WO2020024229A1 - 频域位置确定方法、装置及设备 - Google Patents
频域位置确定方法、装置及设备 Download PDFInfo
- Publication number
- WO2020024229A1 WO2020024229A1 PCT/CN2018/098371 CN2018098371W WO2020024229A1 WO 2020024229 A1 WO2020024229 A1 WO 2020024229A1 CN 2018098371 W CN2018098371 W CN 2018098371W WO 2020024229 A1 WO2020024229 A1 WO 2020024229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- symbol group
- frequency domain
- domain position
- frequency
- frequency hopping
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000004590 computer program Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 8
- 239000013256 coordination polymer Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
Definitions
- the present application relates to the field of communication technologies, and in particular, to a method, a device, and a device for determining a frequency domain position.
- NB-IoT Narrowband Internet of Things
- terminal devices need to perform narrowband physical random access before sending data.
- a terminal device randomly selects a preamble and sends the preamble to a network device (such as a base station), so that the network device performs uplink time advancement (Time Advanced, TA for short) based on the preamble. )estimate.
- time Advanced, TA for short uplink time advancement
- TA estimation of the uplink according to the preamble it is necessary to perform frequency hopping processing on the preamble sent by the terminal device.
- the preamble includes multiple repeating units, and each repeating unit includes multiple symbol groups.
- the frequency domain position used to send each symbol group needs to be determined in order to The corresponding symbol group is sent in the frequency domain position of.
- the first parameter Y of the i-th symbol group is first generated according to a pseudo-random sequence.
- the frequency domain position of the i-th symbol group is determined to be 2 * (Ymod6) +1, and when the frequency domain position of the i-4th symbol group is odd, the first The frequency domain position of the i symbol groups is 2 * (Ymod6). among them, The frequency domain position of the subcarrier selected by the terminal device in the subcarrier set.
- the value of f (i / 2) is related to the pseudo-random sequence. When two terminal devices are located in the same cell, the corresponding f of the two terminal devices (i / 2) same, It is usually constant 12.
- the frequency domain position n init of the subcarriers selected by the two terminal devices in the subcarrier set differs by 6
- the present application provides a method, a device, and a device for determining a frequency domain position, which improves the reliability of data transmission.
- the present application provides a method for determining a frequency domain position.
- the frequency domain position of the first symbol group can be determined by: determining a first parameter of the first symbol group according to a pseudo-random sequence, and an index of the first symbol group being i; determining the first frequency hopping rule from at least one frequency hopping rule according to the first parameter, the index i of the first symbol group, and the frequency domain position of the second symbol group, where the index of the second symbol group is i-4 Determining the frequency domain position of the first symbol group according to the first parameter and the first frequency hopping rule.
- the frequency hopping rule when selecting the first frequency hopping rule corresponding to the first symbol group, referring to the first parameter Y of the first symbol group, the frequency hopping rule may also be set so that when the first When the first parameter Y of the symbol group is different, the frequency domain position of the first symbol group of different terminal devices may also be different. Accordingly, for other symbol groups that need to determine the frequency domain position according to the frequency domain position of the first symbol group In other words, the frequency domain positions of the other symbol groups are also different, which can avoid the situation where different terminal devices have the same frequency domain position of the first symbol group, which can prevent network equipment from incorrectly estimating TA, thereby improving data. Reliability of transmission.
- the first parameter is Y
- K satisfies at least one of the following conditions:
- the first parameter is Y
- the frequency domain position of the first symbol group is
- M satisfies at least one of the following conditions:
- the frequency domain position of the first symbol group may be different. Accordingly, for the frequency domain position that needs to be determined according to the frequency domain position of the first symbol group, For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices is different by 6, the frequency domain position of the symbol group will not be the same, and the situation that the frequency domain position of the first symbol group is the same in different terminal devices can be avoided.
- At least one frequency hopping rule includes:
- x 1 is an odd number and x 2 is an even number
- x 3 is an odd number.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- N satisfies at least one of the following conditions:
- N 6;
- N is 0;
- N is -6.
- the frequency domain position of the first symbol group may be different. Accordingly, for the frequency domain position that needs to be determined according to the frequency domain position of the first symbol group, For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices is different by 6, the frequency domain position of the first symbol group will not be the same, and the situation that the frequency domain position of the first symbol group is the same in different terminal devices can be avoided.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- T satisfies at least one of the following conditions:
- p is an integer greater than or equal to 0;
- T is 6;
- T is 0.
- the frequency domain position of the first symbol group may be different. Accordingly, for the frequency domain position that needs to be determined according to the frequency domain position of the first symbol group, For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices is different by 6, the frequency domain position of the first symbol group will not be the same, and the situation that the frequency domain position of the first symbol group is the same in different terminal devices can be avoided.
- At least one frequency hopping rule includes:
- p 1 is an integer greater than or equal to 0, and p 2 is an integer greater than or equal to 0;
- p 3 is an integer of 0 or more.
- the present application provides a device for determining a frequency domain position, including a processing module, where the processing module is configured to:
- the first parameter is Y, and a frequency domain position of the first symbol group
- the K satisfies at least one of the following conditions:
- K is -1.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- the M satisfies at least one of the following conditions:
- the at least one frequency hopping rule includes:
- x 1 is an odd number
- x 2 is an even number
- x 3 is an odd number.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- the N is an integer.
- the N satisfies at least one of the following conditions:
- the N is -6.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- the T satisfies at least one of the following conditions:
- the p is an integer greater than or equal to 0;
- the T is 6;
- the at least one frequency hopping rule includes:
- p 1 is an integer greater than or equal to 0, and p 2 is an integer greater than or equal to 0;
- p 3 is an integer of 0 or more.
- the present application provides a storage medium, where the storage medium is used to store a computer program, and the computer program is used to implement the method described in the foregoing first aspect or any implementation manner.
- the present application provides a terminal device, including a processing module and a sending module, wherein the processing module is configured to implement the method for determining a frequency domain position according to the first aspect or any implementation manner thereof, and the sending module For sending a first symbol group in a frequency domain position.
- the terminal device may further include a memory for storing a computer program, and the processor implements the frequency domain position determination method according to the first aspect or any implementation manner thereof by executing the computer program.
- the present application provides a network device including a processing module and a receiving module, wherein the processing module is configured to implement the method for determining a frequency domain position according to the first aspect or any implementation manner thereof, and the receiving module For receiving a first symbol group in a frequency domain position.
- the network device may further include a memory for storing a computer program, and the processor implements the frequency domain position determination method according to the first aspect or any implementation manner thereof by executing the computer program.
- a first parameter of the first symbol group is determined according to a pseudo-random sequence, and according to the first parameter and the first symbol group,
- the index i and the frequency domain position of the second symbol group determine the first frequency hopping rule from at least one frequency hopping rule, the index of the second symbol group is i-4, and according to the first parameter and the first frequency hopping rule, A frequency domain position of the first symbol group is determined.
- the frequency hopping rule when selecting the first frequency hopping rule corresponding to the first symbol group, referring to the first parameter Y of the first symbol group, the frequency hopping rule may also be set so that when the first When the first parameter Y of the symbol group is different, the frequency domain position of the first symbol group of different terminal devices may also be different. Accordingly, for other symbol groups that need to determine the frequency domain position according to the frequency domain position of the first symbol group In other words, the frequency domain positions of the other symbol groups are also different, which can avoid the situation where different terminal devices have the same frequency domain position of the first symbol group, which can prevent network equipment from incorrectly estimating TA, thereby improving data. Reliability of transmission.
- FIG. 1 is a structural diagram of a communication system provided by this application.
- FIG. 2 is a schematic diagram of a preamble provided by this application.
- FIG. 3 is a schematic diagram of a symbol group provided by the present application.
- FIG. 4 is a schematic flowchart of a method for determining a frequency domain position provided by an application
- FIG. 5 is a schematic structural diagram of a frequency domain position determining device provided by this application.
- FIG. 6 is a schematic structural diagram of a terminal device provided by this application.
- FIG. 7 is a schematic structural diagram of a network device provided by this application.
- FIG. 1 is a structural diagram of a communication system provided by the present application.
- the communication system includes a network device 101 and a plurality of terminal devices, and the multiple terminal devices are denoted as terminal devices 102-1, 102-2, ..., 102-6, respectively.
- the terminal device can send multiple sets of data to the network device on the same time-frequency resource.
- the network device 101 may include a 4th generation mobile communication technology (4G) wireless base station (evolved NodeB, eNB), a 5th generation mobile communication technology (The 5th Generation Mobile Communication) technology (referred to as 5G) wireless base stations (gNodeB, gNB), transmission and reception points, or micro base stations.
- 4G 4th generation mobile communication technology
- eNB evolved NodeB
- 5G 5th generation mobile communication technology
- 5G wireless base stations gNodeB, gNB
- transmission and reception points or micro base stations.
- the terminal device 102 may be an Internet of Things device.
