WO2023173263A1 - 确定上行ptrs端口关联关系的方法、装置、介质及产品 - Google Patents

确定上行ptrs端口关联关系的方法、装置、介质及产品 Download PDF

Info

Publication number
WO2023173263A1
WO2023173263A1 PCT/CN2022/080786 CN2022080786W WO2023173263A1 WO 2023173263 A1 WO2023173263 A1 WO 2023173263A1 CN 2022080786 W CN2022080786 W CN 2022080786W WO 2023173263 A1 WO2023173263 A1 WO 2023173263A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
uplink
dmrs
dmrs port
ptrs
Prior art date
Application number
PCT/CN2022/080786
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000721.5A priority Critical patent/CN117063430A/zh
Priority to PCT/CN2022/080786 priority patent/WO2023173263A1/zh
Publication of WO2023173263A1 publication Critical patent/WO2023173263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method, device, medium and product for determining uplink PTRS port association relationships.
  • PTRS Phase Tracking Reference Signal
  • CPE Common Phase Error
  • multiple antenna ports can be configured for the user terminal (User Equipment, UE).
  • the UE supports a maximum of 4 antenna ports for demodulation reference signal (Demodulation Reference Signal, DMRS) transmission, then 4 uplink DMRS
  • DMRS demodulation Reference Signal
  • One or two uplink DMRS ports associated with the uplink PTRS port are determined in the port.
  • Embodiments of the present disclosure provide a method, device, medium, and product for determining uplink PTRS port association relationships.
  • the technical solutions are as follows:
  • a method for determining an uplink PTRS port association relationship is provided.
  • the method is executed by a terminal, and the method includes:
  • the maximum number of uplink DMRS ports allocated to the terminal is 8.
  • a device for determining an uplink PTRS port association relationship includes:
  • a processing module configured to determine a default association relationship between the uplink PTRS port and the uplink DMRS port according to the port association rule, and the default association relationship is used for sending PTRS;
  • the maximum number of uplink DMRS ports allocated to the terminal is 8.
  • a terminal where the terminal includes:
  • transceiver coupled to said processor
  • the processor is configured to load and execute executable instructions to implement the method of determining the uplink PTRS port association relationship as described in each aspect above.
  • a computer-readable storage medium stores at least one instruction, at least a program, a code set or an instruction set, and the at least one instruction, The at least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the uplink PTRS port association relationship as described in the above aspects.
  • a computer program product (or computer program) including computer instructions stored in a computer-readable storage medium;
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the determination of the uplink PTRS port association relationship as described in the above aspects. method.
  • the terminal determines the default association between the uplink PTRS port and the uplink DMRS port according to the port association rules, and determines one or two uplink PTRS ports associated with the uplink PTRS port from up to 8 uplink DMRS ports.
  • Uplink DMRS ports this method is used to support the implementation of related functions when the terminal uses up to 8 transmit antenna ports, for example, it is used to support common phase error estimation when the terminal uses 8 transmit antenna ports.
  • Figure 1 is a block diagram of a communication system according to an exemplary embodiment
  • Figure 2 is a flow chart of a method for determining uplink PTRS port association relationships according to an exemplary embodiment
  • Figure 3 is a flowchart of a method for determining uplink PTRS port association relationships according to another exemplary embodiment
  • Figure 4 is a flow chart of a method for determining uplink PTRS port association according to another exemplary embodiment
  • Figure 5 is a flowchart of a method for determining uplink PTRS port association according to another exemplary embodiment
  • Figure 6 is a flowchart of a method for determining uplink PTRS port association according to another exemplary embodiment
  • Figure 7 is a block diagram of a device for determining uplink PTRS port association relationships according to an exemplary embodiment
  • Figure 8 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Figure 9 is a schematic structural diagram of a network device according to an exemplary embodiment.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a user terminal 14.
  • the access network 12 includes several network devices 120 .
  • the network device (also referred to as network device) 120 may be a base station, which is a device deployed in the access network to provide wireless communication functions for user terminals (referred to as "terminals") 14.
  • Base stations can include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of equipment with base station functions may be different.
  • LTE Long Term Evolution
  • eNodeB eNodeB
  • 5G NR New Radio (new air interface) system
  • gNodeB New Radio (new air interface)
  • the description "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the user terminal 14 are collectively referred to as network equipment.
  • the user terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS) , terminal device (terminal device) and so on.
  • mobile stations Mobile Station, MS
  • terminal device terminal device
  • the network device 120 and the user terminal 14 communicate with each other through some air interface technology, such as the Uu interface.
  • uplink communication refers to sending signals to the network device 120
  • downlink communication refers to sending signals to the user terminal 14.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • Figure 2 shows a flow chart of a method for determining uplink PTRS port association provided by an exemplary embodiment of the present disclosure. The method is applied to the terminal of the communication system shown in Figure 1. The method includes:
  • Step 210 Determine the default association between the uplink PTRS port and the uplink DMRS port according to the port association rules.
  • the default association is used for sending PTRS; where the maximum number of uplink DMRS ports allocated to the terminal is 8.
  • the terminal when measuring the quality of the uplink channel, can map the sounding reference signal (Sounding Reference Signal, SRS) resource on the physical resource (PR) of the uplink channel, and then allocate and use the SRS resource for the uplink DMRS port, and Associate the upstream PTRS port with the upstream DMRS port.
  • SRS Sounding Reference Signal
  • PRB Physical Resource Block
  • the above-mentioned physical resources refer to continuous carrier resources in the frequency domain.
  • One physical resource block Physical Resource Block (Physical Resource Block, PRB) corresponds to 12 continuous carriers in the frequency domain and one time slot in the time domain.
  • the above-mentioned uplink channel includes: at least one of a physical uplink control channel (Physical Uplink Control CHannel, PUCCH) and a physical uplink shared channel (Physical Uplink Shared CHannel, PUSCH).
  • the above port association rules define the default association between the uplink PTRS port and the uplink DMRS port; the terminal can, based on the above port association rules, on uplink DMRS ports among up to 8 (inclusive) uplink DMRS ports corresponding to the SRS resource. Associate the upstream PTRS port to send PTRS through the upstream PTRS port on the SRS resource.
  • the port association rules may be pre-configured for the terminal by the network device; or the port association rules may be defined by a protocol.
  • the number of uplink DMRS ports may be N.
  • the value of N is a positive integer not greater than 8, that is, the number of uplink DMRS ports can be one from 1 to 8; or, the value of N is an integer greater than 4 and not greater than 8, that is, the number of uplink DMRS ports
  • the number of ports can be one from 5 to 8.
  • the number of uplink DMRS ports may be configured by the network device for the terminal; for example, the number of uplink DMRS ports configured by the network device for the terminal is 8.
  • the above-mentioned up to 8 uplink DMRS ports are allocated to the terminal by the network device.
  • the network device allocates all or part of the uplink DMRS ports to the terminal. For example, if there are 8 uplink DMRS ports that can be allocated by the network device, the network device will allocate some or all of the 8 uplink DMRS ports to the terminal; if there are 12 uplink DMRS ports that can be allocated by the network device, the network device will allocate them to the terminal. Allocate some of the 12 upstream DMRS ports.
  • the network device allocates all 8 upstream DMRS ports 0 to 7 to the terminal; or, the network device allocates 8 of the 12 upstream DMRS ports 0 to 11 to the terminal. Assigned to the terminal, for example, allocate uplink DMRS ports 0 to 7 among the 12 uplink DMRS ports to the terminal. Another example, allocate uplink DMRS ports 4 to 11 among the 12 uplink DMRS ports to the terminal.
  • the number of the above uplink PTRS ports is 1 or 2.
  • the terminal determines according to the port association rules that there is a default association between one uplink DMRS port and one uplink PTRS port among the maximum 8 uplink DMRS ports; that is, according to the port association rules, An upstream PTRS port is associated by default to one upstream DMRS port among up to 8 upstream DMRS ports.
  • the terminal determines according to the port association rules that there is a default association between the first uplink DMRS port and the first uplink PTRS port among up to 8 uplink DMRS ports, and determines that up to 8 uplink DMRS ports have a default association relationship.
  • the above-mentioned second upstream PTRS port is one of the two upstream PTRS ports except the first upstream PTRS port.
  • the above-mentioned second uplink DMRS port is an uplink DMRS port among up to 8 uplink DMRS ports except the first uplink DMRS port.
  • the number of the above uplink PTRS ports may be configured for the terminal by the network device. For example, after the terminal receives the DCI sent by the network device at the Media Access Control (MAC) layer, it determines the number of upstream PTRS ports to be 1 or 2 based on the DCI instructions. For another example, the terminal receives high-level signaling sent by the network device, such as Radio Resource Control (RRC), and then determines the number of uplink PTRS ports to be 1 or 2 based on the instructions of the high-level signaling.
  • RRC Radio Resource Control
  • the number of uplink PTRS ports can be determined by the terminal.
  • the number of uplink PTRS ports can be determined in any of the following ways:
  • the terminal determines that the number of PTRS ports is 2.
  • the above-mentioned up to 8 uplink DMRS ports can be mapped to antenna ports on the same antenna panel or different antenna panels; that is, the above-mentioned up to 8 uplink DMRS ports are mapped to M Antenna ports on an antenna panel, M is a positive integer less than or equal to 8.
  • M is a positive integer less than or equal to 8.
  • 4 of the 8 uplink DMRS ports are mapped to the first antenna panel, and the remaining 4 of the 8 uplink DMRS ports are mapped to the second antenna panel.
  • this embodiment provides a method for determining the uplink PTRS port association.
  • the terminal determines the default association between the uplink PTRS port and the uplink DMRS port according to the port association rules, and determines the uplink DMRS port from up to 8 uplink DMRS ports.
  • This method is used to support the common phase error estimation during uplink transmission when the terminal uses up to 8 transmit antenna ports. For example, it is used to support the terminal to use 8 transmit antenna ports. To detect the common phase error in uplink transmission based on CB, or to support the terminal to use 8 transmit antenna ports to detect the common phase error (Common Phase Error, CPE) in uplink transmission based on NCB.
  • CPE Common Phase Error
  • the execution scenario of the above step 210 includes at least one of the following:
  • the terminal determines the default association between the uplink PTRS port and the uplink DMRS port based on the port association rules.
  • the terminal determines the default association between the uplink PTRS port and the uplink DMRS port according to the port association rules.
  • the above specified information field is the PTRS-DMRS association field (ie, PTRS-DMRS association field).
  • the terminal when the terminal sends PTRS on the scheduling-free uplink shared channel type 1, the terminal determines the default association relationship between the uplink PTRS port and the uplink DMRS port according to the port association rules.
  • the method for determining the uplink PTRS port association defines the application scenario in which the terminal uses the default association between the uplink PTRS port and the uplink DMRS port, so as to support the most commonly used by the terminal in different application scenarios.
  • Common phase error estimation during uplink transmission in the case of 8 transmit antenna ports.
  • step 210 in Figure 2 can be implemented through step 310, as shown in Figure 3, the steps are as follows:
  • Step 310 When the number of uplink PTRS ports is 1, the uplink PTRS port is fixedly associated with the first uplink DMRS port among the uplink DMRS ports corresponding to PUSCH according to the port association rule.
  • the above port association rules are used to fixedly indicate the first uplink DMRS port among up to 8 (inclusive) uplink DMRS ports associated with the uplink PTRS port.
  • the above port association rules include any of the following:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated corresponding to PUSCH.
  • the eight uplink DMRS ports include uplink DMRS ports 0 to 7, and the terminal determines that the first uplink DMRS port is uplink DMRS port 7.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated corresponding to PUSCH.
  • the eight uplink DMRS ports include uplink DMRS ports 0 to 7, and the terminal determines that the first uplink DMRS port is uplink DMRS port 0.
  • the uplink DMRS port assigned to PUSCH is divided into 2 DMRS port groups, and the 2 DMRS port groups correspond to the 2 CWs one-to-one.
  • the above port association rules include the following Any one:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the CW with a higher modulation and coding scheme (MCS) level.
  • MCS modulation and coding scheme
  • the first DMRS port group corresponding to the first CW includes uplink DMRS ports 0-3, and the second DMRS port group corresponding to the second CW includes uplink DMRS ports 4-7; the MCS level of the terminal in the first CW is higher than the second If the MCS level of the CW is higher than the MCS level of the first CW, determine the uplink DMRS port 3 in the first DMRS port group as the first uplink DMRS port; if the MCS level of the second CW is higher than the MCS level of the first CW, determine the second uplink DMRS port 3 in the first DMRS port group.
  • Uplink DMRS port 7 in the DMRS port group is determined as the first uplink DMRS port.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the CW with a higher MCS level.
