式以及预编码等信息。例如,网络设备可通过接收终端发送的探测参考信号(sounding reference signal,SRS),获得信道状态信息。其中,SRS可以是非周期性的参考信号。网络设备会为终端设备配置SRS资源集合;当网络设备通过下行控制信息(downlink control information,DCI)触发SRS时,终端可基于SRS资源集合中的时序偏移(slotoffset)的取值X,在该DCI所在的时间单元之后的时序偏移为X的时间单元上发送该SRS。
如图1所示,图1是一个系统帧的时隙(slot)示意图。假设SRS资源集合中配置的X=5,当网络设备需要终端设备在slot 8上发送SRS时,就需要严格提前在slot(8减5),即slot 3上发送DCI,以触发终端设备在slot 8上发送SRS。若slot 3上没有数据调度需求,则网络设备无法在调度数据的DCI中携带触发指示以触发终端设备发送SRS,可能需要发送额外的DCI,专门来触发SRS,从而造成资源的浪费。
发明内容
本申请提供了一种参考信号传输方法及通信装置,有利于降低资源开销。
第一方面,本申请提供一种参考信号传输方法。该参考信号传输方法中,终端设备在第一时间单元上接收第一信息,所述第一信息用于触发终端设备发送参考信号RS;终端设备在第二时间单元上,发送RS;第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
可见,该实施方式中时序偏移指示n用于指示第一时间单元为起始,有效的上行传输的时间单元中的时间单元的方式,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,由于以第一时间单元为起始,有效的上行传输的时间单元的数量要小于第一时间单元为起始的时间单元的数量,因此,该实施方式中时序偏移指示n所需的比特数相对较少。
另外,该实施方式中,在以多个第一时间单元分别为起始,有效的上行传输的时间单元均相同的情况下,即使第二时间单元和时序偏移指示n相对固定,该多个第一时间单元 中的任一个也可用于触发终端设备发送RS。而时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式中,第二时间单元和时序偏移指示n相对固定时,第一时间单元也是唯一的。因此,该实施方式还能够改善第一时间单元的选择灵活性。
这样,一方面,有利于网络设备选择承载数据调度控制信息的时间单元作为第一时间单元,以利用该数据调度控制信息来触发终端设备发送RS即可,避免额外发送第一信息以专门触发终端设备发送RS所导致的资源浪费。另一方面,有利于网络设备将触发多个终端设备分别发送RS的多个第一信息分散在不同的第一时间单元上发送,避免在同一个第一时间单元上发送多个第一信息所导致的控制信道拥塞。
在一种实施方式中,所述第二时间单元是以所述第一时间单元为起始的,有效的上行传输的时间单元中的第m个时间单元,m等于时序偏移指示n的值。该时序偏移指示n的值大于零。
在另一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的上行传输的时间单元中的第m个时间单元,m等于时序偏移指示n的值加1。该时序偏移指示n的值大于或等于零。
在又一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的上行传输的时间单元中的第m个时间单元,m是基于时序偏移指示n和对应关系确定的。该对应关系是m的各可选值与时序偏移指示n的各可选值之间的对应关系,可基于m的各可选值的索引号大小与n的各可选值的大小顺序确定。该m的各可选值或取值范围可以是预定义的,或是高层信令配置的,或是MAC-CE信令配置的。
在又一种实施方式中,第二时间单元是以第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元。其中,第一时间单元为特殊时间单元时,m等于n的值加1,即m=n+1;第一时间单元是下行时间单元时,m等于n的值,即m=n,n不等于0。
在一种实施方式中,第一信息还用于指示时序偏移指示n。例如但不限于,第一信息包括时序偏移指示n。可见,该实施方式有利于使得网络设备灵活确定第二时间单元、第一时间单元和时序偏移指示n,进一步的增加第一时间单元的选择灵活性。
在另一种实施方式中,终端设备接收第二信息,第二信息用于配置所述时序偏移指示n。可见,该实施方式通过第二信息配置时序偏移指示n,可以在保证第一时间单元选择的灵活性的同时,避免增加第一信息中时序偏移指示n的开销。
在一种实施方式中,所述时序偏移指示n的最大值是预定义的,或者所述时序偏移指示n的最大值是由高层信令或媒体接入控制控制单元MAC CE信令配置的,或者所述时序偏移指示n的最大值是由上下行时间单元配比确定的。该实施方式有利于确定时序偏移指示n的取值范围和/或所占的比特数。从而,有利于终端设备能够从第一信息或第二信息中读取时序偏移指示n。
在一种实施方式中,所述有效的上行传输的时间单元是基于上下行时间单元配比确定的。不同的上下行时间单元配比,有效的上行传输的时间单元的位置和数量不同。
在另一种实施方式中,有效的上行传输的时间单元为以第一时间单元为起始,可用于上行传输的时间单元。例如,以第一时间单元为起始,有效的上行传输的时间单元为:以第一时间单元为起始的上行传输时间单元和/或特殊时间单元。
在一种实施方式中,本申请公开的各实施方式可应用于时分双工(time division duplexing,TDD)系统。
在一种实施方式中,所述有效的上行传输的时间单元为满足以下一个或多个特性的时间单元:时间单元为特殊时间单元和/或上行时间单元;时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。该实施方式,有利于保证有效的上行传输的时间单元能够发送RS,并且还能够减少时序偏移指示n所需指示的有效的上行传输的时间单元数量,从而减少时序偏移指示n的比特数。
在另一种实施方式中,所述有效的上行传输的时间单元为以第一时间单元为起始的,满足上述一个或多个特性的可用于上行传输的时间单元。该实施方式,有利于保证有效的上行传输的时间单元能够发送RS,并且还能够减少时序偏移指示n所需指示的有效的上行传输的时间单元数量,从而减少时序偏移指示n的比特数。
在又一种实施方式中,所述有效的上行传输的时间单元为以第一时间单元为起始的,满足以下一个或多个特性的可用于上行传输的时间单元:时间单元为特殊时间单元和/或上行时间单元;时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延,时间单元中所述RS占用的时域资源是基于配置信息确定的。
该实施方式中,在第二时间单元中用于发送所述RS的时域资源的数量小于所述RS占用的时域资源的数量时,终端设备可基于配置信息,在该第二时间单元中允许用于发送所述RS的时域资源发送部分RS。在第二时间单元中用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量时,终端设备可基于配置信息,在该第二时间单元中允许用于发送所述RS的时域资源发送RS。
在一种实施方式中,第一信息的子载波间隔与RS的子载波间隔不同的情况下,基于第一时间单元确定第二时间单元时,需要根据第一信息的子载波间隔与RS的子载波间隔进行换算。也就是说,基于RS的子载波间隔将第一时间单元换算为第三时间单元,第二时间单元是以第三时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。其中,第三时间单元为RS的子载波中的时间单元。第一信息的子载波间隔是指用于发送第一信息的子载波间隔;RS的子载波间隔是指用于发送RS的子载波间隔。
比如,当第一信息的子载波间隔与RS的子载波间隔不同时,“第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元”可以为:终端设备基于RS的子载波间隔,将第一时间单元换算为第三时间单元;以第三时间单元为起始,有效的上行传输的时间单元中第m个时间单元,作为第二时间单元,所述m为根据n的值确定的整数。
也就是说,在第一信息的子载波间隔与RS的子载波间隔不同的情况下,第二时间单元的索引为以第一索引为起始,有效的上行传输的时间单元所分别对应的索引中,时序偏移指示n所指示的索引。该第一索引为第三时间单元的索引。第三时间单元的索引,为基 于RS的子载波间隔将第一时间单元换算为第三时间单元时第三时间单元所对应的索引,第三时间单元为RS的子载波中的时间单元。
第二方面,本申请还提供一种参考信号传输方法。该参考信号传输方法中,网络设备在第一时间单元上发送第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;网络设备在第二时间单元上,接收RS;第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
在第一时间单元与第二时间单元之间的有效的上行传输的时间单元的数量,小于第一时间单元与第二时间单元之间的时间单元的数量的情况下,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式中时序偏移指示n所需的比特数相对较少。
另外,该实施方式中,在以多个第一时间单元分别为起始,有效的上行传输的时间单元均相同的情况下,即使第二时间单元和时序偏移指示n相对固定,该多个第一时间单元中的任一个也可用于触发终端设备发送RS。而时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式中,第二时间单元和时序偏移指示n相对固定时,第一时间单元也是唯一的。因此,该实施方式还能够改善第一时间单元的选择灵活性。
这样,一方面,有利于网络设备选择承载数据调度控制信息的时间单元作为第一时间单元,以利用该数据调度控制信息来触发终端设备发送RS即可,避免额外发送第一信息以专门触发终端设备发送RS所导致的资源浪费。另一方面,有利于网络设备将触发多个终端设备分别发送RS的多个第一信息分散在不同的第一时间单元上发送,避免在同一个第一时间单元上发送多个第一信息所导致的控制信道拥塞。
在一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的上行传输的时间单元中的第m个时间单元,m等于时序偏移指示n的值。时序偏移指示n的值大于零。
在另一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的上行传输的时间单元中的第m个时间单元,m等于时序偏移指示n的值加1。时序偏移指示n的值大于或等于零。
在又一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的上行传输的时间单元中的第m个时间单元,m是基于时序偏移指示n和对应关系确定的。该对应关系是m的各可选值与时序偏移指示n的各可选值之间的对应关系,可基于m的各可选值的索引号与m的各可选值的索引号确定。该m的各可选值或取值范围可以是预定义的,或是高层信令配置的,或是MAC-CE信令配置的。
在又一种实施方式中,第二时间单元是以第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元。其中,第一时间单元为特殊时间单元时,m等于n的值加1,即m=n+1;第一时间单元是下行时间单元时,m等于n的值,即m=n,n不等于0。
上述各种实施方式,有利于扩大网络设备关于第一时间单元的选择范围。从而,一方面,有利于网络设备选择承载数据调度控制信息的时间单元作为第一时间单元,以利用该数据调度控制信息来触发终端设备发送RS即可,避免额外发送第一信息以专门触发终端设备发送RS所导致的资源浪费。另一方面,有利于网络设备将触发多个终端设备分别发送RS的各第一信息分散在不同的第一时间单元上发送,避免在同一个第一时间单元上发 送各第一信息所导致的控制信道拥塞。
在一种实施方式中,第一信息还用于指示所述时序偏移指示n。例如但不限于,第一信息包括时序偏移指示n。该实施方式,有利于网络设备根据不同的时域偏移指示n的取值,进一步扩大第一时间单元的选择范围,从而进一步改善网络设备选择第一时间单元的灵活性。
在另一种实施方式中,网络设备发送第二信息,第二信息用于配置时序偏移指示n。可见,该实施方式通过第二信息配置时序偏移指示n,有利于保证第一时间单元选择灵活性的同时,避免增加第一信息中的资源开销。
在一种实施方式中,所述时序偏移指示n的最大值是预定义的,或者所述时序偏移指示n的最大值是由高层信令或媒体接入控制控制单元MAC CE信令配置的,或者所述时序偏移指示n的最大值是由上下行时间单元配比确定的。该实施方式中,网络设备可基于该时序偏移指示n的最大值,确定时序偏移指示n的取值范围或上述m的取值范围;网络设备基于该时序偏移指示n的取值范围或上述m的取值范围,确定第一时间单元、时域偏移指示n和第二时间单元。
在一种实施方式中,有效的上行传输的时间单元是基于上下行时间单元配比确定的。
在一种实施方式中,有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:时间单元为特殊时间单元和/或上行时间单元;时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,RS占用的时域资源的数量是基于配置信息确定的。
在另一种实施方式中,第二时间单元中允许用于发送所述RS的时域资源的数量小于所述RS占用的时域资源的数量时,网络设备可基于配置信息,在第二时间单元中允许用于接收RS的时域资源接收部分RS。
该方面所述的上述实施方式的相关内容,还可以参见第一方面的相关阐述,此处不再详述。
上述第一方面、第二方面中,本申请还提供一种实施方式,有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:时间单元为上行时间单元;时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的;特殊时间单元中所述RS占用的第一个时域资源之前的K个时域资源中不包括下行传输的时域资源,所述K大于或等于零;特殊时间单元中所述RS占用的时域资源位于时域资源L+1至时域资源L+N之间,所述N大于或等于0;所述时域资源L是第三信息所在的控制资源集合CORESET的最后一个时域资源;所述第三信息用于指示时间单元格式。其中,后两种特性中的一种或两种可用于确定特殊时间单元是否为有效的上行传输的时间单元,有利于在改善第一时间单元选择灵活性的同时,保证RS的成功发送。
其中,N是所述终端设备上报的、或是网络设备配置的、或是协议预定义的。
一种实施方式中,第一方面所述的参考信号传输方法中,述终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,所述方法还包括:所述终端设备接收第三信息;所述第三信息用于指示时间单元格式;所述时间单元格式在所述第二时间单元之后生效。
另一种实施方式中,第一方面所述的参考信号传输方法中,所述终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,所述方法还包括:所述终端设备接收第三信息;所述第三信息用于指示时间单元格式,所述时间单元格式在所述第二时间单元中所述RS占用的最后一个时域资源之后生效。
