WO2022242694A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2022242694A1
WO2022242694A1 PCT/CN2022/093660 CN2022093660W WO2022242694A1 WO 2022242694 A1 WO2022242694 A1 WO 2022242694A1 CN 2022093660 W CN2022093660 W CN 2022093660W WO 2022242694 A1 WO2022242694 A1 WO 2022242694A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
sub
domain resource
time
dci
Prior art date
Application number
PCT/CN2022/093660
Other languages
English (en)
French (fr)
Inventor
余健
邵家枫
赵文琪
李怡然
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22804014.3A priority Critical patent/EP4311344A1/en
Publication of WO2022242694A1 publication Critical patent/WO2022242694A1/zh
Priority to US18/511,688 priority patent/US20240089989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present application relates to the communication field, and in particular to a communication method and a communication device.
  • Radar perception also known as radar detection
  • radar detection is widely used in air and ground traffic monitoring, weather detection, security monitoring, electromagnetic imaging, etc.
  • the cost of radar equipment will be higher, especially in the case of continuous networking.
  • radar sensing and wireless communication can be integrated, that is, communication sensing integration, which can meet the needs of wireless communication and detection.
  • the signals in the wireless communication system are mainly used for communication.
  • the integrated communication-sensing system how to improve the resource utilization of the integrated communication-sensing system has become an urgent problem to be solved.
  • the communication method and device provided in the embodiments of the present application can improve the resource utilization rate of the integrated communication perception system.
  • a communication method is provided, and the method may be executed by a network device or a chip configured in the network device.
  • the network device may be an access network device, or a network unit that implements a corresponding function of the access network device.
  • the method includes: the network device sends downlink control information DCI to the terminal device, the DCI is used to indicate a first time domain resource in a first time slot, where the first time domain resource is composed of M sub-time domain resources, A first time period is separated between at least two adjacent sub-time domain resources among the M sub-time domain resources, and M is an integer greater than or equal to 2; a physical downlink shared channel PDSCH is sent on the first time domain resource.
  • Applying the above solution to the integrated communication-sensing system can improve the resource utilization rate of the integrated communication-sensing system. Specifically, by designing a new DCI to notify the discontinuous sub-time domain resources, the overhead of using the DCI can be reduced and resource utilization can be improved. Further, the signal carried by the PDSCH is used as a sensing signal to improve resource utilization. Furthermore, sending sensing signals through discontinuous time-domain resources can reduce time-domain resources occupied by sensing signals and improve resource utilization. In addition, the newly designed DCI can make time-domain resource allocation more flexible.
  • the method further includes receiving an echo signal of a signal carried by the PDSCH, where the echo signal is used for sensing the first target.
  • the method further includes, before sending the downlink control information DCI to the terminal device, sending radio resource control RRC signaling to the terminal device, where the RRC signaling indicates at least one Candidate time domain resources, wherein each candidate time domain resource corresponds to an index, and the at least one candidate time domain resource includes the first time domain resource; the DCI specifically includes the index corresponding to the first time domain resource.
  • RRC signaling indicates at least one Candidate time domain resources, wherein each candidate time domain resource corresponds to an index, and the at least one candidate time domain resource includes the first time domain resource; the DCI specifically includes the index corresponding to the first time domain resource.
  • a communication method is provided, and the method may be executed by a terminal device or a chip configured in the terminal device.
  • the method includes: the terminal equipment receives downlink control information DCI, the DCI is used to indicate the first time domain resource in the first time slot, the first time domain resource is composed of M sub-time domain resources, and the M sub-time domain resources At least two adjacent sub-time domain resources in the domain resources are separated by a first time period, and M is an integer greater than or equal to 2; the terminal device receives the physical downlink shared channel PDSCH on the first time domain resources.
  • the overhead of using DCI can be reduced and resource utilization can be improved.
  • the newly designed DCI can make time-domain resource allocation more flexible.
  • the method further includes: before receiving the DCI, receiving radio resource control RRC signaling, where the RRC signaling indicates at least one candidate time domain resource, where each candidate time domain resource A resource corresponds to an index, the at least one candidate time domain resource includes the first time domain resource; the DCI includes the index corresponding to the first time domain resource.
  • RRC signaling indicates at least one candidate time domain resource, where each candidate time domain resource A resource corresponds to an index, the at least one candidate time domain resource includes the first time domain resource; the DCI includes the index corresponding to the first time domain resource.
  • the method further includes receiving an echo signal of a signal carried by the PDSCH, where the echo signal is used for sensing the first target.
  • the DCI includes the start position information of each sub-time domain resource in the M sub-time domain resources and/or the start position information of each sub-time domain resource in the M sub-time domain resources Duration information of a sub-temporal resource.
  • DCI provides more complete information and more flexible resource scheduling.
  • each sub-time domain resource may be included in RRC signaling or fixed in the protocol, or the duration information of each sub-time domain resource may be included in RRC signaling or fixed in the protocol . That is, the above information may be included in RRC signaling or combined signaling of DCI, or part of the above information may be included in RRC signaling or DCI signaling or combined signaling, and the other part may be fixed in the protocol.
  • the overhead of the DCI can be further reduced, and the transmission reliability of the above information can be improved.
  • the DCI includes the starting position information S 1 of the first sub-time domain resource among the M sub-time domain resources, and the first At least one of the duration information L 1 of the sub-time domain resources and the offset O 1 , wherein the start position information S i of the i-th sub-time domain resource among the M sub-time domain resources is the same as the S 1 , at least one of L 1 and O 1 has a first association relationship.
  • the duration information of the time domain resource L i L 1 , where i is an integer greater than or equal to 2 and less than or equal to M. This solution can reduce DCI signaling overhead while ensuring certain resource scheduling flexibility.
  • the DCI includes start position information S 1 of the first sub-time domain resource among the M sub-time domain resources, and the M sub-time domain resources At least one of the ith duration information L i in the domain resource and the offset O 1 , wherein the starting position information S i of the ith sub-time domain resource is the same as the S 1 , L i , O At least one of 1 has a second association relationship.
  • the DCI includes the starting position information S 1 of the first sub-time domain resource among the M sub-time domain resources, and the first Duration information L 1 of the sub-time domain resources, and at least one of the offset O i of the ith sub-time domain resources among the M sub-time domain resources, wherein the starting position information S of the i-th sub-time domain resources There is a third association relationship between i and at least one of S 1 , L 1 , and O i .
  • the DCI includes the starting position information S 1 of the first sub-time domain resource among the M sub-time domain resources, and the first Duration information L of the sub-time domain resources, and at least one of the first indication information, when the first indication information is the first value, it indicates the start of the i-th sub-time domain resource among the M sub-time domain resources
  • the DCI includes bitmap information, where the bitmap information includes N bits, and the N bits included in the first time slot There is a one-to-one correspondence between time units, and the M sub-time domain resources include time units corresponding to bits whose value is “1”, and do not include time units corresponding to bits whose value is “0”. This scheme ensures better resource scheduling flexibility.
  • the above DCI can be replaced by high layer signaling such as RRC message.
  • the above bitmap information may be included in high-level signaling.
  • the network device After sending the high-level signaling, the network device sends DCI to the terminal device, where the DCI is used to indicate the use or activation of the first time domain resource. Still further, the network device uses the activated first time domain resource to send the PDSCH to the terminal device. Correspondingly, the terminal device receives the DCI for activating the first time domain resource, and receives the PDSCH on the first time domain resource according to the DCI.
  • This solution can reduce DCI overhead and improve signaling transmission reliability.
  • the length of the first time period is the length of X symbols, and X is an integer greater than or equal to 1; or Y ms, and Y is greater than 0 .
  • the time unit is a symbol or a mini-Slot.
  • a communication device including various modules or units configured to execute the method in any possible design of the first aspect above.
  • a communication device including various modules or units configured to execute the method in any possible design of the second aspect above.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so that the communication device executes the method in any possible design of the first aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a transceiver and/or an antenna.
  • the communication device may be a network device or a chip configured in the network device.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so that the communication device executes the method in any possible design of the second aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a transceiver and/or an antenna.
  • the communication device may be a terminal device or a chip configured in the terminal device.
  • a network device which can implement the method in any possible design of the first aspect above.
  • the network device may be a chip (such as a baseband chip, or a communication chip, etc.) or a base station device, and the above method may be implemented by software, hardware, or by executing corresponding software on hardware.
  • the network device includes a processor and a memory.
  • the processor is used to support the network device to execute the method in any possible design of the first aspect above;
  • the memory is used to store instructions and/or data.
  • the network device further includes a radio frequency unit and an antenna.
  • the network device includes a baseband unit and a transceiver unit.
  • the baseband unit is used to execute actions implemented internally by the network device in any possible design of the first aspect above;
  • the transceiver unit is used to execute actions sent or received by the network device to or from the outside.
  • the network device includes a processor and a transceiver.
  • the processor is configured to support the network device to execute the method in any possible design of the first aspect above.
  • the transceiver may be an input-output unit, such as an input-output circuit or an input-output interface.
  • the network device may include unit modules that perform corresponding actions in any possible design of the first aspect above.
  • An eighth aspect provides a terminal device that can implement the method in any possible design of the second aspect above.
  • the terminal device may be a chip (such as a communication chip, etc.) or a user device, and the above method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the terminal device includes a processor and a memory; the processor is configured to support the terminal device to perform a corresponding function in any possible design of the above second aspect; the memory uses for storing instructions and/or data.
  • the terminal further includes a radio frequency circuit and an antenna.
  • the terminal device includes a processing device and a transceiver unit.
  • the processing device includes a processor and a memory, and is used to execute actions implemented internally by the terminal device in any possible design of the above-mentioned second aspect;
  • the transceiver unit includes a radio frequency circuit and an antenna, and is used to send The action of sending or receiving from outside.
  • the terminal device includes a processor and a transceiver.
  • the processor is configured to support the terminal device to execute the method in any possible design of the second aspect above.
  • the transceiver may be an input-output unit, such as an input-output circuit or an input-output interface.
  • the terminal device may include a unit module for performing corresponding actions in any possible design of the second aspect above.
  • a computer-readable storage medium storing a computer program or instruction, and when the computer program or instruction is executed, the method in any possible design of the above-mentioned first aspect is implemented.
  • a computer-readable storage medium storing a computer program or instruction, and when the computer program or instruction is executed, the method in any possible design of the above-mentioned second aspect is implemented.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that the processor executes the method in any one of the above aspects or any possible design of this aspect.
  • the above-mentioned processor is a chip
  • the input circuit is an input pin
  • the output circuit is an output pin
  • the processing circuit is a transistor, a gate circuit, a flip-flop and/or various logic circuits, etc.
  • a computer program product includes: a computer program (also referred to as code, or instruction), when the computer program is executed, the computer executes any one of the above-mentioned first aspects. approach in a possible design.
  • a computer program product includes: a computer program (also called code, or instruction), when the computer program is executed, the computer executes any one of the above-mentioned second aspects. approach in a possible design.
  • FIG. 1 is an example of a communication system architecture provided by an embodiment of the present application
  • FIG. 2 is a structural example of a communication device provided in an embodiment of the present application.
  • FIG. 3 is an example of the structure of another communication device provided by the embodiment of the present application.
  • FIG. 4 is an example of a circuit system structure provided by an embodiment of the present application.
  • FIG. 5 is an example of a communication method flow provided by an embodiment of the present application.
  • FIG. 6 is an example of a sensing signal time-domain resource provided by an embodiment of the present application.
  • FIG. 7 is an example of time-domain resource allocation information provided by an embodiment of the present application.
  • FIG. 8 is an example of another time-domain resource allocation information provided by the embodiment of the present application.
  • FIG. 9 is an example of another time-domain resource allocation information provided by the embodiment of the present application.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items. For example, at least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ".
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It can be understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be implemented independently, or can be reasonably combined with other embodiments, and the explanations or descriptions of various terms appearing in the embodiments can be The various embodiments are referred to or explained with each other, and are not limited thereto.
  • the communication method and device provided in the embodiments of the present application can be applied to various communication systems, especially a harmonized communication and sensing (HCS) system.
  • the system includes but is not limited to: long term evolution (long term evolution, LTE) system, fifth generation (5th generation, 5G) system, new radio (new radio, NR) system, wireless fidelity (wireless-fidelity, WiFi) system, other wireless communication systems related to the 3rd generation partnership project (3GPP), or wireless communication systems that may appear in the future, etc.
  • a communication-sensing integrated system is a system that integrates communication functions and perception functions.
  • Communication perception fusion includes the following advantages: communication and radar perception functions share hardware, which can save hardware costs; the perception function can be deployed directly on the existing site, so it is easy to deploy; it is convenient for collaborative networking, and the use of perception results to assist communication and improve communication the quality of. For example, when the perceived target and the communication terminal are the same, the beam measurement during communication can be reduced according to the sensing result, or, when the perceived target and the communication terminal are not the same, if the perceived target blocks the communication terminal, the base station The beam can be adjusted in time to ensure normal communication with the communication terminal.
  • Fig. 1 shows a communication system, specifically, the communication system is a communication-sensing integrated system.
  • the system 100 includes at least one network device, such as the network device 110 shown in Figure 1; the system 100 may also include at least one terminal device, such as the terminal device 120 shown in Figure 1; the system 100 It may also include at least one perceived object, such as the perceived object 130 shown in FIG. 1 .
  • network devices and terminal devices may also be referred to as communication devices or communication devices.
  • the network device 110 is a network-side device with a wireless transceiver function.
  • the network device may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a next generation base station (next generation NodeB, gNB) in a 5G mobile communication system, or a transmission reception point (TRP) , 3GPP follow-up evolution base station, access node in WiFi system, wireless relay node, wireless backhaul node, etc.
  • a network device may contain one or more co-sited or non-co-sited sending and receiving points.
  • the network device may include a centralized unit (central unit, CU), a distributed unit (distributed unit, DU), or a CU and a DU.
  • the network device 110 may communicate with the terminal device directly through an air interface, or may communicate with the terminal device 120 through a relay station or other terminal devices.
  • the network device 110 may also have a perception function. For example, after the network device 110 sends a sensing signal, it will receive an echo signal from the sensed target 130 .
  • the electromagnetic feedback signal generated by the sensing signal or electromagnetic wave through the transmission, scattering and reflection of the perceived target, that is, the echo signal.
  • the network device 110 can obtain a sensing result of the sensed target according to the sensing signal and the echo signal of the sensing signal.
  • the sensing result may include, for example, the distance, angle, position, moving speed, or external dimension of the perceived target from the network device.
  • the network device 110 can further use the sensing result to assist communication and improve communication quality.
  • the perception function and the communication function may be realized by the same network device, or may be realized by cooperation of multiple network devices, which is not limited in this embodiment of the present application.
  • the communication device used to realize the function of network equipment may be network equipment or access network equipment, or may be network equipment or access network equipment with partial functions of a base station, or may be capable of supporting network equipment or access network equipment.
  • the network access device implements the function, such as a chip system, and the device may be installed in the network device or the access network device.
  • the terminal device 120 is a user-side device with a wireless transceiver function, which may be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above-mentioned devices (such as a communication module, modem, or system-on-a-chip, etc.).
  • a wireless transceiver function such as a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above-mentioned devices (such as a communication module, modem, or system-on-a-chip, etc.).
  • Terminal devices are used to connect people, things, machines, etc., and can be widely used in various scenarios, such as: cellular communication, device-to-device (D2D) communication, V2X communication, machine-to-machine/machine class Communication (machine-to-machine/machine-type communications, M2M/MTC) communication, Internet of things (Internet of things, IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control ( industrial control), self driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drone, robot Wait for the scene.