- the Internet of Things device may include a printer, a vehicle, a smart home device, and the like.
- the terminal device may also be another communication terminal, such as a mobile phone, a tablet computer, etc., which is not specifically limited in this application.
- FIG. 1 is only a schematic diagram illustrating an architecture diagram of a communication system applicable to the present application by way of example, and is not a limitation on the architecture diagram of a communication system applicable to the present application.
- TDD Time Division Duplex
- FIG. 2 is a schematic diagram of a preamble provided by the present application.
- FIG. 3 is a schematic diagram of a symbol group provided by the present application.
- a preamble includes X repeating units, and each repeating unit includes P symbol groups.
- X is a positive integer greater than 1
- P is a positive integer greater than 1.
- X is usually set in advance, or X is configured through a network device, and P is usually related to the format of the preamble.
- a symbol group includes a cyclic prefix CP and N symbols, and the N symbols are respectively denoted as symbol 0, symbol 1, ..., symbol N-1.
- the duration of the cyclic prefix CP is T CP
- the total duration of the N symbols is T SEQ .
- the number of time-continuous symbol groups G in the preamble and the number of symbol groups P included in a repeating unit are different.
- the preambles of the five formats supported by TDD NB-IoT are taken as examples to describe the parameters of the preamble (P, G, N, T CP, and T SEQ ). For details, see Table 1.
- Preamble format Support uplink and downlink subframe matching G P N T CP T SEQ format 0 1, 2, 3, 4, 5 2 4 1 4778T s 8192T s format 1, 4 2 4 2 8192T s 2 ⁇ 8192T s format 2 3 2 4 4 8192T s 4 ⁇ 8192T s format 0-a 1, 2, 3, 4, 5 3 6 1 1536T s 8192T s format 1-a 1, 4 3 6 2 3072T s 2 ⁇ 8192T s
- one repeating unit of the preamble includes 4 symbol groups, the number of time-continuous symbol groups is 2, and one symbol group includes 1 symbol.
- the T CP of the symbol group is 4778T s
- the rules for determining the frequency domain position of each symbol group in the preambles of the three formats are the same.
- the rules for determining the frequency domain position of each symbol group in the preambles of the two formats are the same.
- the format of the preamble is any one of format 0, format 1 and format 2, that is, each repeating unit in the preamble in the present application includes 4 symbol groups.
- the frequency domain position of each symbol group in the preamble needs to be determined, so that the terminal device can send the symbol group on the frequency domain resource corresponding to the frequency domain position, that is, to The terminal device can send the symbol group on the frequency domain resource corresponding to the frequency domain position.
- the frequency domain position may be represented by an index of a subcarrier.
- the sub-carriers can be numbered 0, 1, 2, ..., 47 in the order from low frequency to high frequency, and the frequency domain positions can use these number indexes We show.
- the determination of the frequency domain resources needs to consider using the product of the index of the subcarrier where each symbol group of the preamble is located and the bandwidth of the subcarrier.
- the frequency domain resource represented by the subcarrier index 10 is 37.5kHz.
- the frequency domain position is represented by the index of the subcarrier in this application, that is, the frequency domain position shown in this application is the index of the subcarrier.
- the frequency domain position of the symbol group in the preamble (absolute frequency domain position refers to the absolute frequency domain position of a symbol group of the preamble within the system bandwidth) can be the following formula one:
- n init is the slave device set
- the index of the subcarrier (also called the frequency domain position) selected in the network, or n init is determined according to the index of the subcarrier allocated by the network device to the terminal device.
- the index of the subcarrier allocated by the network device to the terminal device can be controlled by downlink Information (Downlink Control Information, DCI for short).
- DCI Downlink Control Information
- the frequency domain position of the random access preamble is limited to Within subcarriers, Is the default, for example, Can be 12.
- the frequency domain position (also referred to as relative frequency domain position) is determined according to a preset rule. Relative frequency domain position The process is explained in detail. It should be noted that the frequency domain position shown in this application is
- the frequency domain position of the symbol group is determined according to a preset rule.
- the frequency domain positions of different symbol groups in the preamble need to meet the following preset conditions:
- Condition 1 A condition that a symbol group in a repeating unit needs to meet.
- a condition that a symbol group in a repeating unit needs to meet refers to a condition that a frequency domain position of a first symbol group and a second symbol group in a repeating unit needs to meet, and a third symbol group and A condition to be satisfied in the frequency domain position of the fourth symbol group.
- the conditions in the frequency domain positions of the first symbol group and the second symbol group need to satisfy include: when the frequency domain position of the first symbol group (that is, the index of the subcarrier) is even, the second The frequency domain position of the symbol group is one greater than the frequency domain position of the first symbol group. When the frequency domain position of the first symbol group is odd, the frequency domain position of the second symbol group is one less than the frequency domain position of the first symbol group.
- the frequency domain position relationship between the first symbol group and the second symbol group can be shown in Table 2:
- Frequency domain position of the first symbol group Frequency domain position of the second symbol group 0, 2, 4, 6, 8, 10 Add 1 to the frequency domain position of the first symbol group 1, 3, 5, 7, 9, 11 Subtract 1 from the frequency domain position of the first symbol group
- the frequency domain positions of the third symbol group and the fourth symbol group need to satisfy the following conditions: When the frequency domain position of the third symbol group is less than 6, the frequency domain position of the fourth symbol group is smaller than that of the third symbol group. The frequency domain position of the three symbol groups is larger by 6. When the frequency domain position of the third symbol group is greater than 6, the frequency domain position of the fourth symbol group is 6 smaller than the frequency domain position of the third symbol group.
- the frequency domain position relationship between the third symbol group and the fourth symbol group can be shown in Table 3:
- Frequency domain position of the first symbol group Frequency domain position of the second symbol group 0,1,2,3,4,5 Frequency domain position of the first symbol group plus 6 6, 7, 8, 9, 10, 11 Subtract 6 from the frequency domain position of the first symbol group
- Condition 2 The condition that the symbol groups in different repeating units need to meet.
- condition that the symbol groups of different repeating units need to meet refers to the conditions that the first symbol group of the first repeating unit and the first symbol group of the second repeating unit need to meet in the frequency domain, and the first A condition to be satisfied in the frequency domain positions of the third symbol group of a repeating unit and the third symbol group of the second repeating unit.
- the first repeating unit and the second repeating unit are two adjacent repeating units in the preamble.
- the frequency domain position of the first symbol group of the first repeating unit and the first symbol group of the second repeating unit needs to satisfy the following conditions: when the frequency domain position of the first symbol group of the first repeating unit is When the number is odd, the frequency domain position of the first symbol group of the second repeating unit is even. When the frequency domain position of the first symbol group of the first repeating unit is even, the frequency domain position of the first symbol group of the second repeating unit is odd.
- the frequency domain position relationship between the first symbol group of the first repeating unit and the first symbol group of the second repeating unit may be shown in Table 4:
- the frequency domain positions of the third symbol group of the first repeating unit and the third symbol group of the second repeating unit need to satisfy the following conditions: When it is less than 6, the frequency domain position of the third symbol group of the second repeating unit is greater than or equal to 6. When the frequency domain position of the third symbol group of the first repeating unit is greater than or equal to 6, the frequency domain position of the third symbol group of the second repeating unit is less than 6.
- the frequency domain position relationship between the third symbol group of the first repeating unit and the third symbol group of the second repeating unit may be shown in Table 5:
- This application provides a method for determining a frequency domain position.
- a first parameter Y of a first symbol group is determined, and then according to the first parameter, the index of the first symbol group, and the second The frequency domain position of the symbol group determines the frequency domain position of the first symbol group.
- the index of the second symbol group is 4 smaller than the index of the first symbol group.
- the frequency symbol positions of the other symbol groups are also different, which can avoid the situation that the frequency symbol position of the first symbol group exists in different terminal devices, which can prevent network devices from incorrectly estimating TA, thereby improving data transmission. reliability.
- FIG. 4 is a schematic flowchart of a method for determining a frequency domain position provided by an application. Referring to FIG. 4, the method may include:
- S401 Determine a first parameter of a first symbol group according to a pseudo-random sequence.
- the index of the first symbol group is i.
- imod8 4.
- imod8 can also be 6.
- the first parameter of the first symbol group can be determined by the following formula 2:
- n init is the terminal device from the collection
- the index of the selected subcarrier Is the number of subcarriers allocated to NPRACH.
- n init is determined according to the index of the subcarrier allocated by the network device to the terminal device, and the index of the subcarrier allocated by the network device to the terminal device may be indicated through DCI.
- c (n) is a pseudo-random sequence, and the initialization seed of c (n) is It is the physical layer cell identifier.
- c (n) is a Gold sequence with a length of 31
- c (n) can be expressed as:
- x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod2
- x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod2
- S402. Determine a first frequency hopping rule from at least one frequency hopping rule according to the first parameter, the index i of the first symbol group, and the frequency domain position of the second symbol group.
