WO2022067735A1 - 频域位置确定方法、装置、设备及存储介质 - Google Patents

频域位置确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022067735A1
WO2022067735A1 PCT/CN2020/119591 CN2020119591W WO2022067735A1 WO 2022067735 A1 WO2022067735 A1 WO 2022067735A1 CN 2020119591 W CN2020119591 W CN 2020119591W WO 2022067735 A1 WO2022067735 A1 WO 2022067735A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
time
group
frequency
frequency domain
Prior art date
Application number
PCT/CN2020/119591
Other languages
English (en)
French (fr)
Inventor
左志松
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/119591 priority Critical patent/WO2022067735A1/zh
Priority to EP20955759.4A priority patent/EP4224757A4/en
Priority to CN202080104553.5A priority patent/CN116097603A/zh
Publication of WO2022067735A1 publication Critical patent/WO2022067735A1/zh
Priority to US18/147,706 priority patent/US20230216609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a method, apparatus, device and storage medium for determining a frequency domain position.
  • frequency hopping technology can usually be used to determine the frequency domain position corresponding to each time slot in units of time slots, thereby improving the frequency domain gain.
  • the terminal determines a first frequency domain position and a frequency domain offset, determines a second frequency domain position according to the frequency domain offset, and compares the first frequency domain position and the second frequency domain position for multiple time slots used for data transmission.
  • the frequency domain positions alternate as the corresponding frequency domain positions for these time slots.
  • the above solution can only determine the corresponding frequency domain position based on a single time slot, and the granularity of dividing the frequency domain position is small, resulting in poor frequency domain gain effect.
  • the embodiments of the present application provide a method, apparatus, device, and storage medium for determining a frequency domain position, which break the limitation that the frequency domain position can only be determined based on a single time slot, can improve the division granularity of the frequency domain position, and further improve the Frequency domain gain effect.
  • the technical solution is as follows:
  • a method for determining a frequency domain position is provided, which is applied to a terminal, and the method includes:
  • each time-domain group including one or more consecutive time-domain units
  • a frequency domain position corresponding to each time domain group in the one or more time domain groups is determined.
  • a method for determining a frequency domain position is provided, which is applied to a network device, and the method includes:
  • each time-domain group including one or more consecutive time-domain units
  • an apparatus for determining a frequency domain position is provided, which is applied to a terminal, and the apparatus includes:
  • a time-domain group determination module configured to determine one or more time-domain groups for transmitting repeated data, each time-domain group includes one or more consecutive time-domain units;
  • a position determination module configured to determine a frequency domain position corresponding to each time domain group in the one or more time domain groups.
  • an apparatus for determining a frequency domain position is provided, which is applied to network equipment, and the apparatus includes:
  • a determining module configured to determine one or more time-domain groups for transmitting repeated data, each time-domain group including one or more consecutive time-domain units;
  • a sending module configured to send scheduling information to the terminal, where the scheduling information is used to instruct the terminal to determine a frequency domain position corresponding to each time domain group in the one or more time domain groups.
  • a terminal comprising: a processor and a transceiver; a memory for storing executable program code of the processor; wherein the processor is configured to load and The executable program code is executed to implement the frequency domain location determination method as described in the above aspects.
  • a network device comprising: a processor and a transceiver; a memory for storing executable program code of the processor; wherein the processor is configured to The executable program code is loaded and executed to implement the frequency domain location determination method as described in the above aspects.
  • a computer-readable storage medium is provided, and executable program code is stored in the readable storage medium, and the executable program code is loaded and executed by the processor to implement the above-mentioned aspect The frequency domain location determination method.
  • An embodiment of the present application provides a method for determining a frequency-domain position based on a time-domain group, which can group time-domain units in units of time-domain units to obtain one or more time-domain groups, where each time-domain group includes one or multiple time domain units, and then determine the frequency domain position based on the time domain group, which breaks the limitation that the frequency domain position can only be determined based on a single time slot, can improve the division granularity of the frequency domain position, and then can improve the frequency domain gain effect.
  • FIG. 1 shows a schematic diagram of repeated data transmission provided by an exemplary embodiment of the present application
  • FIG. 2 shows a schematic diagram of a frequency domain position corresponding to a time slot provided by an exemplary embodiment of the present application
  • FIG. 3 shows a block diagram of a communication system provided by an exemplary embodiment of the present application
  • FIG. 4 shows a flowchart of a method for determining a position in a frequency domain provided by an exemplary embodiment of the present application
  • FIG. 5 shows a corresponding relationship diagram between time-domain units and frequency-domain positions provided by an exemplary embodiment of the present application
  • FIG. 6 shows a corresponding relationship diagram between time-domain units and frequency-domain positions provided by an exemplary embodiment of the present application
  • FIG. 7 shows a block diagram of an apparatus for determining a position in a frequency domain provided by an exemplary embodiment of the present application
  • FIG. 8 shows a block diagram of an apparatus for determining a position in a frequency domain provided by an exemplary embodiment of the present application
  • FIG. 9 shows a block diagram of an apparatus for determining a position in a frequency domain provided by an exemplary embodiment of the present application.
  • FIG. 10 shows a block diagram of an apparatus for determining a position in a frequency domain provided by an exemplary embodiment of the present application
  • FIG. 11 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • each includes one, two or more, multiple includes two or more, and Each refers to each of the corresponding plurality, and any refers to any one of the plurality.
  • a plurality of elements includes 3 elements, and each refers to each of the 3 elements, any refers to any one of the 3 elements, which can be the first or the second one, or the third.
  • the terminal can determine the repeated transmission value according to the uplink transmission and downlink transmission, and then aggregate multiple time slots based on the repeated transmission value.
  • PUSCH Physical uplink shared channel, physical uplink shared channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • the symbol that can transmit data is determined first. If there is a symbol that does not meet the transmission requirements, the symbol is ignored.
  • the cross grid is an uplink symbol
  • the dot-shaped filling grid is a downlink symbol
  • duplicate data 0 and 3 are actually transmitted, but duplicate data 1 and 2 are not transmitted.
  • Frequency hopping technology In the preset frequency range, different frequency domain positions are selected for data transmission according to preset rules, which can improve the frequency domain gain effect. Also, the signal transmitting the data needs to operate within the working bandwidth of the terminal.
  • FIG. 2 shows a schematic diagram of the frequency domain position in units of time slots when repeated data transmission is performed.
  • Figure 2 includes four timeslots, namely timeslot 0, timeslot 1, timeslot 2 and timeslot 3, timeslot 0 transmits duplicate data 0, timeslot 1 transmits duplicate data 1, and timeslot 2 transmits duplicate data 2 , time slot 3 transmits repeated data 3, and time slot 0 and time slot 2 correspond to the same frequency domain position, and time slot 1 and time slot 3 correspond to the same frequency domain position.
  • FIG. 3 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: an access network 12 and a terminal 13 .
  • the access network 12 includes several network devices 120 .
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base station, micro base station, relay station, access point and so on.
  • the names of devices with base station functions may be different.
  • eNodeBs or eNBs In LTE systems, they are called eNodeBs or eNBs; in 5G NR-U systems, they are called gNodeBs or gNBs.
  • the description of "base station” may change.
  • the above-mentioned apparatuses for providing wireless communication functions for the terminal 13 are collectively referred to as access network equipment.
  • the terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem, as well as various forms of user equipment, mobile stations (Mobile Station, MS), Terminal (terminal device) and so on.
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Long term evolution
  • NR New Radio
  • evolution systems of NR systems LTE on unlicensed frequency bands (LTE-based access to unlicensed spectrum, LTE-U) system, NR-U system, Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • FIG. 4 shows a flowchart of a method for determining a frequency domain position provided by an exemplary embodiment of the present application, which is applied to the terminal shown in FIG. 4 above.
  • the method includes:
  • Step 401 The terminal determines one or more time domain groups for transmitting repeated data.
  • the terminal in order to implement the transmission of repeated data by using the frequency hopping technology, can determine a time domain group including one or more continuous time domain units, so as to determine the frequency domain position corresponding to each time domain group, then
  • the frequency domain positions corresponding to one or more time domain units included in each time domain group are all the same, which also means that the time domain units located in the same time domain group will not have frequency hopping.
  • the corresponding frequency domain positions may or may not be the same. Therefore, before determining the frequency domain location, one or more time domain groups are determined.
  • each time-domain group includes one or more consecutive time-domain units, which also indicates that the embodiment of the present application actually groups time-domain units to obtain a time-domain group including time-domain units.
  • each time domain group includes 3 consecutive time domain units, or includes 5 consecutive time domain units, or includes other numbers of consecutive time domain units.
  • the frequency-domain positions corresponding to at least two time-domain groups are discontinuous.
  • the terminal determines time domain group 1, time domain group 2, and time domain group 3.
  • Time domain group 1 corresponds to frequency domain position 1
  • time domain group 2 corresponds to frequency domain position 2
  • time domain group 3 corresponds to frequency domain position 3.
  • the number of frequency domain locations determined by the terminal is greater than three.
  • the time domain unit is a symbol or group of symbols.
  • the time domain unit is a time slot.
  • the time domain unit is a symbol group.
  • a symbol group includes a preset number of symbols, and the preset number is 2, 3, 4 or other values.
  • the preset number is set by the terminal, or set by the network device, or set by other methods.
  • the method before determining the one or more time-domain groups for transmitting the repeated data, the method further includes: acquiring information of one or more frequency-domain locations, and determining according to the information of the one or more frequency-domain locations One or more time domain groups.
  • one or more time-domain groups correspond one-to-one with one or more frequency-domain locations. It is also stated that one time domain group corresponds to one frequency domain location.
  • the number of time-domain units included in each time-domain group in the one or more time-domain groups can be determined according to at least one item of transmission repetition value or information of one or more frequency hopping positions .