  • D2D device-to-device
  • V2X machine-to-machine/machine class Communication
  • M2M/MTC machine-to-machine/machine-type communications
  • Internet of things Internet of things, IoT
  • virtual reality virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the terminal device may be a handheld terminal in cellular communication, a communication device in D2D, an IoT device in MTC, a monitoring camera in smart transportation and smart city, or a communication device on a drone, etc.
  • Terminal equipment may sometimes be called user equipment (UE), user terminal, user device, subscriber unit, subscriber station, terminal, access terminal, remote station, mobile device, or wireless communication device, among others.
  • UE user equipment
  • the communication device used to realize the function of the terminal device may be a terminal device, or a terminal device with some terminal functions, or a device capable of supporting the terminal device to realize this function, such as a chip system, the device Can be installed in terminal equipment.
  • the perceived target 130 refers to various tangible objects on the ground that can be sensed, for example, land objects such as mountains, forests, or buildings, and may also include movable objects such as vehicles, drones, pedestrians, and terminal devices.
  • the perceived target is a target that can be sensed by a network device with a sensing function, and the target can feed back electromagnetic waves to the network device.
  • the sensed target may also be referred to as a detected target, a sensed object, a detected object, or a sensed device, which is not limited in this embodiment of the present application.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional unit in a terminal device or a network device that can call a program and execute the program.
  • various aspects or features of the present application may be embodied as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, or tapes, etc.
  • optical disks e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read
  • various storage media described herein can represent one or more devices and/or other machine (eg, computer) readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • FIG. 2 shows a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1100 and a transceiver unit 1200 .
  • the communication device 1000 may be used as the network device 110 or be applied to a device in the network device 110 .
  • the communication device 1000 may be used as the terminal device 120 , or be applied to a device in the terminal device 120 .
  • the processing unit 1100 may process the received signal or information, or process the signal or information before sending the signal or information.
  • the processing unit 1100 may process the downlink data corresponding to the sensing signal, so that the transceiving unit 1200 sends the processed sensing signal (downlink data). Or further process the baseband processed information.
  • the processing unit 1100 of the network device 110 can obtain the position of the perceived target according to the echo signal.
  • moving rate and other information for example, when the information received by the transceiver unit 1200 is feedback information on downlink data from the terminal device, the processing unit 1100 of the network device 110 may determine whether to retransmit the downlink data according to the feedback information.
  • the processing unit 1100 may perform baseband processing on signals or information received by the transceiver unit 1200. For example, the processing unit 1100 performs subsequent processing on the downlink data after the transceiver unit 1200 receives the downlink data.
  • the transceiver unit 1200 can receive and/or send signals. For example, when the transceiver unit 1200 belongs to the network device 110 , the transceiver unit 1200 can send signals or information to the terminal device 120 , where the signals or information can include DCI, PDSCH, etc., or send sensing signals to the perceived target 130 . Correspondingly, when the transceiver unit 1200 belongs to the terminal device 120 , the transceiver unit 1200 may receive the above-mentioned signal or information from the network device 110 .
  • the transceiver unit 1200 may receive signals or information from the terminal device 120, wherein the signals or information may include measurement reports, uplink data, uplink reference signals, reception status information of downlink data, etc. .
  • the transceiver unit 1200 may send the above signal or information to the network device 110 .
  • the communication device 1000 may further include a communication unit 1300 .
  • the communication unit 1300 can receive and/or send signals or information with other network devices. For example, when the communication unit 1300 belongs to the network device 110, when the communication unit 1300 can communicate with other network devices (not shown in FIG. 1 ).
  • the network device 110 is a base station, CU or DU, and other network devices are also base stations, CUs or DUs, then the communication unit 1300 can communicate (receive and/or send signals or information) with other base stations, CUs or DUs, for example , the network device 110 is a base station, CU or DU, and other network devices are a core network, then the communication unit 1300 can communicate with the core network (receive and/or send signals or information).
  • FIG. 3 is a schematic block diagram of another communication device 2000 provided by an embodiment of the present application.
  • the communication device 2000 may include one or more processors 2100 (only one processor is shown in FIG. 3 ), and may also include a transceiver 2200 .
  • the communication device 2000 may be used as the network device 110 or be applied to a device in the network device 110 .
  • the communication device 2000 may be used as the terminal device 120 , or be applied to a device in the terminal device 120 .
  • the functions of the processing unit 1100 in the communication device 1000 may be implemented by one or more processors 2100 .
  • the functions of the transceiver unit 1200 in the communication device 1000 can be implemented by the transceiver 2200 .
  • the transceiver 2200 is used to communicate with other devices/apparatus via a transmission medium.
  • the transceiver 2200 may include a receiver and a transmitter, the receiver is used to perform a receiving function (or operation), and the transmitter is used to perform a transmitting function ( or operation).
  • the communication device 2000 may also include one or more memories 2300 . Used to store program instructions and/or data.
  • the memory 2300 is coupled to the processor 2100 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices or units, which may be in electrical, mechanical or other forms, and is used for information exchange between devices or units.
  • Processor 2100 may cooperate with memory 2300 .
  • Processor 2100 may execute program instructions stored in memory 2300 .
  • at least one of the above one or more memories may be included in the processor.
  • a specific connection medium among the processor 2100, the transceiver 2200, and the memory 2300 is not limited.
  • the processor 2100, the transceiver 2200, and the memory 2300 are connected through a bus 2400, and the bus is represented by a thick line.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 3 , but it does not mean that there is only one bus or one type of bus.
  • the network device may also have more units or devices than those shown in FIG. 3 . It can also be understood that when the communication device shown in FIG. 3 is a terminal device, the terminal device may have more components than those shown in FIG. 3 . This embodiment of the present application does not limit it.
  • the above units or devices may be located in the same physical entity, or may be located in different physical entities. This embodiment of the present application does not limit it.
  • FIG. 4 is a schematic block diagram of a circuit system 3000 provided by an embodiment of the present application.
  • the network device may include a processing circuit 3100 and an interface circuit 3200 .
  • the circuit system 3000 may be used as the network device 110 or be applied to a device in the network device 110 .
  • the circuit system 3000 may be used as the terminal device 120 or be applied to a device in the terminal device 120 .
  • the above-mentioned processing unit 1100 can be realized by the processing circuit 3100
  • the transceiver unit 1200 can be realized by the interface circuit 3200 .
  • the processing circuit 3100 may be a chip, a logic circuit, an integrated circuit, or a system on chip (SoC) chip, etc.
  • the interface circuit 3200 may be a communication interface, an input-output interface, or the like.
  • the processor 2100 or the processing circuit 3100 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware Components, etc., can implement or execute the methods, steps, and logic block diagrams provided in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method provided in conjunction with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • Sensing signal refers to the signal used to perceive the target or detect the target, or in other words, the perceiving signal refers to the signal used to perceive the environmental information or detect the environmental information.
  • a sensing signal is an electromagnetic wave sent by a network device for sensing environmental information.
  • the sensing signal may also be called a radar signal, a radar sensing signal, a detection signal, a radar detection signal, an environment sensing signal, etc., which are not limited in this embodiment of the present application.
  • Echo signal The electromagnetic feedback signal generated by the transmission, scattering and reflection of electromagnetic waves through the perceived target.
  • Perceived targets It can include various tangible objects on the ground that can be perceived, such as mountains, forests, or buildings, as well as movable objects such as vehicles, drones, pedestrians, and terminal devices.
  • the perceived target is a target that can be sensed by a network device with a sensing function, and the target can feed back electromagnetic waves to the network device.
  • the sensed target may also be referred to as a detected target, a sensed object, a detected object, or a sensed device, which is not limited in this embodiment of the present application.
  • Resource refers to wireless resources, including time domain resources, frequency domain resources, or code domain resources.
  • Resource element The resource element with the smallest granularity.
  • a resource element is composed of a time domain symbol in the time domain (hereinafter referred to as a symbol in the embodiment of this application) and a subcarrier in the frequency domain. It can be indexed by A unique identifier for (k, l), where k is a subcarrier index, and l is a symbol index.
  • Time domain symbol also called symbol
  • time domain symbol can be orthogonal frequency division multiple access (orthogonal frequency division multiplexing, OFDM) symbol, or the symbol under other multiple access modes, the embodiment of this application does not do limited.
  • OFDM orthogonal frequency division multiplexing
  • Time slot A slot is composed of N symbols, and N is a positive integer.
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • N can be equal to 12.
  • ECP extended cyclic prefix
  • N may also be other values.
  • the length of a slot may be different. For example, when the subcarrier interval is 15 kHz and the CP is NCP, a slot is 1 ms (millisecond) and consists of 14 symbols.
  • the value of the subcarrier spacing is not limited in this embodiment of the application.
  • the physical channel can be physical downlink shared channel (physical downlink shared channel, PDSCH), physical downlink control channel (physical downlink control channel, PDCCH), physical broadcast channel ( physical broadcast channel, PBCH), physical sidelink shared channel (physical sidelink shared channel, PSSCH), physical sidelink control channel (physical sidelink control channel, PSCCH), physical sidelink broadcast channel (physical sidelink broadcast channel, PSBCH), physical sidelink feedback channel (physical sidelink feedback channel, PSFCH), physical uplink shared channel (physical uplink shared channel, PUSCH), physical uplink control channel (physical uplink control channel, PUCCH), etc.
  • new physical channel naming may be introduced, which is not limited in this embodiment of the present application.
  • Reference signal reference signal
  • the reference signal can be used for physical channel demodulation, channel measurement, interference measurement, or synchronization tracking.
  • the reference signal can be demodulation reference signal (demodulation reference signal, DMRS), channel state information reference signal (channel state information reference signal, CSI-RS), sounding reference signal (sounding reference signal, SRS), phase tracking reference signal (phase -tracking reference signal, PT-RS), primary synchronization signal (primary synchronization signal, PSS) or secondary synchronization signal (secondary synchronization signal, SSS).
  • the DMRS is used to demodulate the physical channel. For example, the network device or the terminal device performs channel estimation according to the DMRS, and then demodulates the physical channel according to the estimated channel value.
  • CSI-RS is used to obtain channel state information.
  • a network device sends a CSI-RS to a terminal device, and the terminal device obtains channel state information CSI according to the measurement of the CSI-RS and feeds back the CSI to the network device. Scheduling of terminal equipment.
  • the reference signal may also be another type of reference signal, or a reference signal with other functions.
  • the sensing signal is usually sent discontinuously in the time domain.
  • Figure 6 gives an example of the distribution of perceptual signals within a slot, in Figure 6, perceptual signals occupy symbol 6 and symbol 13.
  • network devices may be used to transmit data, control information, reference signals, etc. to one or more end devices.
  • the distribution of perceptual signals in a Slot can also be on other symbols, such as symbols 5 and 14, such as symbols 3, 4, 9, 10, such as symbols 3, 6, 13, etc., the embodiment of the present application
  • the sensing signal can be the downlink data sent by the network device to one or some terminal devices, and can also contain a reference signal for demodulating the downlink data.
  • the sensing signal can be one or some The terminal equipment PDSCH, and the DMRS for demodulating the PDSCH.
  • the sensing signal can be a PDSCH sent to a terminal device; when the downlink data is multicast data, the sensing signal can be a PDSCH sent to a group of terminal devices, usually the group of terminal devices can Including multiple terminal devices, the group of terminal devices all receive the information carried on the PDSCH.
  • DCI downlink control information
  • PDCCH downlink control information
  • DCI carries the time-frequency domain resource information used to send downlink data, that is, the time-frequency for transmitting PDSCH Domain resource information.
  • the PDSCH is located in one Slot in the time domain and occupies one or more symbols.
  • the time-domain resource allocation information carried in the DCI may include the index S and the number L of continuous symbols for transmitting the PDSCH in the Slot.
  • S represents the index of the first symbol of the transmitted PDSCH in the current Slot.
  • a Slot has 14 symbols, and the index value can range from 0 to 13.
  • a Slot has 12 symbols, and the index value can be from 0 to 12.
  • L represents consecutive L symbols counted from the start symbol index. It can be understood that there are certain constraints on the values of S and L, for example, in NCP, S+L is less than or equal to 14.
  • multiple combinations of S and L may be formulated in the protocol, and each combination forms a time-domain resource allocation information, and the network device sends one of the combinations to the terminal device through the DCI.
  • possible combinations of S and L may be semi-statically configured through signaling.
  • radio resource control radio resource control, RRC
  • RRC radio resource control
  • a combination of S and L is called a start and length indicator (SLIV), that is, a The value of SLIV corresponds to an S and L.
  • the network device sends information about one of the SLIVs to the terminal device through the DCI, and the terminal device obtains S and L through the corresponding relationship between the SLIV and S and L.
  • SLIV can have the following relationship with S and L:
  • the notified time domain resources can only be continuous time domain resources.
  • the sensing signal sent by the network device is discontinuous in the time domain (as shown in FIG. 2 ). Therefore, the above manner of notifying the combination of S and L will affect the resource utilization rate in the communication-aware integrated system. For example, multiple DCIs may be required to notify multiple discontinuous time-domain resources, thereby increasing signaling overhead and affecting resource utilization.
  • Fig. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the network device indicates the non-continuous sub-time domain resource through the indication information, which is used to send the PDSCH, and the PDSCH or the signal carried by the PDSCH can be used as a sensing signal for sensing the target device.
  • This method can improve the resource utilization rate of the integrated communication perception system. Specifically, by designing a new DCI to notify the discontinuous sub-time domain resources, the overhead of using DCI can be reduced, and the utilization rate of control channel resources can be improved. Further, the signal carried by the PDSCH is used as a sensing signal to improve the utilization rate of data channel resources. Furthermore, sending sensing signals through discontinuous time-domain resources can reduce time-domain resources occupied by sensing signals and improve resource utilization. In addition, the newly designed DCI can make time-domain resource allocation more flexible.
  • the perceived target 130 and the terminal device 120 may be the same or different.
  • the embodiments of this application are not limited.
  • the steps of the network device can be implemented by different functional entities that make up the network device, in other words, the functional entities that perform the steps of the network device can be located in different physical entities.
  • the sending or receiving action of the network device can be located in the radio frequency unit (radio frequency, RF), or radio remote unit (radio remote unit, RRU) or active antenna processing unit (active antenna unit, AAU) of the network device.
  • Actions processed by the network device may be located in the central unit CU of the network device or the like. This application is not limited to this.
  • the method may include the following steps.
  • the network device 110 sends indication information to the terminal device 120, and the corresponding terminal device 120 receives the indication information from the network device 110.
  • the indication information may include time domain resource allocation information.
  • the time domain resource allocation information indicates the first time domain resource.
  • the indication information may be carried in physical layer signaling such as downlink control information DCI, which may realize more dynamic and flexible notification of the first time domain resource, or may be carried in high-layer signaling , the first time-domain resource can be notified more reliably, and is applicable to a scenario where the first time-domain resource changes slowly.
  • DCI downlink control information
  • the indication information may also be transmitted through a combination of physical layer signaling and high-layer signaling.
  • the network device 110 configures multiple candidate time-domain resources through high-level signaling, and the multiple candidate time-domain resources include The first time-domain resource, at least one candidate time-domain resource among the multiple candidate time-domain resources may include at least two sub-time-domain resources, and each candidate time-domain resource corresponds to an index, and then the network device transmits the physical layer signaling
  • the actually used time domain resource, such as the first time domain resource is notified.
