WO2022206990A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2022206990A1
WO2022206990A1 PCT/CN2022/085021 CN2022085021W WO2022206990A1 WO 2022206990 A1 WO2022206990 A1 WO 2022206990A1 CN 2022085021 W CN2022085021 W CN 2022085021W WO 2022206990 A1 WO2022206990 A1 WO 2022206990A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
field
modulation
modulation scheme
mcs
Prior art date
Application number
PCT/CN2022/085021
Other languages
English (en)
French (fr)
Inventor
曲韦霖
罗之虎
杨育波
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110362864.8A external-priority patent/CN115173989B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22779170.4A priority Critical patent/EP4311179A1/en
Priority to JP2023560443A priority patent/JP2024512686A/ja
Publication of WO2022206990A1 publication Critical patent/WO2022206990A1/zh
Priority to US18/477,497 priority patent/US20240030942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method and apparatus.
  • the Internet of Things is a machine type communication (Machine Type Communication, MTC)-oriented network, and is an important network in the field of future communications.
  • IoT communication is mainly used in intelligent meter reading, medical inspection and monitoring, logistics inspection, industrial inspection and monitoring, Internet of Vehicles, intelligent community and wearable device communication. Due to the variety of IoT application scenarios, including from outdoor to indoor, from above ground to underground, many special requirements are put forward for the design of IoT, including coverage enhancement, huge number of terminals, low service rate requirements, and insensitivity to delay. , very low cost, or low power consumption, etc.
  • NB-IoT Narrow Band Internet of Things
  • the modulation methods supported by NB-IoT downlink are Quadrature Phase Shift Keying (QPSK), and the modulation methods supported by uplink are binary phase shift keying (BPSK) and QPSK.
  • QPSK Quadrature Phase Shift Keying
  • BPSK binary phase shift keying
  • QPSK Quadrature Phase Shift Keying
  • BPSK binary phase shift keying
  • DCI downlink control information
  • Embodiments of the present application provide a data transmission method and apparatus, so as to implement support for a new modulation mode.
  • a first aspect provides a data transmission method, the method comprising: generating a downlink control message DCI, where the DCI can be used to indicate a first modulation scheme or a second modulation scheme, or can only be used to indicate the second modulation scheme , the DCI includes the modulation and coding strategy MCS field.
  • the MCS field is in the first state, the DCI is used to indicate the first modulation mode.
  • the MCS field is in the second state, the DCI is used to indicate the second modulation mode and the second modulation mode.
  • MCS index of send DCI.
  • the aforementioned DCI can only be used to indicate the second modulation mode, which means that the DCI can only indicate one of the two modulation modes, and the DCI also indicates other information.
  • the DCI when the DCI is only used to indicate the second modulation mode, the DCI also includes a repetition number field, where the repetition number field is N bits, where N is a positive integer, and the DCI is used to indicate the first modulation mode or the second modulation mode In the mode, the DCI also includes K bits to indicate the MCS index of the first modulation mode, where K is a positive integer and K is less than or equal to N, and the DCI also includes a repetition number field and the repetition number field is less than or equal to N-K bits, or in the DCI Does not include the number of repetitions field.
  • K is 3 bits
  • N is 3 bits
  • N is 4 bits
  • the DCI is the control information scrambled by the PUR-RNTI, and the DCI further includes an acknowledgement feedback or a backtracking indication field.
  • the newly added modulation scheme (the first modulation scheme) can also be implemented without increasing the overhead of the downlink control information. )support.
  • the MCS field is 4 bits.
  • the first state is "1111”
  • the second state is one state in "0000-1111” except for 1111 and 1110.
  • the first modulation scheme is 16 quadrature amplitude modulation QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • a data transmission method includes: receiving downlink control information DCI, where the DCI includes a modulation and coding strategy MCS field, when the MCS field is in a first state, the DCI is used to indicate the first modulation mode, when When the MCS field is in the second state, the DCI is used to indicate the second modulation scheme and the MCS index of the second modulation scheme; data is received or sent according to the DCI.
  • DCI downlink control information
  • the DCI includes a modulation and coding strategy MCS field, when the MCS field is in a first state, the DCI is used to indicate the first modulation mode, when When the MCS field is in the second state, the DCI is used to indicate the second modulation scheme and the MCS index of the second modulation scheme; data is received or sent according to the DCI.
  • the DCI when the DCI is only used to indicate the second modulation mode, the DCI also includes a repetition number field, where the repetition number field is N bits, where N is a positive integer, and the DCI is used to indicate the first modulation mode or the second modulation mode In the mode, the DCI also includes K bits to indicate the MCS index of the first modulation mode, where K is a positive integer and K is less than or equal to N, and the DCI also includes a repetition number field and the repetition number field is less than or equal to N-K bits, or in the DCI Does not include the number of repetitions field.
  • K is 3 bits
  • N is 3 bits
  • N is 4 bits
  • the DCI is the control information scrambled by the PUR-RNTI, and the DCI further includes an acknowledgement feedback or a backtracking indication field.
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • the MCS field is 4 bits.
  • the first state is "1111”
  • the second state is other states except 1111 and 1110 in "0000-1111”.
  • the first modulation scheme is 16 quadrature amplitude modulation QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • a data transmission method comprising: generating a downlink control message DCI, wherein the DCI is control information scrambled by PUR-RNTI, the DCI includes an acknowledgement feedback or a backtracking indication field, and the DCI includes a modulation In the coding strategy MCS field, when the MCS field is in the first state, the DCI includes a first modulation mode indication field, which is used to indicate the first modulation mode; the DCI is sent.
  • the redundancy state of the subcarrier indication field is used to realize the simultaneous
  • the indication of the MCS index of a modulation mode (new modulation mode)
  • the network device does not need to re-issue the DCI, which improves the efficiency of the DCI scheduling data.
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • the first state is "1110”
  • the second state is other states except 1111 and 1110 in "0000-1111”.
  • a data transmission method comprising: receiving a downlink control message DCI, where the DCI is PUR-RNTI scrambled control information, the DCI includes an acknowledgement feedback or a retrospective indication field, and the DCI includes modulation and coding
  • the DCI includes a first modulation mode indication field, which is used to indicate the first modulation mode; data is received or sent according to the DCI.
  • the redundancy state in the subcarrier indication field is used to indicate the first modulation mode.
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • receiving or sending data according to the DCI includes: receiving or sending data according to the first modulation mode indicated by the DCI and the MCS index corresponding to the first modulation mode.
  • the process avoids increasing the DCI overhead and ensures the transmission efficiency of the DCI.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • N1 is 4, and/or when DCI schedules uplink transmission, N2 is 3 bits, and when downlink transmission is scheduled, N2 is 4 bits.
  • a sixth aspect provides a data transmission method, the method includes: receiving downlink control information DCI, the DCI includes a modulation and coding strategy MCS field and a repetition count field, and the DCI is used to indicate the MCS index of the first modulation scheme or the second modulation scheme
  • the MCS field is N1 bits
  • the repetition count field is N2 bits
  • DCI is used to indicate the MCS index of the first modulation scheme or the MCS index of the second modulation scheme
  • the MCS field is N1+1 bits
  • the repetition times field is N2-1 bits
  • data is received or sent according to the DCI.
  • receiving or sending data according to the DCI includes: receiving or sending data according to the MCS domain of the first modulation scheme or the MCS domain of the second modulation scheme indicated by the DCI.
  • a data transmission method includes: sending a first message, where the first message includes first indication information for instructing a terminal to use a first modulation scheme and indicating a modulation code corresponding to the first modulation scheme
  • the policy MCS index or is used to instruct the terminal to use the second modulation scheme and to indicate the MCS index corresponding to the second modulation scheme
  • the first message is a response message for random access of the terminal.
  • the subcarrier interval configured by the network device for the terminal is 15 kHz, and the subcarrier indication index is greater than 11.
  • the method before sending the first information, the method further includes: receiving a fourth message, where the fourth message includes a random access preamble sequence; Modulation.
  • the preamble sequence is an early data transmission EDT preamble sequence.
  • the preamble sequence is the EDT preamble sequence
  • the received second message includes uplink data in addition to the RRC establishment request information
  • the second message is transmitted by using the first modulation mode, which can improve the transmission rate of the uplink data.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is QPSK
  • a data transmission method comprising: receiving a first message, where the first message includes first indication information for instructing a terminal to use a first modulation scheme and indicating a modulation code corresponding to the first modulation scheme
  • the policy MCS index or used to instruct the terminal to use the second modulation mode and to indicate the MCS index corresponding to the second modulation mode
  • the first message is a response message for random access of the terminal; send a second message, the second message adopts the first the modulation mode indicated by the indication information, the second message includes a radio resource control RRC setup request message; and/or a third message is received, the third message adopts the modulation mode indicated by the first indication information, and the third message includes a contention resolution identifier for carrying news.
  • the method before sending the first information, further includes: sending a fourth message, where the fourth message includes a preamble sequence of random access; the modulation mode corresponding to the fourth message is the first modulation mode or the second modulation mode Modulation.
  • the preamble sequence is an early data transmission EDT preamble sequence.
  • the method further includes: receiving first configuration information, where the first configuration information includes at least one TBS value, and the at least one TBS value is greater than The maximum TBS value of the second modulation method.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is QPSK
  • a communication device comprising:
  • the processing unit is used to generate a downlink control message DCI, and the DCI includes a modulation and coding strategy MCS field.
  • the MCS field is in the first state, the DCI is used to indicate the first modulation mode, and when the MCS field is in the second state, the DCI is used for indicating the second modulation scheme and the MCS index of the second modulation scheme;
  • the sending unit is used to send DCI.
  • the DCI when the DCI is only used to indicate the second modulation mode, the DCI also includes a repetition number field, where the repetition number field is N bits, where N is a positive integer, and the DCI is used to indicate the first modulation mode or the second modulation mode In the mode, the DCI also includes K bits to indicate the MCS index of the first modulation mode, where K is a positive integer and K is less than or equal to N, and the DCI also includes a repetition number field and the repetition number field is less than or equal to N-K bits, or in the DCI Does not include the number of repetitions field.
  • K is 3 bits
  • N is 3 bits
  • N is 4 bits
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • the first state is "1111”
  • the second state is one state in "0000-1111” except for 1111 and 1110.
  • the first modulation scheme is 16 quadrature amplitude modulation QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • a tenth aspect provides a communication device, the device comprising:
  • the processing unit is used for receiving downlink control information DCI, the DCI includes a modulation and coding strategy MCS field, when the MCS field is in the first state, the DCI is used to indicate the first modulation mode, and when the MCS field is in the second state, the DCI is used for indicating the second modulation scheme and the MCS index of the second modulation scheme;
  • the transceiver unit is used to receive or transmit data according to the DCI.
  • the DCI when the DCI is only used to indicate the second modulation mode, the DCI also includes a repetition number field, where the repetition number field is N bits, where N is a positive integer, and the DCI is used to indicate the first modulation mode or the second modulation mode In the mode, the DCI also includes K bits to indicate the MCS index of the first modulation mode, where K is a positive integer and K is less than or equal to N, and the DCI also includes a repetition number field and the repetition number field is less than or equal to N-K bits, or in the DCI Does not include the number of repetitions field.
  • K is 3 bits
  • N is 3 bits
  • N is 4 bits
  • the DCI is the control information scrambled by the PUR-RNTI, and the DCI further includes an acknowledgement feedback or a backtracking indication field.
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • the MCS field is 4 bits.
  • the first state is "1111”
  • the second state is other states except 1111 and 1110 in "0000-1111”.
  • the first modulation scheme is 16 quadrature amplitude modulation QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • the transceiver unit is specifically configured to: receive or send data according to the first modulation scheme and the MCS index of the first modulation scheme indicated by the DCI, or the second modulation scheme and the MCS index of the second modulation scheme.
  • a communication apparatus comprising: generating a downlink control message DCI, wherein the DCI is PUR-RNTI scrambled control information, the DCI includes an acknowledgement feedback or a backtracking indication field, and the DCI includes a modulation In the coding strategy MCS field, when the MCS field is in the first state, the DCI includes a first modulation mode indication field, which is used to indicate the first modulation mode; the DCI is sent.
  • the reserved bits in the DCI can be used to complete the scheduling support for the newly added modulation mode without increasing the overhead of the downlink control information, thereby avoiding the increase of the DCI overhead.
  • the redundancy state of the subcarrier indication field is used to realize the simultaneous control of the first modulation scheme (new On the one hand, it avoids increasing the DCI overhead, and on the other hand, it realizes the simultaneous indication of two different modulation modes, so that the data scheduled by DCI does not need the network in the process of switching modulation modes.
  • the device resends DCI, which improves the efficiency of DCI scheduling data.
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • the first state is "1110”
  • the second state is other states except 1111 and 1110 in "0000-1111”.
  • a twelfth aspect provides a data transmission device, the device comprising:
  • a transceiver unit configured to receive a downlink control message DCI, where the DCI is the control information scrambled by the PUR-RNTI, the DCI includes an acknowledgement feedback or a backtracking indication field, and the DCI includes a modulation and coding strategy MCS field, when the MCS field is the first In the state, the DCI includes a first modulation mode indication field, which is used to indicate the first modulation mode;
  • the processing unit is configured to receive or send data in combination with the transceiver unit according to the DCI.
  • the redundancy state in the subcarrier indication field is used to indicate the first modulation mode.
  • the DCI is the control information scrambled by the PUR-RNTI, and when the DCI is used to indicate the first modulation scheme, the DCI also includes a field for indicating the MCS index of the first modulation scheme, and the DCI does not include The number of repetitions adjustment field.
  • the processing unit is specifically configured to: receive or send data according to the first modulation mode indicated by the DCI and the MCS index corresponding to the first modulation mode.
  • a thirteenth aspect provides a data transmission device, the method comprising:
  • the processing unit is used to generate downlink control information DCI, the DCI includes a modulation and coding strategy MCS field and a repetition number field, the DCI is used to indicate the MCS index of the first modulation scheme or the MCS index of the second modulation scheme, and the DCI is only used to indicate the second modulation scheme.
  • the MCS index of the modulation scheme is used
  • the MCS field is N1 bits
  • the repetition times field is N2 bits.
  • the MCS field is N1+1 bits
  • the repetition The times field is less than or equal to N2-1 bits, or the repetition times field is not included in the DCI;
  • a sending unit used for sending the DCI.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • N1 is 4, and/or when DCI schedules uplink transmission, N2 is 3 bits, and when downlink transmission is scheduled, N2 is 4 bits.
  • a fourteenth aspect provides a data transmission device, the device comprising:
  • the transceiver unit is used to receive the downlink control information DCI.
  • the DCI includes a modulation and coding strategy MCS field and a repetition number field.
  • the DCI is used to indicate the MCS index of the first modulation scheme or the MCS index of the second modulation scheme, and the DCI is only used to indicate the first modulation scheme.
  • the MCS field is N1 bits
  • the repetition times field is N2 bits.
  • the MCS field is N1+1 bits.
  • the number of repetitions field is N2-1 bits;
  • the processing unit is configured to receive or send data in combination with the transceiver unit according to the DCI.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is quadrature phase shift keying QPSK.
  • N1 is 4, and/or when DCI schedules uplink transmission, N2 is 3 bits, and when downlink transmission is scheduled, N2 is 4 bits.
  • receiving or sending data according to the DCI includes: receiving or sending data according to the MCS domain of the first modulation scheme or the MCS domain of the second modulation scheme indicated by the DCI.
  • a fifteenth aspect provides a data transmission device, the device comprising:
  • a sending unit configured to send a first message, where the first message includes first indication information, which is used to instruct the terminal to use the first modulation scheme and the MCS index of the modulation and coding strategy corresponding to the first modulation scheme, or to instruct the terminal to use the first modulation scheme.
  • first indication information which is used to instruct the terminal to use the first modulation scheme and the MCS index of the modulation and coding strategy corresponding to the first modulation scheme, or to instruct the terminal to use the first modulation scheme.
  • Two modulation modes and an MCS index indicating the corresponding second modulation mode, and the first message is a response message for random access of the terminal;
  • a receiving unit configured to receive a second message, where the second message adopts the modulation mode indicated by the first indication information, and the second message includes a radio resource control RRC establishment request message; and/or the sending unit is further configured to send a third message, The third message adopts the modulation mode indicated by the first indication information, and the third message includes a message for carrying a contention resolution identifier.
  • the receiving unit before sending the first information, is further configured to: receive a fourth message, where the fourth message includes a preamble sequence of random access; and determine the fourth indication information according to the modulation mode corresponding to the fourth message modulation method.
