WO2023164909A1 - 发送srs的方法、接收srs的方法、装置、设备、介质及产品 - Google Patents

发送srs的方法、接收srs的方法、装置、设备、介质及产品 Download PDF

Info

Publication number
WO2023164909A1
WO2023164909A1 PCT/CN2022/079154 CN2022079154W WO2023164909A1 WO 2023164909 A1 WO2023164909 A1 WO 2023164909A1 CN 2022079154 W CN2022079154 W CN 2022079154W WO 2023164909 A1 WO2023164909 A1 WO 2023164909A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
port groups
srs
antenna
transmission
Prior art date
Application number
PCT/CN2022/079154
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000675.9A priority Critical patent/CN117015949A/zh
Priority to PCT/CN2022/079154 priority patent/WO2023164909A1/zh
Publication of WO2023164909A1 publication Critical patent/WO2023164909A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to the communication field, and in particular to a method for sending an SRS, a method for receiving an SRS, a device, a device, a medium, and a product.
  • the uplink Sounding Reference Signal can be used to measure and estimate the channel quality of the uplink channel.
  • multiple antenna ports can be configured for the user terminal (User Equipment, UE), and the UE supports the transmission of SRS with a maximum of 4 antenna ports.
  • UE User Equipment
  • Embodiments of the present disclosure provide a method for sending an SRS, a method for receiving an SRS, an apparatus, a device, a medium, and a product. Described technical scheme is as follows:
  • a method for sending an SRS is provided, the method is performed by a terminal, and the method includes:
  • SRS resources include 8 antenna ports
  • a method for receiving an SRS is provided, the method is performed by a network device, and the method includes:
  • an apparatus for sending an SRS comprising:
  • the first receiving module is configured to receive configuration information of SRS resources, where the SRS resources include 8 antenna ports;
  • the first sending module is configured to map the SRSs corresponding to at least two antenna port groups on physical resources corresponding to different transmission combs, and simultaneously send the SRSs corresponding to the at least two antenna port groups, the at least two antennas
  • the port group is obtained based on the division of the eight antenna ports.
  • an apparatus for receiving an SRS comprising:
  • the second sending module is configured to send configuration information of SRS resources, where the SRS resources include 8 antenna ports;
  • the second receiving module is configured to simultaneously receive SRSs corresponding to at least two antenna port groups on physical resources corresponding to different transmission combs, and the at least two antenna port groups are obtained based on the division of the eight antenna ports.
  • a terminal is provided, and the terminal includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the method for sending an SRS as described in the above aspects.
  • a network device including:
  • transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the method for receiving the SRS described in the above aspects.
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, and the at least one instruction, The at least one program, the code set or the instruction set is loaded and executed by a processor to implement the method for sending an SRS as described in the above aspects, or the method for receiving an SRS.
  • a computer program product (or computer program)
  • the computer program product includes computer instructions, and the computer instructions are stored in a computer-readable storage medium;
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the method for sending an SRS as described in the above aspects, or, The method for receiving the SRS.
  • the 8 antenna ports in the SRS resource can be divided into at least two antenna port groups, and after receiving the configuration information of the SRS resource, the terminal maps the SRS corresponding to the at least two antenna port groups on different On the physical resources corresponding to the transmission comb, at least two SRSs corresponding to the antenna port groups are sent at the same time.
  • This method is used to support the realization of related functions when the terminal uses 8 transmission antenna ports. For example, it is used to support the terminal to use 8 transmission antenna ports.
  • Codebook-based channel quality detection in the case of antenna ports, or non-codebook-based channel quality detection in the case where the terminal uses 8 transmit antenna ports, or used to support the terminal using 8 transmit antenna ports Channel quality detection during antenna switching in the case of
  • Fig. 1 is a block diagram of a communication system shown according to an exemplary embodiment
  • Fig. 2 is a flowchart of a method for sending an SRS according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing mapping of SRS resources according to an exemplary embodiment
  • Fig. 4 is a flowchart of a method for sending an SRS according to another exemplary embodiment
  • Fig. 5 is a schematic diagram showing mapping of SRS resources according to another exemplary embodiment
  • Fig. 6 is a schematic diagram showing mapping of SRS resources according to another exemplary embodiment
  • Fig. 7 is a flowchart of a method for sending an SRS according to another exemplary embodiment
  • Fig. 8 is a schematic diagram showing mapping of SRS resources according to another exemplary embodiment
  • Fig. 9 is a schematic diagram showing mapping of SRS resources according to another exemplary embodiment.
  • Fig. 10 is a schematic diagram of mapping of SRS resources according to another exemplary embodiment
  • Fig. 11 is a flowchart of a method for receiving an SRS according to an exemplary embodiment
  • Fig. 12 is a block diagram of a device for sending an SRS according to an exemplary embodiment
  • Fig. 13 is a block diagram of a device for receiving an SRS according to an exemplary embodiment
  • Fig. 14 is a schematic structural diagram of a terminal shown according to an exemplary embodiment
  • Fig. 15 is a schematic structural diagram of an access network device according to an exemplary embodiment.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a user terminal 14 .
  • the access network 12 includes several network devices 120 .
  • the network device 120 may be a base station, and the base station is a device deployed in an access network to provide a wireless communication function for a user terminal (referred to as "terminal" for short) 14 .
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with base station functions may be different, for example, in Long Term Evolution (LTE) systems, it is called eNodeB or eNB; in 5G NR (New Radio, new air interface) system, called gNodeB or gNB.
  • LTE Long Term Evolution
  • gNodeB New Radio, new air interface
  • the description "base station” may change.
  • the above-mentioned devices that provide the wireless communication function for the user terminal 14 are collectively referred to as network devices.
  • User terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS) , terminal device (terminal device) and so on.
  • mobile stations Mobile Station, MS
  • terminal device terminal device
  • the network device 120 and the user terminal 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the network device 120 and the user terminal 14 there are two communication scenarios between the network device 120 and the user terminal 14: a downlink communication scenario and a downlink communication scenario.
  • the uplink communication is to send signals to the network device 120 ;
  • the downlink communication is to send signals to the user terminal 14 .
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • FIG. 2 shows a flow chart of a method for sending an SRS provided by an exemplary embodiment of the present disclosure. The method is applied to the terminal of the communication system shown in FIG. 1, and the method includes:
  • Step 210 receiving configuration information of SRS resources, where the SRS resources include 8 antenna ports.
  • the terminal receives the configuration information of the SRS resource sent by the network device, and the configuration information is used to configure an SRS resource for the terminal.
  • Step 220 map the SRSs corresponding to at least two antenna port groups on physical resources corresponding to different transmission combs, and simultaneously transmit the SRSs corresponding to at least two antenna port groups, at least two antenna port groups are divided based on 8 antenna ports owned.
  • the terminal When the terminal measures the quality of the uplink channel, it maps an SRS resource on the same physical resource (Physical Resource, PR).
  • Physical Resource Physical Resource
  • the physical resources refer to continuous carrier resources in the frequency domain, where 1 physical resource block (Physical Resource Block, PRB) corresponds to 12 continuous carriers in the frequency domain, and 1 time slot in the time domain .
  • PRB Physical Resource Block
  • the uplink channel includes: at least one of a physical uplink control channel (PhysicalUplink Control CHannel, PUCCH); and a physical uplink shared channel (PhysicalUplink SharedCHannel, PUSCH).
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink SharedCHannel
  • the terminal maps an SRS resource on the same physical resource according to the configuration information.
  • the above configuration information includes at least one of the following parameters:
  • the time domain position of the transmission comb is the time domain position of the transmission comb.
  • the transmission comb parameter is used to indicate the comb structure of the SRS resources in the frequency domain, that is, the SRS resources are not mapped on consecutive subcarriers.
  • the frequency domain offset value parameter refers to the offset value of the subcarrier occupied by the first RE resource in an SRS resource, and the frequency domain offset value parameter is a non-negative integer smaller than the transmission comb parameter.
  • the SRS configuration bandwidth refers to the frequency bandwidth occupied by SRS resources.
  • the cyclic shift parameter refers to the number of bits to cyclically shift the sequence.
  • An antenna port (Antenna Port) is a logical transmission channel defined by a reference signal, and the antenna port is mapped to a physical antenna for signal transmission. The time domain position of the transmission comb is used to indicate the symbols occupied by the transmission comb on the time slot.
  • the above configuration information may further include: the length of the ZC sequence; the length of the ZC sequence refers to the numerical length of the ZC sequence.
  • the terminal generates 8 SRS sequences based on at least one ZC sequence, and carries SRSs of 8 antenna ports through the 8 SRS sequences.
  • each antenna port group corresponds to a transmission comb.
  • the terminal maps the SRSs corresponding to the at least two antenna port groups on the physical resources corresponding to the at least two transmission combs, and simultaneously sends the SRSs corresponding to the at least two antenna port groups.
  • the above-mentioned at least two antenna port groups may be antenna port groups mapped to the same antenna panel or different antenna panels; that is, the above-mentioned at least two antenna ports are antenna port groups mapped to M antenna panels, M is a positive integer less than or equal to 8.
  • M is a positive integer less than or equal to 8.
  • the first antenna port group of the at least two antenna port groups is mapped to the first antenna panel
  • the second antenna port group of the at least two antenna port groups is mapped to the second antenna panel.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • the functions of the above-mentioned SRS resources are at least one of the following:
  • codebook (codebook)
  • the terminal may perform codebook-based channel quality detection, or perform channel quality detection during antenna switching, or perform non-codebook-based channel quality detection.
  • the value range of the transmission comb parameter K TC is ⁇ 2, 4, 8, 12 ⁇ .
  • the terminal maps two transmission combs on one PRB: the first transmission comb 301 and the second transmission comb 302;
  • the frequency domain offset value parameter is 0, and the frequency domain offset value parameter of the second transmission comb 302 is 1;
  • the adjacent subcarriers in each transmission comb are separated by 1 subcarrier, and the subcarriers occupied by the first transmission comb 301 include subcarriers 0, subcarrier 2, subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10,
  • the subcarriers occupied by the second transmission comb 302 include subcarrier 1, subcarrier 3, subcarrier 5, subcarrier 7, subcarrier Carrier 9 and subcarrier 11;
  • the first transmission comb 301 and the second transmission comb 302 are located on the symbol 10 of one time slot;
  • the four antenna ports of port 0, port 1, port 2 and port 3 are mapped on the second On
  • the maximum value of the cyclic shift parameter of the transmission comb corresponding to at least two antenna port groups is Cyclic shift parameters for 8 antenna port configurations
  • the corresponding value range is
  • the maximum number of cyclic shift parameters supported by transmission comb parameters is 8, The value range is Then the terminal uses all 8 cyclic shift parameters to generate SRS resources.
  • the maximum number of cyclic shift parameters supported by transmission comb parameters is 12, The value range is Then the terminal generates the SRS resource by using some of the 12 cyclic shift parameters, that is, actually uses 8 of the 12 cyclic shift parameters to generate the SRS resource.
  • the above configuration information includes a cyclic shift parameter corresponding to at least two antenna port groups; after receiving the configuration information, the terminal calculates the correspondence between all antenna ports in the at least two antenna port groups based on the configured cyclic shift parameters.
  • the above configuration information includes a cyclic shift parameter corresponding to each antenna port group in at least two antenna port groups; after receiving the configuration information, the terminal, for each antenna port group, The bit parameter calculates the cyclic shift parameter corresponding to all ports in the antenna port group.