  • Determining one or more time-domain groups according to at least one of the transmission repetition value or the information of one or more frequency hopping positions includes three cases: determining at least one time-domain group according to the transmission repetition value, determining at least one time-domain group according to the number of frequency modulation positions Time-domain group, one or more time-domain groups are determined according to the transmission repetition value and the information of one or more frequency hopping positions. The manner in which one or more time-domain groups are determined in each case is described below for each of the three cases:
  • the transmission repetition value is used to indicate the number of time domain units.
  • the transmission repetition value is set by the network device, or by the operator, or by some other means.
  • the repeat transmission value is 2, 4, 8, or other values. If the transmission repetition value is 4, it means that the number of time domain units is 4, and if the transmission repetition value is 8, it means that the number of time domain units is 8.
  • the transmission repetition value is used to indicate the number of time slots, or if the time domain unit is a symbol, the transmission repetition value is used to indicate the number of symbols.
  • the adopted time domain unit can be determined. At this time, one or more time domain groups are determined based on the determined time domain unit, and each determined time domain group includes one or more continuous time domain groups. time domain unit.
  • the number of time-domain units included in each of the one or more time-domain groups can be determined based on the transmission repetition value and the number of the one or more time-domain groups.
  • the number of one or more time domain groups is set by the network device, or by the operator, or set by other methods.
  • the number of the one or more time domain groups is 3, 4, 5 or other values.
  • the number of time domain units included in each time domain group can be determined, which in turn can determine one or more time domain groups.
  • each time-domain group includes one time-domain unit.
  • the information of the one or more frequency domain locations includes a number of the one or more frequency domain locations.
  • the terminal groups the time-domain units according to the number of one or more frequency-domain positions to determine the number of time-domain units included in each time-domain group.
  • the number of one or more frequency domain locations is equal to the number of frequency hopping locations.
  • the number of time-domain units included in each time-domain group in the one or more time-domain groups is determined after grouping at least one time-domain unit according to the number of frequency hopping positions.
  • the terminal can group at least one time domain unit according to the number of frequency hopping locations, and the number of one or more time domain groups obtained by grouping is the same as the number of frequency hopping locations.
  • the time domain units are divided into 3 time domain groups, and each time domain group includes 2 time domain units.
  • the time-domain units are divided into 2 time-domain groups, and each time-domain group includes 3 time-domain units.
  • the number of time-domain units included in each time-domain group is determined by the transmission repetition value and the number of frequency hopping positions.
  • the number of time domain cells included in each time domain group is determined by the ratio of the transmission repetition value to the number of frequency hopping positions. Specifically, it includes any of the following methods:
  • a time domain group includes one time domain unit.
  • the ratio of the transmission repetition value and the number of frequency hopping positions can be determined first, and the largest integer not greater than the ratio can be determined according to the ratio. If the largest integer is 0, at least one time domain unit is determined as a time domain group.
  • a time domain group includes a time domain unit.
  • the maximum integer that is not greater than the ratio of the transmission repetition value to the number of frequency hopping positions is greater than 0, the maximum integer is determined as the number of time-domain units included in the time-domain group.
  • the ratio of the transmission repetition value and the number of frequency hopping positions can be determined first, and the largest integer not greater than the ratio can be determined according to the ratio. If the largest integer is greater than 0, it means that the time domain unit can be performed Divide, determine the largest integer as the number of time-domain cells included in a time-domain group.
  • a time domain group includes 2 time domain unit.
  • At least one time domain group is determined using the following formula:
  • T slot is the number of time domain units included in the time domain group
  • NFH is the number of frequency hopping positions
  • T Repetition is the transmission repetition value, is the largest integer not greater than the ratio of the transmission repetition value to the number of hopping positions.
  • the number of time domain units included in each time domain group is determined by the magnitude relationship between the transmission repetition value and the number of frequency hopping positions. Specifically, it includes any of the following methods:
  • a time domain group includes one time domain unit.
  • the transmission repetition value is not less than the number of frequency hopping positions, the largest integer not greater than the ratio of the transmission repetition value to the number of frequency hopping positions is determined as the number of time domain units included in the time domain group.
  • the number of time-domain units included in each time-domain group is determined by whether the ratio of the transmission repetition value to the number of frequency hopping positions is greater than 1. Specifically, it includes any of the following methods:
  • a time domain group includes one time domain unit.
  • the ratio of the transmission repetition value to the number of frequency hopping positions is not less than 1, the largest integer not greater than the ratio of the transmission repetition value to the number of frequency hopping positions is determined as the number of time domain units included in the time domain group.
  • the number of one or more frequency-domain locations involved in the embodiments of the present application is determined according to the number of one or more frequency-domain offsets, or the number of the one or more frequency-domain locations is set by high-layer signaling .
  • the number of one or more frequency domain locations is the sum of the number of one or more frequency domain offsets and one.
  • the number of frequency hopping positions is determined to be 4; if the frequency domain offsets determined by the terminal are 5, the number of frequency hopping positions is determined to be 6.
  • the multiple time-domain units are divided into multiple time-domain groups.
  • the time-domain units are sequentially divided into: A plurality of time domain groups, each time domain group includes a plurality of consecutive time domain units.
  • the embodiments of the present application only take the determination of the number of time-domain units included in the time-domain group as an example for description.
  • the terminal can further divide the at least one time-domain unit into a first number of time-domain groups according to the determined first number of time-domain groups.
  • the terminal randomly groups at least one time domain unit according to the first number to obtain the first number of time domain groups.
  • Time-domain units For example, if the number of time-domain units is 4, which are time-domain unit 1, time-domain unit 2, time-domain unit 3, and time-domain unit 4, and the determined first number of time-domain groups is 2, then Domain unit 1 is divided into a time domain group, time domain unit 2, time domain unit 3 and time domain unit 4 are divided into a time domain group, or, time domain unit 1 and time domain unit 2 can be divided into a time domain group, the time-domain unit 3 and the time-domain unit 4 are divided into a time-domain group, or, the time-domain unit 1, the time-domain unit 2 and the time-domain unit 3 can be divided into a time-domain group, and the time-domain unit 4 can be divided is a time domain group.
  • Step 402 The terminal determines a frequency domain position corresponding to each time domain group in one or more time domain groups.
  • the frequency domain position corresponding to each time domain group can be determined, then the one or more time domain positions included in each time domain group
  • the time domain position corresponding to the domain unit can also be determined, and further data can be transmitted according to the determined frequency domain position corresponding to each time domain group when repeating data is transmitted by frequency hopping.
  • determining the time-domain position corresponding to each time-domain group includes: taking the frequency-domain position of the first time-domain group in the one or more time-domain groups as a reference, and according to one or more frequency-domain offsets The frequency domain offset corresponding to each time domain group in the quantity is determined, and the frequency domain position corresponding to each time domain group is determined.
  • the frequency domain position of the first time domain group is configured by the network device.
  • the frequency domain offset is used to indicate the offset between the frequency domain position of the time domain group corresponding to the frequency domain offset and the frequency domain position of the first time domain group.
  • the frequency domain position corresponding to each time domain group can be determined according to the determined frequency domain offset and the frequency domain position of the first time domain group.
  • the frequency domain offsets are respectively frequency domain offset 1, frequency domain offset 2 and frequency domain offset 3
  • the determined one or more time domain groups are respectively time domain group 1, time domain group 2 and time domain group 3
  • time domain group 1 corresponds to frequency domain offset 1
  • time domain group 2 corresponds to frequency domain offset 2
  • time domain group 3 corresponds to frequency domain offset 3.
  • the target time domain group to which the time domain unit belongs is determined according to the identifier of the time domain unit, the frequency domain offset corresponding to the target time domain group is determined based on the target time domain group, and the frequency domain offset corresponding to the target time domain group is determined based on the target time domain group.
  • the frequency domain position in the target time domain group and the frequency domain offset corresponding to the target time domain group determine the frequency domain position of the target time domain group.
  • each time-domain unit After determining one or more time-domain groups, each time-domain unit has a time-domain group to which it belongs, then for each time-domain unit, determine the target time-domain group to which the time-domain unit belongs, and then determine the target
  • the frequency domain offset corresponding to the time domain group is based on the frequency domain position in the first time domain group, and the frequency domain offset corresponding to the target time domain group is offset to determine the frequency domain of the target time domain group. position, and then determine the frequency domain position corresponding to each time domain unit included in each time domain group based on the determined frequency domain position corresponding to each time domain group.
  • determining the target time-domain group to which the time-domain unit belongs according to the identification of the time-domain unit includes: determining the identification of the time-domain unit, and the ratio of the determined identification of the time-domain unit to the time-domain unit included in the time-domain group will not be greater than The largest integer of the ratio is determined as the identification of the time domain group to which the time domain unit belongs.
  • the first frequency domain offset is determined as the frequency domain offset of time domain group 1; if the determined identifier of the time domain group is 2, the first frequency domain offset is determined as the frequency domain offset of time domain group 1
  • the two frequency domain offsets are determined as the frequency domain offsets of time domain group 2.
  • the identifier of the time domain unit is 0, 1, 2 or other numerical values.
  • the manner of determining the maximum integer based on the ratio not greater than the ratio is similar to the above-mentioned determination of the maximum integer not greater than the ratio, and details are not repeated here.
  • the following formula can be used to determine the target time-domain group to which the time-domain unit belongs according to the identifier of the time-domain unit:
  • i is the identifier of the time-domain group to which the time-domain unit belongs
  • n is the identifier of the time-domain unit
  • T slot is the number of time-domain units included in the time-domain group
  • the first ratio is the ratio of the identifier of the time-domain unit to the number of time-domain units included in the time-domain group to which the time-domain unit belongs.
  • n in the above formula is a numerical value starting from 0.
  • n is 0, 1, 2 or other values.
  • the target time domain group to which the time domain unit belongs is determined according to the identifier of the time domain unit, the frequency domain offset corresponding to the target time domain group is determined based on the target time domain group, and the frequency domain offset corresponding to the target time domain group is determined based on the target time domain group.
  • the frequency domain position in the group, the frequency domain offset and the current working bandwidth determine the frequency domain position of the target time domain group.