  • the first DMRS port group corresponding to the first CW includes uplink DMRS ports 0-3, and the second DMRS port group corresponding to the second CW includes uplink DMRS ports 4-7;
  • the MCS level of the terminal in the first CW is higher than the second
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW among the two CWs of the same MCS level.
  • the first DMRS port group corresponding to the first CW includes uplink DMRS ports 0-3, and the second DMRS port group corresponding to the second CW includes uplink DMRS ports 4-7; the MCS level of the terminal in the first CW is equal to the second CW In the case of an MCS level, uplink DMRS port 3 in the first DMRS port group corresponding to the first CW is determined as the first uplink DMRS port.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW among the two CWs of the same MCS level.
  • the first DMRS port group corresponding to the first CW includes uplink DMRS ports 0-3, and the second DMRS port group corresponding to the second CW includes uplink DMRS ports 4-7; the MCS level of the terminal in the first CW is equal to the second CW In the case of an MCS level, uplink DMRS port 0 in the first DMRS port group corresponding to the first CW is determined as the first uplink DMRS port.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW among the two CWs of the same MCS level.
  • the first DMRS port group corresponding to the first CW includes uplink DMRS ports 0-3, and the second DMRS port group corresponding to the second CW includes uplink DMRS ports 4-7; the MCS level of the terminal in the first CW is equal to the second CW In the case of an MCS level, uplink DMRS port 7 in the second DMRS port group corresponding to the second CW is determined as the first uplink DMRS port.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW among the two CWs of the same MCS level.
  • the first DMRS port group corresponding to the first CW includes uplink DMRS ports 0-3, and the second DMRS port group corresponding to the second CW includes uplink DMRS ports 4-7; the MCS level of the terminal in the first CW is equal to the second CW In the case of an MCS level, uplink DMRS port 4 in the second DMRS port group corresponding to the second CW is determined as the first uplink DMRS port.
  • the above-mentioned second DMRS port group is another DMRS port group among the above-mentioned two DMRS port groups except the first DMRS port group.
  • the above-mentioned second CW is another CW of the above-mentioned two CWs except the first CW.
  • the first CW may be expressed as CW0
  • the second CW may be expressed as CW1.
  • the terminal is allocated up to 8 (inclusive) uplink DMRS ports on PUSCH, and the up to 8 uplink DMRS ports are divided into 2 DMRS port groups, 2
  • the DMRS port group corresponds to 2 CWs one-to-one.
  • the above port association rules include any of the following:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated corresponding to PUSCH.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated corresponding to PUSCH.
  • the above port association rules may also include: the first uplink DMRS port is any uplink DMRS port among the uplink DMRS ports allocated corresponding to PUSCH except the uplink DMRS port corresponding to the smallest port number.
  • the terminal determines any one of the seven uplink DMRS ports, namely uplink DMRS ports 1-7, as the first uplink DMRS port, such as port 1.
  • the uplink DMRS port allocated to PUSCH is allocated by the network device through downlink control information; or the uplink DMRS port allocated to PUSCH is configured by the network device through radio resource control RRC signaling.
  • the terminal when the terminal has one uplink PTRS port, it is fixedly associated with one of up to eight uplink DMRS ports according to the port association rules.
  • the uplink PTRS port is used to support co-phase error estimation during uplink transmission when the terminal uses up to 8 transmit antenna ports. For example, it is used to support the terminal to use 8 transmit antenna ports to detect co-phase error in the CB-based uplink transmission scenario. Phase error, or, is used to support the terminal using 8 transmit antenna ports to detect common phase errors in NCB-based uplink transmission scenarios.
  • step 210 in Figure 2 can also be implemented through step 410, as shown in Figure 4, the steps are as follows:
  • Step 410 When the number of uplink PTRS ports is 1, dynamically determine the first uplink DMRS port associated with the uplink PTRS port among the uplink DMRS ports allocated corresponding to PUSCH according to the port association rules.
  • the above-mentioned second port association rule is used to dynamically indicate the first uplink DMRS port among up to eight uplink DMRS ports associated with the uplink PTRS port.
  • the above-mentioned up to 8 uplink DMRS ports are configured by the network device on PUSCH for the terminal.
  • the terminal when the terminal sends PTRS multiple times, different uplink DMRS ports among the eight uplink DMRS ports are used to associate the first uplink DMRS port. For example, when the terminal sends PTRS for the first time, it determines the uplink DMRS port 0 associated with the uplink PTRS port; when it sends PTRS for the second time, it determines the uplink DMRS port 2 associated with the uplink PTRS port; when it sends the third PTRS When PTRS is used, the uplink DMRS port 4 associated with the uplink PTRS port is determined.
  • the terminal uses scheduling-free PUSCH transmission, corresponding to the PTRS transmission on each transmission opportunity on PUSCH, starting from the predefined port number, the terminal uses the corresponding allocated PUSCH in the order of the port number of the uplink DMRS port.
  • One of the uplink DMRS ports serves as the first uplink DMRS port. That is, at each transmission opportunity of multiple PTRS transmissions, the terminal starts from a predefined port number and cyclically uses one of the uplink DMRS ports corresponding to the PUSCH allocated in the order of the port number as the first uplink DMRS port.
  • the terminal starts from a predefined port number, and uses one of all 8 uplink DMRS ports (or part of the 8 uplink DMRS ports) as the first uplink DMRS port in a cyclic manner according to the port number sequence.
  • the predefined port number can be the minimum or maximum port number.
  • the terminal when the terminal sends PTRS multiple times, if the number of PTRS sending times is greater than or equal to the number of uplink DMRS ports, one of all 8 uplink DMRS ports will be used cyclically in the order of port numbers 0-7 as the first uplink DMRS port, that is, , when the terminal sends PTRS for the first time, it determines the uplink DMRS port 0 associated with the uplink PTRS port; when it sends PTRS for the second time, it determines the uplink DMRS port 1 associated with the uplink PTRS port; ...; in the eighth time
  • the uplink DMRS port 7 associated with the uplink PTRS port is determined; when the PTRS is sent for the ninth time, the uplink DMRS port 0 associated with the uplink PTRS port is determined; ...; until the sending of PTRS ends.
  • L uplink DMRS ports (that is, 8 uplink DMRS ports) will be used in order of port numbers 0-(L-1).
  • L is a positive integer less than 8; for example, if the number of PTRS transmissions is six, when the terminal sends PTRS for the first time, it determines the The uplink DMRS port 0 associated with the uplink PTRS port; when sending PTRS for the second time, determine the uplink DMRS port 1 associated with the uplink PTRS port; ...; when sending PTRS for the sixth time, determine the uplink PTRS port associated with the uplink PTRS port Upstream DMRS port 5 ends the sending of PTRS.
  • the uplink DMRS port allocated to PUSCH is allocated by the network device through downlink control information; or the uplink DMRS port allocated to PUSCH is configured by the network device through radio resource control RRC signaling.
  • the terminal when the terminal has one uplink PTRS port, it can dynamically associate the uplink port with one of up to eight uplink DMRS ports according to the port association rules.
  • the PTRS port is used to support common phase error estimation during uplink transmission when the terminal uses 8 transmit antenna ports.
  • step 210 in Figure 2 can also be implemented through step 510, as shown in Figure 5, the steps are as follows:
  • Step 510 When the number of uplink PTRS ports is 2, permanently associate the first uplink PTRS port with the first uplink DMRS port in the first DMRS port group according to the port association rules; and fixedly associate the first uplink PTRS port with the first uplink PTRS port according to the port association rules.
  • the second uplink DMRS port in the second DMRS port group is associated with the second uplink PTRS port.
  • the uplink DMRS port corresponding to PUSCH is divided into 2 DMRS port groups, and the 2 DMRS port groups include the first DMRS port group and the second DMRS port group; the first uplink PTRS port is one of the two uplink PTRS ports.
  • the uplink PTRS port, the second uplink PTRS port is the other uplink PTRS port among the two uplink PTRS ports except the first uplink PTRS port, and the second DMRS port group is one of the two DMRS port groups except the first DMRS port group.
  • a DMRS port group outside of For example, each DMRS port group may include 4 uplink DMRS ports.
  • the above port association rules are used to fixedly indicate the first uplink DMRS port among the maximum 8 uplink DMRS ports associated with the first uplink PTRS port, and to fixedly indicate the maximum 8 uplink DMRS ports associated with the second uplink PTRS port.
  • the second upstream DMRS port in the port is used to fixedly indicate the first uplink DMRS port among the maximum 8 uplink DMRS ports associated with the first uplink PTRS port, and to fixedly indicate the maximum 8 uplink DMRS ports associated with the second uplink PTRS port.
  • the first DMRS port group includes uplink DMRS port 0, uplink DMRS port 2.
  • the second DMRS port group includes uplink DMRS port 1, uplink DMRS port 3, uplink DMRS port 5, and uplink DMRS port 7; the terminal is fixed from the first port according to the port association rules.
  • the uplink DMRS port 2 is determined as the first uplink DMRS port from the DMRS port group, and the uplink DMRS port 5 is fixedly determined from the second DMRS port group as the second uplink DMRS port according to the port association rule.
  • the above port association rules include any of the following:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the first DMRS port group; the second uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the second DMRS port group. upstream DMRS port.
  • the first DMRS port group includes uplink DMRS ports 0-3, and the second DMRS port group includes uplink DMRS ports 4-7; the terminal is on the allocated DMRS port
  • the first uplink DMRS port in the group is determined to be uplink DMRS port 3
  • the second uplink DMRS port is determined to be uplink DMRS port 7.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the first DMRS port group; the second uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the second DMRS port group. upstream DMRS port.
  • the first DMRS port group includes uplink DMRS ports 0-3, and the second DMRS port group includes uplink DMRS ports 4-7; the terminal is in the assigned port group.
  • the first uplink DMRS port is determined to be uplink DMRS port 0, and the second uplink DMRS port is determined to be uplink DMRS port 4.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the first DMRS port group; the second uplink DMRS port is the smallest port number among the uplink DMRS ports allocated in the second DMRS port group. upstream DMRS port.
  • the first DMRS port group includes uplink DMRS ports 0-3, and the second DMRS port group includes uplink DMRS ports 4-7; the terminal is in the assigned port group.
  • the first uplink DMRS port is determined to be uplink DMRS port 3
  • the second uplink DMRS port is determined to be uplink DMRS port 4.
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the first DMRS port group; the second uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the second DMRS port group. upstream DMRS port.
  • the first DMRS port group includes uplink DMRS ports 0-3, and the second DMRS port group includes uplink DMRS ports 4-7; the terminal is in the assigned port group.
  • the first uplink DMRS port is determined to be uplink DMRS port 0, and the second uplink DMRS port is determined to be uplink DMRS port 7.
  • 2 DMRS port groups correspond to 2 CWs one-to-one
  • the port association rules include any of the following:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW;
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW.
  • 2 DMRS port groups correspond to 2 CWs one-to-one
  • the port association rules include any of the following:
  • the second uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW;
  • the second uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW.
  • the above port association rules may also include: the first uplink DMRS port is any uplink DMRS port among the uplink DMRS ports allocated in the first DMRS port group except the uplink DMRS port corresponding to the smallest port number; the second uplink DMRS port The DMRS port is any uplink DMRS port among the uplink DMRS ports allocated in the second DMRS port group except the uplink DMRS port corresponding to the smallest port number.
  • the first DMRS port group includes uplink DMRS ports 0-3, and the second DMRS port group includes uplink DMRS ports 4-7; the terminal determines any uplink DMRS port from the uplink DMRS ports 1-3 as the first uplink DMRS port. , and determine any uplink DMRS port from the uplink DMRS ports 5-7 as the second uplink DMRS port.
  • the uplink DMRS port allocated to PUSCH is allocated by the network device through downlink control information; or the uplink DMRS port allocated to PUSCH is configured by the network device through radio resource control RRC signaling.
  • the uplink DMRS ports in each DMRS port group are configured by the network device through high-level signaling; or, the uplink DMRS ports in each DMRS port group are predefined.
  • the terminal when the terminal has two uplink PTRS ports, it fixes two uplink DMRS ports among the maximum 8 uplink DMRS ports according to the port association rules.
  • Two uplink PTRS ports are respectively associated with the port, which is used to support the common phase error estimation of uplink transmission when the terminal uses up to 8 transmit antenna ports. For example, it is used to support the terminal to use 8 transmit antenna ports to detect CB-based Common phase errors in uplink transmission scenarios, or used to support terminals using 8 transmit antenna ports to detect common phase errors in NCB-based uplink transmission scenarios.
  • step 210 in Figure 2 can also be implemented through step 610, as shown in Figure 6, the steps are as follows:
  • Step 610 When there are two uplink PTRS ports, dynamically determine the first uplink DMRS port associated with the first uplink PTRS port among the uplink DMRS ports allocated in the first DMRS port group according to the port association rules; and according to The port association rule dynamically determines the second uplink DMRS port associated with the second uplink PTRS port among the uplink DMRS ports allocated in the second DMRS port group.
  • the uplink DMRS port allocated corresponding to the above-mentioned PUSCH is divided into 2 DMRS port groups, and the 2 DMRS port groups include a first DMRS port group and a second DMRS port group; the first uplink PTRS port is one of the two uplink PTRS ports.