  • an index corresponding to the first time domain resource may be carried in the DCI to indicate the first time domain resource. It can increase the reliability of signaling transmission, reduce signaling overhead and have certain flexibility.
  • the high-level signaling may be an RRC message or a media access control (media access control, MAC) control element (control element, CE), and the RRC message may include a dedicated RRC message, or a broadcast-multicast RRC message, which is not described in this embodiment of the present application. limit.
  • RRC message may include a dedicated RRC message, or a broadcast-multicast RRC message, which is not described in this embodiment of the present application. limit.
  • the indication information may be embodied by a combination of at least two of physical layer signaling, high layer signaling, and protocol fixation.
  • part of the information contained in the indication information is carried in the physical layer signaling, and another part of the information is carried in the high-level signaling; another example is that part of the information contained in the indication information is carried in the physical layer signaling, and the other part of the information is fixed in the protocol.
  • part of the information included in the indication information is carried in the physical layer signaling, another part of the information is carried in the high-level signaling, and other parts are fixed in the protocol.
  • high-level signaling and physical layer signaling you can refer to the above, and will not repeat them here. The following describes in detail in conjunction with the specific content contained in the instruction information.
  • the first time domain resource may be located in one time slot.
  • the one time slot is called the first time slot.
  • the first time-domain resource is composed of M sub-time-domain resources, at least two adjacent sub-time-domain resources among the M sub-time-domain resources are separated by a first time period, and M is an integer greater than or equal to 2. It can be understood that, in the embodiment of the present application, two adjacent sub-time domain resources refer to being adjacent in the time domain, and there is no other sub-time domain resource between the two adjacent sub-time domain resources.
  • M sub-time domain resources occupy symbol 3 (the first sub-time domain resource), symbol 6 (the second sub-time domain resource), and symbol 13 (the third sub-time domain resource) in the first time slot. ), then the first sub-time domain resource and the second sub-time domain resource are adjacent sub-time domain resources, the second sub-time domain resource and the third sub-time domain resource are adjacent sub-time domain resources, but the first The first sub-time domain resource and the third sub-time domain resource are not adjacent sub-time domain resources (there is a second sub-time domain resource in between).
  • Fig. 6 shows an example of the first time slot.
  • the time unit may be one symbol (such as an OFDM symbol), or X symbols, or a period of time, such as 0.07 milliseconds (millisecond, ms).
  • the embodiment of the present application does not limit this.
  • the first time slot may include other numbers of symbols, for example, the first time slot includes 12 symbols, which is not limited in this embodiment of the present application.
  • the distribution of the first time domain resource in the first time slot may be on other symbols, such as symbol 5 (the first sub-time domain resource) and symbol 14 (the second sub-time domain resource), such as symbol 3 and 4 (the first sub-time domain resource), 9 and 10 (the second sub-time domain resource), such as symbols 3 (the first sub-time domain resource), 6 (the second sub-time domain resource), 13 (the third sub-time domain resource) time domain resources), etc.
  • the embodiment of the present application does not specifically limit the distribution of the first time domain resources in the first time slot.
  • the first time period may include one or more time units.
  • the first time period can be one symbol (such as OFDM symbol), or X symbols, or a period of time, such as 0.07 milliseconds (millisecond, ms), or one or more mini-slots, or one or more time slot etc.
  • the embodiment of the present application does not limit this.
  • time unit is used as an example for description.
  • the first time domain resources may be located in different time slots.
  • the embodiment of the present application does not limit the location of the first time domain resource.
  • this step is optional for the network device 110 and the perceived target 130 .
  • This step is also optional for the network device 110 and the terminal device 120, if the agreement stipulates the distribution information of a first time-domain resource, that is, the network device 110 and the terminal device 120 are both according to the first time-domain resources specified in the agreement.
  • the distribution information of time-domain resources is used for downlink data transmission.
  • the action performed by the network device 110 may be performed by the processing unit 1100, the processor 2100 or the processing circuit 3100 of the aforementioned communication device (as a network device) through the transceiver unit 1200 of the aforementioned communication device (as a network device), the transceiver 2200 or interface circuit 3200 to perform.
  • the actions performed by the terminal device 120 may be performed by the processing unit 1100 (as a terminal device), the processor 2100 or the processing circuit 3100 through the transceiver unit 1200, the transceiver 2200 or the interface circuit 3200 of the aforementioned communication device (as a network device). implement.
  • the network device 110 sends the physical downlink shared channel PDSCH to the terminal device 120 on the first time domain resource.
  • the PDSCH or part or all of the signals carried by the PDSCH may be used as a sensing signal, or in other words, the sensing signal is a physical downlink shared channel PDSCH carried on the first time domain resource, or the sensing signal is part or all of the signals carried by the PDSCH,
  • the signal on the time-frequency resource occupied by the PDSCH can be used as a sensing signal
  • the signal on the time-frequency resource occupied by the PDSCH and the pilot signal associated with the PDSCH can be used as a sensing signal
  • the pilot signal associated with the PDSCH may be a DMRS used to demodulate the PDSCH, or a phase tracking reference signal (phase tracking reference signal, PTRS) used for phase tracking.
  • the two S102 shown in FIG. 5 do not mean that the network device 110 needs to execute S102 twice to send sensing signals and downlink data respectively, but that the S102 executed by the network device 110 is for the terminal device 120 It may be downlink data, and for the perceived target 130, it is a sensing signal.
  • the terminal device 120 receives PDSCH (downlink data) on the first time domain resource according to the indication information.
  • the PDSCH sent in the first time domain resource is used to transmit the same redundancy version (redundancy version, RV) of a transport block (transport block, TB). That is, the M sub-time domain resources jointly transmit the TB block, instead of each sub-time domain resource separately transmitting the TB block or transmitting multiple RVs of the TB.
  • RV redundancy version
  • the downlink data may be downlink data (PDSCH) sent by the network device to one or more terminal devices, which is not limited in this embodiment of the present application.
  • the downlink data may be multicast/broadcast data, and specifically, the group/broadcast data may be video, dynamic layers, or road safety information.
  • the action performed by the network device 110 may be performed by the processing unit 1100, the processor 2100 or the processing circuit 3100 of the aforementioned communication device (as a network device) through the transceiver unit 1200 of the aforementioned communication device (as a network device), the transceiver 2200 or interface circuit 3200 to perform.
  • the actions performed by the terminal device 120 may be performed by the processing unit 1100 (as a terminal device), the processor 2100 or the processing circuit 3100 through the transceiver unit 1200, the transceiver 2200 or the interface circuit 3200 of the aforementioned communication device (as a network device). implement.
  • the network device 110 receives all or part of the echo signals of the PDSCH.
  • the perceived target 130 is called a first target.
  • the network device 110 receives the echo signal of the signal carried by all or part of the PDSCH, that is, the network device receives the echo signal of the sensed target 130 for the sensing signal, and the echo signal is used to sense the sensed target 130 . That is, the sensing signal is transmitted, scattered and reflected by the sensed target 130 to generate an electromagnetic feedback signal, that is, an echo signal.
  • the sensing signal is transmitted, scattered and reflected by the sensed target 130 to generate an electromagnetic feedback signal, that is, an echo signal.
  • There may be one or more perceived targets 130 which is not limited in this embodiment of the present application.
  • the action performed by the network device 110 may be performed by the processing unit 1100, the processor 2100 or the processing circuit 3100 of the aforementioned communication device (as a network device) through the transceiver unit 1200 of the aforementioned communication device (as a network device), the transceiver 2200 or interface circuit 3200 to perform.
  • the network device 110 perceives the first target (perceived target 130).
  • the network device 110 perceives the first target according to all or part of the received echo signals of the PDSCH.
  • the network device 110 obtains a sensing result of the first target according to the sensing signal and the echo signal of the sensing signal, for example, the distance, angle, position, moving speed, or external dimension of the first target from the network device. In this way, the network device 110 can further use the sensing results to assist communication and improve communication quality.
  • the network device 110 adopts a self-sending and self-receiving mechanism. After sending the sensing signal, it will receive the echo signal of the sensing signal and process it. For example, a network device should send a sensing signal at time t, and receive an echo signal at time t+k, then it can be estimated that the distance of the perceived target is about: ((t+k)-t)*c/2. where c is the speed of light.
  • the actions performed by the network device 110 may be performed by the processing unit 1100, the processor 2100 or the processing circuit 3100 of the aforementioned communication device (as a network device).
  • This step S104 is optional.
  • sequence between S101 and S102 may be S101 or S102, which is not limited in this embodiment of the present application.
  • the overhead of using the DCI can be reduced and resource utilization can be improved.
  • the signal carried by the PDSCH is used as a sensing signal to improve resource utilization.
  • sending sensing signals through discontinuous time-domain resources can reduce time-domain resources occupied by sensing signals and improve resource utilization.
  • the newly designed DCI can make time-domain resource allocation more flexible.
  • Fig. 7 shows an implementation manner of indication information.
  • the indication information may be included in the downlink control information DCI.
  • the DCI includes the starting position information S i of each sub-time domain resource in the M sub-time domain resources and the starting position information S i of each sub-time domain resource in the M sub-time domain resources.
  • the duration information L i of the time domain resource, i represents the i-th sub-time domain resource, i is a positive integer and 1 ⁇ i ⁇ M, and M is an integer greater than or equal to 2.
  • the corresponding ⁇ S 1 , L 1 ⁇ is ⁇ 6, 3 ⁇ , indicating that the starting position of the first sub-time domain resource is symbol 6, and the duration is 3 symbols
  • the corresponding ⁇ S 2 , L 2 ⁇ being ⁇ 13, 1 ⁇ indicates that the start position of the second sub-time domain resource is symbol 13, and the duration is 1 symbol.
  • the first sub-time domain resource refers to the earliest sub-time domain resource in the time domain in the first time slot.
  • the corresponding ⁇ S 1 , L 1 ⁇ is ⁇ 5, 2 ⁇ , indicating that the starting position of the first sub-time domain resource is symbol 5, and the duration is 2 symbols
  • the ⁇ S 2 , L 2 ⁇ is ⁇ 8, 2 ⁇ , which means that the starting position of the second sub-time domain resource is symbol 8, and the duration is 2 symbols
  • the corresponding ⁇ S 3 , L 3 ⁇ is ⁇ 12, 2 ⁇ indicates that the starting position of the third sub-time domain resource is symbol 12, and the duration is 2 symbols.
  • the time-domain resource allocation information ⁇ S i , L i ⁇ corresponding to different M values can share the time-domain resource allocation table shown in Figure 7, where "i ⁇ [1,M]" means that the value from i can be from 1 to M.
  • the time-domain resources or in other words, the i-th to M-th sub-time-domain resources are not indicated in the indication information.
  • the indication information is included in the DCI, the DCI may carry a row index indicating the first time-domain resource.
  • the indication information in this manner can uniformly process time-domain resources with different M values, which can simplify the processing process.
  • the indication information may include the information of the used table and the row index in the corresponding table, so as to indicate the starting position information and duration information of the M sub-time domain resources.
  • the used table information may be indicated through high layer signaling, and the row index information in the corresponding table may be indicated through physical layer signaling. For specific signaling forms, refer to the introduction above, and details will not be repeated here. This implementation manner can reduce the overhead of physical layer signaling.
  • the indication information shown in FIG. 7 may be transmitted through high-layer signaling.
  • a combination of time domain resource allocation information ⁇ S i , L i ⁇ , i ⁇ [1,M] is carried in the RRC message, for example, the time domain resource allocation information carried is ⁇ S 1 , L 1 ⁇ , ⁇ S 2 , L 2 ⁇ , or carry time-domain resource allocation information as ⁇ S 1 , L 1 ⁇ , ⁇ S 2 , L 2 ⁇ , ⁇ S 3 , L 3 ⁇ , or carry multiple SLIVs, different SLIVs and different ⁇ S i , L i ⁇ are associated, for example, SLIV1 is associated with ⁇ S 1 , L 1 ⁇ , SLIV2 is associated with ⁇ S 2 , L 2 ⁇ , and the terminal side can determine the corresponding ⁇ S i , L i ⁇ according to the SLIV and .
  • the specific indication manner is similar to when the indication information is DCI information, and will not be
  • the indication information described in FIG. 7 may be embodied by a combination of at least two of physical layer signaling, high layer signaling, and protocol fixation. For example, ⁇ S i ⁇ is transmitted in the physical layer signaling, and ⁇ L i ⁇ is fixed in the high-level signaling or protocol, or vice versa. This solution can further reduce DCI signaling overhead and enhance the reliability of indication information.
  • the symbols corresponding to different ⁇ S i , L i ⁇ may not be in sequence, but usually different ⁇ S i , L i ⁇ correspond to different symbols and will not overlap. This ensures that fewer row indices are used to set up the table, reducing signaling overhead.
  • the information provided by the indication information is more complete, and the resource scheduling is more flexible, that is, the starting position information and length information of different sub-time domain resources can be flexibly indicated.
  • Fig. 8 shows another implementation manner of indication information.
  • the indication information may be included in higher layer signaling such as RRC message, or in physical layer information such as DCI.
  • the indication information indicates the M sub-time domain resources included in the first time domain resource in the form of a bitmap (bitmap).
  • bitmap bitmap
  • a certain bit in the indication information has a value of 1, it means that the symbol corresponding to the bit belongs to the first time-domain resource and can be used to transmit sensing signals (downlink data).
  • the symbol corresponding to the bit does not belong to the first time domain resource. That is, the M sub-time-domain resources in the first time-domain resource include symbols corresponding to bit values of 1, but do not include symbols corresponding to bit values of 0. It can be understood that when multiple consecutive bits have a value of 1, the symbols corresponding to the consecutive multiple bits may belong to the same sub-time domain resource; when discontinuous bits have a value of 1, the corresponding symbols belong to different sub-time domains resource.
  • each bit in the bitmap is 00000010000001, indicating that the first time domain resource is composed of two sub-time domain resources (the first sub-time domain resource corresponding to symbol 6 and the second time domain resource corresponding to symbol 13 Resources.
  • the value of each bit in the bitmap is 00000110000001 (not shown in Figure 8), indicating that the first time domain resource is composed of two sub-time domain resources (the first sub-time domain resources corresponding to symbols 6 and 7 The second time-domain resource corresponding to symbol 13.
  • the allocation of the first time-domain resource can be made more flexible.
  • the resource scheduling is more flexible, that is, the bitmap can flexibly indicate different sub-time domain resources. The initial position information and length information of the time domain resources, so as to make more effective use of time domain resources and improve communication performance.
  • Fig. 9 shows another implementation manner of indication information.
  • signaling overhead can be further saved.
  • the indication information may be included in physical layer information such as DCI.
  • the indication information may include the starting position information S 1 of the first sub-time domain resource among the M sub-time domain resources, the duration information L 1 of the first sub-time domain resource, and the offset O 1 At least one of the sub-time-domain resources, wherein the starting position information S i of the i-th sub-time-domain resource among the M sub-time-domain resources has a first association relationship with at least one of S 1 , L 1 , and O 1 .
  • the starting location information S i of the i-th sub-time domain resource among the M sub-time domain resources is determined according to at least one of S 1 , L 1 , and O 1 .
  • the first association relationship between S i and S 1 may include:
  • the first association relationship between S i and S 1 and O 1 may include:
  • i is an integer greater than or equal to 2 and less than or equal to M. Further, O 1 is greater than L 1 .