- the index of the second symbol group is i-4.
- the at least one frequency hopping rule may be preset.
- the first frequency modulation rule may be selected from at least one frequency hopping rule.
- each of the at least one frequency hopping rule includes a selection condition, and the selection condition is related to the first parameter, the index i of the first symbol group, and the frequency domain position of the second symbol group.
- the selection condition is determined.
- the corresponding frequency hopping rule is determined as the frequency hopping rule of the first symbol group.
- each sub-condition in the selection condition of the frequency-hopping rule is a relationship of sum, that is, the frequency-hopping rule is determined as the first frequency-hopping rule when all the sub-conditions are satisfied.
- the first parameter group, the index i of the first symbol group, and the frequency domain position of the second symbol group may also be used to generate the first One frequency hopping rule.
- the first frequency hopping rule may include a calculation formula related to the first parameter, and the first parameter may be substituted into the corresponding calculation formula to obtain the frequency domain position of the first symbol group.
- the frequency domain position of the first symbol group may be Correspondingly, in determining the frequency domain position to the first symbol group After that, the frequency domain position of the first symbol group can also be set according to the above formula 1. Add n start .
- the preset frequency hopping rule may indicate the frequency domain position of the first symbol group Of the form Y + K, or The value of K can make the frequency-domain position of the first symbol group meet a preset condition.
- the preset condition refer to condition one and condition two in the foregoing embodiment.
- the first symbol group is sent at the frequency domain position.
- the preamble includes multiple symbol groups. For any symbol group in the preamble, before sending the symbol group, the frequency domain position of the symbol group needs to be determined.
- each symbol group may be sent separately, that is, after the frequency domain position of a symbol group is determined, the symbol group may be sent at the frequency domain position.
- each symbol group in the preamble may also be sent together, that is, after the frequency domain positions of all the symbol groups in the preamble are determined, then the corresponding symbol groups are sent at the respective frequency domain positions.
- a first parameter of the first symbol group is determined according to a pseudo-random sequence, and according to the first parameter, the index i of the first symbol group, and
- the first frequency hopping rule is determined from at least one frequency hopping rule, the index of the second symbol group is i-4, and the first symbol is determined according to the first parameter and the first frequency hopping rule. The frequency domain position of the group.
- the frequency hopping rule when selecting the first frequency hopping rule corresponding to the first symbol group, referring to the first parameter Y of the first symbol group, the frequency hopping rule may also be set so that when the first When the first parameter Y of the symbol group is different, the frequency domain position of the first symbol group of different terminal devices may also be different. Accordingly, for other symbol groups that need to determine the frequency domain position according to the frequency domain position of the first symbol group In other words, the frequency domain positions of the other symbol groups are also different, which can avoid the situation where different terminal devices have the same frequency domain position of the first symbol group, which can prevent network equipment from incorrectly estimating TA, thereby improving data. Reliability of transmission.
- the above-mentioned frequency domain position determination method corresponding to FIG. 4 needs to be used on both the terminal device side and the network device side.
- the first symbol group may be sent at the frequency domain position.
- the terminal After determining a frequency domain position of the first symbol group, the first symbol group may be sent at the frequency domain position.
- the terminal to send a preamble, in addition to determining the frequency domain position of the first symbol group, it is necessary to determine the frequency domain positions of other symbol groups of the preamble, and send other symbols at the determined frequency domain position. group.
- the network device needs to determine the frequency domain position of each symbol group of the preamble to be received.
- the preamble to be received includes the first symbol group. After determining the frequency domain positions of all symbol groups, the network device The preamble is received and detected at the domain location.
- a frequency hopping rule is set in this application, so that when the first parameter Y of the first symbol group of different terminal devices is different, the obtained first frequency parameter is determined according to the frequency hopping rule shown in this application.
- the frequency domain position of a symbol group is also different.
- the frequency domain positions of the other symbol groups are also different, which can be avoided. There are cases where different terminal devices have the same frequency domain position of the first symbol group.
- the frequency hopping rule can include at least the following two feasible implementation methods:
- Frequency hopping rule indication K is an integer.
- K is preset, and K can satisfy at least one of the following conditions:
- K is preset, and K can be as follows:
- K is 1. In the above second and third frequency hopping rules, K is 0. In the fourth frequency hopping rule described above, K is -1.
- K in the frequency hopping rule may also be different.
- the one frequency hopping rule can be disassembled into the following four frequency hopping rules:
- K can be 7, of course, K can also be 1 or 3 or 5.
- K can be 5, of course, K can also be 1 or 3.
- K can also be 1.
- the value of K can be determined according to Y in the selection conditions according to actual needs, as long as the value of K can satisfy the above-mentioned conditions 1 and 2 corresponding to K.
- different expressions may be used to indicate the selection conditions in the frequency hopping rules.
- Y is any even number between [0,11].
- XX 0, 2, 4, 6, 8, 10
- XX mod2 0.
- XXmod2 0, and XX ⁇ [0, 11 and so on.
- XX 1,3,5,7,9,11
- the possible schematic way can also be XX is any odd number between [0,11] .
- XX mod2 1.
- XXmod2 1, and XX ⁇ [0, 11 and so on.
- the above XX can be May also be Y.
- any one of the display modes may be used to indicate the selection conditions, and the present application does not specifically limit the form of the selection conditions. Among them, if the expressions of the two selection conditions are different, but can be derived from each other and have the same meaning, it can be determined that the two selection conditions are the same.
- the frequency domain position of the first symbol group may be different. Accordingly, the frequency domain position needs to be determined according to the frequency domain position of the first symbol group. For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices is different by 6, the frequency domain position of the first symbol group will not be the same, and the situation that the frequency domain position of the first symbol group is the same in different terminal devices can be avoided.
- Indication of preset frequency hopping rules M is an integer, Is the default value.
- the value of K is preset, and M can satisfy at least one of the following conditions:
- K is preset
- M can be as follows:
- the preset frequency hopping rule can indicate
- x 1 is an odd number
- x 2 is an even number
- a representation form of a selection condition in a frequency hopping rule and a representation form of a frequency hopping rule may be set according to actual needs, which is not specifically limited in this application.
- the frequency domain position of the first symbol group may be different. Accordingly, the frequency domain position needs to be determined according to the frequency domain position of the first symbol group For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices is different by 6, the frequency domain position of the first symbol group will not be the same, and the situation that the frequency domain position of the first symbol group is the same in different terminal devices can be avoided.
- Frequency hopping rules can include:
- x 1 is an odd number
- x 2 is an even number
- x 3 is an odd number.
- the frequency hopping rules can be set according to the actual setting of the selection conditions in the frequency hopping rules and the form of the frequency hopping rules, which are not specifically limited in this application.
- the frequency hopping rule formula includes at least two frequency hopping rules
- the order of the at least two frequency hopping rules included in the frequency hopping rule is not specifically limited.
- the frequency hopping rule for determining the frequency domain position may be as follows:
- the frequency hopping rule can include at least the following two feasible implementation methods:
- N is an integer.
- N is preset, and N meets at least one of the following conditions:
- Condition 1 Is the default value.
- Condition 2 above can also be expressed as:
- N is preset, and N can be as follows:
- N is 6.
- N is 0.
- N is -6.
- N is 6.
- N is 0.
- N is -6.
- N in the frequency hopping rule may also be different.
- the one frequency hopping rule can be disassembled into the following four frequency hopping rules:
- N For the first FM rule after disassembly, N can be 10, of course, N can also be 6 or 7 or 8 or 9.
- N For the second FM rule after disassembly, N can be 8, of course, N can also be 6 or 7.
- N For the third FM rule after disassembly, N can be 7, of course, N can also be 6.
- the value of N may be determined according to Y in the selection conditions according to actual needs, as long as the value of N can satisfy the conditions 1 and 2 corresponding to the foregoing N.
- a representation form of a selection condition in a frequency hopping rule and a representation form of a frequency hopping rule may be set according to actual needs, which is not specifically limited in this application.
- the frequency domain position of the first symbol group may be different. Accordingly, the frequency domain position needs to be determined according to the frequency domain position of the first symbol group For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices differs by 6, the frequency domain position of the first symbol group will not be the same, thereby avoiding the situation that the frequency group location of the symbol group exists in different terminal devices.
- Indication of preset frequency hopping rules T is an integer, Is the default value.
- T is preset, and T can satisfy at least one of the following conditions:
- Condition 1 or, p is an integer greater than or equal to 0;
- Condition 2 above can also be expressed as
- T is preset, and T can be as follows:
- T is 6.
- T is 0.
- the frequency modulation rule can be as follows:
- a representation form of a selection condition in a frequency hopping rule and a representation form of a frequency hopping rule may be set according to actual needs, which is not specifically limited in this application.
- XX 6, 7, 8, 9, 10, 11, and a possible schematic manner may also be XX ⁇ 6.