  • One uplink PTRS port, the second uplink PTRS port is the other uplink PTRS port among the two uplink PTRS ports except the first uplink PTRS port, and the second DMRS port group is the two DMRS port groups except the first DMRS port group.
  • a DMRS port group outside of For example, each DMRS port group may include 4 uplink DMRS ports.
  • the above port association rules are used to dynamically indicate the first uplink DMRS port among up to 8 uplink DMRS ports associated with the first uplink PTRS port, and dynamically indicate up to 8 uplink DMRS ports associated with the second uplink PTRS port.
  • the second upstream DMRS port in the port is used to dynamically indicate the first uplink DMRS port among up to 8 uplink DMRS ports associated with the first uplink PTRS port, and dynamically indicate up to 8 uplink DMRS ports associated with the second uplink PTRS port.
  • the terminal uses scheduling-free PUSCH transmission, corresponding to the PTRS transmission on each transmission opportunity on PUSCH, starting from the predefined port number
  • the first DMRS port is used cyclically in the order of the port number of the uplink DMRS port.
  • One of the uplink DMRS ports allocated in the group serves as the first uplink DMRS port; and in the case of using scheduling-free PUSCH transmission, corresponding to PT-RS transmission on each transmission opportunity on PUSCH, starting from the predefined port number , circularly using one of the uplink DMRS ports allocated in the second DMRS port group as the second uplink DMRS port in the order of the port number of the uplink DMRS port.
  • the PT-RS corresponding to each PUSCH transmission opportunity is transmitted in the allocated DMRS port starting from the predefined DMRS port number in the order of DMRS port number and circularly used in the first DMRS port group.
  • One of the at least two uplink DMRS ports allocated is used as the first uplink DMRS port; and in the case of using scheduling-free transmission, the PT-RS transmission corresponding to each PUSCH transmission opportunity starts from the predefined DMRS port number according to the DMRS port
  • One of the at least two uplink DMRS ports allocated in the second DMRS port group is used as the second uplink DMRS port in order of numbers.
  • the predefined port number is the maximum or minimum port number.
  • the first DMRS port group includes uplink DMRS port 0, uplink DMRS port 2.
  • the second DMRS port group includes uplink DMRS port 1, uplink DMRS port 3, uplink DMRS port 5, and uplink DMRS port 7; when the terminal sends PTRS multiple times, it cycles in sequence Use upstream DMRS port 0, upstream DMRS port 2, upstream DMRS port 4, and upstream DMRS port 6 as the first upstream DMRS port; and use upstream DMRS port 1, upstream DMRS port 3, upstream DMRS port 5, and upstream DMRS in sequence Port 7 serves as the second uplink DMRS port. It should be noted that when the number of PTRS transmission times is greater than, or less than, or equal to the number of uplink DMRS ports, this cycle can be used to determine the method of uplink DMRS ports.
  • the uplink DMRS port allocated to PUSCH is allocated by the network device through downlink control information; or the uplink DMRS port allocated to PUSCH is configured by the network device through radio resource control RRC signaling.
  • the uplink DMRS ports in each DMRS port group are configured by the network device through high-level signaling; or, the uplink DMRS ports in each DMRS port group are predefined.
  • this embodiment provides a method for determining the association relationship of uplink PTRS ports.
  • the terminal When the terminal has two uplink PTRS ports, it dynamically selects two uplink DMRS ports among the eight uplink DMRS ports according to the port association rules.
  • Two uplink PTRS ports are respectively associated with each other to support co-phase error estimation during uplink transmission when the terminal uses 8 transmit antenna ports. For example, it is used to support the terminal using 8 transmit antenna ports to detect uplink transmission based on CB. Common phase error estimation, or common phase error estimation used to support the terminal using 8 transmit antenna ports to detect NCB-based uplink transmission.
  • Figure 7 shows a block diagram of a device for determining uplink PTRS port association provided by an exemplary embodiment of the present disclosure.
  • the device can be implemented as part or all of the UE through software, hardware, or a combination of the two.
  • the device includes:
  • the processing module 710 is configured to determine a default association between the uplink PTRS port and the uplink DMRS port according to the port association rule, and the default association is used for sending PTRS;
  • the maximum number of uplink DMRS ports allocated to the terminal is 8.
  • the processing module 710 is configured to, when the number of the uplink PTRS ports is 1, fix the assigned uplink DMRS port corresponding to the physical uplink shared channel PUSCH according to the port association rule.
  • the first upstream DMRS port is associated with the upstream PTRS port.
  • the port association rules include:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated corresponding to the PUSCH;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated corresponding to the PUSCH.
  • the uplink DMRS ports allocated to PUSCH are divided into 2 DMRS port groups, and the 2 DMRS port groups correspond to the 2 CWs in a one-to-one manner.
  • Port association rules include:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the CW with a higher MCS level;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the CW with a higher MCS level;
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW among the two CWs of the same MCS level;
  • the first uplink DMRS port is the uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW among the two CWs of the same MCS level;
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW among the two CWs of the same MCS level;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW among the two CWs of the same MCS level.
  • the port association rules include:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated corresponding to the PUSCH;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated corresponding to the PUSCH.
  • the port association rules include:
  • the first uplink DMRS port is any uplink DMRS port among the uplink DMRS ports allocated corresponding to the PUSCH except the uplink DMRS port corresponding to the smallest port number.
  • the processing module 710 is configured to dynamically determine the uplink DMRS port corresponding to the PUSCH allocated according to the port association rule when the number of the uplink PTRS ports is 1.
  • the port association rules include:
  • the PUSCH corresponding allocation is cyclically used in the order of the port number of the uplink DMRS port.
  • One of the uplink DMRS ports serves as the first uplink DMRS port.
  • the uplink DMRS ports assigned to PUSCH are divided into 2 DMRS port groups, and the 2 DMRS port groups include a first DMRS port group and a second DMRS port group;
  • the processing module 710 is configured to, when the number of the uplink PTRS ports is 2, fixedly associate the first uplink DMRS port in the first DMRS port group according to the port association rule.
  • Uplink PTRS port, the first uplink PTRS port is one of the two uplink PTRS ports;
  • a second uplink PTRS port is fixedly associated with the second uplink DMRS port in the second DMRS port group, and the second uplink PTRS port is the second uplink PTRS port among the two uplink PTRS ports.
  • the port association rules include:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the first DMRS port group;
  • the second uplink DMRS port is the uplink DMRS port allocated in the second DMRS port group.
  • the upstream DMRS port corresponding to the largest port number among the DMRS ports;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the first DMRS port group;
  • the second uplink DMRS port is an uplink DMRS port allocated in the second DMRS port group.
  • the upstream DMRS port corresponding to the smallest port number among the upstream DMRS ports;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the first DMRS port group;
  • the second uplink DMRS port is an uplink DMRS port allocated in the second DMRS port group.
  • the upstream DMRS port corresponding to the smallest port number among the upstream DMRS ports;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the first DMRS port group;
  • the second uplink DMRS port is an uplink DMRS port allocated in the second DMRS port group.
  • the upstream DMRS port corresponding to the largest port number among the upstream DMRS ports.
  • the two DMRS port groups correspond to the two CWs one-to-one
  • the port association rules include:
  • the first uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW;
  • the first uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the first CW.
  • the two DMRS port groups correspond to the two CWs one-to-one
  • the port association rules include:
  • the second uplink DMRS port is the uplink DMRS port corresponding to the largest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW;
  • the second uplink DMRS port is an uplink DMRS port corresponding to the smallest port number among the uplink DMRS ports allocated in the DMRS port group corresponding to the second CW.
  • the port association rules include:
  • the first uplink DMRS port is any uplink DMRS port among the uplink DMRS ports allocated in the first DMRS port group except the uplink DMRS port corresponding to the smallest port number;
  • the second uplink DMRS port is any uplink DMRS port among the uplink DMRS ports allocated in the second DMRS port group except the uplink DMRS port corresponding to the smallest port number.
  • the uplink DMRS ports assigned to PUSCH are divided into 2 DMRS port groups, and the 2 DMRS port groups include a first DMRS port group and a second DMRS port group;
  • the processing module 710 is configured to dynamically determine the uplink DMRS port assigned to the first DMRS port group according to the port association rule when the number of the uplink PTRS ports is 2.
  • a second uplink DMRS port associated with a second uplink PTRS port is dynamically determined among the uplink DMRS ports allocated in the second DMRS port group according to the port association rule, and the second uplink PTRS port is the two Another uplink PTRS port other than the first uplink PTRS port among the uplink PTRS ports.
  • the port association rules include:
  • the first DMRS is used cyclically in the order of the port number of the uplink DMRS port.
  • One of the uplink DMRS ports allocated in the port group serves as the first uplink DMRS port;
  • the first port number is used cyclically in the order of the port number of the uplink DMRS port.
  • One of the uplink DMRS ports allocated in the two DMRS port groups serves as the second uplink DMRS port.
  • the uplink DMRS port in each DMRS port group is configured by a network device through high-level signaling; or, the uplink DMRS port in each DMRS port group is predefined.
  • the processing module 710 is configured to determine the default association relationship between the uplink PTRS port and the uplink DMRS port according to the port association rule when TRI is greater than 1.
  • the processing module 710 is configured to:
  • the default association relationship between the uplink PTRS port and the uplink DMRS port is determined according to the port association rule.
  • the specified information field is a PTRS-DMRS association field.
  • Figure 8 shows a schematic structural diagram of a UE provided by an exemplary embodiment of the present disclosure.
  • the UE includes: a processor 1201, a receiver 1202, a transmitter 1203, a memory 1204 and a bus 1205.
  • the processor 1201 includes one or more processing cores.
  • the processor 1201 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1202 and the transmitter 1203 can be implemented as a communication component, and the communication component can be a communication chip.
  • Memory 1204 is connected to processor 1201 through bus 1205.
  • the memory 1204 can be used to store at least one instruction, and the processor 1201 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 1204 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (EEPROM, Electrically Erasable Programmable Read Only Memory), Erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read Only Memory), Static Random-Access Memory (SRAM, Static Random-Access Memory), Read-Only Memory (ROM, Read Only Memory), magnetic memory, flash memory, programmable read-only memory (PROM, Programmable Read Only Memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Random-Access Memory
  • ROM Read-Only Memory
  • magnetic memory flash memory
  • PROM programmable read-only memory
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions.
  • the instructions can be executed by a processor of the UE to complete the above method of determining uplink PTRS port association.
  • the non-transitory computer-readable storage medium can be ROM, random access memory (RAM, Random-Access Memory), compact disc read-only memory (CD-ROM, Compact Disc Read Only Memory), magnetic tape, floppy disk and optical data storage devices, etc.
  • a non-transitory computer-readable storage medium when instructions in the non-transitory computer storage medium are executed by a processor of a UE, enable the UE to perform the above method of determining uplink PTRS port association.
  • Figure 9 is a block diagram of a network device 1300 according to an exemplary embodiment.
  • the network device 1300 may be a base station.
  • Network device 1300 may include: processor 1301, receiver 1302, transmitter 1303, and memory 1304.
  • the receiver 1302, the transmitter 1303 and the memory 1304 are respectively connected to the processor 1301 through a bus.
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes the method for determining the uplink PTRS port association relationship provided by the embodiment of the present disclosure by running software programs and modules.
  • Memory 1304 may be used to store software programs and modules. Specifically, the memory 1304 can store the operating system 13041 and at least one application module 13042 required for the function.
  • the receiver 1302 is used to receive communication data sent by other devices, and the transmitter 1303 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium stores at least one instruction, at least a program, a code set or an instruction set.
  • the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the uplink PTRS port association relationship provided by the above method embodiments.
  • An exemplary embodiment of the present disclosure also provides a computer program product, the computer program product includes computer instructions, the computer instructions are stored in a computer-readable storage medium; the processor of the computer device reads from the computer-readable storage medium The computer instructions are read from the medium, and the processor executes the computer instructions, so that the computer device executes the method for determining the uplink PTRS port association relationship as provided in each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定上行PTRS端口关联关系的方法、装置、介质及产品,属于通信领域。该方法包括:根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系;其中,为终端分配的上行DMRS端口的最大数目为8。该方法用于支持终端使用最多8个发送天线端口的情况下的相关功能实现。