一种实施方式中,第二方面所述的参考信号传输方法中,所述网络设备在第一时间单元上发送第一信息之后,以及在第二时间单元上接收所述RS之前,所述方法还包括:所述网络设备发送第三信息;所述第三信息用于指示时间单元格式;所述时间单元格式在所述第二时间单元之后生效。
另一种实施方式中,第二方面所述的参考信号传输方法中,所述网络设备在第一时间单元上发送第一信息之后,以及在第二时间单元上接收所述RS之前,所述方法还包括:所述网络设备发送第三信息;所述第三信息用于指示时间单元格式,所述时间单元格式在所述第二时间单元中所述RS占用的最后一个时域资源之后生效。
可见,上述时间单元格式可在RS发送之后生效,从而有利于保证第一时间单元选择的灵活性。
针对第一方面、第二方面所述的参考信号传输方法,RS占用的时域资源与另一RS占用的时域资源重叠且所述RS的优先级高于所述另一RS的优先级时,重叠的时域资源所在的时间单元为所述RS的有效的上行传输的时间单元。从而有利于高优先级的RS成功发送。
第三方面,本申请还提供一种参考信号传输方法,用于获取下行传输的信道状态信息。该参考信号传输方法中,终端设备在第一时间单元上接收第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;所述终端设备在第二时间单元上,接收所述RS;所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
在第一时间单元与第二时间单元之间的有效的下行传输的时间单元的数量,小于第一时间单元与第二时间单元之间的时间单元的数量的情况下,该实施方式中时序偏移指示n指示有效的下行传输的时间单元中的时间单元,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式中时序偏移指示n所需的比特数相对较少。
在一种实施方式中,所述第二时间单元是以所述第一时间单元为起始的,有效的下行传输的时间单元中的第m个时间单元,m等于时序偏移指示n的值。该时序偏移指示n的值大于零。
在另一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的下行传输的时间单元中的第m个时间单元,m等于时序偏移指示n的值加1。该时序偏移指示n的值大于或等于零。
在又一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的下行传输的时间单元中的第m个时间单元,m是基于时序偏移指示n和对应关系确定的。该对应关系是m的各可选值与时序偏移指示n的各可选值之间的对应关系,可基于m的各可选值的索引号大小与n的各可选值的大小顺序确定。该m的各可选值或取值范围可以是预定义的,或是高层信令配置的,或是MAC-CE信令配置的。
在又一种实施方式中,第二时间单元是以第一时间单元为起始,有效的下行传输的时间单元中的第m个时间单元。其中,第一时间单元为特殊时间单元时,m等于n的值加1,即m=n+1;第一时间单元是下行时间单元时,m等于n的值,即m=n,n不等于0。
在一种实施方式中,所述有效的下行传输的时间单元是基于上下行时间单元配比确定的。
在另一种实施方式中,有效的下行传输的时间单元为以第一时间单元为起始,可用于下行传输的时间单元。例如,以第一时间单元为起始,有效的下行传输的时间单元为:以第一时间单元为起始的上行传输时间单元和/或特殊时间单元。
在一种实施方式中,本申请公开的各实施方式可应用于时分双工(time division duplexing,TDD)系统。
在一种实施方式中,所述第一信息还用于指示所述时序偏移指示n。例如但不限于,第一信息包括时序偏移指示n。
在一种实施方式中,所述终端设备接收第二信息,所述第二信息用于配置所述时序偏移指示n。
在一种实施方式中,所述时序偏移指示n的最大值是预定义的,或者所述时序偏移指示n的最大值是由高层信令或媒体接入控制控制单元MAC CE信令配置的,或者所述时序偏移指示n的最大值是由上下行时间单元配比确定的。
在一种实施方式中,所述有效的下行传输的时间单元为满足如下一个或多个特性的时间单元:
时间单元为特殊时间单元和/或下行时间单元;
时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
时间单元中允许用于接收所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
在另一种实施方式中,所述有效的下行传输的时间单元为以第一时间单元为起始的,满足上述一个或多个特性的可用于下行传输的时间单元。
上述两个实施方式,有利于保证有效的下行传输的时间单元能够发送RS,并且还能够减少时序偏移指示n所需指示的有效的下行传输的时间单元数量,从而减少时序偏移指示n的比特数。
在又一种实施方式中,所述有效的下行传输的时间单元为以第一时间单元为起始的,满足以下一个或多个特性的可用于下行传输的时间单元:时间单元为特殊时间单元和/或下行时间单元;时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的 时域资源偏移,大于或等于所述RS的处理时延,时间单元中所述RS占用的时域资源是基于配置信息确定的。
该实施方式中,在第二时间单元中用于发送所述RS的时域资源的数量小于所述RS占用的时域资源的数量时,终端设备可基于配置信息,在该第二时间单元中允许用于接收所述RS的时域资源接收部分RS。在第二时间单元中用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量时,终端设备可基于配置信息,在该第二时间单元中允许用于发送所述RS的时域资源接收RS。
其中,上述实施方式的相关内容可参考上述第一方面的相关实施方式。该方面与第一方面之间的不同之处在于,时序偏移指示n指示的是有效的下行传输的时间单元。
第四方面,本申请是提供一种参考信号传输方法。该参考信号传输方法是从网络设备侧的角度进行阐述的。网络设备在第一时间单元上发送第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;网络设备在第二时间单元上,发送所述RS;第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
在一种实施方式中,所述有效的下行传输的时间单元是基于上下行时间单元配比确定的。
在一种实施方式中,第一信息还用于指示所述时序偏移指示n。例如但不限于,第一信息包括时序偏移指示n。
在一种实施方式中,所述网络设备发送第二信息,所述第二信息用于配置所述时序偏移指示n。
在一种实施方式中,所述时序偏移指示n的最大值是预定义的,或者所述时序偏移指示n的最大值是由高层信令或媒体接入控制控制单元MAC CE信令配置的,或者所述时序偏移指示n的最大值是由上下行时间单元配比确定的。
在一种实施方式中,所述有效的下行传输的时间单元为满足如下一个或多个特性的时间单元:
时间单元为特殊时间单元和/或下行时间单元;
时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
其中,该方面上述实施方式的相关阐述可参考上述第三方面的相关实施方式,此处不再详述。
第五方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面或第三方面任一方面所述的终端设备的部分或全部功能。比如,装置的功能可具备本申请中终端设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于在第一时间单元上接收第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
通信单元,用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元和时序偏移指示n,确定第二时间单元。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
另一种实施方式中,所述通信装置可包括:
收发器,用于在第一时间单元上接收第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
收发器,用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。可选的,该通信装置还包括处理器,用于根据第一时间单元和时序偏移指示n,确定第二时间单元。
在又一种实施方式中,所述通信装置可包括:
通信单元,用于在第一时间单元上接收第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
通信单元,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第三方面的相关内容,此处不再详述。可选的,该通信装置还包括处理器,用于根据第一时间单元和时序偏移指示n,确定第二时间单元。
在又一种实施方式中,所述通信装置可包括:
收发器,用于在第一时间单元上接收第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
收发器,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第三方面的相关内容,此处不再详述。可选的,该通信装置还包括处理器,用于根据第一时间单元和时序偏移指示n,确定第二时间单元。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第六方面,本申请还提供一种通信装置。该通信装置具有实现上述第二方面或第四方面任一方面所述的方法示例中网络设备的部分或全部功能。比如,通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于在第一时间单元上发送第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
通信单元,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第二时间单元,确定第一时间单元,第二时间单元为用于终端设备发送RS的时间单元。其中,通信单元可以为通信接口或接口。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
在另一种实施方式中,所述通信装置包括:
收发器,用于在第一时间单元上发送第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
收发器,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第二时间单元,确定第一时间单元。第二时间单元为用于终端设备发送RS的时间单元。
一种实施方式中,所述通信装置包括:
通信单元,用于在第一时间单元上发送第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
通信单元,还用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第四方面的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于确定第二时间单元、第一时间单元。第二时间单元为用于终端设备接收RS的时间单元或者发送RS的时间单元。其中,通信单元可以为通信接口或接口。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
在另一种实施方式中,所述通信装置包括:
收发器,用于在第一时间单元上发送第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
收发器,还用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第四方面的相关内容,此处不再详述。可选的,该通信装置还包括处理器,用于确定第二时间单元、第一时间单元。第二时间单元为用于终端设备接收RS的时间单元或用于发送RS的时间单元。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第七方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送第一信息或RS可以理解为处理器 输出第一信息或RS。又例如,接收第一信息或RS可以理解为处理器接收输入的第一信息或RS。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第八方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个终端设备、至少一个网络设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与终端或网络设备进行交互的其他设备。
第九方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被计算机执行时,实现上述第一方面或第三方面任一方面所述的方法。
第十方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被计算机执行时,使得通信装置实现上述第二方面或第四方面所述的方法。
第十一方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第三方面所述的方法。
第十二方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第四方面所述的方法。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端设备实现第一方面或第三方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持网络设备实现第二方面或第四方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是一种SRS触发方法的示意图;
图2是本申请实施例提供的基于一种上下行时隙配比划分的时隙示意图;
图3是本申请实施例提供的时序偏移指示n用于指示时序偏移的一示意图;
图4是本申请实施例提供的时序偏移指示n用于指示有效的上行传输的时间单元的一示意图;
图5是本申请实施例提供的一种通信系统的结构示意图;
图6是本申请实施例提供的一种参考信号传输方法的流程示意图;
图7是本申请实施例提供的参考信号传输方法的一示意图;
图8是本申请实施例提供的参考信号传输方法的另一示意图;
图9是本申请实施例提供的参考信号传输方法的又一示意图;
图10是本申请实施例提供的参考信号传输方法的又一示意图;
图11是本申请实施例提供的参考信号传输方法的又一示意图;
图12是本申请实施例提供的另一种参考信号传输方法的流程示意图;
图13是本申请实施例提供的又一种参考信号传输方法的流程示意图;
图14是本申请实施例提供的参考信号传输方法的又一示意图;
