WO2021244403A1 - 一种信号发送方法、信号接收方法与相关装置 - Google Patents

一种信号发送方法、信号接收方法与相关装置 Download PDF

Info

Publication number
WO2021244403A1
WO2021244403A1 PCT/CN2021/096535 CN2021096535W WO2021244403A1 WO 2021244403 A1 WO2021244403 A1 WO 2021244403A1 CN 2021096535 W CN2021096535 W CN 2021096535W WO 2021244403 A1 WO2021244403 A1 WO 2021244403A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
complex number
number set
equal
modulation
Prior art date
Application number
PCT/CN2021/096535
Other languages
English (en)
French (fr)
Inventor
高翔
谢信乾
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21818274.9A priority Critical patent/EP4152712A4/en
Publication of WO2021244403A1 publication Critical patent/WO2021244403A1/zh
Priority to US18/071,200 priority patent/US20230103770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3461Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel
    • H04L27/3483Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel using a modulation of the constellation points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communication technology, and in particular to a signal sending method, signal receiving method and related devices.
  • Constellation mapping is a commonly used digital modulation technique, which maps information-carrying bit sequences (or bit streams) into symbol sequences suitable for actual channel transmission.
  • constellation mapping refers to mapping a bit stream to a point on a complex plane; the complex plane is a complex set of all values of the constellation map representing the output symbols of the constellation map, and each constellation point in the constellation map corresponds to the output A value of the symbol.
  • the design of the constellation diagram affects the signal transmission performance, such as bit error rate and throughput. Therefore, how to obtain a constellation diagram with better transmission performance is a problem that needs to be considered.
  • the purpose of this application is to provide a signal sending method, a signal receiving method, and related devices to improve signal transmission performance.
  • a signal sending method which is applied to a sending device.
  • the ratio of is equal to M:N, the M and N are positive integers, and the greatest common divisor of M and N is 1, and the M also satisfies at least one of the following:
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128;
  • the modulation symbol is sent to the receiving device.
  • the complex number set corresponding to the modulation symbol obtained from the bitstream modulation value satisfies the above-mentioned conditions, and the complex number set, that is, the constellation diagram, can achieve better transmission performance.
  • the complex number set of this application can lower the demodulation threshold of the receiving device compared to QAM.
  • condition 1 a modulation symbol carries the same bit
  • condition 2 the same demodulation threshold
  • the complex number set of this application can achieve higher throughput and lower error block compared with QAM Rate.
  • the complex number set further satisfies: the imaginary part of the third complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the fourth complex number with the smallest absolute value of the imaginary part in the complex number set
  • the ratio between is equal to the M:N.
  • the complex number set satisfies: the ratio between the real part of the first complex number with the largest real part absolute value and the real part of the second complex number with the smallest real part absolute value in the complex number set is equal to M:N, And the ratio between the imaginary part of the third complex number with the largest absolute value of the imaginary part and the imaginary part of the fourth complex number with the smallest absolute value of the imaginary part in the complex number set is equal to the M:N.
  • the complex number set that is, the real part and the imaginary part on the constellation diagram have the same constraint conditions, and the contour surrounded by the points with the largest absolute value of the real part and the largest absolute value of the imaginary part on the constellation diagram is a regular contour such as a circle.
  • the method further includes: determining the complex number set according to a modulation and coding scheme, wherein, when the modulation and coding scheme is a first modulation and coding scheme, the complex number set is a first complex number Set; in the case that the modulation and coding method is the second modulation and coding method, the complex number set is the second complex number set;
  • the K complex numbers in the first complex number set are multiplied by the real number A
  • the second complex number set is The values of the K complex numbers multiplied by the real number B are respectively equal
  • the YK complex numbers in the first complex number set excluding the K complex numbers are the same as the YK complex numbers in the second complex number set excluding the K complex numbers Values of YK complex numbers multiplied by any non-zero real number are not equal, and the real number A and the real number B are normalization coefficients.
  • each complex number set can be stored in two parts, the first part stores the value obtained by multiplying the K complex numbers in the complex number set by the real number A, and the second part stores the real-time A that is normalized ⁇ factor. Therefore, the first part of multiple complex number sets has the same value, so only one part needs to be stored as a common part, and the overall storage overhead is low.
  • the modulus of any one of the K complex numbers in the first complex number set is greater than the modulus of any one of the YK complex numbers in the first complex number set; And/or, the modulus value of any one of the K complex numbers in the second complex number set is greater than the modulus value of any one of the YK complex numbers in the second complex number set.
  • the K is equal to 32.
  • the modulus values of the K complex numbers in the first complex number set are arranged in descending order
  • the modulus values of the first P complex numbers are divided by the P complex numbers in the first complex number set
  • the ratio of the modulus values of the other KP complex numbers is equal to Q
  • the Q is a positive number greater than 1
  • the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42;
  • the modulus values of the K complex numbers in the second complex number set are arranged in descending order, the modulus values of the first P complex numbers and the modulus values of the KP complex numbers other than the P complex numbers in the second complex number set
  • the ratio of is equal to Q, the Q is a positive number greater than 1, and the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42.
  • the ratio of the modulus of the P complex numbers of the K complex numbers in the complex number set to the KP complex numbers other than the P complex numbers satisfies the condition that 1.34 is less than 1.42.
  • the K complex numbers are as wide as possible In the distance between P complex numbers and KP complex numbers, the longer distance between the two complex numbers can facilitate the receiving end to accurately determine the complex number closest to the value of the received modulation symbol, and improve the demodulation accuracy.
  • the same modulation order n corresponds to multiple complex number sets
  • the modulation symbol obtained after the sending device maps and modulates the bit stream is one of the multiple complex number sets
  • the sending device can indicate which one the receiving device is.
  • the complex number set is convenient for the receiving device to demodulate the modulation symbols according to the complex number set.
  • the sending device sends indication information to the receiving device, where the indication information is used to indicate the complex set corresponding to the modulation symbol.
  • the prompt information may be control information DCI.
  • the sending device sends the control information DCI to the receiving device, where the DCI is scrambled using first information, and the first information is used to indicate a complex set corresponding to the modulation symbol.
  • the sending device uses a hermit method to indicate the complex number set corresponding to the modulation symbol of the receiving device.
  • a signal receiving method applied to a receiving device including: receiving modulation symbols from a sending device; performing demodulation processing on the modulation symbols according to a complex number set corresponding to the modulation symbols to obtain a bit stream;
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128.
  • the value of the modulation symbol detected by the receiving device is one of a plurality of complex number sets, and the complex number set satisfies the above-mentioned conditions, and the complex number set, that is, the constellation diagram, can achieve better transmission performance.
  • the complex number set of this application can lower the demodulation threshold of the receiving device compared to QAM.
  • condition 1 a modulation symbol carries the same bit
  • condition 2 the same demodulation threshold
  • the complex number set further satisfies: the imaginary part of the third complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the fourth complex number with the smallest absolute value of the imaginary part in the complex number set
  • the ratio between is equal to the M:N.
  • the plurality of complex number sets include a first complex number set and a second complex number set, the first complex number set is determined according to a first modulation and coding scheme, and the second complex number set is determined according to the first complex number set.
  • the second modulation and coding method is determined; when the modulation order corresponding to the first modulation and coding method is equal to that of the second modulation and coding method, the K complex numbers in the first complex number set are multiplied by the real number A, and The values of the K complex numbers in the second complex number set multiplied by the real number B are respectively equal, and the YK complex numbers in the first complex number set excluding the K complex numbers are the same as those in the second complex number set The values of YK complex numbers other than the K complex numbers multiplied by any non-zero real number are not equal, and the real number A and the real number B are normalization coefficients.
  • the modulus of any one of the K complex numbers in the first complex number set is greater than the modulus of any one of the YK complex numbers in the first complex number set; And/or, the modulus value of any one of the K complex numbers in the second complex number set is greater than the modulus value of any one of the YK complex numbers in the second complex number set.
  • the K is equal to 32.
  • the modulus values of the K complex numbers in the first complex number set are arranged in descending order
  • the modulus values of the first P complex numbers are divided by the P complex numbers in the first complex number set
  • the ratio of the modulus values of the other KP complex numbers is equal to Q
  • the Q is a positive number greater than 1
  • the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42;
  • the modulus values of the K complex numbers in the second complex number set are arranged in descending order, the modulus values of the first P complex numbers and the modulus values of the KP complex numbers other than the P complex numbers in the second complex number set
  • the ratio of is equal to Q, the Q is a positive number greater than 1, and the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42.
  • the method before the demodulation processing is performed on the modulation symbols according to the complex number set corresponding to the modulation symbols, the method further includes: receiving indication information from the sending device, where the indication information is used to indicate The complex number set corresponding to the modulation symbol.
  • the method before the demodulation processing is performed on the modulation symbols according to the complex number set corresponding to the modulation symbols, the method further includes: receiving control information DCI sent from the transmitting device, and the DCI uses the first Information scrambling, and the first information is used to indicate a complex set corresponding to the modulation symbol.
  • a sending device including:
  • the processing unit is configured to perform modulation processing on the bit stream to generate modulation symbols, wherein the modulation order of the bit stream is n, the value of the modulation symbol is one of a plurality of complex number sets, and the plurality of complex number sets
  • the ratio of is equal to M:N, the M and N are positive integers, and the greatest common divisor of M and N is 1, and the M also satisfies at least one of the following:
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128;
  • the transceiver unit is used to send the modulation symbol to the receiving device.
  • a receiving device including:
  • the transceiver unit is used to receive modulation symbols from the sending device
  • a processor unit configured to perform demodulation processing on the modulation symbol according to the complex number set corresponding to the modulation symbol to obtain a bit stream
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128.
  • a sending device including at least one processor, the at least one processor is coupled with at least one memory; the at least one processor is configured to execute the computer program stored in the at least one memory or Instructions to cause the device to execute the method provided in the above-mentioned first aspect.
  • a receiving device including at least one processor, the at least one processor is coupled to at least one memory; the at least one processor is configured to execute a computer program or a computer program stored in the at least one memory Instructions so that the device executes the method provided in the above second aspect.
  • a chip which is coupled with a memory in a communication device, so that the chip invokes the program instructions stored in the memory during operation, so that the device executes the above-mentioned first aspect. method.
  • a chip which is coupled with a memory in a communication device, so that the chip calls the program instructions stored in the memory when it is running, so that the device executes the above-mentioned second aspect. method.
  • a communication system including:
  • a sending device for implementing the method provided in the above first aspect.
  • a receiving device for implementing the method provided in the above second aspect.
  • a computer-readable storage medium stores a computer program or instruction.
  • the computer reads and executes the computer program or instruction, the computer executes the first The method provided by the aspect.
  • a computer-readable storage medium in which a computer program or instruction is stored.
  • the computer reads and executes the computer program or instruction, the computer executes the above-mentioned Two methods provided.
  • a computer program product is also provided, which when the computer program product runs on a computer, causes the computer to execute the method provided in the above-mentioned first aspect.
  • a computer program product is also provided, which when the computer program product runs on a computer, causes the computer to execute the method provided in the above-mentioned second aspect.
  • FIG. 1 is a schematic diagram of communication between a sending device and a receiving device according to an embodiment of the application
  • Figure 2 is a schematic diagram of a QAM constellation diagram
  • Figure 3 is a schematic diagram of a non-uniform constellation diagram
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a signal sending method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a plurality of plural sets provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is another schematic diagram of a communication device provided by an embodiment of this application.
  • the process of sending information from the sending device to the receiving device includes: modulating the bit stream actually to be transmitted by the sending device to make the modulated signal (called modulation symbol) suitable for transmission.
  • the receiving device demodulates the received signal after passing through the actual channel (the inverse process of modulation) to obtain the bit stream to be transmitted by the sending device.
  • the bit stream is the input signal of the modulation module (such as the modulator) in the sending device.
  • the bit stream refers to the signal containing information that the sending device actually wants to transmit.
  • the bit stream can also be called a bit sequence.
  • the "information" in the signal containing the "information” described here may be a service data packet generated during the process of executing the service by the sending device.
  • the "service performed by the sending device” may include running various applications on the sending device. For example, in a scenario where a sending device runs a WeChat application to make a voice call with a contact, the "information" may be a voice data packet, that is, a bit stream is a signal including a voice data packet.
  • the "information" may be text information, etc., that is, a bit stream is a signal containing text information.
  • bit stream in this article can also be referred to as “signal to be processed”, “signal to be sent”, “signal to be modulated”, etc., as long as it represents the meaning described above. It is not limited.
  • the bit stream is the signal after the channel coding of the signal containing the information generated by the sending device, that is, the input signal of the modulation module is the signal (bit stream) after the channel coding.
  • Modulation refers to the modulation of the bit stream by the modulation module, that is, the bit stream is modulated into symbols suitable for transmission in the actual channel.
  • Constellation mapping is a signal modulation method. Constellation mapping can be understood as mapping the bit stream to a point on a complex plane. For example, every n bit in the bit stream (n is also called the modulation order, n is greater than or equal to 2) can be mapped to a point on the complex plane. Point, the point on the complex plane has a higher frequency and is suitable for transmission on the actual channel.
  • the modulation symbol is the output symbol obtained by modulating the bit stream by the modulation module.
  • the value of the modulation symbol is a point on the complex plane. Assuming that the horizontal axis of the complex plane is the real part and the vertical axis is the imaginary part, the coordinates of this point can be expressed as (a+bi), and the vector corresponding to this point ( The modulus of the vector from the center of the complex plane to the point) is The phase is arctan(b/a).
  • this article only refers to the output signal modulated by the modulation module on the bit stream as a modulation symbol, which may also be referred to as a modulation signal or other names, which is not limited in the embodiment of the present application.
  • the sending device modulates the bit stream to obtain modulation symbols
  • the modulation symbols are transmitted on the actual channel.
  • the receiving device performs signal detection on the actual channel.
  • the signal is demodulated to obtain a bit stream, which is the signal containing information to be sent by the sending device, such as the voice data packet in the previous example , Text messages, etc. It should be noted that this process is the inverse process of signal modulation, that is, the modulation symbol is restored to a bit stream.
  • the most common constellation diagrams include pulse amplitude modulation (PAM) in one-dimensional real number space, quadrature amplitude modulation (QAM) in two-dimensional real number space, and phase shift keying (PSK). ) Modulation and so on.
  • PAM pulse amplitude modulation
  • QAM quadrature amplitude modulation
  • PSK phase shift keying
  • each n bit in the bit stream can be mapped to a constellation point, that is, a constellation point represents a bit stream of n bits, and the n is called a modulation order.
  • a constellation point represents a bit stream of n bits
  • the n is called a modulation order.
  • different QAM constellation diagrams corresponding to different modulation orders n that is, the number of constellation points in the constellation diagram is different.
  • the modulation order is n
  • QPSK quadrature phase shift keying
  • the QPSK constellation diagram includes 4 constellation points
  • the 16QAM constellation diagram includes 16 constellation points
  • the 64QAM includes 64 constellation points
  • the constellation points in each constellation diagram are evenly distributed.
  • NUC non uniform constellation
  • the embodiments of this application can be applied to the third generation partnership project (3GPP), the fourth generation (4G) communication system, such as long term evolution (LTE), and can also be applied to the first Five generation (5th generation, 5G) communication systems, such as 5G new radio (NR), or various future communication systems.
  • 3GPP third generation partnership project
  • 4G fourth generation
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • the embodiments of the present application can also be applied to communication systems that comply with technical standards such as the Institute of Electrical and Electronics Engineers (IEEE) 802.11, such as the IEEE 802.11ax standard, or its next or next generation standards. In the embodiment of the present application, this is not limited.
  • IEEE Institute of Electrical and Electronics Engineers
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of this application.
  • the communication system includes a plurality of terminal devices, and a network device for serving the plurality of terminal devices.
  • the following describes the terminal equipment and network equipment.