- the above XX can be May also be Y.
- the frequency domain position of the first symbol group may be different. Accordingly, the frequency domain position needs to be determined according to the frequency domain position of the first symbol group. For other symbol groups, the frequency domain positions of the other symbol groups are also different. Even if the Y corresponding to the first symbol group of the two terminal devices is different by 6, the frequency domain position of the first symbol group will not be the same, and the situation that the frequency domain position of the first symbol group is the same in different terminal devices can be avoided.
- Frequency hopping rules can include:
- p 1 is an integer greater than or equal to 0, and p 2 is an integer greater than or equal to 0;
- p 3 is an integer of 0 or more.
- the frequency hopping rules can be set according to the actual setting of the selection conditions in the frequency hopping rules and the form of the frequency hopping rules, which are not specifically limited in this application.
- the frequency hopping rule set may include one or more of the above four forms of frequency hopping rules, that is, the above four forms of frequency hopping rules may appear in any combination in one FM rule group.
- the frequency hopping rule group can be:
- the frequency hopping rule group can be:
- the frequency hopping rule group can be:
- the above only illustrates the form of the frequency hopping rules included in the frequency hopping rule group and the frequency hopping rules by way of example, and is not a limitation on the frequency hopping rule group. In the actual application process, it can be set according to actual needs
- the form and the frequency hopping rules included in the frequency hopping rule group are not specifically limited in this application.
- the frequency hopping rules for a location can be as follows:
- FIG. 5 is a schematic structural diagram of a frequency domain position determining device provided by the present application.
- the apparatus may include a processing module 11, where:
- the processing module 11 is configured to determine a first parameter of a first symbol group according to a pseudo-random sequence, and an index of the first symbol group is i;
- the processing module 11 is further configured to determine a first frequency hopping rule from at least one frequency hopping rule according to the first parameter, the index i of the first symbol group, and a frequency domain position of the second symbol group, where The index of the second symbol group is i-4;
- the processing module 11 is further configured to determine a frequency domain position of the first symbol group according to the first parameter and the first frequency hopping rule.
- the processing module 11 may execute S401-S403 in the embodiment of FIG. 4.
- the processing module 11 may be a processor.
- the processor may be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, abbreviated as: DSP), application specific integrated circuits (English : Application Specific Integrated Circuit (referred to as: ASIC) and so on.
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps combined with the method disclosed in this application may be directly embodied as being executed by a hardware processor, or may be executed and completed by using a combination of hardware and software modules in the processor.
- the frequency-domain position determination device may further include a memory, and the program instructions are stored in the memory, and the processing module 11 may execute the program instructions in the memory to implement the frequency-domain position determination method shown in the foregoing method embodiment.
- the device for determining a frequency domain position shown in this application can execute the technical solution shown in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and will not be repeated here.
- the first parameter is Y, and a frequency domain position of the first symbol group
- the K satisfies at least one of the following conditions:
- K is -1.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- the M satisfies at least one of the following conditions:
- the at least one frequency hopping rule includes:
- x 1 is an odd number
- x 2 is an even number
- x 3 is an odd number.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- the N is an integer.
- the N satisfies at least one of the following conditions:
- the N is -6.
- the first parameter is Y
- the frequency domain position of the first symbol group is
- the T satisfies at least one of the following conditions:
- the p is an integer greater than or equal to 0;
- the T is 6;
- the at least one frequency hopping rule includes:
- p 1 is an integer greater than or equal to 0, and p 2 is an integer greater than or equal to 0;
- p 3 is an integer of 0 or more.
- the device for determining a frequency domain position shown in this application can execute the technical solution shown in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and will not be repeated here.
- FIG. 6 is a schematic structural diagram of a terminal device provided by this application.
- the terminal device includes a processing module 11 and a sending module 12.
- the sending module 12 is configured to send the first symbol group at the frequency domain position.
- the terminal device includes a frequency domain position determining device (including a processing module 11) and a sending module 12.
- processing module 11 in the terminal device and the processing module 11 in the frequency-domain location determining device are the same, and are not repeated here.
- the processing module 11 of the terminal device in addition to determining the frequency domain position of the first symbol group, the processing module 11 of the terminal device also needs to determine the frequency domain positions of other symbol groups of the preamble, and determine the These other sets of symbols are transmitted at frequency domain locations.
- FIG. 7 is a schematic structural diagram of a network device provided by this application.
- the network device may include a processing module 11 and a receiving module 13, wherein the receiving module 13 is configured to receive the first symbol group at the frequency domain position.
- the terminal device includes a frequency domain position determining device (including a processing module 11) and a receiving module 13.
- processing module 11 in the network device and the processing module 11 in the frequency-domain location determining device are the same, and are not repeated here.
- processing module 11 in the network device is further configured to determine the frequency domain position of each symbol group except the first symbol group in the preamble to be received, and the receiving module 13 is configured to The preamble is received and detected at the frequency domain positions of all symbol groups determined by the processing module 11.
- the processing module 11, the sending module 12, and the receiving module 13 can be implemented by pure hardware (such as a processor), software (computer program module), or a combination of hardware and software.
- the combination of hardware and software may be implemented by a processor executing a computer program in a memory to implement the implementation manners of the embodiments of the present invention.
- This application provides a storage medium, where the storage medium is used to store a computer program, and the computer program is used to implement the method according to any one of the foregoing method embodiments.
- the present application provides a chip, which is used to support a terminal device to implement the functions shown in the embodiments of the present application, for example, to process or send data and / or information involved in the foregoing method.
- the chip is specifically used for a chip system.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- the chip in the terminal device implements the frequency domain position determination method
- the chip includes a processing unit and a communication unit.
- the processing unit may be, for example, a processor
- the communication unit may be, for example, an input / output interface, a pin. Or circuit, etc.
- the processing unit performs all or part of the actions performed by the processing module of the terminal device in the embodiment of the present application
- the communication unit may perform the actions performed by the sending module of the terminal device in the embodiment of the present application, for example, when the sending module of the terminal device When a radio frequency signal is sent, the communication unit sends a baseband signal corresponding to the radio frequency signal.
- the terminal device in this application may specifically be a chip, that is, the processing module of the terminal device is a processing unit of the chip, and the transmission module of the terminal device is a communication unit of the chip.
- This application provides a chip, which is used to support a network device to implement the functions shown in the embodiments of this application, for example, to process or receive data and / or information involved in the above method.
- the chip is specifically used for a chip system.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- the chip in the network device implements the frequency domain position determination method
- the chip includes a processing unit and a communication unit.
- the processing unit may be, for example, a processor
- the communication unit may be, for example, an input / output interface, a pin. Or circuit, etc.
- the processing unit performs all or part of the actions performed by the processing module of the network device in the embodiment of the present application, and the communication unit may perform the actions corresponding to the receiving module of the network device in the embodiment of the present application.
- the communication unit receives a baseband signal corresponding to the radio frequency signal.
- the network device in this application may specifically be a chip, that is, a processing module of the network device is a processing unit of the chip, and a receiving module of the network device is a communication unit of the chip.
- All or part of the steps for implementing the foregoing method embodiments may be completed by a program instructing related hardware.
- the aforementioned program can be stored in a readable memory.