  • the frequency domain position of the target time domain group is determined according to the frequency domain offset corresponding to the target time domain group and the frequency domain position in the first time domain group. , at this time, the frequency domain position of the determined target time domain group may exceed the current working bandwidth. In order to ensure that the determined target time domain group is located within the current working bandwidth, the frequency domain position of the determined target time domain group and the current working bandwidth are obtained. The remainder of the bandwidth is determined as the frequency domain position of the target time domain group, and the frequency domain position determined at this time can be guaranteed to be within the current working bandwidth.
  • the following formula is used to determine the frequency domain position corresponding to each time domain group:
  • N FH is the number of frequency hopping positions
  • RB start is the frequency domain position of the first time domain group
  • i mod N FH is the remainder of i and N FH
  • FH(i mod N FH ) is the frequency domain offset corresponding to the i-th time domain group
  • is the current working bandwidth represents the frequency domain offset corresponding to the ith time domain group
  • RB i is the frequency domain position of the ith time domain group.
  • the frequency domain position of the time domain group is an RB (Resource Block, resource block) position.
  • the current working bandwidth is the BWP (Band Width Part, bandwidth part) bandwidth.
  • each time domain group in the case where the frequency domain position corresponding to each time domain unit is determined according to the transmission repetition value and the number of frequency hopping positions, if the transmission repetition value is 4 and the number of frequency hopping positions is 2, as shown in Figure 5 As shown, two time-domain groups can be determined, and each time-domain group includes two time-domain units, and each time-domain group corresponds to a frequency-domain position.
  • each time-domain group includes a time-domain unit, and each time-domain group corresponds to a frequency domain location.
  • At least one frequency domain offset is stored in a frequency domain offset list, and the frequency domain offset is stored corresponding to the tag.
  • frequency domain offset 1 is stored corresponding to label 1
  • frequency domain offset 2 is stored corresponding to label 2.
  • the terminal can determine the frequency domain offset corresponding to each time domain group from the frequency domain offset list, and then determine the frequency domain position of each time domain group based on the determined frequency domain offset.
  • Step 403 The terminal sends data to the network device based on each time domain group and the frequency domain location of each time domain group.
  • Step 404 The network device receives data sent by the terminal based on each time domain group and the frequency domain position of each time domain group.
  • the terminal after determining the frequency domain position of each time domain group, can determine the frequency domain position of one or more time domain units included in each time domain group, and then can determine the frequency domain position of one or more time domain units included in each time domain group.
  • the data is sent to the network device at the frequency domain position corresponding to the domain unit, and the network device can receive the data sent by the terminal at the corresponding frequency domain position.
  • the method provided by the embodiment of the present application can be applied to the scene of determining the frequency domain position of the frequency hopping in the frequency hopping technology, and the frequency hopping transmission is performed by the frequency domain position corresponding to the determined time domain unit.
  • the method provided by the embodiment of the present application can also be applied to the scenario of measuring the resource location, and can determine the frequency domain location corresponding to the time domain unit to be detected.
  • the embodiments of the present application are only described by taking the terminal directly determining the time domain group and the frequency domain position corresponding to the time domain group as an example.
  • the method before performing step 401, the method further includes steps 411-412:
  • Step 411 The network device sends scheduling information to the terminal.
  • Step 412 The terminal receives the scheduling information sent by the network device.
  • the scheduling information includes at least one item of transmission repetition value or frequency domain location information.
  • the frequency domain location information includes the number of frequency domain locations.
  • the one-time scheduling information received by the terminal is called one-time scheduling, and one or more time-domain units are determined according to the time-domain units scheduled in this one-time scheduling
  • the time domain group can determine the frequency domain position corresponding to each time domain unit in one scheduling.
  • time domain unit included in the embodiment of the present application is the time domain unit scheduled in the authorization scheduling.
  • time domain unit included in the embodiment of the present application is the time domain unit scheduled in the unauthorized scheduling.
  • the terminal can receive pre-configured periodic scheduling information, and each time a period arrives can be understood as a scheduling.
  • An embodiment of the present application provides a method for determining a frequency-domain position based on a time-domain group, which can group time-domain units in units of time-domain units to obtain one or more time-domain groups, where each time-domain group includes one or multiple time domain units, and then determine the frequency domain position based on the time domain group, which breaks the limitation that the frequency domain position can only be determined based on a single time slot, can improve the division granularity of the frequency domain position, and then can improve the frequency domain gain effect.
  • multiple frequency domain positions can be determined based on the repeated transmission value and one or more frequency domain position information, which breaks the limitation that only two frequency domain positions can be used to determine the frequency domain position of the time slot alternately, thereby ensuring that in different The data transmission is performed at the frequency domain position, which improves the frequency domain gain effect.
  • the determined time-domain group can include multiple time-domain units, and the frequency-domain positions corresponding to the multiple time-domain units are the same, so that joint channel estimation can be performed on the multiple time-domain units based on the demodulation reference signal, which improves the The data transmission effect can improve the channel estimation gain.
  • FIG. 7 shows a block diagram of an apparatus for determining a position in a frequency domain provided by an exemplary embodiment of the present application, and the apparatus includes:
  • a time-domain group determination module 701 configured to determine one or more time-domain groups for transmitting repeated data, each time-domain group including one or more consecutive time-domain units;
  • a position determination module 702 configured to determine a frequency domain position corresponding to each time domain group in the one or more time domain groups.
  • the apparatus provided by the embodiments of the present application can group time-domain units in units of time-domain units to obtain one or more time-domain groups, where each time-domain group includes one or more time-domain units, and then based on the time-domain units
  • the group determines the frequency domain position, which breaks the limitation that the frequency domain position can only be determined based on a single time slot, and can improve the division granularity of the frequency domain position, thereby improving the frequency domain gain effect.
  • the frequency-domain positions corresponding to at least two time-domain groups are discontinuous.
  • the number of frequency domain locations determined is greater than three.
  • the apparatus further includes:
  • an acquisition module 703, configured to acquire information of one or more frequency domain locations
  • the time-domain group determination module 701 is configured to determine one or more time-domain groups according to the information of one or more frequency-domain positions.
  • one or more time-domain groups correspond one-to-one with one or more frequency-domain locations.
  • the number of time-domain cells included in each of the one or more time-domain groups is determined by at least one of a transmission repetition value and information on one or more frequency-domain locations, the transmission repetition value Used to indicate the number of time domain units.
  • the number of time-domain cells included in each of the one or more time-domain groups is determined by the transmission repetition value and the number of the one or more time-domain groups.
  • the information of the one or more frequency domain locations includes a number of the one or more frequency domain locations.
  • the number of one or more frequency domain locations is equal to the number of frequency hopping locations.
  • the time-domain group determining module 701 is configured to determine the number of time-domain units included in each time-domain group in the at least one time-domain group after grouping the at least one time-domain unit according to the number of frequency hopping positions.
  • the number of time-domain cells included in each time-domain group is determined by the repeated transmission value and the number of frequency hopping positions.
  • the time domain units included in each time domain group are determined by the ratio of the transmission repetition value to the number of frequency hopping positions;
  • a time domain group includes one time domain unit
  • the maximum integer not greater than the ratio of the transmission repetition value to the number of frequency hopping positions is greater than 0, the maximum integer is determined as the number of time domain units included in the time domain group.
  • At least one time domain group is determined using the following formula:
  • T slot is the number of time domain units included in the time domain group
  • NFH is the number of frequency hopping positions
  • T Repetition is the transmission repetition value, is the largest integer not greater than the ratio of the transmission repetition value to the number of hopping positions.
  • the number of one or more frequency domain locations is determined according to the number of one or more frequency domain offsets, or the number of one or more frequency domain locations is set by higher layer signaling.
  • the number of one or more frequency domain locations is the sum of the number of one or more frequency domain offsets and one.
  • the position determination module 702 is configured to use the frequency domain position of the first time domain group in the one or more time domain groups as a reference, and according to each time domain in the one or more frequency domain offsets
  • the frequency domain offset corresponding to the group is used to determine the frequency domain position corresponding to each time domain group.
  • the frequency domain offset is used to indicate the frequency domain position of the time domain group corresponding to the frequency domain offset and the first time domain group. The offset between the frequency domain positions of .
  • the location determination module 702 includes:
  • a time-domain group determining unit 7021 configured to determine the target time-domain group to which the time-domain unit belongs according to the identifier of the time-domain unit;
  • an offset determination unit 7022 configured to determine the frequency domain offset corresponding to the target time domain group based on the target time domain group
  • the position determining unit 7023 is configured to determine the frequency domain position of the target time domain group according to the frequency domain position and the frequency domain offset in the first time domain group.
  • the following formula is used to determine the target time-domain group to which the time-domain unit belongs according to the identifier of the time-domain unit:
  • i is the identifier of the time-domain group to which the time-domain unit belongs
  • n is the identifier of the time-domain unit
  • T slot is the number of time-domain units included in the time-domain group
  • the first ratio is the ratio of the identifier of the time-domain unit to the number of time-domain units included in the time-domain group to which the time-domain unit belongs.
  • the following formula is used to determine the frequency domain position corresponding to each time domain group in the one or more time domain groups:
  • N FH is the frequency domain position information
  • RB start is the frequency domain position of the first time domain group
  • i mod N FH is the remainder of i and N FH
  • FH(i mod N FH ) is the frequency domain offset corresponding to the i-th time domain group
  • is the current working bandwidth represents the frequency domain offset corresponding to the ith time domain group
  • RB i is the frequency domain position of the ith time domain group.
  • the frequency domain location of the first time domain group is set by the network device.
  • the apparatus further includes: a receiving module 704, configured to receive scheduling information sent by the network device, where the scheduling information includes at least one of transmission repetition value or frequency domain location information.
  • the apparatus further includes: a sending module 705, configured to send data to the network device based on each time-domain group and the frequency-domain location of each time-domain group.
  • the time domain unit is a symbol or a group of symbols, or the time domain unit is a time slot.
