WO2022077247A1 - Tci状态的确定方法、装置、设备及存储介质 - Google Patents

Tci状态的确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022077247A1
WO2022077247A1 PCT/CN2020/120766 CN2020120766W WO2022077247A1 WO 2022077247 A1 WO2022077247 A1 WO 2022077247A1 CN 2020120766 W CN2020120766 W CN 2020120766W WO 2022077247 A1 WO2022077247 A1 WO 2022077247A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
space set
tci
tci states
tci state
Prior art date
Application number
PCT/CN2020/120766
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/120766 priority Critical patent/WO2022077247A1/zh
Priority to CN202080002817.6A priority patent/CN114631281A/zh
Priority to US18/032,017 priority patent/US20230291526A1/en
Priority to EP20957028.2A priority patent/EP4231563A4/en
Publication of WO2022077247A1 publication Critical patent/WO2022077247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a method, device, terminal and medium for determining a TCI state.
  • NR New Radio
  • the network device may use the multiple TRPs to provide services for the terminal, including using the multiple TRPs to send the PDCCH to the terminal.
  • the CORESET configures a TCI state, then the TCI state of the search space set associated with the CORESET is the same as the TCI state of the CORESET.
  • Embodiments of the present application provide a method, apparatus, terminal, and medium for determining a TCI state.
  • the technical solution is as follows:
  • a method for determining a TCI state is provided, which is applied in a terminal, and the method includes:
  • N TCI states corresponding to the search space set of the terminal are determined according to the indication signaling, where N is a positive integer.
  • a method for determining a TCI state is provided, which is applied to a network device, and the method includes:
  • Send indication signaling where the indication signaling is used by the terminal to determine N TCI states corresponding to the search space set, where N is a positive integer.
  • a device for determining a TCI state comprising:
  • a receiving module used for receiving indication signaling
  • a determination module configured to determine N TCI states corresponding to the search space set of the terminal according to the indication signaling, where N is a positive integer.
  • a device for determining a TCI state comprising:
  • a sending module configured to send indication signaling, where the indication signaling is used by the terminal to determine N TCI states corresponding to the search space set, where N is a positive integer.
  • a terminal includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute the executable instructions to implement the above method for determining the TCI state.
  • a network device comprising:
  • transceiver connected to the processor
  • the processor is configured to load and execute the executable instructions to implement the above method for determining the TCI state.
  • a computer-readable storage medium wherein executable instructions are stored in the computer-readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above-mentioned TCI Status determination method.
  • a computer program product wherein executable instructions are stored in the computer program product, and the executable instructions are loaded and executed by the processor to realize the above method for determining the TCI state .
  • a chip is provided, and the chip is configured to execute the above method for determining a TCI state.
  • a TCI state indication method for different SS sets or different PDCCH candidate positions is proposed, so that the terminal can receive the DCI sent on the corresponding PDCCH resource block according to the correct TCI state, and improve the decoding success rate of the DCI.
  • FIG. 1 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for determining a TCI state provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining a TCI state provided by an exemplary embodiment of the present application
  • FIG. 4 is a flowchart of a method for determining a TCI state provided by an exemplary embodiment of the present application
  • FIG. 5 is a flowchart of a method for determining a TCI state provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a method for determining a TCI state provided by an exemplary embodiment of the present application
  • FIG. 7 is a block diagram of an apparatus for determining a TCI state provided by an exemplary embodiment of the present application.
  • FIG. 8 is a block diagram of an apparatus for determining a TCI state provided by an exemplary embodiment of the present application.
  • FIG. 9 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal 14 .
  • the access network 12 includes several network devices 120 .
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base station, micro base station, relay station, access point and so on.
  • the names of devices with base station functions may be different.
  • eNodeBs or eNBs In LTE systems, they are called eNodeBs or eNBs; in 5G NR systems, they are called gNodeBs or gNBs.
  • the description of "base station” may change.
  • the above-mentioned apparatuses for providing a wireless communication function for the terminal 14 are collectively referred to as network devices.
  • the network device may also be a vehicle terminal.
  • the terminal 14 may include various handheld devices, in-vehicle devices, wearable devices, computing devices or Internet of Things (Internet of Things, IoT) devices or Industrial Internet of Things (IIoT) devices with wireless communication functions or connected to Other processing equipment for wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), terminal (terminal devices), and so on.
  • IoT Internet of Things
  • IIoT Industrial Internet of Things
  • the network device 120 and the terminal 14 communicate with each other through some air interface technology, such as a Uu interface.
  • Frequency Division Duplex FDD
  • Time Division Duplex TDD
  • Advanced Long Term Evolution Advanced Long Term Evolution
  • LTE-A New Radio
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to Unlicensed spectrum, LTE-U) system on unlicensed frequency band, NR-U system, Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi) , next-generation communication systems or other communication systems, etc.
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the present application proposes a method for indicating the TCI state of a search space set, so that a terminal can determine the respective TCI states corresponding to PDCCHs transmitted by multiple TRPs, thereby improving the success rate of receiving DCI signaling.
  • FIG. 2 shows a flowchart of a method for determining a TCI state provided by an embodiment of the present application. This embodiment is exemplified by the method being executed by a terminal, and the method includes:
  • Step 202 Receive indication signaling
  • the terminal receives the indication signaling sent by the network device.
  • the indication signaling is at least one of Radio Resource Control (Radio Resource Control, RRC) signaling, Medium Access Control (Medium Access Control, MAC) signaling, and Downlink Control Information (Downlink Control Information, DCI) signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • DCI Downlink Control Information
  • Step 204 Determine N TCI states corresponding to a search space set (Search Space set, SS set) of the terminal according to the indication signaling, where N is a positive integer.
  • the terminal determines N TCI states corresponding to the search space set of the terminal according to the indication signaling, where N may be one, or two or more.
  • the method provided in this embodiment proposes that when the network device uses multiple TRPs to send PDCCH services for the terminal, when different SS sets of the same CORESET correspond to different TRPs, or different PDCCH candidate positions of the same SS set ( candidate) corresponding to different TRPs, or when one SS set corresponds to multiple CORESETs, a TCI state indication method for different SS sets or different PDCCH candidates is proposed, so that the terminal can receive the DCI sent on the corresponding PDCCH resource block according to the correct TCI state. , to improve the decoding success rate of DCI.
  • the above-mentioned indication signaling may adopt an explicit configuration mode or an implicit configuration mode.
  • step 204 can be alternatively implemented as step 204a, as shown in FIG. 3 :
  • Step 204a Read the configuration of the search space set from the indication signaling, where the configuration of the search space set includes: TCI state identifiers of N TCI states corresponding to the search space set.
  • the terminal When there are one or more search space sets, the terminal reads the configuration of each search space set from the indication signaling, and the configuration of the ith search space set includes: N i TCI states corresponding to the ith search space set The TCI status identifier. where i is a positive integer.
  • the TCI state identifier includes: an absolute identifier of the TCI state.