  • Terminal devices include devices that provide users with voice and/or data connectivity. Specifically, they include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity. equipment. For example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminals, mobile terminals, device-to-device communication (device-to-device, D2D) terminals, vehicle to everything (V2X) terminals, and machine-to-machine terminals.
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle to everything
  • M2M/MTC Internet of things
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • it may include a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is the general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be regarded as a vehicle-mounted terminal, and the vehicle-mounted terminal is, for example, also called an on-board unit (OBU).
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • Network equipment for example, including access network (AN) equipment, such as a base station (e.g., access point), may refer to equipment that communicates with wireless terminals through one or more cells over an air interface in an access network, or, for example,
  • a network device in a vehicle-to-everything (V2X) technology is a roadside unit (RSU).
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the terminal and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (advanced, LTE-A) system, Or it may also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it may also It includes a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • NodeB or eNB or e-NodeB, evolutional Node B evolutional Node B
  • LTE-A long term evolution
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • the network equipment may also include core network equipment, which includes, for example, access and mobility management functions (AMF).
  • AMF access and mobility management functions
  • the communication system may employ multiple network devices capable of communicating with multiple UEs, but for simplicity, FIG. 4 only shows one network device and multiple UEs.
  • FIG. 5 is a schematic flowchart of a signal sending method provided by an embodiment of this application.
  • the method involves a communication process between the sending device and the receiving device, and the method can be applied to the communication system of FIG. 4 or a similar communication system.
  • the sending device may be the network device or terminal device in FIG. 4; when the sending device is a network device, it means the downstream direction; when the sending device is a terminal device, it means the upstream direction.
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128.
  • n 4, 6, 8, or 10.
  • the ratio of the real part of the first complex number with the largest absolute value of the real part in the complex number set to the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N; or,
  • the ratio between the real part of the first complex number with the largest absolute value of the real part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N;
  • the M and N are positive integers, and the greatest common divisor of the M and N is 1, and the M also satisfies: the M is greater than 3 and less than 16.
  • the transmitting device increases the number of bits occupied by a and b through bit quantization, which may specifically be X bit quantization, for example, 3 bit quantization or 4 bit quantization.
  • bit quantization which may specifically be X bit quantization, for example, 3 bit quantization or 4 bit quantization.
  • the largest binary corresponding to 3bit is 111 and decimal is 7; the smallest binary corresponding to 3bit is 100 and decimal is 4; so after 3bit quantization, the absolute value of a is an integer greater than 3 and less than or equal to 7; or , An integer greater than or equal to 4 and less than 8.
  • the absolute value of b is an integer greater than 3 and less than or equal to 7; or, an integer greater than or equal to 4 and less than 8.
  • the complex number set includes 16 complex numbers.
  • the complex numbers are Express, Is the normalization coefficient, c is the integer part in the real part, and the absolute value of c is an integer greater than 3 and less than or equal to 7, for example, c is one of ⁇ 5 ⁇ 7 ⁇ ; d is the integer in the imaginary part Part, for example, b is one of ⁇ 5 ⁇ 7 ⁇ .
  • the absolute value of a is an integer greater than or equal to 8 and less than or equal to 15.
  • the absolute value of b is an integer greater than or equal to 8 and less than or equal to 15; or an integer greater than or equal to 7 and less than 16.
  • the complex number set includes 16 complex numbers.
  • the complex numbers are Is the normalization coefficient, c is the integer part of the real part, and the absolute value of c is an integer greater than or equal to 8 and less than or equal to 15, for example, c is one of ⁇ 7 ⁇ 15 ⁇ ; d is the imaginary part The integer part of, such as d is one of ⁇ 7 ⁇ 15 ⁇ .
  • the absolute value of a is an integer greater than 3 and less than 16.
  • the absolute value of b after quantization is an integer greater than 3 and less than 16.
  • the ratio of the real part of the first complex number with the largest absolute value of the real part in the complex number set to the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N; or,
  • the ratio between the real part of the first complex number with the largest absolute value of the real part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio of the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set to the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N;
  • the M and N are positive integers, and the greatest common divisor of the M and N is 1, and the M also satisfies: the M is greater than 7 and less than 32.
  • the complex number set includes 64 complex numbers
  • the complex numbers are expressed as a is the integer part of the real part
  • b is the integer part of the imaginary part
  • a is one of ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7 ⁇
  • b is one of ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7 ⁇ .
  • the maximum number of bits occupied by a and b is 3 bits.
  • the sending device increases the number of bits occupied by a and b by means of bit quantization, which may specifically be X bit quantization, for example, 4 bit quantization or 5 bit quantization.
  • bit quantization which may specifically be X bit quantization, for example, 4 bit quantization or 5 bit quantization.
  • Table 2 the comparison before and after quantification is shown in Table 2 below:
  • the absolute value of a is an integer greater than or equal to 8 and less than or equal to 15. ; Or, an integer greater than 7 and less than 16.
  • a is one of ⁇ 9 ⁇ 11, ⁇ 13 ⁇ 15 ⁇ .
  • the absolute value of b is an integer greater than or equal to 8 and less than or equal to 15, or an integer greater than or equal to 7 and less than 16.
  • the absolute value of b is one of ⁇ 9 ⁇ 11, ⁇ 13 ⁇ 15 ⁇ .
  • the maximum binary corresponding to 5bit is 11111, and the decimal system is 31; the minimum binary corresponding to 5bit is 10000, and the decimal system is 16. Therefore, after 5bit quantization, the absolute value of a is an integer greater than or equal to 16 and less than or equal to 31. , Or an integer greater than 15 and less than 32.
  • the absolute value of b is an integer greater than or equal to 16 and less than or equal to 31, or an integer greater than or equal to 15 and less than 32.
  • the absolute value range of a is an integer greater than 7 and less than 32.
  • the absolute value range of b is greater than 7 and less than 32. Integer.
  • the ratio of the real part of the first complex number with the largest absolute value of the real part to the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N; or,
  • the ratio between the real part of the first complex number with the largest absolute value of the real part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N;
  • the M and N are positive integers, and the greatest common divisor of the M and N is 1, and the M also satisfies: the M is greater than 15 and less than 64.
  • the complex number set includes 256 complex numbers; the complex numbers are expressed as a is the integer part of the real part, b is the integer part of the imaginary part, Is the normalization coefficient, a is one of ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7, ⁇ 9, ⁇ 11, ⁇ 13, ⁇ 15 ⁇ , b is ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7. One of ⁇ 9, ⁇ 11, ⁇ 13, ⁇ 15 ⁇ .
  • the maximum number of bits occupied by a and b is 4 bits.
  • the sending device increases the number of bits occupied by a and b by means of bit quantization, which may specifically be X bit quantization, for example, 5 bit quantization or 6 bit quantization.
  • bit quantization which may specifically be X bit quantization, for example, 5 bit quantization or 6 bit quantization.
  • the maximum binary corresponding to 5bit is 11111, and the decimal system is 31; the minimum binary corresponding to 5bit is 10000, and the decimal system is 16. Therefore, after 5bit quantization, the absolute value of a is an integer greater than or equal to 16 and less than or equal to 31. , Or, is an integer greater than 15 and less than 32.
  • the absolute value of b is an integer greater than or equal to 16 and less than or equal to 31, or an integer greater than or equal to 15 and less than 32.
  • the maximum binary corresponding to 6bit is 111111 and the decimal number is 63; the minimum binary corresponding to 6bit is 100000 and the decimal number is 32; so after 6bit quantization, the absolute value of a is an integer greater than or equal to 32 and less than or equal to 63. , Or an integer greater than 31 and less than 64.
  • the absolute value of b is an integer greater than or equal to 32 and less than or equal to 63, or an integer greater than or equal to 31 and less than 64.
  • the absolute value of a is an integer greater than 15 and less than 64
  • the absolute value of b is an integer greater than 15 and less than 64.
  • each complex number set includes 1024 complex numbers, and each complex number set satisfies at least one of the following conditions:
  • the ratio of the real part of the first complex number with the largest absolute value of the real part in the complex number set to the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N; or,
  • the ratio between the real part of the first complex number with the largest absolute value of the real part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the second complex number with the smallest absolute value of the imaginary part in the complex number set is equal to M:N; or,
  • the ratio between the imaginary part of the first complex number with the largest absolute value of the imaginary part in the complex number set and the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N;
  • the M and N are positive integers, and the greatest common divisor of the M and N is 1, and the M also satisfies: the M is greater than 31 and less than 128.
  • the complex number set includes 1024 complex numbers; the complex number is expressed as a is the integer part of the real part, b is the integer part of the imaginary part, Is the normalization coefficient, a is ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7, ⁇ 9, ⁇ 11, ⁇ 13, ⁇ 15, ⁇ 17, ⁇ 19, ⁇ 21, ⁇ 23, ⁇ 25, ⁇ 27 , ⁇ 29, ⁇ 31 ⁇ , b is ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7, ⁇ 9, ⁇ 11, ⁇ 13, ⁇ 15, ⁇ 17, ⁇ 19, ⁇ 21, ⁇ 23, One of ⁇ 25, ⁇ 27, ⁇ 29, ⁇ 31 ⁇ .
  • the maximum number of bits occupied by a and b is 5 bits.
  • the sending device increases the number of bits occupied by a and b by means of bit quantization, which may specifically be X bit quantization, for example, 6-bit quantization or 7-bit quantization.
  • bit quantization which may specifically be X bit quantization, for example, 6-bit quantization or 7-bit quantization.
  • the largest binary corresponding to 6bit is 111111 and the decimal number is 63; the smallest binary corresponding to 6bit is 100000 and the decimal number is 32; so after 6bit quantization, the absolute value of a is an integer greater than or equal to 32 and less than or equal to 63. ; Or an integer greater than 31 and less than 64.
  • the absolute value of b is an integer greater than or equal to 32 and less than or equal to 63, or greater than or equal to 31 and less than 64.
  • the largest binary corresponding to 7bit is 1111111 and decimal is 127; the smallest binary corresponding to 6bit is 1000000 and decimal is 64; so after 7bit quantization, the absolute value of a is an integer greater than or equal to 64 and less than or equal to 127. , Or an integer greater than 63 and less than 128.
  • the absolute value of b is an integer greater than or equal to 64 and less than or equal to 127, or an integer greater than or equal to 63 and less than 128.
  • the absolute value of a is an integer greater than 31 and less than 128.
  • the absolute value of b is greater than 31 and less than 128. Integer.
  • the complex number set satisfies one of the real part of the first complex number with the largest absolute value of the real part and the real part of the second complex number with the smallest absolute value of the real part in the complex number set.
  • the ratio between is equal to M:N; wherein, the M and N are positive integers, and the greatest common divisor of M and N is 1, and the M also satisfies: the M is greater than 7 and less than 32.
  • the real part of a complex number has 64 values, among which the maximum absolute value of the real part is 1.4780, the minimum absolute value of the real part is 0.1971, and the ratio of the maximum absolute value of the real part to the minimum absolute value of the real part is 1.4780/0.1971.
  • the complex number set is determined by the sending device according to the modulation and coding method, and different complex number sets can be generated according to different modulation and coding methods.
  • the modulation and coding method is the first modulation and coding method
  • the complex number The set is a first complex number set
  • the modulation and coding method is a second modulation and coding method
  • the complex number set is a second complex number set.
  • the modulation and coding method refers to modulation and coding scheme (MCS). See Table 6 below, which shows various MCSs.
  • the first column is MCS Index, which is used to identify different MCSs
  • the second column is the modulation order
  • the third column is the number of data bits transmitted per unit time, that is, the target code rate
  • the fourth column is the spectral efficiency . It can be seen from the first and second columns that one MCS Index corresponds to one MCS, and the same modulation order can be used for multiple MCSs. In other words, multiple MCSs may correspond to the same modulation order.
  • the first complex number set generated according to the first MCS and the second complex number set generated according to the second MCS may correspond to the same modulation order.
  • the same modulation order can correspond to multiple sets of complex numbers.
  • a modulation order of 6 corresponds to multiple MCSs, and it is assumed to correspond to 4 complex number sets. Please refer to Table 7 below:
  • one modulation order n may correspond to multiple sets of complex numbers.
  • a modulation order n corresponds to a complex set. Therefore, compared to QAM, this application is more flexible.
  • the first complex number set and the second complex number set are equal to each other.
  • the collection satisfies the following conditions:
  • the K complex numbers in the first complex number set multiplied by the real number A are equal to the values obtained after the K complex numbers in the second complex number set multiplied by the real number B, respectively, the real number A and the real number B is the normalization coefficient;
  • FIG. 6 is the constellation diagram corresponding to the first complex number set to the fourth complex number set in Table 7 above.
  • the K complex numbers in the first complex number set multiplied by the real number A are equal to the values obtained after the K complex numbers in the second complex number set multiplied by the real number B, including: the first complex number set The first complex number in the K complex numbers in is multiplied by the real number A, which is equal to the second complex number in the K complex numbers in the second modulation symbol set multiplied by the real number B, and the first complex number is in the first complex number set Any one of K plural numbers.
  • the K complex numbers in the first complex number set further satisfy: the modulus of any one of the K complex numbers in the first complex number set is greater than the YK complex numbers in the first complex number set The modulus of any complex number in.
  • the K complex numbers in the first complex number set are complex numbers with a larger complex number modulus.
  • the modulus of any one of the K complex numbers in the second modulation symbol set is greater than that of any one of the YK complex numbers in the second modulation symbol set. Modulus. That is, the K complex numbers in the second modulation symbol set are complex numbers with larger complex modulus.
  • a constellation point P outside the box in the first complex number set is expressed as Is the normalization coefficient
  • a constellation point Q outside the box in the second complex number set is expressed as Is the normalization coefficient
  • the constellation point P is multiplied by the real number A (ie ) Is (8+13i)
  • the constellation point Q is multiplied by the real number B (ie ) Is followed by (8+13i). Therefore, the value of the constellation point P multiplied by the real number A and the constellation point P multiplied by the real number B are equal.
  • the constellation points enclosed by the boxes in the first complex number set are different from the constellation points enclosed by the boxes in the second complex number set.
  • the first The constellation point enclosed by the box in the complex number set is different from the value obtained by multiplying the constellation point enclosed by the box in the second complex number set by any non-zero real number.
  • the modulus values of the K complex numbers in the first complex number set are arranged in descending order
  • the modulus values of the first P complex numbers are the same as those in the first complex number set other than the P complex numbers.
  • the ratio of the modulus values of the KP complex numbers is equal to Q
  • the Q is a positive number greater than 1
  • the Q also satisfies: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42.
  • the modulus values of the K complex numbers in the second complex number set are arranged in descending order, the modulus values of the first P complex numbers and the modulus values of the KP complex numbers other than the P complex numbers in the second complex number set
  • the ratio of is equal to Q, the Q is a positive number greater than 1, and the Q also satisfies: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42.
  • the K complex numbers in the first complex number set are complex numbers outside the box
  • the first P complex numbers are complex numbers in the outermost circle (16 in total)
  • the KP complex numbers are in the second outer circle
  • the ratio of the modulus of the complex number in the outer circle to the modulus of the complex number in the second outer circle is Q
  • the Q is a positive number greater than 1
  • the Q is greater than 1.34 and less than 1.42.
  • the K complex numbers in the second complex number set are the complex numbers outside the box
  • the first P complex numbers are the complex numbers in the outermost circle (16 in total)
  • the ratio of the modulus of the complex number in the outermost circle to the modulus of the complex number in the second outer circle is Q
  • the Q is a positive number greater than 1
  • the Q is greater than 1.34 and less than 1.42.
  • the same modulation order n may correspond to multiple sets of complex numbers, and there are cases where outer circles are nested in multiple sets of complex numbers.
  • the integer parts of the real parts of the outermost two circles in the four complex number sets are equal respectively.
  • the integer parts of the imaginary part are equal respectively.
  • the integer part of the real part mentioned here refers to the value obtained after the real number is multiplied by the corresponding normalization coefficient
  • the integer part of the imaginary part refers to the value obtained after the imaginary part is multiplied by the normalization coefficient. value. If the plural is Indicates that the integer part of the real part refers to I, and the integer part of the imaginary part refers to Q.
  • each complex number set can be stored in two parts.
  • the first part is used to store the integer part I of the real part and the integer part Q of the imaginary part of each complex number in the complex number set
  • the second part is used to store the corresponding return of the complex number set.
  • the same integer exists in the first part corresponding to the four sets of complex numbers.
  • the real integer part I of the outer two circles of the first complex number set is equal to the integer part I of the real part of the outer two complex numbers in the second complex number set (or the third complex number set or the fourth complex number set).
  • each complex number set is divided into the first part of storage and the second part of storage:
  • the four complex number sets are stored in two parts.
  • the first part is the integer part of the real part, namely I, and the integer part of the imaginary part, namely Q, and the second part is the normalization coefficient;
  • the first part has the same part, and the same part only needs to be stored once to save storage overhead.
  • each complex number set is divided into the first part of storage and the second part of storage:
  • the four complex number sets are stored in two parts.
  • the first part is the integer part of the real part, namely I, and the integer part of the imaginary part, namely Q,
  • the second part is the normalization coefficient; the first part of the four complex number sets has the same part, and the same part only needs to be stored once to save storage overhead.