  • FIG. 9 shows a block diagram of an apparatus for determining a frequency domain position provided by an exemplary embodiment of the present application, and the apparatus includes:
  • a determination module 901, configured to determine one or more time-domain groups for transmitting repeated data, each time-domain group including one or more consecutive time-domain units;
  • the sending module 902 is configured to send scheduling information to the terminal, where the scheduling information is used to instruct the terminal to determine a frequency domain position corresponding to each time domain group in one or more time domain groups.
  • the apparatus provided by the embodiments of the present application can group time-domain units in units of time-domain units to obtain one or more time-domain groups, where each time-domain group includes one or more time-domain units, and then based on the time-domain units
  • the group determines the frequency domain position, which breaks the limitation that the frequency domain position can only be determined based on a single time slot, and can improve the division granularity of the frequency domain position, thereby improving the frequency domain gain effect.
  • the frequency-domain positions corresponding to at least two time-domain groups are discontinuous.
  • the number of frequency domain locations determined is greater than three.
  • the scheduling information includes at least one of transmission repetition value or frequency domain location information.
  • the apparatus further includes: a receiving module 903, configured to receive data sent by the terminal based on each time-domain group and the frequency-domain position of each time-domain group.
  • the time domain unit is a symbol or a group of symbols, or the time domain unit is a time slot.
  • FIG. 11 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1101 , a transceiver 1102 , a memory 1103 , and a bus 1104 .
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 1102 may include a receiver and a transmitter, the transceiver 1102 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 1103 is connected to the processor 1101 through the bus 1104 .
  • the memory 1103 may be configured to store at least one program code, and the processor 1101 is configured to execute the at least one program code, so as to implement various steps in the above method embodiments.
  • the communication device may be a terminal or a network device.
  • the memory 1103 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable read-only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM).
  • EEPROM electrically erasable programmable read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium in which executable program code is stored, and the executable program code is loaded and executed by the processor to implement the above
  • the method embodiment provides a frequency domain location determination method performed by a communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种频域位置确定方法、装置、设备及存储介质,涉及移动通信领域。该方法包括:确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;确定所述一个或多个时域组中每个时域组对应的频域位置。打破了仅能基于单个时隙确定频域位置的局限性,能够提高对频域位置的划分粒度,进而能够提高频域增益效果。

Description

频域位置确定方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种频域位置确定方法、装置、设备及存储介质。
背景技术
随着移动通信技术的快速发展以及终端的广泛应用,通常可以采用跳频技术,以时隙为单位分别确定每个时隙对应的频域位置,从而提高频域增益。
例如,终端确定第一频域位置以及频域偏移量,根据该频域偏移量确定第二频域位置,针对用于数据传输的多个时隙,将第一频域位置和第二频域位置交替作为这些时隙对应的频域位置。但是,上述方案仅能基于单个时隙确定对应的频域位置,对频域位置划分的粒度小,导致频域增益效果不佳。
发明内容
本申请实施例提供了一种频域位置确定方法、装置、设备及存储介质,打破了仅能基于单个时隙确定频域位置的局限性,能够提高对频域位置的划分粒度,进而能够提高频域增益效果。所述技术方案如下:
根据本申请的一个方面,提供了一种频域位置确定方法,应用于终端,所述方法包括:
确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
确定所述一个或多个时域组中每个时域组对应的频域位置。
根据本申请的另一个方面,提供了一种频域位置确定方法,应用于网络设备,所述方法包括:
确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
向终端发送调度信息,所述调度信息用于指示所述终端确定所述一个或多个时域组中每个时域组对应的频域位置。
根据本申请的一个方面,提供了一种频域位置确定装置,应用于终端,所述装置包括:
时域组确定模块,用于确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
位置确定模块,用于确定所述一个或多个时域组中每个时域组对应的频域位置。
根据本申请的一个方面,提供了一种频域位置确定装置,应用于网络设备,所述装置包括:
确定模块,用于确定用于传输重复数据的一个或多个时域组,每个时域组 中包括一个或多个连续的时域单元;
发送模块,用于向终端发送调度信息,所述调度信息用于指示所述终端确定所述一个或多个时域组中每个时域组对应的频域位置。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器和收发器;用于存储所述处理器的可执行程序代码的存储器;其中,所述处理器被配置为加载并执行所述可执行程序代码以实现如上述方面所述的频域位置确定方法。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器和收发器;用于存储所述处理器的可执行程序代码的存储器;其中,所述处理器被配置为加载并执行所述可执行程序代码以实现如上述方面所述的频域位置确定方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由所述处理器加载并执行以实现如上述方面所述的频域位置确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
本申请实施例提供了一种基于时域组确定频域位置的方法,能够以时域单元为单位对时域单元进行分组,得到一个或多个时域组,每个时域组中包括一个或多个时域单元,进而基于时域组确定频域位置,打破了仅能基于单个时隙确定频域位置的局限性,能够提高对频域位置的划分粒度,进而能够提高频域增益效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的重复数据传输的示意图;
图2示出了本申请一个示例性实施例提供的时隙对应频域位置的示意图;
图3示出了本申请一个示例性实施例提供的通信系统的框图;
图4示出了本申请一个示例性实施例提供的频域位置确定方法的流程图;
图5示出了本申请一个示例性实施例提供的时域单元与频域位置的对应关系图;
图6示出了本申请一个示例性实施例提供的时域单元与频域位置的对应关系图;
图7示出了本申请一个示例性实施例提供的频域位置确定装置的框图;
图8示出了本申请一个示例性实施例提供的频域位置确定装置的框图;
图9示出了本申请一个示例性实施例提供的频域位置确定装置的框图;
图10示出了本申请一个示例性实施例提供的频域位置确定装置的框图;
图11示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种概念,但除非特别说明,这些概念不受这些术语限制。这些术语仅用于将一个概念与另一个概念区分。
本申请所使用的术语“每个”、“多个”、“至少一个”、“任一”等,至少一个包括一个、两个或两个以上,多个包括两个或两个以上,而每个是指对应的多个中的每一个,任一是指多个中的任意一个。举例来说,多个元素包括3个元素,而每个是指这3个元素中的每一个元素,任一是指这3个元素中的任意一个,可以是第一个,可以是第二个,也可以是第三个。首先,对本申请实施例中涉及的名词进行简单介绍:
数据信道聚合:在NR(New Radio,新空口)技术中,终端能够根据上行传输和下行传输确定重复传输值,再基于重复传输值对多个时隙进行聚合,以基于聚合多个时隙的PUSCH(Physical uplink shared channel,物理上行共享信道)和PDSCH(Physical downlink shared channel,物理下行共享信道)进行数据传输,并且通过多时隙的传输,能够扩展每次传输所覆盖的范围。