  • i in the formula is a positive integer; in the formula Indicates the configured cyclic shift parameters.
  • the transmission comb parameter K TC is equal to 8 or 12
  • the minimum bandwidth parameter corresponding to the SRS configuration bandwidth is greater than or equal to the bandwidth of 6 PRBs;
  • the SRS configured bandwidth is a multiple of 6 PRB bandwidths; or, the minimum bandwidth parameter corresponding to the SRS configured bandwidth is greater than or equal to the bandwidth of 8 PRBs; or, the SRS configured bandwidth is a multiple of 8 PRB bandwidths.
  • multiple RE resources can be mapped on multiple PRBs, avoiding unrepresentative measurement results of the uplink channel quality due to the lack of RE resources.
  • the eight antenna ports in the SRS resource can be divided into at least two antenna port groups, and after receiving the configuration information of the SRS resource, the terminal sets the The SRS corresponding to the group is mapped on the physical resources corresponding to different transmission combs, and the SRS corresponding to at least two antenna port groups is transmitted at the same time.
  • This method is used to support the realization of related functions when the terminal uses 8 transmission antenna ports. For example, It is used to support codebook-based channel quality detection when the terminal uses 8 transmit antenna ports, or to support non-codebook-based channel quality detection when the terminal uses 8 transmit antenna ports, or to support Channel quality detection during antenna switching when the terminal uses 8 transmit antenna ports.
  • step 220 can be implemented by step 420 as follows:
  • Step 420 Map the SRSs corresponding to the at least two antenna port groups on the physical resources corresponding to the at least two transmission combs in the frequency domain dimension, and transmit the SRSs corresponding to the at least two antenna port groups at the same time.
  • the antenna port groups there is a one-to-one correspondence between the antenna port groups and the transmission combs.
  • the time domain positions of the transmission combs corresponding to at least two antenna port groups are the same.
  • the first transmission comb 301 and the second transmission comb 302 in FIG. 3 are both located on the slot symbol 10 .
  • the transmission comb parameters K TC of the transmission combs corresponding to at least two antenna port groups are the same.
  • the transmission comb parameters of the first transmission comb 301 and the second transmission comb 302 in FIG. 3 are both 2.
  • the frequency domain offset value parameter of the transmission comb corresponding to at least two antenna port groups different, the The value of is a non-negative integer smaller than K TC .
  • the value range of the frequency domain offset value parameter of the transmission comb corresponding to at least two antenna port groups is ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • part or all of the frequency domain offset value parameters of the transmission comb are configured by the network device for the terminal.
  • the terminal receives the first frequency domain offset value parameter of the transmission comb corresponding to the first antenna port group, and the first antenna port group is a group of at least two antenna port groups; based on the first frequency domain offset value parameters, calculating other frequency domain offset value parameters of the transmission combs corresponding to other antenna port groups, where the other antenna port groups are antenna port groups other than the first antenna port group among the at least two antenna port groups.
  • the terminal receives frequency-domain offset value parameters of transmission combs corresponding to at least two antenna port groups.
  • the network device configures a transmission comb frequency domain offset value parameter for the terminal Then calculate other frequency domain offset value parameters of other transmission combs based on this frequency domain offset value parameter Alternatively, the network device configures a set of frequency domain offset value parameters corresponding to at least two transmission combs for the terminal.
  • the terminal calculates the above other frequency domain offset value parameters according to the adjacent transmission comb principle; or, calculates the above other frequency domain offset value parameters through the uniform distribution principle; or, calculates the above other frequency domain offset value parameters through the maximum interval principle value parameter; or, calculate the above-mentioned other frequency domain offset value parameters through other predefined principles.
  • the principles for determining the above four other frequency domain offset value parameters are described:
  • the first transmission comb 301 is adjacent to two corresponding subcarriers on the second transmission comb 302 .
  • the frequency domain offset value parameter of the comb 502 is 1; the third transmission comb 501 and the fourth transmission comb 502 both occupy the time slot symbol 12 and the symbol 13; the interval between adjacent subcarriers in each transmission comb is 3 subcarriers, and the third
  • the subcarriers occupied by the transmission comb 501 include subcarrier 1, subcarrier 5, and subcarrier 9, and the subcarriers occupied by the fourth transmission comb 502 include subcarrier 3, subcarrier 7, and subcarrier 11;
  • the subcarriers two adjacent subcarriers are separated by 1 subcarrier, that is, the two transmission combs conform to the principle of uniform distribution.
  • the difference in the frequency domain offset value parameter between consecutive transmission combs is the largest.
  • the first frequency domain offset value parameter is 0, and the other frequency domain offset value parameters are 3, so that at least two transmission combs comply with the maximum interval principle.
  • the frequency domain offset value parameter of the comb 602 is 1; the fifth transmission comb 601 and the sixth transmission comb 602 both occupy 4 consecutive time slot symbols 8 to 11; the interval between adjacent subcarriers in each transmission comb is 7 subcarriers , the subcarriers occupied by the fifth transmission comb 601 include subcarrier 0 and subcarrier 8 of the first PRB, and subcarrier 4 of the second PRB, and the subcarriers occupied by the sixth transmission comb 602 include the subcarriers of the first PRB Carrier 7, and subcarrier 3 and subcarrier 11 of the second PRB; in the 6 subcarriers corresponding to the two transmission combs, the corresponding subcarriers are separated by 6 subcarriers, that is, the two transmission comb
  • the method for sending an SRS provided in this embodiment supports the sending of an SRS by multiple antenna port groups on multiple transmission combs of different frequency domain dimensions.
  • step 220 can be implemented by step 720 as follows:
  • Step 720 Map the SRSs corresponding to the at least two antenna port groups on the physical resources corresponding to the at least two transmission combs in the time domain dimension, and simultaneously transmit the SRSs corresponding to the at least two antenna port groups.
  • the time domain positions of the transmission combs corresponding to at least two antenna port groups are different and adjacent.
  • the transmission comb parameters K TC of the transmission combs corresponding to at least two antenna port groups are the same.
  • the frequency domain offset value parameter of the transmission comb corresponding to at least two antenna port groups same,
  • the value of is a non-negative integer smaller than K TC .
  • the value range of the frequency domain offset value parameter of the transmission comb corresponding to at least two antenna port groups is ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the seventh transmission comb 801 and the eighth transmission comb 802 are configured in the SRS resource; the transmission comb parameters of the seventh transmission comb 801 and the eighth transmission comb 802 are both 8, and the frequency domain
  • the offset value parameters are all 7; the seventh transmission comb 801 and the eighth transmission comb 802 are located on the same subcarrier, including: subcarrier 7 on the first PRB, and subcarrier 3 and subcarrier 11 on the second PRB
  • the seventh transmission comb 801 and the eighth transmission comb 802 are located at different time domain positions, the seventh transmission comb 801 is located on the time slot symbol 8 and the symbol 9, and the eighth transmission comb 802 is located on the time slot symbol 10 and the symbol 11,
  • the time domain positions of the seventh transmission comb 801 and the eighth transmission comb 802 are adjacent.
  • the time domain positions of at least two transmission combs may be located in the same time slot or in different time slots.
  • the seventh transmission comb 801 and the eighth transmission comb 802 in FIG. 8 are located in the same time slot.
  • the frequency domain offset parameter of the transmission combs corresponding to the at least two antenna port groups is configured by the network device for the terminal.
  • the terminal receives a frequency domain offset value parameter of the transmission comb corresponding to at least two antenna port groups; that is, the network device configures a frequency domain offset value parameter of the transmission comb for the terminal
  • the method for sending an SRS provided in this embodiment supports the sending of an SRS by multiple antenna port groups on multiple transmission combs of different time domain dimensions.
  • At least two antenna port groups are obtained by sequentially grouping 8 antenna ports according to port numbers. As shown in FIG. 3 , one antenna port group includes port 0 , port 1 , port 2 and port 3 , and the other antenna port group includes port 4 , port 5 , port 6 and port 7 .
  • the at least two antenna port groups are obtained by grouping the 8 antenna ports according to port numbers in odd-even groups. As shown in FIG. 5 , one antenna port group includes port 0 , port 2 , port 4 , and port 6 , and the other antenna port group includes port 1 , port 3 , port 5 , and port 7 .
  • the at least two antenna port groups are sequentially grouped with odd-numbered port numbers among the eight antenna ports to obtain at least two first antenna port groups, and the even-numbered ports among the eight antenna ports Numbers are sequentially grouped to obtain at least two second antenna port groups.
  • a first antenna port group includes port 1 and port 3, and another first antenna port group includes port 5 and port 7;
  • a second antenna port group includes port 1 and port 3;
  • One group includes port 0 and port 2, and another second antenna port group includes port 4 and port 6.
  • the transmission comb parameter configured in the SRS resource is 12, and the frequency domain offset value parameters of the transmission comb include ⁇ 5, 7, 9, 11 ⁇ . Therefore, there are 4 transmission combs with the same transmission comb structure.
  • the ports whose port numbers are even numbers among the 8 antenna ports include: port 0, port 2, port 4, and port 6; the ports whose port numbers are odd numbers among the 8 antenna ports include: port 1, port 3. Port 5 and port 7; after grouping 8 antenna ports in the time domain, a first antenna port group includes port 1 and port 3, and another first antenna port group includes port 5 and port 7; a second antenna port group includes port 5 and port 7; An antenna port group includes port 0 and port 2, and another second antenna port group includes port 4 and port 6.
  • At least two antenna port groups are obtained by grouping according to a combination manner predefined in the protocol. For example, port 0, port 1, port 6, and port 7 predefined in the protocol are one antenna port group, and port 2, port 3, port 4, and port 5 are another antenna port group.
  • the method for sending SRS provided by this embodiment supports the combination of multiple ports on multiple transmission combs to send SRS.
  • FIG. 11 shows a flow chart of a method for receiving an SRS provided by an exemplary embodiment of the present disclosure. The method is applied to the network device of the communication system shown in FIG. 1, and the method includes:
  • Step 1010 sending configuration information of SRS resources, where the SRS resources include 8 antenna ports.
  • the network device configures and sends configuration information of SRS resources for the terminal.
  • the configuration information of the SRS resource includes at least one of the following:
  • a frequency domain offset value parameter of the transmission comb corresponding to the first antenna port group in the at least two antenna port groups, the first antenna port group is one of the at least two antenna port groups; or, at least two antenna ports Frequency-domain offset value parameters of at least two transmission combs corresponding to the group;
  • a cyclic shift parameter corresponding to at least two antenna port groups or, a cyclic shift parameter corresponding to each antenna port group in the at least two antenna port groups.
  • the configuration information of the SRS resource includes at least one of the following:
  • a cyclic shift parameter corresponding to at least two antenna port groups or, a cyclic shift parameter corresponding to each antenna port group in the at least two antenna port groups.
  • the cyclic shift parameter is used to determine the cyclic shift parameters of all antenna ports in at least two antenna port groups; In the case of one cyclic shift parameter, the cyclic shift parameter corresponding to one antenna port group is used to determine the cyclic shift parameters of all antenna ports in the antenna port group.
  • At least two antenna port groups are obtained by sequentially grouping 8 antenna ports according to port numbers; or, at least two antenna port groups are obtained by performing parity grouping of 8 antenna ports according to port numbers; or, The at least two antenna port groups are obtained by grouping according to a combination method predefined in the protocol; or, the at least two antenna port groups are obtained by sequentially grouping the odd-numbered port numbers among the eight antenna ports to obtain at least two first antenna ports The port group is obtained by sequentially grouping even-numbered port numbers among the eight antenna ports to obtain at least two second antenna port groups.