  • the preamble sequence is an early data transmission EDT preamble sequence.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is QPSK
  • a sixteenth aspect provides a data transmission device, the device comprising:
  • a receiving unit configured to receive a first message, where the first message includes first indication information for instructing the terminal to use the first modulation scheme and a modulation and coding strategy MCS index corresponding to the first modulation scheme, or for instructing the terminal to use the first modulation scheme. Two modulation modes and an MCS index indicating the corresponding second modulation mode, and the first message is a response message for random access of the terminal;
  • a sending unit configured to send a second message, where the second message adopts the modulation mode indicated by the first indication information, and the second message includes a radio resource control RRC establishment request message;
  • the receiving unit is further configured to receive a third message, where the third message adopts the modulation mode indicated by the first indication information, and the third message includes a message for carrying a contention resolution identifier.
  • the sending unit before sending the first information, is further configured to: send a fourth message, where the fourth message includes a preamble sequence of random access; the modulation mode corresponding to the fourth message is the first modulation mode or the first modulation mode Two modulation methods.
  • the preamble sequence is an early data transmission EDT preamble sequence.
  • the method further includes: receiving first configuration information, where the first configuration information includes at least one TBS value, and the at least one TBS value is greater than The maximum TBS value of the second modulation method.
  • the first modulation scheme is 16QAM
  • the second modulation scheme is QPSK
  • an embodiment of the present application provides a communication device, which has the functions of implementing any of the possible implementation manners of the first aspect, the third aspect, the fifth aspect, and the seventh aspect.
  • the apparatus may be a network device or a chip included in the network device.
  • the functions of the above communication device may be implemented by hardware, or by executing corresponding software in hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus includes a processing unit and a transceiver unit, wherein the processing unit is configured to support the apparatus to perform the method in the fourth aspect or any possible implementation manner of the fourth aspect .
  • the structure of the apparatus includes a processor and may also include a memory.
  • the processor is coupled to the memory and can be used to execute computer program instructions stored in the memory to cause the apparatus to perform the method of any of the above first, third, fifth or seventh aspects, or to perform the first, third In the third aspect, the method in any possible implementation manner of the fifth aspect or the seventh aspect.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a communication device, which has the function of a terminal in any possible implementation manner of the second aspect, the fourth aspect, the sixth aspect or the eighth aspect.
  • the device may be a terminal, or may be a chip included in the terminal.
  • the functions of the above communication device may be implemented by hardware, or by executing corresponding software in hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus includes a processing unit and a transceiver unit, wherein the processing unit is configured to support the apparatus to perform the method in the fourth aspect or any possible implementation manner of the fourth aspect .
  • the structure of the apparatus includes a processor and may also include a memory.
  • the processor is coupled to the memory and can be used to execute computer program instructions stored in the memory to cause the apparatus to perform the method of the fourth aspect or any of the possible implementations of the fourth aspect.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor when the system-on-chip implements the method of any one of the first aspect, the third aspect, the fifth aspect or the seventh aspect, or executes the method of any one of the first aspect, the third aspect, the fifth aspect or the seventh aspect method in any of the possible implementations.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be provided on different chips.
  • the setting method of the processor is not particularly limited.
  • an embodiment of the present application provides a chip system, including: a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor when the system-on-chip implements the method of the second aspect, the fourth aspect, the sixth aspect or the eighth aspect, or executes any possible implementation of the second aspect, the fourth aspect, the sixth aspect or the eighth aspect method in method.
  • the chip system further includes an interface circuit, and the interface circuit is used to exchange code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored, and when the computer program or instruction is executed, causes the computer to execute the above-mentioned first aspect, the third aspect, The method of any one of the fifth aspect or the seventh aspect, or the method in any possible implementation manner of the first aspect, the third aspect, the fifth aspect or the seventh aspect.
  • an embodiment of the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes the computer to execute any of the foregoing second, fourth, sixth or eighth aspects.
  • an embodiment of the present application provides a communication system, where the communication system includes the devices of the ninth aspect and the tenth aspect, or the communication system includes the devices of the eleventh aspect and the twelfth aspect. , or the communication system includes the devices of the thirteenth aspect and the fourteenth aspect, or the communication system includes the devices of the fifteenth aspect and the sixteenth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • 2B is a schematic structural diagram of a DCI provided by an embodiment of the present application.
  • 2C is a schematic diagram of another DCI structure provided by an embodiment of the present application.
  • 2D is a schematic structural diagram of another DCI provided by an embodiment of the present application.
  • 3A is a flowchart of another data transmission method provided by an embodiment of the present application.
  • 3B is a schematic structural diagram of another DCI provided by an embodiment of the present application.
  • 4A is a flowchart of another data transmission method provided by an embodiment of the present application.
  • 5A is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • "Plural” means two or more.
  • "And/or”, which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean: only A exists, both A and B exist, and only B exists.
  • the character “/" generally indicates that the associated objects are an "or" relationship.
  • the embodiments of the present application may be applicable to Long Term Evolution (Long Term Evolution, LTE) systems, such as NB-IoT systems; may also be applicable to other wireless communication systems, such as Global System for Mobile Communication (GSM), mobile Communication systems (Universal Mobile Telecommunications System, UMTS), Code Division Multiple Access (Code Division Multiple Access, CDMA) systems, and new network equipment systems, etc.
  • LTE Long Term Evolution
  • NB-IoT networks
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • new network equipment systems etc.
  • Embodiments of the present invention relate to a terminal device, which may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • a wireless terminal may communicate with one or more core networks via a Radio Access Network (RAN), and the wireless terminal may be a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • RAN Radio Access Network
  • Mobile devices which may be portable, pocket-sized, hand-held, computer-embedded, or vehicle-mounted, for example, exchange language and/or data with the wireless access network.
  • a wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the embodiment of the present invention involves a base station, which can be used to convert received air frames and IP packets to each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network may include the Internet Protocol (IP) network device.
  • the base station may also coordinate attribute management of the air interface.
  • the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), or an evolution in LTE type base station (eNB or e-NodeB, evolutional Node B), which is not limited in this embodiment of the present invention.
  • BTS Base Transceiver Station
  • NodeB Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • eNB or e-NodeB, evolutional Node B evolution in LTE type base station
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the application.
  • the system includes one network device 101 and six terminal devices, and the six terminal devices are terminal devices respectively. 102, terminal device 103, terminal device 104, terminal device 105, terminal device 106, terminal device 107, etc.
  • the terminal device 102 is a vehicle
  • the terminal device 103 is a smart air conditioner
  • the terminal device 104 is a smart fuel dispenser
  • the terminal device 105 is a mobile phone
  • the terminal device 106 is a smart teacup
  • the terminal device 107 is a
  • the printer is illustrated as an example.
  • the network device sends DCI in the Physical Downlink Control Channel (PDCCH), and the DCI is shared with the Physical Downlink Shared Channel (PDSCH) or the physical uplink.
  • Channel Physical Uplink Shared Channel, PDSCH
  • PDSCH Physical Uplink Shared Channel
  • the terminal can correctly process PDSCH data or PUSCH data only after correctly decoding the DCI information.
  • the format of the DCI is format N0
  • the content included in the DCI can be referred to as shown in Table 1.1.
  • DCI repetitions field 2 What's Included in DCI Number of bits included Identification field that distinguishes format N0 or format N1 1
  • Subcarrier Indication Field 6 Resource Allocation Domain 3 Scheduling Delay Domain 2
  • MCS domain 4 Redundancy Version (RV) field 1 repeat count field 3 new data indication field 1 DCI repetitions field 2
  • format N0 or format N1 distinguishes the identification field, which is used to indicate that the format of the DCI is N0 or N1; format N0 is used for uplink scheduling; format N1 is used for downlink scheduling.
  • the terminal device identifies whether the format of the DCI is format N0 or format N1 by distinguishing the identification field by format N0 or format N1, and then can determine whether the DCI is used for uplink scheduling or downlink scheduling.
  • the format N0 or format N1 distinguishing identification field may also be referred to as the DCI format mark field.
  • the subcarrier indication field is used to indicate a set of consecutive subcarriers.
  • the scheduling delay field is used to determine the start time of the transmission of uplink data and/or signaling scheduled by the DCI.
  • the resource allocation field is used to determine the allocation of uplink data and/or signaling resources scheduled by the DCI, such as the allocation of time domain resources.
  • Modulation and coding policy field used to determine the MCS index of uplink data and/or signaling scheduled by DCI.
  • the transport block size (TBS) of the uplink data can also be determined according to the MCS field and the resource allocation field.
  • the repetition times field is used to determine the repetition times of the uplink data scheduled by the DCI.
  • the new data indication field is used to indicate whether the currently scheduled transmission is a new transmission or a retransmission.
  • the redundancy version field is used to determine the redundancy version used in uplink data and/or signaling transmission.
  • the DCI repetition number field is used to determine the repetition number of DCI.
  • the specific TBS table is as follows:
  • the TBS index (I TBS ) is determined by the MCS index (I MCS ) indicated by the MCS field in the DCI format N0, and the transmission time I RU is determined in combination with the resource allocation field in the DCI format N0, and then the TBS is determined .
  • the MCS index of QPSK corresponds to TBS indexes 0 to 13 in the TBS table, and a new modulation mode, such as 16QAM, corresponds to TBS indexes 14 to 21 in the TBS table.
  • TBS table For downlink transmission in NB-IoT, the specific TBS table is as follows:
  • SA/GB Standalone or Guard-Band
  • IB In-Band
  • SA/GB deployment mode the MCS index of QPSK corresponds to the TBS table.
  • the TBS indexes are 0 to 13
  • the MCS indexes of 16QAM correspond to the TBS indexes 13 to 21 in the TBS table.
  • IB mode the MCS indexes of QPSK correspond to TBS indexes 0-10 in the TBS table
  • the MCS indexes of 16QAM correspond to TBS indexes 11-17 in the TBS table.
  • the 4-bit MCS field can indicate MCS indices 0 to 15, of which 0 to 13 are used to indicate the TBS index of QPSK, and the remaining 2 MCS indices 14 to 15 are reserved.
  • the allocation of the MCS field in the DCI can refer to Table 1.5:
  • the 4-bit MCS field can indicate MCS indices 0 to 15, of which 0 to 10 are used to indicate the TBS index of QPSK, then the remaining 5 MCS indices 11 to 15 are reserved, which is not enough to completely TBS indices 11 to 17 indicating 16QAM.
  • the methods that can be adopted include:
  • a new 1 bit is introduced in DCI, which is specially used to indicate that the modulation mode is 16QAM or QPSK. For example, when the bit value is "0", it is used to indicate that the modulation mode is QPSK, then the bit value in the 4-bit MCS field represents the corresponding MCS index under the QPSK modulation mode, and when the bit value is "1", it indicates the modulation mode is 16QAM, then the bit value in the 4-bit MCS field indicates that the bit value in the MCS field represents the corresponding MCS index in the 16QAM modulation mode.
  • Table 1.6 for details:
  • TBS indices 14 to 21 of 16QAM are indicated by the states "0000" (0)-"0111" (7) of the MCS field ("-" means "to", that is, consecutive multiple values, and Including the endpoint value), the corresponding MCS index is 14 to 21.
  • - means "to", that is, consecutive multiple values, and Including the endpoint value
  • the corresponding MCS index is 14 to 21.
  • the TBS index of 16QAM is 11 to 17, it is indicated by the states of the MCS field "10000" (0)-"10110" (6) ("-" means "to", that is, multiple consecutive values, including Endpoint value) indication, the corresponding MCS index is 11-17.
  • the value of other bits in the MCS domain can be indicated to represent the corresponding MCS index in the 16QAM modulation mode by the newly added 1 bit being "0", and the other bit values in the MCS domain can be indicated by the newly added 1 bit being "1".
  • the bit value represents the corresponding MCS index in the QPSK modulation mode.
  • a new 1 bit is introduced into the MCS field (DCI also adds 1 bit), so that the MCS field is 5 bits, which can indicate a total of 32 states, which can satisfy the number of MCS indexes for QPSK + the number of MCS indexes for 16QAM instructions. Please refer to Table 1.7 for details:
  • the possible situations include that one MCS index state corresponds to multiple TBS index values, or one MCS index state corresponds to one TBS index value.
  • an embodiment of the present application provides a data transmission method, as shown in FIG. 2A , the method includes the following steps:
  • the network device generates a downlink control message DCI.
  • the DCI can be used to indicate the first modulation scheme or the second modulation scheme, or can only be used to indicate the second modulation scheme.
  • the DCI includes the modulation and coding strategy MCS field, when the MCS field is the first modulation scheme. In a state, the DCI is used to indicate the first modulation mode, and when the MCS field is in the second state, the DCI is used to indicate the second modulation mode and the MCS index of the second modulation mode;
  • the network device sends the DCI
  • the terminal receives the DCI, and receives or sends data according to the DCI.
  • the network device generates DCI for performing uplink and downlink scheduling.
  • the format of the DCI may be the N0 format or the N1 format.
  • DCI can only be used to indicate the second modulation method.
  • the second modulation method can be QPSK.
  • the DCI in N0 or N1 format includes the MCS field, and the MCS field is 4 bits long.
  • any state in "0000-1101" is used to indicate the corresponding MCS index.
  • it can indicate that the MCS index corresponding to QPSK is 0 to 13, and then corresponds to the TBS index indicating QPSK.
  • the states "1110" and "1111" are unused states.
  • the above-mentioned DCI can only indicate the second modulation mode, which means that compared with the two modulation modes, only the second modulation mode is indicated, and the DCI also indicates other information.
  • the DCI needs to support the scheduling of a new modulation mode, and the new modulation mode may be, for example, 16QAM or 64QAM.
  • 16QAM corresponds to 8 TBS indexes, and the corresponding TBS index values are 14 to 21.
  • the remaining number of unused states of the MCS field used to indicate the TBS index is 2 .
  • some fields in the DCI may be reinterpreted to indicate the MCS index of the newly added modulation method, and then to indicate the TBS index of the newly added modulation method.
  • the first state of the MCS is used to indicate the first modulation mode
  • the first modulation mode is the newly added modulation mode
  • the newly added modulation mode may be a modulation mode with a modulation order equal to or greater than 4.
  • it can be 16QAM.
  • the MCS is in the second state, it corresponds to the MCS index indicating the second modulation mode.
  • the second modulation mode is the low-order modulation originally supported by the DCI.
  • the low-order modulation may be a modulation mode with a modulation order less than 4, such as QPSK.
  • the first state is "1111”
  • the first modulation mode is 16QAM
  • the second state is any one of "0000"-"1101”
  • the second modulation mode is QPSK.
  • the first state is "1111”
  • the first modulation mode is 16QAM
  • the second state is any one of "0000"-"1000”
  • the second modulation mode is QPSK.
  • any one of these states can also be used as the first state to indicate the first modulation mode.
  • the MCS index of the first modulation scheme also needs to be indicated.
  • K bits may be extracted from bits of the DCI as a field indicating the MCS index of the first modulation scheme, and this field may be referred to as the MCS field of the first modulation scheme.
  • the N bits in the repetition field can be changed to N-K bits.
  • DCI can only be used to indicate QPSK (second modulation scheme)
  • the corresponding length of the repetition count field is 3 bits
  • DCI performs downlink scheduling the corresponding length of the repetition count field is 4 bits.
  • FIG. 2B is a schematic diagram of a DCI structure provided by an embodiment of the present application. As shown in FIG. 2B , when the state of the MCS field is "1111", the DCI is used to indicate 16QAM, and the original repetition count field in the DCI is converted is the MCS domain of 16QAM.
  • Table 2.3 is the indication mode when the TBS index of 16QAM is 14-21
  • Table 2.4 is the indication mode when the TBS index of 16QAM is 11-17.
  • the bits in the DCI used to indicate the repetition count field change. Few, or even none, so that the DCI includes bits used to indicate the MCS field of the first modulation scheme, so that the DCI can support the scheduling of the first modulation scheme and the second modulation scheme at the same time, this process does not increase the overhead of the DCI, and ensures that the DCI transmission efficiency.
  • the state "1110" of the MCS domain is also a reserved state, so it can also be used as the first state to indicate the first modulation method. At this time, the MCS of the first modulation method is indicated.
  • the indexing method is the same as that described above, and will not be repeated here.
  • the DCI generated by the network device is the control information scrambled by the Pre-configured Uplink Resource-Radio Network Tempory Identity (PUR-RNTI).
  • PUR-RNTI Pre-configured Uplink Resource-Radio Network Tempory Identity
  • the identification field that distinguishes the format N0 or the format N1 is used to indicate that the format of the DCI is N0 or N1.
  • the Acknowledge Character (ACK) or Fall Back indication field is used to indicate whether the current PUR transmission is successful, or whether the next transmission falls back to another transmission mode.
  • the specific indication mode can be 0-ACK, 1-Fall Back, indicating that when the field indicates 0, it indicates that the current PUR transmission is successful, and when it indicates 1, it indicates that it falls back to other transmission modes.
  • the NPUSCH repetition adjustment field is used to indicate the number of times the physical uplink shared channel can be retransmitted.