图15是本申请实施例提供的参考信号传输方法的又一示意图;
图16是本申请实施例提供的参考信号传输方法的又一示意图;
图17是本申请实施例提供的又一种参考信号传输方法的流程示意图;
图18是本申请实施例提供的参考信号传输方法的又一示意图;
图19是本申请实施例提供的参考信号传输方法的又一示意图;
图20是本申请实施例提供的一种装置的结构示意图;
图21是本申请实施例提供的一种终端设备的结构示意图;
图22是本申请实施例提供的一种特殊时间单元的结构示意图;
图23是本申请实施例提供的一种帧k的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可具体应用于各种通信系统中。例如,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如5G系统,也可以称为新空口(new radio,NR)系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
本申请中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G、6G甚至7G系统中使用的设备,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微基站(Picocell),或毫微 微基站(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(DU,distributed unit)等。网络设备还可以包括射频单元(radio unit,RU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
在本申请公开的实施例中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请公开的实施例提供的技术方案。
本申请中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
为了便于理解本申请公开的实施例,作出以下几点说明。
(1)本申请公开的实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
(3)在本申请公开的实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
(4)本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)” 有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
(5)本申请公开的实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请公开的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”描述的技术特征间无先后顺序或者大小顺序。
为阐述方便,先对本申请实施例涉及的几个概念进行阐述。
1、参考信号
参考信号(reference signal,RS)包括例如但不限于信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号广播信道块(synchronous signal/PBCH block,SSB)、探测参考信号(sounding reference signal,SRS)等。其中,追踪参考信号(tracking reference signal,TRS)也是CSI-RS的一种。
网络设备通过参考信号,获得上行传输或下行传输的信道状态信息,从而为终端设备配置相应的调制编码方式和预编码信息等。
在一些实施方式中,网络设备可以触发终端设备发送SRS等参考信号,以获得上行传输的信道状态信息。网络设备可以指示终端设备接收CSI-RS等参考信号,从而获得下行传输的信道状态信息。
2、第一信息
在一种实施方式中,例如但不限于,下行控制信息(downlink control information,DCI),或下行控制信令,或媒体接入控制控制元素(media access control control element,MAC-CE)信令,或为RRC信令,或者其他高层信令中可以携带该第一信息,第一信息用于触发终端设备发送参考信号。第一信息可以为触发指示,该触发指示用于触发终端设备发送参考信号。
在另一种实施方式中,第一信息为,例如但不限于,下行控制信息(downlink control information,DCI),或为下行控制信令,或为媒体接入控制控制元素(media access control control element,MAC-CE)信令,或为RRC信令,或为其他高层信令。该第一信息用于触发终端设备发送参考信号。
其中,高层信令可以为,例如但不限于,终端设备专属的无线资源控制信令,小区专属的无线资源控制信令,或高层参数中的一种或多种。
3、第一时间单元、第二时间单元
第一时间单元为第一信息所在的时间单元;或者,第一时间单元为检测到控制信道的时间单元,该控制信道携带第一信息。
第二时间单元为终端设备发送RS的时间单元。时序偏移指示n,用于指示第二时间单元。第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
在一种实施方式中,有效的上行传输的时间单元为允许用于(或可用于,或能够用于)上行传输的时间单元。或者,有效的上行传输的时间单元为允许用于(或可用于,或能够用于)上行传输RS的时间单元。
4、时间单元、上行时间单元、下行时间单元以及特殊时间单元
时间单元是,例如但不限于,一个或多个无线帧,或是一个或多个子帧,或是一个或多个时隙,或是一个或多个微时隙(mini slot),或是一个或多个次时隙(sub slot),或是一个或多个符号,或者是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。
时域资源是,例如但不限于,一个或多个ofdm符号。例如,RS占用的时域资源可以通过网络设备配置的起始符号(或起始位置)和符号数量指示。
符号包括上行符号和下行符号,其中,上行符号可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号;下行符号可以为OFDM符号。
通信系统基于上下行时间单元配比,将时域上的各时间单元划分为上行时间单元、下行时间单元、或特殊时间单元中的至少一种。
上行时间单元为包括的时域资源为用于上行传输的时间单元。下行时间单元为包括的时域资源为用于下行传输的时间单元。
特殊时间单元为包括上下行转换时域资源的时间单元。特殊时间单元,例如但不限于,包括上下行转换时域资源和用于下行传输的时域资源,或包括上下行转换时域资源和用于上行传输的时域资源,或包括上下行转换时域资源、用于下行传输的时域资源和用于上行传输的时域资源,等等。
例如,假设时间单元为时隙,图2是本申请实施例提供的基于一种上下行时隙配比划分的示意图。其中,D表示下行时隙,U表示上行时隙,S表示特殊时隙。图2中,slot 0至slot 6为下行时隙,slot 7为特殊时隙,slot 8和slot 9为上行时隙。
本申请的实施方式中,终端设备在第一时间单元上接收第一信息,该第一信息用于触发终端设备发送参考信号RS;终端设备在第二时间单元上发送RS。第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中时序偏移指示n所指示的时间单元。
本申请实施例描述的技术方案可以应用于时分双工(time division duplexing,TDD)系统。
可见,时序偏移指示n指示的是有效的上行传输的时间单元中的时间单元,与时序偏移指示n指示第一时间单元与第二时间单元之间时序偏移的方式相比,能够降低时序偏移指示n的比特数开销。
另外,该实施方式还能够实现第一时间单元的选择灵活性(即RS触发的灵活性)。从而,一方面,有利于网络设备选择承载数据调度控制信息的时间单元作为第一时间单元,以利用该数据调度控制信息来触发终端设备发送RS即可,避免额外发送第一信息以专门触发终端设备发送RS所导致的资源浪费。另一方面,有利于网络设备将触发多个终端设备分别发送RS的第一信息分散在不同的第一时间单元上发送,避免在同一个第一时间单元上发送所导致的控制信道拥塞。
而时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式中,随着第一时间单元的不同,其与所述第二时间单元之间的时序偏移也不同,为了实现第一时间单元的灵活选择,时序偏移指示n开销较大。如图3所示,以时间单元为时隙(slot)为例, 第二时间单元为时隙7。为了使能slot 0至slot 7中的任一时隙可用于触发RS,时序偏移指示n需要能够分别指示slot 0至slot 7中任一时隙与slot 7之间的时序偏移。可见,时序偏移指示n的取值范围需要从0至7,即需要3比特才能完全指示。
本申请的实施方式,如图4所示,以时间单元为时隙为例,假设第二时间单元为slot7,以及有效的上行传输的时间单元为图4中的slot 7、slot 8和slot 9。时序偏移指示n所指示的第二时间单元是以第一时间单元为起始的,有效的上行传输的时间单元中的时间单元,故时序偏移指示n具有两个比特,即可完整指示slot 7至slot 9。假设n为00,指示其中的第1个时隙,即slot 7;n为01,指示其中的第2个时隙,即slot 8;以及n为10,指示其中的第3个时隙,即slot 9。那么,slot 7是以slot 0至slot 7中任一时隙为起始的,有效的上行传输的时隙中的第1个时隙,即n为00即可确定slot 7。
可见,图4的实施方式中,时序偏移指示n的比特数为2个比特即可指示第二时间单元,但图3中时序偏移指示n的比特数需要为3个比特才可指示第二时间单元,故图4所示的实施方式中时序偏移指示n的开销更小。
另外,如图4所示,用于发送RS的时隙(即slot 7)以及时序偏移指示n不变的情况下,slot 7以及slot 7之前的slot 0至slot 6中的任一时隙,均可用于触发终端设备在slot 7上发送RS,大大增加了第一时间单元的选择灵活性。而图3中,用于发送RS的时隙和时序偏移指示n一旦确定,相应的第一时间单元也确定,即使第一时间单元没有配置调度数据的控制信息,也需要在第一时间单元发送第一信息,以触发终端设备发送RS。因此,图4所示的实施方式与图3所示的实施方式相比,有利于减少第一信息的开销。比如,第一信息为DCI时,该实施方式有利于减少承载DCI的物理下行控制信道(physical downlink control channel,PDCCH)的开销。
另外,本申请公开的实施方式,网络设备需要多个终端设备在第二时间单元发送RS的情况下,也可以灵活采用多个第一时间单元分别触发终端设备发送RS,避免了在时序偏移指示n和第二时间单元相对确定的情况下,只能选择同一个第一时间单元触发多个终端设备发送RS,所导致的网络设备在同一个第一时间单元需发送多个第一信息的拥塞问题。
请参阅图5,图5是本申请实施例提供的一种通信系统的结构示意图。如图5所示,终端设备与网络设备之间通信时,可通过测量终端设备发送的RS,获得上行信道信息,在TDD系统中,可以利用上下行信道信息的互易性,获得下行信道信息。终端设备也可测量网络设备发送的RS,并将测量结果上报给网络设备,从而使得网络设备获得下行传输的信道状态信息,在TDD系统中,可以利用上下行信道信息的互易性,获得上行信道信息。
基于图5所示的通信系统,以下结合图6至图16阐述测量上行信道的参考信号传输方法。其中,图2、图3、图4、图7、图9、图11具有相同的上下行时隙配比。图8、图10、图14、图15、图16、图18、图19具有相同的上下行时隙配比。其中,图4至图11以时隙为例,有效的上行传输的时隙为可用于上行传输的时隙,如特殊时隙和上行时隙。
测量下行信道的参考信号传输方法,与测量上行信道的参考信号传输方法不同之处在于,需将测量上行信道的参考信号传输方法中相关示例中确定“有效的上行传输的时隙”修改为确定“有效的下行传输的时隙”,可参见图17至图19所述的相关内容。
请参阅图6,图6是本申请实施例提供的一种参考信号传输方法的流程示意图。如图6 所示,该参考信号传输方法可以包括以下步骤:
101、网络设备在第一时间单元上发送第一信息,终端设备在第一时间单元上接收第一信息,该第一信息用于触发终端设备发送RS;
102、终端设备在第二时间单元上发送RS,网络设备在第二时间单元上接收RS。
其中,第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。以下通过一些实施方式,对时序偏移指示n所指示的时间单元进行阐述。
在一种实施方式中,所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元。m等于n+1,该n+1表示时序偏移指示n的值加1。其中,m用于表示第二时间单元在以第一时间单元为起始的,有效的上行传输的时间单元中的时间单元排序。
例如,如图7所示,假设第一时间单元为slot 0;以slot 0为起始,有效的上行传输的时间单元为slot 7、slot 8以及slot 9;时序偏移指示n的值为0;第一信息为DCI。网络设备在slot 0上发送DCI,该DCI用于触发终端设备发送RS。终端设备在slot 0上接收到该DCI。终端设备在以slot 0为起始,有效的上行传输的时间单元(即slot 7、slot 8以及slot 9)中第1个时间单元(即m等于1,n的值为0),即slot 7上,发送RS。网络设备在slot 7上接收该RS,进而可以获得上行传输的信道状态信息。
再例如,如图7所示,假设第一时间单元为slot 7,时序偏移指示n的值为0。网络设备在slot 7上发送DCI,该DCI用于触发终端设备发送RS。终端设备在slot 7上接收该DCI。以slot 7为起始,有效的上行传输的时间单元(即slot 7、slot 8以及slot 9)中第1个时间单元为slot 7。因此,终端设备在slot 7上发送RS,网络设备在slot 7上接收RS,进而获得下行传输的信道状态信息。
可见,图7所示的示例中,时序偏移指示(如时序偏移指示n的值为0)和第二时间单元(如第二时间单元为slot 7)不变的情况下,第一时间单元可以灵活选择(如slot 0至slot 7中任一时隙均可用来触发终端设备发送RS)。从而,一方面,有利于网络设备选择承载数据调度控制信息的时间单元作为第一时间单元,以利用该数据调度控制信息来触发终端设备发送RS即可,避免额外发送第一信息以专门触发终端设备发送RS所导致的资源浪费。另一方面,有利于网络设备将触发多个终端设备分别发送RS的第一信息分散在不同的第一时间单元上发送,避免在同一个第一时间单元上发送多个第一信息所导致的控制信道拥塞。
图8是本申请实施例提供的基于另一上下行时隙配比划分的时隙示意图。图8所示的时隙示意图中,D表示下行时隙,U表示上行时隙,S表示特殊时隙。如图8所示,假设第一时间单元为slot 2,时序偏移指示n的值为0,m等于1。网络设备在slot 2上发送DCI,该DCI用于触发终端设备发送RS。终端设备在slot 2上接收DCI,并确定以slot 2为起始的有效的上行传输的时隙为:slot 3、slot 4、slot 8和slot 9。终端根据时序偏移指示n的值0,确定以slot 2为起始,有效的上行传输的时隙中的第1个时隙为slot 3,在slot 3上发送RS。网络设备在slot 3上接收RS。