  • the configuration information of the SRS resource also includes: the maximum value of the cyclic shift parameter of the transmission comb corresponding to at least two antenna port groups is Cyclic shift parameters for 8 antenna port configurations The corresponding value range is
  • the maximum number of cyclic shift parameters supported by transmission comb parameters is 8, The value range is Then the terminal uses all 8 cyclic shift parameters to generate SRS resources.
  • the maximum number of cyclic shift parameters supported by transmission comb parameters is 12, The value range is Then the terminal generates the SRS resource by using some of the 12 cyclic shift parameters, that is, actually uses 8 of the 12 cyclic shift parameters to generate the SRS resource.
  • the function of the SRS resource is one of the following: codebook; antenna switching; non-codebook.
  • the network device may send the SRS allocation information to the terminal through high-layer signaling.
  • Step 1020 Simultaneously receive SRSs corresponding to at least two antenna port groups on physical resources corresponding to different transmission combs, and the at least two antenna port groups are obtained based on division of 8 antenna ports.
  • the terminal simultaneously receives at least two SRSs corresponding to antenna port groups on physical resources corresponding to transmission combs of different frequency domain dimensions; or, simultaneously receives at least two SRSs corresponding to transmission combs of different time domain dimensions.
  • SRS corresponding to the antenna port group simultaneously receives at least two SRSs corresponding to the antenna port group.
  • the 8 antenna ports in the SRS resource can be divided into at least two antenna port groups.
  • the network device After the network device sends the configuration information of the SRS resource to the terminal, Simultaneously receive SRSs corresponding to at least two antenna port groups on the physical resource corresponding to the transmission comb.
  • This method is used to support the implementation of related functions when the terminal uses 8 transmit antenna ports. For example, it is used to support the terminal to use 8 transmit antennas.
  • Fig. 12 shows a block diagram of an apparatus for sending an SRS provided by an exemplary embodiment of the present disclosure.
  • the apparatus can be implemented as part or all of the UE through software, hardware, or a combination of the two.
  • the apparatus includes:
  • the first receiving module 1110 is configured to receive configuration information of SRS resources, where the SRS resources include 8 antenna ports;
  • the first sending module 1120 is configured to map the SRSs corresponding to at least two antenna port groups on physical resources corresponding to different transmission combs, and simultaneously send the SRSs corresponding to the at least two antenna port groups, the at least two The antenna port group is obtained based on the division of the eight antenna ports.
  • the first sending module 1120 is configured to:
  • the time domain positions of the transmission combs corresponding to the at least two antenna port groups are the same.
  • the transmission comb parameters K TC of the transmission combs corresponding to the at least two antenna port groups are the same.
  • the frequency domain offset value parameter of the transmission comb corresponding to the at least two antenna port groups different, the The value of is a non-negative integer smaller than K TC .
  • the device further includes: a first processing module 1130;
  • the first receiving module 1110 is configured to receive a first frequency domain offset value parameter of a transmission comb corresponding to a first antenna port group, where the first antenna port group is one of the at least two antenna port groups;
  • the first processing module 1130 is configured to calculate other frequency domain offset value parameters of transmission combs corresponding to other antenna port groups based on the first frequency domain offset value parameter, and the other antenna port groups are the at least two antenna port groups in the antenna port groups other than the first antenna port group.
  • the first receiving module 1110 is configured to receive the frequency domain offset parameter of the transmission comb corresponding to the at least two antenna port groups.
  • the first sending module 1120 is configured to:
  • the time domain positions of the transmission combs corresponding to the at least two antenna port groups are different and adjacent.
  • the transmission comb parameters K TC of the transmission combs corresponding to the at least two antenna port groups are the same.
  • the frequency domain offset value parameter of the transmission comb corresponding to the at least two antenna port groups the same as the The value of is a non-negative integer smaller than K TC .
  • the first receiving module 1110 is configured to receive a parameter of a frequency domain offset value of the transmission comb corresponding to the at least two antenna port groups.
  • the maximum value of the cyclic shift parameter of the transmission comb corresponding to the at least two antenna port groups is The cyclic shift parameters configured by the 8 antenna ports The corresponding value range is
  • the device further includes: a first processing module 1130;
  • the first receiving module 1110 is configured to receive a configured cyclic shift parameter
  • the first processing module 1130 is configured to calculate, based on the cyclic shift parameters, cyclic shift parameters corresponding to all antenna ports in the at least two antenna port groups.
  • the device further includes: a first processing module 1130;
  • the first receiving module 1110 is configured to receive a cyclic shift parameter configured for each antenna port group in the at least two antenna port groups;
  • the first processing module 1130 is configured to calculate cyclic shift parameters corresponding to all ports in the antenna port group by using the cyclic shift parameters configured for the antenna port group.
  • the at least two antenna port groups are obtained by sequentially grouping the eight antenna ports according to port numbers;
  • the at least two antenna port groups are obtained by parity grouping the eight antenna ports according to port numbers;
  • the at least two antenna port groups are obtained by grouping according to a combination manner predefined in the protocol;
  • the at least two antenna port groups are sequentially grouping odd-numbered port numbers among the eight antenna ports to obtain at least two first antenna port groups, and grouping the even-numbered port numbers among the eight antenna ports Port numbers are grouped sequentially to obtain at least two second antenna port groups.
  • the number of antenna ports of the SRS is the number of antenna ports of the SRS
  • Port numbers P i of the 8 antenna ports 1000+i, i ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the function of the SRS resource is one of the following:
  • Fig. 13 shows a block diagram of an apparatus for receiving an SRS provided by an exemplary embodiment of the present disclosure.
  • the apparatus can be implemented as part or all of a network device through software, hardware, or a combination of the two.
  • the apparatus includes:
  • the second sending module 1210 is configured to send configuration information of SRS resources, where the SRS resources include 8 antenna ports;
  • the second receiving module 1220 is configured to simultaneously receive SRSs corresponding to at least two antenna port groups on physical resources corresponding to different transmission combs, and the at least two antenna port groups are obtained based on the division of the eight antenna ports .
  • the second receiving module 1220 is configured to simultaneously receive the SRSs corresponding to the at least two antenna port groups on the physical resources corresponding to the transmission combs of different frequency domain dimensions.
  • the configuration information of the SRS resource includes:
  • the configuration information of the SRS resource includes:
  • the configuration information of the SRS resource includes:
  • a frequency domain offset value parameter of the transmission comb corresponding to the first antenna port group in the at least two antenna port groups, the first antenna port group is one of the at least two antenna port groups;
  • frequency domain offset value parameters of the at least two transmission combs corresponding to the at least two antenna port groups are used.
  • the second receiving module 1220 is configured to simultaneously receive the SRSs corresponding to the at least two antenna port groups on the physical resources corresponding to the transmission combs of different time domain dimensions.
  • the configuration information of the SRS resource includes:
  • At least two adjacent time-domain positions of the transmission combs corresponding to the at least two antenna port groups are provided.
  • the configuration information of the SRS resource includes:
  • the configuration information of the SRS resource includes:
  • the configuration information of the SRS resource includes:
  • a cyclic shift parameter corresponding to each antenna port group in the at least two antenna port groups is a cyclic shift parameter corresponding to each antenna port group in the at least two antenna port groups.
  • the at least two antenna port groups are obtained by sequentially grouping the eight antenna ports according to port numbers;
  • the at least two antenna port groups are obtained by parity grouping the eight antenna ports according to port numbers;
  • the at least two antenna port groups are obtained by grouping according to a combination manner predefined in the protocol;
  • the at least two antenna port groups are sequentially grouping odd-numbered port numbers among the eight antenna ports to obtain at least two first antenna port groups, and grouping the even-numbered port numbers among the eight antenna ports Port numbers are grouped sequentially to obtain at least two second antenna port groups.
  • the number of antenna ports of the SRS is the number of antenna ports of the SRS
  • Port numbers P i of the 8 antenna ports 1000+i, i ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the function of the SRS resource is one of the following:
  • FIG. 14 shows a schematic structural diagram of a UE provided by an exemplary embodiment of the present disclosure.
  • the UE includes: a processor 1301 , a receiver 1302 , a transmitter 1303 , a memory 1304 and a bus 1305 .
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1302 and the transmitter 1303 can be implemented as a communication component, which can be a communication chip.
  • the memory 1304 is connected to the processor 1301 through the bus 1305 .
  • the memory 1304 may be configured to store at least one instruction, and the processor 1301 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing embodiment of the method for sending an SRS.
  • volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read Only Memory), Erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read Only Memory), Static Random-Access Memory (SRAM, Static Random-Access Memory), Read-Only Memory (ROM, Read Only Memory), magnetic memory, flash memory, programmable read-only memory (PROM, Programmable Read Only Memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Random-Access Memory
  • ROM Read Only Memory
  • magnetic memory flash memory
  • PROM programmable read-only memory
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions, the instructions can be executed by a processor of a UE to complete the above method for sending an SRS.
  • the non-transitory computer-readable storage medium can be ROM, random access memory (RAM, Random-Access Memory), compact disc read-only memory (CD-ROM, Compact Disc Read Only Memory), magnetic tape, floppy disk and optical data storage devices, etc.
  • a non-transitory computer-readable storage medium when instructions in the non-transitory computer storage medium are executed by a processor of the UE, the UE can execute the above method for sending an SRS.
  • Fig. 15 is a block diagram of a network device 1400 according to an exemplary embodiment.
  • the network device 1400 may be a base station.
  • the network device 1400 may include: a processor 1401 , a receiver 1402 , a transmitter 1403 and a memory 1404 .
  • the receiver 1402, the transmitter 1403 and the memory 1404 are respectively connected to the processor 1401 through a bus.
  • the processor 1401 includes one or more processing cores, and the processor 1401 executes the method performed by the network device in the method for receiving the SRS provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 1404 can be used to store software programs as well as modules. Specifically, the memory 1404 may store an operating system 14041 and an application program module 14042 required by at least one function.
  • the receiver 1402 is used to receive communication data sent by other devices, and the transmitter 1403 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium, the computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the At least one section of program, the code set or instruction set is loaded and executed by the processor to implement the method for sending an SRS or the method for receiving an SRS provided in the above method embodiments.
  • An exemplary embodiment of the present disclosure also provides a computer program product, the computer program product comprising computer instructions stored in a computer-readable storage medium;
  • the computer instructions are read from the medium, and the processor executes the computer instructions, so that the computer device executes the method for sending an SRS or the method for receiving an SRS as provided in the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种发送SRS的方法、接收SRS的方法、装置、设备、介质及产品,属于通信领域。该方法包括:接收SRS资源的配置信息,SRS资源包括8个天线端口;将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS,至少两个天线端口组是基于8个天线端口划分得到的。该方法能够支持8天线端口的SRS发送。