  • the first association relationship may include:
  • the first time-domain resource indicated by the indication information is divided by the symbol
  • the first time-domain resource indicated by the indication information is divided into In addition to the time domain resources corresponding to symbols 2 and 3, time domain resources corresponding to symbols 5 and 6, and time domain resources corresponding to symbols 8 and 9 are also included.
  • the indication information in this manner can uniformly process time-domain resources with different M values, which can simplify the processing process.
  • the combinations of time-domain resource allocation information ⁇ S 1 , L 1 , O 1 ⁇ corresponding to different M values may correspond to different tables, and at this time, the indication information may include the information of the table used and the information in the corresponding table
  • the row index of is used to indicate the start location information and duration information of the M sub-time domain resources.
  • the used table information may be indicated through high layer signaling, and the row index information in the corresponding table may be indicated through physical layer signaling.
  • This implementation manner can reduce the overhead of physical layer signaling.
  • S 1 , L 1 , and O 1 may be included in high-level signaling or fixed in a protocol.
  • S 1 , L 1 in DCI include O 1 in RRC signaling, or include S 1 in DCI, include L 1 , O 1 in RRC signaling, or include S 1 in DCI , L 1 is included in the RRC signaling, O 1 is fixed in the protocol or O 1 does not exist.
  • the overhead of the DCI can be further reduced, and the transmission reliability of the above information can be improved.
  • n is an integer greater than 1.
  • the signaling overhead can be further reduced.
  • the signaling overhead can be further reduced.
  • the first sub-time domain resource is symbol 2
  • the second sub-time domain resource is symbol 6
  • the signaling overhead can be further reduced.
  • the indication information may also include an enable flag bit (Enable Flag), which is also referred to as the first indication information in the embodiment of the present application, and when the flag bit takes a value of 1 (the first takes value), which is used to indicate the start position and duration of the M sub-time domain resources, and the specific implementation may refer to the above.
  • the value of the flag bit is 0 (the second value)
  • it is used to indicate only the starting position and duration of the first sub-time domain resource, that is, at this time, the indication information does not indicate the first sub-time domain resource
  • S 1 , L 1 , and the first indication information may be included in physical layer signaling or high-level signaling or a combination thereof
  • the DCI includes at least one of S 1 , L 1 , and the first indication information, and the others are included in high-layer signaling or fixed in the protocol.
  • the indication information may include the starting position information S 1 of the first sub-time domain resource among the M sub-time domain resources, the duration information L 1 of the first sub-time domain resource, and the At least one of the indication information.
  • the starting position information S i of the i-th sub-time-domain resource among the M sub-time-domain resources is determined according to at least one of S 1 and L 1 .
  • For the fourth association relationship reference may be made to the above description about the first association relationship, and details are not repeated here.
  • the embodiment of the present application also provides another implementation of indication information, which is different from the implementation shown in FIG. 9 in that the indication information carries start position information S 1 of M sub-time domain resources, Duration information L i , at least one of i ⁇ [1,M] and O 1 .
  • the corresponding start location information S i of the ith sub-time domain resource has a second association relationship with at least one of S 1 , L i , O 1 .
  • the starting position information S i of the i-th sub-time domain resource may be determined according to at least one of S 1 , L i , and O 1 .
  • the second association relationship between S i and S 1 may include:
  • i is an integer greater than or equal to 2 and less than or equal to M.
  • the first association relationship between S i and L i may include: where j is a positive integer.
  • the second association relationship between S i and S 1 and L i may include:
  • the second association relationship between S i and the S 1 , L i , O 1 may include:
  • S i S i-1 +L i-1 -1+O 1 .
  • S 1 , L i , and O 1 may be included in high-level signaling or fixed in a protocol.
  • S 1 , L i in DCI include O 1 in RRC signaling, or include S 1 in DCI, include L i , O 1 in RRC signaling, or include S 1 in DCI , including L i in the RRC signaling, and fixing O 1 in the protocol.
  • the overhead of the DCI can be further reduced, and the transmission reliability of the above information can be improved.
  • the embodiment of the present application also provides another implementation of indication information.
  • the indication information carries S 1 , L 1 , and the i-th sub-time domain resource At least one of the offsets O i of i ⁇ [2,M].
  • the corresponding starting position information S i of the i-th sub-time domain resource has a third association relationship with at least one of S 1 , L 1 , and O i .
  • the starting location information S i of the i-th sub-time domain resource may be determined according to at least one of S 1 , L 1 , and O i .
  • the three sub-time domain resources are symbol 10.
  • S 1 , L 1 , and O i may be included in high-level signaling or fixed in a protocol.
  • S 1 , L 1 in DCI include O i in RRC signaling, or include S 1 in DCI
  • include L 1 , O i in RRC signaling or include S 1 in DCI
  • L 1 is included in the RRC signaling
  • O i is fixed in the protocol.
  • the overhead of the DCI can be further reduced, and the transmission reliability of the above information can be improved.
  • each ⁇ S i , L i ⁇ , i ⁇ [1,M] in the combination of ⁇ S i , L i ⁇ indicated by the indication information in the above embodiments i ⁇ There are some constraint relations between them.
  • the constraint relationship may include no repeated time-domain symbols among different sub-time-domain resources. It may also include that the sub-time domain resources indicated by the indication information cannot exceed the first time slot, that is, the time domain symbols where any sub-time domain resources are located should be between 0 and N-1 (periodically repeated in multiple time slots) Except for the first time-domain resource of ).
  • the constraint relationship may also include that there is a time interval between at least two adjacent sub-time domain resources, that is, they are discontinuous. Further, any two adjacent sub-time domain resources are discontinuous, separated by a time interval.
  • the time intervals between different adjacent sub-time domain resources may be the same or different, which is not limited in this embodiment of the present application.
  • the first time domain resource is composed of three sub-time domain resources a, b, and c, wherein sub-time domain resource a occupies symbol 3, sub-time domain resource b occupies symbol 7, and sub-time domain resource c occupies symbol 13, then The time interval between a and b is 4, and the time interval between b and c is 6.
  • this application provides another communication method.
  • the indication information above is included in high-level signaling, such as RRC messages. That is, the network device 110 sends high-level signaling such as an RRC message to the terminal device 120 to indicate the first time domain resource. The corresponding terminal device 120 receives the high layer signaling such as RRC message.
  • the action performed by the network device 110 may be performed by the processing unit 1100, the processor 2100 or the processing circuit 3100 of the aforementioned communication device (as a network device) through the transceiver unit 1200 and the transceiver 2200 of the aforementioned communication device (as a network device). Or interface circuit 3200 to perform.
  • the actions performed by the terminal device 120 may be performed by the processing unit 1100 (as a terminal device), the processor 2100 or the processing circuit 3100 through the transceiver unit 1200, the transceiver 2200 or the interface circuit 3200 of the aforementioned communication device (as a network device). implement.
  • the network device sends physical layer signaling such as DCI to the terminal device to instruct the terminal device to use the first time domain resource indicated in the high-level signaling to perform PDSCH transmission, or in other words, the physical layer signaling such as DCI is used to Activate the first time domain resource indicated by high layer signaling such as an RRC message.
  • the terminal device receives the DCI.
  • the network device 110 may execute S102 to send the PDSCH to the terminal device, and the corresponding terminal device receives the PDSCH. See above for a detailed description.