  • Timing Advance Adjustment field, used to indicate timing advance adjustment.
  • FIG. 2C is another schematic diagram of the DCI structure provided by this embodiment of the present application.
  • the DCI is used to indicate 16QAM, and in addition, the DCI scrambled by the PUR-RNTI also includes a 1-bit acknowledgement feedback or traceback indication field, which is used to indicate the next data transmission mode.
  • the MCS index of the first modulation scheme needs to be indicated. Also taking 16QAM as the first modulation mode as an example, TBS indices 14-21 of 16QAM require at least 8 MCS index indications, or TBS indices 11-17 of 16QAM require at least 7 MCS index indications. In general, 3 bits can be taken out of the existing bits of the DCI to form the MCS field indicating 16QAM. When the PUR-RNTI scrambled DCI can only be used to indicate the MCS index of the second modulation scheme, a 3-bit repetition adjustment field is included.
  • the PUR-RNTI scrambled DCI is used for When indicating the first modulation mode or the second modulation mode, the DCI scrambled by the PUR-RNTI does not include the repetition times adjustment field, but is divided into a field for indicating the MCS index of the first modulation mode, that is, the MCS of the first modulation mode
  • the index indication field specifically as shown in FIG. 2C , the original repetition times adjustment field in the DCI is converted into the MCS field of 16QAM. That is to say, when the DCI can only be used to indicate the second modulation mode (for example, QPSK), the 3 bits of the repetition times adjustment field are gone, and the MCS field of 16QAM is further divided.
  • the bit position of the MCS field of 16QAM may be the same as or different from the bit position of the original repetition times adjustment field.
  • the reserved bits in the DCI scrambled by the PUR-RNTI may also be divided into an MCS domain of 16QAM. Reserved bits are unused fields and can be used to indicate any additional parameters.
  • the DCI scrambled by the PUR-RNTI when the DCI scrambled by the PUR-RNTI can only indicate the second modulation mode, the bits used to indicate the repetition times adjustment field in the DCI become less or even none.
  • the DCI In the field indicating the MCS index of the first modulation scheme, the DCI can support the scheduling of the first modulation scheme and the second modulation scheme at the same time. This process does not increase the overhead of the DCI and ensures the transmission efficiency of the DCI.
  • the first modulation scheme may also be indicated.
  • the second state is a state for indicating the MCS index of the second modulation scheme.
  • the TBS index is 0 to 13
  • the second state is any one of "0000"-"1101”.
  • the TBS index is 0 to 17
  • the second state is any one of "0000"-"1000”.
  • the DCI also includes a subcarrier indication field, which includes 6 bits in total and can indicate 64 states. The existing subcarrier allocation cannot completely use the 64 states, so the subcarrier indication field redundancy state can be used to indicate the first modulation mode.
  • NB-IoT supports subcarrier spacing of 3.75kHz (megahertz) and 15kHz. For 3.75kHz, 180kHz has a total of 48 subcarriers, and for 15kHz, 180kHz has a total of 12 subcarriers. 15kHz supports scheduling of 1 subcarrier, 3 subcarriers, 6 subcarriers and 12 subcarriers.
  • the subcarrier index (I sc ) indicated by the subcarrier indication field in DCI format NO is between the subcarrier index (I sc ) and the assigned subcarrier (n sc ). The corresponding relationship is as follows in Table 3.1:
  • Subcarrier Indication Field (I sc ) Assigned subcarriers (n sc ) 0–11 I sc 12-15 3( Isc -12)+ ⁇ 0,1,2 ⁇ 16-17 6( Isc -16)+ ⁇ 0,1,2,3,4,5 ⁇ 18 ⁇ 0,1,2,3,4,5,6,7,8,9,10,11 ⁇ 19-63 Reserved
  • DCI (specifically, DCI format N0) indicates that the first modulation scheme is a modulation scheme of 16QAM
  • a total of 7 states from 48 to 54 are used in the subcarrier indication field to indicate the subcarriers corresponding to 16QAM. Then the remaining states in the subcarrier indication field are 55-63, 9 in total. Some of the 9 states can be used to indicate that the allocated subcarriers correspond to the 16QAM modulation mode.
  • FIG. 2D is a schematic structural diagram of another DCI provided by an embodiment of the present application.
  • the second state is any of “0000”-“1101”
  • 16QAM can be indicated by the redundancy state in the subcarrier indication field, including 16QAM corresponding to the scheduling of 3 subcarriers, 6 subcarriers and 12 subcarriers respectively.
  • 16QAM can also be indicated by the redundancy state in the subcarrier indication field, including 3 subcarriers
  • the scheduling of the carrier, 6 sub-carriers and 12 sub-carriers corresponds to 16QAM respectively.
  • the MCS index indicating the first modulation scheme also needs to be indicated.
  • the bits used to indicate the repetition number field may be reduced, or even not, so that the DCI includes bits used to indicate the first modulation scheme. bits of the MCS field.
  • the redundant state of the subcarrier indication field is used to realize the indication of the first modulation scheme (newly added modulation scheme) at the same time.
  • the simultaneous indication of two different modulation modes can make the data scheduled by DCI in the process of switching modulation modes, without the need for the network device to re-send DCI, which improves the efficiency of DCI scheduling data .
  • the network device After the network device generates DCI, it sends it to the terminal, and after receiving the DCI, the terminal sends or receives data according to the DCI. Specifically, after receiving the DCI, the terminal performs demodulation to obtain the modulation mode indicated by the DCI, determines the MCS index corresponding to the modulation mode, and then determines the TBS index, and then performs data transmission according to the modulation mode and transport block indicated by the TBS index. For example, if the MCS index corresponding to 16QAM and 16QAM is indicated in the DCI, the terminal uses 16QAM to transmit data, including receiving or sending data, on the transport block corresponding to the TBS index indicated by the MCS index.
  • the first power ratio value is the power per resource unit of the NPDSCH on the time domain symbol containing the narrowband reference signal (NRS). and the ratio of the power per resource element of the NRS
  • the second power ratio value is the ratio of the energy per resource element (EPRE) of the NPDSCH and the power of the NRS per resource element on the time domain symbol excluding the narrowband reference signal (NRS); for performing 16QAM
  • the modulated UE, network constraints or the network indicates whether the power of each resource unit of the NPDSCH is the same through the first information, and if the same, the network indicates the first power ratio value or the second power ratio value to the UE. If different, the network indicates the first power scale value and the second power scale value to the UE.
  • the UE receives the first information, and demodulates the NPDSCH according to the first information.
  • the first power ratio value is the power per resource unit of the NPDSCH on the time-domain symbol containing the narrowband reference signal (NRS) and the power per resource unit of the NRS
  • the ratio of the power of the resource element, the second power ratio value is the ratio of the energy per resource element (EPRE) of the NPDSCH and the power of the NRS per resource element on the time domain symbols that do not include the narrowband reference signal (NRS) and the cell reference signal (CRS).
  • the third power ratio value is the ratio of the energy per resource element (EPRE) of NPDSCH and the power of each resource element of NRS on the time domain symbol containing the cell reference signal (CRS); Whether the power of each resource unit is the same or partially the same, if all are the same, the network indicates the first power ratio value or the second power ratio value or the third ratio value to the UE. If only the power per resource element of NPDSCH on time domain symbols containing narrowband reference signal (NRS) and the energy per resource element (EPRE) of NPDSCH on time domain symbols not containing narrowband reference signal (NRS) and cell reference signal (CRS) If the same, the network indicates the first power ratio value or the second power ratio value and the third power ratio value to the UE.
  • NPS narrowband reference signal
  • EPRE energy per resource element
  • the network indicates the first power scale value and the second power scale value and the third scale value to the UE.
  • the UE receives the first message, and demodulates the NPDSCH according to the first message.
  • the UE receives the first information, and demodulates the NPDSCH according to the first information.
  • the embodiment of the present application also provides another data transmission method, as shown in FIG. 3A , the method includes the following steps:
  • the network device generates a downlink control message DCI, where the DCI is the control information scrambled by the PUR-RNTI, the DCI includes an acknowledgment feedback or a backtracking indication field, and the DCI includes a modulation and coding strategy MCS field, when the MCS field is the first state When , the DCI includes a first modulation mode indication field, which is used to indicate the first modulation mode;
  • the terminal receives the DCI, and receives or sends data according to the DCI.
  • the first modulation mode is a new modulation mode, such as 16QAM, 64QAM, etc.
  • the second modulation mode is a low-order modulation mode, such as QPSK.
  • the DCI generated by the network device is the control information scrambled by the PUR-RNTI. According to Table 2.5 in the foregoing embodiment, when the MCS domain state is "1110", the DCI structure scrambled by the PUR-RNTI can be known.
  • the bit field can also be used to indicate the second modulation mode, for example, when the value of the 16QAM indication field is "1", it is used to indicate that the modulation mode is the second modulation mode (for example, it may be QPSK).
  • the reserved bits in the DCI can be used to complete the support for the newly added modulation mode scheduling without increasing the overhead of the downlink control information. Avoid adding DCI overhead.
  • the network device After the network device generates DCI, it sends it to the terminal, and after receiving the DCI, the terminal sends or receives data according to the DCI. Specifically, after receiving the DCI, the terminal performs demodulation to obtain the modulation mode indicated by the DCI, determines the MCS index corresponding to the modulation mode, and then determines the TBS index, and then performs data transmission according to the modulation mode and transport block indicated by the TBS index.
  • the DCI scrambled by the PUR-RNTI is also used to indicate whether the current PUR transmission is successful, or whether the next transmission falls back to another transmission mode by using the confirmation feedback or the backtracking indication field.
  • the network device sends the DCI
  • the first modulation mode is a new modulation mode, such as 16QAM, 64QAM, etc.
  • the second modulation mode is a low-order modulation mode, such as QPSK.
  • the corresponding downlink DCI content is shown in Table 1.1.
  • the second modulation mode may be QPSK, and a 4-bit MCS field is used to indicate the MCS index of QPSK, thereby realizing the indication of uplink TBS indexes 0-13.
  • TBS index is 0-13
  • IB deployment mode TBS index is 0-10, which is also indicated by 4 bits of the corresponding MCS field.
  • the aforementioned DCI can only be used to indicate the MCS index of the second modulation scheme, which means that the DCI can only indicate the MCS index of one of the two modulation schemes, and the DCI also indicates other information.
  • the DCI in addition to the indication of the MCS field of QPSK, the DCI also needs to implement the indication of the MCS index of the first modulation scheme, and further realize the indication of the TBS index of the first modulation scheme.
  • the first modulation scheme is 16QAM
  • the corresponding TBS index is 14-21, or 11-17.
  • at least 8 MCS states are required to indicate, plus 14 MCS states of QPSK, a total of 22 MCS states, for the latter case, at least 7 MCS states are required to indicate, plus 11 of QPSK
  • the 4-bit MCS field cannot meet this requirement.
  • the length of the MCS field is N1 bits, indicating the second modulation scheme. If the DCI supports the indication of the first modulation scheme and the second modulation scheme at the same time, the length of the MCS field is N1+1 bits, indicating the MCS index of the first modulation scheme or the second modulation scheme.
  • One bit with more MCS fields and one bit with less repetition count fields may be the same bit, or different bits, which are not limited here.
  • the length of the MCS field is 5 bits
  • the first modulation scheme is 16QAM
  • the second modulation scheme is QPSK as an example.
  • the MCS field status indicates the TBS index. The way is shown in Table 4.1:
  • the MCS indexes corresponding to QPSK are 0 to 13
  • the MCS indexes corresponding to 16QAM are 14 to 21
  • the MCS indexes and TBS indexes are in one-to-one correspondence and have the same value.
  • the MCS indexes corresponding to QPSK are 0-13, which are used to indicate the corresponding TBS indexes 0-13.
  • the MCS index corresponding to 16QAM is 14 to 22, this is because the TBS index 13 can be indicated by the MCS index corresponding to QPSK or the MCS index corresponding to 16QAM, that is, the transmission corresponding to the TBS index.
  • Blocks can be used for both QPSK scheduling and 16QAM scheduling.
  • MCS domain I MCS Modulation Order I TBS 00000 0 2 0 00001 1 2 1 ... ... ... ... 01100 12 2 12 01101 13 2 13 01110 14 4 12 01111 15 4 13 11000 16 4 14 ... ... ... ... 11001 twenty three 4 twenty one
  • the MCS indexes corresponding to QPSK are 0-13, which are used to indicate the corresponding TBS indexes 0-13.
  • the MCS indices corresponding to 16QAM are 14 to 23. This is because TBS indices 12 and 13 can be indicated by either the MCS indices corresponding to QPSK or the MCS indices corresponding to 16QAM, that is to say, these TBS indices correspond to
  • the transport block can be used for both QPSK scheduling and 16QAM scheduling.
  • the MCS indexes corresponding to QPSK are 0 to 10
  • the MCS indexes corresponding to 16QAM are 11 to 17, and the MCS indexes and TBS indexes are in one-to-one correspondence and have the same value.
  • the network device can also indicate through higher layer signaling The first modulation mode, so that after receiving the DCI and obtaining the MCS index, the network device can determine which modulation mode the first modulation mode is specifically according to high-layer signaling, and then determine the MCS index as the MCS index of that modulation mode.
  • the terminal After receiving the DCI sent by the network device, the terminal also demodulates the DCI to obtain the modulation mode indicated by the DCI and the MCS index corresponding to the modulation mode, and then performs data transmission according to the modulation mode and transport block indicated by the DCI.
  • the terminal After receiving the DCI sent by the network device, the terminal also demodulates the DCI to obtain the modulation mode indicated by the DCI and the MCS index corresponding to the modulation mode, and then performs data transmission according to the modulation mode and transport block indicated by the DCI.
  • the terminal After receiving the DCI sent by the network device, the terminal also demodulates the DCI to obtain the modulation mode indicated by the DCI and the MCS index corresponding to the modulation mode, and then performs data transmission according to the modulation mode and transport block indicated by the DCI.
  • IoT is sensitive to power consumption issues.
  • RRC Radio Resource Control
  • the terminal must establish a Radio Resource Control (RRC) connection with the network device through the random access process. If the sent uplink data packets are small and infrequent, then The power consumption of random access to establish an RRC connection is relatively large, which is not conducive to the energy saving of IoT devices.
  • EDT Early Data Transmission
  • Msg3 RRC establishment request
  • FIG. 5A is a flowchart of a data transmission method provided by an embodiment of the present application. As shown in FIG. 5A, the method includes the following steps:
  • the network device sends a first message, where the first message includes first indication information, which is used to instruct the terminal to use the first modulation scheme and the MCS index of the modulation and coding strategy corresponding to the first modulation scheme, or to instruct the terminal to use the second modulation scheme.
  • the modulation mode and the MCS index indicating the corresponding second modulation mode, and the first message is a response message for random access of the terminal.
  • the subcarrier interval configured by the network device for the terminal is 15 kHz, and the subcarrier indication index is greater than 11.
  • the terminal receives the first message, and sends a second message to the network device, where the second message adopts the modulation mode indicated by the first indication information, and the second message includes a radio resource control RRC establishment request; and/or the terminal receives the first message sent by the network device.
  • the third message adopts the modulation mode indicated by the first indication information
  • the third message includes a message for carrying a contention resolution identifier.
  • the first message sent by the network device is a response message for random access of the terminal, that is, the first message is the response message that the network device replies after receiving the random access request sent by the terminal.
  • the process of random access can refer to Figure 5B.
  • the terminal first sends a random access request to the network device, and the random access request may specifically be a random access preamble (preamble) ( Can be called Msg1), after receiving the random access request sent by the terminal, the network device sends a response message (Random Access Response, RAR, can be called Msg2) for the random access request to the terminal, and the terminal receives the random access request.
  • preamble Can be called Msg1
  • RAR Random Access Response
  • the network device After receiving the response message, it sends an RRC setup request (which can be referred to as Msg3) to the network device. After receiving the RRC setup request, the network device sends a message carrying the contention resolution identifier (which can be referred to as Msg4) to the terminal.
  • Msg3 the RRC setup request
  • the network device After receiving the RRC setup request, the network device sends a message carrying the contention resolution identifier (which can be referred to as Msg4) to the terminal.
  • the index is greater than 11
  • the first indication information in the first message is used to indicate the first modulation scheme or the second modulation scheme and the MCS index corresponding to the modulation scheme.
  • the specific indication scheme is shown in Table 5.1: the redundancy state of the first indication information can be used to indicate the first modulation scheme and the MCS index of the second modulation scheme.
  • MCS index of the first modulation scheme the first modulation scheme is 16QAM
  • the second modulation scheme is QPSK.
  • the first message does not include the repetition count field or includes some bits in the repetition count field, and 2 bits or 3 bits indicate the first modulation mode The MCS index.