另外,在基于多个时隙进行数据传输时,先确定能够传输数据的符号,若存在符号不满足传输要求时,则将该符号忽略,例如,如图1所示,交叉网格为上行符号,点状填充网格为下行符号,并且实际传输了重复数据0和重复数据3,未传输重复数据1和重复数据2。
跳频技术:在预设的频率范围内按照预设规律选择不同的频域位置进行数据传输,进而能够提高频域增益效果。并且,传输数据的信号需要在终端的工作带宽内运行。
例如,如图2示出了在进行重复的数据传输时,以时隙为单位的频域位置示意图。图2中包括四个时隙,分别为时隙0、时隙1、时隙2和时隙3,时隙0传输重复数据0,时隙1传输重复数据1,时隙2传输重复数据2,时隙3传输重复数据3,并且时隙0和时隙2对应相同的频域位置,时隙1和时隙3对应相同的频域位置。
图3示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端13。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR-U系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本申请实施例中,上述为终 端13提供无线通信功能的装置统称为接入网设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to everything,V2X)系统等。本申请实施例也可以应用于这些通信系统。
图4示出了本申请一个示例性实施例提供的频域位置确定方法的流程图,应用于上述图4所示的终端中,该方法包括:
步骤401、终端确定用于传输重复数据的一个或多个时域组。
在本申请实施例中,为了能够实现采用跳频技术传输重复数据,终端能够确定包括一个或多个连续的时域单元的时域组,从而确定每个时域组对应的频域位置,则每个时域组内包括的一个或多个时域单元所对应的频域位置均相同,也说明位于同一个时域组内的时域单元不会出现跳频情况,而不同的时域组对应的频域位置可能相同,也可能不同。因此,在确定频域位置之前,先确定一个或多个时域组。
其中,每个时域组中包括一个或多个连续的时域单元,也说明本申请实施例实际上是对时域单元进行分组,得到包括时域单元的时域组。例如,每个时域组中包括3个连续的时域单元、或者包括5个连续的时域单元,或者包括其他数量的连续的时域单元。
在一些实施例中,确定的一个或多个时域组中,至少两个时域组对应的频 域位置不连续。
在上述情况下,确定的时域组为多个,并且这多个时域组中至少有两个时域组的频域位置不连续。
例如,终端确定了时域组1、时域组2和时域组3,时域组1对应频域位置1,时域组2对应频域位置2,时域组3对应频域位置3。
在另一些实施例中,终端确定的频域位置的数量大于3。
在一些实施例中,该时域单元为一个符号或符号组。或者,该时域单元为一个时隙。
例如,该时域单元为一个符号组。一个符号组中包括预设数量个符号,且该预设数量为2、3、4或者其他数值。
其中,该预设数量由终端设置,或者由网络设备设置,或者采用其他方式设置。
在一些实施例中,在确定用于传输重复数据的一个或多个时域组之前,该方法还包括:获取一个或多个频域位置的信息,根据一个或多个频域位置的信息确定一个或多个时域组。
在一种可能实现方式中,一个或多个时域组与一个或多个频域位置一一对应。也说明一个时域组对应一个频域位置。
在另一种可能实现方式中,能够根据传输重复值或一个或多个跳频位置的信息中的至少一项确定一个或多个时域组中每个时域组包括的时域单元的数量。
根据传输重复值或一个或多个跳频位置的信息中的至少一项确定一个或多个时域组包括三种情况:根据传输重复值确定至少一个时域组、根据调频位置数量确定至少一个时域组、根据传输重复值和一个或多个跳频位置的信息确定一个或多个时域组。下面针对三种情况分别说明每种情况下确定一个或多个时域组的方式:
第一、根据传输重复值,确定至少一个时域组中每个时域组包括的时域单元的数量。
其中,传输重复值用于指示时域单元的数量。该传输重复值由网络设备设置,或者由操作人员设置,或者采用其他方式设置。例如,该重复传输值为2、4、8或者其他数值。若该传输重复值为4,则说明时域单元的数量为4,若该传输重复值为8,则说明时域单元的数量为8。
又例如,该时域单元为一个时隙,则传输重复值用于指示时隙的数量,又或者时域单元为一个符号,则传输重复值用于指示符号的数量。
若获取该重复传输值后,则能够确定所采用的时域单元,此时基于确定的时域单元确定一个或多个时域组,并且确定的每个时域组中包括一个或多个连续的时域单元。
在一些实施例中,能够根据传输重复值与一个或多个时域组的数量确定一个或多个时域组中每个时域组包括的时域单元的数量。
其中,一个或多个时域组的数量由网络设备设置,或者由操作人员设置,或者采用其他方式设置。该一个或多个时域组的数量为3、4、5或者其他数值。
例如,确定传输重复值与一个或多个时域组的数量的比值,则能够确定每 个时域组中包括的时域单元的数量,进而能够确定一个或多个时域组。
例如,若传输重复值的值为4,一个或多个时域组的数量为4,则能够确定4个时域组,并且每个时域组中包括一个时域单元。
第二、根据一个或多个频域位置的信息,确定一个或多个时域组中每个时域组中包括的时域单元的数量。
在一些实施例中,一个或多个频域位置的信息包括一个或多个频域位置的数量。
其中,终端根据一个或多个频域位置的数量,将时域单元进行分组,以确定每个时域组中包括的时域单元的数量。
在一种可能实现方式中,一个或多个频域位置的数量等于跳频位置数量。
其中,一个或多个时域组中每个时域组包括的时域单元的数量根据跳频位置数量对至少一个时域单元分组后确定。
终端能够根据该跳频位置数量,对至少一个时域单元进行分组,分组得到的一个或多个时域组的数量与跳频位置数量相同。
例如,若跳频位置数量为3,则时域单元数量为6,则将时域单元分为3个时域组,每个时域组中包括2个时域单元。又或者,若跳频位置数量为2,时域单元数量为6,则将时域单元分为2个时域组,每个时域组中包括3个时域单元。
第三、一个或多个时域组中,每个时域组包括的时域单元的数量由传输重复值和跳频位置数确定。
在一些实施例中,每个时域组包括的时域单元的数量由该传输重复值和跳频位置数的比值确定。具体的,包括以下任一种方式:
1、若不大于传输重复值与跳频位置数的比值的最大整数为0,则确定一个时域组中包括一个时域单元。
在本申请实施例中,能够先确定传输重复值和跳频位置数的比值,根据该比值确定不大于该比值的最大整数,若该最大整数为0,则将至少一个时域单元确定为一个时域组。
例如,若传输重复值为3,跳频位置数4,则确定传输重复值与跳频位置数的比值为0.75,不大于该0.75的最大整数为0,此时确定一个时域组中包括一个时域单元。
2、若不大于传输重复值与跳频位置数的比值的最大整数大于0,则将最大整数确定为时域组包括的时域单元的数量。
在本申请实施例中,能够先确定传输重复值和跳频位置数的比值,根据该比值确定不大于该比值的最大整数,若该最大整数大于0,则说明此时能够对时域单元进行划分,将最大整数确定为一个时域组中包括的时域单元的数量。
例如,若传输重复值为8,跳频位置数为4,则确定传输重复值与跳频位置数的比值为2,不大于2的最大整数为2,此时确定一个时域组中包括2个时域单元。
在一些实施例中,采用以下公式,确定至少一个时域组:
Figure PCTCN2020119591-appb-000001
其中,T slot为时域组中包括的时域单元的数量,N FH为跳频位置数量,T Repetition为传输重复值,
Figure PCTCN2020119591-appb-000002
为不大于传输重复值与跳频位置数的比值的最大整数。
在另一些实施例中,每个时域组包括的时域单元的数量由该传输重复值和跳频位置数的大小关系确定。具体的,包括以下任一种方式:
1、若传输重复值小于跳频位置数,则确定一个时域组中包括一个时域单元。
2、若传输重复值不小于跳频位置数,则将不大于传输重复值与跳频位置数的比值的最大整数确定为时域组包括的时域单元的数量。
在另一些实施例中,每个时域组包括的时域单元的数量由该传输重复值与跳频位置数的比值是否大于1确定。具体的,包括以下任一种方式:
1、若传输重复值与跳频位置数的比值小于1,则确定一个时域组中包括一个时域单元。
2、若传输重复值与跳频位置数的比值不小于1,则将不大于传输重复值与跳频位置数的比值的最大整数确定为时域组包括的时域单元的数量。
另外,本申请实施例中所涉及的一个或多个频域位置的数量根据一个或多个频域偏移量的数量确定,或者,该一个或多个频域位置的数量由高层信令设置。
在一些实施例中,一个或多个频域位置的数量为一个或多个频域偏移量的数量与1的和。
例如,若终端确定的频域偏移量为3个,则确定跳频位置数量为4,若终端确定的频域偏移量量为5个,则确定跳频位置数量为6。
另外,在另一些实施例中,若终端确定了多个时域单元,将这多个时域单元划分为多个时域组,在划分过程中,按照时域单元的先后顺序,依次划分为多个时域组,每个时域组中包括连续的多个时域单元。
需要说明的是,本申请实施例仅是以确定时域组中包括的时域单元的数量为例进行说明。在另一实施例中,终端还能够根据确定的时域组的第一数量,将至少一个时域单元分成第一数量的时域组。
在一些实施例中,终端按照第一数量,随机对至少一个时域单元进行分组,得到第一数量的时域组。
例如,若时域单元的数量为4,分别为时域单元1、时域单元2、时域单元3和时域单元4,且确定的时域组的第一数量为2,则能够将时域单元1划分为一个时域组,将时域单元2、时域单元3和时域单元4划分为一个时域组,或者,能够将时域单元1和时域单元2划分为一个时域组,将时域单元3和时域单元4划分为一个时域组,或者,能够将时域单元1、时域单元2和时域单元3划分为一个时域组,将时域单元4划分为一个时域组。
步骤402、终端确定一个或多个时域组中每个时域组对应的频域位置。
在本申请实施例中,对时域单元进行分组得到一个或多个时域组后,能够 确定每个时域组对应的频域位置,则每个时域组中包括的一个或多个时域单元对应的时域位置也能够确定,进而在进行跳频传输重复数据时,能够根据确定的每个时域组对应的频域位置传输数据。
在一些实施例中,确定每个时域组对应的时域位置包括:以一个或多个时域组中第一个时域组的频域位置为基准,根据一个或多个频域偏移量中每个时域组对应的频域偏移量,确定每个时域组对应的频域位置。
其中,第一个时域组的频域位置由网络设备配置。该频域偏移量用于指示频域偏移量对应的时域组的频域位置与第一个时域组的频域位置之间的偏移量。
确定每个时域组对应的频域偏移量后,则能够根据确定的频域偏移量以及第一个时域组的频域位置确定每个时域组对应的频域位置。
例如,频域偏移量分别为频域偏移量1、频域偏移量2和频域偏移量3,且确定的一个或多个时域组分别为时域组1、时域组2和时域组3,则时域组1对应频域偏移量1,时域组2对应频域偏移量2,时域组3对应频域偏移量3。
在一些实施例中,根据时域单元的标识确定时域单元所属的目标时域组,基于该目标时域组确定该目标时域组对应的频域偏移量,根据第一个时域组中的频域位置和该目标时域组对应的频域偏移量,确定目标时域组的频域位置。
在确定一个或多个时域组后,每个时域单元均具有所属的时域组,则对于每个时域单元来说,确定该时域单元所属的目标时域组,再确定该目标时域组对应的频域偏移量,以第一个时域组中的频域位置为基准,偏移目标时域组对应的频域偏移量,以确定该目标时域组的频域位置,进而基于确定的每个时域组对应的频域位置确定每个时域组中包括的每个时域单元所对应的频域位置。
其中,根据时域单元的标识确定时域单元所属的目标时域组包括:确定时域单元的标识,确定的时域单元的标识与时域组中包括的时域单元的比值,将不大于该比值的最大整数确定为该时域单元所属的时域组的标识。
例如,若确定的时域组的标识为1,则将第一个频域偏移量确定为时域组1的频域偏移量,若确定的时域组的标识为2,则将第二个频域偏移量确定为时域组2的频域偏移量。
其中,时域单元的标识为0、1、2或者其他数值。基于不大于比值确定最大整数的方式与上述确定不大于比值的最大整数类似,在此不再赘述。
并且,本申请实施例能够采用以下公式,根据时域单元的标识确定时域单元所属的目标时域组:
Figure PCTCN2020119591-appb-000003
其中,i为时域单元所属的时域组的标识,n为时域单元的标识,T slot为时域组中包括的时域单元的数量,
Figure PCTCN2020119591-appb-000004
为不大于第一比值的最大整数,第一比值为时域单元的标识与时域单元所属的时域组中包括的时域单元的数量的比值。
另外,需要说明的是,上述公式中n为从0开始的数值。例如n为0、1、2或者其他数值。