  • Step 502 The sending device sends modulation symbols to the receiving device.
  • Step 503 The sending device sends prompt information to the receiving device, where the prompt information is used to prompt the complex set corresponding to the modulation symbol.
  • the modulation order n corresponds to multiple sets of complex numbers.
  • the sending device modulates the bit stream to obtain the modulation symbol.
  • the value of the modulation symbol is one of the multiple sets.
  • the sending device needs to notify the receiving device which complex set it is. In this way, the receiving device can demodulate the modulation symbols through the corresponding complex number set.
  • the sending device may also indicate which quantization bit X corresponds to the complex number set to be used.
  • the quantization bit X may be sent by the receiving device.
  • the sending device receives the second indication information from the receiving device. Used to indicate the quantization bit X.
  • the receiving device can notify the sending device of the largest quantization bit that it can support.
  • the following describes multiple ways for the sending device to indicate the complex number set corresponding to the modulation symbol to the receiving device.
  • the following methods can be used alone or in combination.
  • the sending device sends first indication information to the receiving device, where the first indication information is used to indicate all complex number sets corresponding to the quantization bit X corresponding to the modulation symbol.
  • the first indication information may be control information DCI; or information carried in a certain field in the DCI, or information in a field added by the DCI, etc., which is not limited in this embodiment of the application.
  • the first indication information may refer to Table 11 below,
  • the first indication information occupies 1 bit, and the value can be 0 or 1.
  • the first indication information occupies 2 bits, and the value can be 0-2.
  • the value indicates that the complex number set corresponding to the modulation symbol is 64QAM; when the value is 1, it indicates that the complex number set corresponding to the modulation symbol is the first complex number set, the second complex number set, the third complex number set, and the fourth complex number. gather.
  • the value is 2, it indicates that the complex number set corresponding to the modulation symbol is the fifth complex number set, the sixth complex number set, the seventh complex number set, and the eighth complex number set.
  • the first indication information may indicate the The first plural set.
  • the first indication information indicates that the modulation order is 6, and the first indication information carries a mark indicating the first complex number set (each complex number set from the first complex number set to the fourth complex number set corresponds to A mark). Therefore, the receiving device can determine that the modulation symbol corresponds to the first complex number set through the first indication information.
  • the first indication information can be seen in Table 13:
  • the first indication information occupies 3 bits, and the value can be 0-4.
  • the value indicates that the complex number set corresponding to the modulation symbol is 64QAM; when the value is 1, it indicates that the complex number set corresponding to the modulation symbol is the first complex number set; when the value is 2, it indicates the complex number corresponding to the modulation symbol.
  • the set is the second complex number set.
  • the value is 3, it indicates that the complex number set corresponding to the modulation symbol is the third complex number set, and when the value is 4, it indicates that the complex number set corresponding to the modulation symbol is the fourth complex number set.
  • the first indication information may refer to Table 14:
  • the first indication information occupies 4 bits, and the value can be 0-8.
  • the value indicates that the complex number set corresponding to the modulation symbol is 64QAM; when the value is 1, it indicates that the complex number set corresponding to the modulation symbol is the first complex number set; when the value is 2, it indicates the complex number corresponding to the modulation symbol.
  • the set is the second complex number set.
  • the value is 3, it indicates that the complex number set corresponding to the modulation symbol is the third complex number set, and when the value is 4, it indicates that the complex number set corresponding to the modulation symbol is the fourth complex number set.
  • the value When the value is 5, it indicates that the complex number set corresponding to the modulation symbol is the fifth complex number set; when the value is 6, it indicates that the complex number set corresponding to the modulation symbol is the sixth complex number set, and when the value is 7, it indicates the modulation symbol
  • the corresponding complex number set is the seventh complex number set.
  • the value When the value is 8, it indicates that the complex number set corresponding to the modulation symbol is the eighth complex number set.
  • the sending device sends control information DCI to the sending device, where the DCI is scrambled using first information, and the first information is used to indicate all complex sets corresponding to the quantization bit X corresponding to the modulation symbol.
  • QAM is indicated;
  • QAM is indicated;
  • QAM When the CRC of the DCI sent by the sending device is scrambled by the pre-configured RNTI, QAM is indicated; when the CRC of the DCI is scrambled by the pre-configured RNTI+1, Indicate the first complex set; when the DCI CRC is scrambled by the pre-configured RNTI+2, indicate the second complex set; when the DCI CRC is scrambled by the pre-configured RNTI+3, indicate the third complex set; when the DCI When the CRC of is scrambled by the pre-configured RNTI+4, it indicates the fourth complex set.
  • QAM is indicated; when the CRC of the DCI is scrambled by the pre-configured RNTI+1, Indicate the first complex set; when the DCI CRC is scrambled by the pre-configured RNTI+2, indicate the second complex set; when the DCI CRC is scrambled by the pre-configured RNTI+3, indicate the third complex set; when the DCI When the CRC of is scrambled by the pre-configured RNTI+4, it indicates the fourth complex set.
  • the fifth complex set is indicated; when the CRC of the DCI is scrambled by the pre-configured RNTI+6, the sixth complex set is indicated; when the CRC of the DCI is pre-configured When RNTI+7 is scrambled, it indicates the seventh complex set; when the CRC of the DCI is scrambled by the pre-configured RNTI+8, it indicates the eighth complex set.
  • RNTI scrambling There can be many types of RNTI scrambling, such as system information radio network temporary identification (RNTI, SI_RNTI) scrambling type, cell radio network temporary identification (cell RNTI, C-RNTI) scrambling type, cell semi-static wireless network Temporary identification (cell semi-persistent RNTI, CS-RNTI) scrambling type, temporary cell radio network temporary identification (temporary cell RNTI, TC_RNTI) scrambling type or random access radio network temporary identification (random access RNTI, RA-RNTI)
  • RNTI system information radio network temporary identification
  • cell RNTI cell radio network temporary identification
  • C-RNTI cell semi-static wireless network Temporary identification
  • temporary cell radio network temporary identification temporary cell radio network temporary identification
  • TC_RNTI temporary cell radio network temporary identification
  • random access radio network temporary identification random access radio network temporary identification
  • Step 504 The receiving device demodulates the modulation symbols according to the complex number set indicated by the indication information to obtain a bit stream.
  • the modulation symbol is received by the receiving device, the complex number closest to the value of the modulation symbol is determined in the first complex number set, and the modulation symbol is demodulated based on the complex number to obtain a bit stream.
  • QAM corresponds to a complex number set
  • the complex number set of this application has higher transmission performance than QAM.
  • the simulation test can be used to test the transmission performance of the complex number set of this application and QAM under the same conditions.
  • the simulation test can be used to test the transmission performance of the complex number set of this application and QAM under the same conditions.
  • a modulation symbol carries the same bit bit stream, that is, the modulation order n is the same, it can be determined through simulation tests that the complex number set of this application can reduce the demodulation threshold of the receiving device compared to QAM.
  • the demodulation threshold can be understood as the demodulation threshold of the input signal by the modulator.
  • the signal-to-noise ratio of the input signal is greater than the threshold, the demodulator demodulates the input information.
  • the signal-to-noise ratio is the ratio of signal to noise.
  • condition 1 a modulation symbol carries the same bit
  • condition 2 the same demodulation threshold
  • the complex number set of this application can achieve higher throughput than QAM. Lower error rate.
  • the complex number set of the present application can reduce the signal-to-noise ratio compared to QAM, for example, it can be reduced by 0.5 dm to 1 dm.
  • each complex number set is stored in two parts, and one part stores the integer part of the real part and the imaginary part.
  • the integer part of the part, and the other part stores the normalization coefficient.
  • the first part of multiple complex number sets has the same value, so only one part needs to be stored as a common part, and the overall storage overhead is low.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application. As shown in FIG. 7, the communication device 700 includes a processing unit 701 and a transceiver unit 702.
  • the apparatus 700 is used to implement the function of the sending device in the foregoing method.
  • the device may be the sending device in the foregoing embodiment, or a device in the sending device, such as a chip system.
  • the sending device is, for example, a network device.
  • the processing unit 701 is configured to perform modulation processing on the bit stream to generate modulation symbols, where the modulation order of the bit stream is n, and the value of the modulation symbol is one of a plurality of sets of complex numbers, so
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128;
  • the transceiver unit 702 is configured to send the modulation symbol to a receiving device.
  • the complex number set also satisfies:
  • the ratio between the imaginary part of the third complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the fourth complex number with the smallest absolute value of the imaginary part in the complex number set is equal to the M:N.
  • the processing unit 701 is further configured to determine the complex number set according to a modulation and coding scheme, wherein, when the modulation and coding scheme is a first modulation and coding scheme, the complex number set is a first complex number set; When the modulation and coding method is a second modulation and coding method, the complex number set is a second complex number set; when the modulation order corresponding to the first modulation and coding method and the second modulation and coding method are equal, The K complex numbers in the first complex number set multiplied by the real number A are respectively equal to the values obtained by multiplying the K complex numbers in the second complex number set by the real number B, and the first complex number set is divided by The YK complex numbers other than the K complex numbers are not equal to the YK complex numbers other than the K complex numbers in the second complex number set multiplied by any non-zero real number, the real number A and the real number B Is the normalization coefficient.
  • the modulus of any of the K complex numbers in the first complex number set is greater than the modulus of any of the YK complex numbers in the first complex number set; and/or, The modulus value of any one of the K complex numbers in the second complex number set is greater than the modulus value of any one of the YK complex numbers in the second complex number set.
  • the K is equal to 32.
  • the modulus values of the K complex numbers in the first complex number set are arranged in descending order
  • the modulus values of the first P complex numbers and the KP complex numbers in the first complex number set other than the P complex numbers The ratio of the modulus of the complex number is equal to Q
  • the Q is a positive number greater than 1
  • the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42;
  • the modulus values of the K complex numbers in the second complex number set are arranged in descending order, the modulus values of the first P complex numbers and the modulus values of the KP complex numbers other than the P complex numbers in the second complex number set
  • the ratio of is equal to Q, the Q is a positive number greater than 1, and the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42.
  • the transceiving unit 702 is further configured to send indication information to the receiving device, where the indication information is used to indicate a complex set corresponding to the modulation symbol.
  • the transceiving unit 702 is further configured to send control information DCI to the receiving device, where the DCI is scrambled using first information, and the first information is used to indicate a complex set corresponding to the modulation symbol.
  • the apparatus 700 is used to implement the function of the receiving device in the foregoing method.
  • the device may be the receiving device in the foregoing embodiment, or a device in the receiving device, such as a chip system.
  • the receiving device may be a terminal device.
  • the transceiver unit 702 is configured to receive modulation symbols from a sending device
  • the processing unit 701 is configured to perform demodulation processing on the modulation symbols according to the complex number set corresponding to the modulation symbols to obtain a bit stream;
  • the ratio between the real part of the largest first complex number and the real part of the second complex number with the smallest absolute value of the real part in the complex number set is equal to M:N, the M and N are positive integers, and the M and N
  • the greatest common divisor of is 1, and the M also satisfies at least one of the following:
  • the M is greater than 3 and less than 16;
  • the M is greater than 7 and less than 32;
  • the M is greater than 15 and less than 64;
  • the M is greater than 31 and less than 128.
  • the complex number set also satisfies:
  • the ratio between the imaginary part of the third complex number with the largest absolute value of the imaginary part in the complex number set and the imaginary part of the fourth complex number with the smallest absolute value of the imaginary part in the complex number set is equal to the M:N.
  • the plurality of complex number sets include a first complex number set and a second complex number set, the first complex number set is determined according to a first modulation and coding scheme, and the second complex number set is determined according to a second modulation and coding scheme definite;
  • the K complex numbers in the first complex number set are multiplied by the real number A
  • the second complex number set is The values of the K complex numbers multiplied by the real number B are respectively equal
  • the YK complex numbers in the first complex number set excluding the K complex numbers are the same as the YK complex numbers in the second complex number set excluding the K complex numbers Values of YK complex numbers multiplied by any non-zero real number are not equal, and the real number A and the real number B are normalization coefficients.
  • the modulus of any of the K complex numbers in the first complex number set is greater than the modulus of any of the YK complex numbers in the first complex number set; and/or, The modulus value of any one of the K complex numbers in the second complex number set is greater than the modulus value of any one of the YK complex numbers in the second complex number set.
  • the K is equal to 32.
  • the modulus values of the K complex numbers in the first complex number set are arranged in descending order
  • the modulus values of the first P complex numbers and the KP complex numbers in the first complex number set other than the P complex numbers The ratio of the modulus of the complex number is equal to Q
  • the Q is a positive number greater than 1
  • the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42;
  • the modulus values of the K complex numbers in the second complex number set are arranged in descending order, the modulus values of the first P complex numbers and the modulus values of the KP complex numbers other than the P complex numbers in the second complex number set
  • the ratio of is equal to Q, the Q is a positive number greater than 1, and the Q also satisfies the following: when the n is equal to 6, the Q is greater than 1.34 and less than 1.42.
  • the transceiver unit 702 is further configured to: receive indication information from the sending device, where the indication information is used to indicate a complex set corresponding to the modulation symbol.
  • the transceiving unit 702 is further configured to: receive control information DCI sent from the sending device, where the DCI is scrambled using first information, and the first information is used to indicate a complex set corresponding to the modulation symbol.
  • the processing unit 701 and the transceiver unit 702 refer to the record in the above method embodiment.
  • the division of modules in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device includes a processor and an interface, and the interface may be an input/output interface.
  • the processor completes the function of the aforementioned processing unit 701
  • the interface completes the function of the aforementioned transceiver unit 702.
  • the device may also include a memory, where the memory is used to store a program that can be run on the processor, and the processor implements the method of each of the foregoing embodiments when the program is executed by the processor.
  • an embodiment of the present application further provides an apparatus 800.
  • the device 800 includes: a communication interface 801, at least one processor 802, and at least one memory 803.
  • the communication interface 801 is used to communicate with other devices through a transmission medium, so that the device used in the device 800 can communicate with other devices.
  • the memory 803 is used to store computer programs.
  • the processor 802 calls the computer program stored in the memory 803, and transmits and receives data through the communication interface 801 to implement the method in the foregoing embodiment.
  • the memory 803 is used to store a computer program; the processor 802 calls the computer program stored in the memory 803, and executes the sending device (such as a network device) in the foregoing embodiment through the communication interface 801 Method of execution.
  • the memory 803 is used to store a computer program; the processor 802 calls the computer program stored in the memory 803, and executes the method executed by the receiving device (such as a terminal device) in the foregoing embodiment through the communication interface 801 .
  • the communication interface 801 may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the processor 802 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 803 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as random access memory (random access memory). -access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function.
  • the memory 803 and the processor 802 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 803 may also be located outside the apparatus 800.
  • the processor 802 may cooperate with the memory 803 to operate.
  • the processor 802 may execute program instructions stored in the memory 803.
  • At least one of the at least one memory 803 may also be included in the processor 802.
  • the connection medium between the communication interface 801, the processor 802, and the memory 803 is not limited.
  • the memory 803, the processor 802, and the communication interface 801 may be connected by a bus, and the bus may be divided into an address bus, a data bus, and a control bus.
  • the apparatus in the embodiment shown in FIG. 8 may be implemented by the apparatus 700 shown in FIG. 7.
  • the processing unit 701 may be implemented by the processor 802
  • the transceiver unit 702 may be implemented by the communication interface 801.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, a solid state disk Solid State Disk SSD), etc.
  • the embodiment of the present application also provides a computer program product containing computer instructions, which when running on a communication device, enables the communication device to execute the method shown in FIG. 5.
  • the embodiment of the present application also provides a communication system, the communication system includes a sending device and a receiving device, the sending device is used to execute the steps of the sending device in the technical solution shown in FIG. 5, and the receiving device is used to execute the technology of FIG. 5 The steps of the receiving device in the plan.
  • the sending device may be a network device, and the receiving device may be a terminal device, that is, in the downlink direction; or, the sending device may be a terminal device, and the receiving device may be a network device, that is, in the uplink direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种信号发送方法、信号接收方法与相关装置。该方法包括:对比特流进行调制处理生成调制符号,比特流的调制阶数为n,调制符号的取值为多个复数集合中的一个,复数集合包括Y=2 n个复数,复数集合满足:实部绝对值最大的第一复数的实部与实部绝对值最小的第二复数的实部之间的比值等于M:N,M和N为正整数,且M和N的最大公约数为1,M还满足如下至少一种:在n等于4的情况下,M大于3小于16;在n等于6的情况下,M大于7小于32;在n等于8的情况下,M大于15小于64;在n等于10个情况下,M大于31小于128;将调制符号发送给接收设备。通过这种方式,有助于提升信号的传输性能。