  • This solution can reduce the signaling overhead of DCI and increase the reliability of signaling transmission.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to realize the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the essence of the technical solution of this application or the part that contributes, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the above-mentioned readable storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc., which can store program codes. medium.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the network device in the information communication method provided in the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the terminal device in the communication method provided in the present application.
  • the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the network device in the communication method provided by the present application and/or or process.
  • the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the terminal device in the communication method provided by the present application and/or or process.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on the computer, the operation performed by the network device in the communication method provided by the present application and/or Processing is performed.
  • the present application also provides a computer program product.
  • the computer program product includes computer code or computer program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置。该通信方法包括:网络设备向终端设备发送下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,其中,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;所述网络设备在所述第一时域资源上发送物理下行共享信道PDSCH。该方案用于通信感知一体化系统中,可以提升通信感知一体化系统的资源利用率。

Description

一种通信方法及通信装置 技术领域
本申请涉及通信领域,尤其涉及一种通信方法和通信装置。
背景技术
雷达感知,也称雷达探测,广泛应用于空中地面交通监测,气象探测,安全监控,电磁成像等。随着探测需求的增加,如果单独采用雷达进行覆盖范围较广的探测,雷达设备成本较高,尤其是在连续组网的情况下。考虑到无线通信拥有丰富的频谱资源,部署规模大且覆盖广,可以将雷达感知和无线通信进行融合,即通信感知一体化,既能满足无线通信需求,又能满足探测需求。目前,无线通信系统里的信号主要用于通信,对于通信感知一体化的系统,如何提升通信感知一体化系统的资源利用率成为亟待解决的问题。
发明内容
本申请实施例提供的通信方法和装置,可以提升通信感知一体化系统的资源利用率。
第一方面,提供了一种通信方法,该方法可以由网络设备或配置于网络设备中的芯片执行。该网络设备可以为接入网设备,也可以为实现接入网设备的相应功能的网络单元。该方法包括:网络设备向终端设备发送下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,其中,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;在所述第一时域资源上发送物理下行共享信道PDSCH。
将上述方案应用于通信感知一体化系统中,可以提升通信感知一体化系统的资源利用率。具体的,通过设计新的DCI来通知上述非连续的子时域资源,可以减少使用DCI的开销,提升资源利用率。进一步的,将PDSCH所承载的信号用作感知信号,提升资源利用率。再进一步的,通过非连续的的时域资源发送感知信号,可以减少感知信号占用的时域资源,提升资源利用率。此外,该新设计的DCI可以使得时域资源分配更加灵活。
结合第一方面,在一种可能的设计中,还包括,接收PDSCH所承载信号的回波信号,其中,所述回波信号用于感知第一目标。
结合第一方面,在一种可能的设计中,还包括,在所述向终端设备发送下行控制信息DCI之前,向所述终端设备发送无线资源控制RRC信令,所述RRC信令指示至少一个候选时域资源,其中每个候选时域资源对应一个索引,所述至少一个候选时域资源包括所述第一时域资源;所述DCI具体包括所述第一时域资源对应的索引。该方案可以减少DCI的信令开销,增加信令传输可靠性。
第二方面,提供了一种通信方法,该方法可以由终端设备或配置于终端设备中的芯片执行。该方法包括:终端设备接收下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;终端设备在所述第一时域资源上接收物理下行共享信道PDSCH。
将上述方案中,通过设计新的DCI来通知上述非连续的时域资源,可以减少使用DCI的 开销,提升资源利用率。此外,该新设计的DCI可以使得时域资源分配更加灵活。
结合第二方面,在一种可能的设计中,还包括:在接收所述DCI之前,接收无线资源控制RRC信令,所述RRC信令指示至少一个候选时域资源,其中每个候选时域资源对应一个索引,所述至少一个候选时域资源包括所述第一时域资源;所述DCI包含所述第一时域资源对应的索引。该方案可以减少直接使用DCI的信令开销,增加信令传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,还包括,接收PDSCH所承载信号的回波信号,其中,所述回波信号用于感知第一目标。
结合上述任一方面或任一设计,在一种可能的设计中,所述DCI包含M个子时域资源中每个子时域资源的起始位置信息和/或所述M个子时域资源中每个子时域资源的持续时间信息。该方案中,DCI提供的信息更全,资源调度更灵活。
可以理解的,上述每个子时域资源的起始位置信息可以包含在RRC信令中或者在协议中固定,或者每个子时域资源的持续时间信息可以包含在RRC信令中或者在协议中固定。即,上述信息可以包含在RRC信令、DCI的组合信令中,或者上述信息一部分包含在RRC信令或DCI信令或组合信令中,另一部分可以在协议中固定。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及偏移量O 1中的至少一个,其中,所述M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,L 1,O 1中的至少一个存在第一关联关系。具体的,第一关联关系可以为S i=n*S 1,S i=i*S 1,S i=n*L 1+1,S i=n*O 1,S i=S i-1+O 1,S i=S i-1-1+O 1,S i=S i-1+O 1,或S i=S i-1+L 1-1+O 1,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。该方案可以在保证一定资源调度灵活性的同时减少DCI的信令开销。
可以理解的,当上述S 1,L 1,O 1中的一部分包含在DCI中时,其它部分可以包含在高层信令中或者在协议中固定,或者其它部分中的一部分包含在高层信令中,其它部分中另一部分在协议中固定。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述M个子时域资源中第i个持续时间信息L i,以及偏移量O 1中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L i,O 1中的至少一个存在第二关联关系。具体的,第二关联关系可以为S i=n*S 1,S i=i*S 1,S i=n*O 1,S i=nS 1+L i-1-1,S i=S 1+nL i-1-1,或者S i=S i-1+L 1-1+O 1,其中,i为大于或等于2小于或等于M的整数。该方案可以在保证一定资源调度灵活性的同时减少DCI的信令开销。
可以理解的,上述S 1,L i,O 1中的一部分包含在DCI中时,其它部分可以包含在高层信令中或者在协议中固定,或者其它部分中的一部分包含在高层信令中,其它部分中另一部分在协议中固定。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及所述M个子时域资源中第i个的偏移量O i中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L 1,O i中的至少一个存在第三关联关系。具体的,第三关联关系可以为S i=i*S 1,S i=(i-1)*S 1+O i,S i=i*S 1+O i,或S i=S i-1+L 1-1+O i,所述第i 个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。该方案可以在保证一定资源调度灵活性的同时减少DCI的信令开销。
可以理解的,上述S 1,L 1,O i中的一部分包含在DCI中时,其它部分可以包含在高层信令中或者在协议中固定,或者其它部分中的一部分包含在高层信令中,其它部分中另一部分在协议中固定。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L,以及第一指示信息中的至少一个,所述第一指示信息为第一取值时,指示所述M个子时域资源中第i个子时域资源的起始位置信息S i根据S 1,和L中的至少一个确定。具体的S i满足S i=nS i-1+L,所述第i个子时域资源的持续时间信息L i=L,其中,i,n为大于或等于2小于或等于M的整数。该方案在保证一定资源调度灵活性的同时可以减少DCI的信令开销。
可以理解的,上述S 1,L和第一指示信息中的一部分包含在DCI中时,其它部分可以包含在高层信令中或者在协议中固定,或者其它部分中的一部分包含在高层信令中,其它部分中另一部分在协议中固定的一个或多个可以包含在RRC信令中。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,所述DCI包含位图信息,其中,所述位图信息包含N个比特,与所述第一时隙中包含的N个时间单元一一对应,所述M个子时域资源包含取值为“1”的比特对应的时间单元,且不包含取值为“0”的比特对应的时间单元。该方案在保证更好的资源调度灵活性。
可以理解的,上述DCI可以替换成高层信令如RRC消息。比如,上述位图信息可以包含在高层信令中等。在发送高层信令之后,网络设备再向终端设备发送DCI,DCI中用于指示使用或激活第一时域资源。再进一步的,网络设备使用激活的第一时域资源,向终端设备发送PDSCH。相应的,终端设备接收用于激活第一时域资源的DCI,并根据DCI,在第一时域资源上接收PDSCH。该方案可以减少DCI的开销,提升信令传输可靠性。
结合上述任一方面或任一设计,在一种可能的设计中,所述第一时间段的长度为X个符号的长度,X为大于或等于1的整数;或者为Y ms,Y大于0。
结合上述任一方面或任一设计,在一种可能的设计中,所述时间单元为符号,或迷你Slot。
第三方面,提供了一种通信装置,包括用于执行上述第一方面的任一种可能设计中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括用于执行上述第二方面的任一种可能设计中的方法的各个模块或单元。
第五方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以使得该通信装置执行上述第一方面的任一种可能设计中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括收发器和/或天线。可选地,该通信装置可以为网络设备或配置于网络设备中的芯片。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以使得该通信装置执行上述第二方面的任一种可能设计中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括收发器和/或天线。可选地,该通信装 置可以为终端设备或配置于终端设备中的芯片。
第七方面,提供了一种网络设备,可以实现上述第一方面的任一种可能设计中的方法。可选地,所述网络设备可以是芯片(如基带芯片,或通信芯片等)或者基站设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,所述网络设备包括处理器和存储器。所述处理器用于支持网络设备执行上述第一方面的任一种可能设计中的方法;所述存储器用于存储指令和/或数据。可选地,所述网络设备还包括射频单元和天线。
在另一种可能的设计中,所述网络设备包括基带单元和收发单元。所述基带单元用于执行上述第一方面的任一种可能设计中的由网络设备内部实现的动作;所述收发单元用于执行网络设备向外部发送或从外部接收的动作。
在又一种可能的设计中,所述网络设备包括处理器和收发器。所述处理器用于支持网络设备执行上述第一方面的任一种可能设计中的方法。当所述网络设备为芯片时,收发器可以是输入输出单元,比如输入输出电路或者输入输出接口。
在又一种可能的设计中,所述网络设备可以包括执行上述第一方面的任一种可能设计中的相应动作的单元模块。
第八方面,提供了一种终端设备,可以实现上述第二方面的任一种可能设计中的方法。可选地,所述终端设备可以是芯片(如通信芯片等)或者用户设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,所述终端设备包括处理器和存储器;所述处理器被配置为支持所述终端设备执行上述第二方面的任一种可能设计中相应的功能;所述存储器用于存储指令和/或数据。可选地,所述终端还包括射频电路和天线。
在另一种可能的设计中,所述终端设备包括处理装置和收发单元。所述处理装置包括处理器和存储器,用于执行上述第二方面的任一种可能设计中的由终端设备内部实现的动作;所述收发单元包括射频电路和天线,用于执行终端设备向外部发送或从外部接收的动作。
在又一种可能的设计中,所述终端设备包括处理器和收发器。所述处理器用于支持终端设备执行上述第二方面的任一种可能设计中的方法。当所述终端设备为芯片时,收发器可以是输入输出单元,比如输入输出电路或者输入输出接口。
在又一种可能的设计中,所述终端设备可以包括执行上述第二方面的任一种可能设计中的相应动作的单元模块。
第九方面,提供了一种计算机可读存储介质,存储有计算机程序或指令,当该计算机程序或指令被运行时,实现上述第一方面的任一种可能设计中的方法。
第十方面,提供了一种计算机可读存储介质,存储有计算机程序或指令,当该计算机程序或指令被运行时,实现上述第二方面的任一种可能设计中的方法。
第十一方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述任一方面或该方面中任一种可能设计中的方法。可选地,上述处理器为芯片,输入电路为输入管脚,输出电路为输出管脚,处理电路为晶体管、门电路、触发器和/或各种逻辑电路等。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面中任一种可能设计中的方法。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可 以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第二方面中任一种可能设计中的方法。
附图说明
图1为本申请实施例提供的一种通信系统架构示例;
图2为本申请实施例提供的一种通信装置结构示例;
图3为本申请实施例提供的另一种通信装置结构示例;
图4为本申请实施例提供的一种电路系统结构示例;
图5为本申请实施例提供的一种通信方法流程示例;
图6为本申请实施例提供的一种感知信号时域资源的示例;
图7为本申请实施例提供的一种时域资源分配信息的示例;
图8为本申请实施例提供的另一种时域资源分配信息的示例;
图9为本申请实施例提供的又一种时域资源分配信息的示例。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请的说明书、权利要求书及附图中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以单独实施,也可以与其它实施例进行合理的结合,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
本申请实施例提供的通信方法和装置可应用于各种通信系统,尤其是通信感知一体化(harmonized communication and sensing,HCS)的系统。该系统中包括但不限于:长期演进(long term evolution,LTE)系统,第五代(5th generation,5G)系统,新无线(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的其它无线通信系统,或未来可能出现的无线通信系统等。
通信感知一体化的系统就是融合了通信功能和感知功能的系统。通信感知融合包括以下优势:通信、雷达感知功能共享硬件,能够节约硬件成本;直接在已有站址上部署感知功能即可,因此部署方便;便于协同组网,利用感知结果辅助通信,提升通信的质量。比如,当被感知目标和通信终端是同一个时,可根据感知结果减少通信时的波束测量,或者,当被感知目标和通信终端不是同一个时,如果被感知目标遮挡了通信终端,则基站可以及时调整波束,确保和通信终端的正常通信。
下面,对本申请实施例提供的通信系统和通信装置进行说明。
图1示出了一种通信系统,具体的,该通信系统为通信感知一体化的系统。如图1所示,该系统100中包括至少一个网络设备,例如图1所示的网络设备110;该系统100还可以包括至少一个终端设备,如图1所示的终端设备120;该系统100还可以包括至少一个被感知目标,如图1所示的被感知目标130。可以理解的是,网络设备和终端设备也可以被称为通信设备,或通信装置。网络设备110是一种具有无线收发功能的网络侧设备。例如,该网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、3GPP后续演进的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备可以包含一个或多个共站址或非共站址的发送接收点。再如,网络设备可以包括集中式单元(central unit,CU)、分布式单元(distributed unit,DU)、或CU和DU。这样可以通过多个网络功能实体来实现无线接入网络设备的部分功能。这些网络功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。又如,车到一切(vehicle to everything,V2X)技术中,网络设备可以为路侧单元(road side unit,RSU)。通信系统中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。网络设备110可以直接通过空中接口与终端设备进行通信,也可以通过中继站或其它终端设备与终端设备120进行通信。该网络设备110还可具有感知功能。例如,网络设备110发送感知信号后,会收到被感知目标130的回波信号。感知信号或电磁波经过被感知目标透射、散射以及反射等产生的电磁反馈信号,即回波信号。
该网络设备110可以根据感知信号和感知信号的回波信号,获得被感知目标的感知结果。感知结果可以包括例如,被感知目标的与网络设备的距离,角度,位置,移动速度,或,外形尺寸等。这样,该网络设备110可以进一步利用感知结果辅助通信,提升通信的质量。需要说明的是,感知功能和通信功能可以是同一个网络设备实现,也可以是多个网络设备相互协作实现,本申请实施例不做限定。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备或接入网设备,也可以是具有基站部分功能的网络设备或接入网设备,也可以是能够支持网络设备或接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备或接入网设备中。
终端设备120是一种具有无线收发功能的用户侧设备,可以是固定设备,移动设备、手持设备(例如手机)、可穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。终端设备用于连接人,物,机器等,可广泛用于各种场景,例如:蜂窝通信、设备到设备(device-to-device,D2D)通信、V2X通信中的、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)通信、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、 无人机、机器人等场景。示例性的,终端设备可以是蜂窝通信中的手持终端,D2D中的通信设备,MTC中的物联设备,智能交通和智慧城市中的监控摄像头,或,无人机上的通信设备等。终端设备有时可称为用户设备(user equipment,UE)、用户终端、用户装置、用户单元、用户站、终端、接入终端、远方站、移动设备或无线通信设备等等。
本申请实施例中,用于实现终端设备功能的通信装置可以是终端设备,也可以是具有终端部分功能的终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。