- the steps including the foregoing method embodiments are executed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory (abbreviation: ROM)), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disk (English: optical disc) and any combination thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种频域位置确定方法、装置及设备,该方法包括:根据伪随机序列确定第一符号组的第一参数,所述第一符号组的索引为i;根据所述第一参数、所述第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,其中,所述第二符号组的索引为i-4;根据所述第一参数以及所述第一跳频规则,确定所述第一符号组的频域位置。
Description
本申请涉及通信技术领域,尤其涉及一种频域位置确定方法、装置及设备。
在窄带物联网(Narrow Band Internet of Things,简称NB-IoT),终端设备在发送数据之前,需要先进行窄带物理随机接入。在窄带物理随机接入过程中,终端设备随机选择一个前导码,并向网络设备(例如基站)发送前导码,以使网络设备根据前导码进行上行链路的时间提前量(Time Advanced,简称TA)估计。为了使得网络设备能够根据前导码进行上行链路的TA估计,需要对终端设备发送的前导码进行跳频处理。
前导码包括多个重复单元,每个重复单元包括多个符号组,在终端设备发送该多个重复单元中的符号组时,需要确定发送每个符号组所使用的频域位置,以在相应的频域位置发送对应的符号组。在现有技术中,在确定前导码中的第i个(imod8=4)符号组的频域位置时,先根据伪随机序列生成第i个符号组的第一参数Y,当第i-4个符号组的频域位置为偶数时,则确定第i个符号组的频域位置为2*(Ymod6)+1,当第i-4个符号组的频域位置为奇数时,则确定第i个符号组的频域位置为2*(Ymod6)。其中,
为终端设备在子载波集合中选择的子载波的频域位置,f(i/2)的取值与伪随机序列相关,当两个终端设备位于同一小区时,该两个终端设备对应的f(i/2)相同,
通常为常数12。
由上可知,当两个终端设备位于同一小区时,若两个终端设备在子载波集合中选择的子载波的频域位置n
init相差6,则根据伪随机序列生成的该两个终端设备的第一参数Y也相差6,则根据现有技术中的方法确定得到该两个终端设备的第i个(imod8=4)符号组的频域位置相同,导致网络设备对TA的估计有误,进而影响数据传输的可靠性。
发明内容
本申请提供一种频域位置确定方法、装置及设备,提高了数据传输的可靠性。
第一方面,本申请提供一种频域位置确定方法,可以通过如下方法确定第一符号组的频域位置:根据伪随机序列确定第一符号组的第一参数,第一符号组的索引为i;根据第一参数、第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,其中,第二符号组的索引为i-4;根据第一参数以及第一跳频规则,确定第一符号组的频域位置。
在上述过程中,在选择第一符号组对应的第一跳频规则时,参考了第一符号组的第一参数Y,还可以对跳频规则进行设置,以使得当不同终端设备的第一符号组的第一参数Y不同时,可以使得不同终端设备的第一符号组的频域位置也不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况,进而可以避 免网络设备对TA的估计有误,进而提高了数据传输的可靠性。
在另一种可能的实施方式中,K满足如下条件中的至少一个:
可选的,
由于第一跳频规则指示在imod8=4时,
因此,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
在另一种可能的实施方式中,M满足如下条件中的至少一个:
Y+M>0;
由于第一跳频规则指示在imod8=4时,
因此,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
或者,
或者,
或者,
其中,x
1为奇数,x
2为偶数;
或者,
其中,x
3为奇数。
在另一种可能的实施方式中,N满足如下条件中的至少一个:
由于第一跳频规则指示在imod8=6时,
因此,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
在另一种可能的实施方式中,T满足如下条件中的至少一个:
由于第一跳频规则指示在imod8=6时,
因此,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
或者,
或者,
或者,
其中,p
1为大于等于0的整数,p
2为大于等于0的整数;
或者,
其中,p
3为大于等于0的整数。
第二方面,本申请提供一种频域位置确定装置,包括处理模块,其中,所述处理模块用于:
根据伪随机序列确定第一符号组的第一参数,所述第一符号组的索引为i;
根据所述第一参数、所述第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,其中,所述第二符号组的索引为i-4;
根据所述第一参数以及所述第一跳频规则,确定所述第一符号组的频域位置。
在另一种可能的实施方式中,所述K满足如下条件中的至少一个:
在另一种可能的实施方式中,所述M满足如下条件中的至少一个:
Y+M>0;
或者,
或者,
或者,
其中,所述x
1为奇数,所述x
2为偶数;
或者,
其中,所述x
3为奇数。
在另一种可能的实施方式中,所述N满足如下条件中的至少一个:
在另一种可能的实施方式中,所述T满足如下条件中的至少一个:
或者,
或者,
或者,
其中,p
1为大于等于0的整数,p
2为大于等于0的整数;
或者,
其中,p
3为大于等于0的整数。
第三方面,本申请提供一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于实现上述第一方面或任意实施方式所述的方法。
第四方面,本申请提供一种终端设备,包括处理模块和发送模块,其中,所述处理模块用于实现第一方面或其任一实现方式所述的频域位置确定方法,所述发送模块用于在频域位置上发送第一符号组。
可选的,终端设备还可以包括存储器,存储器用于存储计算机程序,所述处理器通过执行所述计算机程序实现第一方面或其任一实现方式所述的频域位置确定方法。
第五方面,本申请提供一种网络设备,包括处理模块和接收模块,其中,所述处理模块用于实现第一方面或其任一实现方式所述的频域位置确定方法,所述接收模块用于在频域位置上接收第一符号组。
可选的,网络设备还可以包括存储器,存储器用于存储计算机程序,所述处理器通过执行所述计算机程序实现第一方面或其任一实现方式所述的频域位置确定方法。
本申请提供的频域位置确定方法、装置及设备,在确定第一符号组的频域位置时,先根据伪随机序列确定第一符号组的第一参数,根据第一参数、第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,第二符号组的索引为i-4,并根据第一参数以及第一跳频规则,确定第一符号组的频域位置。在上述过程中,在选择第一符号组对应的第一跳频规则时,参考了第一符号组的第一参数Y,还可以对跳频规则进行设置,以使得当不同终端设备的第一符号组的第一参数Y不同时,可以使得不同终端 设备的第一符号组的频域位置也不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况,进而可以避免网络设备对TA的估计有误,进而提高了数据传输的可靠性。
图1为本申请提供的通信系统的架构图;
图2为本申请提供的前导码的示意图;
图3为本申请提供的符号组的示意图;
图4为申请提供的频域位置确定方法的流程示意图;
图5为本申请提供的频域位置确定装置的结构示意图;
图6为本申请提供的终端设备的结构示意图;
图7为本申请提供的网络设备的结构示意图。
图1为本申请提供的通信系统的架构图。请参见图1,在通信系统中包括网络设备101和多个终端设备,该多个终端设备分别记为终端设备102-1、102-2、……、102-6。终端设备可以在相同的时频资源上向网络设备发送多组数据。
可选的,网络设备101可以包括在第四代移动通信技术(The 4th Generation mobile communication technology,简称4G)无线基站(evolved Node B,简称eNB)、第五代移动通信技术(The 5th Generation mobile communication technology,简称5G)无线基站(g Node B,简称gNB)、传输和接收点、或微基站等。本申请对此不作具体限定。
可选的,终端设备102可以是物联网设备,例如,物联网设备可以包括打印机、车辆、智能家居设备等。终端设备还可以是其它通信终端,例如,手机、平板电脑等,本申请对此不作具体限定。
需要说明的是,图1只是以示例的形式示意一种本申请所适用的通信系统的架构图,并非对本申请所适用的通信系统的架构图的限定。
为了便于对本申请的理解,下面对前导码进行详细说明。
下面,结合图2-图3,以时分双工(Time Division Duplex,简称TDD)NB-IoT支持的前导码为例,对前导码进行详细介绍。
图2为本申请提供的前导码的示意图。图3为本申请提供的符号组的示意图。
请参见图2,一个前导码包括X个重复单元,每个重复单元中包括P个符号组。其中,X为大于1的正整数,P为大于1的正整数。可选的,X通常为预先设置的,或者X通过网络设备配置,P通常与前导码的格式相关。
请参见图3,一个符号组包含一个循环前缀CP和N个符号,该N个符号分别记为符号0、符号1、……、符号N-1。其中,循环前缀CP的时长为T
CP,N个符号的总时长为T
SEQ。
在实际应用过程中,针对不同格式的前导码,前导码中时间连续的符号组数G、和一个重复单元中包括的符号组数P不同,前导码中的符号组所对应的N、T
CP和T
SEQ也不相同。 下面,以TDD NB-IoT支持五种格式的前导码为例,对前导码的参数(P、G、N、T
CP和T
SEQ)进行说明,具体的,请参见表1。
表1
前导码格式 | 支持上下行子帧配比 | G | P | N | T CP | T SEQ |
format 0 | 1,2,3,4,5 | 2 | 4 | 1 | 4778T s | 1·8192T s |
format 1 | 1,4 | 2 | 4 | 2 | 8192T s | 2·8192T s |
format 2 | 3 | 2 | 4 | 4 | 8192T s | 4·8192T s |
format 0-a | 1,2,3,4,5 | 3 | 6 | 1 | 1536T s | 1·8192T s |
format 1-a | 1,4 | 3 | 6 | 2 | 3072T s | 2·8192T s |