在另一些实施例中,根据时域单元的标识确定时域单元所属的目标时域组,基于该目标时域组确定该目标时域组对应的频域偏移量,根据第一个时域组中 的频域位置、频域偏移量以及当前工作带宽,确定目标时域组的频域位置。
其中,若确定时域单元所属的目标时域组后,根据目标时域组对应的频域偏移量和第一个时域组中的频域位置确定该目标时域组的频域位置后,此时确定的目标时域组的频域位置可能会超出当前工作带宽,则为了保证确定的目标时域组位于当前工作带宽内,则获取确定的目标时域组的频域位置与当前工作带宽的余数,将获取的余数确定为目标时域组的频域位置,此时确定的频域位置能够保证位于当前工作带宽内。
在另一些实施例中,采用以下公式,确定每个时域组对应的频域位置:
Figure PCTCN2020119591-appb-000005
Figure PCTCN2020119591-appb-000006
其中i为时域组的标识,N FH为跳频位置数量,RB start为第一个时域组的频域位置,i mod N FH为i与N FH的余数,FH(i mod N FH)为第i个时域组对应的频域偏移量,
Figure PCTCN2020119591-appb-000007
为当前工作带宽,
Figure PCTCN2020119591-appb-000008
代表第i个时域组对应的频域偏移量,
Figure PCTCN2020119591-appb-000009
为第一个时域组的频域位置与第i个时域组对应的频域偏移量的比值与当前工作带宽的余数,RB i为第i个时域组的频域位置。
其中,时域组的频域位置为RB(Resource Block,资源块)位置。当前工作带宽为BWP(Band Width Part,带宽部分)带宽。
在本申请实施例中,在根据传输重复值和跳频位置数量确定每个时域单元对应的频域位置的情况下,若传输重复值为4,跳频位置数量为2,则如图5所示,能够确定两个时域组,并且每个时域组中包括两个时域单元,每个时域组对应一个频域位置。
又例如,若传输重复值为4,跳频位置数量为4,则如图6所示,能够确定四个时域组,每个时域组中包括一个时域单元,每个时域组对应一个频域位置。
需要说明的是,本申请实施例仅是以至少一个频域偏移量为例进行说明。在另一实施例中,至少一个频域偏移量存储在频域偏移量列表中,频域偏移量与标签对应存储。例如,频域偏移量1与标签1对应存储,频域偏移量2与标签2对应存储。
则终端能够从频域偏移量列表中确定每个时域组对应的频域偏移量,进而基于确定的频域偏移量来确定每个时域组的频域位置。
步骤403、终端基于每个时域组以及每个时域组的频域位置向网络设备发送数据。
步骤404、网络设备基于每个时域组以及每个时域组的频域位置接收终端发送的数据。
在本申请实施例中,若终端确定每个时域组的频域位置后,则能够确定每个时域组内包括的一个或多个时域单元的频域位置,进而能够在每个时域单元对应的频域位置上向网络设备发送数据,网络设备能够在对应的频域位置上接收终端发送的数据。
另外,本申请实施例提供的方法,能够应用于跳频技术中对跳频的频域位置的确定场景中,通过确定的时域单元对应的频域位置进行跳频传输。另外本申请实施例提供的方法,还能够应用于对资源位置进行测量的场景中,能够确定待检测的时域单元对应的频域位置。
需要说明的是,本申请实施例仅是以终端直接确定时域组以及时域组对应的频域位置为例进行说明。在另一实施例中,在执行步骤401之前,该方法还包括步骤411-412:
步骤411、网络设备向终端发送调度信息。
步骤412、终端接收网络设备发送的调度信息。
其中,该调度信息中包括传输重复值或频域位置的信息中的至少一项。
在一些实施例中,该频域位置的信息包括频域位置的数量。
另外,在本申请实施例中,确定一个或多个时域组的过程中,终端接收的一次调度信息称为是一次调度,并且根据这一次调度中所调度的时域单元确定一个或多个时域组,能够确定在一次调度中每个时域单元对应的频域位置。
另外,本申请实施例中所包括的时域单元为授权调度中调度的时域单元。或者,本申请实施例中所包括的时域单元为非授权调度中调度的时域单元。终端能够接收预先配置好的周期性调度信息,每当到达一个周期到达时能够理解为一次调度。
本申请实施例提供了一种基于时域组确定频域位置的方法,能够以时域单元为单位对时域单元进行分组,得到一个或多个时域组,每个时域组中包括一个或多个时域单元,进而基于时域组确定频域位置,打破了仅能基于单个时隙确定频域位置的局限性,能够提高对频域位置的划分粒度,进而能够提高频域增益效果。
并且,能够基于重复传输值和一个或多个频域位置信息确定多个频域位置,打破了仅能采用两个频域位置交替确定时隙的频域位置的局限性,进而能够保证在不同频域位置上进行数据传输,提高了频域增益效果。
并且,确定的时域组中能够包括多个时域单元,这多个时域单元对应的频域位置相同,则能够基于解调参考信号对这多个时域单元进行联合信道估计,提高了数据传输效果,能够提高信道估计增益。
图7示出了本申请一个示例性实施例提供的频域位置确定装置的框图,该装置包括:
时域组确定模块701,用于确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
位置确定模块702,用于确定一个或多个时域组中每个时域组对应的频域位置。
本申请实施例提供的装置,能够以时域单元为单位对时域单元进行分组,得到一个或多个时域组,每个时域组中包括一个或多个时域单元,进而基于时域组确定频域位置,打破了仅能基于单个时隙确定频域位置的局限性,能够提高对频域位置的划分粒度,进而能够提高频域增益效果。
在一些实施例中,一个或多个时域组中,至少两个时域组对应的频域位置不连续。
在一些实施例中,确定的频域位置的数量大于3。
在一些实施例中,参见图8,装置还包括:
获取模块703,用于获取一个或多个频域位置的信息;
时域组确定模块701,用于根据一个或多个频域位置的信息,确定一个或多个时域组。
在一些实施例中,一个或多个时域组与一个或多个频域位置一一对应。
在一些实施例中,一个或多个时域组中每个时域组包括的时域单元的数量由传输重复值和一个或多个频域位置的信息中的至少一项确定,传输重复值用于指示时域单元的数量。
在一些实施例中,一个或多个时域组中每个时域组包括的时域单元的数量由传输重复值和一个或多个时域组的数量确定。
在一些实施例中,一个或多个频域位置的信息包括一个或多个频域位置的数量。
在一些实施例中,一个或多个频域位置的数量等于跳频位置数量。
在一些实施例中,时域组确定模块701,用于至少一个时域组中每个时域组包括的时域单元的数量根据跳频位置数量对至少一个时域单元分组后确定。
在一些实施例中,一个或多个时域组中,每个时域组包括的时域单元的数量由重复传输值和跳频位置数量确定。
在一些实施例中,每个时域组包括的时域单元由传输重复值与跳频位置数的比值确定;
若不大于传输重复值与跳频位置数的比值的最大整数为0,则确定一个时域组包括一个时域单元;或者,
若不大于传输重复值与跳频位置数的比值的最大整数大于0,则将最大整数确定为时域组包括的时域单元的数量。
在一些实施例中,采用以下公式,确定至少一个时域组:
Figure PCTCN2020119591-appb-000010
其中,T slot为时域组中包括的时域单元的数量,N FH为跳频位置数量,T Repetition为传输重复值,
Figure PCTCN2020119591-appb-000011
为不大于传输重复值与跳频位置数的比值的最大整数。
在一些实施例中,一个或多个频域位置的数量根据一个或多个频域偏移量的数量确定,或者,一个或多个频域位置的数量由高层信令设置。
在一些实施例中,一个或多个频域位置的数量为一个或多个频域偏移量的数量与1的和。
在一些实施例中,位置确定模块702,用于以一个或多个时域组中第一个时域组的频域位置为基准,根据一个或多个频域偏移量中每个时域组对应的频域偏移量,确定每个时域组对应的频域位置,频域偏移量用于指示频域偏移量对 应的时域组的频域位置与第一个时域组的频域位置之间的偏移量。
在一些实施例中,参见图8,位置确定模块702,包括:
时域组确定单元7021,用于根据时域单元的标识确定时域单元所属的目标时域组;
偏移量确定单元7022,用于基于目标时域组确定目标时域组对应的频域偏移量;
位置确定单元7023,用于根据第一个时域组中的频域位置和频域偏移量,确定目标时域组的频域位置。
在一些实施例中,采用以下公式,根据时域单元的标识确定时域单元所属的目标时域组:
Figure PCTCN2020119591-appb-000012
其中,i为时域单元所属的时域组的标识,n为时域单元的标识,T slot为时域组中包括的时域单元的数量,
Figure PCTCN2020119591-appb-000013
为不大于第一比值的最大整数,第一比值为时域单元的标识与时域单元所属的时域组中包括的时域单元的数量的比值。
在一些实施例中,采用以下公式,确定一个或多个时域组中每个时域组对应的频域位置:
Figure PCTCN2020119591-appb-000014
Figure PCTCN2020119591-appb-000015
其中i为时域组的标识,N FH为频域位置信息,RB start为第一个时域组的频域位置,i mod N FH为i与N FH的余数,FH(i mod N FH)为第i个时域组对应的频域偏移量,
Figure PCTCN2020119591-appb-000016
为当前工作带宽,
Figure PCTCN2020119591-appb-000017
代表第i个时域组对应的频域偏移量,
Figure PCTCN2020119591-appb-000018
为第一个时域组的频域位置与第i个时域组对应的频域偏移量的比值与当前工作带宽的余数,RB i为第i个时域组的频域位置。
在一些实施例中,第一个时域组的频域位置由网络设备设置。
在一些实施例中,参见图8,装置还包括:接收模块704,用于接收网络设备发送的调度信息,调度信息中包括传输重复值或频域位置的信息中的至少一项。
在一些实施例中,参见图8,装置还包括:发送模块705,用于基于每个时域组以及每个时域组的频域位置向网络设备发送数据。
在一些实施例中,时域单元为一个符号或一组符号,或者,时域单元为一个时隙。
图9示出了本申请一个示例性实施例提供的频域位置确定装置的框图,该装置包括:
确定模块901,用于确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
发送模块902,用于向终端发送调度信息,调度信息用于指示终端确定一个或多个时域组中每个时域组对应的频域位置。
本申请实施例提供的装置,能够以时域单元为单位对时域单元进行分组,得到一个或多个时域组,每个时域组中包括一个或多个时域单元,进而基于时域组确定频域位置,打破了仅能基于单个时隙确定频域位置的局限性,能够提高对频域位置的划分粒度,进而能够提高频域增益效果。
在一些实施例中,一个或多个时域组中,至少两个时域组对应的频域位置不连续。
在一些实施例中,确定的频域位置的数量大于3。
在一些实施例中,调度信息中包括传输重复值或频域位置的信息中的至少一项。
在一些实施例中,参见图10,装置还包括:接收模块903,用于基于每个时域组以及每个时域组的频域位置接收终端发送的数据。
在一些实施例中,时域单元为一个符号或一组符号,或者,时域单元为一个时隙。
图11示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备包括:处理器1101、收发器1102、存储器1103和总线1104。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器1102中可以包括接收器和发射器,该收发器1102可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1103通过总线1104与处理器1101相连。
存储器1103可用于存储至少一个程序代码,处理器1101用于执行该至少一个程序代码,以实现上述方法实施例中的各个步骤。
此外,通信设备可以为终端或者网络设备。存储器1103可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由所述处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的频域位置确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (61)

  1. 一种频域位置确定方法,其特征在于,应用于终端,所述方法包括:
    确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
    确定所述一个或多个时域组中每个时域组对应的频域位置。