Description

一种信号发送方法、信号接收方法与相关装置
相关申请的交叉引用
本申请要求在2020年05月30日提交中国专利局、申请号为202010480842.7、申请名称为“一种信号发送方法、信号接收方法与相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号发送方法、信号接收方法与相关装置。
背景技术
星座映射是一种常用的数字调制技术,通过星座映射将携带信息的比特序列(或比特流)映射成适合于实际信道传输的符号序列。具体而言,星座映射是指将比特流映射到一个复平面上的点;该复平面即星座图代表星座映射输出符号的所有取值组成的复数集合,星座图中的每一个星座点对应输出符号的一种取值。
星座图的设计影响信号传输性能,比如误码率、吞吐量等。因此,如何得到具有更好传输性能的星座图是需要考虑的问题。
发明内容
本申请的目的在于提供了一种信号发送方法、信号接收方法与相关装置,用于提升信号的传输性能。
第一方面,提供一种信号发送方法,应用于发送设备。该方法包括:对比特流进行调制处理生成调制符号,其中,所述比特流的调制阶数为n,所述调制符号的取值为多个复数集合中的一个,所述多个复数集合中每个复数集合包括Y=2 n个复数,所述复数集合满足:实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在所述n等于4的情况下,所述M大于3小于16;
在所述n等于6的情况下,所述M大于7小于32;
在所述n等于8的情况下,所述M大于15小于64;
在所述n等于10个情况下,所述M大于31小于128;
将所述调制符号发送给接收设备。
在本申请实施例中,对比特流调制值得到的调制符号对应的复数集合满足上述条件,该复数集合即星座图能够实现更好的传输性能。比如,以QAM与本申请的复数集合对比为例,(1)、在满足条件1:一个调制符号携带相同bit的情况下,本申请的复数集合相对于QAM可以降低接收设备的解调门限。(2)、在满足条件1:一个调制符号携带相同bit,并满足条件2:相同解调门限的情况下,本申请的复数集合相对于QAM可以获得更高的吞吐量,更低的误块率。以上对比结果可以通过仿真方式获得,本申请实施例不多赘述。
在一种可能的设计中,所述复数集合还满足:所述复数集合中虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。
在本申请实施例中,复数集合满足:实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,且虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。这样的话,复数集合即星座图上实部和虚部约束条件相同,星座图上实部绝对值最大和虚部绝对值最大的点所围成的轮廓是规则轮廓比如圆形。
在一种可能的设计中,所述方法还包括:根据调制编码方式确定所述复数集合,其中,在所述调制编码方式为第一调制编码方式的情况下,所述复数集合为第一复数集合;在所述调制编码方式为第二调制编码方式的情况下,所述复数集合为第二复数集合;
在所述第一调制编码方式与所述第二调制编码方式对应的调制阶数相等的情况下,所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,且所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等,所述实数A和所述实数B是归一化系数。
在本申请实施例中,相同调制阶数n的情况下对应多个复数集合,比如调制阶数n=6,对应多个复数集合,多个复数集合对应不同的MCS。而相同调制阶数n的情况下,QAM对应一个复数集合,比如,调制阶数n=6,对应一个QAM。因此,本申请的复数集合的设计方式更为灵活。此外,本申请实施例中,相同调制阶数n对应的多个复数集合中存在嵌套关系(即第一复数集合中的K个复数乘以实数A,与第二复数集合中的K个复数乘以实数B后的取值分别相等),每个复数集合可分两部分存储,第一部分存储该复数集合中K个复数乘以实数A得到的取值,第二部分存储实时A即归一化系数。因此,多个复数集合的第一部分存在相同取值,所以只需存储一份作为公共部分即可,整体存储开销较低。
在一种可能的设计中,所述第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的所述Y-K个复数中的任一复数的模值;和/或,所述第二复数集合中的所述K个复数中的任一复数的模值大于所述第二复数集合中的所述Y-K个复数中的任一复数的模值。
也就是说,本申请实施例中,相同调制阶数n对应的多个复数集合中存在嵌套关系(即第一复数集合中的K个复数乘以实数A,与第二复数集合中的K个复数乘以实数B后的取值分别相等),且存在嵌套关系的K个复数是复数集合中模值较大的复数。
作为一种示例,在所述n等于6的情况下,所述K等于32。当n=6时,每个复数集合中共有64个复数,其中32个复数存在嵌套关系,节省了较大的存储开销。
在一种可能的设计中,所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42;
所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42。
在本申请实施例中,复数集合中K个复数中的P个复数与P个复数以外的K-P个复数的模值的比值满足1.34小于1.42的条件,这样的话,尽可能的拉开K个复数中P个复数与K-P个复数之间的距离,两个复数之间的距离较远可以方便接收端准确的确定与接收的调制符号取值距离最近的复数,提升解调准确性。
在本申请实施例中,同一调制阶数n对应多个复数集合,发送设备将比特流映射调制处理后得到的调制符号是多个复数集合中的一个,发送设备可以指示接收设备具体是哪一个复数集合,以方便接收设备根据该复数集合对调制符号进行解调。
一种可能的方式为,发送设备向所述接收设备发送指示信息,所述指示信息用于指示所述调制符号对应的复数集合。例如,所述提示信息可以是控制信息DCI。
另一种可能的方式为,发送设备向所述接收设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示所述调制符号对应的复数集合。也就是说,发送设备使用隐士的方式指示接收设备调制符号对应的复数集合。
第二方面,还提供一种信号接收方法,应用于接收设备,包括:接收来自发送设备的调制符号;根据调制符号对应的复数集合,对所述调制符号做解调处理,得到比特流;
所述调制符号的取值为多个复数集合中的一个;所述多个复数集合中每个复数集合包括Y=2 n个复数,所述n为所述比特流的调制阶数;所述复数集合满足:实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在所述n等于4的情况下,所述M大于3小于16;
在所述n等于6的情况下,所述M大于7小于32;
在所述n等于8的情况下,所述M大于15小于64;
在所述n等于10个情况下,所述M大于31小于128。
在本申请实施例中,接收设备检测到的调制符号的取值是多个复数集合中的一个,而复数集合满足上述条件,该复数集合即星座图能够实现更好的传输性能。比如,以QAM与本申请的复数集合对比为例,(1)、在满足条件1:一个调制符号携带相同bit的情况下,本申请的复数集合相对于QAM可以降低接收设备的解调门限。(2)、在满足条件1:一个调制符号携带相同bit,并满足条件2:相同解调门限的情况下,本申请的复数集合相对于QAM可以获得更高的吞吐量,更低的误块率。以上对比结果可以通过仿真方式获得,本申请实施例不多赘述。
在一种可能的设计中,所述复数集合还满足:所述复数集合中虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。
在一种可能的设计中,所述多个复数集合包括第一复数集合和第二复数集合,所述第一复数集合是根据第一调制编码方式确定的,所述第二复数集合是根据第二调制编码方式确定的;在所述第一调制编码方式与所述第二调制编码方式对应的调制阶数相等的情况下,所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,且所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等,所述实数A和所述实数B是归一化系数。
在一种可能的设计中,所述第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的所述Y-K个复数中的任一复数的模值;和/或,所述第二复数集合中的所述K个复数中的任一复数的模值大于所述第二复数集合中的所述Y-K个复数中的任一复数的模值。
在一种可能的设计中,在所述n等于6的情况下,所述K等于32。
在一种可能的设计中,所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42;
所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42。
在一种可能的设计中,在所述根据调制符号对应的复数集合,对所述调制符号做解调处理之前,还包括:接收来自所述发送设备的指示信息,所述指示信息用于指示所述调制符号对应的复数集合。
在一种可能的设计中,在所述根据调制符号对应的复数集合,对所述调制符号做解调处理之前,还包括:接收来自所述发送设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示所述调制符号对应的复数集合。
第三方面,还提供一种发送设备,包括:
处理单元,用于对比特流进行调制处理生成调制符号,其中,所述比特流的调制阶数为n,所述调制符号的取值为多个复数集合中的一个,所述多个复数集合中每个复数集合包括Y=2 n个复数,所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在所述n等于4的情况下,所述M大于3小于16;
在所述n等于6的情况下,所述M大于7小于32;
在所述n等于8的情况下,所述M大于15小于64;
在所述n等于10个情况下,所述M大于31小于128;
收发单元,用于将所述调制符号发送给接收设备。
第四方面,还提供一种接收设备,包括:
收发单元,用于接收来自发送设备的调制符号;
处理器单元,用于根据调制符号对应的复数集合,对所述调制符号做解调处理,得到比特流;
所述调制符号的取值为多个复数集合中的一个;所述多个复数集合中每个复数集合包括Y=2 n个复数,所述n为所述比特流的调制阶数;所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在所述n等于4的情况下,所述M大于3小于16;
在所述n等于6的情况下,所述M大于7小于32;
在所述n等于8的情况下,所述M大于15小于64;
在所述n等于10个情况下,所述M大于31小于128。
第五方面,还提供一种发送设备,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合;所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如上述第一方面提供的方法。
第六方面,还提供一种接收设备,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合;所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如上述第二方面提供的方法。
第七方面,还提供一种芯片,所述芯片与通信装置中存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,以使得所述装置执行如上述第一方面提供的方法。
第八方面,还提供一种芯片,所述芯片与通信装置中存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,以使得所述装置执行如上述第二方面提供的方法。
第九方面,还提供一种通信系统,包括:
用于实现上述第一方面提供的方法的发送设备;以及,
用于实现上述第二方面提供的方法的接收设备。
第十方面,还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如上述第一方面提供的方法。
第十一方面,还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如上述第二方面提供的方法。
第十二方面,还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行如上述第一方面提供的方法。
第十三方面,还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行如上述第二方面提供的方法。
以上第二方面到第十三方面的有益效果,请参见第一方面的有益效果描述,在此不重复赘述。
附图说明
图1为本申请一实施例提供的发送设备与接收设备通信的示意图;
图2为QAM星座图的示意图;
图3为非均匀星座图的示意图;
图4为本申请一实施例提供的通信系统的示意图;
图5为本申请一实施例提供的信号发送方法的流程示意图;
图6为本申请一实施例提供的多个复数集合的示意图;
图7为本申请一实施例提供的通信装置的一种示意图;
图8为本申请一实施例提供的通信装置的另一种示意图。
具体实施方式
基带信号在经实际信道传输前需要调频至更高的频点,以对抗实际信道带来的衰减。 因此,参见图1所示,发送设备向接收设备发送信息的过程包括:发送设备实际要传输的比特流进行调制,以使调制后的信号(称为调制符号)适合于传输。接收设备对接收到经过实际信道后的信号进行解调(调制的逆过程)从而获得发送设备要传输的比特流。
下面先介绍本申请实施例涉及的相关名称。
(1)比特流
比特流即发送设备中调制模块(比如调制器)的输入信号。
比特流是指发送设备实际要传输的包含信息的信号。比特流也可以称为比特序列。这里所述的包含“信息”的信号中的“信息”可以是发送设备执行业务的过程中产生的业务数据包。所述“发送设备执行业务”可以包括发送设备运行各类应用程序。比如,发送设备运行微信应用与联系人进行语音通话的场景中,所述“信息”可以是语音数据包,即比特流是包括语音数据包的信号。再比如,发送设备运行短信应用,用户编辑短信内容并向联系人发送短信内容的场景中,所述“信息”可以是文字信息等,即比特流是包含文字信息的信号。
需要说明的是,本文中“比特流”还可以称为“待处理信号”、“待发送信号”、“待调制信号”等等,只要代表上文所述的含义即可,本申请对名称并不作限定。
在一些实施例中,比特流是发送设备产生的包含信息的信号经过信道编码之后的信号,也就是说,调制模块的输入信号是经过信道编码之后的信号(比特流),关于信道编码过程本申请不多赘述。
(2)调制
调制是指调制模块对比特流的调制,即将比特流调制为适合在实际信道中传输的符号。
星座映射是一种信号调制方式。星座映射可以理解为将比特流映射到一个复平面上的点,比如,比特流中的每n bit(n也被称为调制阶数,n大于或等于2)可以映射为复平面上的一个点,复平面上的点具有更高的频点,适合在实际信道上传输。
(3)调制符号
调制符号即调制模块对比特流调制后得到的输出符号。
调制符号的取值即复平面上的点,假设所述复平面的横轴为实部,纵轴为虚部,所以该点的坐标可以表示为(a+bi),该点对应的向量(复平面中心到该点的向量)的模值为
Figure PCTCN2021096535-appb-000001
相位为arctan(b/a)。
需要说明的是,本文仅是将调制模块对比特流调制后的输出信号称为调制符号,也可以称为调制信号或其他名称,本申请实施例对此不作限定。
(4)解调
发送设备将比特流进行调制处理得到调制符号后,调制符号在实际信道上传输。接收设备在实际信道上进行信号检测,当检测到信号时,对该信号进行解调处理得到比特流,该比特流即发送设备要发送的包含信息的信号,比如,前面例子中的语音数据包、文字信息等。需要说明的是,该过程为信号调制的逆过程,即将调制符号恢复为比特流。
以上对本申请实施例涉及的相关名称作出解释。下面先简单的介绍一下星座图。
目前最为常见的星座图包括一维实数空间的脉冲幅度调制(pulse amplitude modulation,PAM)、二维实数空间的正交幅度调制(quadrature amplitude modulation,QAM)、相移键控(phase shift keying,PSK)调制等。
对比特流进行星座映射时,可以将比特流中每n bit映射为一个星座点,即一个星座点 代表n bit的比特流,所述n被称为调制阶数。以QAM星座图为例,不同调制阶数n对应的不同的QAM星座图,即星座图中的星座点个数不同。通常来说,调制阶数为n时,对应的星座图中的星座点个数为Y=2 n;下面给出几种示例:
1、调制阶数n=2,则星座图中的星座点个数Y=2 2=4;即比特流中每2bit映射成一个星座点,即一个星座点代表2bit的比特流;比如,正交相移键控(quadrature phase shift keying,QPSK)星座图。
2、调制阶数n=4,则星座图中的星座点个数Y=2 4=16;即比特流中每4bit映射成一个星座点,即一个星座点代表4bit的比特流;比如,16QAM,包括16个星座点。
3、调制阶数n=6,则星座图中的星座点个数Y=2 6=64;即比特流中每6bit映射成一个星座点,即一个星座点代表6bit的比特流;比如,64QAM,包括64个星座点。
5、调制阶数n=8,则星座图中的星座点个数Y=2 8=256;即比特流中每8bit映射成一个星座点,即一个星座点代表8bit的比特流;
6、调制阶数n=10,则星座图中的星座点个数Y=2 10=1024;即比特流中每10bit映射成一个星座点,即一个星座点代表10bit的比特流;
参见图2,为多种星座图的示意图。其中,QPSK星座图包括4个星座点,16QAM星座图包括16个星座点,64QAM包括64个星座点,每个星座图中的星座点是均匀分布的。除了这种星座点均匀分布的星座外,还存在星座点非均匀分布的一簇星座(non uniform constellation,NUC)。参见图3,为一种NUC的示意图。
本申请实施例可以应用于第三代合作伙伴计划(third generation partnership project,3GPP)、第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE),也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统。
本申请实施例还可以应用于电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11等技术标准的符合标准的通信系统,例如IEEE802.11ax标准,或其下一代或更下一代的标准中,本申请实施例对此不作限定。
参见图4所示,为本申请实施例提供的一种通信系统的示意图。通信系统包括多个终端设备,以及用于服务所述多个终端设备的网络设备。
下面介绍对终端设备和网络设备。
终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车到一切(vehicle to everything,V2X)终端、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internet of things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、 袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU)。本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。