  • the network device sends Radio Resource Control (RRC) signaling to the terminal, and the RRC signaling configures 64 TCI states for all CORESETs that send PDCCH, then the identifier of the TCI state used for the search space set is taken as The value is one or more of 0 to 63. That is, each TCI state also needs 6 bits to indicate (because there are 64 TCI states). As shown in Table 1:
  • RRC Radio Resource Control
  • the TCI state identifier includes: the sequence numbers of M TCI states corresponding to one CORESET to which the search space set belongs to the TCI state sorted by numbers, where M is an integer greater than 1.
  • the network device sends RRC signaling to the terminal.
  • the RRC signaling configures 64 TCI states for the CORESET to which the search space set belongs
  • the network device sends MAC signaling to the terminal.
  • the MAC signaling configures the CORESET to which the search space set belongs.
  • TCI#3, TCI#5 then the sequence number of the TCI state corresponding to the search space set can be new TCI#0 (corresponding to TCI#3) and/or new TCI#1 (corresponding to TCI#5), that is, each TCI state Only 1 bit is needed to indicate, because the CORESET to which the search space set belongs is only configured with 2 TCI states.
  • the method provided in this embodiment sends the explicitly configured indication signaling to the terminal through the network device, so that when the network device uses multiple TRPs to send the PDCCH service for the terminal, the TCI states of different search space sets are proposed.
  • the indication method enables the terminal to receive the DCI sent on the corresponding PDCCH resource block according to the correct TCI state, thereby improving the decoding success rate of the DCI.
  • the TCI state of each search space set has a default mapping relationship with the TCI state corresponding to the CORESET to which it belongs.
  • step 204 can be alternatively implemented as step 204b and step 204c, as shown in FIG. 4 :
  • Step 204b read the CORESET to which the search space set belongs and the TCI state corresponding to the CORESET from the indication signaling;
  • the same search space set can belong to one or more CORESETs.
  • the terminal reads at least two CORESETs and the TCI state corresponding to each CORESET from the indication signaling.
  • the TCI state corresponding to each CORESET is one.
  • Step 204c all the TCI states corresponding to the CORESET to which the search space set belongs are determined as the TCI states corresponding to the search space set.
  • the terminal determines the TCI state corresponding to each CORESET to which the same search space set belongs to the TCI state corresponding to the search space set.
  • step 204 can be alternatively implemented as step 204d and step 204e, as shown in FIG. 5:
  • Step 204d read the M TCI states corresponding to the CORESET to which the search space set belongs, from the indication signaling, where M is a positive integer;
  • the same search space set can belong to one or more CORESETs.
  • Each CORESET corresponds to M TCI states. It should be noted that the number of TCI states corresponding to each CORESET is the same or different. When there are at least two different TCI states corresponding to CORESETs, the number of TCI states corresponding to the i-th CORESET is M i .
  • M is an integer greater than one. That is, there may be multiple TCI states corresponding to one CORESET.
  • the terminal reads the CORESET and M TCI states corresponding to the CORESET from the indication signaling.
  • the terminal reads at least two CORESETs and M i TCI states corresponding to each CORESET from the indication signaling.
  • the number of TCI states corresponding to the i-th CORESET is M i , and i is a positive integer.
  • Step 204e Determine all or a part of the TCI states in the M TCI states as the TCI states corresponding to the search space set.
  • the terminal determines N TCI states among the M TCI states as TCI states corresponding to a single search space set, where N is an integer not greater than M.
  • the terminal determines one or more TCI states in the M TCI states as a TCI state corresponding to a single search space set. There can be multiple search space sets belonging to the same CORESET.
  • the terminal determines one TCI state among the M TCI states as the TCI state corresponding to the search space set according to the preset mapping relationship. That is, the terminal determines one TCI state among the M TCI states as a TCI state corresponding to a single search space set. At least one of the following three methods can be used:
  • the terminal determines a TCI state corresponding to the search space set according to the identifier of the search space set according to the cyclic mapping method
  • M is 2, that is, CORESET is configured with 2 TCI states (TCI#3 and TCI#5). Then: SS set ID is 0, 2, 4...corresponds to TCI#3; SS set ID is 1, 3, 5...corresponds to TCI#5.
  • the terminal determines a TCI state corresponding to the search space set according to the identifier of the search space set according to the sequential mapping method
  • M is 2, that is, CORESET is configured with 2 TCI states (TCI#3 and TCI#5).
  • SS set ID is 0, 1, 2 corresponds to TCI#3; SS set ID is 3, 4, 5 corresponds to TCI#5.
  • the terminal determines a search space set (pair) corresponding to the search space set, and the M search space sets in the search space set group are in one-to-one correspondence with the M TCI states.
  • M is 2, that is, CORESET is configured with 2 TCI states (TCI#3 and TCI#5).
  • One search space set group is search space set #0 and search space set #1, then search space set #0 corresponds to TCI #3, and search space set #1 corresponds to TCI #5.
  • Another search space set group is search space set #2 and search space set #3, then search space set #2 corresponds to TCI #3, and search space set #3 corresponds to TCI #5. That is, the smaller ID of the search space set corresponds to the smaller ID in the TCI state.
  • these search space sets correspond to M TCI states of CORESET, or a TCI state with the smallest number among the M TCI states.
  • the method provided in this embodiment sends the implicitly configured indication signaling to the terminal through the network device.
  • the amount of data that the indication signaling needs to carry can be reduced, thereby saving air interface resources. .
  • Each PDCCH candidate position in the search space set corresponds to the multiple TCI states
  • each PDCCH candidate position in the at least two PDCCH candidate positions corresponds to the number of PDCCH candidate positions.
  • Different PDCCH candidate positions in the search space set correspond to different TCI states.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions, different PDCCH candidate positions in the at least two PDCCH candidate positions correspond to different TCI states.
  • the terminal reads the TCI state identifiers corresponding to at least two PDCCH candidate positions from the indication signaling.
  • the indication signaling is explicitly configured with a TCI state identifier corresponding to each PDCCH candidate position, the TCI state identifier is an absolute identifier, and the TCI absolute identifier can be 0-63; or the TCI state identifier is the first search space
  • the sequence numbers of the multiple TCI state identifiers corresponding to the set are reordered according to the numbers.
  • the sequence numbers of the TCI states corresponding to the at least two PDCCH candidate positions may be new TCI#0 (corresponding to TCI#3) and/or new TCI#1 ( Corresponding to TCI#5), in this way, the TCI state identifier corresponding to each PDCCH candidate position only needs 1 bit to indicate.
  • the terminal determines TCI states corresponding to the at least two PDCCH candidate positions in a cyclic mapping manner.
  • the first search space set corresponds to TCI state #1 and TCI state #2
  • the four PDCCH candidate positions correspond to TCI state #1, TCI state #2, TCI state #1, and TCI state #2 respectively.
  • the terminal determines TCI states corresponding to at least two PDCCH candidate positions in a sequential mapping manner.