Description

发送SRS的方法、接收SRS的方法、装置、设备、介质及产品 技术领域
本公开涉及通信领域,特别涉及一种发送SRS的方法、接收SRS的方法、装置、设备、介质及产品。
背景技术
在5G新空口(New Radio)系统中,上行的探测参考信号(Sounding Reference Signal,SRS)可以用于测量与估计上行信道的信道质量。
上行SRS的发送过程中,可以为用户终端(User Equipment,UE)配置多个天线端口,UE最大支持4个天线端口的SRS的发送。
发明内容
本公开实施例提供了一种发送SRS的方法、接收SRS的方法、装置、设备、介质及产品。所述技术方案如下:
根据本公开实施例的一个方面,提供了一种发送SRS的方法,所述方法由终端执行,所述方法包括:
接收SRS资源的配置信息,所述SRS资源包括8个天线端口;
将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
根据本公开实施例的另一个方面,提供了一种接收SRS的方法,所述方法由网络设备执行,所述方法包括:
发送SRS资源的配置信息,所述SRS资源包括8个天线端口;
在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
根据本公开实施例的另一个方面,提供了一种发送SRS的装置,所述装置包括:
第一接收模块,被配置为接收SRS资源的配置信息,所述SRS资源包括8个天线端口;
第一发送模块,被配置为将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
根据本公开实施例的另一个方面,提供了一种接收SRS的装置,所述装置包括:
第二发送模块,被配置为发送SRS资源的配置信息,所述SRS资源包括8个天线端口;
第二接收模块,被配置为在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
根据本公开实施例的另一方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
其中,所述处理器被配置为加载并执行可执行指令以实现如上各个方面所述的发送SRS的方法。
根据本公开实施例的另一方面,提供了一种网络设备,所述包括:
处理器;
与所述处理器相连的收发器;
其中,所述处理器被配置为加载并执行可执行指令以实现如上各个方面所述的接收SRS的方法。
根据本公开实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上述各个方面所述的发送SRS的方法,或者,所述的接收SRS的方法。
根据本公开实施例的另一方面,提供了一种计算机程序产品(或者计算机程序),所述计算机程序产品(或者计算机程序)包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如上各个方面所述的发送SRS的方法,或者,所述的接收SRS的方法。
本公开实施例提供的技术方案可以包括以下有益效果:
上述发送SRS的方法中,SRS资源中的8个天线端口可以划分为至少两个天线端口组,终端在接收到SRS资源的配置信息之后,将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS,该方法用于支持终端使用8个发送天线端口的情况下的相关功能实现,比如,用于支持终端使用8个发送天线端口的情况下的基于码本的信道质量探测,或者用于支持终端使用8个发送天线端口的情况下的基于非码本的信道质量探测,或者用于支持终端使用8个发送天线端口的情况下的天线切换时的信道质量探测。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的通信系统的框图;
图2是根据一示例性实施例示出的发送SRS的方法的流程图;
图3是根据一示例性实施例示出的SRS资源的映射示意图;
图4是根据另一示例性实施例示出的发送SRS的方法的流程图;
图5是根据另一示例性实施例示出的SRS资源的映射示意图;
图6是根据另一示例性实施例示出的SRS资源的映射示意图;
图7是根据另一示例性实施例示出的发送SRS的方法的流程图;
图8是根据另一示例性实施例示出的SRS资源的映射示意图;
图9是根据另一示例性实施例示出的SRS资源的映射示意图;
图10是根据另一示例性实施例示出的SRS资源的映射示意图;
图11是根据一示例性实施例示出的接收SRS的方法的流程图;
图12是根据一示例性实施例示出的发送SRS的装置的框图;
图13是根据一示例性实施例示出的接收SRS的装置的框图;
图14是根据一示例性实施例示出的终端的结构示意图;
图15是根据一示例性实施例示出的接入网设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和用户终端14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为用户终端(简称为“终端”)14提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为eNodeB或者eNB;在5G NR(New Radio,新空口)系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为用户终端14提供无线通信功能的装置统称为网络设备。
用户终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为用户终端。网络设备120与用户终端14之间通过某种空口技术互相通信,例如Uu接口。
示例性的,网络设备120与用户终端14之间存在两种通信场景:下行通信场景与下行通信场景。其中,上行通信是指向网络设备120发送信号;下行通信是指向用户终端14发送信号。
本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系 统、先进的长期演进(Advanced long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本公开实施例也可以应用于这些通信系统。
图2示出了本公开一个示例性实施例提供的发送SRS的方法的方法流程图,该方法应用于图1所示的通信系统的终端中,该方法包括:
步骤210,接收SRS资源的配置信息,SRS资源包括8个天线端口。
示例性的,终端接收网络设备发送的SRS资源的配置信息,配置信息用于为终端配置一个SRS资源。
配置的SRS资源包括了8个天线端口。也即,SRS资源的配置信息,包括:SRS的天线端口数量
Figure PCTCN2022079154-appb-000001
8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。
或者,配置的SRS资源包括了8个天线端口对应的至少两个天线端口组(即K个天线端口组)。也即,SRS资源的配置信息,包括:SRS的天线端口数量
Figure PCTCN2022079154-appb-000002
Figure PCTCN2022079154-appb-000003
每个天线端口组中的天线端口数量为8/K,K=2或4或8;8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。或者,SRS资源的配置信息,还包括:SRS的天线端口数量
Figure PCTCN2022079154-appb-000004
每个天线端口组中的天线端口数量为8/K,K=2或4或8;每个天线端口组中的8/K个天线端口的端口号。
步骤220,将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS,至少两个天线端口组是基于8个天线端口划分得到的。
终端在测量上行信道质量时,在相同的物理资源(Physical Resource,PR) 上映射一个SRS资源。示例性的,物理资源是指频域上的连续的载波资源,其中,1个物理资源块(Physical Resource Block,PRB)对应的频域上的12个连续载波,时域上的1个时隙。
示例性的,上行信道包括:物理上行控制信道(PhysicalUplink Control CHannel,PUCCH);物理上行共享信道(PhysicalUplink SharedCHannel,PUSCH)中的至少一种。终端可以在PUCCH和/或PUSCH的物理资源上映射一个SRS资源。
示例性的,终端根据配置信息,在相同的物理资源上映射一个SRS资源。其中,上述配置信息包括以下参数中的至少一个参数:
传输梳参数K TC
频域偏移值参数
Figure PCTCN2022079154-appb-000005
SRS配置带宽;
循环移位参数
Figure PCTCN2022079154-appb-000006
天线端口数量
Figure PCTCN2022079154-appb-000007
传输梳的时域位置。
其中,传输梳参数用于指示SRS资源在频域上的梳状结构,也即SRS资源不是在连续的子载波上映射。传输梳参数采用comb表示,comb=K TC,K TC的取值为正整数,SRS资源中相邻子载波之间间隔(K TC-1)个子载波,也即SRS资源中相邻资源元素(Resource Element,RE)资源之间间隔(K TC-1)个子载波,比如,comb=8时,一个SRS资源中的相邻RE资源之间间隔7个子载波。频域偏移值参数是指一个SRS资源中第1个RE资源占用的子载波的偏移值,频域偏移值参数为小于传输梳参数的非负整数。SRS配置带宽是指SRS资源占用的频带宽度。循环移位参数是指对序列循环移位的位数。天线端口(Antenna Port)是由参考信号定义的逻辑发射通道,天线端口映射到物理天线上以进行信号的发送。传输梳的时域位置用于指示是指传输梳在时隙上占用的符号。
示例性的,上述配置信息还可以包括:ZC序列的长度;ZC序列的长度是指ZC序列的数值长度。比如,终端基于至少一个ZC序列生成8个SRS序列,通过8个SRS序列承载8个天线端口的SRS。
示例性的,每一个天线端口组对应一个传输梳。终端将至少两个天线端口组对应的SRS映射在至少两个传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS。
示例性的,上述至少两个天线端口组可以是映射到同一天线面板或者不同 天线面板上的天线端口组;也即,上述至少两个天线端口是映射到M个天线面板上的天线端口组,M为小于或者等于8的正整数。比如,上述至少两个天线端口组中的第一天线端口组映射到第一天线面板上,上述至少两个天线端口组中的第二天线端口组映射到第二天线面板上。
示例性的,终端将一个SRS资源占用N个连续正交频分复用(Orthogonal Frequency-Division Multiplexing,OFDM)符号,N={1,2,4}。
示例性的,上述SRS资源的功能为以下至少一种:
码本(codebook);
天线切换;
非码本。
终端可以进行基于码本的信道质量探测,或者进行天线切换时的信道质量探测,或者进行基于非码本的信道质量探测。
示例性的,传输梳参数K TC的取值范围为{2,4,8,12}。比如,以K TC=2为例,终端在传输梳参数等于2的情况下,在一个PRB上映射了两个传输梳:第一传输梳301和第二传输梳302;第一传输梳301的频域偏移值参数为0,第二传输梳302的频域偏移值参数为1;每一个传输梳中相邻子载波间隔1个子载波,第一传输梳301占用的子载波包括子载波0、子载波2、子载波4、子载波6、子载波8、以及子载波10,第二传输梳302占用的子载波包括子载波1、子载波3、子载波5、子载波7、子载波9、以及子载波11;第一传输梳301与第二传输梳302均位于1个时隙的符号10上;将端口0、端口1、端口2、端口3这4个天线端口映射在第一传输梳301上,将端口4、端口5、端口6、端口7这4个天线端口映射在第二传输梳302上。示例性的,图3中两个传输梳的每一个传输梳资源可以占用了1个OFDM符号。
示例性的,至少两个天线端口组对应的传输梳的循环移位参数的最大值为
Figure PCTCN2022079154-appb-000008
8个天线端口配置的循环移位参数
Figure PCTCN2022079154-appb-000009
对应的取值范围为
Figure PCTCN2022079154-appb-000010
Figure PCTCN2022079154-appb-000011
可选地,传输梳参数最大支持的循环移位参数的个数为8,
Figure PCTCN2022079154-appb-000012
取值范围为
Figure PCTCN2022079154-appb-000013
则终端使用全部的8个循环移位参数生成SRS资源。
示例性的,传输梳参数最大支持的循环移位参数的个数为12,
Figure PCTCN2022079154-appb-000014
取值范围为