再例如,如图8所示,假设第一时间单元为slot 3,时序偏移指示n的值为0,m等于 1。以slot 3为起始,有效的上行传输的时隙为slot 3、slot 4、slot 8和slot 9。因此,终端设备根据时序偏移指示n确定以slot 3为起始,有效的上行传输的时隙中第1个时隙依旧为slot 3。即终端设备在slot 3上接收DCI,该DCI用于触发终端设备发送RS。终端设备在slot3上还发送RS,网络设备也在slot 3上接收该RS。
再例如,如图8所示,假设第一时间单元为slot 6,时序偏移指示n的值为0,m等于1。以slot 6为起始,有效的上行传输的时隙为slot 8、slot 9。终端设备确定以slot 6为起始,有效的上行传输的时隙中第1个时隙为slot 8。即终端设备在slot 6上接收DCI,该DCI用于触发终端设备发送RS。终端设备在slot 8上发送RS。网络设备也在slot 8上接收该RS。
再例如,如图8所示,假设第一时间单元为slot 7,时序偏移指示为n的值为0,m等于1。以slot 7为起始,有效的上行传输的时隙为slot 8、slot 9。终端设备确定以slot 7为起始,有效的上行传输的时隙中第1个时隙为slot 8。即终端设备在slot 7上接收DCI,该DCI用于触发终端设备发送RS。终端设备在slot 8上发送RS。网络设备也在slot 8上接收该RS。
可见,虽然图8所示的时隙示意图与图7所示的时隙示意图不同,但图8所示的时隙示意图也能够实现第一时间单元的灵活选择以及有利于降低时序偏移指示n的比特开销。本申请公开的实施例中相关时隙示意图用于举例说明,对上下行时隙配比不做限定。
在一种实施方式中,所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元。m为时序偏移指示n的值。时序偏移指示n不等于0。
如图9所示,假设第一时间单元为slot 0,以及时序偏移指示n的值为1,m等于1,则第二时间单元为以slot 0为起始,有效的上行传输的时隙中第1个时隙为slot 7。假设第一时间单元为slot 0,以及时序偏移指示n为3,m等于3,那么,第二时间单元为以slot 0为起始,有效的上行传输的时隙中第3个时隙,即slot 9。
在一种实施方式中,所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元。m的取值与时序偏移指示n的取值之间具有对应关系。比如,该对应关系可基于m的各可选值的索引号大小与n的各可选值的大小顺序确定。其中,该m的各可选值或取值范围可以是预定义的,或是高层信令配置的,或是MAC-CE信令配置的。
例如,高层信令配置m的取值属于集合M,所述集合M为{1、3、4、5},时序偏移指示n的可能取值为:0、1、2、3,则m的值与时域偏移指示n的值的对应关系为:m为集合M中第n+1个元素的值。
如图10所示,假设第一时间单元为帧k-1中的slot 0,以及时序偏移指示n的值为2,则m为对应的集合M中的第3个元素,即m=4,第二时间单元为以帧k-1中的slot 0为起始,有效的上行传输的时隙中的第4个时隙,即为帧k-1中的slot 9。再例如,如图10所示,假设第一时间单元为帧k-1中的slot 3,以及时序偏移指示n的值为3,则m为对应的集合M中的第4个元素,即m=5,第二时间单元为以帧k-1中的slot 3为起始,有效的上行传输的时隙中的第5个时隙,即帧k中的slot 3。
在又一种实施方式中,第二时间单元是以第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元。其中,第一时间单元为特殊时间单元时,m等于n的值加1, 即m=n+1;第一时间单元是下行时间单元时,m等于n的值,即m=n,n不等于0。
例如,图11所示的时隙示意图中,假设第一时间单元为slot 7以及时序偏移指示n的值为0,由于slot 7是特殊时间单元,故m=n+1=1,第二时间单元为以slot 7为起始,有效的上行传输的时隙中第1个时隙,即slot 7。假设第一时间单元为slot 7,但该时序偏移指示n的值为1,故m=n+1=1+1=2,第二时间单元为以slot 7为起始,有效的上行传输的时隙中第2个时隙,即slot 8。假设第一时间单元为slot 5,以及该时序偏移指示n的值为1,由于第一时间单元为下行时间单元,故m=n=1,第二时间单元为以slot 5为起始,有效的上行传输的时隙中第1个时隙(m=n=1),即slot 7。
可见,上述图7至图11所示的时隙示意图中,第二时间单元和时序偏移指示n相同的情况下,第一时间单元可以不同,即触发RS的第一时间单元可以灵活选择。另外,上述图7至图11所示的时隙示意图中,第一时间单元与第二时间单元之间有效的上行传输的时隙个数少于第一时间单元与第二时间单元之间的时隙个数,从而降低了时序偏移指示n所占的比特开销。
请参阅图12,图12是本申请实施例提供的另一种参考信号传输方法的流程示意图。图12所示的参考信号传输方法与图6所示的参考信号传输方法的不同之处在于,图12中第一信息还用于指示时序偏移指示n。
201、网络设备在第一时间单元上发送第一信息,该第一信息用于触发终端设备发送RS且该第一信息还用于指示时序偏移指示n;终端设备在第一时间单元上接收第一信息;
在一种实施方式中,第一信息为,例如但不限于,DCI,或为下行控制信令,或为MAC-CE信令,或为RRC信令,或为其他高层信令。
该实施方式中,终端设备可基于第一信息中携带的,例如但不限于,时序偏移指示字段,或者触发指示字段,确定时序偏移指示n。
在另一种实施方式中,第一信息可被包含在DCI,或下行控制信令,或MAC-CE信令,或RRC信令,或其他高层信令中。该第一信息可用于触发终端设备发送RS,还可用于确定时序偏移指示n。
本申请实施例中,时序偏移指示n可以为显式指示,或为隐式指示,或为两者结合的方式指示。
202、终端设备在第二时间单元上发送RS,网络设备在第二时间单元接收RS。第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中时序偏移指示n所指示的时间单元。
可见,图12所示的参考信号传输方法有利于使得网络设备灵活确定第二时间单元、第一时间单元和时序偏移指示n,进一步的增加第一时间单元的选择灵活性。
这样,一方面,有利于网络设备选择承载数据调度控制信息的时间单元作为第一时间单元,以利用该数据调度控制信息来触发终端设备发送RS即可,避免额外发送第一信息以专门触发终端设备发送RS所导致的资源浪费。另一方面,有利于网络设备将触发多个终端设备分别发送RS的第一信息分散在不同的第一时间单元上发送,避免在同一个第一时间单元上发送多个第一信息所导致的控制信道拥塞。
请参阅图13,图13是本申请实施例提供的又一种参考信号传输方法的流程示意图。图13所示的参考信号传输方法与图6所示的参考信号传输方法相比,不同之处在于,图13所示的参考信号传输方法通过第二信息告知终端设备时序偏移指示n。第二信息可以为MAC CE信令或高层信令等。如图13所示,该参考信号传输方法包括:
301、网络设备发送第二信息,第二信息用于配置时序偏移指示n;终端设备接收第二信息。
302、网络设备在第一时间单元发送第一信息,第一信息用于触发终端设备发送RS;终端设备在第一时间单元接收第一信息。
303、终端设备在第二时间单元上发送RS,网络设备在第二时间单元上接收RS;第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
图13所示的参考信号传输方法中,由第二信息配置时序偏移指示n,可以避免在第一信息中新增字段以携带时序偏移指示n。
如图4所示,用于发送RS的时隙(即slot 7)以及时序偏移指示n不变的情况下,以slot 0至slot 7中任一时隙为起始,有效的上行传输的时间单元中时序偏移指示n所指示的第1个时间单元均为slot 7,或时序偏移指示n所指示的第2个时间单元均为slot 8,或时序偏移指示n所指示的第3个时间单元也均slot 9。也就是说,图13所示的参考信号传输方法在第二信息配置时序偏移指示n的情况下,依旧能够保证第一时间单元选择的灵活性,从而有利于采用调度数据的第一信息来触发终端设备发送RS。
再如图8或图10所示,以slot 0至slot 3中任一时隙为起始,有效的上行传输的时隙中时序偏移指示n所指示的第1个时隙均为slot 3,或时序偏移指示n所指示的第2个时隙均为slot 4,或时序偏移指示n所指示的第3个时隙也均为slot 8,等等。因此,网络设备需终端设备在slot 3、slot 4、或slot 8等上发送RS的情况下,即使由第二信息配置时序偏移指示n,slot 0至slot 3中任一时隙都可以作为第一时间单元来发送第一信息。可见,针对如图8或图10所示的时隙示意图,图13所示的参考信号传输方法,同样可以改善第一时间单元选择的灵活性,有利于避免额外发送第一信息所导致的资源浪费。
其中,图12、图13所示的参考信号传输方法中,n和m之间关系的各种实施方式,可参见上述图7至图11所述的相关内容,此处不再详述。
在一种实施方式中,时序偏移指示n的最大值为N,所述时域偏移指示n的最大值N可以是预定义的,或者所述N是由高层信令或媒体接入控制控制单元MAC CE信令配置的,或者所述N由上下行时间单元配比确定的。
在一种实施方式中,时序偏移指示n的最大值N由一个TDD系统帧中特殊时间单元和上行时间单元的总个数确定。
也就是说,一个TDD系统帧中特殊时间单元和上行时间单元的总个数为x,时序偏移指示n为大于或等于零的整数,N=x-1;或者,时序偏移指示n为大于零的整数,N=x。例如,一个系统帧的时隙示意图如图7、图9或图11所示,特殊时隙和上行时隙的总个数为3个。因此,n的最大值N等于2(时序偏移指示n大于或等于零)或等于3(时序偏移指 示n大于零)。再例如,一个系统帧的时隙示意图如图8或图10所示,特殊时隙和上行时隙的总个数为4个,故n的最大值为3(时序偏移指示n大于或等于零)或4(时序偏移指示n大于零)。
可选的,网络设备和/或终端设备通过N的取值确定时序偏移指示n所需要的比特数。
可选的,网络设备和/或终端设备根据N的取值确定时序偏移指示n的取值范围。
可选的,网络设备根据N的取值确定第一时间单元、时序偏移指示n和第二时间单元。
可选的,终端设备根据N的取值或时序偏移指示n的比特数,从第一信息或者第二信息中读取时序偏移指示n。
在另一种实施方式中,时序偏移指示n的取值范围和/或时序偏移指示n所占的比特数是预定义的,或者是由高层信令配置的,或者是由媒体接入控制控制单元MAC CE信令配置的。
可选的,网络设备基于该时序偏移指示n的取值范围和/或时序偏移指示n所占的比特数,确定第一时间单元、时序偏移指示n和第二时间单元。
可选的,终端设备基于时序偏移指示n的取值范围和/或时序偏移指示n所占的比特数,从第一信息或第二信息中读取时序偏移指示n。
例如,预定义时序偏移指示n所占的比特数为2以及时序偏移指示n大于或等于零,那么,该时序偏移指示n的取值范围为{0,1,2,3}。终端设备在第一时间单元上接收第一信息,可根据时序偏移指示n所占的比特数从该第一信息中读取时序偏移指示n为2。终端设备根据上述各实施方式所述的n与m之间的关系和该时序偏移指示2,确定m。终端设备可在以第一时间单元为起始,有效的上行传输的时间单元中的第m个时间单元上发送RS。
在又一种实施方式中,m为第二时间单元在以第一时间单元为起始的有效的上行传输的时间单元中的时间单元排序。m的取值范围可以是预定义的,或者是由高层信令或MAC CE信令配置的,或者是由上下行时间单元配比确定的。比如,m的取值范围为集合M,该集合M为{m 0,m 1,m 2,…,m Y-1},Y大于零,那么,时序偏移指示n最多需要
Figure PCTCN2020114615-appb-000001
个比特,即可完全指示m的所有可能取值。
可选的,集合M中的各值与时序偏移指示n的值之间的对应关系,可按照索引号顺序一一对应。
例如但不限于,Y等于4,n为2个比特,那么按照索引号顺序一一对应,可获得该集合M中的各值与时序偏移指示n的值之间的对应关系,如表1所示:
表1:集合M中的各值与时序偏移指示n的值之间的对应关系
集合M中各值 时序偏移指示n
m 0 00
m 1 01
m 2 10
m 3 11
可选的,网络设备基于m的取值范围以及m和n的对应关系确定第一时间单元、时序偏移指示n和第二时间单元。
可选的,终端设备m的取值范围以及m和n的对应关系、第一时间单元以及第一信息 或第二信息中的时序偏移指示n,确定第二时间单元。
例如,终端设备根据第一时间单元和时序偏移指示n,确定第二时间单元,包括:终端设备根据m的取值范围确定时序偏移指示n所占的比特数;终端设备根据时序偏移指示n所占的比特数,从第一信息中解读时序偏移指示n以及时序偏移指示n对应的m;终端设备根据该m和第一时间单元,确定第二时间单元。
有效的上行传输的时间单元是基于上下行时间单元配比确定的。有效的上行传输的时间单元是以第一时间单元为起始,基于上下行时间单元配比确定的时间单元配置中,可用于上行传输的时间单元。
在一种实施方式中,有效的上行传输的时间单元为特殊时间单元和上行时间单元,或者有效的上行传输的时间单元为以第一时间单元为起始的特殊时间单元和上行时间单元。其中,特殊时间单元中包括用于上行传输的时域资源。
比如,以时间单元为时隙为例,有效的上行传输的时隙为特殊时隙和上行时隙。那么,在该实施方式中,上述图4中有效的上行传输的时隙为:标记为S的时隙和标记为U的时隙,也就是slot 7、slot 8和slot 9。
在另一种实施方式中,有效的上行传输的时间单元为特殊时间单元,或者为以第一时间单元为起始的特殊时间单元。其中,特殊时间单元中包括用于上行传输的时域资源。以时间单元为时隙为例,有效的上行传输的时隙为特殊时隙。比如,上述图4、图7、图9、图11中有效的上行传输的时隙为:标记为S的时隙,如slot 7。比如,图8、图10中,有效的上行传输的时隙为:标记为S的时隙,如slot 3和slot 8。
在又一种实施方式中,有效的上行传输的时间单元为上行时间单元。以时间单元为时隙为例,有效的上行传输的时隙为上行时隙。那么,在该实施方式中,上述图4、图7、图9、图11中有效的上行传输的时隙为:标记为U的时隙,即slot 8、slot 9。上述图8、图10中有效的上行传输的时隙为:标记为U的时隙,即slot 4、slot 9。
在又一种实施方式中,有效的上行传输的时间单元为满足以下特性的时间单元:时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的。
也就是说,以第一时间单元为起始,有效的上行传输的时间单元为:以第一时间单元为起始,可用于上行传输的时间单元中满足该特性的时间单元。可用于上行传输的时间单元为包括用于上行传输的时域资源的时间单元,如特殊时间单元或上行时间单元。
其中,所述RS的处理时延至少包括第一信息的检测时延和RS的准备时延。该RS的处理时延是,例如但不限于,触发RS的第一信息占用的时域资源中的最后一个符号与RS占用的时域资源中的第一个符号之间的最小时间间隔。