  • Isc is the index of the subcarrier indication field
  • nsc is the scheduled subcarrier
  • the number of RUs indicates the number of transmitted subframes, where the MCS status "000"-"010" (MCS index 0-2) is used to indicate QPSK (the second modulation method), or used to indicate Pi/2BPSK (the second modulation method) , Pi/4QPSK (the third modulation method), "011"-"111” (MCS index 3-7) is reserved.
  • the corresponding indication scheme can be as shown in Table 5.2 shown:
  • MCS status "000"-"010" (MCS index 0 ⁇ 2) is still used to indicate QPSK (second modulation method)
  • MCS index 0 ⁇ 2 is still used to indicate QPSK (second modulation method)
  • 011"- “101” is used to indicate 16QAM (first modulation method).
  • a fourth message sent by the terminal is also received, where the fourth message includes a preamble sequence for the terminal to perform random access. Then, the network device can determine the modulation mode indicated by the first indication information according to the modulation mode corresponding to the first message.
  • the random access preamble sequence (Msg1) sent by the terminal device to the network device is the preamble sequence corresponding to the first modulation mode, or the preamble sequence corresponding to the second modulation mode, so that the network device receives the preamble sequence.
  • the first indication information indicates the modulation mode.
  • the first indication information may indicate that the terminal adopts a modulation scheme corresponding to Msg1, or may indicate that the terminal adopts a modulation scheme different from that corresponding to Msg1, and the terminal uses the indicated modulation scheme when sending the RRC establishment request (Msg3) message.
  • Msg3 When sending Msg3, and/or receiving a message for carrying a contention resolution identifier (Msg4), demodulate Msg4 according to the indicated modulation mode, which is not limited in this embodiment of the present application.
  • the random access preamble sequence sent by the terminal to the network device is the EDT preamble sequence, that is, the terminal corresponds to the EDT transmission mode, and the terminal may send the uplink together in the process of sending the RRC setup request (Msg3). data.
  • the terminal sends a second message to the network device, where the second message includes not only the RRC establishment request message, but also the uplink data sent together.
  • the modulation mode indicated by the indication information and the transport block indicated by the TBS index value corresponding to the MCS domain transmit the message.
  • the network device sends a third message correspondingly.
  • the third message includes not only the message carrying the contention resolution identifier, but also downlink data.
  • the modulation method and MCS domain indicated by the first indication information can be used.
  • the transport block indicated by the corresponding TBS index value transmits the message.
  • the network device may also send the first modulation mode to the terminal.
  • Configuration information the first configuration information includes TBS values in a configurable TBS value set, and the TBS values included in the set include at least one configurable maximum TBS value greater than the second modulation mode.
  • the configurable maximum TBS value of QPSK is "1000"
  • the network device configures the terminal with a transmission block corresponding to 16QAM, and the TBS value in the configurable TBS set in the first configuration information Specifically, it also includes any one or more of ⁇ 1192, 1352, 1544, 1736, 2024, 2280, 2536 ⁇ .
  • the network device is any one of the TBS sets corresponding to 16QAM in the terminal device configuration, so that the terminal can implement transmission on the transport block corresponding to the first modulation mode.
  • the terminal may send the second message according to the first indication information in the first message, that is, send the second message using the first modulation mode or the second modulation mode.
  • the second message may be an RRC connection establishment request message.
  • the second message may also include uplink data, and the uplink data also adopts the modulation mode indicated by the first indication information.
  • the first indication information also indicates the MCS domain of the first modulation scheme or the second modulation scheme, and the terminal uses the corresponding modulation scheme and the transport block corresponding to the TBS index indicated by the MCS domain to perform data transmission.
  • the terminal may receive a third message sent by the network device, where the third message adopts the first modulation mode or the second modulation mode.
  • the third message may further include downlink data, and the downlink data may also adopt the first modulation mode or the second modulation mode.
  • the sending of the third message by the network device may occur after the terminal sends the second message, or may occur before the terminal sends the second message, or at the same time.
  • the above method may further include the steps of: the network device sends a third message, the third message adopts the first modulation mode or the second modulation mode, and the first modulation mode or the third The MCS index scheduling data corresponding to the two modulation modes.
  • the network device instructs the terminal to use the first modulation mode or the second modulation mode when sending a random access response to the terminal, and triggers the RRC establishment request information in the subsequent random access process or is used for
  • the transmission process of the message carrying the contention resolution identifier adopts the first modulation mode (new modulation mode), that is, the support for the first modulation mode is completed, which can effectively improve the information transmission rate and spectrum resource utilization rate of the random access process.
  • the received second message includes uplink data in addition to the RRC setup request information
  • the third message includes a message for carrying the contention resolution identifier (Msg4), and can also Including downlink data
  • the second message or the third message is transmitted by using the first modulation mode, which can improve the transmission rate of the uplink data or downlink data included therein.
  • FIG. 6 is a communication apparatus 600 provided by an embodiment of the present application, which can be used to execute the data transmission method and specific embodiment applied to a network device in the foregoing FIGS. 2A to 2D .
  • the communication device 600 includes a processing unit 601 and a sending unit 602, wherein,
  • the processing unit 601 is configured to generate a downlink control message DCI, where the DCI can be used to indicate a first modulation scheme or a second modulation scheme, or can only be used to indicate the second modulation scheme, and the DCI includes a modulation and coding strategy MCS field, When the MCS domain is in the first state, the DCI is used to indicate the first modulation scheme, and when the MCS domain is in the second state, the DCI is used to indicate the second modulation scheme and the MCS index of the second modulation scheme;
  • the sending unit 602 is used for sending DCI.
  • the above-mentioned processing unit 601 may be a chip, an encoder, an encoding circuit or other integrated circuits that can implement the method of the present application.
  • the communication apparatus 600 may further include a receiving unit, the receiving unit may be an independent unit from the transmitting unit, or may be combined into a transceiving unit, and the transceiving unit may be an interface circuit or a transceiver.
  • the communication device 600 may further include a storage module (not shown in the figure), the storage module may be used to store data and/or signaling, and the storage module may be coupled with the processing unit 601 or with the sending unit 602 , can also be coupled with the receiving unit, or coupled with the transceiver unit.
  • the processing unit 601 may be configured to read data and/or signaling in the storage module, so that the data transmission methods in the foregoing method embodiments are executed.
  • FIG. 7 is a communication apparatus 700 provided by an embodiment of the present application, which can be used to execute the data transmission method and specific embodiment applied to a terminal in the above-mentioned FIGS. 2A to 2D .
  • the communication device 700 includes a processing unit 701 and a transceiver unit 702, wherein,
  • the processing unit 701 is configured to receive downlink control information DCI, where the DCI can be used to indicate the first modulation scheme or the second modulation scheme, or can only be used to indicate the second modulation scheme.
  • the DCI includes a modulation and coding strategy MCS field. When the MCS When the domain is the first state, the DCI is used to indicate the first modulation scheme, and when the MCS domain is the second state, the DCI is used to indicate the second modulation scheme and the MCS index of the second modulation scheme;
  • the transceiver unit 702 is configured to receive or transmit data according to the DCI.
  • the above-mentioned processing unit 701 may be a chip, an encoder, an encoding circuit or other integrated circuits that can implement the method of the present application.
  • the transceiver unit 702 may be an interface circuit or a transceiver.
  • the communication device 700 may further include a storage module (not shown in the figure), the storage module may be used to store data and/or signaling, and the storage module may be coupled with the processing unit 701 or with the transceiver unit 702 .
  • the processing unit 701 may be configured to read data and/or signaling in the storage module, so that the data transmission methods in the foregoing method embodiments are executed.