被感知目标130是指地面上各种能够被感知的有形物,例如,山川、森林或建筑物等地物,还可以包括车辆、无人机、行人、终端设备等可移动的物体。被感知目标为具备感知功能的网络设备可感知的目标,该目标可以向网络设备反馈电磁波。被感知目标也可以称为被探测目标、被感知物、被探测物或被感知设备等,本申请实施例不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能单元。
另外,本申请的各个方面或特征可以体现为方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器(如计算机)可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图2给出了本申请实施例提供的一种通信装置1000的结构示意图。如图2所示,该通信装置1000可以包括处理单元1100和收发单元1200。
该通信装置1000可以作为网络设备110或者应用于网络设备110中的装置。或者,该通信装置1000可以作为终端设备120,或者应用于终端设备120中的装置。
处理单元1100可以对接收到的信号或信息进行处理,或者在发送信号或信息之前,对信号或信息进行处理。当处理单元1100属于网络设备110时,处理单元1100可以对感知信号对应的下行数据进行处理,以便收发单元1200发送处理后的感知信号(下行数据)。或者对经过基带处理的信息,进一步进行处理,比如当收发单元1200接收的信息是来自被感知目标的回波信号,则网络设备110的处理单元1100可以进行根据回波信号获得被感知目标的位置,移动速率等信息,比如当收发单元1200接收的信息是来自终端设备对下行数据的反馈信息,则网络设备110的处理单元1100可以进行根据反馈信息确定是否重传该下行数据。当处理单元1100属于终端设备120时,处理单元1100可以对由收发单元1200接收的信号或信息进行 基带处理。比如,处理单元1100在收发单元1200接收到下行数据之后,对下行数据进行后续处理等。
收发单元1200可以进行信号的接收和/或发送。比如当收发单元1200属于网络设备110时,收发单元1200可以向终端设备120发送信号或信息,其中信号或信息可以包括,DCI,PDSCH等,或者向被感知目标130发送感知信号。相应的,当收发单元1200属于终端设备120时,收发单元1200可以接收来自网络设备110的上述信号或信息。再比如,当收发单元1200属于网络设备110时,收发单元1200可以接收终端设备120的信号或信息,其中信号或信息可以包括,测量报告,上行数据,上行参考信号、下行数据的接收状态信息等。相应的,当收发单元1200属于终端设备120时,收发单元1200可以向网络设备110发送上述信号或信息。
通信装置1000还可以包含通信单元1300。该通信单元1300可以完成与其它网络设备之间的信号或信息的接收和/或发送。比如,当通信单元1300属于网络设备110时,当通信单元1300可以与其它网络设备(图1中未示出)。比如该网络设备110为基站、CU或DU,其它网络设备也是基站、CU或DU,则通信单元1300可以与其它基站、CU或DU进行通信(信号或信息的接收和/或发送),再比如,该网络设备110为基站、CU或DU,其它网络设备为核心网,则通信单元1300可以与核心网进行通信(信号或信息的接收和/或发送)。
图3是本申请实施例提供的另一种通信装置2000的示意性框图。如图3所示,该通信装置2000可以包括一个或多个处理器2100(图3中只示出了一个处理器),还可以包括收发器2200。
该通信装置2000可以作为网络设备110或者应用于网络设备110中的装置。或者,该通信装置2000可以作为终端设备120,或者应用于终端设备120中的装置。
具体的,通信装置1000中的处理单元1100的功能可以由一个或多个处理器2100来实现。通信装置1000中的收发单元1200的功能可以由收发器2200来实现。收发器2200用于通过传输介质和其它设备/装置进行通信。
在图3所示的通信装置2000的各个实现方式中,收发器2200可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。
该通信装置2000还可以包含一个或多个存储器2300。用于存储程序指令和/或数据。存储器2300和处理器2100耦合。本申请实施例中的耦合是装置、或单元之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置或单元之间的信息交互。处理器2100可能和存储器2300协同操作。处理器2100可能执行存储器2300中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述处理器2100、收发器2200、以及存储器2300之间的具体连接介质。图3给出的示例中,处理器2100、收发器2200以及存储器2300之间通过总线2400连接,总线在以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可理解,在图3所示的通信装置为网络设备时,网络设备还可以具有比图3更多的单元或器件等。同样可理解,在图3所示的通信装置为终端设备时,终端设备还可以具有比图3更多的元器件等。本申请实施例对此不作限定。
可理解,在图3所示的通信装置为网络设备时,上述单元或器件可以位于同一物理实体,也可以位于不同物理实体。本申请实施例对此不作限定。
图4是本申请实施例提供的一种电路系统3000的示意性框图。如图4所示,网络设备可以包括处理电路3100和接口电路3200。
该电路系统3000可以作为网络设备110或者应用于网络设备110中的装置。或者,该电路系统3000可以作为终端设备120,或者应用于终端设备120中的装置。此时,上述处理单元1100可以用处理电路3100实现,收发单元1200用接口电路3200实现。该处理电路3100可以为芯片、逻辑电路、集成电路或片上系统(system on chip,SoC)芯片等,接口电路3200可以为通信接口、输入输出接口等。
在本申请实施例中,处理器2100或处理电路3100可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例提供的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所提供的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
下面,结合上述通信装置和系统,对本申请实施例提供的方法进行说明。
在介绍本申请实施例的方法之前,首先介绍一下本申请各实施例相关的一些技术术语。
一、感知信号:是指用于感知目标或探测目标的信号,或者说,感知信号是指用于感知环境信息或探测环境信息的信号。例如,感知信号是网络设备发送的用于感知环境信息的电磁波。感知信号也可以称为雷达信号,雷达感知信号,探测信号,雷达探测信号,环境感知信号等,本申请实施例不做限定。
二、回波信号:电磁波经过被感知目标透射、散射以及反射等产生的电磁反馈信号。
三、被感知目标:可以包括地面上各种能够被感知的有形物,例如,山川、森林或建筑物等地物,还可以包括车辆、无人机、行人、终端设备等可移动的物体。被感知目标为具备感知功能的网络设备可感知的目标,该目标可以向所述网络设备反馈电磁波。被感知目标也可以称为被探测目标、被感知物、被探测物或被感知设备等,本申请实施例不做限定。
四、资源(resource):指无线资源,包括时域资源、频域资源或码域资源等。
五、资源单元(resource element,RE):粒度最小的资源单元,一个资源单元由时域上一个时域符号(本申请实施例后续简称为符号)和频域上一个子载波构成,可以由索引对(k,l)唯一标识,其中,k为子载波索引,l为符号索引。
六、时域符号(symbol):也称为符号,时域符号可以是正交频分多址(orthogonal frequency division multiplexing,OFDM)符号,或者其它多址方式下的符号,本申请实施例不做限定。针对不同的子载波间隔,时域符号长度可以不同。
七、时隙(slot):一个slot由N个符号组成,N为正整数。例如,在NR系统中,对于普通循环前缀(normal cyclic prefix,NCP),N可以等于14;对于长CP(extended cyclic prefix,ECP),N等于12。当本申请实施例的方案应用于其它系统时,N还可以是其它数值。针对不同的子载波间隔,一个slot的长度可以不同,例如,子载波间隔为15kHz且CP为NCP时,一个slot为1ms(毫秒),由14个符号组成。对子载波间隔的取值本申请实施例不做限定。
八、物理信道(physical channel):承载信号或信息,例如,物理信道可以为物理下行共享信道(physical downlink shared channel,PDSCH),物理下行控制信道(physical downlink control channel,PDCCH),物理广播信道(physical broadcast channel,PBCH),物理侧行链路共享信道(physical sidelink shared channel,PSSCH),物理侧行链路控制信道(physical sidelink control channel,PSCCH),物理侧行链路广播信道(physical sidelink broadcast channel,PSBCH),物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH),物理上行共享信道 (physical uplink shared channel,PUSCH),物理上行控制信道(physical uplink control channel,PUCCH)等。对于后续演进的组网形态,可能引入新的物理信道命名,本申请实施例不做限制。
九、参考信号(reference signal,RS):参考信号可用于物理信道解调、信道测量、干扰测量、或同步跟踪等。参考信号可以为解调参考信号(demodulation reference signal,DMRS),信道状态信息参考信号(channel state information reference signal,CSI-RS),探测参考信号(sounding reference signal,SRS),相位跟踪参考信号(phase-tracking reference signal,PT-RS),主同步信号(primary synchronization signal,PSS)或辅同步信号(secondary synchronization signal,SSS)。DMRS用于解调物理信道,例如,网络设备或终端设备根据DMRS进行信道估计,然后再根据估计出来的信道值解调物理信道。CSI-RS用于获取信道状态信息,例如,网络设备向终端设备发送CSI-RS,终端设备根据对CSI-RS的测量得到信道状态信息CSI并将CSI反馈给网络设备,网络设备基于该CSI对终端设备的调度。当然,参考信号还可以是其它类型的参考信号,或者具有其他功能的参考信号。
在通信感知一体化系统中,为了提高感知性能,以及减少感知信号的开销,感知信号在时域上通常是非连续的发送的。图6给出了感知信号在一个Slot内分布的示例,在图6中,感知信号占用符号6和符号13。其它符号中,网络设备可以用来向一个或多个终端设备传输数据,控制信息,参考信号等。可以理解的,感知信号在一个Slot内的分布也可以是在其它符号上,比如符号5和符号14,比如符号3,4,9,10,比如符号3,6,13等,本申请实施例对感知信号在一个Slot内占用的符号不作具体限定。
通过使用非连续的时域资源发送感知信号,网络设备可以在占用较小系统开销的情况下,探测被感知目标,比如网络设备可以估计出被感知目标的多普勒频偏,进而可以估计出被感知目标的移动速度等。同时,为了进一步充分利用感知信号占用的资源,该感知信号可以是网络设备发送给一个或一些终端设备的下行数据,还可以包含解调该下行数据的参考信号,比如感知信号可以是一个或一些终端设备PDSCH,以及解调该PDSCH的DMRS。当下行数据是单播数据时,感知信号可以是发送给一个终端设备的PDSCH,当下行数据是组播数据时,感知信号可以是发送给一组终端设备的PDSCH,通常该一组终端设备可以包括多个终端设备,该一组终端设备均接收该PDSCH上承载的信息。
网络设备在向一个或多个终端设备发送下行数据时,可以通过PDCCH发送下行控制信息(downlink control information,DCI),DCI中携带发送下行数据使用的时频域资源信息,即传输PDSCH的时频域资源信息。通常,PDSCH在时域上位于一个Slot内,占用一个或多个符号。相应的,DCI中携带的时域资源分配信息可以包括在该Slot内传输PDSCH的起始符号的索引S和持续符号数L。具体的,S代表传输PDSCH的第一个符号在当前Slot中的索引,如前文所述,对于NCP,一个Slot有14个符号,索引值可以从0到13。对于ECP,一个Slot有12个符号,索引值可以从0到12。L代表从起始符号索引开始算起的连续L个符号。可以理解的,对于S和L的取值一有定的约束,比如在NCP时,S+L小于或等于14。
一种实现方式中,可以在协议中制定多个S和L的组合,每个组合形成一个时域资源分配信息,网络设备通过DCI向终端设备发送其中的一个组合。下表1示出了一种在NCP时DCI中的时域资源分配信息中包含的S和L的可能的组合。如表1所示,当DCI中携带的行索引为1时,对应的S=2,L=12;当DCI中携带的行索引为2时,对应的S=3,L=11,等,不再一一赘述。
表1
Figure PCTCN2022093660-appb-000001
另一种实现方式中,可以通过信令半静态的配置S和L的可能的组合。比如通过无线资源控制(radio resource control,RRC)信令,通知一个或多个S和L的组合,一个S和L的组合称为起始及长度指示(start and length indicator,SLIV),即一个SLIV取值,对应一个S和L。然后网络设备再通过DCI向终端设备发送其中的一个SLIV的信息,终端设备通过SLIV与S和L的对应关系,获取S和L。
具体的,针对NCP,SLIV与S和L可以具有如下关系:
当L-1≤7时,SLIV=14*(L-1)+S;否则,SLIV=14*(14-L+1)+(14-1-S)。
同时S和L的取值的组合还应满足一定的约束关系,比如,对于NCP,S+L≤14,对于ECP,S+L≤12。
比如,SLIV=20,则知S=6,L=2。可以理解的,虽然S=6,L=14也满足上述SLIV与S,L的对应关系,但由于S+L大于14,则不属于有效值。
上面所述的网络设备通过S和L的组合方式,通知的时域资源只能是在连续的时域资源。而网络设备发送的感知信号在时域上是非连续的(如图2所示)。因此,上述通知S和L的组合的方式,会影响通信感知一体化系统中的资源利用率。比如,要通知非连续的多个时域资源,可能需要多个DCI,从而增加信令开销,影响资源利用率。
图5是本申请实施例提供的一种通信方法的示意性流程图。在该申请实施例中,网络设备通过指示信息指示非连续的子时域资源,用于发送PDSCH,该PDSCH或该PDSCH承载的信号可用作感知信号,用于感知目标设备。该方法可以提升通信感知一体化系统的资源利用率。具体的,通过设计新的DCI来通知上述非连续的子时域资源,可以减少使用DCI的开销,提升控制信道资源利用率。进一步的,将PDSCH所承载的信号用作感知信号,提升数据信道资源利用率。再进一步的,通过非连续的的时域资源发送感知信号,可以减少感知信号占用的时域资源,提升资源利用率。此外,该新设计的DCI可以使得时域资源分配更加灵活。
在下面方法中,被感知目标130与终端设备120可以是同一个,也可以是不同的。本申请各实施例不作限制。
在下面方法中,网络设备的步骤可以由组成网络设备的不同功能实体来实现,换言之,执行网络设备的步骤的功能实体可以位于不同的物理实体。比如网络设备发送或接收的动作可以位于网络设备的射频单元(radio frequency,RF),或者射频拉远单元(radio remote unit,RRU)或者有源天线处理单元(active antenna unit,AAU)。网络设备处理的动作可以位于网络设备的中心单元CU等。本申请对此不作限制。
具体的,该方法可以包括如下步骤。
S101,网络设备110向终端设备120发送指示信息,相应的终端设备120从网络设备110接收指示信息。
具体的,指示信息可以包含时域资源分配信息。该时域资源分配信息指示第一时域资源。
可以理解的,在本申请各实施例中,指示信息可以携带在物理层信令如下行控制信息DCI中,可以实现更动态灵活的通知第一时域资源,或者,可以携带在高层信令中,可以更可靠的通知第一时域资源,适用于第一时域资源变化比较缓慢的场景。
可替换的,该指示信息还可以通过物理层信令和高层信令的组合来传输,比如,网络设备110通过高层信令配置多个候选的时域资源,该多个候选的时域资源包括第一时域资源,该多个候选时域资源中的至少一个候选时域资源可以包含至少两个子时域资源,且每个候选时域资源对应一个索引,然后网络设备再通过物理层信令通知实际使用的时域资源,如第一时域资源。具体的,可以在DCI中携带第一时域资源对应的索引来指示第一时域资源。可以增加信令传输的可靠性,减少信令开销并具有一定的灵活性。该高层信令可以是RRC消息或媒体接入控制(media access control,MAC)控制元素(control element,CE),RRC消息可以包括专用RRC消息,或者广播多播的RRC消息,本申请实施例不作限制。
可替换的,该指示信息可以通过物理层信令、高层信令和协议固定中至少两个的组合来体现。比如指示信息中包含的部分信息在物理层信令中携带,另一部分信息在高层信令中携带;再比如指示信息中包含的部分信息在物理层信令中携带,另一部分信息在协议中固定;再比如,指示信息中包含的部分信息在物理层信令中携带,另一部分信息在高层信令中携带,其它部分在协议中固定等。关于高层信令、物理层信令的解释,可以参考上文,不再赘述。下面结合指示信息中具体包含的内容进行详述。
具体的,第一时域资源可以位于一个时隙内,本申请各实施例中,该一个时隙称为第一时隙,关于时隙的介绍,请参见上文,在此不作赘述。第一时域资源由M个子时域资源构成,该M个子时域资源中至少两个相邻的子时域资源之间间隔第一时间段,M为大于或等于2的整数。可以理解的,本申请实施例中,两个相邻的子时域资源指的是时域上相邻,两个相邻的子时域资源中间没有其它子时域资源。比如,假设M=3,M个子时域资源占用第一时隙中的符号3(第一子时域资源),符号6(第二子时域资源),符号13(第三子时域资源),则第一子时域资源和第二子时域资源是相邻的子时域资源,第二子时域资源和第三子时域资源是相邻的子时域资源,而是第一子时域资源和第三子时域资源不是相邻的子时域资源(中间有第二子时域资源)。
图6示出了第一时隙的示例,如图6所示,第一时隙包含N=14个符号(对应的索引为0~13),第一时域资源为符号6上的一个子时域资源和符号13上的一个子时域资源,即M=2。可以理解的,时间单元可以是一个符号(如OFDM符号),或者可以是X个符号,或者是一段时长,如0.07毫秒(millisecond,ms)等。本申请实施例对此不作限制。可以理解的,第一时隙可以包含其它数量个符号,如第一时隙包含12个符号,本申请实施例对此不作限制。可以理解的,第一时域资源在第一时隙内的分布可以是在其它符号上,比如符号5(第一子时 域资源)和符号14(第二子时域资源),比如符号3和4(第一子时域资源),9和10(第二子时域资源),比如符号3(第一子时域资源),6(第二子时域资源),13(第三子时域资源)等,本申请实施例对第一时域资源在第一时隙内的分布不作具体限定。
可以理解的,该M个子时域资源中至少两个相邻的子时域资源之间间隔第一时间段,第一时间段可以包含一个或多个时间单元,比如当时间单元为符号是一个符号时,第一时间段可以是一个符号(如OFDM符号),或者是X个符号,或者是一段时长,如0.07毫秒(millisecond,ms),或者一个或多个迷你时隙,或者一个或多个时隙等。本申请实施例对此不作限制。
以下描述中,以时间单元为符号为例进行描述。
可以替换的,第一时域资源可以位于不同时隙。比如,M=4,第一时域资源包含的前两个子时域资源位于时隙N的符号6(第一子时域资源)和13(第二子时域资源),后面两个子时域资源位于时隙N+1的符号4(第三子时域资源)和11(第四子时域资源)等。本申请实施例对第一时域资源的位置不作限制。
可以理解的,本步骤对于网络设备110和被感知目标130来说,是可选的。本步骤对于网络设备110和终端设备120来说,如果协议中规定了一种第一时域资源的分布信息,则也是可选的,即网络设备110和终端设备120均按协议规定的第一时域资源的分布信息进行下行数据传输。
在该步骤S101中,网络设备110执行的动作可以由前述通信装置(作为网络设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。相应的,终端设备120执行的动作可以由(作为终端设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。
S102,网络设备110在第一时域资源上向终端设备120发送物理下行共享信道PDSCH。
该PDSCH或PDSCH所承载的部分或全部信号可用作感知信号,或者说,感知信号为第一时域资源上承载的物理下行共享信道PDSCH,或者感知信号为PDSCH所承载的部分或全部信号,或者说,该PDSCH所占的时频资源上的信号可用作感知信号,或者说该PDSCH连同与该PDSCH关联的导频信号所占的时频资源上的信号可用作感知信号,其中,与该PDSCH关联的导频信号可以是用于解调该PDSCH的DMRS,或者用于相位跟踪的相位跟踪参考信号(phase tracking reference signal,PTRS)。
需要说明的是,图5中示出的两个S102,并不是说网络设备110需要执行两次S102,分别发送感知信号和下行数据,而是说网络设备110执行的S102对于终端设备120来说可以是下行数据,对于被感知目标130来说,是感知信号。
相应的,终端设备120根据指示信息,在第一时域资源上接收PDSCH(下行数据)。