在一种实施方式中,该第一信息被包含在,例如但不限于,DCI,或下行控制信令,或MAC-CE信令中。该实施方式中,触发RS的第一信息占用的时域资源为包含第一信息的DCI或信令所占的时域资源,或者为第一信息所在的DCI或信令所占的时域资源。
在另一种实施方式中,该第一信息为,例如但不限于,DCI,或为下行控制信令,或为MAC-CE信令,且该第一信息中携带触发指示。该实施方式中,触发RS的第一信息所 占的时域资源即为DCI或上述信令所占的时域资源。
可选的,最小时间间隔若以符号为单位,则该最小时间间隔为触发RS的第一信息占用的时域资源中的最后一个符号与RS占用的时域资源中的第一个符号之间的符号数,结合最小子载波间隔确定的。该最小子载波间隔是第一信息的子载波间隔和RS的子载波间隔中的最小的子载波间隔。
在一种可能的实现方式中,终端设备根据上述特性,确定以第一时间单元为起始,有效的上行传输的时间单元;终端设备从该有效的上行传输的时间单元中,确定该时序偏移指示n所指示的第二时间单元。
例如,以图14为例,假设该RS为SRS,高层信令为终端设备配置一个SRS资源集合(也可以称为SRS配置信息)。该SRS资源集合中规定了SRS在一个时间单元中的哪些时域资源上能够发送SRS。假设该SRS资源集合配置该SRS占用的时域资源为一个时隙中的最后7个符号,第一信息占用的时域资源为一个时隙中的前两个符号,一个时隙包括14个符号,SRS的处理时延为28个符号,m等于n的值加1。
假设终端设备在slot 3上接收第一信息,该第一信息用于触发终端设备发送SRS。终端设备确定以slot 3为起始,有效的上行传输的时隙时,需考虑上述特性。由于SRS的处理时延为28个符号,因此,有效的上行传输的时隙需要距离slot 3至少一个时隙,才能满足第一信息占用的时域资源与SRS占用的时域资源之间的时域资源偏移,大于或等于SRS的处理时延。
故图14中,slot 4与slot 3之间的时域资源偏移不能满足该特性,故slot 4不属于以slot 3为起始的有效的上行传输的时隙。slot 8、slot 9以及下一个系统帧中可用于上行传输的时隙等与slot 3之间的时域资源偏移可满足该特性,故以slot 3为起始,有效的上行传输的时隙为:slot 8、slot 9以及下一个系统帧中的可用于上行传输的时隙。从而,终端设备可根据第一信息或第二信息中的时序偏移指示n为1,确定以slot 3为起始,有效的上行传输的时隙中第2个时隙,即slot 9。因此,终端设备可在slot 9上发送SRS。
在又一种实施方式中,有效的上行传输的时间单元为满足以下特性的时间单元:时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
该配置信息可以配置RS图样。该RS图样用于确定RS占用的时频资源。以一发送天线四接收天线(1T4R)为例,该终端设备具有四个天线,该配置信息可配置4个资源,以分别测量每个天线与网络设备之间的信道。每两个资源之间有Y个符号长的资源间隔,Y为大于或等于1的整数。那么,RS占用的时域资源为从第1个资源为起始,至第4个资源结束之间的所有时域资源,即包括资源间隔。比如,假设每个资源为1个符号,Y等于1,则终端设备基于该配置信息可确定RS占用的时域资源的数量为7个符号。
也就是说,以第一时间单元为起始,有效的上行传输的时间单元为:以第一时间单元为起始,可用于上行传输的时间单元中满足该特性的时间单元。可用于上行传输的时间单元为包括上行传输资源的时间单元,如特殊时间单元或上行时间单元。
例如,以图15为例,假设该RS为SRS,SRS资源集合配置该SRS占用的时域资源的数量为7个符号,m等于n的值加1,特殊时隙中允许用于发送SRS的时域资源的数量为 6个符号、上行时隙中允许用于发送SRS的时域资源的数量大于7个符号。
这样,终端设备在slot 0上接收第一信息后,确定slot 0为起始的,满足上述特性的有效的上行传输的时隙为slot 4、slot 9;终端设备根据第一信息或第二信息配置的时序偏移指示n=1,确定满足上述特性的有效的上行传输的时隙中第m=2个时隙为slot 9。
可选的,可基于上述各实施方式中所述的一个或多个特性,确定有效的上行传输的时间单元。也就是说,以第一时间单元为起始,有效的上行传输的时间单元为:以第一时间单元为起始,可用于上行传输的时间单元中满足上述一个或多个特性的时间单元。
例如,有效的上行传输的时间单元所需满足的特性为:1)时间单元为特殊时间单元和上行时间单元;2)时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;以及3)时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
以图16为例,假设SRS资源集合配置了SRS占用的时域资源为一个时隙中的最后7个符号,第一信息占用的时域资源为一个时隙中的前两个符号,一个时隙包括14个符号,SRS的处理时延为28个符号,m等于n的值加1,特殊时隙中允许用于发送SRS的时域资源的数量小于7个符号。
如图16所示,终端设备在帧k-1中slot 8上接收第一信息,该第一信息用于触发终端设备发送SRS。终端设备需基于上述1)、2)、3)三个特性,确定以帧k-1中slot 8为起始的有效的上行传输的时隙。
以帧k-1中slot 8为起始,可用于上行传输的时隙中满足特性1)的时隙为:帧k-1中的slot8、slot 9以及帧k中的slot 3、slot 4、slot 8、slot 9,以及之后帧中的特殊时隙和上行时隙等等;
由于特殊时隙中用于发送SRS的时域资源的数量小于SRS占用的时域资源的数量,故以帧k-1中slot 8为起始,可用于上行传输的时隙中满足特性1)和特性3)的时隙为:帧k-1中的slot 9、帧k中的slot 4、slot 9,以及之后帧中的上行时隙等等;
由于SRS的处理时延为28个符号,故有效的上行传输的时隙需距离帧k-1中slot 8至少一个时隙,故以帧k-1中slot 8为起始,可用于上行传输的时隙中满足特性1)、2)、3)的时隙为:帧k中的slot 4、slot 9,以及之后帧中的上行时隙等等。
这样,终端设备根据第一信息包括的或第二信息配置的时序偏移指示n为1,确定以以帧k-1中slot 8为起始,有效的上行传输的时隙中的第2个时隙为帧k中的slot 9。
可选的,在确定有效的上行传输的时间单元时,若不限定需要满足上述特性2),则可能出现第二时间单元中用于发送所述RS的时域资源的数量小于所述RS占用的时域资源的数量的情况。在这种情况下,终端设备可基于配置信息,在该第二时间单元中允许用于发送RS的时域资源发送部分RS。
在又一种实施方式中,基于第一时间单元确定第二时间单元时,需要根据第一信息的子载波间隔与RS的子载波间隔进行换算。第一信息的子载波是指用于发送第一信息的子 载波间隔;RS的子载波间隔是指用于发送RS的子载波间隔。
在第一信息的子载波间隔与RS的子载波间隔相同的情况下,第一时间单元在第一信息的子载波中的索引号与第一时间单元在RS的子载波中的索引号相同。终端设备确定以第一时间单元为起始,有效的上行传输的时间单元中时序偏移指示n所指示的时间单元,为第二时间单元,如上述各实施方式。
第一信息的子载波间隔与RS的子载波间隔不同的情况下,终端设备还需基于RS的子载波间隔,将第一时间单元换算为第三时间单元,再确定以该第三时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
比如,假设第一信息的子载波间隔与RS的子载波间隔不同,“第二时间单元为以第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元”可以为:终端设备基于RS的子载波间隔,将第一时间单元换算到RS的子载波中第三时间单元;终端设备确定以第三时间单元为起始,有效的上行传输的时间单元中第m个时间单元,作为第二时间单元,所述m为根据n确定的整数。
也就是说,在第一信息的子载波间隔与RS的子载波间隔不同的情况下,第二时间单元的索引为以第一索引为起始,有效的上行传输的时间单元所分别对应的索引中,时序偏移指示n所指示的索引。该第一索引为第三时间单元的索引。第三时间单元的索引是第一时间单元换算到RS的子载波中的时间单元所对应的索引。
假设第一信息的子载波间隔与RS的子载波间隔不同,第一时间单元为第一信息的子载波中,帧k中的slot 1;基于RS的子载波间隔进行换算后,第一信息占用的时域资源位于RS的子载波中,帧k中的slot 2。那么,终端设备可确定以slot 2为起始,有效的上行传输的时隙中时序偏移指示n所指示的时隙,作为发送RS的时隙。
也就是说,上述各图示所示的时隙示意图是以第一信息的子载波间隔与RS的子载波间隔相同为例进行阐述的。若第一信息的子载波间隔与RS的子载波间隔不同,则上述各图示的时隙示意图是RS子载波中的时隙示意图,这样,该各图示的相关阐述中第一时间单元实际为RS子载波中的第三时间单元。
上述内容阐述了测量上行信道的参考信号传输方法。本申请实施例还提供了测量下行信道的参考信号传输方法。
请参阅图17,图17是本申请实施例提供的又一种参考信号传输方法的流程示意图。如图17所示,该参考信号传输方法包括以下步骤:
401、网络设备在第一时间单元上发送第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;终端设备在第一时间单元上接收第一信息;
402、网络设备在第二时间单元上,发送所述RS;终端设备在第二时间单元上,接收所述RS;所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
可见,时序偏移指示n指示的是有效的下行传输的时间单元中的时间单元,与时序偏移指示n指示第一时间单元与第二时间单元之间时序偏移的方式相比,能够降低时序偏移指示n的比特数开销。
对于时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式,时序偏移指示n用于指示该时序偏移,所需的比特数相对较多。如图18所示,假设网络设备确定第一时间单元为slot 0,第二时间单元为slot 5,那么,slot0与slot 5之间的时序偏移为5,因此,需要时序偏移指示n需要3个比特,才能向终端设备指示该slot 5。
而本申请实施方式中,时序偏移指示n用于指示以第一时间单元为起始的,有效的下行传输的时间单元中的时间单元。如图19所示,假设网络设备确定第一时间单元为slot 0,第二时间单元为slot 5,那么,以slot 0为起始,有效的下行传输的时隙为:slot 0、slot 1、slot 2、slot 5,slot 5是这些有效的下行传输的时隙中的第4个时隙,因此,时序偏移指示n需要两个比特(即时序偏移指示n等于11,m等于n+1),即可指示该slot 5。可见,图19与图18相比,图19的实施方式中,时序偏移指示n的比特数开销也更小。
在一种实施方式中,第二时间单元是以第一时间单元为起始的,有效的下行传输的时间单元中时序偏移指示n所指示的时间单元,可以为:第二时间单元是以第一时间单元为起始的,有效的下行传输的时间单元中的第m个时间单元,m等于n的值,或n的值加1,或m是基于m的取值范围和n确定的值。
在又一种实施方式中,第二时间单元是以第一时间单元为起始,有效的下行传输的时间单元中的第m个时间单元。其中,第一时间单元为特殊时间单元时,m等于n的值加1,即m=n+1;第一时间单元是下行时间单元时,m等于n的值,即m=n,n不等于0。
其中,m与n之间关系的上述实施方式,可参见上述实施例的相关阐述,此处不再详述。
在一种实施方式中,第一信息用于指示时序偏移指示n。例如但不限于,第一信息包括时序偏移指示n。
在另一种实施方式中,网络设备还发送第二信息,第二信息用于配置时序偏移指示n。网络设备可根据该时序偏移指示n和第二时间单元,确定第一时间单元。
在一种实施方式中,所述时序偏移指示n的最大值是预定义的,或者所述时序偏移指示n的最大值是由高层信令或媒体接入控制控制单元MAC CE信令配置的,或者所述时序偏移指示n的最大值是由上下行时间单元配比确定的。
在另一种实施方式中,时序偏移指示n的取值范围和所占的比特数是预定义的,或者是由高层信令配置的,或者是由媒体接入控制控制单元MAC CE信令配置的。
在又一种实施方式中,有效的下行传输的时间单元为满足如下一个或多个特性的时间单元,或以第一时间单元为起始,有效的下行传输的时间单元为以第一时间单元为起始,可用于下行传输的时间单元中满足如下一个或多个特性的时间单元:
时间单元为特殊时间单元和/或下行时间单元;
时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
可见,基于上述有效的下行传输的时间单元的特性,使得第一时间单元为起始的有效 的下行传输的时间单元的个数相对较少,从而能够进一步降低时序偏移指示n所需的比特数。
本申请各实施例中,特殊时间单元可以为包括灵活传输的时域资源的时间单元。可通过RRC信令指示该灵活传输的时域资源为上行传输的时域资源,或者下行传输的时域资源;或者,根据业务需求动态的指示该灵活传输的时域资源为上行传输的时域资源或下行传输的时域资源。例如,通过DCI信令指示该灵活传输的时域资源为上行传输的时域资源或下行传输的时域资源。
例如,以特殊时间单元为一个时隙,一个灵活传输的时域资源为一个符号为例,如图22所示,一个时隙包括14个符号。其中,符号0至符号6是下行传输符号,符号7至符号12为灵活传输符号,符号13为上行传输符号。符号7至符号12可基于RRC信令或DCI信令指示作为用于上行传输的符号或用于下行传输的符号。
可以理解的,本申请各实施例中,灵活传输符号也可称为灵活符号(flexible symbol)。还可以理解的,本申请各实施例中,“灵活传输的时域资源”可以替换为“灵活符号”。
可以理解的,特殊时间单元中灵活传输的时域资源可作为保护间隔,从而利用预留的保护间隔避免上下行传输转换所带来的干扰。
本申请实施例中,有效的上行传输的时间单元为满足上述实施例所述的各特性和以下实施方式1、实施方式2所示的特性中一个或多个特性的时间单元。例如,满足RS占用的时域资源与第一信息占用的时域资源之间的时域资源偏移,大于或等于RS的处理时延且满足实施方式1的时间单元为有效的上行传输的时间单元。再例如,满足允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量且满足实施方式2的时间单元为有效的上行传输的时间单元。再例如,满足允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量且满足实施方式1、实施方式2的时间单元为有效的上行传输的时间单元。再例如,满足允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量、时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移大于或等于所述RS的处理时延,且满足实施方式1、实施方式2的时间单元为有效的上行传输的时间单元。又例如,满足实施方式1的特殊时间单元是有效的上行传输的时间单元。又例如,满足实施方式2的特殊时间单元是有效的上行传输的时间单元,等等,本申请实施例不限定所需满足的各特性的组合方式。