Description

确定上行PTRS端口关联关系的方法、装置、介质及产品 技术领域
本公开涉及通信领域,特别涉及一种确定上行PTRS端口关联关系的方法、装置、介质及产品。
背景技术
在5G新空口(New Radio)系统中,设计了相位跟踪参考信号(Phase Tracking Reference Signal,PTRS),该PTRS用于共相位误差(Common Phase Error,CPE)的估计。
在上行传输的过程中,可以为用户终端(User Equipment,UE)配置多个天线端口,UE最大支持4个天线端口的解调参考信号(Demodulation Reference Signal,DMRS)发送,则从4个上行DMRS端口中确定与上行PTRS端口关联的一个或两个上行DMRS端口。
发明内容
本公开实施例提供了一种确定上行PTRS端口关联关系的方法、装置、介质及产品。所述技术方案如下:
根据本公开实施例的一个方面,提供了一种确定上行PTRS端口关联关系的方法,所述方法由终端执行,所述方法包括:
根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,所述默认关联关系用于PTRS的发送;
其中,为终端分配的所述上行DMRS端口的最大数目为8。
根据本公开实施例的另一个方面,提供了一种确定上行PTRS端口关联关系的装置,所述装置包括:
处理模块,被配置为根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,所述默认关联关系用于PTRS的发送;
其中,为终端分配的所述上行DMRS端口的最大数目为8。
根据本公开实施例的另一方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
其中,所述处理器被配置为加载并执行可执行指令以实现如上各个方面所述的确定上行PTRS端口关联关系的方法。
根据本公开实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上述各个方面所述的确定上行PTRS端口关联关系的方法。
根据本公开实施例的另一方面,提供了一种计算机程序产品(或者计算机程序),所述计算机程序产品(或者计算机程序)包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如上各个方面所述的确定上行PTRS端口关联关系的方法。
本公开实施例提供的技术方案可以包括以下有益效果:
上述确定上行PTRS端口关联关系的方法中,终端根据端口关联规则确定上行PTRS端口与上行DMRS端口之间的默认关联关系,从最多8个上行DMRS端口中确定出与上行PTRS端口关联的一个或者两个上行DMRS端口,该方法用于支持终端使用最多8个发送天线端口的情况下的相关功能实现,比如,用于支持终端使用8个发送天线端口的情况下的共相位误差估计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的通信系统的框图;
图2是根据一示例性实施例示出的确定上行PTRS端口关联关系的方法流程图;
图3是根据另一示例性实施例示出的确定上行PTRS端口关联关系的方法流程图;
图4是根据另一示例性实施例示出的确定上行PTRS端口关联关系的方法流 程图;
图5是根据另一示例性实施例示出的确定上行PTRS端口关联关系的方法流程图;
图6是根据另一示例性实施例示出的确定上行PTRS端口关联关系的方法流程图;
图7是根据一示例性实施例示出的确定上行PTRS端口关联关系的装置的框图;
图8是根据一示例性实施例示出的终端的结构示意图;
图9是根据一示例性实施例示出的网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和用户终端14。
接入网12中包括若干个网络设备120。网络设备(又称网络设备)120可以是基站,所述基站是一种部署在接入网中用以为用户终端(简称为“终端”)14提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为eNodeB或者eNB;在5G NR(New Radio,新空口)系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为用户终端14提供无线通信功能的装置统称为网络设备。
用户终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为用户终端。网络设备120与用户终端14之 间通过某种空口技术互相通信,例如Uu接口。
示例性的,网络设备120与用户终端14之间存在两种通信场景:上行通信场景与下行通信场景。其中,上行通信是指向网络设备120发送信号;下行通信是指向用户终端14发送信号。
本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本公开实施例也可以应用于这些通信系统。
图2示出了本公开一个示例性实施例提供的确定上行PTRS端口关联关系的方法流程图,该方法应用于图1所示的通信系统的终端中,该方法包括:
步骤210,根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,默认关联关系用于PTRS的发送;其中,为终端分配的上行DMRS端口的最大数目为8。
示例性的,终端在测量上行信道质量时,可以在上行信道的物理资源(Physical Resource,PR)上映射探测参考信号(Sounding Reference Signal,SRS) 资源,然后为上行DMRS端口分配使用SRS资源,以及在上行DMRS端口上关联上行PTRS端口。其中,上述物理资源是指频域上的连续的载波资源,1个物理资源块(Physical Resource Block,PRB)对应频域上的12个连续载波、以及时域上的1个时隙。上述上行信道包括:物理上行控制信道(Physical Uplink Control CHannel,PUCCH),物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)中的至少一种。
上述端口关联规则定义了上行PTRS端口与上行DMRS端口之间的默认关联关系;终端可以基于上述端口关联规则,在SRS资源对应的最多8个(包括8个)上行DMRS端口中的上行DMRS端口上关联上行PTRS端口,以在SRS资源上通过上行PTRS端口发送PTRS。可选地,上述端口关联规则可以是由网络设备为终端预先配置的;或者,上述端口关联规则可以是由协议定义的。
可选地,上行DMRS端口的数目可以为N。其中,N的取值为不大于8的正整数,也即上行DMRS端口的数目可以为1至8中的一个;或者,N的取值为大于4且不大于8的整数,也即上行DMRS端口的数目可以为5至8中的一个。示例性的,上行DMRS端口的数目可以是由网络设备为终端配置的;比如,由网络设备为终端配置上行DMRS端口的数目为8。
可选地,上述最多8个上行DMRS端口是由网络设备为终端分配的。示例性的,由网络设备为终端分配全部或者部分上行DMRS端口。比如,若是存在8个上行DMRS端口可供网络设备分配,由网络设备为终端分配8个上行DMRS端口中的部分或者全部;若是存在12个上行DMRS端口可供网络设备分配,由网络设备为终端分配12个上行DMRS端口中的部分。以为终端分配8个上行DMRS端口为例,由网络设备将全部的8个上行DMRS端口0~7分配至终端;或者,由网络设备将12个上行DMRS端口0~11中的8个上行DMRS端口分配至终端,比如,将12个上行DMRS端口中的上行DMRS端口0~7分配至终端,又比如,将12个上行DMRS端口中的上行DMRS端口4~11分配至终端。
可选地,上述上行PTRS端口的数目为1或者2。
终端在上行PTRS端口的数目为1的情况下,根据端口关联规则确定最多8个上行DMRS端口中的一个上行DMRS端口与一个上行PTRS端口之间存在默认关联关系;也即,根据端口关联规则将一个上行PTRS端口默认关联至最多8个上行DMRS端口中的一个上行DMRS端口上。
终端在上行PTRS端口的数目为2的情况下,根据端口关联规则确定最多8个上行DMRS端口中的第一上行DMRS端口与第一上行PTRS端口之间存在默认关联关系,以及确定最多8个上行DMRS端口中的第二上行DMRS端口与第二上行PTRS端口之间存在默认关联关系;也即,根据端口关联规则将第一上行PTRS端口默认关联至最多8个上行DMRS端口中的第一上行DMRS端口上,以及将第二上行PTRS端口默认关联至最多8个上行DMRS端口中的第二上行DMRS端口上;其中,上述第二上行PTRS端口是2个上行PTRS端口中除第一上行PTRS端口之外的另一个上行PTRS端口,上述第二上行DMRS端口是最多8个上行DMRS端口中除第一上行DMRS端口的一个上行DMRS端口。
示例性的,上述上行PTRS端口的数目可以是由网络设备为终端配置的。比如,终端接收到网络设备在媒体接入控制(Media Access Control,MAC)层发送的DCI之后,基于DCI的指示,确定上行PTRS端口的数目为1或者2。又比如,终端接收网络设备发送的高层信令,比如无线资源控制(Radio Resource Control,RRC),之后基于高层信令的指示,确定上行PTRS端口的数目为1或者2。
或者,上行PTRS端口的数目可以是由终端确定的,比如,在基于CB的PUSCH传输的场景下,上行PTRS端口的数目确定方式如下任意一种:
1)终端在基于码本(Code Book,CB)且采用全相干(full coherent)传输模式的PUSCH传输的场景下,若探测参考信号资源指示(Sounding reference signalResource Indicator,SRI)只指示一个SRS资源,则确定PTRS端口的数目为1。
2)终端在基于CB且采用部分相干(partial coherent)或不相干(non-coherent)传输模式的PUSCH传输的场景下,若宽带预编码指示(Transmitted Precoding Matrix Indicator,TPMI)所指示的层数为1或2,则确定PTRS端口的数目为1。
3)终端在基于CB且采用全相干传输模式的PUSCH传输的场景下,若SRI只指示一个SRS资源,则确定PTRS端口的数目为2。
4)终端在基于CB且采用部分相干或不相干传输模式的PUSCH传输的场景下,若TPMI指示的层数为2层及以上或3层及以上,则确定PTRS端口的数目为2。
示例性的,上述最多8个上行DMRS端口(也即DMRS对应的天线端口)可以是映射到同一天线面板或者不同天线面板上的天线端口;也即,上述最多8 个上行DMRS端口是映射到M个天线面板上的天线端口,M为小于或者等于8的正整数。比如,8个上行DMRS端口中的4个上行DMRS端口映射到第一天线面板上,8个上行DMRS端口中的剩余4个上行DMRS端口映射到第二天线面板上。
综上所述,本实施例提供的确定上行PTRS端口关联关系的方法,终端根据端口关联规则确定上行PTRS端口与上行DMRS端口之间的默认关联关系,从最多8个上行DMRS端口中确定出与上行PTRS端口关联的一个或者两个上行DMRS端口,该方法用于支持终端使用最多8个发送天线端口的情况下的上行传输时共相位误差估计,比如,用于支持终端使用8个发送天线端口来探测基于CB的上行传输时的共相位误差,或者,用于支持终端使用8个发送天线端口来探测基于NCB的上行传输时的共相位误差(Common Phase Error,CPE)。
示例性的,上述步骤210的执行场景,包括以下至少一项:
第一,终端在传输层数指示(Transmit Rank Indicator,TRI)大于1的情况下,根据端口关联规则确定上行PTRS端口与上行DMRS端口之间的默认关联关系。
第二,终端在下行控制信息(Downlink Control Information,DCI)的指定信息域上配置为空的情况下,根据端口关联规则确定上行PTRS端口与上行DMRS端口之间的默认关联关系。
示例性的,上述指定信息域是PTRS-DMRS关联域(即PTRS-DMRS association域)。
第三,终端在免调度上行共享信道类型1上发送PTRS的情况下,根据端口关联规则确定上行PTRS端口与上行DMRS端口之间的默认关联关系。
综上所述,本实施例提供的确定上行PTRS端口关联关系的方法,定义了终端使用上行PTRS端口与上行DMRS端口之间默认关联关系的应用场景,用以支持不同的应用场景下终端使用最多8个发送天线端口的情况下的上行传输时共相位误差估计。
针对上行PTRS端口的数目为1的情形,图2中的步骤210可以通过步骤310来实现,如图3所示,步骤如下:
步骤310,在上行PTRS端口的数目为1的情况下,根据端口关联规则固定地在PUSCH对应分配的上行DMRS端口中的第一上行DMRS端口上关联上行PTRS端口。
上述端口关联规则用于固定指示与上行PTRS端口关联的最多8个(包括8个)上行DMRS端口中的第一上行DMRS端口。
可选地,在传输的码字(Code Word,CW)为1个的情况下,上述端口关联规则包括以下任意一项:
·第一上行DMRS端口为PUSCH对应分配的上行DMRS端口中的最大端口号对应的上行DMRS端口。
比如,8个上行DMRS端口包括上行DMRS端口0至7,终端确定第一上行DMRS端口是上行DMRS端口7。
·第一上行DMRS端口为PUSCH对应分配的上行DMRS端口中的最小端口号对应的上行DMRS端口。
比如,8个上行DMRS端口包括上行DMRS端口0至7,终端确定第一上行DMRS端口是上行DMRS端口0。
可选地,在传输的CW为2个的情况下,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,2个DMRS端口组与2个CW一一对应,上述端口关联规则包括以下任意一项:
·第一上行DMRS端口为调制与编码策略(Modulation and Coding Scheme,MCS)等级较高的CW对应的DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