可以理解的,在本申请实施例中,第一时域资源中发送的PDSCH,用于传输一个传输块(transport block,TB)的同一个冗余版本(redundancy version,RV)。即,在M个子时域资源共同传输该TB块,而不是每个子时域资源单独来传输该TB块或传输该TB的多个RV。
可以理解的,该下行数据可以是网络设备向一个或多个终端设备发送的下行数据(PDSCH),本申请实施例不做限制。例如,该下行数据可以是组播/广播数据,具体的,组/广播数据可以是视频,动态图层或道路安全信息等。
在该步骤S102中,网络设备110执行的动作可以由前述通信装置(作为网络设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。相应的,终端设备120执行的动作可以由(作 为终端设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。
S103,网络设备110接收PDSCH的全部或部分的回波信号。
本申请实施例中,被感知目标130称为第一目标。
具体的,网络设备110接收PDSCH的全部或部分承载的信号的回波信号,即网络设备接收被感知目标130针对感知信号的回波信号,该回波信号用于感知被目标130。也就是,感知信号经过被感知目标130透射、散射以及反射等产生电磁反馈信号,即回波信号。被感知目标130可以是一个或多个,本申请实施例不做限制。
在该步骤S103中,网络设备110执行的动作可以由前述通信装置(作为网络设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。
S104,网络设备110感知第一目标(被感知目标130)。
具体的,网络设备110根据接收到的PDSCH的全部或部分的回波信号,感知第一目标。
示例性的,网络设备110根据感知信号和感知信号的回波信号,获得第一目标的感知结果,例如,第一目标与网络设备的距离,角度,位置,移动速度,或,外形尺寸等。这样,网络设备110可以进一步利用感知结果辅助通信,提升通信的质量。
本申请实施例中,网络设备110采用自发自收的机制,在发送感知信号后,会收到感知信号的回波信号,并进行处理。例如,网络设备在t时该发送感知信号,在t+k时刻收到回波信号,则可估计出被感知目标的距离约为:((t+k)-t)*c/2。其中,c为光速。
在该步骤S104中,网络设备110执行的动作可以由前述通信装置(作为网络设备)的处理单元1100、处理器2100或处理电路3100执行。
该步骤S104可选。
需要指出的是,S101和S102之间的顺序可以是S101在前,也可以是S102在前,本申请实施例不作限制。
本申请实施例中,通过设计新的DCI来通知上述非连续的时域资源,可以减少使用DCI的开销,提升资源利用率。进一步的,将PDSCH所承载的信号用作感知信号,提升资源利用率。再进一步的,通过非连续的的时域资源发送感知信号,可以减少感知信号占用的时域资源,提升资源利用率。此外,该新设计的DCI可以使得时域资源分配更加灵活。
下面各实施例基于上述实施例,示出了指示信息的具体实现方式。对于下面各实施例之间以及与上述实施例中相同的术语和描述,为了减少重复,如果没有特殊说明,可以互相参考。
图7示出了一种指示信息的实现方式。该指示信息可以包含在下行控制信息DCI中,如图7所示,该DCI包含M个子时域资源中每个子时域资源的起始位置信息S i以及所述M个子时域资源中每个子时域资源的持续时间信息L i,i表示第i个子时域资源,i为正整数且1≤i≤M,M为大于或等于2的整数。
参考图7,如果M=2,在指示信息中包含时域资源分配信息{S 1,L 1},{S 2,L 2},比如行索引=2时,对应的{S 1,L 1}为{4,2},表示第一个子时域资源的起始位置为符号4,持续时间为2个符号,对应的{S 2,L 2}为{12,2}表示第二个子时域资源的起始位置为符号12,持续时间为2个符号。再比如行索引=3时,对应的{S 1,L 1}为{6,3},表示第一个子时域资源的起始位置为符号6,持续时间为3个符号,对应的{S 2,L 2}为{13,1}表示第二个子时域资源的起始位置为符号13,持续时间为1个符号。
可以理解的,本申请实施例中,第一个子时域资源指的是在第一时隙中,时域上最早的子时域资源。
再参考图7,如果M=3,在指示信息中包含时域资源分配信息{S 1,L 1},{S 2,L 2},{S 3,L 3},比如行索引=n时,对应的{S 1,L 1}为{6,1},表示第一个子时域资源的起始位置为符号6,持续时间为1个符号,对应的{S 2,L 2}为{9,1}表示第二个子时域资源的起始位置为符号9,持续时间为1个符号,对应的{S 3,L 3}为{13,1}表示第三个子时域资源的起始位置为符号13,持续时间为1个符号。再比如行索引=n+1时,对应的{S 1,L 1}为{5,2},表示第一个子时域资源的起始位置为符号5,持续时间为2个符号,对应的{S 2,L 2}为{8,2}表示第二个子时域资源的起始位置为符号8,持续时间为2个符号,对应的{S 3,L 3}为{12,2}表示第三个子时域资源的起始位置为符号12,持续时间为2个符号。
图7只示出了M=2和M=3的情况,可以理解的,M还可以是其它值,本申请不作限制。
一种实施方式中,不同M值对应的时域资源分配信息{S i,L i},i∈[1,M]的组合可以共用图7所示的时域资源分配表,其中“i∈[1,M]”表示从i取值可以从1到M。此时,行索引在多个M值对应的时域资源分配信息中统一编码,比如M=2和M=3,均使用图7的表。进一步的,M=1也可以与M=2和M=3共用图7所示的表格。其中,如图7所示表格中如果S i=0表示第i个子时域资源不存在,或者表示第i至第M个子时域资源不存在,或者说在该指示信息中没有指示第i个子时域资源,或者说在该指示信息中没有指示第i至第M个子时域资源。比如,行索引=1时,S 2=0,表示第2个子时域资源不存在,或者表示第2至第M个子时域资源不存在。可以理解的是,如果S i=0,也可以理解为该行索引对应的M值实际上为i-1。比如图7中,行索引为2对应的S 2=0,可以理解为M=1等。当指示信息包含在DCI中时,DCI中可以携带一个行索引,指示第一时域资源。采用该方式的指示信息可以对不同M值的时域资源进行统一处理,可以简化处理过程。
另一种实施方式中,不同M值对应的时域资源分配信息{S i,L i},i∈[1,M]组合可以对应不同的表格,比如M=1对应的时域资源分配信息对应第一表格,M=2对应的时域资源分配信息对应第二表格,M=3对应的时域资源分配信息对应第三表格等。此时指示信息中可以包含使用的表格的信息以及对应表格中的行索引,以指示M个子时域资源的起始位置信息和持续时间信息。进一步的,使用的表格信息可以通过高层信令指示,对应表格内的行索引信息可以通过物理层信令指示。具体信令形式可以参见上文介绍,不再赘述。该实施方式可以减少物理层信令的开销。
可以替换的,图7所示的指示信息可以通过高层信令传输。比如,在RRC消息中携带一个时域资源分配信息{S i,L i},i∈[1,M]组合,比如携带的时域资源分配信息为{S 1,L 1},{S 2,L 2},或者携带的时域资源分配信息为{S 1,L 1},{S 2,L 2},{S 3,L 3},或者携带多个SLIV,不同的SLIV与不同的{S i,L i}关联,如SLIV1与{S 1,L 1}关联,SLIV2与{S 2,L 2}关联,终端侧根据该SLIV与可以确定出相应的{S i,L i}。具体的指示方式与该指示信息为DCI信息时类似,不再赘述。采用高层信令传输,可以增强指示信息的可靠性。
可以替换的,图7所述的指示信息可以通过物理层信令、高层信令和协议固定中至少两个的组合来体现。比如,在物理层信令中传输{S i},在高层信令中或协议中固定{L i},或者反过来。该方案可以进一步减少DCI信令开销,增强指示信息的可靠性。
值的注意的,同一时域资源分配信息中,不同{S i,L i}对应的符号可以没有先后顺序,但通常不同{S i,L i}对应不同的符号,不会重叠。这样可以确保使用较少的行索引来设置表格,减少信令开销。
采用图7所示的实现方式,指示信息提供的信息更全,资源调度更灵活,即可以灵活指示不同子时域资源的起始位置信息和长度信息。
图8示出了另一种指示信息的实现方式。该指示信息可以包含在高层信令如RRC消息,也可以包含在物理层信息如DCI中。该指示信息采用比特位图(bitmap)的方式,指示第一时域资源中包含的M个子时域资源。具体的,图8示出一个时隙(如第一时隙)中包含N=14个符号,对应的索引分别为0~13。此时,指示信息中可以包含N=14个bit,分别与符号0到符号13一一对应。当指示信息中某个bit取值为1时,表示该bit对应的符号属于第一时域资源,可用于传输感知信号(下行数据)。当指示信息中某个bit取值为0时,表示该bit对应的符号不属于第一时域资源。即,第一时域资源中的M个子时域资源包含bit取值为1对应的符号,但不包含bit取值为0对应的符号。可以理解的,当连续多个bit取值为1时,该连续多个bit对应的符号可以属于同一个子时域资源,不连续的bit取值为1时,对应的符号属于不同的子时域资源。如图8所示,位图中各bit的取值为00000010000001,表示第一时域资源由两个子时域资源构成(符号6对应的第一子时域资源和符号13对应的第二时域资源。再比如,位图中各bit的取值为00000110000001(图8中未示出),表示第一时域资源由两个子时域资源构成(符号6和7对应的第一子时域资源和符号13对应的第二时域资源。采用位图的方式,可以使第一时域资源的分配更加灵活,采用图7所示的实现方式,资源调度加灵活,即位图可以灵活指示不同子时域资源的起始位置信息和长度信息,从而更有效利用时域资源,提升通信性能。
图9示出了另一种指示信息的实现方式。该实现方式中,相比图7和图8所示的实施方式,可以进一步节省信令开销。
如图9所示,指示信息该指示信息可以包含在物理层信息如DCI中。该指示信息中可以包含M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及偏移量O 1中的至少一个,其中,M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,L 1,O 1中的至少一个存在第一关联关系。可以替换的,M个子时域资源中第i个子时域资源的起始位置信息S i根据所述S 1,L 1,O 1中的至少一个来确定。
一种实施方式中,S i与S 1之间的第一关联关系可以包括:
S i=n*S 1,或者S i=i*S 1,其中n为正整数,第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2且小于或等于M的整数。
另一种实施方式中,S i与L 1之间的第一关联关系可以包括:S i=n*L 1+1,其中n为正整数。
另一种实施方式中,S i与O 1之间的第一关联关系可以包括:S i=n*O 1,其中n为正整数。
另一种实施方式中,S i与S 1和O 1之间的第一关联关系可以包括:
S i=S i-1-1+O 1,或者,S i=S i-1+O 1,第i个子时域资源的持续时间信息L i=L 1,
其中,i为大于或等于2且小于或等于M的整数。进一步的,O 1大于L 1
另一种实施方式中,第一关联关系可以包括:
S i=S i-1+L 1-1+O 1,第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2且小于或等于M的整数。
比如,对于行索引为n,指示信息中包含的{S 1,L 1}为{6,1},O 1为7,假设M=2,则该指示信息指示的第一时域资源除符号6对应的时域资源外,还包括符号13(S i=S i-1+L 1-1+O 1=6+1-1+7)。再比如,对于行索引为n+1,指示信息中包含的{S 1,L 1}为{5,2}, O 1为7,假设M=2,则该指示信息指示的第一时域资源除符号5和6对应的时域资源外,还包括符号12和13(S i=S i-1+L 1-1+O 1=5+2-1+6)对应的时域资源。再比如,对于行索引为1,指示信息中包含的{S 1,L 1}为{2,2},O 1为2,假设M=3,则该指示信息指示的第一时域资源除符号2和3对应的时域资源外,还包括符号5和6对应的时域资源,以及符号8和9对应的时域资源。
与图7中描述类似,一种实施方式中,不同M值对应的时域资源分配信息{S 1,L 1,O 1}可以共用图9所示的表,其中,如图9所示表格中如果O 1=0表示第2个至第M个子时域资源不存在,或者说在该指示信息中没有指示第i至第M个子时域资源。可以理解的是,如果O 1=0,也可以理解为该行索引对应的M值实际上1。比如图9中,行索引为2对应的O 1=0,可以理解为M=1等。相关描述可以参考上文图7对应的描述。采用该方式的指示信息可以对不同M值的时域资源进行统一处理,可以简化处理过程。
另一种实施方式中,不同M值对应的时域资源分配信息{S 1,L 1,O 1}组合可以对应不同的表格,此时指示信息中可以包含使用的表格的信息以及对应表格中的行索引,以指示M个子时域资源的起始位置信息和持续时间信息。进一步的,使用的表格信息可以通过高层信令指示,对应表格内的行索引信息可以通过物理层信令指示。具体信令形式可以参见上文介绍,不再赘述。该实施方式可以减少物理层信令的开销。
可以理解的,上述S 1,L 1,O 1中的一个或多个可以包含在高层信令中或者在协议中固定。比如,在DCI中包含S 1,L 1,在RRC信令中包含O 1,或者,在DCI中包含S 1,在RRC信令中包含L 1,O 1,或者,在DCI中包含S 1,在RRC信令中包含L 1,O 1在协议中固定或者说O 1不存在。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
当O 1在协议中固定或者说O 1不存在时,可以有如下几种实施方式。
在第一种实施方式中,第i个子时域资源的起始位置信息可以S i满足如下S i=n*S i-1。,n为大于1的整数。比如n=3,M=2,S 1=2,L 1=1,则第一个子时域资源为符号2,第二个子时域资源为符号6(S 2=3*S 1=6,L 2=L 1=1)等。此时信令开销可以进一步减少。
在第二种实施方式中,第i个子时域资源的起始位置信息S i满足S i=n*S i-1+L 1,n为大于1的整数。比如n=3,M=2,S 1=2,L 1=1,则第一个子时域资源为符号2,第二个子时域资源为符号7(S 2=3*S 1+L 1=7,L 2=L 1=1)等。此时信令开销可以进一步减少。
在第三种实施方式中,第i个子时域资源的起始位置信息S i满足S i=n*S 1,n为大于1的整数。比如n=3,M=2,S 1=2,L 1=1,则第一个子时域资源为符号2,第二个子时域资源为符号6(S 2=3*S 1=6,L 2=L 1=1)等。比如n=3,M=3时,则第一个子时域资源为符号2,第二个子时域资源为符号6(S 2=3*S 1=6,L 2=L 1=1),第三个子时期资源为符号9(S 3=3*S 1=9,L 2=L 1=1)等。此时信令开销可以进一步减少。
进一步的,指示信息中还可以包含使能标志位(Enable Flag),该使能标志位在本申请实施例中也称为第一指示信息,当该标志位取值为1时(第一取值),用于指示M个子时域资源的起始位置和持续时间,具体实施方式可以参考上文。当该标志位取值为0时(第二取值)时,用于只指示第一子时域资源的起始位置和持续时间,即此时,指示信息中不指示除第一子时域资源之外的其它子时域资源,或者说此时,相当于M=1。
可以理解的,针对当O 1在协议中固定或者说O 1不存在时的几种实施方式,S 1,L 1,和第一指示信息可以包含在物理层信令或高层信令或其组合信令中,比如,DCI中包含S 1,L 1,和第一指示信息中的至少一个,其它的包含在高层信令中,或者在协议中固定。具体可以参考上文中类似描述。
此外,可以替换的,该指示信息中可以包含M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,第一指示信息中的至少一个。其中,M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,和L 1中的至少一个存在第四关联关系。可以替换的,M个子时域资源中第i个子时域资源的起始位置信息S i根据所述S 1和L 1中的至少一个来确定。第四关联关系可以参考上文中关于第一关联关系的描述,在此不作赘述。
本申请实施例还提供了另一种指示信息的实现方式,该实现方式与图9所示的实现方式的不同之处在于,指示信息中携带M个子时域资源的起始位置信息S 1,持续时间信息L i,i∈[1,M]和O 1中的至少一个。相应的第i个子时域资源的起始位置信息S i与所述S 1,L i,O 1中的至少一个存在第二关联关系。可以替换的,第i个子时域资源的起始位置信息S i可以根据所述S 1,L i,O 1中的至少一个来确定。
一种实施方式中,S i与S 1之间的第二关联关系可以包括:
S i=n*S 1,或者S i=i*S 1,其中n为正整数,第i个子时域资源的持续时间信息L i=L 1,
其中,i为大于或等于2且小于或等于M的整数。
另一种实施方式中,S i与L i之间的第一关联关系可以包括:
Figure PCTCN2022093660-appb-000002
其中j为正整数。
另一种实施方式中,S i与O 1之间的第一关联关系可以包括:S i=n*O 1,其中n为正整数。
另一种实施方式中,S i与S 1和L i之间的第二关联关系可以包括:
S i=nS 1+L i-1-1,或者,S i=S 1+nL i-1-1,其中n为正整数,i为大于或等于2且小于或等于M的整数。
另一种实施方式中,S i与所述S 1,L i,O 1之间第二关联关系可以包括:
S i=S i-1+L i-1-1+O 1。比如M=2,S 1=6,L 1=1,L 2=2,O 1=2,此时,第一个子时域资源为符号6,第二个子时域资源为符号8和9。比如M=3,S 1=6,L 1=1,L 2=2,L 3=1,O 1=2,此时,第一个子时域资源为符号6,第二个子时域资源为符号8和9,第三个子时域资源为符号11。相关描述可以参考图9对应的内容以及上文其它内容,不再赘述。
可以理解的,上述S 1,L i,O 1中的一个或多个可以包含在高层信令中或者在协议中固定。比如,在DCI中包含S 1,L i,在RRC信令中包含O 1,或者,在DCI中包含S 1,在RRC信令中包含L i,O 1,或者,在DCI中包含S 1,在RRC信令中包含L i,在协议中固定O 1。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
本申请实施例还提供了另一种指示信息的实现方式,该实现方式与图9所示的实现方式的不同之处在于,指示信息中携带S 1,L 1,和第i子时域资源的偏移量O i中的至少一个,i∈[2,M]。相应的第i个子时域资源的起始位置信息S i与S 1,L 1,O i中的至少一个存在第三关联关系。可以替换的,第i个子时域资源的起始位置信息S i可以根据所述S 1,L 1,O i中的至少一个来确定。
一种实施方式中,S i与S 1之间的第三关联关系可以参考上文中关于第一关联关系或第二关联关系的描述,在此不作赘述。
另一种实施方式中,S i与S 1,O i之间的第三关联关系可以包括S i=(i-1)*S 1+O i,或者S i=i*S 1+O i,其中n为正整数,第i个子时域资源的持续时间信息L i=L 1,i为大于或等于2且小于或等于M的整数。进一步的,O i大于L 1
另一种实施方式中,S i与S 1,L 1,O i之间的第三关联关系可以包括:S i=S i-1+L 1-1+O i。 比如M=2,S 1=6,L 1=1,O 2=2,此时,第一个子时域资源为符号6,第二个子时域资源为符号8。比如M=3,S 1=6,L 1=1,O 2=2,O 3=1,此时,第一个子时域资源为符号6,第二个子时域资源为符号8,第三个子时域资源为符号10。相关描述可以参考图9对应的内容以及上文其它内容,不再赘述。
可以理解的,上述S 1,L 1,O i中的一个或多个可以包含在高层信令中或者在协议中固定。比如,在DCI中包含S 1,L 1,在RRC信令中包含O i,或者,在DCI中包含S 1,在RRC信令中包含L 1,O i,或者,在DCI中包含S 1,在RRC信令中包含L 1,在协议中固定O i。可以进一步减少DCI的开销,提升上述信息的传输可靠性。
可以理解的,当M个子时域资源均位于一个时隙时,上述各实施例中指示信息指示的{S i,L i},i∈[1,M]的组合中各{S i,L i}之间存在一些约束关系。示例性的,该约束关系可以包括不同子时域资源之间没有重复的时域符号。还可以包括,指示信息指示的各子时域资源不能超出第一时隙,即任一子时域资源所在的时域符号均应在0至N-1(在多个时隙中周期性重复的第一时域资源除外)。进一步的,当指示信息指示的某个子时域资源中部分符号位于第一时隙之外,则可以理解为该位于第一时隙之外的符号无效,只有位于第一时隙之内的部分符号是有效的,可以用于发送感知信号(下行数据)。当指示信息指示的个子时域资源占用的全部符号位于第一时隙之外,则可以理解为该子时域资源无效,网络设备不在该子时域资源上发送感知信号(下行数据)。如前所述,该约束关系还可以包括至少两个相邻的子时域资源之间存在时间间隔,即是不连续的。进一步的,任意两个相邻的子时域资源不连续,间隔时间间隔。进一步的,不同的相邻的子时域资源之间的时间间隔可以相同,也可以不同,本申请实施例对此不作限制。比如有第一时域资源由三个子时域资源a,b,c构成,其中,子时域资源a占用符号3,子时域资源b占用符号7,子时域资源c占用符号13,则a与b之间的时间间隔为4,b与c之间的时间间隔为6。
此外,本申请提供了另一种通信方法。该方法中,上文中的指示信息包含在高层信令,如RRC消息中。即网络设备110向终端设备120发送高层信令如RRC消息,指示第一时域资源。相应的终端设备120接收该高层信令如RRC消息。在该步骤中,网络设备110执行的动作可以由前述通信装置(作为网络设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。相应的,终端设备120执行的动作可以由(作为终端设备)的处理单元1100、处理器2100或处理电路3100通过前述通信装置(作为网络设备)的收发单元1200,收发器2200或接口电路3200来执行。
进一步的,网络设备再向终端设备发送物理层信令如DCI,用于指示终端设备使用高层信令中指示的第一时域资源进行PDSCH传输,或者说,该物理层信令如DCI用于激活高层信令如RRC消息指示的第一时域资源。相应的,终端设备接收DCI。