  • FIG. 8 shows a schematic diagram of a hardware structure of a communication apparatus in an embodiment of the present application.
  • the communication device 900 includes: a processor 111 and a communication transceiver 112, the processor 111 and the transceiver 112 are electrically coupled;
  • the processor 111 is configured to execute part or all of the computer program instructions in the memory, and when the part or all of the computer program instructions are executed, the apparatus executes the method described in any of the foregoing embodiments.
  • the transceiver 112 is used for communicating with other devices; for example, receiving a message from the first network element, the message includes the identifier of the multicast and/or broadcast service, and the key of the multicast and/or broadcast service and/or Key identification for multicast and/or broadcast services.
  • the memory 113 for storing computer program instructions.
  • the memory 113 (memory #1) is located in the device, and the memory 113 (memory #2) is integrated with the processor 111. together, or the memory 113 (memory #3) is located outside the device.
  • the communication device 900 shown in FIG. 8 may be a chip or a circuit.
  • a chip or circuit may be provided in a terminal device or a communication device.
  • the transceiver 112 described above may also be a communication interface.
  • Transceivers include receivers and transmitters.
  • the communication device 900 may also include a bus system.
  • the processor 111, the memory 113, and the transceiver 112 are connected through a bus system, and the processor 111 is used to execute the instructions stored in the memory 113 to control the transceiver to receive and send signals, and complete the first implementation method involved in this application. device or step of the second device.
  • the memory 113 may be integrated in the processor 111 , or may be provided separately from the processor 111 .
  • the function of the transceiver 112 can be considered to be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 111 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • the processor can be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include hardware chips or other general purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) and other programmable logic devices. , discrete gate or transistor logic devices, discrete hardware components, etc., or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general-purpose array logic
  • GAL general-purpose array logic
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the embodiment of the present application provides a computer storage medium, which stores a computer program, and the computer program includes a computer program for executing the network corresponding to AF/AS, NEF/MBSF-C, MB-SMF or UDR/UDM in the above-mentioned embodiments.
  • Metadevice method The embodiment of the present application provides a computer storage medium, which stores a computer program, and the computer program includes a computer program for executing the network corresponding to AF/AS, NEF/MBSF-C, MB-SMF or UDR/UDM in the above-mentioned embodiments. Metadevice method.
  • An embodiment of the present application provides a computer storage medium storing a computer program, where the computer program includes a method for executing the method corresponding to the terminal device in the foregoing embodiment.
  • the embodiments of the present application provide a computer program product containing instructions, which, when run on a computer, enables the computer to execute the above-mentioned embodiments corresponding to AF/AS, NEF/MBSF-C, MB-SMF or UDR/UDM and other network element devices.
  • the embodiments of the present application provide a computer program product containing instructions, which, when run on a computer, cause the computer to execute the method corresponding to the terminal device in the above-mentioned embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种数据传输方法及装置,其中方法包括:网络设备生成下行控制消息DCI,DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示第二调制方式,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;网络设备发送该DCI。终端接收下行控制信息DCI;根据DCI接收或发送数据。在本申请实施例中,采用MCS域中的不同状态来指示第一调制方式和第二调制方式以及第二调制方式的MCS索引,使得在不增加DCI开销的情况下,实现对新增调制方式的支持。

Description

数据传输方法及装置
本申请要求于2021年04月02日提交中国专利局、申请号为202110362864.8、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
物联网(Internet of Things,IoT)是一种面向机器类型通信(Machine Type Communication,MTC)的网络,是未来通信领域的一类重要网络。物联网通信主要应用于智能抄表、医疗检测监控、物流检测、工业检测监控、车联网、智能社区以及可穿戴设备通信等。由于物联网应用场景多种多样,包括从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求,包括覆盖增强,终端数量巨大,业务速率需求低、时延不敏感,极低成本,或低功耗等。
为了满足这些特殊需求,移动通信标准化组织第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)通过新的研究课题,用来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且立项了名为窄带物联网(Narrow Band Internet of Things,NB-IoT)的课题。
目前,NB-IoT下行支持的调制方式为正交相移键控(Quadrature Phase Shift Keying,QPSK),上行支持的调制方式为二相相移键控(binary phase shift keying,BPSK)和QPSK,可支持低速物联网业务。数据传输过程中考虑引入新增调制方式,比如16正交幅度调制(16 quadrature amplitude modulation,16QAM)、64QAM等,以提升数据传输速率,进而支持更高速的物联网业务。下行控制信息(Downlink control information,DCI)如何支持新增调制方式的调度,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种数据传输方法及装置,以实现对新增调制方式的支持。
第一方面,提供了一种数据传输方法,该方法包括:生成下行控制消息DCI,该DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示所述第二调制方式,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;发送DCI。
可见,在本申请实施例中,采用MCS域中的不同状态来指示第一调制方式和第二调制方式以及第二调制方式的MCS索引,这样使得在不增加DCI开销的情况下,实现对新增的调制方式(第一调制方式)的支持。
需要说明的是,前述DCI仅能够用于指示第二调制方式,是指该DCI只能够指示两种调制方式中的一种,DCI还指示其他信息。
在一个可能的示例中,DCI仅用于指示第二调制方式时,DCI还包括重复次数域,重复次数域为N比特,其中N为正整数,DCI用于指示第一调制方式或者第二调制方式时,DCI还包括K比特用于指示第一调制方式的MCS索引,其中K为正整数且K小于或等于N,DCI还包括重复次数域且重复次数域小于或等于N-K比特,或者DCI中不包含重复次数域。
在一个可能的示例中,K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
在本申请实施例中,对于支持第一调制方式的NB-IoT能力的终端,DCI仅能够指示第二调制方式时,DCI中用于指示重复次数域的比特变少,甚至没有,使得DCI中包括用于指示第一调制方式的MCS域的比特,使得DCI能够同时支持第一调制方式和第二调制方式的调度,该过程没有增加DCI的开销,保证了DCI的传输效率。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI还包括确认反馈或者回溯指示域。
在本申请实施例中,在下行控制信息为PUR-RNTI加扰的控制信息的情况下,也可以在不增加下行控制信息的开销的情况下,实现对新增的调制方式(第一调制方式)的支持。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在本申请实施例中,通过PUR-RNTI加扰后的DCI仅能够指示第二调制方式时,DCI中用于指示重复次数调整域的比特变少,甚至没有,而在DCI中划分用于指示第一调制方式的MCS索引的域,使得DCI能够同时支持第一调制方式和第二调制方式的调度,该过程没有增加DCI的开销,保证了DCI的传输效率。
在一个可能的示例中,MCS域为4比特。
在一个可能的示例中,第一状态为“1111”,第二状态为“0000-1111”中除了1111和1110之外的一个状态。
在一个可能的示例中,第一调制方式为16正交幅度调制QAM,第二调制方式为正交相移键控QPSK。
第二方面,提供了一种数据传输方法,该方法包括:接收下行控制信息DCI,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;根据DCI接收或发送数据。
在一个可能的示例中,DCI仅用于指示第二调制方式时,DCI还包括重复次数域,重复次数域为N比特,其中N为正整数,DCI用于指示第一调制方式或者第二调制方式时,DCI还包括K比特用于指示第一调制方式的MCS索引,其中K为正整数且K小于或等于N,DCI还包括重复次数域且重复次数域小于或等于N-K比特,或者DCI中不包含重复次数域。
在一个可能的示例中,K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI还包括确认反馈或者回溯指示域。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,MCS域为4比特。
在一个可能的示例中,第一状态为“1111”,第二状态为“0000-1111”中除了1111和1110之外的其他状态。
在一个可能的示例中,第一调制方式为16正交幅度调制QAM,第二调制方式为正交相移键控QPSK。
在一个可能的示例中,根据DCI接收或发送数据包括:根据DCI指示的第一调制方式及 第一调制方式的MCS索引,或第二调制方式及第二调制方式的MCS索引接收或发送数据。
第三方面,提供了一种数据传输方法,该方法包括:生成下行控制消息DCI,其中DCI为PUR-RNTI加扰后的控制信息,DCI中包括确认反馈或者回溯指示域,且DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI中包括第一调制方式指示域,用于指示第一调制方式;发送该DCI。
在本申请实施例中,针对PUR-RNTI加扰的DCI,可以在不增加下行控制信息的开销的情况下,采用DCI中的保留比特完成对新增调制方式调度的支持,避免了增加DCI开销。
在一个可能的示例中,当MCS域为第二状态时,采用子载波指示域中的冗余状态指示第一调制方式。
在本申请实施例中,针对PUR-RNTI加扰的DCI,在DCI保持对第二调制方式(低阶调制)的MCS索引指示的前提下,采用子载波指示域的冗余状态实现同时对第一调制方式(新增调制方式)的MCS索引的指示,一方面避免了增加DCI开销,另一方面,实现对两种不同调制方式的同时指示,可以使得DCI调度的数据在切换调制方式的过程中,不需要网络设备重新下发DCI,提升了DCI调度数据的效率。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,第一状态为“1110”,第二状态为“0000-1111”中除了1111和1110之外的其他状态。
第四方面,提供一种数据传输方法,该方法包括:接收下行控制消息DCI,其中DCI为PUR-RNTI加扰后的控制信息,DCI中包括确认反馈或者回溯指示域,且DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI中包括第一调制方式指示域,用于指示第一调制方式;根据该DCI接收或发送数据。
在一个可能的示例中,当MCS域为第二状态时,采用子载波指示域中的冗余状态指示第一调制方式。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,第一状态为“1110”,第二状态为“0000-1111”中除了1111和1110之外的其他状态。
在一个可能的示例中,根据该DCI接收或发送数据包括:根据该DCI指示的第一调制方式,以及第一调制方式对应MCS索引接收或发送数据。
第五方面,提供了一种数据传输方法,该方法包括:生成下行控制信息DCI,DCI包括调制编码策略MCS域和重复次数域,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引,DCI仅用于指示第二调制方式的MCS索引时,MCS域为N1比特,重复次数域为N2比特,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引时,MCS域为N1+1比特,重复次数域小于或等于N2-1比特,或DCI中不包括重复次数域;发送该DCI。
在本申请实施例中,在下行控制信息中包括的比特值不变的情况下,在下行控制信息用于指示第一调制方式的MCS域或第二调制方式的MCS域时,相比于下行控制信息仅用于指示第二调制方式的MCS域的情况,MCS域中增加1比特,减少重复次数域中的比特,使得MCS域中有足够的状态同时满足对第一调制方式的MCS域和第二调制方式的MCS域的支持,该过程避免了增加DCI开销,保证了DCI的传输效率。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为正交相移键控QPSK。
在一个可能的示例中,N1为4,和/或,DCI调度上行传输时,N2为3比特,调度下行传输时,N2为4比特。
第六方面,提供了一种数据传输方法,该方法包括:接收下行控制信息DCI,DCI包括调制编码策略MCS域和重复次数域,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引,DCI仅用于指示第二调制方式的MCS索引时,MCS域为N1比特,重复次数域为N2比特,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引时,MCS域为N1+1比特,重复次数域为N2-1比特;根据该DCI接收或发送数据。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为正交相移键控QPSK。
在一个可能的示例中,N1为4,和/或,DCI调度上行传输时,N2为3比特,调度下行传输时,N2为4比特。
在一个可能的示例中,根据该DCI接收或发送数据,包括:根据该DCI指示的第一调制方式的MCS域或第二调制方式的MCS域接收或发送数据。
第七方面,提供了一种数据传输方法,该方法包括:发送第一消息,第一消息中包括第一指示信息,用于指示终端使用第一调制方式以及指示第一调制方式对应的调制编码策略MCS索引,或者用于指示终端使用第二调制方式以及指示第二调制方式对应的MCS索引,第一消息为针对终端的随机接入的响应消息。其中,网络设备为该终端配置的子载波间隔为15kHz,子载波指示索引大于11。接收第二消息,第二消息采用第一指示信息指示的调制方式,第二消息包括无线资源控制RRC建立请求消息;和/或发送第三消息,第三消息采用第一指示信息指示的调制方式,第三消息包括用于携带竞争解决标识的消息。
在本申请实施例中,在发送随机接入响应的时候指示第一调制方式或第二调制方式,触发后续随机接入过程中的RRC建立请求信息或用于携带竞争解决标识的消息的传输过程采用第一调制(新增调制方式)方式,即完成对新增调制方式的支持,可以有效的提升随机接入过程的信息传输速率和频谱资源利用率。
在一个可能的示例中,在发送第一信息之前,该方法还包括:接收第四消息,第四消息包括随机接入的前导序列;根据第四消息对应的调制方式确定第四指示信息指示的调制方式。
在一个可能的示例中,前导序列为早期数据发送EDT前导序列。
本申请实施例中,前导序列为EDT前导序列,那么接收的第二消息除了RRC建立请求信息之外,还包括上行数据,第二消息采用第一调制方式传输,可以提升该上行数据的传输速率。
在一个可能的示例中,在第一指示信息用于指示第一调制方式的情况下,该方法还包括:发送第一配置信息,第一配置信息中包括至少一个TBS值,至少一个TBS值大于第二调制方式的最大TBS值。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为QPSK。
第八方面,提供了一种数据传输方法,该方法包括:接收第一消息,第一消息中包括第一指示信息,用于指示终端使用第一调制方式以及指示第一调制方式对应的调制编码策略MCS索引,或者用于指示终端使用第二调制方式以及指示第二调制方式对应的MCS索引,第一消息为针对终端的随机接入的响应消息;发送第二消息,第二消息采用第一指示信息指示的调制方式,第二消息包括无线资源控制RRC建立请求消息;和/或接收第三消息,第三消息采用第一指示信息指示的调制方式,第三消息包括用于携带竞争解决标识的消息。
在一个可能的示例中,在发送第一信息之前,该方法还包括:发送第四消息,第四消息 包括随机接入的前导序列;第四消息对应的调制方式为第一调制方式或第二调制方式。
在一个可能的示例中,前导序列为早期数据发送EDT前导序列。
在一个可能的示例中,在第一指示信息用于指示第一调制方式的情况下,该方法还包括:接收第一配置信息,第一配置信息中包括至少一个TBS值,至少一个TBS值大于第二调制方式的最大TBS值。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为QPSK。