  2. 根据权利要求1所述的方法,其特征在于,所述一个或多个时域组中,至少两个时域组对应的频域位置不连续。
  3. 根据权利要求2所述的方法,其特征在于,确定的频域位置的数量大于3。
  4. 根据权利要求1所述的方法,其特征在于,所述确定用于传输重复数据的一个或多个时域组之前,所述方法还包括:
    获取一个或多个频域位置的信息;
    所述确定用于传输重复数据的一个或多个时域组,包括:
    根据所述一个或多个频域位置的信息,确定所述一个或多个时域组。
  5. 根据权利要求4所述的方法,其特征在于,所述一个或多个时域组与所述一个或多个频域位置一一对应。
  6. 根据权利要求4或5所述的方法,其特征在于,所述一个或多个时域组中每个时域组包括的时域单元的数量由传输重复值和所述一个或多个频域位置的信息中的至少一项确定,所述传输重复值用于指示时域单元的数量。
  7. 根据权利要求6所述的方法,其特征在于,
    所述一个或多个时域组中每个时域组包括的时域单元的数量由所述传输重复值和所述一个或多个时域组的数量确定。
  8. 根据权利要求6所述的方法,其特征在于,所述一个或多个频域位置的信息包括所述一个或多个频域位置的数量。
  9. 根据权利要求8所述的方法,其特征在于,所述一个或多个频域位置的数量等于跳频位置数量。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述一个或多个时域组中每个时域组包括的时域单元的数量根据所述跳频位置数量对至少一个时域单元分组后确定。
  11. 根据权利要求9所述的方法,其特征在于,
    所述一个或多个时域组中,每个时域组包括的时域单元的数量由所述重复传输值和所述跳频位置数量确定。
  12. 根据权利要求11所述的方法,其特征在于,所述每个时域组包括的时域单元由所述传输重复值与所述跳频位置数的比值确定;
    若不大于所述传输重复值与所述跳频位置数的比值的最大整数为0,则确定一个时域组包括一个时域单元;或者,
    若不大于所述传输重复值与所述跳频位置数的比值的最大整数大于0,则将所述最大整数确定为所述时域组包括的时域单元的数量。
  13. 根据权利要求12所述的方法,其特征在于,采用以下公式,确定所述至少一个时域组:
    Figure PCTCN2020119591-appb-100001
    其中,T slot为时域组中包括的时域单元的数量,N FH为所述跳频位置数量,T Repetition为所述传输重复值,
    Figure PCTCN2020119591-appb-100002
    为不大于所述传输重复值与所述跳频位置数的比值的最大整数。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述一个或多个频域位置的数量根据一个或多个频域偏移量的数量确定,或者,所述一个或多个频域位置的数量由高层信令设置。
  15. 根据权利要求14所述的方法,其特征在于,所述一个或多个频域位置的数量为所述一个或多个频域偏移量的数量与1的和。
  16. 根据权利要求14或15所述的方法,其特征在于,所述确定所述一个或多个时域组中每个时域组对应的频域位置,包括:
    以所述一个或多个时域组中第一个时域组的频域位置为基准,根据所述一个或多个频域偏移量中每个时域组对应的频域偏移量,确定所述每个时域组对应的频域位置,所述频域偏移量用于指示频域偏移量对应的时域组的频域位置与第一个时域组的频域位置之间的偏移量。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述一个或多个频域偏移量中,每个时域组对应的频域偏移量确定所述每个时域组对应的频域位置,包括:
    根据时域单元的标识确定所述时域单元所属的目标时域组;
    基于所述目标时域组确定所述目标时域组对应的频域偏移量;
    根据所述第一个时域组中的频域位置和所述频域偏移量,确定所述目标时 域组的频域位置。
  18. 根据权利要求17所述的方法,其特征在于,采用以下公式,根据时域单元的标识确定所述时域单元所属的目标时域组:
    Figure PCTCN2020119591-appb-100003
    其中,i为所述时域单元所属的时域组的标识,n为所述时域单元的标识,T slot为所述时域组中包括的时域单元的数量,
    Figure PCTCN2020119591-appb-100004
    为不大于第一比值的最大整数,所述第一比值为所述时域单元的标识与所述时域单元所属的时域组中包括的时域单元的数量的比值。
  19. 根据权利要求1所述的方法,其特征在于,采用以下公式,确定所述一个或多个时域组中每个时域组对应的频域位置:
    Figure PCTCN2020119591-appb-100005
    Figure PCTCN2020119591-appb-100006
    其中i为时域组的标识,N FH为所述频域位置信息,RB start为所述第一个时域组的频域位置,i mod N FH为i与N FH的余数,FH(i mod N FH)为第i个时域组对应的频域偏移量,
    Figure PCTCN2020119591-appb-100007
    为当前工作带宽,
    Figure PCTCN2020119591-appb-100008
    代表第i个时域组对应的频域偏移量,
    Figure PCTCN2020119591-appb-100009
    为第一个时域组的频域位置与第i个时域组对应的频域偏移量的比值与当前工作带宽的余数,RB i为第i个时域组的频域位置。
  20. 根据权利要求16-19任一项所述的方法,其特征在于,所述第一个时域组的频域位置由网络设备设置。
  21. 根据权利要求4-20任一项所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的调度信息,所述调度信息中包括所述传输重复值或频域位置的信息中的至少一项。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,所述方法还包括:
    基于每个时域组以及所述每个时域组的频域位置向网络设备发送数据。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,所述时域单元为一个符号或一组符号,或者,所述时域单元为一个时隙。
  24. 一种频域位置确定方法,其特征在于,应用于网络设备,所述方法包括:
    确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多 个连续的时域单元;
    向终端发送调度信息,所述调度信息用于指示所述终端确定所述一个或多个时域组中每个时域组对应的频域位置。
  25. 根据权利要求24所述的方法,其特征在于,所述一个或多个时域组中,至少两个时域组对应的频域位置不连续。
  26. 根据权利要求25所述的方法,其特征在于,确定的频域位置的数量大于3。
  27. 根据权利要求24所述的方法,其特征在于,所述调度信息中包括所述传输重复值或频域位置的信息中的至少一项。
  28. 根据权利要求24-27任一项所述的方法,其特征在于,所述方法还包括:
    基于每个时域组以及所述每个时域组的频域位置接收所述终端发送的数据。
  29. 根据权利要求24-28任一项所述的方法,其特征在于,所述时域单元为一个符号或一组符号,或者,所述时域单元为一个时隙。
  30. 一种频域位置确定装置,其特征在于,应用于终端,所述装置包括:
    时域组确定模块,用于确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
    位置确定模块,用于确定所述一个或多个时域组中每个时域组对应的频域位置。
  31. 根据权利要求30所述的装置,其特征在于,所述一个或多个时域组中,至少两个时域组对应的频域位置不连续。
  32. 根据权利要求31所述的装置,其特征在于,确定的频域位置的数量大于3。
  33. 根据权利要求30所述的装置,其特征在于,所述装置还包括:
    获取模块,用于获取一个或多个频域位置的信息;
    所述时域组确定模块,用于根据所述一个或多个频域位置的信息,确定所述一个或多个时域组。
  34. 根据权利要求33所述的装置,其特征在于,所述一个或多个时域组与所述一个或多个频域位置一一对应。
  35. 根据权利要求33或34所述的装置,其特征在于,所述一个或多个时 域组中每个时域组包括的时域单元的数量由传输重复值和所述一个或多个频域位置的信息中的至少一项确定,所述传输重复值用于指示时域单元的数量。
  36. 根据权利要求35所述的装置,其特征在于,
    所述一个或多个时域组中每个时域组包括的时域单元的数量由所述传输重复值和所述一个或多个时域组的数量确定。
  37. 根据权利要求35所述的装置,其特征在于,所述一个或多个频域位置的信息包括所述一个或多个频域位置的数量。
  38. 根据权利要求37所述的装置,其特征在于,所述一个或多个频域位置的数量等于跳频位置数量。
  39. 根据权利要求38所述的装置,其特征在于,所述时域组确定模块,用于所述至少一个时域组中每个时域组包括的时域单元的数量根据所述跳频位置数量对至少一个时域单元分组后确定。
  40. 根据权利要求38所述的装置,其特征在于,
    所述一个或多个时域组中,每个时域组包括的时域单元的数量由所述重复传输值和所述跳频位置数量确定。
  41. 根据权利要求40所述的装置,其特征在于,所述每个时域组包括的时域单元由所述传输重复值与所述跳频位置数的比值确定;
    若不大于所述传输重复值与所述跳频位置数的比值的最大整数为0,则确定一个时域组包括一个时域单元;或者,
    若不大于所述传输重复值与所述跳频位置数的比值的最大整数大于0,则将所述最大整数确定为所述时域组包括的时域单元的数量。
  42. 根据权利要求41所述的装置,其特征在于,采用以下公式,确定所述至少一个时域组:
    Figure PCTCN2020119591-appb-100010
    其中,T slot为时域组中包括的时域单元的数量,N FH为所述跳频位置数量,T Repetition为所述传输重复值,
    Figure PCTCN2020119591-appb-100011
    为不大于所述传输重复值与所述跳频位置数的比值的最大整数。
  43. 根据权利要求37-42任一项所述的装置,其特征在于,所述一个或多个频域位置的数量根据一个或多个频域偏移量的数量确定,或者,所述一个或多个频域位置的数量由高层信令设置。
  44. 根据权利要求43所述的装置,其特征在于,所述一个或多个频域位置的数量为所述一个或多个频域偏移量的数量与1的和。
  45. 根据权利要求43或44所述的装置,其特征在于,所述位置确定模块,用于以所述一个或多个时域组中第一个时域组的频域位置为基准,根据所述一个或多个频域偏移量中每个时域组对应的频域偏移量,确定所述每个时域组对应的频域位置,所述频域偏移量用于指示频域偏移量对应的时域组的频域位置与第一个时域组的频域位置之间的偏移量。
  46. 根据权利要求45所述的装置,其特征在于,所述位置确定模块,包括:
    时域组确定单元,用于根据时域单元的标识确定所述时域单元所属的目标时域组;
    偏移量确定单元,用于基于所述目标时域组确定所述目标时域组对应的频域偏移量;
    位置确定单元,用于根据所述第一个时域组中的频域位置和所述频域偏移量,确定所述目标时域组的频域位置。
  47. 根据权利要求46所述的装置,其特征在于,采用以下公式,根据时域单元的标识确定所述时域单元所属的目标时域组:
    Figure PCTCN2020119591-appb-100012
    其中,i为所述时域单元所属的时域组的标识,n为所述时域单元的标识,T slot为所述时域组中包括的时域单元的数量,
    Figure PCTCN2020119591-appb-100013
    为不大于第一比值的最大整数,所述第一比值为所述时域单元的标识与所述时域单元所属的时域组中包括的时域单元的数量的比值。
  48. 根据权利要求30所述的装置,其特征在于,采用以下公式,确定所述一个或多个时域组中每个时域组对应的频域位置:
    Figure PCTCN2020119591-appb-100014
    Figure PCTCN2020119591-appb-100015