进一步的,网络设备110可以执行S102,向终端设备发送PDSCH,相应的终端设备接收PDSCH。具体描述见上文。
该方案可以减少DCI的信令开销,增加信令传输可靠性。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的信息通信方法中网络设备执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的通信方法中终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的通信方法中网络设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的通信方法中终端设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的通信方法中网络设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的通信方法中终端设备执行的操作和/或处理被执行。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    向终端设备发送下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,其中,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;
    在所述第一时域资源上发送物理下行共享信道PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述PDSCH的全部或部分的回波信号,其中,所述回波信号用于感知第一目标。
  3. 根据权利要求1或2所述的方法,其特征在于,所述DCI用于指示所述第一时域资源包括:
    所述DCI包含所述M个子时域资源中每个子时域资源的起始位置信息,和/或所述M个子时域资源中每个子时域资源的持续时间信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述DCI用于指示所述第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及偏移量O 1中的至少一个,其中,所述M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,L 1,O 1中的至少一个存在第一关联关系,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2且小于或等于M的整数。
  5. 根据权利要求1或2所述的方法,其特征在于,所述DCI用于指示所述第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述M个子时域资源中第i个持续时间信息L i,以及偏移量O 1中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L i,O 1中的至少一个存在第二关联关系,其中,i为大于或等于2且小于或等于M的整数。
  6. 根据权利要求1或2所述的方法,其特征在于,所述DCI用于指示所述第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及所述M个子时域资源中第i个的偏移量O i中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L 1,O i中的至少一个存在第三关联关系,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。
  7. 根据权利要求1或2所述的方法,所述DCI用于指示所述第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L,以及第一指示信息中的至少一个,所述第一指示信息为第一取值时,指示所述M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,和L中的至少一个存在第四关联关系,所述第i个子时域资源的持续时间信息L i=L,其中,i,n为大于或等于2小于或等于M的整数。
  8. 根据权利要求1或2所述的方法,所述DCI用于指示所述第一时域资源包括:所述DCI包含位图信息,其中,所述位图信息包含N个比特,与所述第一时隙中包含的N个时间单元一一对应,所述M个子时域资源包含取值为“1”的比特对应的时间单元,且不包含取值为“0”的比特对应的时间单元。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,在所述向终端设备发送下行控制信息DCI之前,所述方法还包括:
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令指示至少一个候选时域资源,其中每个候选时域资源对应一个索引,所述至少一个候选时域资源包括所述第一时域资源;
    所述DCI用于指示所述第一时域资源包括:所述DCI包含所述第一时域资源对应的索引。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一时间段为X个符号的长度,X为大于或等于1的整数;或者为Y ms,Y大于0;或者为Z时隙,Z大于0。
  11. 一种通信方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;
    在所述第一时域资源上接收物理下行共享信道PDSCH。
  12. 根据权利要求11所述的方法,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中每个子时域资源的起始位置信息和/或所述M个子时域资源中每个子时域资源的持续时间信息。
  13. 根据权利要求11所述的方法,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及偏移量O 1中的至少一个,其中,所述M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,L 1,O 1中的至少一个存在第一关联关系,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。
  14. 根据权利要求11所述的方法,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述M个子时域资源中第i个持续时间信息L i,以及偏移量O 1中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L i,O 1中的至少一个存在第二关联关系,其中,i为大于或等于2小于或等于M的整数。
  15. 根据权利要求11所述的方法,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及所述M个子时域资源中第i个的偏移量O i中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L 1,O i中的至少一个存在第三关联关系,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。
  16. 根据权利要求11所述的方法,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L,以及第一指示信息中的至少一个,所述第一指示信息为第一取值时,指示所述M个子时域资源中第i个子时域资源的起始位置信息S i与S 1,和L中的至少一个存在第四关联关系,所述第i个子时域资源的持续时间信息L i=L,其中,i,n为大于或等于2小于或等于M的整数。
  17. 根据权利要求11所述的方法,所述DCI用于指示第一时隙中的第一时域资源包括:所述DCI包含位图信息,其中,所述位图信息包含N个比特,与所述第一时隙中包含的N个时间单元一一对应,所述M个子时域资源包含取值为“1”的比特对应的时间单元,且不包含取值为“0”的比特对应的时间单元。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,在接收所述下行控制信息DCI之前,所述方法还包括:
    接收无线资源控制RRC信令,所述RRC信令指示至少一个候选时域资源,其中每个候选时域资源对应一个索引,所述至少一个候选时域资源包括所述第一时域资源;
    所述DCI用于指示第一时隙中的第一时域资源包括:所述DCI包含所述第一时域资源对应的索引。
  19. 根据权利要求11-17任一项所述的方法,其特征在于,所述第一时间段为X个符号的长度,X为大于或等于1的整数;或者为Y ms,Y大于0;或者为Z时隙,Z大于0。
  20. 一种通信装置,其特征在于,包括处理单元和收发单元,
    所述处理单元用于通过所述收发单元向终端设备发送下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,其中,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;以及在所述第一时域资源上发送物理下行共享信道PDSCH。
  21. 根据权利要求20所述的装置,其特征在于,
    所述处理单元还用于通过所述收发单元,接收所述PDSCH的全部或部分的回波信号,其中,所述回波信号用于感知第一目标。
  22. 一种通信装置,其特征在于,包括处理单元和收发单元,
    所述处理单元用于通过所述收发单元,接收下行控制信息DCI,所述DCI用于指示第一时隙中的第一时域资源,所述第一时域资源由M个子时域资源构成,所述M个子时域资源中至少两个相邻子时域资源之间间隔第一时间段,M为大于或等于2的整数;以及
    在所述第一时域资源上接收物理下行共享信道PDSCH。
  23. 根据权利要求20、21、或22所述的装置,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中每个子时域资源的起始位置信息和/或所述M个子时域资源中每个子时域资源的持续时间信息。
  24. 根据权利要求20、21、或22所述的装置,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域 资源的持续时间信息L 1,以及偏移量O 1中的至少一个,其中,所述M个子时域资源中第i个子时域资源的起始位置信息S i与所述S 1,L 1,O 1中的至少一个存在第一关联关系,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。
  25. 根据权利要求20、21、或22所述的装置,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述M个子时域资源中第i个持续时间信息L i,以及偏移量O 1中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L i,O 1中的至少一个存在第二关联关系,其中,i为大于或等于2小于或等于M的整数。
  26. 根据权利要求20、21、或22所述的装置,其特征在于,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L 1,以及所述M个子时域资源中第i个的偏移量O i中的至少一个,其中,所述第i个子时域资源的起始位置信息S i与所述S 1,L 1,O i中的至少一个存在第三关联关系,所述第i个子时域资源的持续时间信息L i=L 1,其中,i为大于或等于2小于或等于M的整数。
  27. 根据权利要求20、21、或22所述的装置,所述DCI用于指示第一时隙中的第一时域资源包括:
    所述DCI包含所述M个子时域资源中第一个子时域资源的起始位置信息S 1,所述第一个子时域资源的持续时间信息L,以及第一指示信息中的至少一个,所述第一指示信息为第一取值时,指示所述M个子时域资源中第i个子时域资源的起始位置信息S i与S 1,和L中的至少一个存在第四关联关系,所述第i个子时域资源的持续时间信息L i=L,其中,i,n为大于或等于2小于或等于M的整数。
  28. 根据权利要求20、21、或22所述的装置,所述DCI用于指示第一时隙中的第一时域资源包括:所述DCI包含位图信息,其中,所述位图信息包含N个比特,与所述第一时隙中包含的N个时间单元一一对应,所述M个子时域资源包含取值为“1”的比特对应的时间单元,且不包含取值为“0”的比特对应的时间单元。
  29. 根据权利要求20-28任一项所述的装置,其特征在于,在所述向终端设备发送下行控制信息DCI之前,所述方法还包括:
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令指示至少一个候选时域资源,其中每个候选时域资源对应一个索引,所述至少一个候选时域资源包括所述第一时域资源;
    所述DCI用于指示第一时隙中的第一时域资源包括:所述DCI包含所述第一时域资源对应的索引。
  30. 根据权利要求20-29任一项所述的装置,其特征在于,所述第一时间段为X个符号的长度,X为大于或等于1的整数;或者为Y ms,Y大于0;或者为Z时隙,Z大于0。
  31. 一种计算机可读存储介质,用于存储指令,当所述指令被计算机运行时,使得所述计算机执行如权利要求1-11任一项所述的方法,或执行如权利要求12-19任一项所述的方法。
  32. 一种通信装置,包括处理器,所述处理器与存储器耦合,所述存储器用于存储指令,当所述指令被所述处理器运行时,使得所述通信装置执行如权利要求1-11任一项所述的方法。
  33. 一种通信装置,包括处理器,所述处理器与存储器耦合,所述存储器用于存储指令,当所述指令被所述处理器运行时,使得所述通信装置执行如权利要求12-19任一项所述的方法。
PCT/CN2022/093660 2021-05-20 2022-05-18 一种通信方法及通信装置 WO2022242694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22804014.3A EP4311344A1 (en) 2021-05-20 2022-05-18 Communication method and communication apparatus
US18/511,688 US20240089989A1 (en) 2021-05-20 2023-11-16 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110552778.3 2021-05-20
CN202110552778.3A CN115379569A (zh) 2021-05-20 2021-05-20 一种通信方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/511,688 Continuation US20240089989A1 (en) 2021-05-20 2023-11-16 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022242694A1 true WO2022242694A1 (zh) 2022-11-24

Family

ID=84059139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093660 WO2022242694A1 (zh) 2021-05-20 2022-05-18 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20240089989A1 (zh)
EP (1) EP4311344A1 (zh)
CN (1) CN115379569A (zh)
WO (1) WO2022242694A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945817A (zh) * 2017-06-08 2020-03-31 Lg电子株式会社 无线通信系统中的资源分配相关信令方法和使用该方法的设备
CN111181707A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 数据传输的方法和通信装置
CN111867074A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 接收数据和发送数据的方法、通信装置
US20210014866A1 (en) * 2018-04-04 2021-01-14 Zte Corporation Methods, apparatus and systems for preempting uplink transmission resource in a wireless communication
WO2021047615A1 (zh) * 2019-09-10 2021-03-18 华为技术有限公司 参考信号传输方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945817A (zh) * 2017-06-08 2020-03-31 Lg电子株式会社 无线通信系统中的资源分配相关信令方法和使用该方法的设备
US20210014866A1 (en) * 2018-04-04 2021-01-14 Zte Corporation Methods, apparatus and systems for preempting uplink transmission resource in a wireless communication
CN111181707A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 数据传输的方法和通信装置
CN111867074A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 接收数据和发送数据的方法、通信装置
WO2021047615A1 (zh) * 2019-09-10 2021-03-18 华为技术有限公司 参考信号传输方法及通信装置

Also Published As

Publication number Publication date
US20240089989A1 (en) 2024-03-14
CN115379569A (zh) 2022-11-22
EP4311344A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US10440689B2 (en) Method and apparatus for resource allocation in V2V communications system
WO2018177109A1 (zh) 数据传输方法、装置、终端及存储介质
US11363499B2 (en) Resource configuration method, apparatus, and system
CN109600832B (zh) 寻呼消息的传输方法及装置
EP2802165B1 (en) Indication of device to device communication state to base station
JP2023101787A (ja) サイドリンクチャネルリソースユニットの構成のための方法および装置
US9674695B2 (en) Method, terminal, and base station for transmitting information
WO2019174453A1 (zh) 信息发送的方法和装置
EP3955679A1 (en) Communication method and terminal device
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
EP3860022B1 (en) Communication method and apparatus
WO2018176324A1 (zh) 数据交互的方法、终端设备及网络设备
KR102535608B1 (ko) 전력 제어 방법 및 장치
EP3226629B1 (en) Internet-of-vehicles communication method and apparatus
US20190335434A1 (en) Receiving Node, Sending Node, and Transmission Method
WO2021259326A1 (en) Apparatus and method of wireless communication
WO2021238504A1 (zh) 一种上行传输资源指示方法及装置
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
CN111106863A (zh) 用于信号传输的方法和设备
CN115118402A (zh) 一种通信方法及通信装置
WO2022242694A1 (zh) 一种通信方法及通信装置
US20230300858A1 (en) A method and an apparatus for ue coordination
CN114846888A (zh) 一种参考信号的传输方法、装置及系统
CN114600481A (zh) 一种通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022804014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022804014

Country of ref document: EP

Effective date: 20231019

NENP Non-entry into the national phase

Ref country code: DE