第九方面,提供了一种通信装置,该装置包括:
处理单元,用于生成下行控制消息DCI,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;
发送单元,用于发送DCI。
在一个可能的示例中,DCI仅用于指示第二调制方式时,DCI还包括重复次数域,重复次数域为N比特,其中N为正整数,DCI用于指示第一调制方式或者第二调制方式时,DCI还包括K比特用于指示第一调制方式的MCS索引,其中K为正整数且K小于或等于N,DCI还包括重复次数域且重复次数域小于或等于N-K比特,或者DCI中不包含重复次数域。
在一个可能的示例中,K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI还包括确认反馈或者回溯指示域。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,MCS域为4比特。
在一个可能的示例中,第一状态为“1111”,第二状态为“0000-1111”中除了1111和1110之外的一个状态。
在一个可能的示例中,第一调制方式为16正交幅度调制QAM,第二调制方式为正交相移键控QPSK。
第十方面,提供了一种通信装置,该装置包括:
处理单元,用于接收下行控制信息DCI,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;
收发单元,用于根据DCI接收或发送数据。
在一个可能的示例中,DCI仅用于指示第二调制方式时,DCI还包括重复次数域,重复次数域为N比特,其中N为正整数,DCI用于指示第一调制方式或者第二调制方式时,DCI还包括K比特用于指示第一调制方式的MCS索引,其中K为正整数且K小于或等于N,DCI还包括重复次数域且重复次数域小于或等于N-K比特,或者DCI中不包含重复次数域。
在一个可能的示例中,K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI还包括确认反馈或者回溯指示域。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,MCS域为4比特。
在一个可能的示例中,第一状态为“1111”,第二状态为“0000-1111”中除了1111和1110之外的其他状态。
在一个可能的示例中,第一调制方式为16正交幅度调制QAM,第二调制方式为正交相移键控QPSK。
在一个可能的示例中,收发单元具体用于:根据DCI指示的第一调制方式及第一调制方式的MCS索引,或第二调制方式及第二调制方式的MCS索引接收或发送数据。
第十一方面,提供了一种通信装置,该方法包括:生成下行控制消息DCI,其中DCI为PUR-RNTI加扰后的控制信息,DCI中包括确认反馈或者回溯指示域,且DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI中包括第一调制方式指示域,用于指示第一调制方式;发送该DCI。
在本申请实施例中,针对PUR-RNTI加扰的DCI,可以在不增加下行控制信息的开销的情况下,采用DCI中的保留比特完成对新增调制方式的调度支持,避免了增加DCI开销。
在一个可能的示例中,当MCS域为第二状态时,采用子载波指示域中的冗余状态指示第一调制方式。
在本申请实施例中,针对PUR-RNTI加扰的DCI,在DCI保持对第二调制方式的MCS索引指示的前提下,采用子载波指示域的冗余状态实现同时对第一调制方式(新增调制方式)的MCS索引的指示,一方面避免了增加DCI开销,另一方面,实现对两种不同调制方式的同时指示,可以使得DCI调度的数据在切换调制方式的过程中,不需要网络设备重新下发DCI,提升了DCI调度数据的效率。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,第一状态为“1110”,第二状态为“0000-1111”中除了1111和1110之外的其他状态。
第十二方面,提供一种数据传输装置,该装置包括:
收发单元,用于接收下行控制消息DCI,其中DCI为PUR-RNTI加扰后的控制信息,DCI中包括确认反馈或者回溯指示域,且DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI中包括第一调制方式指示域,用于指示第一调制方式;
处理单元,用于根据该DCI结合收发单元接收或发送数据。
在一个可能的示例中,当MCS域为第二状态时,采用子载波指示域中的冗余状态指示第一调制方式。
在一个可能的示例中,DCI为PUR-RNTI加扰后的控制信息,DCI用于指示第一调制方式时,DCI中还包括用于指示第一调制方式的MCS索引的域,DCI中不包括重复次数调整域。
在一个可能的示例中,第一状态为“1110”,第二状态为“0000-1111”中除了1111和1110之外的其他状态。
在一个可能的示例中,所述处理单元具体用于:根据该DCI指示的第一调制方式,以及第一调制方式对应MCS索引接收或发送数据。
第十三方面,提供了一种数据传输装置,该方法包括:
处理单元,用于生成下行控制信息DCI,DCI包括调制编码策略MCS域和重复次数域,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引,DCI仅用于指示第二调制方式的MCS索引时,MCS域为N1比特,重复次数域为N2比特,DCI用于指示第一调 制方式的MCS索引或第二调制方式的MCS索引时,MCS域为N1+1比特,重复次数域小于或等于N2-1比特,或DCI中不包括重复次数域;
发送单元,用于发送该DCI。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为正交相移键控QPSK。
在一个可能的示例中,N1为4,和/或,DCI调度上行传输时,N2为3比特,调度下行传输时,N2为4比特。
第十四方面,提供了一种数据传输装置,该装置包括:
收发单元单元,用于接收下行控制信息DCI,DCI包括调制编码策略MCS域和重复次数域,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引,DCI仅用于指示第二调制方式的MCS索引时,MCS域为N1比特,重复次数域为N2比特,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引时,MCS域为N1+1比特,重复次数域为N2-1比特;
处理单元,用于根据该DCI结合收发单元接收或发送数据。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为正交相移键控QPSK。
在一个可能的示例中,N1为4,和/或,DCI调度上行传输时,N2为3比特,调度下行传输时,N2为4比特。
在一个可能的示例中,根据该DCI接收或发送数据,包括:根据该DCI指示的第一调制方式的MCS域或第二调制方式的MCS域接收或发送数据。
第十五方面,提供了一种数据传输装置,该装置包括:
发送单元,用于发送第一消息,第一消息中包括第一指示信息,用于指示终端使用第一调制方式以及指示第一调制方式对应的调制编码策略MCS索引,或者用于指示终端使用第二调制方式以及指示第二调制方式对应的MCS索引,第一消息为针对终端的随机接入的响应消息;
接收单元,用于接收第二消息,第二消息采用第一指示信息指示的调制方式,第二消息包括无线资源控制RRC建立请求消息;和/或所述发送单元还用于发送第三消息,第三消息采用第一指示信息指示的调制方式,第三消息包括用于携带竞争解决标识的消息。
在一个可能的示例中,在发送第一信息之前,接收单元还用于:接收第四消息,第四消息包括随机接入的前导序列;根据第四消息对应的调制方式确定第四指示信息指示的调制方式。
在一个可能的示例中,前导序列为早期数据发送EDT前导序列。
在一个可能的示例中,在第一指示信息用于指示第一调制方式的情况下,发送单元还用于:发送第一配置信息,第一配置信息中包括至少一个TBS值,至少一个TBS值大于第二调制方式的最大TBS值。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为QPSK。
第十六方面,提供了一种数据传输装置,该装置包括:
接收单元,用于接收第一消息,第一消息中包括第一指示信息,用于指示终端使用第一调制方式以及指示第一调制方式对应的调制编码策略MCS索引,或者用于指示终端使用第二调制方式以及指示第二调制方式对应的MCS索引,第一消息为针对终端的随机接入的响应消息;
发送单元,用于发送第二消息,第二消息采用第一指示信息指示的调制方式,第二消息包括无线资源控制RRC建立请求消息;和/或
接收单元,还用于接收第三消息,第三消息采用第一指示信息指示的调制方式,第三消息包括用于携带竞争解决标识的消息。
在一个可能的示例中,在发送第一信息之前,发送单元还用于:发送第四消息,第四消息包括随机接入的前导序列;第四消息对应的调制方式为第一调制方式或第二调制方式。
在一个可能的示例中,前导序列为早期数据发送EDT前导序列。
在一个可能的示例中,在第一指示信息用于指示第一调制方式的情况下,该方法还包括:接收第一配置信息,第一配置信息中包括至少一个TBS值,至少一个TBS值大于第二调制方式的最大TBS值。
在一个可能的示例中,第一调制方式为16QAM,第二调制方式为QPSK。
第十七方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面,第三方面,第五方面,第七方面任一种可能的实现方式中的功能。
该装置可以为网络设备,也可以为网络设备中包括的芯片。上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置的结构中包括处理单元和收发单元,其中,处理单元被配置为支持该装置执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面,第三方面,第五方面或第七方面任一方面的方法,或执行第一方面,第三方面,第五方面或第七方面任一方面的任一种可能的实现方式中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为网络设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第十八方面,本申请实施例提供一种通信装置,该装置具有实现上述第二方面,第四方面,第六方面或第八方面的任一种可能的实现方式中终端的功能。
该装置可以为终端,也可以为终端中包括的芯片。上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置的结构中包括处理单元和收发单元,其中,处理单元被配置为支持该装置执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第四方面、或第四方面的任一种可能的实现方式中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为网络设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第十九方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面,第三方面,第五方面或第七方面任一方面的方法,或执行第一方面,第三方面,第五方面或第七方面任一方面的任一种可能的实现方式中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第二十方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第二方面,第四方面,第六方面或第八方面的方法,或执行第二方面,第四方面,第六方面或第八方面的任一种可能的实现方式中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第二十一方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面,第三方面,第五方面或第七方面任一方面的方法,或执行第一方面,第三方面,第五方面或第七方面的任一种可能的实现方式中的方法。
第二十二方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第二方面,第四方面,第六方面或第八方面任一方面的方法,或执行第二方面,第四方面,第六方面或第八方面任一方面的任一种可能的实现方式中的方法。
第二十三方面,本申请实施例提供一种通信系统,该通信系统包括上述的第九方面和第十方面的装置,或者该通信系统包括上述的第十一方面和第十二方面的装置,或者该通信系统包括上述的第十三方面和第十四方面的装置,或者该通信系统包括上述的第十五方面和第十六方面的装置。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种通信系统结构示意图;
图2A为本申请实施例提供的一种数据传输方法流程图;
图2B为本申请实施例提供的一种DCI结构示意图;
图2C为本申请实施例提供的另一种DCI结构示意图;
图2D为本申请实施例提供的另一种DCI的结构示意图;
图3A为本申请实施例提供的另一种数据传输方法流程图;
图3B为本申请实施例提供的另一种DCI的结构示意图;
图4A为本申请实施例提供的另一种数据传输方法流程图;
图4B为本申请实施例提供的一种DCI的结构示意图;
图5A为本申请实施例提供的一种数据传输方法流程图;
图5B为本申请实施例提供的一种随机接入过程示意图;
图6为本申请实施例提供的一种通信装置结构框图;
图7为本申请实施例提供的一种通信装置结构框图;
图8为本申请实施例中的一种通信装置的硬件结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:仅存在A,同时存在A和B,仅存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
首先对本申请实施例的应用场景进行介绍。
本申请实施例可以适用于长期演进(Long Term Evolution,LTE)系统,如NB-IoT系统中;也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications System,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络设备系统等。
本发明实施例中涉及终端设备,该终端设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本发明实施例中涉及基站,该基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP) 网络设备。该基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本发明实施例并不限定。
下面以LTE系统为例进行具体实施例的介绍。
请参阅图1,图1为本申请实施例提供的一种通信系统结构示意图,如图1所示,该系统中包括1个网络设备101和6个终端设备,6个终端设备分别为终端设备102、终端设备103、终端设备104、终端设备105、终端设备106以及终端设备107等。在图1所示的示例中,是以终端设备102为交通工具,终端设备103为智能空调,终端设备104为智能加油机,终端设备105为手机,终端设备106为智能茶杯,终端设备107为打印机进行举例说明的。
在终端与网络设备的通信过程中,网络设备发送在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中发送DCI,DCI是与物理上下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理上行共享信道(Physical Uplink Shared Channel,PDSCH)相关的控制信息。具体包含诸如资源块(Resource Block,RB)资源分配信息、调制方式调制编码策略(Modulation and coding scheme,MCS)、混合自动重传请求标识(Hybrid Automatic Repeat Request Identifier,HARQ-ID)等等若干相关内容。终端只有正确的解码到了DCI信息,才能正确的处理PDSCH数据或PUSCH数据。
在NB-IoT中,DCI携带在NPDCCH中,用于上下行发送的调度。DCI格式包括DCI Format N0和DCI Format N1,其中DCI Format N0用于调度上行的NPUSCH,DCI Format N1用于调度下行的NPDSCH。本申请实施例以DCI Format N0为例进行说明。
DCI的格式为格式N0时,DCI中包括的内容可以参考表1.1所示。
表1.1
DCI中包括的内容 包括的比特(bit)数
区分格式N0或格式N1的标识域 1
子载波指示域 6
资源分配域 3
调度时延域 2
MCS域 4
冗余版本(Redundancy Version,RV)域 1
重复次数域 3
新数据指示域 1
DCI重复次数域 2
表1.1中,格式N0或格式N1区分标识域,用于指示该DCI的格式为N0或为N1;格式N0用于上行调度;格式N1用于下行调度。终端设备是通过格式N0或格式N1区分标识域来识别DCI的格式到底是格式N0还是格式N1,进而可以确定该DCI是用于上行调度还是下行调度。其中,也可以将格式N0或格式N1区分标识域称作DCI格式标记域。
子载波指示域,用于指示一个连续子载波集合。
调度时延域,用于确定DCI调度的上行数据和/或信令的传输的起始时间。
资源分配域,用于确定DCI调度的上行数据和/或信令的资源的分配,比如时域资源的分配。
调制和编码策略域,用于确定DCI调度的上行数据和/或信令的MCS索引。根据MCS域和资源分配域还可以确定上行数据的传输块大小(transport block size,TBS)。
重复次数域,用于确定DCI调度的上行数据的重复次数。
新数据指示域,用于指示当前调度的传输是新传还是重传。
冗余版本域,用于确定上行数据和/或信令传输时采用的冗余版本。
DCI重复次数域,用于确定DCI的重复次数。
对于NB-IoT中的上行传输,具体的TBS表格如下:
表1.2
Figure PCTCN2022085021-appb-000001
如表1.2中所示,通过DCI format N0中的MCS域指示的MCS索引(I MCS)确定TBS索引(I TBS),再结合DCI format N0中的资源分配域确定传输时间I RU,进而确定TBS。
其中,QPSK的MCS索引对应TBS表格中的TBS索引0~13,新增调制方式,例如16QAM,对应TBS表格中的TBS索引14~21。
对于NB-IoT中的下行传输,具体的TBS表格如下:
表1.3
Figure PCTCN2022085021-appb-000002
Figure PCTCN2022085021-appb-000003
下行传输过程中包括独立或者保护带(Standalone or Guard-Band,SA/GB)和带内(In-Band,IB)两种部署模式,SA/GB部署模式下,QPSK的MCS索引对应TBS表格中的TBS索引0~13,16QAM的MCS索引对应TBS表格中的TBS索引13~21。IB模式下,QPSK的MCS索引对应TBS表格中的TBS索引0~10,16QAM的MCS索引对应TBS表格中的TBS索引11~17。
DCI中的MCS域为4比特,DCI仅用于指示第二调制方式的情况下,对于TBS索引为0~13时,MCS域的分配情况可参阅表1.4:
表1.4
Figure PCTCN2022085021-appb-000004
如表1.4中所示,4比特的MCS域中共能够指示MCS索引0~15,其中0~13用于指示QPSK的TBS索引,则剩余2个MCS索引14~15,为保留状态。
对于第二调制方式的TBS索引为0~11时,DCI中的MCS域的分配情况可参阅表1.5:
表1.5
Figure PCTCN2022085021-appb-000005
Figure PCTCN2022085021-appb-000006
为了提升数据传输速率,进而支持更高速的物联网业务,考虑在数据传输过程中引入新增调制方式,假设新增调制方式(第一调制方式)为16QAM,如表1.4中所示,4比特的MCS域中共能够指示MCS索引0~15,其中0~13用于指示QPSK的TBS索引,则剩余2个MCS索引14~15为保留状态,不足以完全指示16QAM的TBS索引14~21。
或者如表1.5中所示,4比特的MCS域中共能够指示MCS索引0~15,其中0~10用于指示QPSK的TBS索引,则剩余5个MCS索引11~15为保留状态,不足以完全指示16QAM的TBS索引11~17。
为了使得DCI能够支持新增调制方式的调度,可能的情况下,可以采用的方法包括:
(1)在DCI中引入新的1比特。
在DCI中引入新的1比特,专门用于指示调制方式为16QAM或QPSK。例如当该比特值为“0”时,用于指示调制方式为QPSK,那么4比特MCS域中的比特值表征QPSK调制方式下对应的MCS索引,该比特值为“1”时,指示调制方式为16QAM,那么4比特MCS域中的比特值表示MCS域中的比特值表征16QAM调制方式下对应的MCS索引。具体请参阅表1.6:
表1.6
MCS域的状态 I MCS 调制阶数 I TBS
(0)0000 1 2 1
(0)0001 2 2 2
(0)1101 13 2 13
(1)0000 14 4 14
(1)0001 15 4 15
(1)0111 21 4 21
如表1.6中所示,16QAM的TBS索引14~21通过MCS域的状态“0000”(0)-“0111”(7)指示(“-”表示“至”,即连续的多个数值,且包括端点值),对应的MCS索引为14~21,此时MCS域中有专门1比特用来指示16QAM或QPSK,例如表1.6中所示,为“0”时指示QPSK,为“1”时指示16QAM。
同样的,16QAM的TBS索引为11~17时,通过MCS域的状态“10000”(0)-“10110”(6) 指示(“-”表示“至”,即连续的多个数值,且包括端点值)指示,对应的MCS索引为11~17。
或者,也可以通过新增的1比特为“0”来指示MCS域中的其他比特值表征16QAM调制方式下对应的MCS索引,通过新增的1比特为“1”来指示MCS域中的其他比特值表征QPSK调制方式下对应的MCS索引。本申请实施例中不做限定。
(2)在MCS域新增1比特。
在MCS域中引入新的1比特(DCI同时也增加了1比特),使得MCS域为5比特,总共能够指示32种状态,则能够满足对QPSK的MCS索引个数+16QAM的MCS索引个数的指示。具体请参阅表1.7:
表1.7
MCS域状态 I MCS 调制阶数 I TBS
00000 1 2 1
00001 2 2 2
01101 13 2 13
01110 14 4 14
01111 15 4 15
10000 16 4 16
10101 21 4 21
如表1.7中所示,16QAM的TBS索引为14~21时,可以通过MCS域状态“01110”(14)-“10101”(21)指示。
同样的,16QAM的TBS索引为11~17时,可以通过MCS域状态“01011”(11)-“10001”(17)指示。
(3)调整MCS索引和TBS索引之间的映射关系。