  • the first search space set corresponds to TCI state #1 and TCI state #2
  • the four PDCCH candidate positions correspond to TCI state #1, TCI state #1, TCI state #2, and TCI state #2 respectively.
  • the PDCCH aggregation levels of at least two PDCCH candidate positions are the same or different.
  • the method provided in this embodiment when the network device uses multiple TRPs to send PDCCH services for the terminal, when different PDCCH candidate positions of the same SS set correspond to different TRPs, the method of different PDCCH candidate positions is proposed.
  • the TCI state indication method enables the terminal to receive the DCI sent on the corresponding PDCCH resource block according to the correct TCI state, thereby improving the decoding success rate of the DCI.
  • FIG. 6 shows a flowchart of a method for determining a TCI state provided by an exemplary embodiment of the present application.
  • the method is applied to a network device, and it is characterized in that the method includes:
  • Step 620 Send indication signaling, where the indication signaling is used by the terminal to determine N TCI states corresponding to the search space set, where N is a positive integer.
  • the indication signaling carries: the configuration of the search space set, and the configuration of the search space set includes: TCI state identifiers of N TCI states corresponding to the search space set.
  • the TCI state identifier includes: an absolute identifier of the TCI state; or, the sequence number of the M TCI states corresponding to a CORESET to which the search space set belongs, sorted by numbers, where M is an integer greater than 1.
  • the indication signaling carries: the CORESET to which the search space set belongs and the TCI state corresponding to the CORESET.
  • the CORESET to which the search space set belongs
  • the TCI state corresponding to the CORESET.
  • the indication signaling carries: M TCI states corresponding to the CORESET to which the search space set belongs, where M is a positive integer. It should be noted that there are one or more CORESETs to which the search space set belongs, and the number of TCI states corresponding to each CORESET is the same or different. When there are at least two different TCI states corresponding to CORESETs, the number of TCI states corresponding to the i-th CORESET is M i . i is a positive integer.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions;
  • Each of the at least two PDCCH candidate positions corresponds to the plurality of TCI states.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions;
  • Different PDCCH candidate positions in the at least two PDCCH candidate positions correspond to different TCI states.
  • the indication signaling also carries:
  • TCI states corresponding to at least two PDCCH candidate positions respectively.
  • the indication signaling is at least one of RRC signaling, MAC signaling, and DCI signaling.
  • FIG. 7 shows a block diagram of an apparatus for determining a TCI state provided by an exemplary embodiment of the present application.
  • the apparatus may be implemented as all or a part of a terminal, or the apparatus may be applied in a terminal, and the apparatus includes:
  • a receiving module 720 configured to receive indication signaling
  • the determining module 740 is configured to determine, according to the indication signaling, N TCI states corresponding to the search space set of the terminal, where N is a positive integer.
  • the determining module 740 is configured to read the configuration of the search space set from the indication signaling, where the configuration of the search space set includes: N corresponding to the search space set TCI state identifier of the TCI state.
  • the TCI state identifier includes: an absolute identifier of the TCI state; or, the sequence number of the M TCI states corresponding to a CORESET to which the search space set belongs to the TCI state sorted by numbers , where M is a positive integer.
  • the determining module 740 is configured to read the CORESET to which the search space set belongs and the TCI state corresponding to the CORESET from the indication signaling; optionally, the CORESET to which the search space set belongs is: One or more, the TCI state corresponding to each CORESET is one; the TCI state corresponding to each CORESET to which the search space set belongs is determined as the TCI state corresponding to the search space set.
  • the determining module 740 is configured to read, from the indication signaling, M TCI states corresponding to the CORESET to which the search space set belongs, where M is an integer greater than 1; All or part of the TCI states in the TCI states are determined as the TCI states corresponding to the search space set.
  • the determining module 740 is configured to determine, according to a preset mapping relationship, one TCI state in the M TCI states as the TCI state corresponding to the search space set.
  • the determining module 740 is configured to determine a TCI state corresponding to the search space set in a circular mapping manner according to the identifier of the search space set; or; the determining module 740 is configured to According to the identifier of the search space set, determine a TCI state corresponding to the search space set in a sequential mapping manner; or; the determining module 740 is configured to determine the search space set group corresponding to the search space set, the The M search space sets in the search space set group are in one-to-one correspondence with the M TCI states.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions;
  • Each of the at least two PDCCH candidate positions corresponds to the plurality of TCI states.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions;
  • Different PDCCH candidate positions in the at least two PDCCH candidate positions correspond to different TCI states.
  • the determining module 740 is configured to read the TCI states corresponding to the at least two PDCCH candidate positions from the indication information.
  • the determining module 740 is configured to determine the TCI states corresponding to the at least two PDCCH candidate positions in a cyclic mapping manner; or, the determining module 740 is configured to determine the TCI states in a sequential mapping manner TCI states corresponding to at least two PDCCH candidate positions.
  • the indication signaling is at least one of RRC signaling, MAC signaling and DCI signaling.
  • FIG. 8 shows a block diagram of an apparatus for determining a TCI state provided by an exemplary embodiment of the present application.
  • the apparatus may be implemented as all or a part of a network device, or the apparatus may be applied in a network device, and the apparatus includes:
  • the sending module 820 is configured to send indication signaling, where the indication signaling is used by the terminal to determine N TCI states corresponding to the search space set, where N is a positive integer.
  • the indication signaling carries:
  • the configuration of the search space set includes: TCI state identifiers of N TCI states corresponding to the search space set.
  • the TCI state identifier includes: an absolute identifier of the TCI state; or, the sequence number of the M TCI states corresponding to a CORESET to which the search space set belongs to the TCI state sorted by numbers , where M is a positive integer.
  • the indication signaling carries:
  • One or more control resource sets CORESET to which the search space set belongs and a TCI state corresponding to each CORESET.
  • the indication signaling carries:
  • M TCI states corresponding to each CORESET to which the search space set belongs, where M is a positive integer.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions;
  • Each of the at least two PDCCH candidate positions corresponds to the plurality of TCI states.
  • the search space set is a first search space set corresponding to multiple TCI states, and the first search space set includes at least two PDCCH candidate positions;
  • Different PDCCH candidate positions in the at least two PDCCH candidate positions correspond to different TCI states.
  • the indication signaling also carries:
  • the indication signaling is at least one of RRC signaling, MAC signaling and DCI signaling.
  • FIG. 9 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 901 , a receiver 902 , a transmitter 903 , a memory 904 and a bus 905 .
  • the processor 901 includes one or more processing cores, and the processor 901 executes various functional applications and information processing by running software programs and modules.
  • the receiver 902 and the transmitter 903 may be implemented as a communication component, which may be a communication chip.
  • the memory 904 is connected to the processor 901 through the bus 905 .