以下对实施方式1、实施方式2所述的特性进行阐述。
实施方式1,特殊时间单元中RS占用的第一个时域资源之前的K个时域资源中不包括下行传输的时域资源,K大于或等于零。
也就是说,本申请实施例可根据RS占用的第一个时域资源之前的K个时域资源的上下行特性,确定特殊时间单元是否为有效的上行传输的时间单元。
其中,RS占用的第一个时域资源也可称为RS的起始时域资源或起始位置。例如,RS占用的第一个符号、或起始符号、或起始符号位置。
具体的,若特殊时间单元中RS的第一个时域资源之前的K个时域资源不包括下行传输的时域资源,则该特殊时间单元是有效的上行传输的时间单元;若特殊时间单元中RS 的第一时域资源之前的K个时域资源中包括至少一个下行传输的时域资源,则该特殊时间单元不是有效的上行传输的时间单元,或称为该特殊时间单元是无效的上行传输的时间单元,或称为该特殊时间单元是不可用的上行传输的时间单元。
换一种表述,实施方式1:特殊时间单元中RS占用的第一个时域资源之前的最后一个下行传输的时域资源与该RS占用的第一个时域资源之间的偏移大于K。
具体的,若特殊时间单元中RS占用的第一个时域资源之前的最后一个下行传输的时域资源与该RS占用的第一个时域资源之间的偏移大于K,则该特殊时间单元为有效的上行传输的时间单元;若特殊时间单元中RS占用的第一个时域资源之前的最后一个下行传输的时域资源与该RS占用的第一个时域资源之间的偏移小于或等于K,则该特殊时间单元不是有效的上行传输的时间单元。
该K可以是协议预定义的,例如但不限于,子载波间隔为1.25kHz、或5kHz时,K=0;子载波间隔为15kHz、30kHz、60kHz、或120kHz时,K=2。例如但不限于,子载波间隔为1.25kHz、或5kHz时,K=2;子载波间隔为15kHz、30kHz、60kHz、或120kHz时K=4。或者,该K可以由网络设备配置,例如但不限于,网络设备配置K等于2或网络设备配置K等于4。
其中,可选地,K等于0时,由于子载波间隔较小,每个时域资源包含的循环前缀持续时间较长,因此,RS占用的第一个时域资源与该第一个时域资源之前的最后一个下行传输的时域资源之间可以不预留时域资源,依旧可避免上下行转换的干扰问题。
在一种可能的实现方式中,K大于或等于0。在另一种可能的实现方式中,K大于0。其中,该K可以是终端能力上报的,或者是网络设备配置的,或者是协议预定义的。
例如,以时域资源为符号,时间单元为时隙为例,如图22所示的时隙为例,假设RS的起始符号是符号7且K等于2,那么该符号7之前的2个符号,分别是:符号5、符号6。由于符号5、符号6均是下行传输的符号,因此,该时隙为无效的上行传输的时隙。假设RS的起始符号是符号9且K等于2,那么该符号9之前的2个符号,分别是符号7、符号8。由于符号7、符号8均不是下行传输的符号,因此,该时隙为有效的上行传输的时隙。
再例如,换一种表述方式,如图22所示的时隙为例,假设RS的起始符号是图22中的符号7且K等于2,那么该符号7之前的最后一个下行传输的符号是符号6,由于符号6与符号7之间的偏移是1,小于K,故该时隙为无效的上行传输的时隙。假设RS的起始符号是图22中的符号9且K等于2,那么该符号9之前的最后一个下行传输的符号是符号6,由于符号6与符号9之间的偏移是3,大于K,故该时隙为有效的上行传输的时隙。
可见,该实施方式中,基于时间单元中RS的第一时域资源与之前的下行传输的时域资源之间的偏移,或基于RS的第一时域资源之前的K个时域资源的上下行特性,来判断特殊时间单元是否是有效的上行传输的时间单元,有利于为上下行转换预留时间,从而避免上下行切换时的干扰问题。
实施方式2,特殊时间单元中RS占用的时域资源位于时域资源L+1至时域资源L+N之间,N大于或等于0;时域资源L是第三信息所在的控制资源集合CORESET的最后一个时域资源;第三信息用于指示时间单元格式。
也就是说,若特殊时间单元中RS占用的时域资源位于时域资源L+1至时域资源L+N 之间(RS占用的时域资源可在时域资源L+1至时域资源L+N内,或RS占用的时域资源可为时域资源L+1至时域资源L+N),那么,特殊时间单元为有效的上行传输的时间单元,否则,特殊时间单元为无效的(或不可用的)上行传输的时间单元。
其中,第三信息可为时隙格式指示(slot format indicator,SFI)DCI。该SFI DCI的DCI格式可为例如但不限于DCI format 2_0。其中,该SFI DCI可为采用时隙格式指示-无线网络临时标识(slot format indicator-radio network tempory identity,SFI-RNTI)加扰的DCI。可选的,正常循环前缀的时隙格式可如表2所示的。
例如,假设一个时域资源为一个符号,RS占用的符号是如图22所示的符号8、符号9(即RS的起始符号是符号8,结束符号是符号9),SFI DCI所在的CORESET的最后一个符号是符号6,N等于4,那么,RS占用的符号8、符号9位于SFI DCI所在的CORESET的最后一个符号6至符号10之间,那么图22所示的灵活时隙为有效的上行传输的时间单元。
其中,该N可以是终端能力上报的,或者是网络设备配置的,或者是协议预定义的。例如但不限于,N等于N 2。其中,N 2是如表3所示的物理上行共享信道(physical uplink share channel,PUSCH)定时能力1的PUSCH准备时间,或为如表4所示的PUSCH定时能力2的PUSCH准备时间。μ是系统参数的标识,μ的取值与子载波间隔有关,如下表5所示。其中,U表示上行符号(uplink symbol),D表示下行符号(downlink symbol),F表示灵活符号(flexible symbol)。个时隙格式可以包括下行符号,上行符号,灵活符号。
应理解,时间单元格式指时间单元内下行符号,上行符号,灵活符号的位置信息。例如,一个slot内包括14个symbol,前10个symbol为下行symbol,最后2个symbol是上行symbol,剩余中间两个symbol是灵活symbol。具体如说明书中表2。
可见,该实施方式2可以基于终端设备处理时延(如PUSCH的准备时间)与RS占用的时域资源之间的关系,来考虑特殊时间单元是否为有效的上行传输的时间单元,从而有利于尽可能的发送RS的同时,也避免为了发送RS所导致的资源浪费的问题。另外,也有利于解决终端设备与网络设备无法获知该特殊时间单元是用于上行传输或下行传输的模糊度问题。
表2:正常循环前缀时的时隙格式
Figure PCTCN2020114615-appb-000002
Figure PCTCN2020114615-appb-000003
Figure PCTCN2020114615-appb-000004
表3 PUSCH定时能力1的PUSCH准备时间(PUSCH preparation time N 2)
Figure PCTCN2020114615-appb-000005
表4 PUSCH定时能力2的PUSCH准备时间
Figure PCTCN2020114615-appb-000006
表5 μ与子载波间隔的关系
Figure PCTCN2020114615-appb-000007
另外,针对上述有效的上行传输的时间单元所需满足的上述各种特性,可以一个或多个特性结合的方式来确定时间单元是否为有效的上行传输的时间单元。即上述各种特性可应用于以第一时间单元为起始,确定有效的上行传输的时间单元中使用,进而结合时序偏移指示n确定第二时间单元。例如,满足实施方式1的特殊时间单元为有效的上行传输的时间单元,或者满足实施方式2的特殊时间单元为有效的上行传输的时间单元,或者满足实施方式1和实施方式2的特殊时间单元为有效的上行传输的时间单元。
本申请实施例中,终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,该参考信号传输方法还包括:终端设备接收第三信息;第三信息用于指示时间单元格式;时间单元格式在第二时间单元之后生效,或者时间单元格式在第二时间单元中RS占用的最后一个时域资源之后生效。可选的,第三信息可为时隙格式指示(slot format indicator,SFI)DCI。可选的,此时该第二时间单元为特殊时间单元。
其中,第三信息用于指示将特殊时间单元中的灵活时域资源修改为下行传输的时域资源或将特殊时间单元中的灵活时域资源修改为上行传输的时域资源。针对第三信息用于指示将特殊时间单元中的灵活时域资源修改为下行传输的时域资源的情况,时间单元格式在第二时间单元之后生效可以为:将第二时间单元之后的特殊时间单元修改为下行传输的时间单元,或将第二时间单元之后的特殊时间单元中的灵活时域资源修改为下行传输的时域资源。或者,针对第三信息用于指示将特殊时间单元中的灵活时域资源修改为下行传输的时域资源的情况,时间单元格式在第二时间单元中RS占用的最后一个时域资源之后生效可以为:将第二时间单元中RS占用的最后一个时域资源之后的灵活时域资源修改为下行传输的时域资源,以及将第二时间单元之后的特殊时间单元修改为下行传输的时间单元。
例如,如图23所示的帧k包括10个时隙为例,其中,时隙0至时隙6为下行传输的时隙,时隙7至时隙9为特殊时隙。并且,假设时隙7至时隙9中的符号构成如图22所示,且RS占用的第一个符号为符号9,K等于2,基于上述实施方式1所述的方法,根据RS占用的第一个符号可判断时隙7至时隙9是有效的上行传输的时隙。假设第一时间单元为slot 0,即网络设备在该slot 0上发送触发RS的DCI,时序偏移指示n的值为1,以slot 0为起始,有效的上行传输的时间单元为slot 7、slot 8以及slot 9,那么,第二时间单元,即终端设备发送RS的时隙为以slot 0为起始,有效的上行传输的时间单元(即slot 7、slot 8 以及slot 9)中第2个时间单元(即m等于2,n的值为1),即slot 8。因此,终端设备确定在时隙8上发送RS但在时隙6上接收到SFI DCI,该SFI DCI指示将特殊时隙7、特殊时隙8、特殊时隙9修改为下行传输的时隙,终端设备依旧会在特殊时隙8上发送RS,并且终端设备会将RS的最后一个符号(即符号10)之后的符号11至符号13修改为下行传输的符号,以及将时隙9也修改为下行传输的时隙。再例如,如图23,终端设备会将时隙9修改为下行传输的时隙,而时隙7、时隙8不做修改,且终端设备依旧会在时隙8上发送RS。
另一种实现方式中,该时间单元格式在第二时间单元之外的其他特殊时间单元上生效,即可将第二时间单元之外的其他特殊时间单元修改为下行传输的时间单元。
例如,如图23,终端设备会将时隙7、时隙9修改为下行传输的时隙,而时隙8不做修改,且终端设备依旧会在时隙8上发送RS。
可见,在特殊时间单元上发送RS之前,接收到修改特殊时间单元为下行传输的时间单元的SFI DCI时,可依旧在该特殊时间单元上发送RS,而可将除该特殊时间单元之外的其他部分或全部特殊时间单元或灵活时域资源,修改为下行传输的时间单元或时域资源,从而能够保证了第一时间单元选择的灵活性。另外,也有利于解决终端设备与网络设备无法获知该特殊时间单元是用于上行传输或下行传输的模糊度问题。
可选地,本申请实施例中,终端设备基于上述有效的上行传输的时间单元需满足的上述特性确定了RS的有效的上行传输的时间单元后,若RS占用的时域资源与另一RS占用的时域资源重叠且所述RS的优先级高于所述另一RS的优先级时,重叠的时域资源所在的时间单元为该RS的有效的上行传输的时间单元。
另外,若RS占用的时域资源与另一RS占用的时域资源重叠且所述RS的优先级低于另一RS的优先级时,重叠的时域资源所在的时间单元为该RS的无效的上行传输的时间单元,可放弃发送该RS,或重新确定发送RS的第二时间单元(如在重叠的时域资源所在的时间单元之后再确定一有效的上行传输的时间单元)。
也就是说,多个RS占用的时域资源发生重叠(即存在至少一个符号重叠),则以优先级顺序,丢弃相应的RS,而发送优先级最高的RS。其中,该多个RS是指用于不同功能的RS。一种可能的实现方式中,该优先级顺序是:用于天线切换(antenna switching)的RS的优先级高于用于码本传输/非码本传输的RS,用于码本传输/非码本传输的RS的优先级高于用于波束管理的RS。可见,该实施方式中,对于一个RS,若该RS占用的时域资源与其他功能的RS占用的时域资源重叠,且该RS的优先级高于其他功能的RS的优先级,则第二时间单元对于该RS来说是有效的上行传输的时间单元;若该RS占用的时域资源与其他功能的RS占用的时域资源重叠,但该RS的优先级低于其他功能的RS的优先级,则第二时间单元对于该RS来说是无效的(或不可用的)上行传输的时间单元。
例如,图23中,终端设备根据本申请所述的参考信号传输方法,确定在该时隙8上发送用于天线切换的RS。但用于天线切换的RS占用的时域资源与用于码本传输/非码本传输的RS占用的时域资源在时隙8中的符号9上重叠,由于用于天线切换的RS的优先级高于用于码本传输/非码本传输的RS的优先级,故该时隙8对于用于天线切换的RS来说依旧是有效的上行传输的时间单元,因此,终端设备依旧可以在该时隙8上发送RS。
再例如,图23中,终端设备根据本申请所述的参考信号传输方法,确定在该时隙8上发送用于码本传输/非码本传输的RS。但用于天线切换的RS占用的时域资源与用于码本传输/非码本传输的RS占用的时域资源在时隙8中的符号9上重叠,由于用于天线切换的RS的优先级高于用于码本传输/非码本传输的RS的优先级,故该时隙8对于用于码本传输/非码本传输的RS来说是无效的上行传输的时间单元,因此,终端设备在确定用于码本传输/非码本传输的RS的第二时间单元时,需要排除时隙8这个无效的上行传输的时间单元,即确定第二时间单元为时隙9,在时隙9上发送用于码本传输/非码本传输的RS。
可见,基于优先级规则来确定不同功能的RS占用的时域资源重叠所在的时间单元对于其中一个功能的RS来说是否为有效的上行传输的时间单元。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图20,图20为本申请实施例提供的一种装置的结构示意图。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置可以包括一个或多个处理器2001。所述处理器2001也可以称为处理单元,可以实现本申请实施例提供的方法中网络设备或终端设备的功能。所述处理器2001可以是通用处理器或者专用处理器等。所述处理器2001可以称为处理单元,对所述装置2000进行控制。
在一种可选的设计中,处理器2001也可以存有指令2003,所述指令2003可以被所述处理器运行,使得所述装置2000执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器2001中可以包括用于实现接收和发送功能的通信单元。例如,该通信单元可以是收发电路,或者是接口,或者是接口电路。该处理器2001可通过该通信单元实现本申请实施例提供的方法中网络设备所执行的方法,或者终端设备所执行的方法。
可选的,所述装置2000中可以包括一个或多个存储器2002,其上可以存有指令2004。所述指令可在所述处理器上被运行,使得所述装置2000执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。所述处理器2001和存储器2002可以单独设置,也可以集成在一起。