比如,第一CW对应的第一DMRS端口组包括上行DMRS端口0-3,第二CW对应的第二DMRS端口组包括上行DMRS端口4-7;终端在第一CW的MCS等级高于第二CW的MCS等级的情况下,将第一DMRS端口组中的上行DMRS端口3确定为第一上行DMRS端口;在第二CW的MCS等级高于第一CW的MCS等级的情况下,将第二DMRS端口组中的上行DMRS端口7确定为第一上行DMRS端口。
·第一上行DMRS端口为MCS等级较高的CW对应的DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
比如,第一CW对应的第一DMRS端口组包括上行DMRS端口0-3,第二CW对应的第二DMRS端口组包括上行DMRS端口4-7;终端在第一CW的MCS等级高于第二CW的MCS等级的情况下,将第一DMRS端口组中的上行DMRS端口0确定为第一上行DMRS端口;在第二CW的MCS等级高于第一CW的MCS等级的情况下,将第二DMRS端口组中的上行DMRS端口4确定为第一 上行DMRS端口。
·第一上行DMRS端口为相同MCS等级的2个CW中,第一CW对应的DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
比如,第一CW对应的第一DMRS端口组包括上行DMRS端口0-3,第二CW对应的第二DMRS端口组包括上行DMRS端口4-7;终端在第一CW的MCS等级等于第二CW的MCS等级的情况下,将第一CW对应的第一DMRS端口组中的上行DMRS端口3确定为第一上行DMRS端口。
·第一上行DMRS端口为相同MCS等级的2个CW中,第一CW对应的DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
比如,第一CW对应的第一DMRS端口组包括上行DMRS端口0-3,第二CW对应的第二DMRS端口组包括上行DMRS端口4-7;终端在第一CW的MCS等级等于第二CW的MCS等级的情况下,将第一CW对应的第一DMRS端口组中的上行DMRS端口0确定为第一上行DMRS端口。
·第一上行DMRS端口为相同MCS等级的2个CW中第二CW对应的DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
比如,第一CW对应的第一DMRS端口组包括上行DMRS端口0-3,第二CW对应的第二DMRS端口组包括上行DMRS端口4-7;终端在第一CW的MCS等级等于第二CW的MCS等级的情况下,将第二CW对应的第二DMRS端口组中的上行DMRS端口7确定为第一上行DMRS端口。
·第一上行DMRS端口为相同MCS等级的2个CW中第二CW对应的DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
比如,第一CW对应的第一DMRS端口组包括上行DMRS端口0-3,第二CW对应的第二DMRS端口组包括上行DMRS端口4-7;终端在第一CW的MCS等级等于第二CW的MCS等级的情况下,将第二CW对应的第二DMRS端口组中的上行DMRS端口4确定为第一上行DMRS端口。
上述第二DMRS端口组是上述两个DMRS端口组中除第一DMRS端口组之外的另一个DMRS端口组。上述第二CW是上述两个CW中除第一CW之外的另一个CW。示例性的,第一CW可以表示为CW0,第二CW可以表示为CW1。
可选地,在传输的CW为2个的情况下,为终端在PUSCH上分配最多8个(包括8个)上行DMRS端口,最多8个上行DMRS端口被划分为2个DMRS端口组,2个DMRS端口组与2个CW一一对应,上述端口关联规则包括以下任意一项:
·在CW为2个的情况下,第一上行DMRS端口为PUSCH对应分配的上行DMRS端口中的最大端口号对应的上行DMRS端口。
·在CW为2个的情况下,第一上行DMRS端口为PUSCH对应分配的上 行DMRS端口中的最小端口号对应的上行DMRS端口。
可选地,上述端口关联规则还可以包括:第一上行DMRS端口为PUSCH对应分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口。
比如,终端在分配的8个上行DMRS端口中,从上行DMRS端口1-7这7个上行DMRS端口中确定任意一个上行DMRS端口作为第一上行DMRS端口,如端口1。
可选地,PUSCH对应分配的上行DMRS端口是由网络设备通过下行控制信息分配的;或者,PUSCH对应分配的上行DMRS端口是由网络设备通过无线资源控制RRC信令配置的。
综上所述,本实施例提供的确定上行PTRS端口关联关系的方法,终端在上行PTRS端口为1个的情况下,根据端口关联规则固定的在最多8个上行DMRS端口中的1个上关联上行PTRS端口,用于支持终端使用最多8个发送天线端口的情况下的上行传输时共相位误差估计,比如,用于支持终端使用8个发送天线端口来探测基于CB的上行传输场景下的共相位误差,或者,用于支持终端使用8个发送天线端口来探测基于NCB的上行传输场景下的共相位误差。
针对上行PTRS端口的数目为1的情形,图2中的步骤210还可以通过步骤410来实现,如图4所示,步骤如下:
步骤410,在上行PTRS端口的数目为1的情况下,根据端口关联规则在PUSCH对应分配的上行DMRS端口中动态确定出与上行PTRS端口关联的第一上行DMRS端口。
上述第二端口关联规则用于动态指示与上行PTRS端口关联的最多8个上行DMRS端口中的第一上行DMRS端口。示例性的,上述最多8个上行DMRS端口是由网络设备为终端在PUSCH上配置的。
示例性的,终端多次发送PTRS时,采用8个上行DMRS端口中的不同上行DMRS端口来关联第一上行DMRS端口。比如,终端在第一次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口0;在第二次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口2;在第三次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口4。
可选地,终端在使用免调度PUSCH传输的情况下,对应PUSCH上的每个发送时机上的PTRS发送,从预定义的端口号开始,按照上行DMRS端口的端口号顺序循环使用PUSCH对应分配的上行DMRS端口中的一个作为第一上行DMRS端口。也即,在多次PTRS发送的每个发送时机上,终端从一个预定义的端口号开始,按照端口号顺序循环使用在PUSCH对应分配的上行DMRS端 口中的一个作为第一上行DMRS端口。示例性的,终端从预定义的端口号开始,按照端口号顺序循环使用全部8个上行DMRS端口(或者8个上行DMRS端口的部分)中的一个作为第一上行DMRS端口。预定义的端口号可以是最小或者最大端口号。比如,终端多次发送PTRS时,若是PTRS的发送次数大于或者等于上行DMRS端口的数目,按照端口号0-7顺序循环使用全部8个上行DMRS端口中的一个作为第一上行DMRS端口,也即,终端第一次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口0;在第二次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口1;……;在第八次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口7;在第九次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口0;……;直至PTRS的发送结束。又比如,终端多次发送PTRS时,若是PTRS的发送次数L小于上行DMRS端口的数目,按照端口号0-(L-1)的顺序依次使用L个上行DMRS端口(也即8个上行DMRS端口中的部分)中的一个作为与上行PTRS端口关联的一个上行DMRS端口,L为小于8的正整数;示例性的,若是PTRS的发送次数为六,终端第一次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口0;在第二次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口1;……;在第六次发送PTRS时,确定出与上行PTRS端口关联的上行DMRS端口5,结束PTRS的发送。
可选地,PUSCH对应分配的上行DMRS端口是由网络设备通过下行控制信息分配的;或者,PUSCH对应分配的上行DMRS端口是由网络设备通过无线资源控制RRC信令配置的。
综上所述,本实施例提供的确定上行PTRS端口关联关系的方法,终端在上行PTRS端口为1个的情况下,根据端口关联规则动态的在最多8个上行DMRS端口中的一个上关联上行PTRS端口,用于支持终端使用8个发送天线端口的情况下的上行传输时共相位误差估计。
针对上行PTRS端口的数目为2的情形,图2中的步骤210还可以通过步骤510来实现,如图5所示,步骤如下:
步骤510,在上行PTRS端口的数目为2的情况下,根据端口关联规则固定地在第一DMRS端口组中的第一上行DMRS端口上关联第一上行PTRS端口;以及根据端口关联规则固定地在第二DMRS端口组中的第二上行DMRS端口上关联第二上行PTRS端口。
其中,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,2个DMRS端口组包括第一DMRS端口组和第二DMRS端口组;第一上行PTRS 端口是2个上行PTRS端口中的一个上行PTRS端口,第二上行PTRS端口是2个上行PTRS端口中除第一上行PTRS端口之外的另一个上行PTRS端口,第二DMRS端口组是两个DMRS端口组中除第一DMRS端口组之外的一个DMRS端口组。示例性的,每个DMRS端口组可以包括4个上行DMRS端口。
示例性的,上述端口关联规则用于固定指示与第一上行PTRS端口关联的最多8个上行DMRS端口中的第一上行DMRS端口,以及固定指示与第二上行PTRS端口关联的最多8个上行DMRS端口中的第二上行DMRS端口。
比如,第一上行PTRS端口与第一DMRS端口组之间、以及第二上行PTRS端口与第二DMRS端口组之间存在一一对应关系;第一DMRS端口组包括上行DMRS端口0、上行DMRS端口2、上行DMRS端口4、及上行DMRS端口6,第二DMRS端口组包括上行DMRS端口1、上行DMRS端口3、上行DMRS端口5、及上行DMRS端口7;终端根据端口关联规则固定地从第一DMRS端口组中确定出上行DMRS端口2为第一上行DMRS端口,以及根据端口关联规则固定地从第二DMRS端口组中确定出上行DMRS端口5为第二上行DMRS端口。
可选地,在CW为1个的情况下,上述端口关联规则包括以下任意一项:
·第一上行DMRS端口为第一DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;第二上行DMRS端口为第二DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
比如,当终端分配的上行DMRS端口为上行DMRS端口0-7时,第一DMRS端口组包括上行DMRS端口0-3,第二DMRS端口组包括上行DMRS端口4-7;终端在分配的DMRS端口组中确定第一上行DMRS端口为上行DMRS端口3,以及第二上行DMRS端口为上行DMRS端口7。
·第一上行DMRS端口为第一DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;第二上行DMRS端口为第二DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
比如,当终端分配的上行DMRS端口为上行DMRS端口0-7时,第一DMRS端口组包括上行DMRS端口0-3,第二DMRS端口组包括上行DMRS端口4-7;终端在分配的端口组中确定第一上行DMRS端口为上行DMRS端口0,以及第二上行DMRS端口为上行DMRS端口4。
·第一上行DMRS端口为第一DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;第二上行DMRS端口为第二DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
比如,当终端分配的上行DMRS端口为上行DMRS端口0-7时,第一DMRS 端口组包括上行DMRS端口0-3,第二DMRS端口组包括上行DMRS端口4-7;终端在分配的端口组中确定第一上行DMRS端口为上行DMRS端口3,以及第二上行DMRS端口为上行DMRS端口4。
·第一上行DMRS端口为第一DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;第二上行DMRS端口为第二DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
比如,当终端分配的上行DMRS端口为上行DMRS端口0-7时,第一DMRS端口组包括上行DMRS端口0-3,第二DMRS端口组包括上行DMRS端口4-7;终端在分配的端口组中确定第一上行DMRS端口为上行DMRS端口0,以及第二上行DMRS端口为上行DMRS端口7。
可选地,在CW为2个的情况下,2个DMRS端口组与2个CW一一对应,端口关联规则包括以下任意一种:
·第一上行DMRS端口为第一CW对应的DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
·第一上行DMRS端口为第一CW对应的DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
可选地,在CW为2个的情况下,2个DMRS端口组与2个CW一一对应,端口关联规则包括以下任意一种:
·第二上行DMRS端口为第二CW对应的DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
·第二上行DMRS端口为第二CW对应的DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