例如,请参见表1,对于格式为format 0的前导码,该前导码的一个重复单元中包括4个符号组,时间连续的符号组数为2,一个符号组中包括1个符号。符号组的T
CP为4778T
s,符号组的T
sEQ为1·8192T
s,其中,T
s=1/(15000×2048)秒。
在实际应用过程中,对于格式为format 0、format 1和format 2的前导码,确定该三种格式的前导码中各符号组的频域位置的规则相同。对于格式为format 0-a和format 1-a的前导码,确定该两种格式的前导码中各符号组的频域位置的规则相同。
需要说明的是,在本申请中,前导码的格式为format 0、format 1和format 2中的任意一种,即,本申请中的前导码中的每个重复单元中包括4个符号组。
在实际应用过程中,在发送前导码之前,需要确定前导码中每个符号组的频域位置,以使得终端设备可以在该频域位置对应的频域资源上发送该符号组,即,以使得终端设备可以在该频域位置对应的频域资源上发送该符号组。
可选的,在确定前导码的跳频规则时,为了方便表述,频域位置可以通过子载波的索引表示。例如在180kHz带宽内,当子载波带宽为3.75kHz时,可以按照从低频到高频的顺序,对于子载波进行编号0,1,2,…,47,频域位置就可以使用这些编号索引来进行表示。在发送前导码时,频域资源的确定需要考虑使用前导码各个符号组所在子载波的索引和子载波的带宽的乘积。
例如,假设确定前导码中一个符号组所在子载波的索引为10,一个子载波的带宽为3.75kHz,则子载波索引10表示的频域资源为37.5kHz。
需要说明的是,为了便于描述,在本申请中通过子载波的索引表示频域位置,即,本申请所示的频域位置为子载波的索引。
对于格式为format 0、format 1或format 2的前导码,该前导码中符号组的频域位置(绝对频域位置,指的是前导码的一个符号组在系统带宽内的绝对频域位置)可以为如下公式一:
为分配给窄带物理随机接入信道(Narrowband Physical Random Access Channel,简称NPRACH)的第一个子载波的频域位置,
为分配给NPRACH的子载波个数,n
init为终端设备从集合
中选择的子载波的索引(也可以称为频域位置),或者n
init为根据网络设备为终端设备分配的子载波的索引确定,网络设备为终端设备分配的子载波的索引可以通过下行控制信息(Downlink Control Information,简称DCI) 进行指示。随机接入前导码的频域位置限制在
个子载波内,
为预设值,例如,
可以为12。
在本申请中,对按照预设规则确定频域位置(也可以称为相对频域位置,指的是前导码中一个符号组在跳频范围
内的相对频域位置)
的过程进行详细说明。需要说明的是,在没有特殊说明的情况下,本申请所示的频域位置为
条件一:一个重复单元内的符号组需要满足的条件。
可选的,一个重复单元内的符号组需要满足的条件是指:一个重复单元内的第一个符号组与第二个符号组的频域位置需要满足的条件,以及第三个符号组和第四个符号组的频域位置需要满足的条件。
当
为12时,第一个符号组与第二个符号组的频域位置需要满足的条件包括:当第一个符号组的频域位置(即,子载波的索引)为偶数时,第二个符号组的频域位置比第一个符号组的频域位置大1。当第一个符号组的频域位置为奇数,则第二个符号组的频域位置比第一个符号组的频域位置小1。
例如,第一个符号组和第二个符号组的频域位置关系可以如表2所示:
表2
第一个符号组的频域位置 | 第二个符号组的频域位置 |
0,2,4,6,8,10 | 第一个符号组的频域位置加1 |
1,3,5,7,9,11 | 第一个符号组的频域位置减1 |
当
为12时,第三个符号组和第四个符号组的频域位置需要满足的条件包括:当第三个符号组的频域位置小于6时,第四个符号组的频域位置比第三个符号组的频域位置大6。当第三个符号组的频域位置大于6时,第四个符号组的频域位置比第三个符号组的频域位置小6。
例如,第三个符号组和第四个符号组的频域位置关系可以如表3所示:
表3
第一个符号组的频域位置 | 第二个符号组的频域位置 |
0,1,2,3,4,5 | 第一个符号组的频域位置加6 |
6,7,8,9,10,11 | 第一个符号组的频域位置减6 |
条件二:不同重复单元内的符号组需要满足的条件。
可选的,不同重复单元的的符号组需要满足的条件是指:第一重复单元的第一个符号组与第二重复单元的第一个符号组的频域位置需要满足的条件,以及第一重复单元的第三个符号组与第二重复单元的第三个符号组的频域位置需要满足的条件。其中,第一重复单元和第二重复单元为前导码中两个相邻的重复单元。
当
为12时,第一重复单元的第一个符号组与第二重复单元的第一个符号组的频域位置需要满足的条件包括:当第一重复单元的第一个符号组的频域位置为奇数时,第二重复单元的第一个符号组的频域位置为偶数。当第一重复单元的第一个符号组的频域位置为偶数时,第二重复单元的第一个符号组的频域位置为奇数。
例如,第一重复单元的第一个符号组与第二重复单元的第一个符号组的频域位置关系可以如表4所示:
表4
当
为12时,第一重复单元的第三个符号组与第二重复单元的第三个符号组的频域位置需要满足的条件包括:当第一重复单元的第三个符号组的频域位置小于6时,第二重复单元的第三个符号组的频域位置大于或等于6。当第一重复单元的第三个符号组的频域位置大于或等于6时,第二重复单元的第三个符号组的频域位置小于6。
例如,第一重复单元的第三个符号组与第二重复单元的第三个符号组的频域位置关系可以如表5所示:
表5
本申请提供一种频域位置确定方法,在确定一个符号组的频域位置时,先确定第一符号组的第一参数Y,再根据第一参数、第一符号组的索引、以及第二符号组的频域位置,确定第一符号组的频域位置。其中,第二符号组的索引比第一符号组的索引小4。在上述过程中,在确定第一符号组的频域位置时,结合了第一符号组的第一参数Y,即,第一符号组的频域位置与Y相关,使得当不同终端设备的第一符号组的Y不同时,可以使得不同终端设备的第一符号组的频域位置也不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况,进而可以避免网络设备对TA的估计有误,进而提高了数据传输的可靠性。
下面,通过具体实施例,对本申请所示的技术方案进行详细说明。需要说明的是,下面几个具体实施例可以相互结合,对于相同或相似的内容,在不同的实施例中不再进行重复说明。
图4为申请提供的频域位置确定方法的流程示意图。请参见图4,该方法可以包括:
S401、根据伪随机序列确定第一符号组的第一参数。
其中,第一符号组的索引为i。
可选的,imod8=4。
进一步的,imod8还可以为6。
可选的,可以通过如下公式二确定第一符号组的第一参数:
其中,
n
init是终端设备从集合
中选择的子载波的索 引,
为分配给NPRACH的子载波数。或者n
init为根据网络设备为终端设备分配的子载波的索引确定,网络设备为终端设备分配的子载波的索引可以通过DCI进行指示。
f(-1)=0。
当c(n)为长度为31的Gold序列时,c(n)可以表示为:
c(n)=(x
1(n+N
C)+x
2(n+N
C))mod2
x
1(n+31)=(x
1(n+3)+x
1(n))mod2
x
2(n+31)=(x
2(n+3)+x
2(n+2)+x
2(n+1)+x
2(n))mod2
其中,Gold序列的长度记为M
PN,n=0,1,…,M
PN-1,N
C=1600,Gold序列的第一个m序列初始化种子满足x
1(0)=1,x
1(n)=0,n=1,2,…,30,Gold序列的第二个m序列的初始化种子表示为
S402、根据第一参数、第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则。
其中,所述第二符号组的索引为i-4。
可选的,该至少一个跳频规则可以为预设的。相应的,第一调频规则可以为从至少一个跳频规则中选择出来的。
可选的,至少一个跳频规则中每一个跳频规则包括选择条件,选择条件与第一参数、第一符号组的索引i和第二符号组的频域位置相关。在选择第一符号组的第一跳频规则时,若第一符号组的第一参数、第一符号组的索引i和第二符号组的频域位置满足一个选择条件,则将该选择条件对应的跳频规则确定为第一符号组的跳频规则。
例如,请参见如下4个跳频规则:
需要说明的是,跳频规则的选择条件中的各个子条件之间是和的关系,即当所有子条件都满足时才会将该跳频规则确定为第一跳频规则。
需要说明的是,在确定第一符号组的第一跳频规则时,还可以根据第一符号组的第一参数、第一符号组的索引i和第二符号组的频域位置,生成第一跳频规则。
S403、根据第一参数以及第一跳频规则,确定第一符号组的频域位置。
可选的,第一跳频规则可以包括与第一参数相关的计算公式,可以将第一参数代入至对应的计算公式,以得到第一符号组的频域位置。
可选的,在确定得到第一符号组的频域位置之后,在该频域位置上发送该第一符号组。
前导码中包括多个符号组,针对前导码中的任意一个符号组,在发送该符号组之前,均需要确定该符号组的频域位置。
可选的,在发送前导码的过程中,可以单独发送每一个符号组,即,在确定得到一个符号组的频域位置之后,即可在该频域位置上发送该符号组。或者,也可以一起发送前导码中的各个符号组,即,在确定得到前导码中所有符号组的频域位置之后,再分别在各个频域位置上发送对应的符号组。
本申请提供的频域位置确定方法,在确定第一符号组的频域位置时,先根据伪随机序列确定第一符号组的第一参数,根据第一参数、第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,第二符号组的索引为i-4,并根据第一参数以及第一跳频规则,确定第一符号组的频域位置。在上述过程中,在选择第一符号组对应的第一跳频规则时,参考了第一符号组的第一参数Y,还可以对跳频规则进行设置,以使得当不同终端设备的第一符号组的第一参数Y不同时,可以使得不同终端设备的第一符号组的频域位置也不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况,进而可以避免网络设备对TA的估计有误,进而提高了数据传输的可靠性。
上述图4对应的频域位置确定方法,在终端设备侧和网络设备侧都需要使用。
对于终端设备来说,在确定该第一符号组的频域位置之后,可以在该频域位置上发送该第一符号组。对于该终端设备发送前导码来说,除了确定该第一符号组的频域位置之外,还需要确定该前导码的其他符号组的频域位置,并在确定的频域位置上发送其他符号组。
而网络设备需要确定待接收的前导码的每个符号组的频域位置,该待接收的前导码包括该第一符号组,该网络设备在确定所有符号组的频域位置后,在这些频域位置上接收并检测该前导码。
在上述任意一个实施例的基础上,本申请设置了跳频规则,以使得当不同终端设备的第一符号组的第一参数Y不同时,根据本申请所示的跳频规则确定得到的第一符号组的频域位置也不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
下面,分别对imod8=4,以及imod8=6时本申请所设置的跳频规则进行详细说明。