可以理解的是,通信系统可采用能够与多个UE进行通信的多个网络设备,但是为了简单起见,图4仅示出一个网络设备和多个UE。
参见图5所示,为本申请实施例提供的信号发送方法的流程示意图。该方法中涉及发送设备和接收设备之间的通信过程,该方法可以适用于图4的通信系统或类似的通信系统中。当该方法适用于图4的通信系统时,发送设备可以是图4中的网络设备或终端设备;当发送设备是网络设备时,即下行方向;当发送设备是终端设备时,即上行方向。
步骤501,发送设备对比特流进行调制处理生成调制符号,所述比特流的调制阶数为n;所述调制符号的取值为多个复数集合中的一个;所述多个复数集合中每个复数集合包 括Y=2 n个复数;所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在n等于4的情况下,所述M大于3小于16;
在n等于6的情况下,所述M大于7小于32;
在n等于8的情况下,所述M大于15小于64;
在n等于10个情况下,所述M大于31小于128。
下面分别以调制阶数n=4、6、8或10为例进行介绍。
示例1,调制阶数n=4
在调制阶数n等于4的情况下,每个复数集合包括Y=2 n=16个复数;每个复数集合满足如下条件中的至少一个:
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;或者,
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;
其中,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足:所述M大于3小于16。
以图2为例,调制阶数n=4时,对应16QAM,即复数集合中包括16个复数;每个复数表示为(a+bi)
Figure PCTCN2021096535-appb-000002
是实部,
Figure PCTCN2021096535-appb-000003
是虚部,
Figure PCTCN2021096535-appb-000004
是归一化系数;为了方便描述,下文将a称为实部的整数部分,b称为虚部的整数部分。其中,a是{±1、±3}中的一个,b是{±1、±3}中的一个。a和b占用的比特数最大为2bit。
本申请实施例中,对于调制阶数n=4的情况,发送设备通过比特量化增大a和b占用的比特数,具体可以是X bit量化,比如,3bit量化或4bit量化。例如,量化前后的对比,参见下表1:
表1
Figure PCTCN2021096535-appb-000005
以3bit量化为例,3bit对应的最大二进制是111、十进制是7;3bit对应的最小二进制是100、十进制是4;所以3bit量化之后,a的绝对值为大于3小于或等于7的整数;或者,大于或等于4小于8的整数。可选的,b的绝对值为大于3小于或等于7的整数;或者,大于或等于4小于8的整数。
由于调制阶数n=4,所以复数集合包括16个复数,使用3bit量化之后的复数集合中,复数以
Figure PCTCN2021096535-appb-000006
表示,
Figure PCTCN2021096535-appb-000007
是归一化系数,c是实部中的整数部分,c的绝对值为大于3小于或等于7的整数,比如,c是{±5 ±7}中的一个;d是虚部中的整数部分,比如,b是{±5 ±7} 中的一个。
以4bit量化为例,4bit对应的最大二进制是1111、十进制是15;4bit对应的最小二进制是1000、十进制是8;所以4bit量化之后,a的绝对值为大于或等于8小于或等于15的整数,或者,为大于7小于16的整数。可选的,b的绝对值为大于或等于8小于或等于15的整数;或者为大于7小于16的整数。
由于调制阶数n=4,所以复数集合包括16个复数,使用4bit量化之后的复数集合中,复数以
Figure PCTCN2021096535-appb-000008
是归一化系数,c是实部中的整数部分,c的绝对值为大于或等于8小于或等于15的整数,比如,c是{±7 ±15}中的一个;d是虚部中的整数部分,比如d是{±7 ±15}中的一个。
因此,结合3bit量化和4bit量化,对于调制阶数n=4的情况,在量化之后,a的绝对值是大于3小于16的整数。可选的,量化之后b的绝对值是大于3小于16的整数。
示例2,调制阶数n=6
在所述n等于6的情况下,每个复数集合包括Y=2 n=64个复数;每个复数集合满足如下条件中的至少一个:
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;或者,
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;
其中,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足:所述M大于7小于32。
以图2为例,调制阶数n=6时,对应64QAM,复数集合中包括64个复数;复数表示为
Figure PCTCN2021096535-appb-000009
a是实部的整数部分,b是虚部的整数部分,
Figure PCTCN2021096535-appb-000010
是归一化系数,a是{±1、±3、±5、±7}中的一个,b是{±1、±3、±5、±7}中的一个。a和b占用的比特数最大为3bit。
本申请实施例中,对应调制阶数n=6的情况,发送设备通过比特量化的方式增大a和b占用的比特数,具体可以是X bit量化,比如,4bit量化或5bit量化。例如,量化前后的对比参见下表2:
表2
Figure PCTCN2021096535-appb-000011
以4bit量化为例,4bit对应的最大二进制是1111、十进制是15;4bit对应的最小二进制是1000,十进制是8;所以4bit量化之后,a的绝对值为大于或等于8小于或等于15的整数;或者,为大于7小于16的整数。比如,a是{±9 ±11、±13 ±15}中的一个。可选的,b的绝对值为大于或等于8小于或等于15的整数,或为大于7小于16的整数。比如, b的绝对值是{±9 ±11、±13 ±15}中的一个。
以5bit量化为例,5bit对应的最大二进制是11111、十进制是31;5bit对应的最小二进制是10000、十进制是16;所以5bit量化之后,a的绝对值为大于或等于16小于或等于31的整数,或大于15小于32的整数。可选的,b的绝对值为大于或等于16小于或等于31的整数,或大于15小于32的整数。
因此,综合上述4bit量化和5bit量化结果,在调制阶数n=6的情况下,a的绝对值范围是大于7小于32的整数,可选的,b的绝对值范围是大于7小于32的整数。
示例3,调制阶数n=8
在所述n等于8的情况下,每个复数集合包括Y=2 n=256个复数;每个复数集合满足如下条件中的至少一个:
中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;或者,
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;
其中,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足:所述M大于15小于64。
以QAM为例,调制阶数n=8时,复数集合中包括256个复数;复数表示为
Figure PCTCN2021096535-appb-000012
a是实部的整数部分,b是虚部的整数部分,
Figure PCTCN2021096535-appb-000013
是归一化系数,a是{±1、±3、±5、±7、±9、±11、±13、±15}中的一个,b是{±1、±3、±5、±7、±9、±11、±13、±15}中的一个。a和b占用的比特数最大为4bit。
本申请实施例中,对于调制阶数n=8的情况,发送设备通过比特量化的方式增大a和b占用的比特数,具体可以是X bit量化,比如,5bit量化或6bit量化。例如,参见下表3:
表3
Figure PCTCN2021096535-appb-000014
以5bit量化为例,5bit对应的最大二进制是11111、十进制是31;5bit对应的最小二进制是10000、十进制是16;所以5bit量化之后,a的绝对值为大于或等于16小于或等于31的整数,或者,为大于15小于32的整数。可选的,b的绝对值为大于或等于16小于或等于31的整数,或为大于15小于32的整数。
以6bit量化为例,6bit对应的最大二进制是111111、十进制是63;6bit对应的最小二进制是100000、十进制是32;所以6bit量化之后,a的绝对值为大于或等于32小于或等于63的整数,或大于31小于64的整数。可选的,b的绝对值为大于或等于32小于或等于63的整数,或大于31小于64的整数。
因此,综合上述5bit量化和6bit量化,上述调制阶数n=8的情况下,a的绝对值是大于15小于64的整数,可选的,b的绝对值是大于15小于64的整数。
示例4,调制阶数n=10
在所述n等于10个情况下,每个复数集合中包括1024个复数,每个复数集合满足如下条件中的至少一个:
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;或者,
复数集合中实部绝对值最大的第一复数的实部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中虚部绝对值最小的第二复数的虚部之间的比值等于M:N;或者,
复数集合中虚部绝对值最大的第一复数的虚部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;
其中,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足:所述M大于31小于128。
以QAM为例,调制阶数n=10时,复数集合包括1024个复数;复数表示为
Figure PCTCN2021096535-appb-000015
a是实部的整数部分,b是虚部的整数部分,
Figure PCTCN2021096535-appb-000016
是归一化系数,a是{±1、±3、±5、±7、±9、±11、±13、±15、±17、±19、±21、±23、±25、±27、±29、±31}中的一个,b是{±1、±3、±5、±7、±9、±11、±13、±15、±17、±19、±21、±23、±25、±27、±29、±31}中的一个。a和b占用的比特数最大为5bit。
本申请实施例中,发送设备通过比特量化的方式增大a和b占用的比特数,具体可以是X bit量化,比如,6bit量化或7bit量化。例如,参见下表4:
表4
Figure PCTCN2021096535-appb-000017
以6bit量化为例,6bit对应的最大二进制是111111、十进制是63;6bit对应的最小二进制是100000、十进制是32;所以6bit量化之后,a的绝对值是大于或等于32小于或等于63的整数;或者大于31小于64的整数。可选的,b的绝对值是大于或等于32小于或等于63,或,大于31小于64的整数。
以7bit量化为例,7bit对应的最大二进制是1111111、十进制是127;6bit对应的最小二进制是1000000、十进制是64;所以7bit量化之后,a的绝对值为大于或等于64小于或等于127的整数,或者为大于63小于128的整数。可选的,b的绝对值为大于或等于64小于或等于127的整数,或为大于63小于128的整数。
因此,结合上述6bit量化和7bit量化,在调制阶数n=10的情况下,量化后,a的绝对值是大于31小于128的整数,可选的,b的绝对值是大于31小于128的整数。
下面以调制阶数n=6为例,且以4bit量化为例介绍一种复数集合。请参见下表5,为 调制阶数n=6的情况下,4bit量化之后的复数集合。
表5
Figure PCTCN2021096535-appb-000018
通过前文示例2,在调制阶数n=6的情况下,复数集合满足实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N;其中,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足:所述M大于7小于32。
参见上表5,复数的实部有64个取值,其中实部最大绝对值是1.4780,实部最小绝对值是0.1971,实部最大绝对值与实部最小绝对值的比值为1.4780/0.1971,该比值不大于15:2,即M=15,满足M大于7小于32的条件。
在本申请实施例中,复数集合是发送设备根据调制编码方式确定,根据不同的调制编码方式可以生成不同的复数集合,比如,在调制编码方式为第一调制编码方式的情况下,所述复数集合为第一复数集合;在所述调制编码方式为第二调制编码方式的情况下,所述复数集合为第二复数集合。
其中,调制编码方式是指调制与编码策略(modulation and coding scheme,MCS)。参见下表6,示出了多种MCS。
表6
Figure PCTCN2021096535-appb-000019
上表6中,第一列为MCS Index,用于标识不同的MCS,第二列为调制阶数,第三列为单位时间传送的数据位数,即目标码率;第四列为频谱效率。通过第一列和第二列可知,一个MCS Index对应一个MCS,同一调制阶数可以对多个MCS。也就是说,可能多个 MCS对应相同的调制阶数。
在本申请实施例中,根据第一MCS生成的第一复数集合和根据第二MCS生成的第二复数集合可能对应相同的调制阶数。也就是说,同一个调制阶数可对应多个复数集合。继续以调制阶数n=6为例,参见上述表6,调制阶数为6对应多种MCS,假设对应4个复数集合。请参见下表7:
表7
Figure PCTCN2021096535-appb-000020
结合表6和表7可知,调制阶数n=6的情况下,对应多种MCS,在X=4的情况下,对应4个复数集合,在X=5的情况下,对应4个复数集合。
因此,本申请实施例中,一个调制阶数n可对应多个复数集合。但是,目前常用的QAM,一个调制阶数n对应一个复数集合。因此,相比于QAM,本申请更为灵活。
在本申请实施例中,根据第一MCS生成的第一复数集合和根据第二MCS生成的第二复数集合对应的调制阶数相等的情况下,所述第一复数集合和所述第二复数集合满足如下条件:
(1)所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,所述实数A和所述实数B是归一化系数;
(2)所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等。
下面仍然以调制阶数n=6为例介绍。
参见图6所示,为上表7中第一复数集合到第四复数集合对应的星座图。第一复数集合、第二复数集合、第三复数集合、第四复数集合均包括Y=64个复数。
关于上述条件(1):第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,包括:第一复数集合中的K个复数中的第一复数乘以实数A,与第二调制符号集合中的K个复数中的第二复数乘以实数B之后取值相等,第一复数是第一复数集合中的K个复数中任意一个。
在一些实施例中,所述第一复数集合中的K个复数满足:当调制阶数n=6时,K=32。
在另一些实施例中,所述第一复数集合中的K个复数还满足:第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的Y-K个复数中的任一复数的模值。也就是说,第一复数集合中的K个复数是复数模值较大的复数。
在一些实施例中,所述第二复数集合中的K个复数满足:当调制阶数n=6时,K=32。
在另一些实施例中,所述第二调制符号集合中的所述K个复数中的任一复数的模值大于所述第二调制符号集合中的所述Y-K个复数中的任一复数的模值。也就是说,第二调制符号集合中的K个复数是复数模值较大的复数。
继续参见图6所示,以第一复数集合和第二复数集合为例介绍。
第一复数集合中的K个复数即方框之外的星座点共有32个。第二复数集合中的K个复数即方框之外的星座点共有32个。
第一复数集合中方框外的一个星座点P表示为
Figure PCTCN2021096535-appb-000021
是归一化系数;
第二复数集合中方框外的一个星座点Q表示为
Figure PCTCN2021096535-appb-000022
是归一化系数;
其中,星座点P乘以实数A(即
Figure PCTCN2021096535-appb-000023
)之后为(8+13i),星座点Q乘以实数B(即
Figure PCTCN2021096535-appb-000024
)之后为(8+13i)。因此,星座点P乘以实数A与星座点P乘以实数B后的取值相等。
关于上述条件(2):所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等。
继续以图6中的第一复数集合和第二复数集合为例,第一复数集合中方框所围的星座点与第二复数集合中方框所围的星座点布局不同,具体来说,第一复数集合中方框所围的星座点,与第二复数集合中方框所围的星座点乘以任意非0实数之后的取值不相同。
在一些实施例中,所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足:在所述n等于6的情况下,所述Q大于1.34小于1.42。所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足:在所述n等于6的情况下,所述Q大于1.34小于1.42。
继续以图6为例,第一复数集合中K个复数即方框之外的复数,前P个复数即最外一圈的复数(共16个),所述K-P个复数第二外圈内的复数(共16个),最外一圈的复数的模值与第二外圈内的复数的模值的比值是Q,
Figure PCTCN2021096535-appb-000025
所述Q为大于1的正数,所述Q大于1.34小于1.42。
Figure PCTCN2021096535-appb-000026
同理,第二复数集合中K个复数即方框之外的复数,前P个复数即最外一圈的复数(共16个),所述K-P个复数第二外圈内的复数(共16个),最外一圈的复数的模值与第二外圈内的复数的模值的比值是Q,
Figure PCTCN2021096535-appb-000027
所述Q为大于1的正数,所述Q大于1.34小于1.42。
本申请实施例中,同一个调制阶数n可对应多个复数集合,多个复数集合中存在外圈嵌套的情况。以图6所示的调制阶数n=6对应的4个复数集合为例,4个复数集合中存在相同的部分,比如4个复数集合中最外两圈的实部的整数部分分别相等,虚部的整数部分分别相等,这里所述的实部的整数部分是指实数乘以对应的归一化系数之后取值,虚部的整数部分是指虚部乘以归一化系数之后的取值。倘若复数以
Figure PCTCN2021096535-appb-000028
表示,实部的整数部分是指I,虚部的整数部分是指Q。
因此,每个复数集合可以分两部分存储,第一部分用于存储复数集合中每个复数的实部的整数部分I和虚部的整数部分Q,第二部分是用于存储复数集合对应的归一化系数。那么,四个复数集合对应的第一部分中存在相同的整数。比如,第一复数集合的外两圈的 复数的实数整数部分I等于第二复数集合(或第三复数集合或第四复数集合)中外两圈的复数的实部的整数部分I。
下面以调制阶数n=6为例,且以4bit量化为例,包括4个复数集合,即第一复数集合、第二复数集合、第三复数集合和第四复数集合。参见下表9,每个复数集合分第一部分存储和第二部分存储:
表9
Figure PCTCN2021096535-appb-000029
通过以上表9可知,四个复数集合分两部分存储,第一部分是实部的整数部分即I,和虚部的整数部分即Q,第二部分是归一化系数;四个复数集合中的第一部分存在相同部分,相同部分只需可以存储一次即可,以节省存储开销。