  • the memory 904 may be configured to store at least one instruction, and the processor 901 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 904 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the TCI state executed by the terminal or the network device provided by the above method embodiments.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one section of program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the TCI state provided by the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种TCI状态的确定方法、装置、终端及存储介质,涉及通信技术领域,该方法包括:终端接收指示信令;根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,N为正整数。

Description

TCI状态的确定方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种TCI状态的确定方法、装置、终端及介质。
背景技术
在新空口(New Radio,NR)系统中,特别是通信频段在频段范围2时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
当网络设备有多个TRP时,网络设备可以使用多个TRP为终端提供服务,包括使用多个TRP为终端发送PDCCH。传统方法中,网络设备使用一个TRP为终端发送PDCCH时,CORESET配置一个TCI状态,那么与该CORESET关联的搜索空间集的TCI状态都与该CORESET的TCI状态一样。
当使用多个TRP的PDCCH的重复发送方法时,相当于终端需要使用不同TCI状态对应的波束来接收不同TRP发送的PDCCH,而这多个PDCCH可能来自相同的或不同的搜索空间集(Search Space Set,SS set),如何指示搜索空间集的TCI状态,是需要解决的问题。
发明内容
本申请实施例提供了一种TCI状态的确定方法、装置、终端及介质。所述技术方案如下:
根据本申请的一个方面,提供了一种TCI状态的确定方法,应用于终端中,所述方法包括:
接收指示信令;
根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,N为正整数。
根据本申请的另一方面,提供了一种TCI状态的确定方法,应用于网络设备中,所述方法包括:
发送指示信令,所述指示信令用于终端确定搜索空间集对应的N个TCI状态,N为正整数。
根据本申请的另一方面,提供了一种TCI状态的确定装置,所述装置包括:
接收模块,用于接收指示信令;
确定模块,用于根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,N为正整数。
根据本申请的另一方面,提供了一种TCI状态的确定装置,所述装置包括:
发送模块,用于发送指示信令,所述指示信令用于终端确定搜索空间集对应的N个TCI状态,N为正整数。
根据本申请的另一方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现上述的TCI状态的确定方法。
根据本申请的另一方面,提供了一种网络设备,所述网络设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现上述的TCI状态的确定方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现上述的TCI状态的确定方法。
根据本申请的另一方面,提供了一种计算机程序产品,所述计算机程序产品中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现上述的TCI状态的确定方法。
根据本申请的另一方面,提供了一种芯片,所述芯片用于执行上述TCI状态的确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过提出了当网络设备使用多个TRP为终端发送PDCCH服务时,当同一CORESET的不同SS set对应不同TRP,或同一SS set的不同PDCCH候选位置对应不同TRP,或同一SS set对应不同的多个CORESET时,提出了不同SS set或不同PDCCH候选位置的TCI状态指示方法,使得终端能按照正确的TCI状态来接收对应的PDCCH资源块上发送的DCI,提高DCI的解码成功率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的示意图;
图2是本申请一个示例性实施例提供的TCI状态的确定方法的流程图;
图3是本申请一个示例性实施例提供的TCI状态的确定方法的流程图;
图4是本申请一个示例性实施例提供的TCI状态的确定方法的流程图;
图5是本申请一个示例性实施例提供的TCI状态的确定方法的流程图;
图6是本申请一个示例性实施例提供的TCI状态的确定方法的流程图;
图7是本申请一个示例性实施例提供的TCI状态的确定装置的框图;
图8是本申请一个示例性实施例提供的TCI状态的确定装置的框图;
图9是本申请一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本公开以下的所有实施例中,虽然不同的步骤采用了数字来进行编号,但是这些编号都只是为了使得文字更为清楚的目的而进行的编号,并非是对于步骤的执行顺序和时隙的限定。本公开的所有实施例中,这些编号的步骤可以被单独实施,也可以被任何组合在一起实施;当这些步骤被任意组合在一起实施时,其执行顺序并不受到编号的数字的限制,即其可以以任意的顺序被执行。
图1示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端14提供无线通信功能的装置统称为网络设备。在车联网通信中,网络设备还可以是车载终端。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或物联网(Internet of Things,IoT)设备或工业物联网(Industry Internet of Things,IIoT)设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。网络设备120与终端14之间通过某种空口技术互相通信,例如Uu接口。
本公开实施例的技术方案可以应用于各种通信系统,例如:频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本公开实施例也可以应用于这些通信系统。
本申请提出了一种搜索空间集的TCI状态的指示方法,使得终端能够确定多个TRP传输的PDCCH各自对应的TCI状态,从而提高DCI信令的接收成功率。
图2示出了本申请一个实施例提供的TCI状态的确定方法的流程图。本实施例以该方法由终端执行来举例说明,所述方法包括:
步骤202:接收指示信令;
终端接收网络设备发送的指示信令。指示信令为无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Medium Access Control,MAC)信令和下行控制信息(Downlink Control Information,DCI)信令中的至少一种。
步骤204:根据指示信令确定终端的搜索空间集(Search Space set,SS set)对应的N个TCI状态,N为正整数。
终端根据指示信令确定终端的搜索空间集对应的N个TCI状态,N可以为1个,也可以为两个或两个以上。
综上所述,本实施例提供的方法,通过提出了当网络设备使用多个TRP为终端发送PDCCH服务时,当同一CORESET的不同SS set对应不同TRP,或同一SS set的不同PDCCH候选位置(candidate)对应不同TRP,或一个SS set对应多个CORESET时,提出了不同SS set或不同PDCCH candidate的TCI状态指示方法,使得终端能按照正确的TCI状态来接收对应的PDCCH资源块上发送的DCI,提高DCI的解码成功率。
上述指示信令可以采用显式配置方式,或隐式配置方式。
针对显式配置方式:
在基于图2的可选实施例中,上述步骤204可替代实现成为步骤204a,如图3所示:
步骤204a:从指示信令中读取搜索空间集的配置,搜索空间集的配置包括:搜索空间集对应的N个TCI状态的TCI状态标识。
在搜索空间集为一个或多个时,终端从指示信令中读取每个搜索空间集的配置,第i个搜索空间集的配置包括:第i个搜索空间集对应的N i个TCI状态的TCI状态标识。其中,i为正整数。
示意性的,TCI状态标识包括:TCI状态的绝对标识。