    其中i为时域组的标识,N FH为所述频域位置信息,RB start为所述第一个时域组的频域位置,i mod N FH为i与N FH的余数,FH(i mod N FH)为第i个时域组对应的频域偏移量,
    Figure PCTCN2020119591-appb-100016
    为当前工作带宽,
    Figure PCTCN2020119591-appb-100017
    代表第i个时域组对应的频域偏移量,
    Figure PCTCN2020119591-appb-100018
    为第一个时域组的频域位置与第i个时域组对应的频域偏移量的比值与当前工作带宽的余数,RB i为第i个时域组的频域位置。
  49. 根据权利要求45-48任一项所述的装置,其特征在于,所述第一个时域组的频域位置由网络设备设置。
  50. 根据权利要求33-49任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收网络设备发送的调度信息,所述调度信息中包括所述传输重复值或频域位置的信息中的至少一项。
  51. 根据权利要求30-50任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于基于每个时域组以及所述每个时域组的频域位置向网络设备发送数据。
  52. 根据权利要求30-51任一项所述的装置,其特征在于,所述时域单元为一个符号或一组符号,或者,所述时域单元为一个时隙。
  53. 一种频域位置确定装置,其特征在于,应用于网络设备,所述装置包括:
    确定模块,用于确定用于传输重复数据的一个或多个时域组,每个时域组中包括一个或多个连续的时域单元;
    发送模块,用于向终端发送调度信息,所述调度信息用于指示所述终端确定所述一个或多个时域组中每个时域组对应的频域位置。
  54. 根据权利要求53所述的装置,其特征在于,所述一个或多个时域组中,至少两个时域组对应的频域位置不连续。
  55. 根据权利要求54所述的装置,其特征在于,确定的频域位置的数量大于3。
  56. 根据权利要求53所述的装置,其特征在于,所述调度信息中包括所述传输重复值或频域位置的信息中的至少一项。
  57. 根据权利要求53-56任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于基于每个时域组以及所述每个时域组的频域位置接收所述终端发送的数据。
  58. 根据权利要求53-57任一项所述的装置,其特征在于,所述时域单元为一个符号或一组符号,或者,所述时域单元为一个时隙。
  59. 一种终端,其特征在于,所述终端包括:
    处理器和收发器;
    用于存储所述处理器的可执行程序代码的存储器;
    其中,所述处理器被配置为加载并执行所述可执行程序代码以实现如权利要求1至23任一所述的频域位置确定方法。
  60. 一种网络设备,其特征在于,所述网络设备包括:
    处理器和收发器;
    用于存储所述处理器的可执行程序代码的存储器;
    其中,所述处理器被配置为加载并执行所述可执行程序代码以实现如权利要求24至29任一所述的频域位置确定方法。
  61. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由所述处理器加载并执行以实现如权利要求1至29任一所述的频域位置确定方法。
PCT/CN2020/119591 2020-09-30 2020-09-30 频域位置确定方法、装置、设备及存储介质 WO2022067735A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/119591 WO2022067735A1 (zh) 2020-09-30 2020-09-30 频域位置确定方法、装置、设备及存储介质
EP20955759.4A EP4224757A4 (en) 2020-09-30 2020-09-30 METHOD AND DEVICE FOR DETERMINING A FREQUENCY DOMAIN POSITION, DEVICE AND STORAGE MEDIUM
CN202080104553.5A CN116097603A (zh) 2020-09-30 2020-09-30 频域位置确定方法、装置、设备及存储介质
US18/147,706 US20230216609A1 (en) 2020-09-30 2022-12-29 Frequency domain position determination method and apparatus, device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119591 WO2022067735A1 (zh) 2020-09-30 2020-09-30 频域位置确定方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,706 Continuation US20230216609A1 (en) 2020-09-30 2022-12-29 Frequency domain position determination method and apparatus, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022067735A1 true WO2022067735A1 (zh) 2022-04-07

Family

ID=80951096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119591 WO2022067735A1 (zh) 2020-09-30 2020-09-30 频域位置确定方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20230216609A1 (zh)
EP (1) EP4224757A4 (zh)
CN (1) CN116097603A (zh)
WO (1) WO2022067735A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183739A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 一种频率资源确定方法和装置
WO2018161375A1 (zh) * 2017-03-10 2018-09-13 华为技术有限公司 上行控制信令的传输方法、设备及系统
CN108631976A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种通信方法及装置
US20190028143A1 (en) * 2015-11-13 2019-01-24 Zte Corporation Information transmission method and apparatus
CN110365456A (zh) * 2018-04-11 2019-10-22 中兴通讯股份有限公司 物理上行信道的时隙确定方法及装置
WO2020024229A1 (zh) * 2018-08-02 2020-02-06 华为技术有限公司 频域位置确定方法、装置及设备
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020007484A (es) * 2018-01-10 2020-09-14 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de transmision de datos, metodo de recepcion de datos, dispositivo de terminal y dispositivo de red.
JP7287787B2 (ja) * 2019-01-10 2023-06-06 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183739A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 一种频率资源确定方法和装置
US20190028143A1 (en) * 2015-11-13 2019-01-24 Zte Corporation Information transmission method and apparatus
WO2018161375A1 (zh) * 2017-03-10 2018-09-13 华为技术有限公司 上行控制信令的传输方法、设备及系统
CN108631976A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种通信方法及装置
CN110365456A (zh) * 2018-04-11 2019-10-22 中兴通讯股份有限公司 物理上行信道的时隙确定方法及装置
WO2020024229A1 (zh) * 2018-08-02 2020-02-06 华为技术有限公司 频域位置确定方法、装置及设备
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224757A4 *

Also Published As

Publication number Publication date
EP4224757A4 (en) 2023-11-15
CN116097603A (zh) 2023-05-09
CN116097603A8 (zh) 2024-05-17
US20230216609A1 (en) 2023-07-06
EP4224757A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US11206054B2 (en) Communication method and device
US11139906B2 (en) Wireless communication method and wireless communications apparatus
US20200021388A1 (en) Data Sending Method and Apparatus and Data Receiving Method and Apparatus
TW202008829A (zh) 資源配置的方法和終端設備
TW202008828A (zh) 資源配置的方法和終端設備
WO2018228533A1 (zh) 资源映射的方法和装置
CN111756501A (zh) 传输上行控制信息的方法及装置
CN111586708A (zh) 一种传输探测参考信号的方法、装置和系统
US20220360998A1 (en) Base station supporting dynamic spectrum sharing between heterogeneous networks and wireless communication system including the same
WO2016138718A1 (zh) 跳频方法及装置
CN112205051B (zh) 确定传输块大小tbs的方法和设备
WO2022067735A1 (zh) 频域位置确定方法、装置、设备及存储介质
CN111837369B (zh) 信道估计方法、装置、设备及存储介质
CN112703808B (zh) Bwp切换的方法和设备
CN114208365A (zh) 定时器设置方法及相关设备
CN111385865A (zh) 随机接入方法、装置、系统及存储介质
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2021159387A1 (zh) 信息确定方法、装置、设备及存储介质
WO2023173263A1 (zh) 确定上行ptrs端口关联关系的方法、装置、介质及产品
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2023164853A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
CN111511023B (zh) 信号传输方法及装置
CN117751532A (zh) 无线通信的方法、终端设备和网络设备
CN118044143A (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955759

Country of ref document: EP

Effective date: 20230502