MCS域保持4比特长度,但是对MCS索引和TBS索引之间的映射关系作出调整。即是说,16QAM的TBS索引为14~21时,QPSK的TBS索引个数+16QAM的TBS索引个数=14+8=22种,但是只与MCS域中的16种状态(16个MCS索引值)对应,那么可能的情况包括一个MCS索引状态对应多个TBS索引值,或者一个MCS索引状态对应一个TBS索引值,但是有的TBS索引值没有对应的MCS索引。具体参阅表1.8:
表1.8
MCS域状态 I MCS 调制阶数 I TBS
0000 0 2 0
0001 1 2 2
1111 15 4 21
如表1.8中所示,当MCS域状态为“0001”,MCS索引值为1时,对应映射的TBS索引为2,即是说,一个区间的TBS索引都取偶数值,达到压缩效果。
同样的,16QAM的TBS索引为11~17时,QPSK的TBS索引个数+16QAM的TBS索引个数=10+7=17种,与MCS域中的16种状态(16个MCS索引值)对应,可能的情况包括一个MCS索引状态对应多个TBS索引值,或者一个MCS索引状态对应一个TBS索引值。
上述过程中都能够实现通过DCI指示新增调制方式的调度,但是为了进一步优化DCI中的比特值分配,在保证对全部TBS索引进行完整指示,并减少因为增加DCI中的比特值所带 来的开销,本申请实施例提供了一种数据传输方法,如图2A所示,该方法包括如下步骤:
201、网络设备生成下行控制消息DCI,DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示第二调制方式,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;
202、网络设备发送该DCI;
203、终端接收该DCI,根据该DCI接收或发送数据。
网络设备生成DCI,用于进行上下行调度,根据前述描述可知,DCI的格式可以是N0格式,也可以是N1格式。可能的情况下,DCI仅能够用于指示第二调制方式,第二调制方式例如可以为QPSK,如表1.1中所示,N0或N1格式的DCI中都包括MCS域,MCS域为4比特长度,且“0000-1101”中的任意状态用来指示对应的MCS索引,总共可以指示QPSK对应的MCS索引为0~13,进而对应指示QPSK的TBS索引。其中的状态“1110”和“1111”为未使用的状态。
需要说明的是,上述DCI仅能够指示第二调制方式,是指相比于两种调制方式,只指示第二种,DCI还指示其他信息。
为了满足新的通信需求,需要DCI支持新增调制方式的调度,新增调制方式例如可以为16QAM或64QAM等。以16QAM为例进行说明,16QAM对应的TBS索引为8个,对应TBS索引值为14~21,而按照原本的DCI格式,其中用来指示TBS索引的MCS域未使用状态剩余个数为2个。为了使得DCI能够利用现有的比特长度指示新增的TBS索引,可以重解读DCI中一些字段用来指示新增调制方式的MCS索引,进而指示新增调制方式的TBS索引。
本申请实施例中,采用MCS的第一状态来指示第一调制方式,第一调制方式即为新增调制方式,新增调制方式可以为调制阶数等于4或大于4的调制方式。例如可以是16QAM。MCS的第二状态时,对应指示第二调制方式的MCS索引,第二调制方式为DCI原本支持的低阶调制,低阶调制可以为调制阶数小于4的调制方式,例如可以为QPSK。
针对独立或者保护带的部署模式,具体可参阅表2.1:
表2.1
Figure PCTCN2022085021-appb-000007
根据表2.1可以看出,第一状态为“1111”,第一调制方式为16QAM,第二状态为“0000”-“1101”中的任意一个,第二调制方式为QPSK。
针对带内部署模式,具体可参阅表2.2:
表2.2
Figure PCTCN2022085021-appb-000008
Figure PCTCN2022085021-appb-000009
根据表2.2可以看出,第一状态为“1111”,第一调制方式为16QAM,第二状态为“0000”-“1000”中的任意一个,第二调制方式为QPSK。可选情况下,因为MCS的状态“1001”-“1110”也没有被用于指示其他内容,因此这些状态中的任一个也可以作为第一状态,用于指示第一调制方式。
可见,在本申请实施例中,采用MCS域中的不同状态来指示第一调制方式和第二调制方式的MCS域,这样使得在不增加DCI开销的情况下,实现对新增的调制方式的支持。
可选地,该方法还包括:DCI仅能够用于指示第二调制方式时,DCI还包括重复次数域,重复次数域为N比特,其中N为正整数,DCI能够用于指示第一调制方式或者第二调制方式时,DCI还包括K比特用于指示第一调制方式的MCS索引的域,指示第一调制方式的MCS索引的域为K比特,其中K为正整数且K小于或等于N,DCI还包括重复次数域且重复次数域小于或等于N-K比特,或者DCI中不包含重复次数域。
在MCS域通过第一状态指示第一调制方式的情况下,第一调制方式的MCS索引也需要被指示。可选情况下,可以从DCI的比特中取出K比特来作为指示第一调制方式的MCS索引的域,这个域可以被称为第一调制方式的MCS域。以第一调制方式为16QAM为例,假设K=3,第一调制方式的MCS域的状态“000”(0)-“111”(7)可以用来指示16QAM的TBS索引14~21,或可以从来指示16QAM对应的TBS索引11~17。
由于从DCI的比特中取出K比特来组成了一个专门指示第一调制方式的MCS域,那么DCI中的其他域将少K比特。可选情况下,可以将DCI仅能够指示第二调制方式时,重复次数(repetition)域的N比特变为N-K比特。例如在DCI仅能够用来指示QPSK(第二调制方式)时,DCI进行上行调度时,重复次数域对应长度为3比特,DCI进行下行调度时,重复次数域对应长度为4比特。DCI用来指示第一调制方式或第二调制方式后,第一调制方式的MCS域可以为K=3比特,则对于上行调度,重复次数域为N-K=3-3=0比特,则DCI中不包括重复次数域。对于下行调度,重复次数域为N-K=4-3=1比特,则重复次数域还可以为1比特。或者剩余的1比特为保留比特,也即DCI中不包括重复次数域。对于下行调度,假设K=4,那么重复次数域为N-K=4-4=0比特,也即DCI中不包括重复次数域。并且,第一调制方式的MCS域的比特位置可以与原本重复次数域的比特位置相同,也可以不同。可参阅图2B,图2B为本申请实施例提供的一种DCI结构示意图,如图2B所示,MCS域的状态为“1111”时,DCI用于指示16QAM,DCI中原本的重复次数域转换为16QAM的MCS域。
根据16QAM的MCS域指示该调制下的TBS索引的具体方式可参阅下表:
表2.3
Figure PCTCN2022085021-appb-000010
表2.4
Figure PCTCN2022085021-appb-000011
如表2.3或表2.4所示,当MCS域状态为“1111”时,用于指示第一调制方式,这种情况下需要根据DCI中的指示第一调制方式的MCS索引的域的状态确定MCS索引,进而确定第一调制方式的TBS索引。其中表2.3为16QAM的TBS索引为14~21时的指示方式,表2.4为16QAM的TBS索引为11~17时的指示方式。
可见,在本申请实施例中,对于支持第一调制方式(新增调制方式)的NB-IoT能力的终端,DCI仅能够指示第二调制方式时,DCI中用于指示重复次数域的比特变少,甚至没有,使得DCI中包括用于指示第一调制方式的MCS域的比特,使得DCI能够同时支持第一调制方式和第二调制方式的调度,该过程没有增加DCI的开销,保证了DCI的传输效率。
需要说明的是,如前述表2.1和表2.2可知,MCS域的状态“1110”也为保留状态,因此也可以作为第一状态用于指示第一调制方式,此时指示第一调制方式的MCS索引的方法与前述描述相同,在此不再赘述。
可选情况下,网络设备生成的DCI为预配置上行资源-无线网络临时标识符(Pre-configured Uplink Resource-Radio Network Tempory Identity,PUR-RNTI)加扰后的控制信息。以PUR-RNTI加扰后的DCI format N0为例,其对应的比特域划分如表2.5所示:
表2.5
PUR-RNTI加扰且MCS=14的DCI中包括的内容 包括的比特数
区分格式N0或格式N1的标识域 1
MCS域 “1110”
ACK或者Fall Back指示域 1
NPUSCH重复调整域 3
TA advance调整域 6(如果ACK或者Fall Back指示域为0)
Reserved 全1
如表2.5所示,PUR-RNTI加扰,且MCS=14,对应MCS域的状态为“1110”时,DCI中包括的内容有:
区分格式N0或格式N1的标识域,用来指示DCI的格式是N0或者N1。
MCS域,其对应状态为“1110”。
确认反馈(Acknowledge Character,ACK)或回溯(Fall Back)指示域,用来指示本次PUR传输是否成功,或者下一次传输是否回退到其他传输模式。具体指示方式可以为0-ACK,1-Fall Back,表示该字段指示0时,表示本次PUR传输成功,指示1时,表示回退到其他传输模式。
NPUSCH重复调整域,用来指示物理上行共享信道能够重传的次数。
定时提前调整(Timing Advance Adjustment,TA advance)域,用于指示定时提前调整。
保留比特(Reserved),即当前DCI中未被使用的比特。对应字段的比特值全部为1。
同样的,针对PUR-RNTI加扰的DCI也有支持新增调制方式的数据调度的需求。可以表示下一个数据传输模式采用新增调制方式。针对PUR-RNTI加扰的DCI,MCS域的状态“1110”用于对应ACK or Fall Back指示域的指示,以确定下一次数据传输模式,即MCS域为固定值且确定含义的值,且不用于指示第一调制方式。
本申请实施例中,可以用MCS域的第一状态“1111”来指示第一调制方式(此时第一状态不包括“1110”)。
在采用第一状态指示第一调制方式的情况下,可参阅图2C,图2C为本申请实施例提供的另一种DCI结构示意图,如图2C所示,MCS域的状态为“1111”时,DCI用于指示16QAM,另外,PUR-RNTI加扰的DCI中还包括1比特的确认反馈或回溯指示域,用于指示下一次数据传输模式。
另外,还需要对第一调制方式的MCS索引进行指示。同样以第一调制方式为16QAM为例,16QAM的TBS索引14~21,需要至少8个MCS索引指示,或者,16QAM的TBS索引11~17,需要至少7个MCS索引指示。综合来看,可以从DCI现有比特中取出3比特来组成指示16QAM的MCS域。在PUR-RNTI加扰的DCI仅能够用于指示第二调制方式的MCS索引时,包括3比特的重复次数调整(repetition adjustment)域,可选情况下,在PUR-RNTI加扰的DCI用于指示第一调制方式或第二调制方式时,PUR-RNTI加扰的DCI中不包括重复次数调整域,而划分出用于指示第一调制方式的MCS索引的域,即第一调制方式的MCS索引指示域,具体如图2C中所示,DCI中原本的重复次数调整域转换为16QAM的MCS域。即是说,DCI仅能够用来指示第二调制方式(例如QPSK)时,重复次数调整域的3比特没有了,进而划分出16QAM的MCS域。16QAM的MCS的域的比特位置可以与原本重复次数调整域的比特位置相同,也可以不同。
根据16QAM的MCS域指示该调制下的TBS索引的具体方式与表2.3和表2.4类似,在此不再赘述。
可选情况下,也可以划分PUR-RNTI加扰的DCI中的保留比特为16QAM的MCS域。保留比特为未使用字段,可以用来指示任何新增参数。
可见,在本申请实施例中,通过PUR-RNTI加扰后的DCI仅能够指示第二调制方式时,DCI中用于指示重复次数调整域的比特变少,甚至没有,而在DCI中划分用于指示第一调制方式的MCS索引的域,使得DCI能够同时支持第一调制方式和第二调制方式的调度,该过程没有增加DCI的开销,保证了DCI的传输效率。
或者,在MCS域为除“1111”和“1110”之外的其他状态(第二状态)时,也可以对第一调制方式进行指示。第二状态为用于指示第二调制方式的MCS索引的状态。对于TBS索引为0~13时,第二状态为“0000”-“1101”中的任一种状态。对于TBS索引为0~17时,第二状态为 “0000”-“1000”中的任一种状态。DCI中还包括子载波指示域,总共包括6比特,能够指示64种状态。现有的子载波分配并不能完全使用该64种状态,因此可以采用子载波指示域冗余状态指示第一调制方式。
具体地,NB-IoT中支持子载波间隔3.75kHz(兆赫兹)以及15kHz,对于3.75kHz,180kHz共有48个子载波,对于15kHz,180kHz共有12个子载波。15kHz支持1个子载波、3个子载波、6个子载波和12个子载波的调度,DCI format N0中的子载波指示域指示的子载波的索引(I sc)与分配的子载波(n sc)之间的对应关系如下表3.1:
表3.1
子载波指示域(I sc) 分配的子载波(n sc)
0–11 I sc
12-15 3(I sc-12)+{0,1,2}
16-17 6(I sc-16)+{0,1,2,3,4,5}
18 {0,1,2,3,4,5,6,7,8,9,10,11}
19-63 Reserved
如表中所示,共需要19种状态。
终端在其他消息中会知道子载波间隔的配置,当在其他消息中配置为3.75kHz时,就按照n sc=I sc解读DCI format N0中的子载波指示域,当在其他消息中配置为15kHz时,就按照表3.1中的关系解读DCI format N0中的子载波指示域。因此,按照3.75kHz来看(以使用更多子载波指示域状态的子载波间隔来看),DCI format N0中的子载波指示域中有64-48=16个冗余状态。
假设DCI(具体可以为DCI format N0)指示第一调制方式为16QAM的调制方式,则子载波指示域指示的子载波的索引(I sc)与分配的子载波(n sc)之间的对应关系如下表3.2:
表3.2
子载波指示域(I sc) 分配的子载波(n sc)
48-51 3(I sc-48)+{0,1,2}-16QAM
52-53 6(I sc-52)+{0,1,2,3,4,5}-16QAM
54 {0,1,2,3,4,5,6,7,8,9,10,11}-16QAM
55-63 Reserved
如表3.2所示,子载波指示域中又使用了48~54总共7个状态,用于指示16QAM对应的子载波。那么子载波指示域中还剩余的状态为55-63,总共9个。这9个状态中的部分状态可以用于指示分配的子载波对应16QAM调制方式。
具体地,请参阅图2D,图2D为本申请实施例提供的另一种DCI的结构示意图,如图2D中的(a)所示,第二状态为“0000”-“1101”中的任一种时,可以通过子载波指示域中的冗余状态来指示16QAM,包括3个子载波、6个子载波和12个子载波的调度分别对应的16QAM。
或者,如图2D中的(b)所示,第二状态为“0000”-“1000”中的任一种时,也可以通过子载波指示域中的冗余状态来指示16QAM,包括3个子载波、6个子载波和12个子载波的调度分别对应的16QAM。
另外,除了指示第一调制方式外,也同样需要指示第一调制方式的MCS索引进行指示。可选情况下,与前述实施例中描述的相同,可以使DCI仅指示第二调制方式时,用于指示重复次数域的比特缩减,甚至没有,使得DCI中包括用于指示第一调制方式的MCS域的比特。
可以预见的是,当通过子载波指示域指示了第一调制方式,且通过其他域指示了第一调制方式对应的MCS索引,同时DCI中又对第二调制方式的MCS索引通过第二状态进行了指 示,那么该种DCI能够同时指示两种不同调制方式,可以表示DCI调度能够在两种不同调制方式之间切换。
本申请实施例中,在DCI保持对第二调制方式的MCS索引指示的前提下,采用子载波指示域的冗余状态实现同时对第一调制方式(新增调制方式)的指示,一方面避免了增加DCI开销,另一方面,实现对两种不同调制方式的同时指示,可以使得DCI调度的数据在切换调制方式的过程中,不需要网络设备重新下发DCI,提升了DCI调度数据的效率。
网络设备生成DCI后,发送给终端,终端接收到DCI后,根据该DCI发送或接收数据。具体为终端接收到DCI后,进行解调,获得DCI指示的调制方式,同时确定该调制方式对应的MCS索引,进而确定TBS索引,再根据TBS索引指示的调制方式和传输块进行数据传输。例如DCI中指示了16QAM和16QAM对应的MCS索引,则终端采用16QAM在MCS索引指示的TBS索引对应的传输块上传输数据,包括接收或发送数据。
对于下行独立或者保护带部署模式下,如果采用16QAM在窄带下行数据共享信道(NPDSCH)传输数据时,第一功率比例值为包含窄带参考信号(NRS)的时域符号上NPDSCH每资源单元的功率和NRS每资源单元的功率的比值,第二功率比例值为不包含窄带参考信号(NRS)的时域符号上NPDSCH每资源单元能量(EPRE)和NRS每资源单元的功率的比值;对于进行16QAM调制的UE,网络约束或者网络通过第一信息指示NPDSCH每资源单元的功率是否相同,如果相同,则网络指示第一功率比例值或者第二功率比例值给UE。如果不同,则网络指示第一功率比例值和第二功率比例值给UE。UE接收第一信息,根据第一信息,对NPDSCH进行解调。
对于下行带内模式下,如果采用16QAM在窄带下行数据共享信道(NPDSCH)传输数据时,第一功率比例值为包含窄带参考信号(NRS)的时域符号上NPDSCH每资源单元的功率和NRS每资源单元的功率的比值,第二功率比例值为不包含窄带参考信号(NRS)和小区参考信号(CRS)的时域符号上NPDSCH每资源单元能量(EPRE)和NRS每资源单元的功率的比值,第三功率比例值为包含小区参考信号(CRS)的时域符号上NPDSCH每资源单元能量(EPRE)和NRS每资源单元的功率的比值;对于进行16QAM调制的UE,网络约束或者网络指示NPDSCH每资源单元的功率是否相同或者部分相同,如果全部相同,则网络指示第一功率比例值或者第二功率比例值或者第三比例值给UE。如果仅有包含窄带参考信号(NRS)的时域符号上NPDSCH每资源单元的功率和不包含窄带参考信号(NRS)和小区参考信号(CRS)的时域符号上NPDSCH每资源单元能量(EPRE)相同,则网络指示第一功率比例值或者第二功率比例值和第三功率比例值给UE。如果全部不同,则网络指示第一功率比例值和第二功率比例值和第三比例值给UE。UE接收第一消息,根据第一消息,对NPDSCH进行解调。UE接收第一信息,根据第一信息,对NPDSCH进行解调。
或者,本申请实施例还提供了另一种数据传输方法,如图3A所示,该方法包括如下步骤:
301、网络设备生成下行控制消息DCI,其中DCI为PUR-RNTI加扰后的控制信息,DCI中包括确认反馈或者回溯指示域,且DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI中包括第一调制方式指示域,用于指示第一调制方式;
302、网络设备发送该DCI;
303、终端接收该DCI,根据该DCI接收或发送数据。
与前述实施例中的描述相同,第一调制方式为新增调制方式,例如为16QAM,64QAM等,第二调制方式为低阶调制方式,例如QPSK等。本申请实施例中,网络设备生成的DCI 为PUR-RNTI加扰的控制信息。根据前述实施例中的表2.5可以获知在MCS域状态为“1110”时,PUR-RNTI加扰的DCI结构。
MCS域状态为“1110”(第一状态)时,也可以指示第一调制方式。具体请参阅图3B,图3B为本申请实施例提供的另一种DCI的结构示意图,如图3B所示,MCS域的状态为“1110”,且DCI中包括1比特长度为确认反馈或者回溯指示域。在这种情况下,从原本的PUR-RNTI加扰的DCI中取出1比特保留比特,用于专门指示第一调制方式,可以被称为第一调制方式指示域。图3B中,第一调制方式为16QAM,则该比特字段可以被称为16QAM指示域。可能的情况下,当16QAM指示域的值为“0”时,用于指示调制方式为16QAM。或者,该比特字段还可以用来指示第二调制方式,例如当16QAM指示域的值为“1”时,用来指示调制方式为第二调制方式(例如可以为QPSK)。
同样的,第一调制方式的MCS索引需要被指示,与图2A~图2C所描述的实施例类似的,在PUR-RNTI加扰的DCI仅用于指示第二调制方式的MCS索引时,包括3比特的重复次数调整(repetition adjustment)域,在PUR-RNTI加扰的DCI用于指示第一调制方式或第二调制方式时,PUR-RNTI加扰的DCI中不包括重复次数调整域,而划分为第一调制方式的MCS索引指示域,具体如图3B中所示,DCI中原本的重复次数调整域转换为16QAM的MCS域。16QAM的MCS的域的比特位置可以与原本重复次数调整域的比特位置相同,也可以不同。
可选情况下,也可以划分PUR-RNTI加扰的DCI中的保留比特中的1比特为第一调制方式的MCS域。保留比特为未使用字段,可以用来指示任何新增参数。
可见,在本申请实施例中,针对PUR-RNTI加扰的DCI,可以在不增加下行控制信息的开销的情况下,采用DCI中的保留比特完成对新增调制方式调度的支持。避免了增加DCI开销。
网络设备生成DCI后,发送给终端,终端接收到DCI后,根据该DCI发送或接收数据。具体为终端接收到DCI后,进行解调,获得DCI指示的调制方式,同时确定该调制方式对应的MCS索引,进而确定TBS索引,再根据TBS索引指示的调制方式和传输块进行数据传输。另外,PUR-RNTI加扰的DCI还用通过确认反馈或回溯指示域指示本次PUR传输是否成功,或者下一次传输是否回退到其他传输模式。
因此终端接收到DCI后,且DCI中指示了下次数据传输包括PUR传输或者其他数据传输的调制方式是否为16QAM和16QAM的MCS索引,那么终端采用16QAM在MCS索引对应的TBS索引指示的传输块上进行数据传输。
在一种可能的情况下,请参阅图4A,图4A为本申请实施例提供的另一种数据传输方法流程图,如图4A所示,该方法包括如下步骤:
401、网络设备生成下行控制信息DCI,该DCI能够用于指示第一调制方式的MCS索引或第二调制方式的MCS索引,或者仅能够用于指示所述第二调制方式的MCS索引,DCI包括调制编码策略MCS域和重复次数域,DCI仅能够用于指示第二调制方式的MCS索引时,MCS域为N1比特,重复次数域为N2比特,DCI用于指示第一调制方式的MCS索引或第二调制方式的MCS索引时,MCS域为N1+1比特,重复次数域等于或小于N2-1比特,或者DCI中不包括重复次数域;
402、网络设备发送该DCI;
403、终端接收该DCI,并根据该DCI发送或接收数据。
与前述实施例中的描述相同,第一调制方式为新增调制方式,例如为16QAM,64QAM 等,第二调制方式为低阶调制方式,例如QPSK等。
在DCI仅能够指示第二调制方式的MCS索引时,其对应的下行DCI内容如表1.1中所示。第二调制方式可以为QPSK,采用4比特的MCS域指示QPSK的MCS索引,进而实现上行TBS索引0~13的指示。对于下行调度,GB/SA部署模式,TBS索引为0~13,IB部署模式,TBS索引为0~10,也通过对应的MCS域的4比特指示。
需要说明的是,前述DCI仅能够用于指示第二调制方式的MCS索引,是指该DCI只能够指示两种调制方式中的一种调制方式的MCS索引,DCI还指示其他信息。