比如:网络设备向终端发送无线资源控制(Radio Resource Control,RRC)信令,该RRC信令为发送PDCCH的所有CORESET配置了64个TCI状态,那么用于该搜索空间集的TCI状态的标识取值为0~63中的其中一个或多个。即每个TCI状态还需要6bit来指示(因为有64个TCI状态)。如表一所示:
表一
搜索空间集 TCI状态标识
搜索空间集1 000001、000010、000011
搜索空间集2 110001、110010、110011
示意性的,TCI状态标识包括:TCI状态在搜索空间集所属的一个CORESET对应的M个TCI状态按照编号排序后的序号,其中M为大于1的整数。
比如网络设备向终端发送RRC信令,RRC信令为搜索空间集所属的CORESET配置了64个TCI状态,网络设备再向终端发送MAC信令,该MAC信令为搜索空间集所属的CORESET配置了TCI#3,TCI#5,那么该搜索空间集对应的TCI状态的序号可以为新TCI#0(对应TCI#3)和/或新TCI#1(对应TCI#5),即每个TCI状态只需要1bit来指示,因为搜索空间集所属的CORESET只配置了2个TCI状态。
综上所述,本实施例提供的方法,通过网络设备向终端发送显式配置的指示信令,使得当网络设备使用多个TRP为终端发送PDCCH服务时,提出了不同搜索空间集的TCI状态指示方法,使得终端能按照正确的TCI状态来接收对应的PDCCH资源块上发送的DCI,提高DCI的解码成功率。
针对隐式配置方式:
每个搜索空间集的TCI状态与所属的CORESET对应的TCI状态有默认的映射关系。
映射方式一(排名不分先后):
在基于图2的可选实施例中,上述步骤204可替代实现成为步骤204b和步骤204c,如图4所示:
步骤204b,从指示信令中读取搜索空间集所属的CORESET和CORESET对应的TCI状态;
同一个搜索空间集可以属于一个或多个CORESET。
以搜索空间集对应多个CORESET为例,终端从指示信令中读取至少两个CORESET和每个CORESET对应的TCI状态。可选地,每个CORESET对应的TCI状态为一个。
步骤204c,将搜索空间集所属的CORESET对应的TCI状态,均确定为搜索空间集对应的TCI状态。
终端将同一个搜索空间集所属的各个CORESET对应的TCI状态,均确定为搜索空间集对应的TCI状态。
映射方式二:
在基于图2的可选实施例中,上述步骤204可替代实现成为步骤204d和步骤204e,如图5所示:
步骤204d:从指示信令中读取搜索空间集所属的CORESET对应的M个TCI状态,M为正整数;
同一个搜索空间集可以属于一个或多个CORESET。每个CORESET对应M个TCI状态。需要说明的是,每个CORESET对应的TCI状态的个数相同或不同。在存在至少两个CORESET对应的TCI状态不同的情况下,第i个CORESET对应的TCI状态的个数为M i
在一个示例中,M为大于1的整数。也即,一个CORESET对应的TCI状态可以为多个。
以搜索空间集对应一个CORESET为例,终端从指示信令中读取该CORESET和该CORESET对应的M个TCI状态。以搜索空间集对应两个以上的CORESET为例,终端从指示信令中读取至少两个CORESET和每个CORESET对应的M i个TCI状态。第i个CORESET对应的TCI状态的个数为M i,i为正整数。
步骤204e:将M个TCI状态中的全部或一部分TCI状态,确定为搜索空间集对应的TCI状态。
终端将M个TCI状态中的N个TCI状态,确定为单个搜索空间集对应的TCI状态,其中,N为不大于M的整数。或者,终端将M个TCI状态中的一个或多个TCI状态,确定为单个搜索空间集对应的TCI状态。属于同一个CORESET的搜索空间集可以为多个。
可选地,在N=1的情况下,终端按照预设映射关系将M个TCI状态中的一个TCI状态,确定为搜索空间集对应的TCI状态。也即,终端将M个TCI状态中的一个TCI状态,确定为单个搜索空间集对应的TCI状态。至少可以采用如下三种方式中的任意一种:
·终端根据搜索空间集的标识,按照循环映射(Cyclical mapping)方式确定搜索空间集对应的一个TCI状态;
比如M为2,即CORESET配置了2个TCI状态(TCI#3和TCI#5)。那么:SS set ID为0,2,4……对应TCI#3;SS set ID为1,3,5……对应TCI#5。
·终端根据搜索空间集的标识,按照顺序映射(Sequential mapping)方式确定搜索空间集对应的一个TCI状态;
比如M为2,即CORESET配置了2个TCI状态(TCI#3和TCI#5)。SS set ID为0,1,2对应TCI#3;SS set ID为3,4,5对应TCI#5。
·终端确定搜索空间集对应的搜索空间集组(pair),搜索空间集组内的M个搜索空间集与M个TCI状态一一对应。
比如M为2,即CORESET配置了2个TCI状态(TCI#3和TCI#5)。一个搜索空间集组为搜索空间集#0和搜索空间集#1,则搜索空间集#0对应TCI#3,搜索空间集#1对应TCI#5。另一个搜索空间集组为搜索空间集#2和搜索空间集#3,则搜索空间集#2对应TCI#3,搜索空间集#3对应TCI#5。即搜索空间集的ID较小者对应TCI状态中的编号较小者。
这种情况下,当存在至少一个搜索空间集不是以组形式出现的情况下,默认这些搜索空间集对应CORESET的M个TCI状态,或者M个TCI状态中编号最小的一个TCI状态。
综上所述,本实施例提供的方法,通过网络设备向终端发送隐式配置的指示信令,相比于上一个实施例,能够减少指示信令所需要携带的数据量,从而节约空口资源。
在基于上述各个实施例的基础上,当一个搜索空间集对应多个TCI状态时,还可能包括两种情况:
·该搜索空间集中的每个PDCCH候选位置都对应该多个TCI状态;
在搜索空间集为对应多个TCI状态的第一搜索空间集,第一搜索空间集包括至少两个PDCCH候选位置的情况下,至少两个PDCCH候选位置中的每个PDCCH候选位置均对应该多个TCI状态。
·该搜索空间集中的不同PDCCH候选位置对应不同TCI状态。
在搜索空间集为对应多个TCI状态的第一搜索空间集,第一搜索空间集包括至少两个PDCCH候选位置的情况下,至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
在一个示例中,终端从指示信令读取至少两个PDCCH候选位置对应的TCI状态标识。比如,指示信令中显式配置有每个PDCCH候选位置对应的TCI状态标识,该TCI状态标识是绝对标识,该TCI绝对标识可以是0-63;或该TCI状态标识是该第一搜索空间集对应的多个TCI状态标识按照编号重新排序后的序号。比如第一搜索空间集对应的TCI#3,TCI#5,那么该至少两个PDCCH候选位置对应的TCI状态的序号可以为新TCI#0(对应TCI#3)和/或新TCI#1(对应TCI#5),这样,每个PDCCH候选位置对应的TCI状态标识只需要1bit来指示即可。
在另一个示例中,终端按照循环映射方式确定至少两个PDCCH候选位置对应的TCI状态。比如:第一搜索空间集对应TCI状态#1和TCI状态#2,4个PDCCH候选位置分别对应TCI状态#1、TCI状态#2、TCI状态#1、TCI状态#2。
在另一个示例中,终端按照顺序映射方式确定至少两个PDCCH候选位置对应的TCI状态。比如:第一搜索空间集对应TCI状态#1和TCI状态#2,4个PDCCH候选位置分别对应TCI状态#1、TCI状态#1、TCI状态#2、TCI状态#2。
需要说明的是,至少两个PDCCH候选位置的PDCCH聚合等级一样或不一样。
综上所述,本实施例提供的方法,通过提出了当网络设备使用多个TRP为终端发送PDCCH服务时,当同一SS set的不同PDCCH候选位置对应不同TRP时,提出了不同PDCCH候选位置的TCI状态指示方法,使得终端能按照正确的TCI状态来接收对应的PDCCH资源块上发送的DCI,提高DCI的解码成功率。
图6示出了本申请一个示例性实施例提供的TCI状态的确定方法的流程图。本实施例以该方法应用于网络设备,其特征在于,所述方法包括:
步骤620:发送指示信令,指示信令用于终端确定搜索空间集对应的N个TCI状态,N为正整数。
在一个可能的设计中,指示信令携带有:搜索空间集的配置,搜索空间集的配置包括:搜索空间集对应的N个TCI状态的TCI状态标识。可选地,TCI状态标识包括:TCI状态的绝对标识;或,TCI状态在搜索空间集所属的一个CORESET对应的M个TCI状态按照编号排序后的序号,其中M为大于1的整数。
在一个可能的设计中,指示信令携带有:搜索空间集所属的CORESET和CORESET对应的TCI状态。可选地,搜索空间集所属的CORESET为一个或多 个,每个CORESET对应的TCI状态为一个。
在一个可能的设计中,指示信令携带有:搜索空间集所属的CORESET对应的M个TCI状态,M为正整数。需要说明的是,搜索空间集所属的CORESET为一个或多个,每个CORESET对应的TCI状态的个数相同或不同。在存在至少两个CORESET对应的TCI状态不同的情况下,第i个CORESET对应的TCI状态的个数为M i。i为正整数。
在一个可能的设计中,搜索空间集为对应多个TCI状态的第一搜索空间集,第一搜索空间集包括至少两个PDCCH候选位置;其中,
至少两个PDCCH候选位置中的每个PDCCH候选位置均对应所述多个TCI状态。