下面以调制阶数n=6为例,且以5bit量化为例,包括四个复数集合,即第五复数集合、第六复数集合、第七复数集合、第八复数集合。参见表10,每个复数集合分第一部分存储和第二部分存储:
表10
Figure PCTCN2021096535-appb-000030
Figure PCTCN2021096535-appb-000031
通过以上表10可知,调制阶数n=6的情况下,若使用5bit量化,四个复数集合分两部分存储,第一部分是实部的整数部分即I、和虚部的整数部分即Q,第二部分是归一化系数;四个复数集合中的第一部分存在相同部分,相同部分只需可以存储一次即可,以节省存储开销。
步骤502,发送设备向接收设备发送调制符号。
发送设备还可以向接收设备发送所述多个复数集合,比如X=4对应的四个复数集合,X=5对应的四个复数集合,以使接收设备所述复数集合(与调制符号对应的复数集合)对调制符号进行解调。
步骤503,发送设备向接收设备发送提示信息,该提示信息用于提示调制符号对应的复数集合。
调制阶数n对应多个复数集合,发送设备对比特流进行调制处理得到的调制符号,该调制符号的取值是多个复数集合中的一个,发送设备需要通知接收设备是哪一个复数集合, 这样,接收设备可以通过对应的复数集合对调制符号进行解调。
同一调制阶数n,不同量化比特X,对应的复数集合不同。因此,发送设备还可以指示采用的哪一个量化比特X对应的复数集合。
在一些实施例中,量化比特X可以是接收设备发送的,比如,在图5所示的实施例中,还包括步骤:发送设备接收来自接收设备的第二指示信息,所述第二指示信息用于指示量化比特X。也就是说,接收设备可以通知发送设备自身能够支持的最大的量化比特。
假设接收设备指示X=5,发送设备可以使用X=5进行量化,也可以使用X=4进行量化。当使用X=4进行量化时,指示X=4对应的复数集合,当使用X=5进行量化时,指示X=5对应的复数集合。
下面介绍发送设备向接收设备指示调制符号对应的复数集合的多种方式,以下方式可以单独使用也可以结合使用。
第一种方式
发送设备向接收设备发送第一指示信息,所述第一指示信息用于指示所述调制符号对应的量化比特X对应的所有复数集合。示例性的,第一指示信息可以是控制信息DCI;或是携带于DCI中的某个字段中的信息,或者是DCI增加的字段中的信息,等等,本申请实施例不作限定。
在X=4的情况下,参见表7,发送设备对比特流调制处理得到的调制符号的取值是X=4对应的四个复数集合一个,所述第一指示信息可以指示所述第一复数集合、所述第二复数集合、所述第三复数集合和所述第四复数集合。也就是说,第一种方式中,发送设备通过第一指示信息指示接收设备,调制符号对应X=4的四个复数集合。
示例性的,在X=4的情况下,第一指示信息可参见下表11,
表11
Figure PCTCN2021096535-appb-000032
在X=4的情况下,第一指示信息占用1比特,取值可以是0或1。当取值为0时,指示调制符号对应的复数集合是64QAM;当取值为1时,指示调制符号对应的复数集合是X=4对应的第一复数集合、第二复数集合、第三复数集合和第四复数集合。
在X=5的情况下,参见表7,发送设备对比特流调制处理得到的调制符号的取值可以是X=4的四个复数集合,也可以是X=5的四个复数集合。因此,在X=5的情况下,第一指示信息参见表12:
表12
Figure PCTCN2021096535-appb-000033
Figure PCTCN2021096535-appb-000034
在X=5的情况下,第一指示信息占用2比特,取值可以是0-2。当取值为0时,指示调制符号对应的复数集合是64QAM;当取值为1时,指示调制符号对应的复数集合是第一复数集合、第二复数集合、第三复数集合和第四复数集合。当取值为2时,指示调制符号对应的复数集合是第五复数集合、第六复数集合、第七复数集合和第八复数集合。
第二种方式
区别于第一种方式,可以更精准的指示调制符号对应的是X=4的四个复数集合中的哪一个复数集合;或者,更精准的指示调制符号对应的是X=5的四个复数集合中的哪一个复数集合。
以X=4为例,以表7为例,假设发送设备对比特流调制处理得到的调制符号的取值是第一复数集合中的一个或多个,所述第一指示信息可以指示所述第一复数集合。一种示例为,第一指示信息中指示调制阶数为6,且第一指示信息中携带一个标记,该标记指示第一复数集合(第一复数集合到第四复数集合中每个复数集合对应一个标记)。因此,接收设备通过第一指示信息可以确定调制符号对应的是第一复数集合。
示例性的,以X=4为例,第一指示信息可参见表13:
表13
Figure PCTCN2021096535-appb-000035
在X=4的情况下,第一指示信息占用3比特,取值可以是0-4。当取值为0时,指示调制符号对应的复数集合是64QAM;当取值为1时,指示调制符号对应的复数集合是第一复数集合;当取值为2时,指示调制符号对应的复数集合是第二复数集合,当取值为3时,指示调制符号对应的复数集合是第三复数集合,当取值为4时,指示调制符号对应的复数集合是第四复数集合。
在X=5的情况下,以表7为例,发送设备对比特流调制处理得到的调制符号的取值可以是X=4的四个复数集合中的一个,也可以是X=5的四个复数集合中的一个。假设是第一复数集合,所述第一指示信息可以指示所述第一复数集合。
示例性的,在X=5的情况下,第一指示信息可参见表14:
表14
Figure PCTCN2021096535-appb-000036
Figure PCTCN2021096535-appb-000037
因此,在X=5的情况下,第一指示信息占用4比特,取值可以是0-8。当取值为0时,指示调制符号对应的复数集合是64QAM;当取值为1时,指示调制符号对应的复数集合是第一复数集合;当取值为2时,指示调制符号对应的复数集合是第二复数集合,当取值为3时,指示调制符号对应的复数集合是第三复数集合,当取值为4时,指示调制符号对应的复数集合是第四复数集合。当取值为5时,指示调制符号对应的复数集合是第五复数集合;当取值为6时,指示调制符号对应的复数集合是第六复数集合,当取值为7时,指示调制符号对应的复数集合是第七复数集合,当取值为8时,指示调制符号对应的复数集合是第八复数集合。
第三种方式
发送设备向发送设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示调制符号对应的量化比特X对应的所有复数集合。
在X=4的情况下,以RNTI加扰为例,当发送设备发送的DCI的CRC被预配置的RNTI加扰时,指示QAM;当DCI的CRC被预配置的RNTI+1加扰时,指示X=4对应的四个复数集合。
在X=5的情况下,以RNTI加扰为例,当发送设备发送的DCI的CRC被预配置的RNTI加扰时,指示QAM;当DCI的CRC被预配置的RNTI+1加扰时,指示X=4的四个复数集合;当DCI的CRC被预配置的RNTI+2加扰时,指示X=5的四个复数集合。
第四种方式
区别于上述第三种方式,可以更精确的指示X=4对应的四个复数集合中的哪一个复数集合;或者,更精确的指示X=4对应的四个复数集合中的哪一个复数集合。
在X=4的情况下,以RNTI加扰为例,当发送设备发送的DCI的CRC被预配置的RNTI加扰时,指示QAM;当DCI的CRC被预配置的RNTI+1加扰时,指示第一复数集合;当DCI的CRC被预配置的RNTI+2加扰时,指示第二复数集合;当DCI的CRC被预配置的RNTI+3加扰时,指示第三复数集合;当DCI的CRC被预配置的RNTI+4加扰时,指示第四复数集合。
在X=5的情况下,以RNTI加扰为例,当发送设备发送的DCI的CRC被预配置的RNTI加扰时,指示QAM;当DCI的CRC被预配置的RNTI+1加扰时,指示第一复数集合;当DCI的CRC被预配置的RNTI+2加扰时,指示第二复数集合;当DCI的CRC被预配置的RNTI+3加扰时,指示第三复数集合;当DCI的CRC被预配置的RNTI+4加扰时,指示第四复数集合。当DCI的CRC被预配置的RNTI+5加扰时,指示第五复数集合;当DCI的 CRC被预配置的RNTI+6加扰时,指示第六复数集合;当DCI的CRC被预配置的RNTI+7加扰时,指示第七复数集合;当DCI的CRC被预配置的RNTI+8加扰时,指示第八复数集合。
RNTI加扰类型可以有多种,比如包括系统消息无线网络临时标识(system information RNTI,SI_RNTI)加扰类型、小区无线网络临时标识(cell RNTI,C-RNTI)加扰类型、小区半静态无线网络临时标识(cell semi-persistent RNTI,CS-RNTI)加扰类型、临时小区无线网络临时标识(temporary cell RNTI,TC_RNTI)加扰类型或随机接入无线网络临时标识(random access RNTI,RA-RNTI)加扰类型,本申请实施例不作限定。
步骤504,接收设备根据指示信息所指示的复数集合对调制符号进行解调,得到比特流。
假设发送设备对比特流进行调制处理之后得到的调制符号的取值是X=4对应的第一复数集合,发送设备指示接收设备调制符号对应第一复数集合。然而调制符号在实际信道上传输的过程中,不可避免的会收到噪声等影响,导致接收设备接收到的调制符号的取值在坐标系中的位置与所述第一复数集合有所偏移。因此,接收设备接收到的调制符号之后,在第一复数集合中确定与所述调制符号取值距离最近的复数,基于所述复数对调制符号进行解调处理,得到比特流。
下面通过对比QAM与本申请实施例提供的复数集合,介绍本申请实施例的有益效果:
1、相同调制阶数n的情况下,QAM对应一个复数集合,比如,调制阶数n=6,对应一个QAM,而本申请实施例中,调制阶数n=6,对应多个复数集合,多个复数集合对应不同的MCS,比如X=4时,对应四个复数集合,X=5时,对应另外四个复数集合。因此,本申请的复数集合的设计方式更为灵活。
2、本申请的复数集合相对于QAM具有更高的传输性能。具体而言,可通过仿真测试的方式测试本申请的复数集合与QAM在满足相同条件下的传输性能。下面给出几个示例:
(1)、在满足条件1:一个调制符号携带相同bit的比特流即调制阶数n相同的情况下,通过仿真测试可确定本申请的复数集合相对于QAM可以降低接收设备的解调门限。所述解调门限可以理解为调制器对输入信号的解调门限,当输入信号的信噪比大于该门限值时,解调器对该输入信息进行解调。所述信噪比为信号与噪声的比值。
(2)、在满足条件1:一个调制符号携带相同bit,并满足条件2:相同解调门限的情况下,通过仿真测试可确定本申请的复数集合相对于QAM可以获得更高的吞吐量,更低的误块率。或者,在达到相同的误块率的前提下,本申请的复数集合相对于QAM可以降低信噪比,比如可以降低0.5dm至1dm。
3、本申请中,以X=4、调制阶数n=6为例,对应的多个复数集合中存在嵌套关系,每个复数集合分两部分存储,一部分存储实部的整数部分和虚部的整数部分,另一部分存储归一化系数。多个复数集合的第一部分存在相同取值,所以只需存储一份作为公共部分即可,整体存储开销较低。
图7为本申请实施例提供的一种通信装置的结构示意图。如图7所示,该通信装置700包括处理单元701和收发单元702。
一种示例中,装置700用于实现上述方法中发送设备的功能。该装置可以是上述实施例中的发送设备,也可以是发送设备中的装置,例如芯片系统。所述发送设备例如网络设备。
具体而言,处理单元701,用于对比特流进行调制处理生成调制符号,其中,所述比特流的调制阶数为n,所述调制符号的取值为多个复数集合中的一个,所述复数集合包括Y=2 n个复数,所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在所述n等于4的情况下,所述M大于3小于16;
在所述n等于6的情况下,所述M大于7小于32;
在所述n等于8的情况下,所述M大于15小于64;
在所述n等于10个情况下,所述M大于31小于128;
收发单元702,用于将所述调制符号发送给接收设备。
可选的,所述复数集合还满足:
所述复数集合中虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。
可选的,处理单元701还用于根据调制编码方式确定所述复数集合,其中,在所述调制编码方式为第一调制编码方式的情况下,所述复数集合为第一复数集合;在所述调制编码方式为第二调制编码方式的情况下,所述复数集合为第二复数集合;在所述第一调制编码方式与所述第二调制编码方式对应的调制阶数相等的情况下,所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,且所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等,所述实数A和所述实数B是归一化系数。
可选的,所述第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的所述Y-K个复数中的任一复数的模值;和/或,所述第二复数集合中的所述K个复数中的任一复数的模值大于所述第二复数集合中的所述Y-K个复数中的任一复数的模值。
可选的,在所述n等于6的情况下,所述K等于32。
可选的,所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42;
所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42。
可选的,所述收发单元702还用于:向所述接收设备发送指示信息,所述指示信息用于指示所述调制符号对应的复数集合。
可选的,所述收发单元702还用于:向所述接收设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示所述调制符号对应的复数集合。
一种示例中,装置700用于实现上述方法中接收设备的功能。该装置可以是上述实施例中的接收设备,也可以是接收设备中的装置,例如芯片系统。例如所述接收设备可以是终端设备。
具体而言,收发单元702,用于接收来自发送设备的调制符号;
处理单元701,用于根据调制符号对应的复数集合,对所述调制符号做解调处理,得到比特流;
所述调制符号的取值为多个复数集合中的一个;所述复数集合包括Y=2 n个复数,所述n为所述比特流的调制阶数;所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
在所述n等于4的情况下,所述M大于3小于16;
在所述n等于6的情况下,所述M大于7小于32;
在所述n等于8的情况下,所述M大于15小于64;
在所述n等于10个情况下,所述M大于31小于128。
可选的,所述复数集合还满足:
所述复数集合中虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。
可选的,所述多个复数集合包括第一复数集合和第二复数集合,所述第一复数集合是根据第一调制编码方式确定的,所述第二复数集合是根据第二调制编码方式确定的;
在所述第一调制编码方式与所述第二调制编码方式对应的调制阶数相等的情况下,所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,且所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等,所述实数A和所述实数B是归一化系数。
可选的,所述第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的所述Y-K个复数中的任一复数的模值;和/或,所述第二复数集合中的所述K个复数中的任一复数的模值大于所述第二复数集合中的所述Y-K个复数中的任一复数的模值。
可选的,在所述n等于6的情况下,所述K等于32。
可选的,所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42;
所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:在所述n等于6的情况下,所述Q大于1.34小于1.42。
可选的,收发单元702,还用于:接收来自所述发送设备的指示信息,所述指示信息用于指示所述调制符号对应的复数集合。
可选的,收发单元702还用于:接收来自所述发送设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示所述调制符号对应的复数集合。
关于处理单元701、收发单元702的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
作为另一种可选的变形,该装置可以为芯片系统。本申请实施例中,芯片系统可以由 芯片构成,也可以包含芯片和其他分立器件。示例性地,该装置包括处理器和接口,该接口可以为输入/输出接口。其中,处理器完成上述处理单元701的功能,接口完成上述收发单元702的功能。该装置还可以包括存储器,存储器用于存储可在处理器上运行的程序,处理器执行该程序时实现上述各个实施例的方法。
与上述构思相同,如图8所示,本申请实施例还提供一种装置800。该装置800中包括:通信接口801、至少一个处理器802、至少一个存储器803。通信接口801,用于通过传输介质和其它设备进行通信,从而用于装置800中的装置可以和其它设备进行通信。存储器803,用于存储计算机程序。处理器802调用存储器803存储的计算机程序,通过通信接口801收发数据实现上述实施例中的方法。
示例性地,当该装置为上述实施例发送设备时,存储器803用于存储计算机程序;处理器802调用存储器803存储的计算机程序,通过通信接口801执行上述实施例中发送设备(例如网络设备)执行的方法。当该装置为上述实施例中接收设备时,存储器803用于存储计算机程序;处理器802调用存储器803存储的计算机程序,通过通信接口801执行上述实施例中接收设备(例如终端设备)执行的方法。
在本申请实施例中,通信接口801可以是收发器、电路、总线、模块或其它类型的通信接口。处理器802可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。存储器803可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置。存储器803和处理器802耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器803还可以位于装置800之外。处理器802可以和存储器803协同操作。处理器802可以执行存储器803中存储的程序指令。所述至少一个存储器803中的至少一个也可以包括于处理器802中。本申请实施例中不限定上述通信接口801、处理器802以及存储器803之间的连接介质。例如,本申请实施例在图8中以存储器803、处理器802以及通信接口801之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
可以理解的,上述图8所示实施例中的装置可以以图7所示的装置700实现。具体的,处理单元701可以由处理器802实现,收发单元702可以由通信接口801实现。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存 储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,固态硬盘Solid State Disk SSD)等。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行图5所示的方法。
本申请实施例还提供一种通信系统,该通信系统包括发送设备和接收设备,该发送设备用于执行图5所示的技术方案中发送设备的步骤,该接收设备用于执行图5的技术方案中接收设备的步骤。其中,发送设备可以是网络设备,接收设备可以是终端设备,即下行方向;或者,发送设备可以是终端设备,接收设备可以是网络设备,即上行方向。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (24)