Figure PCTCN2022079154-appb-000015
则终端使用12个循环移位参数中的部分循环移位参数生成SRS资源,也即实际使用12个循环移位参数中的8个循环移位参数生成SRS资源。
示例性的,上述配置信息包括至少两个天线端口组对应的一个循环移位参数;终端在接收到配置信息之后,基于配置的循环移位参数计算至少两个天线端口组中的所有天线端口对应的循环移位参数。
或者,上述配置信息包括至少两个天线端口组中每一个天线端口组对应的一个循环移位参数;终端在接收到配置信息之后,针对每一个天线端口组,通过为天线端口组配置的循环移位参数计算该天线端口组内的所有端口对应的循环移位参数。
其中,循环移位参数
Figure PCTCN2022079154-appb-000016
的计算公式如下:
Figure PCTCN2022079154-appb-000017
循环移位的循环偏移值α i的计算公式如下:
Figure PCTCN2022079154-appb-000018
其中,公式中的i为正整数;公式中
Figure PCTCN2022079154-appb-000019
表示配置的循环移位参数。
在另一些实施例中,在传输梳参数K TC等于8或12的情况下,一个PRB上仅能映射一个SRS资源,因此,SRS配置带宽对应的最小带宽参数大于或者等于6个PRB的带宽;或者,SRS配置带宽为6个PRB带宽的倍数;或者,SRS配置带宽对应的最小带宽参数大于或者等于8个PRB的带宽;或者,SRS配置带宽为8个PRB带宽的倍数。这样,在多个PRB上能够映射多个RE资源,避免由于RE资源较少,导致的上行信道质量的测量结果不具备代表性。
综上所述,本实施例提供的发送SRS的方法,SRS资源中的8个天线端口可以划分为至少两个天线端口组,终端在接收到SRS资源的配置信息之后,将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS,该方法用于支持终端使用8个发送天线端口的情况下的相关功能实现,比如,用于支持终端使用8个发送天线端口的情况下的基于码本的信道质量探测,或者用于支持终端使用8个发送天线端口的情况下的基于非码本的信道质量探测,或者用于支持终端使用8个发送天线端口的情况下的天线切换时的信道质量探测。
在一些实施例中,至少两个天线端口组可以映射到传输梳的频域偏移参数 不同的至少两个传输梳上,如图4所述,步骤220可以由步骤420来实现如下:
步骤420,将至少两个天线端口组对应的SRS在频域维度上,映射在至少两个传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS。
其中,上述天线端口组与传输梳存在一一对应关系。可选地,至少两个天线端口组对应的传输梳的时域位置相同。比如,图3中的第一传输梳301与第二传输梳302均位于时隙符号10上。
可选地,至少两个天线端口组对应的传输梳的传输梳参数K TC相同。比如,图3中的第一传输梳301与第二传输梳302的传输梳参数均为2。
可选地,至少两个天线端口组对应的传输梳的频域偏移值参数
Figure PCTCN2022079154-appb-000020
不同,所述
Figure PCTCN2022079154-appb-000021
的取值为小于K TC的非负整数。比如,若是传输梳参数的取值为8,则至少两个天线端口组对应的传输梳的频域偏移值参数的取值范围为{0,1,2,3,4,5,6,7}。
可选地,上述传输梳的部分或者全部频域偏移值参数是由网络设备为终端配置的。示例性的,终端接收第一天线端口组对应的传输梳的第一频域偏移值参数,第一天线端口组是至少两个天线端口组中的一组;基于第一频域偏移值参数,计算其它天线端口组对应的传输梳的其它频域偏移值参数,其它天线端口组是至少两个天线端口组中除第一天线端口组之外的天线端口组。
或者,终端接收至少两个天线端口组对应的传输梳的频域偏移值参数。
也即,由网络设备为终端配置一个传输梳的频域偏移值参数
Figure PCTCN2022079154-appb-000022
然后基于这一个频域偏移值参数来计算其它传输梳的其它频域偏移值参数
Figure PCTCN2022079154-appb-000023
或者,由网络设备为终端配置至少两个传输梳对应的一组频域偏移值参数。
可选地,终端通过相邻传输梳原则计算上述其它频域偏移值参数;或者,通过均匀分布原则计算上述其它频域偏移值参数;或者,通过最大间隔原则计算上述其它频域偏移值参数;或者,通过其他预定义原则计算上述其它频域偏移值参数。示例性的,对上述四种其它频域偏移值参数的确定原则进行说明:
1)相邻传输梳原则。
其它传输梳对应的每个端口的频域偏移值参数
Figure PCTCN2022079154-appb-000024
按照下式生成:
Figure PCTCN2022079154-appb-000025
或,
Figure PCTCN2022079154-appb-000026
示例性的,如图3所示,第一传输梳301与第二传输梳302上两两对应的子载波相邻。
2)均匀分布原则。
其它传输梳对应的每个端口的频域偏移值参数
Figure PCTCN2022079154-appb-000027
按照下式生成:
Figure PCTCN2022079154-appb-000028
示例性的,如图5所示,SRS资源中第三传输梳501与第四传输梳502的K TC=4,其中,第三传输梳501的频域偏移值参数为3,第四传输梳502的频域偏移值参数为1;第三传输梳501与第四传输梳502均占用了时隙符号12和符号13;每一个传输梳中相邻子载波间隔3个子载波,第三传输梳501占用的子载波包括子载波1、子载波5、子载波9,第四传输梳502占用的子载波包括子载波3、子载波7、子载波11;在两个传输梳对应的6个子载波中,两两相邻的子载波之间相隔1个子载波,即两个传输梳之间符合均匀分布原则。
3)最大间隔原则。
相连传输梳之间的频域偏移值参数的差值最大。比如,K TC=4的情况下,第一频域偏移值参数为0,则其它频域偏移值参数为3,这样至少两个传输梳之间符合最大间隔原则。
示例性的,如图6所示,SRS资源中第五传输梳601与第六传输梳602的K TC=8,其中,第五传输梳601的频域偏移值参数为0,第六传输梳602的频域偏移值参数为1;第五传输梳601与第六传输梳602均占用了4个连续的时隙符号8至11;每一个传输梳中相邻子载波间隔7个子载波,第五传输梳601占用的子载波包括第1个PRB的子载波0与子载波8、以及第2个PRB的子载波4,第六传输梳602占用的子载波包括第1个PRB的子载波7、以及第2个PRB的子载波3与子载波11;在两个传输梳对应的6个子载波中,两两对应的子载波之间相隔6个子载波,即两个传输梳之间符合最大间隔原则。
4)其他预定义原则。
其他预定义原则可以是由协议定义的其他确定其它频域偏移值参数的方式。
综上所述,本实施例提供的发送SRS的方法,支持多个天线端口组在不同频域维度的多个传输梳上的SRS发送。
在一些实施例中,至少两个天线端口组可以映射到传输梳的频域偏移参数相同的至少两个传输梳上,如图7所述,步骤220可以由步骤720来实现如下:
步骤720,将至少两个天线端口组对应的SRS在时域维度上,映射在至少两个传输梳对应的物理资源上,同时发送至少两个天线端口组对应的SRS。
其中,天线端口组与传输梳存在一一对应关系。可选地,至少两个天线端 口组对应的传输梳的时域位置不同且相邻。
可选地,至少两个天线端口组对应的传输梳的传输梳参数K TC相同。
可选地,至少两个天线端口组对应的传输梳的频域偏移值参数
Figure PCTCN2022079154-appb-000029
相同,
Figure PCTCN2022079154-appb-000030
的取值为小于K TC的非负整数。比如,若是传输梳参数的取值为8,则至少两个天线端口组对应的传输梳的频域偏移值参数的取值范围为{0,1,2,3,4,5,6,7}。
示例性的,如图8所示,该SRS资源中配置了第七传输梳801和第八传输梳802;第七传输梳801和第八传输梳802的传输梳参数均为8,且频域偏移值参数均为7;第七传输梳801和第八传输梳802位于相同子载波上,包括:第1个PRB上的子载波7、以及第2个PRB上的子载波3和子载波11;第七传输梳801和第八传输梳802位于不同的时域位置上,第七传输梳801位于时隙符号8和符号9上,第八传输梳802位于时隙符号10和符号11上,第七传输梳801和第八传输梳802的时域位置相邻。
示例性的,至少两个传输梳的时域位置可以位于同一时隙或者不同时隙。比如,图8中的第七传输梳801和第八传输梳802位于同一时隙。
可选地,至少两个天线端口组对应的传输梳的频域偏移值参数是由网络设备为终端配置的。示例性的,终端接收至少两个天线端口组对应的传输梳的一个频域偏移值参数;也即,由网络设备为终端配置一个传输梳的频域偏移值参数
Figure PCTCN2022079154-appb-000031
综上所述,本实施例提供的发送SRS的方法,支持多个天线端口组在不同时域维度的多个传输梳上的SRS发送。
在一些实施例中,至少两个天线端口组是将8个天线端口按照端口号进行顺序分组得到的。如图3所示,一个天线端口组包括端口0、端口1、端口2以及端口3,另一个天线端口组包括端口4、端口5、端口6以及端口7。
在另一些实施例中,至少两个天线端口组是将8个天线端口按照端口号进行奇偶分组得到的。如图5所示,一个天线端口组包括端口0、端口2、端口4以及端口6,另一个天线端口组包括端口1、端口3、端口5以及端口7。
在另一些实施例中,至少两个天线端口组是将8个天线端口中为奇数的端口号进行顺序分组,得到至少两个第一天线端口组,以及将8个天线端口中为偶数的端口号进行顺序分组,得到至少两个第二天线端口组得到的。如图9所示,在频域上对8个天线端口分组后,一个第一天线端口组包括端口1和端口3,另一个第一天线端口组包括端口5和端口7;一个第二天线端口组包括端口0和 端口2,另一个第二天线端口组包括端口4和端口6。示例性的,SRS资源中配置的传输梳参数为12,传输梳的频域偏移值参数包括{5,7,9,11},因此,存在传输梳结构相同的4个传输梳。
如图10所示,8个天线端口中的端口号为偶数的端口包括:端口0、端口2、端口4和端口6;8个天线端口中的端口号为奇数的端口包括:端口1、端口3、端口5和端口7;在时域上对8个天线端口分组后,一个第一天线端口组包括端口1和端口3,另一个第一天线端口组包括端口5和端口7;一个第二天线端口组包括端口0和端口2,另一个第二天线端口组包括端口4和端口6。
在另一些实施例中,至少两个天线端口组是按照协议预定义的组合方式进行分组得到的。比如,协议预定义的端口0、端口1、端口6和端口7为一组天线端口组,端口2、端口3、端口4以及端口5为另一组天线端口组。
综上所述,本实施例提供的发送SRS的方法,支持多个端口组合在多个传输梳上进行SRS发送。
图11示出了本公开一个示例性实施例提供的接收SRS的方法的方法流程图,该方法应用于图1所示的通信系统的网络设备中,该方法包括:
步骤1010,发送SRS资源的配置信息,SRS资源包括8个天线端口。
网络设备为终端配置并发送SRS资源的配置信息。
在SRS资源的配置信息所配置的至少两个传输梳处于不同频域维度的情况下,SRS资源的配置信息包括以下至少一项:
至少两个天线端口组对应的传输梳的一个时域位置;
至少两个天线端口组对应的一个传输梳参数K TC
至少两个天线端口组中的第一天线端口组对应的传输梳的一个频域偏移值参数,第一天线端口组是至少两个天线端口组中的一组;或者,至少两个天线端口组对应的至少两个传输梳的频域偏移值参数;
至少两个天线端口组对应的一个循环移位参数;或者,至少两个天线端口组中每一个天线端口组对应的循环移位参数。
在SRS资源的配置信息所配置的至少两个传输梳处于不同时域维度的情况下,SRS资源的配置信息包括以下至少一项:
至少两个天线端口组对应的传输梳的至少两个相邻时域位置;
至少两个天线端口组对应的一个传输梳参数K TC
至少两个天线端口组对应的一个频域偏移值参数;
至少两个天线端口组对应的一个循环移位参数;或者,至少两个天线端口组中每一个天线端口组对应的循环移位参数。
在为至少两个天线端口组配置一个循环移位参数的情况下,该循环移位参数用于确定至少两个天线端口组中所有天线端口的循环移位参数;在为每一个天线端口组配置一个循环移位参数的情况下,一个天线端口组对应的循环移位参数用于确定该天线端口组内的所有天线端口的循环移位参数。
可选地,至少两个天线端口组是将8个天线端口按照端口号进行顺序分组得到的;或者,至少两个天线端口组是将8个天线端口按照端口号进行奇偶分组得到的;或者,至少两个天线端口组是按照协议预定义的组合方式进行分组得到的;或者,至少两个天线端口组是将8个天线端口中为奇数的端口号进行顺序分组,得到至少两个第一天线端口组,以及将8个天线端口中为偶数的端口号进行顺序分组,得到至少两个第二天线端口组得到的。
示例性的,SRS的天线端口数量
Figure PCTCN2022079154-appb-000032