在一个可能的设计中,搜索空间集为对应多个TCI状态的第一搜索空间集,第一搜索空间集包括至少两个PDCCH候选位置;其中,
至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
在一个可能的设计中,指示信令还携带有:
至少两个PDCCH候选位置分别对应的TCI状态。
在一个可能的设计中,指示信令为RRC信令、MAC信令和DCI信令中的至少一种。
图7示出了本申请一个示例性实施例提供的TCI状态的确定装置的框图,该装置可以实现成为终端的全部或一部分,或者,该装置可以应用在终端中,所述装置包括:
接收模块720,用于接收指示信令;
确定模块740,用于根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,N为正整数。
在一个可能的设计中,所述确定模块740,用于从所述指示信令中读取所述搜索空间集的配置,所述搜索空间集的配置包括:所述搜索空间集对应的N个TCI状态的TCI状态标识。
在一个可能的设计中,所述TCI状态标识包括:所述TCI状态的绝对标识;或,所述TCI状态在所述搜索空间集所属的一个CORESET对应的M个TCI状态按照编号排序后的序号,其中M为正整数。
在一个可能的设计中,所述确定模块740,用于从所述指示信令中读取所述搜索空间集所属的CORESET和CORESET对应的TCI状态;可选地,搜索空间集所属的CORESET为一个或多个,每个CORESET对应的TCI状态为一个;将所述搜索空间集所属的各个CORESET对应的TCI状态均确定为所述搜索空间集对应的TCI状态。
在一个可能的设计中,所述确定模块740,用于从所述指示信令中读取所述搜索空间集所属的CORESET对应的M个TCI状态,M为大于1的整数;将所述M个TCI状态中的全部或一部分TCI状态,确定为所述搜索空间集对应的TCI状态。可选地,搜索空间集所属的CORESET为一个或多个。
在一个可能的设计中,所述确定模块740,用于按照预设映射关系将所述M 个TCI状态中的一个TCI状态,确定为所述搜索空间集对应的TCI状态。
在一个可能的设计中,所述确定模块740,用于根据所述搜索空间集的标识,按照循环映射方式确定所述搜索空间集对应的一个TCI状态;或;所述确定模块740,用于根据所述搜索空间集的标识,按照顺序映射方式确定所述搜索空间集对应的一个TCI状态;或;所述确定模块740,用于确定所述搜索空间集对应的搜索空间集组,所述搜索空间集组内的M个搜索空间集与M个TCI状态一一对应。
在一个可能的设计中,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
所述至少两个PDCCH候选位置中的每个PDCCH候选位置均对应所述多个TCI状态。
在一个可能的设计中,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
所述至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
在一个可能的设计中,所述确定模块740,用于从所述指示信息读取所述至少两个PDCCH候选位置对应的TCI状态。
在一个可能的设计中,所述确定模块740,用于按照循环映射方式确定所述至少两个PDCCH候选位置对应的TCI状态;或,所述确定模块740,用于按照顺序映射方式确定所述至少两个PDCCH候选位置对应的TCI状态。
在一个可能的设计中,所述指示信令为RRC信令、MAC信令和DCI信令中的至少一种。
图8示出了本申请一个示例性实施例提供的TCI状态的确定装置的框图,该装置可以实现成为网络设备的全部或一部分,或者,该装置可以应用在网络设备中,所述装置包括:
发送模块820,用于发送指示信令,所述指示信令用于终端确定搜索空间集对应的N个TCI状态,N为正整数。
在一个可能的设计中,所述指示信令携带有:
所述搜索空间集的配置,所述搜索空间集的配置包括:所述搜索空间集对应的N个TCI状态的TCI状态标识。
在一个可能的设计中,所述TCI状态标识包括:所述TCI状态的绝对标识;或,所述TCI状态在所述搜索空间集所属的一个CORESET对应的M个TCI状态按照编号排序后的序号,其中M为正整数。
在一个可能的设计中,所述指示信令携带有:
所述搜索空间集所属的一个或多个控制资源集CORESET和每个CORESET对应的一个TCI状态。
在一个可能的设计中,所述指示信令携带有:
所述搜索空间集所属的每个CORESET对应的M个TCI状态,M为正整数。
在一个可能的设计中,所述搜索空间集为对应多个TCI状态的第一搜索空 间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
所述至少两个PDCCH候选位置中的每个PDCCH候选位置均对应所述多个TCI状态。
在一个可能的设计中,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
所述至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
在一个可能的设计中,所述指示信令还携带有:
所述至少两个PDCCH候选位置分别对应的TCI状态。
在一个可能的设计中,所述指示信令为RRC信令、MAC信令和DCI信令中的至少一种。
图9示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器901、接收器902、发射器903、存储器904和总线905。
处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器902和发射器903可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器904通过总线905与处理器901相连。
存储器904可用于存储至少一个指令,处理器901用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端或网络设备执行的TCI状态的确定方法。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的TCI状态的确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (45)

  1. 一种传输配置指示TCI状态的确定方法,其特征在于,应用于终端中,所述方法包括:
    接收指示信令;
    根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,包括:
    从所述指示信令中读取所述搜索空间集的配置,所述搜索空间集的配置包括:所述搜索空间集对应的N个TCI状态的TCI状态标识。
  3. 根据权利要求2所述的方法,其特征在于,所述TCI状态标识包括:
    所述TCI状态的绝对标识;
    或,
    所述TCI状态在所述搜索空间集所属的一个控制资源集CORESET对应的M个TCI状态按照编号排序后的序号,其中M为正整数。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述指示信令确定所述终端的搜索空间集对应的TCI状态,包括:
    从所述指示信令中读取所述搜索空间集所属的控制资源集CORESET和所述CORESET对应的TCI状态;
    将所述搜索空间集所属的CORESET对应的TCI状态均确定为所述搜索空间集对应的TCI状态。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述指示信令确定所述终端的搜索空间集对应的TCI状态,包括:
    从所述指示信令中读取所述搜索空间集所属的控制资源集CORESET对应的M个TCI状态,M为正整数;
    将所述M个TCI状态中的全部或一部分TCI状态,确定为所述搜索空间集对应的TCI状态。
  6. 根据权利要求5所述的方法,其特征在于,所述将所述M个TCI状态中的全部或一部分TCI状态,确定为所述搜索空间集对应的TCI状态,包括:
    按照预设映射关系将所述M个TCI状态中的一个TCI状态,确定为所述搜索空间集对应的TCI状态。
  7. 根据权利要求5所述的方法,其特征在于,所述按照预设映射关系将所述M个TCI状态中的一个TCI状态,确定为所述搜索空间集对应的TCI状态,包括:
    根据所述搜索空间集的标识,按照循环映射方式确定所述搜索空间集对应的一个TCI状态;
    或;
    根据所述搜索空间集的标识,按照顺序映射方式确定所述搜索空间集对应的一个TCI状态;
    或;
    确定所述搜索空间集对应的搜索空间集组,所述搜索空间集组内的M个搜索空间集与M个TCI状态一一对应。
  8. 根据权利要求1至5任一所述的方法,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的每个PDCCH候选位置均对应所述多个TCI状态。
  9. 根据权利要求1至5任一所述的方法,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    从所述指示信令读取所述至少两个PDCCH候选位置对应的TCI状态。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    按照循环映射方式确定所述至少两个PDCCH候选位置对应的TCI状态;