  1. 一种信号发送方法,其特征在于,应用于发送设备,包括:
    对比特流进行调制处理生成调制符号,其中,所述比特流的调制阶数为n,所述调制符号的取值为多个复数集合中的一个,所述多个复数集合中每个复数集合包括Y=2 n个复数,所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
    在所述n等于4的情况下,所述M大于3小于16;
    在所述n等于6的情况下,所述M大于7小于32;
    在所述n等于8的情况下,所述M大于15小于64;
    在所述n等于10个情况下,所述M大于31小于128;
    将所述调制符号发送给接收设备。
  2. 根据权利要求1所述的方法,其特征在于,所述复数集合还满足:
    所述复数集合中虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据调制编码方式确定所述复数集合,其中,在所述调制编码方式为第一调制编码方式的情况下,所述复数集合为第一复数集合;在所述调制编码方式为第二调制编码方式的情况下,所述复数集合为第二复数集合;
    在所述第一调制编码方式与所述第二调制编码方式对应的调制阶数相等的情况下,所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,且所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等,所述实数A和所述实数B是归一化系数。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的所述Y-K个复数中的任一复数的模值;和/或,
    所述第二复数集合中的所述K个复数中的任一复数的模值大于所述第二复数集合中的所述Y-K个复数中的任一复数的模值。
  5. 根据权利要求3或4所述的方法,其特征在于,在所述n等于6的情况下,所述K等于32。
  6. 根据权利要求3-5任一所述的方法,其特征在于,
    所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:
    在所述n等于6的情况下,所述Q大于1.34小于1.42;
    所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:
    在所述n等于6的情况下,所述Q大于1.34小于1.42。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    向所述接收设备发送指示信息,所述指示信息用于指示所述调制符号对应的复数集合。
  8. 如权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    向所述接收设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示所述调制符号对应的复数集合。
  9. 一种信号接收方法,其特征在于,应用于接收设备,包括:
    接收来自发送设备的调制符号;
    根据调制符号对应的复数集合,对所述调制符号做解调处理,得到比特流;
    所述调制符号的取值为多个复数集合中的一个;所述多个复数集合中每个复数集合包括Y=2 n个复数,所述n为所述比特流的调制阶数;所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
    在所述n等于4的情况下,所述M大于3小于16;
    在所述n等于6的情况下,所述M大于7小于32;
    在所述n等于8的情况下,所述M大于15小于64;
    在所述n等于10个情况下,所述M大于31小于128。
  10. 根据权利要求9所述的方法,其特征在于,所述复数集合还满足:
    所述复数集合中虚部绝对值最大的第三复数的虚部与所述复数集合中虚部绝对值最小的第四复数的虚部之间的比值等于所述M:N。
  11. 根据权利要求9或10所述的方法,其特征在于,所述多个复数集合包括第一复数集合和第二复数集合,所述第一复数集合是根据第一调制编码方式确定的,所述第二复数集合是根据第二调制编码方式确定的;
    在所述第一调制编码方式与所述第二调制编码方式对应的调制阶数相等的情况下,所述第一复数集合中的K个复数乘以实数A,与所述第二复数集合中的K个复数乘以实数B后的取值分别相等,且所述第一复数集合中除所述K个复数以外的Y-K个复数,与所述第二复数集合中除所述K个复数以外的Y-K个复数乘以任意非零实数后的取值不相等,所述实数A和所述实数B是归一化系数。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一复数集合中的K个复数中的任一复数的模值大于所述第一复数集合中的所述Y-K个复数中的任一复数的模值;和/或,
    所述第二复数集合中的所述K个复数中的任一复数的模值大于所述第二复数集合中的所述Y-K个复数中的任一复数的模值。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述n等于6的情况下,所述K等于32。
  14. 根据权利要求11-13任一所述的方法,其特征在于,
    所述第一复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第一复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:
    在所述n等于6的情况下,所述Q大于1.34小于1.42;
    所述第二复数集合中的K个复数的模值由大到小排列后,前P个复数的模值与所述第二复数集合中除所述P个复数以外的K-P个复数的模值的比值等于Q,所述Q为大于1的正数,所述Q还满足如下:
    在所述n等于6的情况下,所述Q大于1.34小于1.42。
  15. 如权利要求9-14任一所述的方法,其特征在于,在所述根据调制符号对应的复数集合,对所述调制符号做解调处理之前,还包括:
    接收来自所述发送设备的指示信息,所述指示信息用于指示所述调制符号对应的复数集合。
  16. 如权利要求9-14任一所述的方法,其特征在于,在所述根据调制符号对应的复数集合,对所述调制符号做解调处理之前,还包括:
    接收来自所述发送设备发送控制信息DCI,所述DCI使用第一信息加扰,所述第一信息用于指示所述调制符号对应的复数集合。
  17. 一种发送设备,其特征在于,包括:
    处理单元,用于对比特流进行调制处理生成调制符号,其中,所述比特流的调制阶数为n,所述调制符号的取值为多个复数集合中的一个,所述多个复数集合中每个复数集合包括Y=2 n个复数,所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
    在所述n等于4的情况下,所述M大于3小于16;
    在所述n等于6的情况下,所述M大于7小于32;
    在所述n等于8的情况下,所述M大于15小于64;
    在所述n等于10个情况下,所述M大于31小于128;
    收发单元,用于将所述调制符号发送给接收设备。
  18. 一种接收设备,其特征在于,包括:
    收发单元,用于接收来自发送设备的调制符号;
    处理器单元,用于根据调制符号对应的复数集合,对所述调制符号做解调处理,得到比特流;
    所述调制符号的取值为多个复数集合中的一个;所述多个复数集合中每个复数集合包括Y=2 n个复数,所述n为所述比特流的调制阶数;所述复数集合中实部绝对值最大的第一复数的实部与所述复数集合中实部绝对值最小的第二复数的实部之间的比值等于M:N,所述M和N为正整数,且所述M和N的最大公约数为1,所述M还满足如下至少一种:
    在所述n等于4的情况下,所述M大于3小于16;
    在所述n等于6的情况下,所述M大于7小于32;
    在所述n等于8的情况下,所述M大于15小于64;
    在所述n等于10个情况下,所述M大于31小于128。
  19. 一种发送设备,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合;所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至8中任一项所述的方法。
  20. 一种接收设备,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合;所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序 或指令,以使得所述装置执行如权利要求9至16中任一项所述的方法。
  21. 一种芯片,其特征在于,所述芯片与通信装置中存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,以使得所述装置执行如权利要求1至16中任一项所述的方法。
  22. 一种通信系统,其特征在于,包括
    用于实现权利要求1至8中任一项所述的方法的发送设备;以及,
    用于实现权利要求9至16中任一项所述的方法的接收设备。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1至16中任意一项所述的方法。
  24. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1至16中任意一项所述的方法。
PCT/CN2021/096535 2020-05-30 2021-05-27 一种信号发送方法、信号接收方法与相关装置 WO2021244403A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21818274.9A EP4152712A4 (en) 2020-05-30 2021-05-27 SIGNAL SENDING METHOD, SIGNAL RECEIVING METHOD AND RELATED APPARATUS
US18/071,200 US20230103770A1 (en) 2020-05-30 2022-11-29 Signal sending method, signal receiving method, and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010480842.7A CN113746775B (zh) 2020-05-30 2020-05-30 一种信号发送方法、信号接收方法与相关装置
CN202010480842.7 2020-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/071,200 Continuation US20230103770A1 (en) 2020-05-30 2022-11-29 Signal sending method, signal receiving method, and related apparatus