针对imod8=4,跳频规则至少可以包括如下两种可行的实现方式:
第一种可能的实现方式:
可选的,K的取值是预设的,K可以满足如下条件中的至少一个:
可选的,K的取值是预设的,K可以如下:
其中,在上述第一个跳频规则中,K为1。在上述第二个和第三个跳频规则中,K为0。在上述第四个跳频规则中,K为-1。
需要说明的是,当上述跳频规则的选择条件中的Y不同时,跳频规则中的K也可以不同。
例如,针对上述第一个跳频规则,可以根据选择条件中Y的不同,将该一个跳频规则拆解为如下四个跳频规则:
针对拆解后的第一个跳频规则,K可以为7,当然,K还可以为1或3或5。针对拆解后的第二个跳频规则,K可以为5,当然,K还可以为1或3。针对拆解后的第三个跳频规则,K可以为3,当然,K还可以为1。
需要说明的是,在实际应用过程中,可以根据实际需要根据选择条件中的Y,确定K的取值,只要K的取值可以满足上述K对应的条件1和条件2即可。
可选的,还可以采用不同表示方式示意跳频规则中的选择条件。
例如,针对如下跳频规则:
选择条件Y=0,2,4,6,8,10的示意方式还可以为:
Y为[0,11]之间的任意偶数。或者,Ymod2=0或者,Y为0,2,4,6,8,10中的任意数。
一般性地,对于跳频规则中任意一个如下格式的选择条件,XX=0,2,4,6,8,10,可能的示意方式还可以为XX为[0,11]之间的任意偶数。或者,XX mod2=0。或者,XXmod2=0,且XX∈[0,11等。
一般性地,对于跳频规则中任意一个如下格式的选择条件,XX=1,3,5,7,9,11,可能的 示意方式还可以为XX为[0,11]之间的任意奇数。或者,XX mod2=1。或者,XXmod2=1,且XX∈[0,11等。
需要说明的是,在实际应用过程中,可以采用任意一种表示方式示意选择条件,本申请对选择条件的表示形式不作具体限定。其中,若两个选择条件的表示方式不同,但是可以相互推导得到、且表达的含义相同,则可以确定该两个选择条件相同。
针对imod8=4的情况,当跳频规则指示
时,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
第二种可能的实现方式:
可选的,K的取值是预设的,M可以满足如下条件中的至少一个:
条件1:Y+M>0;
可选的,K的取值是预设的,M可以如下:
其中,x
1为奇数,x
2为偶数。
当x
1为1,x
2为0时,跳频规则可以如下所示:
或者,
需要说明的是,在实际应用过程中,可以根据实际需要设置跳频规则中选择条件的表示形式以及跳频规则的表示形式,本申请对此不作具体限定。
针对imod8=4的情况,当跳频规则指示
时,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
或者,
或者,
或者,
其中,所述x
1为奇数,所述x
2为偶数;
或者,
其中,所述x
3为奇数。
需要说明的是,针对上述任意一个跳频规则公式,当跳频规则公式中包括至少两个跳频规则时,对跳频规则中包括的至少两个跳频规则的前后顺序不作具体限定。
需要说明的是,上述只是以示例的形式示意第i个符号组满足imod8=4时对应的确定频域位置的跳频规则,对于其它符号组,确定频域位置的跳频规则可以如下:
针对imod8=6,跳频规则至少可以包括如下两种可行的实现方式:
第一种可能的实现方式:
可选的,N的取值是预设的,N满足如下条件中的至少一个:
可选的,N的取值是预设的,N可以如下:
其中,在上述第一个调频规则中,N为6。在上述第二个和第三个调频规则中,N为0。在上述第四个调频规则中,N为-6。
需要说明的是,当上述跳频规则的选择条件中的Y不同时,跳频规则中的N也可以不同。
例如,针对上述第一个跳频规则,可以根据选择条件中Y的不同,将该一个跳频规则拆解为如下四个跳频规则:
针对拆解后的第一个调频规则,N可以为10,当然,N还可以为6或7或8或9,。针对拆解后的第二个调频规则,N可以为8,当然,N还可以我6或7。针对拆解后的第三个调频规则,N可以为7,当然,N还可以为6。
需要说明的是,在实际应用过程中,可以根据实际需要根据选择条件中的Y,确定N的取值,只要N的取值可以满足上述N对应的条件1和条件2即可。
需要说明的是,需要说明的是,在实际应用过程中,可以根据实际需要设置跳频规则中选择条件的表示形式以及跳频规则的表示形式,本申请对此不作具体限定。
针对imod8=6的情况,当跳频规则指示
时,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在符号组的频域位置相同的情况。
第二种可能的实现方式:
可选的,T的取值是预设的,T可以满足如下条件中的至少一个:
可选的,T的取值是预设的,T可以如下:
其中,p
1=0,1,2,3…,p
2=0,1,2,3……。
当p
1=0,p
2=0时,调频规则可以如下:
或者,
需要说明的是,在实际应用过程中,可以根据实际需要设置跳频规则中选择条件的表示形式以及跳频规则的表示形式,本申请对此不作具体限定。
需要说明的是,对于跳频规则中任意一个如下格式的选择条件,XX=0,1,2,3,4,5,可能的示意方式还可以为XX<5。
需要说明的是,对于跳频规则中任意一个如下格式的选择条件,XX=6,7,8,9,10,11,可能的示意方式还可以为XX≥6。
针对imod8=6的情况,当跳频规则指示
时,当两个终端设备的第一符号组对应的Y不同时,可以使得第一符号组的频域位置不同,相应地,对于需要根据该第一符号组的频域位置确定频域位置的其他符号组来说,该其他符号组的频域位置也不同。即使两个终端设备的第一符号组对应的Y相差6,也不会导致第一符号组的频域位置相同,进而可以避免出现不同终端设备存在第一符号组的频域位置相同的情况。
或者,
或者,
或者,
其中,p
1为大于等于0的整数,p
2为大于等于0的整数;
或者,
其中,p
3为大于等于0的整数。
需要说明的是对上述跳频规则公式中的前后顺序不作具体限定。
需要说明的是,针对本申请提供的上述至少四种形式的跳频规则:imod8=4时
或
以及imod8=6时
或
跳频规则组(包括多个跳频规则)中可以包括上述四种形式的跳频规则中的一种或多种,即,上述四种形式的跳频规则可以以任意组合的方式出现在一个调频规则组中。
例如,跳频规则组可以为:
例如,跳频规则组可以为:
例如,跳频规则组可以为:
需要说明的是,上述只是以示例的形式示意跳频规则组中包括的跳频规则的形式、以及跳频规则,并非对跳频规则组的限定,在实际应用过程中,可以根据实际需要设置跳频规则组中包括的跳频规则的形式以及跳频规则,本申请对此不作具体限定。
需要说明的是,上述只是以示例的形式示意第i个符号组满足imod8=4和第i个符号组满足imod8=6对应的确定频域位置的跳频规则,对于其它符号组,确定频域位置的跳频规则可以如下:
图5为本申请提供的频域位置确定装置的结构示意图。请参见图5,该装置可以包括处理模块11,其中,
所述处理模块11用于,根据伪随机序列确定第一符号组的第一参数,所述第一符号组的索引为i;
所述处理模块11还用于,根据所述第一参数、所述第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,其中,所述第二符号组的索引为i-4;
所述处理模块11还用于,根据所述第一参数以及所述第一跳频规则,确定所述第一符号组的频域位置。
可选的,处理模块11可以执行图4实施例中的S401-S403。
可选的,处理模块11可以为处理器。例如,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
可选的,频域位置确定装置还可以包括存储器,在存储器中存储有程序指令,处理模块11可以执行存储器中的程序指令实现上述方法实施例所示的频域位置确定方法。
需要说明的是,本申请所示的频域位置确定装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在另一种可能的实施方式中,所述K满足如下条件中的至少一个:
在另一种可能的实施方式中,所述M满足如下条件中的至少一个:
Y+M>0;
或者,
或者,
或者,
其中,所述x
1为奇数,所述x
2为偶数;
或者,
其中,所述x
3为奇数。
在另一种可能的实施方式中,所述N满足如下条件中的至少一个:
在另一种可能的实施方式中,所述T满足如下条件中的至少一个:
或者,
或者,
或者,
其中,p
1为大于等于0的整数,p
2为大于等于0的整数;
或者,
其中,p
3为大于等于0的整数。
需要说明的是,本申请所示的频域位置确定装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图6为本申请提供的终端设备的结构示意图。请参见图6,该终端设备包括处理模块11和发送模块12,其中,发送模块12用于,在所述频域位置上发送所述第一符号组。
或者,终端设备包括频域位置确定装置(包括处理模块11)和发送模块12。
需要说明的是,终端设备中的处理模块11与频域位置确定装置中的处理模块11的功能与实现方式相同,此处不再进行赘述。
还需要说明的,该终端设备的处理模块11除了确定该第一符号组的频域位置之外,还需要确定该前导码的其他符号组的频域位置,并通过发送模块12在确定的这些频域位置上发送这些其他符号组。
图7为本申请提供的网络设备的结构示意图。请参见图7,该网络设备可以包括处理 模块11和接收模块13,其中,接收模块13用于,在所述频域位置上接收所述第一符号组。
或者,终端设备包括频域位置确定装置(包括处理模块11)和接收模块13。
需要说明的是,网络设备中的处理模块11与频域位置确定装置中的处理模块11的功能与实现方式相同,此处不再进行赘述。
还需要说明的,该网络设备中的处理模块11还用于确定待接收的前导码中除了该第一符号组之外的其他每个符号组的频域位置,所述接收模块13用于在所述处理模块11确定的所有符号组的频域位置上接收并检测该前导码。
可选的,上述处理模块11、发送模块12以及接收模块13可以为纯硬件实现(如处理器),也可以为软件实现(计算机程序模块),还可以是硬件与软件的结合。其中,硬件与软件的结合实现方式可以是处理器执行存储器中的计算机程序以实现本发明各实施例的实现方式。
本申请提供一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于实现上述任一方法实施例所述的方法。
本申请提供一种芯片,该芯片用于支持终端设备实现本申请实施例所示的功能,例如,处理或发送上述方法中所涉及的数据和/或信息,该芯片具体用于芯片系统,该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。当实现上述频域位置确定方法的为终端设备内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。处理单元执行本申请实施例中终端设备的处理模块所执行的全部或部分动作,通信单元可执行相应于本申请实施例中终端设备的发送模块所执行的动作,例如,当终端设备的发送模块发送的是射频信号时,则通信单元发送的是该射频信号对应的基带信号。在另一具体的实施例中,本申请中的终端设备具体可以是芯片,即终端设备的处理模块是芯片的处理单元,终端设备的发送模块是芯片的通信单元。