可选的,所述装置2000还可以包括收发器2005、天线2006。所述收发器2005可以称为通信单元、收发机、收发电路或者收发器等,用于实现收发功能。
一种实施方式中,一种装置(例如,终端中的芯片、集成电路、无线设备、电路模块,或终端)包括:
通信单元,用于在第一时间单元上接收第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
通信单元,用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
因此,在第一时间单元与第二时间单元之间的有效的上行传输的时间单元的数量,小于第一时间单元与第二时间单元之间的时间单元的数量的情况,该实施方式中时序偏移指示n指示的是有效的上行传输的时间单元中的时间单元,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式中时序偏移指示n所需的比特数相对较少。
该实施方式的相关内容可参见上述图4至图16所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元,确定第二时间单元,第二时间单元为用于终端设备发送RS的时间单元。
在另一种实施方式中,一种装置(例如,终端中的芯片、集成电路、无线设备、电路模块,或终端)包括:
通信单元,用于在第一时间单元上接收第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
通信单元,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
因此,在第一时间单元与第二时间单元之间的有效的下行传输的时间单元的数量,小于第一时间单元与第二时间单元之间的时间单元的数量的情况下,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式中时序偏移指示n所需的比特数相对较少。
该实施方式的相关内容可参见上述图17至图19所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元,确定第二时间单元,第二时间单元为用于终端设备发送RS的时间单元。
一种实施方式中,一种装置2000(例如,网络设备、基站、DU或CU、TRP或基带芯片)包括:
通信单元,用于在第一时间单元上发送第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
通信单元,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述图4至图16所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第二时间单元,确定第一时间单元。
另一种实施方式中,一种装置2000(例如,网络设备、基站、DU或CU、TRP或基带芯片)包括:
通信单元,用于在第一时间单元上发送第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
通信单元,还用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述图17至图19所示的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第二时间单元,确定第一时间单元,第二时间单元为用于终端设备接收RS的时间单元。
在一种可能的设计中,一种装置2000(例如,终端中的芯片、集成电路、无线设备、电路模块,或终端)可包括:
收发器,用于在第一时间单元上接收第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
收发器,用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。可选的,该通信装置还包括处理器,用于根据第一时间单元和时序偏移指示n,确定第二时间单元。
因此,在第一时间单元与第二时间单元之间的有效的上行传输的时间单元的数量,小于第一时间单元与第二时间单元之间的时间单元的数量的情况下,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式中时序偏移指示n所需的比特数相对较少。
该实施方式的相关内容可参见上述图4至图16所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元,确定第二时间单元,第二时间单元为用于终端设备发送RS的时间单元。
在另一种可能的设计中,一种装置2000(例如,终端中的芯片、集成电路、无线设备、电路模块,或终端)可包括:
收发器,用于在第一时间单元上接收第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
收发器,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述图17至图19所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元,确定第二时间单元,第二时间单元为用于终端设备发送RS的时间单元。
在一种可能的设计中,一种装置2000(例如,网络设备、基站、DU或CU、TRP或基带芯片)可包括:
收发器,用于在第一时间单元上发送第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
收发器,还用于在第二时间单元上,接收所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第二时间单元,确定第一时间单元。第二时间单元为用于终端设备发送RS的时间单元。
因此,在第一时间单元与第二时间单元之间的有效的上行传输的时间单元的数量,小于第一时间单元与第二时间单元之间的时间单元的数量的情况下,与时序偏移指示n指示第一时间单元与第二时间单元之间的时序偏移的方式相比,该实施方式中时序偏移指示n所需的比特数相对较少。
该实施方式的相关内容可参见上述图4至图16所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元,确定第二时间单元,第二时间单元为用于终端设备发送RS的时间单元。
在另一种可能的设计中,一种装置2000(例如,网络设备、基站、DU或CU、TRP或基带芯片)可包括:
收发器,用于在第一时间单元上发送第一信息,所述第一信息用于指示所述终端设备接收参考信号RS;
收发器,还用于在第二时间单元上,发送所述RS;
所述第二时间单元为以所述第一时间单元为起始,有效的下行传输的时间单元中,时序偏移指示n所指示的时间单元。
该实施方式的相关内容可参见上述第四方面的相关内容,此处不再详述。可选的,该通信装置还包括处理器,用于根据第二时间单元,确定第一时间单元,第二时间单元为用于终端设备接收RS的时间单元。
该实施方式的相关内容可参见上述图17至图19所述的相关内容,此处不再详述。可选的,该通信装置还包括处理单元,用于根据第一时间单元,确定第二时间单元,第二时间单元为用于终端设备发送RS的时间单元。
图21提供了一种终端设备的结构示意图。该终端设备可适用于图5所示出的场景中。为了便于说明,图21仅示出了终端设备的主要部件。如图21所示,终端设备包括处理器2112、存储器、控制电路、天线以及输入输出装置。处理器2112主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器2112可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图21仅示出了一个存储器和处理器2112。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对 此不做限制。
作为一种可选的实现方式,处理器2112可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备的通信单元2111,将具有处理功能的处理器视为终端设备的处理单元2112。如图21所示,终端设备包括通信单元2111和处理单元2112。通信单元也可以称为收发器、收发机、收发装置等。可选的,可以将通信单元2111中用于实现接收功能的器件视为接收单元,将通信单元2111中用于实现发送功能的器件视为发送单元,即通信单元2111包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中, 或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种参考信号传输方法,其特征在于,包括:
    终端设备在第一时间单元上接收第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
    所述终端设备在第二时间单元上,发送所述RS;所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
  2. 根据权利要求1所述的方法,其特征在于,所述有效的上行传输的时间单元是基于上下行时间单元配比确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息还用于指示所述时序偏移指示n。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二信息,所述第二信息用于配置所述时序偏移指示n。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:
    时间单元为特殊时间单元和/或上行时间单元;
    时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
    时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
  6. 一种参考信号传输方法,其特征在于,包括:
    网络设备在第一时间单元上发送第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
    所述网络设备在第二时间单元上,接收所述RS;
    所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
  7. 根据权利要求6所述的方法,其特征在于,所述有效的上行传输的时间单元是基于上下行时间单元配比确定的。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一信息还用于指示所述时序偏移指示n。
  9. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二信息,所述第二信息用于配置所述时序偏移指示n。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:
    时间单元为特殊时间单元和/或上行时间单元;
    时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
    时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
  11. 一种通信装置,其特征在于,包括:
    通信单元,用于在第一时间单元上接收第一信息,所述第一信息用于触发所述终端设备发送参考信号RS;
    处理单元,用于确定第二时间单元,所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元;
    所述通信单元,还用于在第二时间单元上,发送所述RS。
  12. 根据权利要求11所述的装置,其特征在于,所述有效的上行传输的时间单元是基于上下行时间单元配比确定的。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第一信息还用于指示所述时序偏移指示n。
  14. 根据权利要求11或12所述的装置,其特征在于,
    所述通信单元,还用于接收第二信息,所述第二信息用于配置所述时序偏移指示n。
  15. 根据权利要求11至14任一项所述的装置,其特征在于,所述有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:
    时间单元为特殊时间单元和/或上行时间单元;
    时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
    时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一时间单元、第二时间单元;
    通信单元,用于在所述第一时间单元上发送第一信息;所述第一信息用于触发所述终端设备发送参考信号RS;
    所述通信单元,还用于在所述第二时间单元上,接收所述RS;所述第二时间单元为以所述第一时间单元为起始,有效的上行传输的时间单元中,时序偏移指示n所指示的时间单元。
  17. 根据权利要求16所述的装置,其特征在于,所述有效的上行传输的时间单元是基于上下行时间单元配比确定的。
  18. 根据权利要求16或17所述的装置,其特征在于,所述第一信息还用于指示所述时序偏移指示n。
  19. 根据权利要求16或17所述的装置,其特征在于,
    所述通信单元,还用于发送第二信息,所述第二信息用于配置所述时序偏移指示n。
  20. 根据权利要求16至19任一项所述的装置,其特征在于,所述有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:
    时间单元为特殊时间单元和/或上行时间单元;
    时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
    时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的。
  21. 根据权利要求1至4任一项,或权利要求6至9任一项所述的方法,其特征在于,所述有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:
    时间单元为上行时间单元;
    时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
    时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的;
    特殊时间单元中所述RS占用的第一个时域资源之前的K个时域资源中不包括下行传输的时域资源,所述K大于或等于零;
    特殊时间单元中所述RS占用的时域资源位于时域资源L+1至时域资源L+N之间,所述N大于或等于0;所述时域资源L是第三信息所在的控制资源集合CORESET的最后一个时域资源;所述第三信息用于指示时间单元格式。