    或,
    按照顺序映射方式确定所述至少两个PDCCH候选位置对应的TCI状态。
  12. 根据权利要求1至5任一所述的方法,其特征在于,所述指示信令为无线资源控制RRC信令、媒体接入控制MAC信令和下行控制信息DCI信令中的至少一种。
  13. 一种TCI状态的确定方法,其特征在于,所述方法包括:
    发送指示信令,所述指示信令用于终端确定搜索空间集对应的N个TCI状态,N为正整数。
  14. 根据权利要求13所述的方法,其特征在于,所述指示信令携带有:
    所述搜索空间集的配置,所述搜索空间集的配置包括:所述搜索空间集对应的N个TCI状态的TCI状态标识。
  15. 根据权利要求14所述的方法,其特征在于,所述TCI状态标识包括:
    所述TCI状态的绝对标识;
    或,
    所述TCI状态在所述搜索空间集所属的一个控制资源集CORESET对应的M个TCI状态按照编号排序后的序号,其中M为正整数。
  16. 根据权利要求13所述的方法,其特征在于,所述指示信令携带有:
    所述搜索空间集所属的控制资源集CORESET和所述CORESET对应的TCI状态。
  17. 根据权利要求13所述的方法,其特征在于,所述指示信令携带有:
    所述搜索空间集所属的控制资源集CORESET对应的M个TCI状态,M为正整数。
  18. 根据权利要求13至17任一所述的方法,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的每个PDCCH候选位置均对应所述多个TCI状态。
  19. 根据权利要求13至17任一所述的方法,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
  20. 根据权利要求19所述的方法,其特征在于,所述指示信令还携带有:
    所述至少两个PDCCH候选位置分别对应的TCI状态。
  21. 根据权利要求13至17任一所述的方法,其特征在于,所述指示信令为无线资源控制RRC信令、媒体接入控制MAC信令和下行控制信息DCI信令中的至少一种。
  22. 一种传输配置指示TCI状态的确定装置,其特征在于,所述装置包括:
    接收模块,用于接收指示信令;
    确定模块,用于根据所述指示信令确定所述终端的搜索空间集对应的N个TCI状态,N为正整数。
  23. 根据权利要求22所述的装置,其特征在于,所述确定模块,用于从所述指示信令中读取所述搜索空间集的配置,所述搜索空间集的配置包括:所述搜索空间集对应的N个TCI状态的TCI状态标识。
  24. 根据权利要求23所述的装置,其特征在于,所述TCI状态标识包括:
    所述TCI状态的绝对标识;
    或,
    所述TCI状态在所述搜索空间集所属的一个控制资源集CORESET对应的M个TCI状态按照编号排序后的序号,其中M为正整数。
  25. 根据权利要求22所述的装置,其特征在于,所述确定模块,用于从所述指示信令中读取所述搜索空间集所属的控制资源集CORESET和所述CORESET对应的TCI状态;将所述搜索空间集所属的所述CORESET对应的TCI状态均确定为所述搜索空间集对应的TCI状态。
  26. 根据权利要求22所述的装置,其特征在于,所述确定模块,用于从所述指示信令中读取所述搜索空间集所属的控制资源集CORESET对应的M个TCI状态,M为正整数;将所述M个TCI状态中的全部或一部分TCI状态,确定为所述搜索空间集对应的TCI状态。
  27. 根据权利要求26所述的装置,其特征在于,所述确定模块,用于按照预设映射关系将所述M个TCI状态中的一个TCI状态,确定为所述搜索空间集对应的TCI状态。
  28. 根据权利要求27所述的装置,其特征在于,
    所述确定模块,用于根据所述搜索空间集的标识,按照循环映射方式确定所述搜索空间集对应的一个TCI状态;
    或;
    所述确定模块,用于根据所述搜索空间集的标识,按照顺序映射方式确定所述搜索空间集对应的一个TCI状态;
    或;
    所述确定模块,用于确定所述搜索空间集对应的搜索空间集组,所述搜索空间集组内的M个搜索空间集与M个TCI状态一一对应。
  29. 根据权利要求22至28任一所述的装置,其特征在于,所述搜索空间 集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的每个PDCCH候选位置均对应所述多个TCI状态。
  30. 根据权利要求22至28任一所述的装置,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
  31. 根据权利要求30所述的装置,其特征在于,所述确定模块,用于从所述指示信令读取所述至少两个PDCCH候选位置对应的TCI状态。
  32. 根据权利要求30所述的装置,其特征在于,
    所述确定模块,用于按照循环映射方式确定所述至少两个PDCCH候选位置对应的TCI状态;
    或,
    所述确定模块,用于按照顺序映射方式确定所述至少两个PDCCH候选位置对应的TCI状态。
  33. 根据权利要求22至28任一所述的装置,其特征在于,所述指示信令为无线资源控制RRC信令、媒体接入控制MAC信令和下行控制信息DCI信令中的至少一种。
  34. 一种TCI状态的确定装置,其特征在于,所述装置包括:
    发送模块,用于发送指示信令,所述指示信令用于终端确定搜索空间集对应的N个TCI状态,N为正整数。
  35. 根据权利要求34所述的装置,其特征在于,所述指示信令携带有:
    所述搜索空间集的配置,所述搜索空间集的配置包括:所述搜索空间集对应的N个TCI状态的TCI状态标识。
  36. 根据权利要求35所述的装置,其特征在于,所述TCI状态标识包括:
    所述TCI状态的绝对标识;
    或,
    所述TCI状态在所述搜索空间集所属的一个控制资源集CORESET对应的M个TCI状态按照编号排序后的序号,其中M为正整数。
  37. 根据权利要求34所述的装置,其特征在于,所述指示信令携带有:
    所述搜索空间集所属的控制资源集CORESET和所述CORESET对应的TCI状态。
  38. 根据权利要求34所述的装置,其特征在于,所述指示信令携带有:
    所述搜索空间集所属的CORESET对应的M个TCI状态,M为正整数。
  39. 根据权利要求34至38任一所述的装置,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的每个PDCCH候选位置均对应多个TCI状态。
  40. 根据权利要求34至38任一所述的装置,其特征在于,所述搜索空间集为对应多个TCI状态的第一搜索空间集,所述第一搜索空间集包括至少两个PDCCH候选位置;其中,
    所述至少两个PDCCH候选位置中的不同PDCCH候选位置对应不同TCI状态。
  41. 根据权利要求38所述的装置,其特征在于,所述指示信令还携带有:
    所述至少两个PDCCH候选位置分别对应的TCI状态。
  42. 根据权利要求32至36任一所述的装置,其特征在于,所述指示信令为无线资源控制RRC信令、媒体接入控制MAC信令和下行控制信息DCI信令中的至少一种。
  43. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至12任一所述的TCI状态的确定方法。
  44. 一种网络设备,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求13至21任一所述的TCI状态的确定方法。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至21任一所述的TCI状态的确定方法。
PCT/CN2020/120766 2020-10-14 2020-10-14 Tci状态的确定方法、装置、设备及存储介质 WO2022077247A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/120766 WO2022077247A1 (zh) 2020-10-14 2020-10-14 Tci状态的确定方法、装置、设备及存储介质
CN202080002817.6A CN114631281A (zh) 2020-10-14 2020-10-14 Tci状态的确定方法、装置、设备及存储介质
US18/032,017 US20230291526A1 (en) 2020-10-14 2020-10-14 Tci state determination method and apparatus
EP20957028.2A EP4231563A4 (en) 2020-10-14 2020-10-14 METHOD AND DEVICE FOR DETERMINING TCI STATUS, DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120766 WO2022077247A1 (zh) 2020-10-14 2020-10-14 Tci状态的确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022077247A1 true WO2022077247A1 (zh) 2022-04-21