可选地,上述端口关联规则还可以包括:第一上行DMRS端口为第一DMRS端口组中分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口;第二上行DMRS端口为第二DMRS端口组中分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口。
比如,第一DMRS端口组包括上行DMRS端口0-3,第二DMRS端口组包括上行DMRS端口4-7;终端从上行DMRS端口1-3中确定出任意一个上行DMRS端口作为第一上行DMRS端口,以及从上行DMRS端口5-7中确定出任意一个上行DMRS端口作为第二上行DMRS端口。
可选地,PUSCH对应分配的上行DMRS端口是由网络设备通过下行控制信息分配的;或者,PUSCH对应分配的上行DMRS端口是由网络设备通过无线资源控制RRC信令配置的。
可选地,每个DMRS端口组中的上行DMRS端口是由网络设备通过高层信令配置的;或者,每个DMRS端口组中的上行DMRS端口是预定义的。
综上所述,本实施例提供的确定上行PTRS端口关联关系的方法,终端在上行PTRS端口为2个的情况下,根据端口关联规则固定的在最多8个上行DMRS端口中的两个上行DMRS端口上分别关联两个上行PTRS端口,用于支持终端使用最多8个发送天线端口的情况下的上行传输的共相位误差估计,比如,用于支持终端使用8个发送天线端口来探测基于CB的上行传输场景下的共相位误差,或者,用于支持终端使用8个发送天线端口来探测基于NCB的上行传输场景下的共相位误差。
针对上行PTRS端口的数目为2的情形,图2中的步骤210还可以通过步骤610来实现,如图6所示,步骤如下:
步骤610,在上行PTRS端口为2个的情况下,根据端口关联规则在第一DMRS端口组中分配的上行DMRS端口中动态确定出与第一上行PTRS端口关联的第一上行DMRS端口;以及根据端口关联规则在第二DMRS端口组中分配的上行DMRS端口中动态确定出与第二上行PTRS端口关联的第二上行DMRS端口。
其中,上述PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,2个DMRS端口组包括第一DMRS端口组和第二DMRS端口组;第一上行PTRS端口是2个上行PTRS端口中的一个上行PTRS端口,第二上行PTRS端口是2个上行PTRS端口中除第一上行PTRS端口之外的另一个上行PTRS端口,第二DMRS端口组是两个DMRS端口组中除第一DMRS端口组之外的一个DMRS端口组。示例性的,每个DMRS端口组可以包括4个上行DMRS端口。
示例性的,上述端口关联规则用于动态指示与第一上行PTRS端口关联的最多8个上行DMRS端口中的第一上行DMRS端口,以及动态指示与第二上行PTRS端口关联的最多8个上行DMRS端口中的第二上行DMRS端口。
可选地,终端在使用免调度PUSCH传输的情况下,对应PUSCH上的每个发送时机上的PTRS发送,从预定义的端口号开始,按照上行DMRS端口的端口号顺序循环使用第一DMRS端口组中分配的上行DMRS端口中的一个作为第一上行DMRS端口;以及在使用免调度PUSCH传输的情况下,对应PUSCH上的每个发送时机上的PT-RS发送,从预定义的端口号开始,按照上行DMRS端口的端口号顺序循环使用第二DMRS端口组中分配的上行DMRS端口中的一个作为第二上行DMRS端口。
也即终端在使用免调度传输的情况下,对应每个PUSCH发送时机的PT-RS发送在分配的DMRS端口中从预定义的DMRS端口号开始按照DMRS端口号 顺序循环使用第一DMRS端口组中分配的至少两个上行DMRS端口中的一个作为第一上行DMRS端口;以及在使用免调度传输的情况下,对应每个PUSCH发送时机的PT-RS发送从预定义的DMRS端口号开始按照DMRS端口号顺序循环使用第二DMRS端口组中分配的至少两个上行DMRS端口中的一个作为第二上行DMRS端口。
示例性的,预定义的端口号为最大或者最小端口号。
比如,第一上行PTRS端口与第一DMRS端口组之间、以及第二上行PTRS端口与第二MRS端口组之间存在一一对应关系;第一DMRS端口组包括上行DMRS端口0、上行DMRS端口2、上行DMRS端口4、及上行DMRS端口6,第二DMRS端口组包括上行DMRS端口1、上行DMRS端口3、上行DMRS端口5、及上行DMRS端口7;终端在多次发送PTRS时,依次循环使用上行DMRS端口0、上行DMRS端口2、上行DMRS端口4、及上行DMRS端口6作为第一上行DMRS端口;以及依次循环使用上行DMRS端口1、上行DMRS端口3、上行DMRS端口5、及上行DMRS端口7作为第二上行DMRS端口。需要说明的是,在PTRS的发送次数大于、或者小于、或者等于上行DMRS端口的数量的情况下,均可以使用这一循环确定上行DMRS端口的方式。
可选地,PUSCH对应分配的上行DMRS端口是由网络设备通过下行控制信息分配的;或者,PUSCH对应分配的上行DMRS端口是由网络设备通过无线资源控制RRC信令配置的。
可选地,每个DMRS端口组中的上行DMRS端口是由网络设备通过高层信令配置的;或者,每个DMRS端口组中的上行DMRS端口是预定义的。
综上所述,本实施例提供的确定上行PTRS端口关联关系的方法,终端在上行PTRS端口为2个的情况下,根据端口关联规则动态的在8个上行DMRS端口中的两个上行DMRS端口上分别关联两个上行PTRS端口,用于支持终端使用8个发送天线端口的情况下的上行传输时共相位误差估计,比如,用于支持终端使用8个发送天线端口探测基于CB的上行传输的共相位误差估计,或者,用于支持终端使用8个发送天线端口探测基于NCB的上行传输的共相位误差估计。
图7示出了本公开一个示例性实施例提供的确定上行PTRS端口关联关系的装置的框图,该装置可以通过软件、硬件或者二者的结合实现成为UE的一部分或者全部,该装置包括:
处理模块710,被配置为根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,所述默认关联关系用于PTRS的发送;
其中,为终端分配的所述上行DMRS端口的最大数目为8。
在一些实施例中,所述处理模块710,被配置为在所述上行PTRS端口的数目为1的情况下,根据所述端口关联规则固定地在物理上行共享信道PUSCH对应分配的上行DMRS端口中的第一上行DMRS端口上关联所述上行PTRS端口。
在一些实施例中,所述端口关联规则包括:
在CW为1个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最大端口号对应的上行DMRS端口;
或者,在所述CW为1个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最小端口号对应的上行DMRS端口。
在一些实施例中,在CW为2个的情况下,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,所述2个DMRS端口组与所述2个CW一一对应,所述端口关联规则包括:
所述第一上行DMRS端口为MCS等级较高的所述CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为MCS等级较高的所述CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为相同MCS等级的所述2个CW中第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为相同MCS等级的所述2个CW中第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为相同MCS等级的所述2个CW中第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为相同MCS等级的所述2个CW中第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
在一些实施例中,所述端口关联规则包括:
在CW为2个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最大端口号对应的上行DMRS端口;
或者,在所述CW为2个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最小端口号对应的上行DMRS端口。
在一些实施例中,所述端口关联规则包括:
所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中除 最小端口号对应的上行DMRS端口之外的任意上行DMRS端口。
在一些实施例中,所述处理模块710,被配置为在所述上行PTRS端口的数目为1的情况下,根据所述端口关联规则在所述PUSCH对应分配的上行DMRS端口中动态确定出与所述上行PTRS端口关联的第一上行DMRS端口。
在一些实施例中,所述端口关联规则包括:
在使用免调度PUSCH传输的情况下,对应所述PUSCH上的每个发送时机上的PTRS发送,从预定义的端口号开始,按照所述上行DMRS端口的端口号顺序循环使用所述PUSCH对应分配的上行DMRS端口中的一个作为所述第一上行DMRS端口。
在一些实施例中,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,所述2个DMRS端口组包括第一DMRS端口组和第二DMRS端口组;
所述处理模块710,被配置为在所述上行PTRS端口的数目为2的情况下,根据所述端口关联规则固定地在所述第一DMRS端口组中的第一上行DMRS端口上关联第一上行PTRS端口,所述第一上行PTRS端口是所述2个上行PTRS端口中的一个上行PTRS端口;以及
根据所述端口关联规则固定地在所述第二DMRS端口组中的第二上行DMRS端口上关联第二上行PTRS端口,所述第二上行PTRS端口是所述2个上行PTRS端口中除所述第一上行PTRS端口之外的另一个上行PTRS端口。
在一些实施例中,在CW为1个的情况下,所述端口关联规则包括:
所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
在一些实施例中,在CW为2个的情况下,所述2个DMRS端口组与所述2个CW一一对应,所述端口关联规则包括:
所述第一上行DMRS端口为第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
或者,所述第一上行DMRS端口为第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
在一些实施例中,在CW为2个的情况下,所述2个DMRS端口组与所述2个CW一一对应,所述端口关联规则包括:
所述第二上行DMRS端口为第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
或者,所述第二上行DMRS端口为第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
在一些实施例中,所述端口关联规则包括:
所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口;
所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口。
在一些实施例中,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,所述2个DMRS端口组包括第一DMRS端口组和第二DMRS端口组;
所述处理模块710,被配置为在所述上行PTRS端口的数目为2的情况下,根据所述端口关联规则在所述第一DMRS端口组中分配的上行DMRS端口中动态确定出与第一上行PTRS端口关联的第一上行DMRS端口,所述第一上行PTRS端口是所述2个上行PTRS端口中的一个上行PTRS端口;以及
根据所述端口关联规则在所述第二DMRS端口组中分配的上行DMRS端口中动态确定出与第二上行PTRS端口关联的第二上行DMRS端口,所述第二上行PTRS端口是所述2个上行PTRS端口中除所述第一上行PTRS端口之外的另一个上行PTRS端口。
在一些实施例中,所述端口关联规则包括:
在使用免调度PUSCH传输的情况下,对应所述PUSCH上的每个发送时机上的PTRS发送,从预定义的端口号开始,按照所述上行DMRS端口的端口号顺序循环使用所述第一DMRS端口组中分配的上行DMRS端口中的一个作为所述第一上行DMRS端口;以及
在使用免调度PUSCH传输的情况下,对应所述PUSCH上的每个发送时机上的PT-RS发送,从预定义的端口号开始,按照所述上行DMRS端口的端口号顺序循环使用所述第二DMRS端口组中分配的上行DMRS端口中的一个作为所 述第二上行DMRS端口。
在一些实施例中,每个所述DMRS端口组中的上行DMRS端口是由网络设备通过高层信令配置的;或者,每个所述DMRS端口组中的上行DMRS端口是预定义的。
在一些实施例中,所述处理模块710,被配置为在TRI大于1的情况下,根据所述端口关联规则确定所述上行PTRS端口和所述上行DMRS端口之间的默认关联关系。
在一些实施例中,所述处理模块710,被配置为:
在所述DCI的指定信息域上的配置为空的情况下,根据所述端口关联规则确定所述上行PTRS端口和所述上行DMRS端口之间的默认关联关系;
或者,在免调度物理上行共享信道类型1上发送所述PTRS的情况下,根据所述端口关联规则确定所述上行PTRS端口和所述上行DMRS端口之间的默认关联关系。
在一些实施例中,所述指定信息域是PTRS-DMRS关联域。
图8示出了本公开一个示例性实施例提供的UE的结构示意图,该UE包括:处理器1201、接收器1202、发射器1203、存储器1204和总线1205。
处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1202和发射器1203可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1204通过总线1205与处理器1201相连。