  22. 根据权利要求21所述的方法,其特征在于,所述N是所述终端设备上报的、或是网络设备配置的、或是协议预定义的。
  23. 根据权利要求1至5任一项,或权利要求21或22所述的方法,其特征在于,所述终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,所述方法还包括:
    所述终端设备接收第三信息;
    所述第三信息用于指示时间单元格式;所述时间单元格式在所述第二时间单元之后生效。
  24. 根据权利要求1至5任一项,或权利要求21或22所述的方法,其特征在于,所述终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,所述方法还包括:
    所述终端设备接收第三信息;
    所述第三信息用于指示时间单元格式,所述时间单元格式在所述第二时间单元中所述RS占用的最后一个时域资源之后生效。
  25. 根据权利要求6至10任一项,或权利要求21或22所述的方法,其特征在于,所述网络设备在第一时间单元上发送第一信息之后,以及在第二时间单元上接收所述RS之前,所述方法还包括:
    所述网络设备发送第三信息;
    所述第三信息用于指示时间单元格式;所述时间单元格式在所述第二时间单元之后生效。
  26. 根据权利要求6至10任一项,或权利要求21或22所述的方法,其特征在于,所述网络设备在第一时间单元上发送第一信息之后,以及在第二时间单元上接收所述RS之前,所述方法还包括:
    所述网络设备发送第三信息;
    所述第三信息用于指示时间单元格式,所述时间单元格式在所述第二时间单元中所述RS占用的最后一个时域资源之后生效。
  27. 根据权利要求1至10任一项,或权利要求21至26任一项所述的方法,其特征在于,所述RS占用的时域资源与另一RS占用的时域资源重叠且所述RS的优先级高于所述另一RS的优先级时,重叠的时域资源所在的时间单元为所述RS的有效的上行传输的时间单元。
  28. 根据权利要求11至14任一项,或权利要求16至19任一项所述的装置,其特征 在于,所述有效的上行传输的时间单元为满足如下一个或多个特性的时间单元:
    时间单元为上行时间单元;
    时间单元中所述RS占用的时域资源与所述第一信息占用的时域资源之间的时域资源偏移,大于或等于所述RS的处理时延;时间单元中所述RS占用的时域资源是基于配置信息确定的;
    时间单元中允许用于发送所述RS的时域资源的数量大于或等于所述RS占用的时域资源的数量,所述RS占用的时域资源的数量是基于配置信息确定的;
    特殊时间单元中所述RS占用的第一个时域资源之前的K个时域资源中不包括下行传输的时域资源,所述K大于或等于零;
    特殊时间单元中所述RS占用的时域资源位于时域资源L+1至时域资源L+N之间,所述N大于或等于0;所述时域资源L是第三信息所在的控制资源集合CORESET的最后一个时域资源;所述第三信息用于指示时间单元格式。
  29. 根据权利要求28所述的装置,其特征在于,所述N是所述终端设备上报的、或是网络设备配置的、或是协议预定义的。
  30. 根据权利要求11至15任一项,或权利要求28或29所述的装置,其特征在于,所述终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,所述方法还包括:
    所述终端设备接收第三信息;
    所述第三信息用于指示时间单元格式;所述时间单元格式在所述第二时间单元之后生效。
  31. 根据权利要求11至15任一项,或权利要求28或29所述的装置,其特征在于,所述终端设备在第一时间单元上接收第一信息之后,以及在第二时间单元上发送所述RS之前,所述方法还包括:
    所述终端设备接收第三信息;
    所述第三信息用于指示时间单元格式,所述时间单元格式在所述第二时间单元中所述RS占用的最后一个时域资源之后生效。
  32. 根据权利要求16至20任一项,或权利要求28或29所述的装置,其特征在于,所述网络设备在第一时间单元上发送第一信息之后,以及在第二时间单元上接收所述RS之前,所述方法还包括:
    所述网络设备发送第三信息;
    所述第三信息用于指示时间单元格式;所述时间单元格式在所述第二时间单元之后生效。
  33. 根据权利要求16至20任一项,或权利要求28或29所述的装置,其特征在于, 所述网络设备在第一时间单元上发送第一信息之后,以及在第二时间单元上接收所述RS之前,所述方法还包括:
    所述网络设备发送第三信息;
    所述第三信息用于指示时间单元格式,所述时间单元格式在所述第二时间单元中所述RS占用的最后一个时域资源之后生效。
  34. 根据权利要求11至20任一项,或权利要求28至33任一项所述的装置,其特征在于,所述RS占用的时域资源与另一RS占用的时域资源重叠且所述RS的优先级高于所述另一RS的优先级时,重叠的时域资源所在的时间单元为所述RS的有效的上行传输的时间单元。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至5,21至24,27中任一项所述的方法,或,执行如权利要求6至10,21、22、25至27中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1至5,21至24,27中任一项所述的方法,或者权利要求6至10,21、22、25至27中任一项所述的方法。
  37. 一种装置,其特征在于,用于实现如权利要求1至5,21至24,27中任一项所述的方法,或者权利要求6至10,21、22、25至27中任一项所述的方法。
  38. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至5,21至24,27中任一项所述的方法,权利要求6至10,21、22、25至27中任一项所述的方法。
  39. 一种通信系统,其特征在于,包括权利要求11至15,28至31,34中任一项所述的装置,和权利要求16至20,28,29,32至34中任一项所述的装置。
  40. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至5,21至24,27中任一项所述的方法;或者使得计算机执行权利要求6至10,21、22、25至27中任一项所述的方法。
  41. 一种芯片,其特征在于,包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以执行权利要求1至5,21至24,27中任一项所述的方法;或者以执行权利要6至10,21、22、25至27中任一项所述的方法。
PCT/CN2020/114615 2019-09-10 2020-09-10 参考信号传输方法及通信装置 WO2021047615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20862670.5A EP4024739A4 (en) 2019-09-10 2020-09-10 REFERENCE SIGNAL TRANSMISSION METHOD AND COMMUNICATION DEVICE
US17/690,719 US20220201715A1 (en) 2019-09-10 2022-03-09 Reference signal transmission method and communication apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910855178 2019-09-10
CN201910855178.7 2019-09-10
CN202010943735.3A CN112564873A (zh) 2019-09-10 2020-09-09 参考信号传输方法及通信装置
CN202010943735.3 2020-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/690,719 Continuation US20220201715A1 (en) 2019-09-10 2022-03-09 Reference signal transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021047615A1 true WO2021047615A1 (zh) 2021-03-18

Family

ID=74866566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114615 WO2021047615A1 (zh) 2019-09-10 2020-09-10 参考信号传输方法及通信装置

Country Status (3)

Country Link
US (1) US20220201715A1 (zh)
EP (1) EP4024739A4 (zh)
WO (1) WO2021047615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242694A1 (zh) * 2021-05-20 2022-11-24 华为技术有限公司 一种通信方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863800A (zh) * 2016-10-31 2019-06-07 华为技术有限公司 上行传输方法、终端设备和接入网设备
WO2019136640A1 (zh) * 2018-01-10 2019-07-18 富士通株式会社 信令指示和接收方法、装置及通信系统
WO2019160756A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Configuration of aperiodic sounding reference signal transmission and triggering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873481B2 (en) * 2017-11-27 2020-12-22 Qualcomm Incorporated Reference signal transmission window and timing considerations
US11533201B2 (en) * 2019-06-28 2022-12-20 Qualcomm Incorporated Enhanced transmission opportunities for sounding reference signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863800A (zh) * 2016-10-31 2019-06-07 华为技术有限公司 上行传输方法、终端设备和接入网设备
WO2019136640A1 (zh) * 2018-01-10 2019-07-18 富士通株式会社 信令指示和接收方法、装置及通信系统
WO2019160756A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Configuration of aperiodic sounding reference signal transmission and triggering

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining details of SRS design", 3GPP DRAFT; R1-1719441, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051369331 *
See also references of EP4024739A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242694A1 (zh) * 2021-05-20 2022-11-24 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
EP4024739A4 (en) 2022-10-19
US20220201715A1 (en) 2022-06-23
EP4024739A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP7273211B2 (ja) 信号構成方法及び関連するデバイス
US11641249B2 (en) Method and apparatus for determining a duration of a repetition of a transport block
TW202011757A (zh) 側邊鏈路車聯網傳輸方法及其使用者設備
JP6317773B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7418507B2 (ja) 端末、無線通信方法、基地局及びシステム
US11387892B2 (en) Method, system and apparatus for resource allocation in multi-hop systems
JP7188379B2 (ja) 無線通信に用いられる電子装置及び方法
CN108292983A (zh) 业务传输的方法和装置
WO2018202163A1 (zh) 一种资源指示方法及装置
JP7315182B2 (ja) サイドリンク情報の伝送方法、通信デバイス、およびネットワークデバイス
WO2020238992A1 (zh) 一种通信方法及装置
WO2019029348A1 (zh) 数据传输方法、终端和基站
CN112970214A (zh) 用于侧链路的反馈信令
WO2022067726A1 (zh) 用于资源调度的通信方法及装置
KR20220050157A (ko) 리소스 다중화 방법 및 장치
JP2023537371A (ja) 複数のtrpに対するスロット内繰り返しを用いたpucchを拡張するシステムおよび方法
WO2019137221A1 (zh) 一种上行数据传输方法及装置
WO2021047615A1 (zh) 参考信号传输方法及通信装置
AU2022204562A1 (en) Method, apparatus and computer program
CN112564873A (zh) 参考信号传输方法及通信装置
CN110972280B (zh) 一种资源配置方法、信息发送方法及装置
JPWO2017135340A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020862670

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020862670

Country of ref document: EP

Effective date: 20220331