8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。
可选地,SRS资源的配置信息,还包括:至少两个天线端口组对应的传输梳的循环移位参数的最大值为
Figure PCTCN2022079154-appb-000033
8个天线端口配置的循环移位参数
Figure PCTCN2022079154-appb-000034
对应的取值范围为
Figure PCTCN2022079154-appb-000035
示例性的,传输梳参数最大支持的循环移位参数的个数为8,
Figure PCTCN2022079154-appb-000036
取值范围为
Figure PCTCN2022079154-appb-000037
则终端使用全部的8个循环移位参数生成SRS资源。
示例性的,传输梳参数最大支持的循环移位参数的个数为12,
Figure PCTCN2022079154-appb-000038
取值范围为
Figure PCTCN2022079154-appb-000039
则终端使用12个循环移位参数中的部分循环移位参数生成SRS资源,也即实际使用12个循环移位参数中的8个循环移位参数生成SRS资源。
示例性的,SRS资源的功能为以下一种:码本;天线切换;非码本。
示例性的,网络设备可以通过高层信令,向终端发送SRS的分配信息。
步骤1020,在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,至少两个天线端口组是基于8个天线端口划分得到的。
可选地,终端在不同频域维度的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS;或者,在不同时域维度的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS。
综上所述,本实施例提供的接收SRS的方法,将SRS资源中的8个天线端口可以划分为至少两个天线端口组,网络设备在向终端发送SRS资源的配置信 息之后,在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,该方法用于支持终端使用8个发送天线端口的情况下的相关功能实现,比如,用于支持终端使用8个发送天线端口的情况下的基于码本的信道质量探测,或者用于支持终端使用8个发送天线端口的情况下的基于非码本的信道质量探测,或者用于支持终端使用8个发送天线端口的情况下的天线切换时的信道质量探测。
图12示出了本公开一个示例性实施例提供的发送SRS的装置的框图,该装置可以通过软件、硬件或者二者的结合实现成为UE的一部分或者全部,该装置包括:
第一接收模块1110,被配置为接收SRS资源的配置信息,所述SRS资源包括8个天线端口;
第一发送模块1120,被配置为将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
在一些实施例中,第一发送模块1120,被配置为:
将所述至少两个天线端口组对应的SRS在频域维度上,映射在至少两个传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS;
其中,所述天线端口组与所述传输梳存在一一对应关系。
在一些实施例中,所述至少两个天线端口组对应的传输梳的时域位置相同。
在一些实施例中,所述至少两个天线端口组对应的传输梳的传输梳参数K TC相同。
在一些实施例中,所述至少两个天线端口组对应的传输梳的频域偏移值参数
Figure PCTCN2022079154-appb-000040
不同,所述
Figure PCTCN2022079154-appb-000041
的取值为小于K TC的非负整数。
在一些实施例中,该装置还包括:第一处理模块1130;
第一接收模块1110,被配置为接收第一天线端口组对应的传输梳的第一频域偏移值参数,所述第一天线端口组是所述至少两个天线端口组中的一组;
第一处理模块1130,被配置为基于所述第一频域偏移值参数,计算其它天线端口组对应的传输梳的其它频域偏移值参数,所述其它天线端口组是所述至少两个天线端口组中除所述第一天线端口组之外的天线端口组。
在一些实施例中,第一接收模块1110,被配置为接收所述至少两个天线端口组对应的传输梳的频域偏移值参数。
在一些实施例中,第一发送模块1120,被配置为:
将所述至少两个天线端口组对应的SRS在时域维度上,映射在至少两个传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS;
其中,所述天线端口组与所述传输梳存在一一对应关系。
在一些实施例中,所述至少两个天线端口组对应的传输梳的时域位置不同且相邻。
在一些实施例中,所述至少两个天线端口组对应的传输梳的传输梳参数K TC相同。
在一些实施例中,所述至少两个天线端口组对应的传输梳的频域偏移值参数
Figure PCTCN2022079154-appb-000042
相同,所述
Figure PCTCN2022079154-appb-000043
的取值为小于K TC的非负整数。
在一些实施例中,第一接收模块1110,被配置为接收所述至少两个天线端口组对应的传输梳的一个频域偏移值参数。
在一些实施例中,所述至少两个天线端口组对应的传输梳的循环移位参数的最大值为
Figure PCTCN2022079154-appb-000044
所述8个天线端口配置的循环移位参数
Figure PCTCN2022079154-appb-000045
对应的取值范围为
Figure PCTCN2022079154-appb-000046
在一些实施例中,该装置还包括:第一处理模块1130;
第一接收模块1110,被配置为接收配置的循环移位参数;
第一处理模块1130,被配置为基于所述循环移位参数,计算所述至少两个天线端口组中所有天线端口对应的循环移位参数。
在一些实施例中,该装置还包括:第一处理模块1130;
第一接收模块1110,被配置为接收所述至少两个天线端口组中每个天线端口组配置的循环移位参数;
第一处理模块1130,被配置为通过为所述天线端口组配置的循环移位参数计算所述天线端口组内的所有端口对应的循环移位参数。
在一些实施例中,
所述至少两个天线端口组是将所述8个天线端口按照端口号进行顺序分组得到的;
或者,所述至少两个天线端口组是将所述8个天线端口按照端口号进行奇偶分组得到的;
或者,所述至少两个天线端口组是按照协议预定义的组合方式进行分组得到的;
或者,所述至少两个天线端口组是将所述8个天线端口中为奇数的端口号 进行顺序分组,得到至少两个第一天线端口组,以及将所述8个天线端口中为偶数的端口号进行顺序分组,得到至少两个第二天线端口组得到的。
在一些实施例中,所述SRS的天线端口数量
Figure PCTCN2022079154-appb-000047
所述8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。
在一些实施例中,所述SRS资源的功能为以下一种:
码本;
天线切换;
非码本。
图13示出了本公开一个示例性实施例提供的接收SRS的装置的框图,该装置可以通过软件、硬件或者二者的结合实现成为网络设备的一部分或者全部,该装置包括:
第二发送模块1210,被配置为发送SRS资源的配置信息,所述SRS资源包括8个天线端口;
第二接收模块1220,被配置为在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
在一些实施例中,第二接收模块1220,被配置为在不同频域维度的传输梳对应的物理资源上同时接收所述至少两个天线端口组对应的SRS。
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组对应的传输梳的一个时域位置。
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组对应的一个传输梳参数K TC
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组中的第一天线端口组对应的传输梳的一个频域偏移值参数,所述第一天线端口组是所述至少两个天线端口组中的一组;
或者,所述至少两个天线端口组对应的至少两个传输梳的频域偏移值参数。
在一些实施例中,第二接收模块1220,被配置为在不同时域维度的传输梳对应的物理资源上同时接收所述至少两个天线端口组对应的SRS。
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组对应的传输梳的至少两个相邻时域位置。
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组对应的一个传输梳参数K TC
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组对应的一个频域偏移值参数。
在一些实施例中,所述SRS资源的配置信息,包括:
所述至少两个天线端口组对应的一个循环移位参数;
或者,所述至少两个天线端口组中每一个天线端口组对应的一个循环移位参数。
在一些实施例中,所述至少两个天线端口组是将所述8个天线端口按照端口号进行顺序分组得到的;
或者,所述至少两个天线端口组是将所述8个天线端口按照端口号进行奇偶分组得到的;
或者,所述至少两个天线端口组是按照协议预定义的组合方式进行分组得到的;
或者,所述至少两个天线端口组是将所述8个天线端口中为奇数的端口号进行顺序分组,得到至少两个第一天线端口组,以及将所述8个天线端口中为偶数的端口号进行顺序分组,得到至少两个第二天线端口组得到的。
在一些实施例中,所述SRS的天线端口数量
Figure PCTCN2022079154-appb-000048
所述8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。
在一些实施例中,所述SRS资源的功能为以下一种:
码本;
天线切换;
非码本。
图14示出了本公开一个示例性实施例提供的UE的结构示意图,该UE包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个指令,处理器1301用于执行该至少一个指令,以实现上述发送SRS的方法实施例中的各个步骤。
此外,存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read Only Memory),可擦除可编程只读存储器(EPROM,Erasable Programmable Read Only Memory),静态随时存取存储器(SRAM,Static Random-Access Memory),只读存储器(ROM,Read Only Memory),磁存储器,快闪存储器,可编程只读存储器(PROM,Programmable Read Only Memory)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由UE的处理器执行以完成上述发送SRS的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM,Random-Access Memory)、紧凑型光盘只读存储器(CD-ROM,Compact Disc Read Only Memory)、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述非临时性计算机存储介质中的指令由UE的处理器执行时,使得UE能够执行上述发送SRS的方法。
图15是根据一示例性实施例示出的一种网络设备1400的框图。该网络设备1400可以是基站。
网络设备1400可以包括:处理器1401、接收机1402、发射机1403和存储器1404。接收机1402、发射机1403和存储器1404分别通过总线与处理器1401连接。
其中,处理器1401包括一个或者一个以上处理核心,处理器1401通过运行软件程序以及模块以执行本公开实施例提供的接收SRS的方法中网络设备所执行的方法。存储器1404可用于存储软件程序以及模块。具体的,存储器1404可存储操作系统14041、至少一个功能所需的应用程序模块14042。接收机1402用于接收其他设备发送的通信数据,发射机1403用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的发送SRS的方法,或者,接收SRS的方法。
本公开一示例性实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设 备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如上述各个方法实施例提供的发送SRS的方法,或者,接收SRS的方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (38)