本申请提供一种芯片,该芯片用于支持网络设备实现本申请实施例所示的功能,例如,处理或接收上述方法中所涉及的数据和/或信息,该芯片具体用于芯片系统,该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。当实现上述频域位置确定方法的为网络设备内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。处理单元执行本申请实施例中网络设备的处理模块所执行的全部或部分动作,通信单元可执行相应于本申请实施例中网络设备的接收模块所执行的动作,例如,当网络设备的接收模块接收的是射频信号时,则通信单元接收的是该射频信号对应的基带信号。在另一具体的实施例中,本申请中的网络设备具体可以是芯片,即网络设备的处理模块是芯片的处理单元,网络设备的接收模块是芯片的通信单元。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
Claims (31)
- 一种频域位置确定方法,其特征在于,包括:根据伪随机序列确定第一符号组的第一参数,所述第一符号组的索引为i;根据所述第一参数、所述第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,其中,所述第二符号组的索引为i-4;根据所述第一参数以及所述第一跳频规则,确定所述第一符号组的频域位置。
- 一种频域位置确定装置,其特征在于,包括处理模块,其中,所述处理模块用于:根据伪随机序列确定第一符号组的第一参数,所述第一符号组的索引为i;根据所述第一参数、所述第一符号组的索引i和第二符号组的频域位置,从至少一个跳频规则中确定第一跳频规则,其中,所述第二符号组的索引为i-4;根据所述第一参数以及所述第一跳频规则,确定所述第一符号组的频域位置。
- 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序用于实现权利要求1-15任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098371 WO2020024229A1 (zh) | 2018-08-02 | 2018-08-02 | 频域位置确定方法、装置及设备 |
CN201880095461.8A CN112385169B (zh) | 2018-08-02 | 2018-08-02 | 频域位置确定方法、装置及设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098371 WO2020024229A1 (zh) | 2018-08-02 | 2018-08-02 | 频域位置确定方法、装置及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020024229A1 true WO2020024229A1 (zh) | 2020-02-06 |
Family
ID=69230547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/098371 WO2020024229A1 (zh) | 2018-08-02 | 2018-08-02 | 频域位置确定方法、装置及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112385169B (zh) |
WO (1) | WO2020024229A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022067735A1 (zh) * | 2020-09-30 | 2022-04-07 | Oppo广东移动通信有限公司 | 频域位置确定方法、装置、设备及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023173440A1 (zh) * | 2022-03-18 | 2023-09-21 | Oppo广东移动通信有限公司 | 无线通信方法、装置、设备、存储介质及程序产品 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170223743A1 (en) * | 2016-01-29 | 2017-08-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Frequency Hopping for Random Access |
CN108260108A (zh) * | 2018-01-16 | 2018-07-06 | 重庆邮电大学 | 一种基于非正交的窄带物联网NB-IoT随机接入方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2701328B1 (en) * | 2011-04-19 | 2016-03-23 | Panasonic Intellectual Property Corporation of America | Communication method and device |
CN106102182B (zh) * | 2016-06-07 | 2019-02-19 | 北京交通大学 | 非正交随机接入方法 |
US11284413B2 (en) * | 2016-08-12 | 2022-03-22 | Beijing Xiaomi Mobile Software Co., Ltd. | Traffic type based scheduling in a wireless network and device |
-
2018
- 2018-08-02 CN CN201880095461.8A patent/CN112385169B/zh active Active
- 2018-08-02 WO PCT/CN2018/098371 patent/WO2020024229A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170223743A1 (en) * | 2016-01-29 | 2017-08-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Frequency Hopping for Random Access |
CN108260108A (zh) * | 2018-01-16 | 2018-07-06 | 重庆邮电大学 | 一种基于非正交的窄带物联网NB-IoT随机接入方法 |
Non-Patent Citations (1)
Title |
---|
3GPP: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation", 3GPP TS 36.211, 29 September 2016 (2016-09-29), pages 152 - 154 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022067735A1 (zh) * | 2020-09-30 | 2022-04-07 | Oppo广东移动通信有限公司 | 频域位置确定方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112385169A (zh) | 2021-02-19 |
CN112385169B (zh) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018082457A1 (zh) | 配置参考信号的方法和装置 | |
US9363055B2 (en) | Method and apparatus for configuring a sounding reference signal for a segment carrier | |
WO2022022579A1 (zh) | 一种通信方法及装置 | |
CN108282903A (zh) | 一种信息传输方法、ue及接入网实体 | |
WO2016122763A1 (en) | Aperiodic channel state information (csi) reporting for carrier aggregation | |
WO2018121123A1 (zh) | 发送/接收参考信号的方法及终端设备、网络设备 | |
EP3595223B1 (en) | Method and device for sending demodulation reference signal, demodulation method and device | |
TWI762531B (zh) | 資源映射的方法和通訊設備 | |
US12132570B2 (en) | Sequence-based signal transmission method and communication apparatus | |
WO2020024229A1 (zh) | 频域位置确定方法、装置及设备 | |
WO2022147735A1 (zh) | 确定发送功率的方法及装置 | |
WO2017121384A1 (zh) | 一种无线帧的传输方法以及无线网络设备 | |
WO2020098594A1 (zh) | 一种序列的生成及处理方法和装置 | |
WO2018132944A1 (zh) | 信号传输方法和设备 | |
WO2019214586A1 (zh) | 通信方法和通信装置 | |
CN114631375A (zh) | 参考信号传输方法及装置 | |
WO2018126968A1 (zh) | 一种信号发送、接收方法及装置 | |
CN114698110A (zh) | 资源映射方法、装置及设备 | |
EP3614611B1 (en) | Communication method and device | |
CN109802811B (zh) | 物理层上行控制信道pucch资源的配置方法及用户终端 | |
WO2019095946A1 (zh) | 多时隙传输的方法和设备 | |
WO2022262584A1 (zh) | 一种通信方法及装置 | |
CN115134048B (zh) | 上行传输方法及装置、终端及可读存储介质 | |
WO2024077612A1 (zh) | 一种通信方法及装置 | |
CN114257484B (zh) | 一种符号应用方法及通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18928566 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18928566 Country of ref document: EP Kind code of ref document: A1 |