Publications (1)

Publication Number Publication Date
WO2021244403A1 true WO2021244403A1 (zh) 2021-12-09

Family

ID=78727762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096535 WO2021244403A1 (zh) 2020-05-30 2021-05-27 一种信号发送方法、信号接收方法与相关装置

Country Status (4)

Country Link
US (1) US20230103770A1 (zh)
EP (1) EP4152712A4 (zh)
CN (1) CN113746775B (zh)
WO (1) WO2021244403A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493154A (zh) * 2016-06-12 2017-12-19 中兴通讯股份有限公司 一种信道编码与格雷映射高阶调制联合处理方法及装置
CN109391292A (zh) * 2018-12-20 2019-02-26 哈尔滨工业大学 加权分数傅里叶变换域双时隙分集与复用的协同传输方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277494B2 (en) * 2003-06-04 2007-10-02 Honeywell Federal Manufacturing & Technologies, Llc Method of differential-phase/absolute-amplitude QAM
US7764741B2 (en) * 2005-07-28 2010-07-27 Broadcom Corporation Modulation-type discrimination in a wireless communication network
US9014306B2 (en) * 2011-04-14 2015-04-21 Broadcom Corporation IQ gain imbalance correction for receivers employing sigma-delta analog to digital conversion
CN102820934B (zh) * 2011-06-08 2015-07-29 上海无线通信研究中心 一种改进的最大比合并检测方法
CN110086736B (zh) * 2013-04-12 2022-09-23 太阳专利托管公司 发送装置、发送方法、接收装置、接收方法
US9008237B2 (en) * 2013-06-27 2015-04-14 Intel IP Corporation Method and device for symbol detection
DE102014200634A1 (de) * 2014-01-15 2015-07-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Empfänger und verfahren zur bestimmung einer phaseninformation eines empfangenen signals und system und verfahren zur messung einer information über eine entfernung zu einem objekt
CN105515713B (zh) * 2014-09-25 2018-11-30 中兴通讯股份有限公司 一种多用户码分多址接入通信方法与相应发射机、接收机
WO2016096039A1 (en) * 2014-12-19 2016-06-23 Huawei Technologies Duesseldorf Gmbh Alamouti mapping for use in real field orthogonal fbmc modulation systems
US10541846B2 (en) * 2015-03-31 2020-01-21 Chongqing University Of Posts And Telecommunications Method and system for multi-carrier time division multiplexing modulation/demodulation
US10547487B1 (en) * 2016-04-12 2020-01-28 Marvell International Ltd. Integer non-uniform constellation for high-order QAM
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493154A (zh) * 2016-06-12 2017-12-19 中兴通讯股份有限公司 一种信道编码与格雷映射高阶调制联合处理方法及装置
CN109391292A (zh) * 2018-12-20 2019-02-26 哈尔滨工业大学 加权分数傅里叶变换域双时隙分集与复用的协同传输方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANHAN LIU (MEDIATEK INC.): "1024QAM Modulation", IEEE DRAFT; 11-16-0656-01-00AX-1024QAM-MODULATION, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11ax, no. 1, 17 May 2016 (2016-05-17), Piscataway, NJ USA , pages 1 - 23, XP068119527 *
NOKIA, NOKIA SHANGHAI BELL: "Design details of 1024QAM", 3GPP DRAFT; R1-1718016_1024QAM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20171009 - 20171013, 30 September 2017 (2017-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051351994 *

Also Published As

Publication number Publication date
CN113746775A (zh) 2021-12-03
EP4152712A4 (en) 2023-11-08
CN113746775B (zh) 2023-08-04
EP4152712A1 (en) 2023-03-22
US20230103770A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2019096022A1 (zh) 传输数据的方法和装置
JP5639270B2 (ja) 拡張されたmpdu、a−mpdu、およびa−msduフレームフォーマットのためのシグナリング
WO2016154968A1 (zh) 编码方法、装置、基站和用户设备
WO2022027561A1 (en) Methods and devices for scheduling multiple cells with single downlink control information
WO2019238131A1 (zh) 一种确定传输块大小的方法、传输方法及装置
WO2021057948A1 (zh) 信息传输方法及通信装置
US20230043308A1 (en) Methods and devices for configuring harq-ack feedback
US20230198715A1 (en) Phase tracking reference signal sending method and receiving method and communication apparatus
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
EP4140072A1 (en) Methods and devices for configuring harq-ack feedback
WO2021203976A1 (zh) 数据处理方法、装置及系统
WO2022057568A1 (zh) 数据传输方法和装置
CN111010254B (zh) 一种通信方法、通信装置、计算机存储介质
WO2023066285A1 (zh) 通信方法及装置
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2021244403A1 (zh) 一种信号发送方法、信号接收方法与相关装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
CN109495968B (zh) 用于进行数据传输的方法和装置
WO2022022516A1 (zh) 无线通信的方法和装置
WO2022077504A1 (zh) 一种用于无线保真Wi-Fi系统的通信方法及装置
EP4138477A1 (en) Physical downlink control channel configuration method, apparatus, device, and storage medium
WO2019141232A1 (zh) 一种通信、mcs的接收、通知方法及设备
WO2023071901A1 (zh) 通信方法和通信装置
CN113852577B (zh) 无线通信方法和通信装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021818274

Country of ref document: EP

Effective date: 20221212

NENP Non-entry into the national phase

Ref country code: DE