Family

ID=81207558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120766 WO2022077247A1 (zh) 2020-10-14 2020-10-14 Tci状态的确定方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20230291526A1 (zh)
EP (1) EP4231563A4 (zh)
CN (1) CN114631281A (zh)
WO (1) WO2022077247A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004618A (zh) * 2022-04-28 2022-09-02 北京小米移动软件有限公司 一种传输配置信息的方法、装置及可读存储介质
CN115136539A (zh) * 2022-05-27 2022-09-30 北京小米移动软件有限公司 信道传输方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349059A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Signaling of control resource set (coreset)
CN110474751A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 用于指示控制信道的方法与装置
WO2020033549A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Tci and qcl configuration in 5g networks
WO2020076938A1 (en) * 2018-10-09 2020-04-16 Idac Holdings, Inc. Methods and apparatus of multi-transmit/receive point transmission
CN111278004A (zh) * 2019-01-08 2020-06-12 维沃移动通信有限公司 物理下行控制信道候选的位置确定方法、终端及网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565172B1 (en) * 2018-05-04 2020-11-25 ASUSTek Computer Inc. Method and apparatus for downlink control information (dci) content processing considering active downlink (dl) bandwidth part (bwp) change in a wireless communication system
CN110475262B (zh) * 2018-05-11 2021-08-06 中国移动通信有限公司研究院 一种准共址信息的配置方法、网络设备及用户设备
JP7284968B2 (ja) * 2019-03-28 2023-06-01 オフィノ, エルエルシー 新無線における多重化および優先順位付け

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349059A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Signaling of control resource set (coreset)
CN110474751A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 用于指示控制信道的方法与装置
WO2020033549A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Tci and qcl configuration in 5g networks
WO2020076938A1 (en) * 2018-10-09 2020-04-16 Idac Holdings, Inc. Methods and apparatus of multi-transmit/receive point transmission
CN111278004A (zh) * 2019-01-08 2020-06-12 维沃移动通信有限公司 物理下行控制信道候选的位置确定方法、终端及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231563A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004618A (zh) * 2022-04-28 2022-09-02 北京小米移动软件有限公司 一种传输配置信息的方法、装置及可读存储介质
CN115136539A (zh) * 2022-05-27 2022-09-30 北京小米移动软件有限公司 信道传输方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
US20230291526A1 (en) 2023-09-14
EP4231563A1 (en) 2023-08-23
EP4231563A4 (en) 2023-11-29
CN114631281A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
WO2021184170A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2022077247A1 (zh) Tci状态的确定方法、装置、设备及存储介质
WO2021223221A1 (zh) 上行发送方法、装置、设备及存储介质
US20240243835A1 (en) Terminal, radio communication system and radio communication method
US11979879B2 (en) Information transmission method, communications device, and network device
US20230389082A1 (en) Terminal
JP6665324B2 (ja) チャネル測定方法およびユーザ機器
CN115136539B (zh) 信道传输方法、装置、设备及可读存储介质
WO2022141071A1 (zh) 小数据传输方法、装置、设备及介质
CN114731678A (zh) 通信方法、装置、设备及可读存储介质
US20230231743A1 (en) Method and device for channel estimation
CN112425241A (zh) 信息的接收、发送方法、装置、设备及可读存储介质
US20230354344A1 (en) Resource determination method and apparatus, devices, and storage medium
WO2022236558A1 (zh) 用于数据传输的方法、装置、设备及存储介质
US20220295535A1 (en) Information determination method and apparatus, device, and storage medium
WO2022073239A1 (zh) 接收方法、装置、终端设备及存储介质
EP4062694A1 (en) Group rnti update at beam change
RU2814209C1 (ru) Способ и устройство приема, терминальное устройство и носитель данных
WO2024026858A1 (zh) 上行数据发送、上行数据接收装置以及方法
WO2022236526A1 (zh) 载波确定方法、装置、设备及存储介质
US20230345495A1 (en) Uplink control information sending method and receiving method, apparatuses, device, and medium
WO2023173263A1 (zh) 确定上行ptrs端口关联关系的方法、装置、介质及产品
EP3910846A1 (en) Method for control signal interpretation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202347033710

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020957028

Country of ref document: EP

Effective date: 20230515