存储器1204可用于存储至少一个指令,处理器1201用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read Only Memory),可擦除可编程只读存储器(EPROM,Erasable Programmable Read Only Memory),静态随时存取存储器(SRAM,Static Random-Access Memory),只读存储器(ROM,Read Only Memory),磁存储器,快闪存储器,可编程只读存储器(PROM,Programmable Read Only Memory)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由UE的处理器执行以完成上述确定上 行PTRS端口关联关系的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM,Random-Access Memory)、紧凑型光盘只读存储器(CD-ROM,Compact Disc Read Only Memory)、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述非临时性计算机存储介质中的指令由UE的处理器执行时,使得UE能够执行上述确定上行PTRS端口关联关系的方法。
图9是根据一示例性实施例示出的一种网络设备1300的框图。该网络设备1300可以是基站。
网络设备1300可以包括:处理器1301、接收机1302、发射机1303和存储器1304。接收机1302、发射机1303和存储器1304分别通过总线与处理器1301连接。
其中,处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块以执行本公开实施例提供的确定上行PTRS端口关联关系的方法。存储器1304可用于存储软件程序以及模块。具体的,存储器1304可存储操作系统13041、至少一个功能所需的应用程序模块13042。接收机1302用于接收其他设备发送的通信数据,发射机1303用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的确定上行PTRS端口关联关系的方法。
本公开一示例性实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如上述各个方法实施例提供的确定上行PTRS端口关联关系的方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种确定上行PTRS端口关联关系的方法,其特征在于,所述方法包括:
    根据端口关联规则确定上行相位跟踪参考信号PTRS端口和上行解调参考信号DMRS端口之间的默认关联关系,所述默认关联关系用于PTRS的发送;
    其中,为终端分配的所述上行DMRS端口的最大数目为8。
  2. 根据权利要求1所述的方法,其特征在于,所述根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,包括:
    在所述上行PTRS端口的数目为1的情况下,根据所述端口关联规则固定地在物理上行共享信道PUSCH对应分配的上行DMRS端口中的第一上行DMRS端口上关联所述上行PTRS端口。
  3. 根据权利要求2所述的方法,其特征在于,所述端口关联规则包括:
    在传输的码字CW为1个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最大端口号对应的上行DMRS端口;
    或者,
    在所述CW为1个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最小端口号对应的上行DMRS端口。
  4. 根据权利要求2所述的方法,其特征在于,在CW为2个的情况下,所述PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,所述2个DMRS端口组与所述2个CW一一对应,所述端口关联规则包括:
    所述第一上行DMRS端口为MCS等级较高的所述CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为MCS等级较高的所述CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为相同MCS等级的所述2个CW中第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为相同MCS等级的所述2个CW中第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行 DMRS端口;
    或者,
    所述第一上行DMRS端口为相同MCS等级的所述2个CW中第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为相同MCS等级的所述2个CW中第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
  5. 根据权利要求2所述的方法,其特征在于,所述端口关联规则包括:
    在CW为2个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最大端口号对应的上行DMRS端口;
    或者,
    在所述CW为2个的情况下,所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中的最小端口号对应的上行DMRS端口。
  6. 根据权利要求2所述的方法,其特征在于,所述端口关联规则包括:
    所述第一上行DMRS端口为所述PUSCH对应分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口。
  7. 根据权利要求1所述的方法,其特征在于,所述根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,包括:
    在所述上行PTRS端口的数目为1的情况下,根据所述端口关联规则在所述PUSCH对应分配的上行DMRS端口中动态确定出与所述上行PTRS端口关联的第一上行DMRS端口。
  8. 根据权利要求7所述的方法,其特征在于,所述端口关联规则包括:
    在使用免调度PUSCH传输的情况下,对应所述PUSCH上的每个发送时机上的PTRS发送,从预定义的端口号开始,按照所述上行DMRS端口的端口号顺序循环使用所述PUSCH对应分配的上行DMRS端口中的一个作为所述第一上行DMRS端口。
  9. 根据权利要求1所述的方法,其特征在于,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,所述2个DMRS端口组包括第一DMRS端 口组和第二DMRS端口组;
    所述根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,包括:
    在所述上行PTRS端口的数目为2的情况下,根据所述端口关联规则固定地在所述第一DMRS端口组中的第一上行DMRS端口上关联第一上行PTRS端口,所述第一上行PTRS端口是所述2个上行PTRS端口中的一个上行PTRS端口;以及
    根据所述端口关联规则固定地在所述第二DMRS端口组中的第二上行DMRS端口上关联第二上行PTRS端口,所述第二上行PTRS端口是所述2个上行PTRS端口中除所述第一上行PTRS端口之外的另一个上行PTRS端口。
  10. 根据权利要求9所述的方法,其特征在于,在CW为1个的情况下,所述端口关联规则包括:
    所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口;所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口。
  11. 根据权利要求9所述的方法,其特征在于,在CW为2个的情况下,所述2个DMRS端口组与所述2个CW一一对应,所述端口关联规则包括:
    所述第一上行DMRS端口为第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
    或者,
    所述第一上行DMRS端口为第一CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
  12. 根据权利要求9所述的方法,其特征在于,在CW为2个的情况下,所述2个DMRS端口组与所述2个CW一一对应,所述端口关联规则包括:
    所述第二上行DMRS端口为第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最大端口号对应的上行DMRS端口;
    或者,
    所述第二上行DMRS端口为第二CW对应的所述DMRS端口组中分配的上行DMRS端口中最小端口号对应的上行DMRS端口。
  13. 根据权利要求9所述的方法,其特征在于,所述端口关联规则包括:
    所述第一上行DMRS端口为所述第一DMRS端口组中分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口;
    所述第二上行DMRS端口为所述第二DMRS端口组中分配的上行DMRS端口中除最小端口号对应的上行DMRS端口之外的任意上行DMRS端口。
  14. 根据权利要求1所述的方法,其特征在于,PUSCH对应分配的上行DMRS端口被划分为2个DMRS端口组,所述2个DMRS端口组包括第一DMRS端口组和第二DMRS端口组;
    所述根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,包括:
    在所述上行PTRS端口的数目为2的情况下,根据所述端口关联规则在所述第一DMRS端口组中分配的上行DMRS端口中动态确定出与第一上行PTRS端口关联的第一上行DMRS端口,所述第一上行PTRS端口是所述2个上行PTRS端口中的一个上行PTRS端口;以及
    根据所述端口关联规则在所述第二DMRS端口组中分配的上行DMRS端口中动态确定出与第二上行PTRS端口关联的第二上行DMRS端口,所述第二上行PTRS端口是所述2个上行PTRS端口中除所述第一上行PTRS端口之外的另一个上行PTRS端口。
  15. 根据权利要求14所述的方法,其特征在于,所述端口关联规则包括:
    在使用免调度PUSCH传输的情况下,对应所述PUSCH上的每个发送时机上的PTRS发送,从预定义的端口号开始,按照所述上行DMRS端口的端口号顺序循环使用所述第一DMRS端口组中分配的上行DMRS端口中的一个作为所述第一上行DMRS端口;以及
    在使用免调度PUSCH传输的情况下,对应所述PUSCH上的每个发送时机上的PT-RS发送,从预定义的端口号开始,按照所述上行DMRS端口的端口号顺序循环使用所述第二DMRS端口组中分配的上行DMRS端口中的一个作为所述第二上行DMRS端口。
  16. 根据权利要求1至15任一所述的方法,其特征在于,所述根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,包括:
    在传输层数指示TRI大于1的情况下,根据所述端口关联规则确定所述上行PTRS端口和所述上行DMRS端口之间的默认关联关系。
  17. 根据权利要求1至15任一所述的方法,其特征在于,所述根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,包括:
    在所述DCI的指定信息域上的配置为空的情况下,根据所述端口关联规则确定所述上行PTRS端口和所述上行DMRS端口之间的默认关联关系;
    或者,
    在免调度物理上行共享信道CG PUSCH类型1上发送所述PTRS的情况下,根据所述端口关联规则确定所述上行PTRS端口和所述上行DMRS端口之间的默认关联关系。
  18. 根据权利要求17所述的方法,其特征在于,所述指定信息域是PTRS-DMRS关联域。
  19. 一种确定上行PTRS端口关联关系的装置,其特征在于,所述装置包括:
    处理模块,被配置为根据端口关联规则确定上行PTRS端口和上行DMRS端口之间的默认关联关系,所述默认关联关系用于PTRS的发送;
    其中,为终端分配的所述上行DMRS端口的最大数目为8。
  20. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至 18任一所述的确定上行PTRS端口关联关系的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至18任一所述的确定上行PTRS端口关联关系的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至18任一所述的确定上行PTRS端口关联关系的方法。
PCT/CN2022/080786 2022-03-14 2022-03-14 确定上行ptrs端口关联关系的方法、装置、介质及产品 WO2023173263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000721.5A CN117063430A (zh) 2022-03-14 2022-03-14 确定上行ptrs端口关联关系的方法、装置、介质及产品
PCT/CN2022/080786 WO2023173263A1 (zh) 2022-03-14 2022-03-14 确定上行ptrs端口关联关系的方法、装置、介质及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080786 WO2023173263A1 (zh) 2022-03-14 2022-03-14 确定上行ptrs端口关联关系的方法、装置、介质及产品