  1. 一种探测参考信号发送SRS的方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收SRS资源的配置信息,所述SRS资源包括8个天线端口;
    将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
  2. 根据权利要求1所述的方法,其特征在于,所述将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,包括:
    将所述至少两个天线端口组对应的SRS在频域维度上,映射在至少两个传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS;
    其中,所述天线端口组与所述传输梳存在一一对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的时域位置相同。
  4. 根据权利要求2所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的传输梳参数K TC相同。
  5. 根据权利要求2所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的频域偏移值参数
    Figure PCTCN2022079154-appb-100001
    不同,所述
    Figure PCTCN2022079154-appb-100002
    的取值为小于K TC的非负整数。
  6. 根据权利要求5所述的方法,其特征在于,所述接收SRS资源的配置信息,包括:
    接收第一天线端口组对应的传输梳的第一频域偏移值参数,所述第一天线端口组是所述至少两个天线端口组中的一组;
    所述方法还包括:
    基于所述第一频域偏移值参数,计算其它天线端口组对应的传输梳的其它频域偏移值参数,所述其它天线端口组是所述至少两个天线端口组中除所述第 一天线端口组之外的天线端口组。
  7. 根据权利要求6所述的方法,其特征在于,所述计算其它天线端口组对应的传输梳的其它频域偏移值参数,包括:
    通过相邻传输梳原则计算所述其它频域偏移值参数;
    或者,
    通过均匀分布原则计算所述其它频域偏移值参数;
    或者,
    通过最大间隔原则计算所述其它频域偏移值参数;
    或者,
    通过其他预定义原则计算所述其它频域偏移值参数。
  8. 根据权利要求5所述的方法,其特征在于,所述接收SRS资源的配置信息,包括:
    接收所述至少两个天线端口组对应的传输梳的频域偏移值参数。
  9. 根据权利要求1所述的方法,其特征在于,所述将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,包括:
    将所述至少两个天线端口组对应的SRS在时域维度上,映射在至少两个传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS;
    其中,所述天线端口组与所述传输梳存在一一对应关系。
  10. 根据权利要求9所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的时域位置不同且相邻。
  11. 根据权利要求9所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的传输梳参数K TC相同。
  12. 根据权利要求9所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的频域偏移值参数
    Figure PCTCN2022079154-appb-100003
    相同,所述
    Figure PCTCN2022079154-appb-100004
    的取值为小于K TC的非负整数。
  13. 根据权利要求12所述的方法,其特征在于,所述接收SRS资源的配置信息,包括:
    接收所述至少两个天线端口组对应的传输梳的一个频域偏移值参数。
  14. 根据权利要求1至13任一所述的方法,其特征在于,所述至少两个天线端口组对应的传输梳的循环移位参数的最大值为
    Figure PCTCN2022079154-appb-100005
    所述8个天线端口配置的循环移位参数
    Figure PCTCN2022079154-appb-100006
    对应的取值范围为
    Figure PCTCN2022079154-appb-100007
  15. 根据权利要求14所述的方法,其特征在于,所述接收SRS资源的配置信息,包括:
    接收配置的循环移位参数
    Figure PCTCN2022079154-appb-100008
    所述方法还包括:
    基于所述循环移位参数,计算所述至少两个天线端口组中的所有天线端口对应的循环移位参数。
  16. 根据权利要求14所述的方法,其特征在于,所述接收SRS资源的配置信息,包括:
    接收所述至少两个天线端口组中每个天线端口组对应的循环移位参数,通过为所述天线端口组配置的循环移位参数计算所述天线端口组内的所有端口对应的循环移位参数。
  17. 根据权利要求1至13任一所述的方法,其特征在于,
    所述至少两个天线端口组是将所述8个天线端口按照端口号进行顺序分组得到的;
    或者,
    所述至少两个天线端口组是将所述8个天线端口按照端口号进行奇偶分组得到的;
    或者,
    所述至少两个天线端口组是按照协议预定义的组合方式进行分组得到的;
    或者,
    所述至少两个天线端口组是将所述8个天线端口中为奇数的端口号进行顺序分组,得到至少两个第一天线端口组,以及将所述8个天线端口中为偶数的 端口号进行顺序分组,得到至少两个第二天线端口组得到的。
  18. 根据权利要求1至13任一所述的方法,其特征在于,
    所述SRS的天线端口数量
    Figure PCTCN2022079154-appb-100009
    所述8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。
  19. 根据权利要求1至13任一所述的方法,其特征在于,所述SRS资源的功能为以下一种:
    码本;
    天线切换;
    非码本。
  20. 一种接收SRS的方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    发送SRS资源的配置信息,所述SRS资源包括8个天线端口;
    在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
  21. 根据权利要求20所述的方法,其特征在于,所述在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,包括:
    在不同频域维度的传输梳对应的物理资源上同时接收所述至少两个天线端口组对应的SRS。
  22. 根据权利要求21所述的方法,其特征在于,所述SRS资源的配置信息,包括:
    所述至少两个天线端口组对应的传输梳的一个时域位置。
  23. 根据权利要求21所述的方法,其特征在于,所述SRS资源的配置信息,包括:
    所述至少两个天线端口组对应的一个传输梳参数K TC
  24. 根据权利要求21所述的方法,其特征在于,所述SRS资源的配置信息, 包括:
    所述至少两个天线端口组中的第一天线端口组对应的传输梳的一个频域偏移值参数,所述第一天线端口组是所述至少两个天线端口组中的一组;
    或者,
    所述至少两个天线端口组对应的至少两个传输梳的频域偏移值参数。
  25. 根据权利要求20所述的方法,其特征在于,所述在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,包括:
    在不同时域维度的传输梳对应的物理资源上同时接收所述至少两个天线端口组对应的SRS。
  26. 根据权利要求25所述的方法,其特征在于,所述SRS资源的配置信息,包括:
    所述至少两个天线端口组对应的传输梳的至少两个相邻时域位置。
  27. 根据权利要求25所述的方法,其特征在于,所述SRS资源的配置信息,包括:
    所述至少两个天线端口组对应的一个传输梳参数K TC
  28. 根据权利要求25所述的方法,其特征在于,所述SRS资源的配置信息,包括:
    所述至少两个天线端口组对应的一个频域偏移值参数。
  29. 根据权利要求20至28任一所述的方法,其特征在于,所述SRS资源的配置信息,包括:
    所述至少两个天线端口组对应的一个循环移位参数;
    或者,
    所述至少两个天线端口组中每一个天线端口组对应的一个循环移位参数。
  30. 根据权利要求20至28任一所述的方法,其特征在于,
    所述至少两个天线端口组是将所述8个天线端口按照端口号进行顺序分组得到的;
    或者,
    所述至少两个天线端口组是将所述8个天线端口按照端口号进行奇偶分组得到的;
    或者,
    所述至少两个天线端口组是按照协议预定义的组合方式进行分组得到的;
    或者,
    所述至少两个天线端口组是将所述8个天线端口中为奇数的端口号进行顺序分组,得到至少两个第一天线端口组,以及将所述8个天线端口中为偶数的端口号进行顺序分组,得到至少两个第二天线端口组得到的。
  31. 根据权利要求20至28任一所述的方法,其特征在于,
    所述SRS的天线端口数量
    Figure PCTCN2022079154-appb-100010
    所述8个天线端口的端口号P i=1000+i,i∈{0,1,2,3,4,5,6,7}。
  32. 根据权利要求20至28任一所述的方法,其特征在于,所述SRS资源的功能为以下一种:
    码本;
    天线切换;
    非码本。
  33. 一种探测参考信号发送SRS的装置,其特征在于,所述装置包括:
    第一接收模块,被配置为接收SRS资源的配置信息,所述SRS资源包括8个天线端口;
    第一发送模块,被配置为将至少两个天线端口组对应的SRS映射在不同的传输梳对应的物理资源上,同时发送所述至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端口划分得到的。
  34. 一种接收SRS的装置,其特征在于,所述装置包括:
    第二发送模块,被配置为发送SRS资源的配置信息,所述SRS资源包括8个天线端口;
    第二接收模块,被配置为在不同的传输梳对应的物理资源上同时接收至少两个天线端口组对应的SRS,所述至少两个天线端口组是基于所述8个天线端 口划分得到的。
  35. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至19任一所述的发送SRS的方法。
  36. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求20至32任一所述的接收SRS的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至19任一所述的发送SRS的方法,或者,如权利要求20至32任一所述的接收SRS的方法。
  38. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至19任一所述的发送SRS的方法,或者,如权利要求20至32任一所述的接收SRS的方法。
PCT/CN2022/079154 2022-03-03 2022-03-03 发送srs的方法、接收srs的方法、装置、设备、介质及产品 WO2023164909A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000675.9A CN117015949A (zh) 2022-03-03 2022-03-03 发送srs的方法、接收srs的方法、装置、设备、介质及产品
PCT/CN2022/079154 WO2023164909A1 (zh) 2022-03-03 2022-03-03 发送srs的方法、接收srs的方法、装置、设备、介质及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079154 WO2023164909A1 (zh) 2022-03-03 2022-03-03 发送srs的方法、接收srs的方法、装置、设备、介质及产品

Publications (1)

Publication Number Publication Date
WO2023164909A1 true WO2023164909A1 (zh) 2023-09-07

Family

ID=87882865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079154 WO2023164909A1 (zh) 2022-03-03 2022-03-03 发送srs的方法、接收srs的方法、装置、设备、介质及产品

Country Status (2)

Country Link
CN (1) CN117015949A (zh)
WO (1) WO2023164909A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103774A1 (zh) * 2011-01-31 2012-08-09 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
CN111464275A (zh) * 2019-01-21 2020-07-28 中国移动通信有限公司研究院 探测参考信号的发送配置、发送方法、终端及网络设备
CN111758272A (zh) * 2020-05-22 2020-10-09 北京小米移动软件有限公司 Srs资源配置方法、srs资源确定方法和装置
CN111835488A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种确定天线端口映射方法和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103774A1 (zh) * 2011-01-31 2012-08-09 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
CN111464275A (zh) * 2019-01-21 2020-07-28 中国移动通信有限公司研究院 探测参考信号的发送配置、发送方法、终端及网络设备
CN111835488A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种确定天线端口映射方法和终端
CN111758272A (zh) * 2020-05-22 2020-10-09 北京小米移动软件有限公司 Srs资源配置方法、srs资源确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Enhancements on SRS", 3GPP TSG RAN WG1#104BIS-E R1-2102842, 6 April 2021 (2021-04-06), XP051993233 *

Also Published As

Publication number Publication date
CN117015949A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
KR20220150851A (ko) D2d 통신을 위한 d2d 데이터 자원을 결정하는 방법 및 장치
WO2018082544A1 (zh) 无线通信的方法和装置
RU2737201C1 (ru) Пользовательский терминал и способ радиосвязи
AU2016429558B2 (en) Uplink signal transmission method and device
CN108811074B (zh) 信息传输方法及装置
CN108605345B (zh) 用户终端、无线基站以及无线通信方法
TW202008829A (zh) 資源配置的方法和終端設備
CN109964518A (zh) 传输信息的方法、终端设备和网络设备
TW202008828A (zh) 資源配置的方法和終端設備
WO2018127138A1 (zh) 一种参考信号配置的方法、基站、用户设备和系统
CN110958095B (zh) 一种通信方法及装置
US11962521B2 (en) Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
US20230231743A1 (en) Method and device for channel estimation
WO2023164853A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2023164910A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2020232665A1 (en) Method and apparatus for dummy sequence insertion in data modulation
RU2814209C1 (ru) Способ и устройство приема, терминальное устройство и носитель данных
US12016048B2 (en) CSI measurement method and apparatus
WO2023039700A1 (en) Systems and methods for uplink transmission scheme in multi-trp operation
JP7507242B2 (ja) 無線ネットワーク一時識別子に関連する方法および装置
WO2022067735A1 (zh) 频域位置确定方法、装置、设备及存储介质
WO2023173263A1 (zh) 确定上行ptrs端口关联关系的方法、装置、介质及产品
US20220022196A1 (en) Csi measurement method and apparatus
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000675.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929358

Country of ref document: EP

Kind code of ref document: A1