Publications (1)

Publication Number Publication Date
WO2023173263A1 true WO2023173263A1 (zh) 2023-09-21

Family

ID=88022031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080786 WO2023173263A1 (zh) 2022-03-14 2022-03-14 确定上行ptrs端口关联关系的方法、装置、介质及产品

Country Status (2)

Country Link
CN (1) CN117063430A (zh)
WO (1) WO2023173263A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150429A (zh) * 2017-06-15 2019-01-04 电信科学技术研究院 相位跟踪参考信号的传输方法、接收方法及装置
US20190296876A1 (en) * 2018-06-14 2019-09-26 Intel Corporation Demodulation reference signal and phase-tracking reference signal port indication
CN110463099A (zh) * 2017-03-25 2019-11-15 Lg电子株式会社 在无线通信系统中接收用于相位噪声消除的ptrs的方法及其装置
CN111213414A (zh) * 2017-08-11 2020-05-29 联想(北京)有限公司 确定dmrs和ptrs之间的关联

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463099A (zh) * 2017-03-25 2019-11-15 Lg电子株式会社 在无线通信系统中接收用于相位噪声消除的ptrs的方法及其装置
CN109150429A (zh) * 2017-06-15 2019-01-04 电信科学技术研究院 相位跟踪参考信号的传输方法、接收方法及装置
CN111213414A (zh) * 2017-08-11 2020-05-29 联想(北京)有限公司 确定dmrs和ptrs之间的关联
US20190296876A1 (en) * 2018-06-14 2019-09-26 Intel Corporation Demodulation reference signal and phase-tracking reference signal port indication

Also Published As

Publication number Publication date
CN117063430A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
CN111756501B (zh) 传输上行控制信息的方法及装置
WO2022077247A1 (zh) Tci状态的确定方法、装置、设备及存储介质
WO2023173263A1 (zh) 确定上行ptrs端口关联关系的方法、装置、介质及产品
US20230231743A1 (en) Method and device for channel estimation
WO2023173265A1 (zh) 确定上行ptrs端口关联关系的方法、装置、介质及产品
WO2023184245A1 (zh) 确定ptrs端口与dmrs端口间关系的方法、装置、介质及产品
CN114071720A (zh) 资源确定的方法以及通信装置
WO2022067735A1 (zh) 频域位置确定方法、装置、设备及存储介质
WO2022073239A1 (zh) 接收方法、装置、终端设备及存储介质
RU2814209C1 (ru) Способ и устройство приема, терминальное устройство и носитель данных
WO2023164853A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2022236558A1 (zh) 用于数据传输的方法、装置、设备及存储介质
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
EP4057684B1 (en) Information determination method, apparatus and device, and storage medium
WO2023184217A1 (zh) 码字的层映射指示方法、装置、设备及存储介质
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2023184216A1 (zh) 码字的层映射上报方法、接收方法、装置、设备及介质
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2023206251A1 (zh) 随机接入资源配置方法、随机接入方法、装置及存储介质
CN113647167B (zh) 一种上行信息传输方法及其装置
WO2023134678A1 (zh) 通信方法和通信装置
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质
US20230354344A1 (en) Resource determination method and apparatus, devices, and storage medium
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000721.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931303

Country of ref document: EP

Kind code of ref document: A1