在本申请实施例中,DCI除了要实现对QPSK的MCS域的指示外,还要实现对第一调制方式的MCS索引的指示,进而实现对第一调制方式的TBS索引的指示。第一调制方式为16QAM的情况下,对应的TBS索引为14~21,或者为11~17。针对前一种情况,需要至少8个MCS状态来指示,加上QPSK的14个MCS状态,共22个MCS状态,对于后一种情况,需要至少7个MCS状态来指示,加上QPSK的11个MCS状态,共18个MCS状态。而4比特的MCS域都不能满足该要求。
基于此,本申请实施例中提出为MCS域增加1比特长度,也即是说,假设在DCI仅能够支持第二调制方式的指示情况下,MCS域的长度为N1比特,指示第二调制方式的MCS索引;则当DCI同时支持第一调制方式和第二调制方式的指示的情况下,MCS域的长度为N1+1比特,指示第一调制方式或者第二调制方式的MCS索引。例如,假设DCI仅能够支持第二调制方式的调度时,如表1.1所示,N1=4,则在本申请实施例中,在DCI同时支持第一调制方式和第二调制方式的调度的情况下,MCS域长度为5比特,这样MCS域能够指示的MCS状态为2 5=32种,能够满足指示16QAM和QPSK的MCS索引的需求。具体可参阅图4B,图4B为本申请实施例提供的一种DCI的结构示意图,如图4B所示,该DCI中,MCS域为5比特,用于指示第一调制方式和第二调制方式的MCS索引,重复次数域为2比特。
由于MCS域多了1比特,在不改变DCI总长度的情况下,其他域需要减少1比特。本申请实施例中,减少1比特的域为重复次数域。也即是说,假设在DCI仅能够支持第二调制方式的调度情况下,重复次数域的长度为N2比特,则当DCI同时支持第一调制方式和第二调制方式的调度的情况下,重复次数域的长度为N2-1比特。或者重复次数域的长度也可以小于N2-1比特,或者DCI中也可以不再包括重复次数域。对于DCI调度上行传输,N2=3;对于DCI调度下行传输,N2=4。
MCS域多的1比特与重复次数域少的1比特可以是同样的比特位,也可是不同比特为,在此不做限定。
以DCI同时支持第一调制方式和第二调制方式的调度的情况下,MCS域长度为5比特,第一调制方式为16QAM,第二调制方式为QPSK为例进行说明,MCS域状态指示TBS索引的方式如表4.1所示:
表4.1
MCS域状态 I MCS 调制阶数 I TBS
00000 0 2 0
00001 1 2 1
01101 13 2 13
01110 14 4 14
01111 15 4 15
10111 21 4 21
如表中所示,QPSK对应的MCS索引为0~13,16QAM对应的MCS索引为14~21,MCS索引与TBS索引一一对应,且值相同。
或者如表4.2所示:
表4.2
MCS域 I MCS Modulation Order I TBS
00000 0 2 0
00001 1 2 1
01101 13 2 13
01110 14 4 13
01111 15 4 14
11000 22 4 21
如表中所示,QPSK对应的MCS索引为0~13,用于指示其对应的TBS索引0~13。而16QAM对应的MCS索引为14~22,这是因为,TBS索引13既可通过QPSK对应的MCS索引来指示,也可以通过16QAM对应的MCS索引来指示,也即是说该TBS索引对应的传输块既可用于进行QPSK的调度,又可用于16QAM的调度。
或者如表4.3所示:
表4.3
MCS域 I MCS Modulation Order I TBS
00000 0 2 0
00001 1 2 1
01100 12 2 12
01101 13 2 13
01110 14 4 12
01111 15 4 13
11000 16 4 14
11001 23 4 21
如表中所示,QPSK对应的MCS索引为0~13,用于指示其对应的TBS索引0~13。而16QAM对应的MCS索引为14~23,这是因为,TBS索引12和13既可通过QPSK对应的MCS索引来指示,也可以通过16QAM对应的MCS索引来指示,也即是说这些TBS索引对应的传输块既可用于进行QPSK的调度,又可用于16QAM的调度。
另一方面,MCS域状态指示TBS索引的方式如表4.4所示:
表4.4
MCS域 I MCS Modulation Order I TBS
00000 0 2 0
00001 1 2 1
01010 10 2 10
01011 11 4 11
01100 12 4 15
10001 17 4 17
如表中所示,QPSK对应的MCS索引为0~10,16QAM对应的MCS索引为11~17,MCS索引与TBS索引一一对应,且值相同。
因此,按照此种情况下,对于调度上行传输的DCI,重复次数域为N2-1比特,N2=3,重复次数域指示的方式如表4.5所示:
表4.5
重复次数域 重复次数
0 1
1 2
2 4
3 8
对于调度下行传输的DCI,重复次数域为N2-1比特,N2=4,重复次数域指示的方式如表4.6所示:
表4.6
重复次数域 重复次数
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
另外,在MCS域用于指示第一调制方式的MCS索引或第二调制方式的MCS索引的情况下,由于第一调制方式为新增支持的调制方式,因此网络设备还可以通过高层信令指示第一调制方式,这样网络设备在接收到DCI并获得MCS索引后,可以根据高层信令确定第一调制方式具体为哪一种调制方式,进而确定该MCS索引为那种调制方式的MCS索引。
可见,在本申请实施例中,在下行控制信息中包括的比特值不变的情况下,在下行控制信息用于指示第一调制方式的MCS索引或第二调制方式的MCS索引时,相比于下行控制信息仅用于指示第二调制方式的MCS索引的情况,MCS域中增加1比特,重复次数域中减少1比特,使得MCS域中有足够的状态同时满足对第一调制方式的MCS索引和第二调制方式的MCS索引的支持,该过程避免了增加DCI开销,保证了DCI的传输效率。
终端接收到网络设备发送的DCI后,同样对DCI进行解调,获得DCI指示的调制方式和对应调制方式的MCS索引,进而根据DCI指示的调制方式和传输块进行数据传输。具体描述可参阅图2A~图2C对应的实施例描述,在此不再赘述。
IoT对功耗问题敏感,每次发送上行数据,终端要和网络设备通过随机接入过程建立无线资源控制(Radio Resource Control,RRC)连接,如果发送的上行数据包较小而且不频繁,此时随机接入建立RRC连接的过程的功耗占比较大,不利于IoT设备节能。针对此,采用早期数据发送(Early Data Transmission,EDT)技术,即终端在随机接入过程中可随着RRC建立请求(Msg3)发送小包上行数据,可以省去随机接入整个过程完成之后建立RRC连接了 才能发送小包数据。随机接入过程中如何支持新增调制方式的调度,是一个亟待解决的问题。
基于此,请参阅图5A,图5A为本申请实施例提供的一种数据传输方法流程图,如图5A所示,该方法包括如下步骤:
501、网络设备发送第一消息,第一消息中包括第一指示信息,用于指示终端使用第一调制方式以及指示第一调制方式对应的调制编码策略MCS索引,或者用于指示终端使用第二调制方式以及指示第二调制方式对应的MCS索引,第一消息为针对终端的随机接入的响应消息。其中,网络设备为该终端配置的子载波间隔为15kHz,子载波指示索引大于11。
502、终端接收第一消息,向网络设备发送第二消息,第二消息采用第一指示信息指示的调制方式,第二消息包括无线资源控制RRC建立请求;和/或终端接收网络设备发送的第三消息,第三消息采用第一指示信息指示的调制方式,第三消息包括用于携带竞争解决标识的消息。
在本申请实施例中,网络设备发送的第一消息为针对终端的随机接入的响应消息,也即第一消息为网络设备接收到终端发送的随机接入请求后,回复的响应消息。随机接入的过程可以参阅图5B,如图5B所示,随机接入过程,首先由终端向网络设备发送随机接入请求,该随机接入请求具体可以为随机接入前导序列(preamble)(可以被称为Msg1),网络设备接收到终端发送的随机接入请求后,向终端发送针对随机接入请求的响应消息(Random Access Response,RAR,可以被称为Msg2),终端接收到随机接入响应消息后,向网络设备发送RRC建立请求(可以被称为Msg3),网络设备接收到RRC建立请求后,向终端发送携带竞争解决标识的消息(可以被称为Msg4),对于子载波指示索引大于11时,第一消息中的第一指示信息用来指示第一调制方式或者第二调制方式以及调制方式对应的MCS索引。在第一消息仅用于指示第二调制方式以及第二调制方式的MCS索引的情况下,具体的指示方式如表5.1所示:可以使用第一指示信息的冗余状态指示第一调制方式及第一调制方式的MCS索引,第一调制方式为16QAM,第二调制方式为QPSK。
或者第一消息添加1比特调制方式指示域指示第一调制方式或者第二调制方式,所述第一消息不包括重复次数域或者包括重复次数域中的部分比特,2bit或者3bit指示第一调制方式的MCS索引。
或者如果1比特调制方式指示域指示调制为16QAM,RAR中“011-111”指示16QAM对应的MCS索引。
表5.1
Figure PCTCN2022085021-appb-000012
根据表5.1可知,Isc为子载波指示域的索引,nsc为调度的子载波,Isc=0-11,指示调度子载波nsc为子载波序号0-11的任1个的单载波调度;Isc=12-15,指示调度子载波nsc为0-2, 3-5,6-8,9-11的中的任1个3载波调度;Isc=16-17,指示调度子载波为0-5,6-11中的任1个6载波调度;Isc=18,指示调度子载波为0-11的1个12载波的调度;所以Isc>11指示的是多载波的调度(>1)。RUs数量表示传输的子帧数量,其中MCS状态“000”-“010”(MCS索引0~2)用于指示QPSK(第二调制方式),或者用于指示Pi/2BPSK(第二调制方式),Pi/4QPSK(第三调制方式),“011”-“111”(MCS索引3~7)为保留状态。
基于此,第一消息用于指示第一调制方式以及第一调制方式的MCS索引,或者用于指示第二调制方式以及第二调制方式的MCS索引的情况下,对应的指示方式可如表5.2所示:
表5.2
Figure PCTCN2022085021-appb-000013
对于子载波间隔为15kHz,Isc>11,如表5.2中所示,MCS状态“000”-“010”(MCS索引0~2)依然用于指示QPSK(第二调制方式),“011”-“101”用于指示16QAM(第一调制方式)。
可能的情况下,在网络设备发送第一消息前,还接收到终端发送的第四消息,第四消息包括终端进行随机接入的前导序列。然后网络设备能够根据第一消息对应的调制方式确定第一指示信息指示的调制方式。
也即使是说,终端设备向网络设备发送的随机接入前导序列(Msg1)为第一调制方式对应的前导序列,或者为第二调制方式对应的前导序列,以使得网络设备接收到该前导序列后,可以判断终端支持哪种调制方式的数据传输。进而判断出第一指示信息如何指示调制方式。可能的情况下,第一指示信息可以指示终端采用Msg1对应的调制方式,也可以指示终端采用不同于Msg1对应的调制方式,终端在发送RRC建立请求(Msg3)的消息时,使用指示的调制方式发送Msg3,和/或接受用于携带竞争解决标识(Msg4)的消息时,按照指示的调制方式解调Msg4,本申请实施例中不做限定。
可能的情况下,终端向网络设备发送的随机接入前导序列为EDT前导序列,也即是说,终端对应EDT传输方式,且终端可能在发送RRC建立请求(Msg3)的过程中,一起发送上行数据。那么,终端接收到网络设备通过第一消息发送的第一指示信息后,发送第二消息给网络设备,其中第二消息不仅包括RRC建立请求的消息,还包括一起发送的上行数据,采用第一指示信息指示的调制方式和MCS域对应的TBS索引值指示的传输块传输该消息。网络设备接收到第二消息之后,对应发送第三消息,此时第三消息中除了包括携带竞争解决标识的消息之外,还包括下行数据,可以采用第一指示信息指示的调制方式和MCS域对应的TBS索引值指示的传输块传输该消息。
上述过程中,如果网络设备没有为调制方式配置相应的传输块,那么可以仅向终端发送 配置信息,以配置传输块。可能的情况下,网络设备只为低阶调制配置了传输块,而没有为新增调制方式配置传输块。那么,假设第一指示信息指示终端采用第一调制方式,由于第一调制方式为新增调制方式,终端没有配置新增调制方式可能调用的传输块,那么,网络设备还可能向终端发送第一配置信息,该第一配置信息中包括可配置的TBS值集合中的TBS值,该集合中包括的TBS值包括至少一个大于第二调制方式的可配置的最大TBS值。
举例来说,在EDT传输过程中,QPSK可配置的对应的最大TBS值为“1000”,网络设备为终端配置16QAM对应的传输块,第一配置信息中的可配置的TBS集合中的TBS值具体还包括{1192,1352,1544,1736,2024,2280,2536}中的任一个或多个。网络设备为终端设备配置中为16QAM对应的TBS集合中的任一个,这样可以使得终端能够实现在第一调制方式对应的传输块上传输。
终端接收到网络设备发送的第一消息后,可以根据第一消息中的第一指示信息发送第二消息,也即采用第一调制方式或第二调制方式发送第二消息。根据前述描述可知,第二消息可以是RRC连接建立请求消息,在EDT传输方式下,第二消息中还可以包括上行数据,上行数据也采用第一指示信息指示的调制方式。同时第一指示信息中还指示了第一调制方式或第二调制方式的MCS域,终端采用对应的调制方式和MCS域指示的TBS索引对应的传输块进行数据传输。
或者,终端可以接收网络设备发送的第三消息,第三消息采用第一调制方式或第二调制方式。在EDT传输方式下,第三消息中还可以包括下行数据,下行数据也可以采用第一调制调制方式或第二调制方式。网络设备发送第三消息可以发生在终端发送第二消息之后,也可以发生在终端发送第二消息之前,或者同时。假设终端接收网络设备发送的第三消息,则在上述方法中,还可包括步骤:网络设备发送第三消息,第三消息采用第一调制方式或第二调制方式,以及第一调制方式或第二调制方式对应的MCS索引调度数据。
可见,在本申请实施例中,由网络设备在向终端发送随机接入响应的时候指示终端采用第一调制方式或第二调制方式,触发后续随机接入过程中的RRC建立请求信息或用于携带竞争解决标识的消息的传输过程采用第一调制方式(新增调制方式),即完成对第一调制方式的支持,可以有效的提升随机接入过程的信息传输速率和频谱资源利用率。另外,前导序列为EDT前导序列,那么接收的第二消息除了包括RRC建立请求信息之外,还包括上行数据,第三消息除了包括携带用于携带竞争解决标识(Msg4)的消息外,还可以包括下行数据,第二消息或第三消息采用第一调制方式传输,可以提升其中包括的上行数据或下行数据的传输速率。
图6为本申请实施例提供的一种通信装置600,其可以用于执行上述图2A~图2D的应用于网络设备的数据传输方法和具体实施例。在一种可能的实现方式中,如图6所示,该通信装置600包括处理单元601和发送单元602,其中,
处理单元601,用于生成下行控制消息DCI,该DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示所述第二调制方式,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;
发送单元602,用于发送DCI。
上述处理单元601和发送单元602执行数据传输方法的过程可参阅图2A~图2D对应实施例的具体描述,在此不再赘述。
可选的,上述的处理单元601可以是芯片,编码器,编码电路或其他可以实现本申请方法的集成电路。
可选的,通信装置600还可以包括接收单元,接收单元可以和发送单元为独立的单元,也可以结合成为收发单元,收发单元可以为接口电路或者收发器。
可选的,通信装置600还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理单元601耦合,也可以和发送单元602耦合,还可以和接收单元耦合,或者和收发单元耦合。例如,处理单元601可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的数据传输方法被执行。
图7为本申请实施例提供的一种通信装置700,其可以用于执行上述图2A~图2D的应用于终端的数据传输方法和具体实施例。在一种可能的实现方式中,如图7所示,该通信装置700包括处理单元701和收发单元702,其中,
处理单元701,用于接收下行控制信息DCI,该DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示第二调制方式,DCI中包括调制编码策略MCS域,当MCS域为第一状态时,DCI用于指示第一调制方式,当MCS域为第二状态时,DCI用于指示第二调制方式和第二调制方式的MCS索引;
收发单元702,用于根据DCI接收或发送数据。
上述处理单元701和收发单元702执行数据传输方法的过程可参阅图2A~图2D对应实施例的具体描述,在此不再赘述。
可选的,上述的处理单元701可以是芯片,编码器,编码电路或其他可以实现本申请方法的集成电路。
可选的,收发单元702可以为接口电路或者收发器。
可选的,通信装置700还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理单元701耦合,也可以和收发单元702耦合。例如,处理单元701可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的数据传输方法被执行。
如图8所示,图8示出了本申请实施例中的一种通信装置的硬件结构示意图。图6或图7中的通信装置的结构可以参考图8所示的结构。通信装置900包括:处理器111和通收发器112,所述处理器111和所述收发器112之间电偶合;
所述处理器111,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,使得所述装置执行上述任一实施例所述的方法。
收发器112,用于和其他设备进行通信;例如接收来自第一网元的消息,消息中包括组播和/或广播业务的标识,以及,组播和/或广播业务的密钥和/或组播和/或广播业务的密钥标识。
可选的,还包括存储器113,用于存储计算机程序指令,可选的,所述存储器113(存储器#1)位于所述装置内,所述存储器113(存储器#2)与处理器111集成在一起,或者所述存储器113(存储器#3)位于所述装置之外。
应理解,图8所示的通信装置900可以是芯片或电路。例如可设置在终端装置或者通信装置内的芯片或电路。上述收发器112也可以是通信接口。收发器包括接收器和发送器。进一步地,该通信装置900还可以包括总线系统。
其中,处理器111、存储器113、收发器112通过总线系统相连,处理器111用于执行该存储器113存储的指令,以控制收发器接收信号和发送信号,完成本申请涉及的实现方法中第一设备或者第二设备的步骤。所述存储器113可以集成在所述处理器111中,也可以与所述处理器111分开设置。
作为一种实现方式,收发器112的功能可以考虑通过收发电路或者收发专用芯片实现。处理器111可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于AF/AS,NEF/MBSF-C,MB-SMF或UDR/UDM等网元设备的方法。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于终端设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于AF/AS,NEF/MBSF-C,MB-SMF或UDR/UDM等网元设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于终端设备的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件 还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (41)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    生成下行控制消息DCI,所述DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示所述第二调制方式,所述DCI中包括调制编码策略MCS域,当所述MCS域为第一状态时,所述DCI用于指示第一调制方式,当所述MCS域为第二状态时,所述DCI用于指示第二调制方式和所述第二调制方式的MCS索引;
    发送所述DCI。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI中还包括重复次数域;
    所述第一状态为“1111”,所述第一调制方式为16正交幅度调制QAM,所述DCI用于指示所述16QAM时,所述重复次数域被转换为所述DCI中用于指示所述16QAM的MCS索引的域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述DCI还包括重复次数域,所述重复次数域为N比特,其中所述N为正整数;所述DCI能够用于指示所述第一调制方式或者所述第二调制方式时,所述DCI还包括用于指示所述第一调制方式的MCS索引的域,所述指示所述第一调制方式的MCS索引的域为K比特,其中所述K为正整数且所述K小于或等于所述N,所述DCI中不包含所述重复次数域,或者所述DCI还包括重复次数域且所述重复次数域小于或等于N-K比特。
  4. 根据权利要求3所述的方法,其特征在于,所述K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
  5. 根据权利要求1的所述的方法,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI还包括确认反馈或者回溯指示域。
  6. 根据权利要求1或5所述的方法,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI用于指示所述第一调制方式时,所述DCI中还包括用于指示所述第一调制方式的MCS索引的域,所述DCI中不包括重复次数调整域。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述MCS域为4比特。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一状态为“1111”,所述第二状态为“0000-1111”中除了1111和1110之外的一个状态。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一调制方式为16正交幅度调制QAM,所述第二调制方式为正交相移键控QPSK。
  10. 一种数据传输方法,其特征在于,所述方法包括:
    接收下行控制信息DCI,所述DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示所述第二调制方式,所述DCI中包括调制编码策略MCS域,当所述MCS域为第一状态时,所述DCI用于指示第一调制方式,当所述MCS域为第二状态时,所述DCI用于指示第二调制方式和所述第二调制方式的MCS索引;
    根据所述DCI接收或发送数据。
  11. 根据权利要求10所述的方法,其特征在于,所述DCI中还包括重复次数域;
    所述第一状态为“1111”,所述第一调制方式为16正交幅度调制QAM,所述DCI用于指示所述16QAM时,所述重复次数域被转换为所述DCI中用于指示所述16QAM的MCS索引的域。
  12. 根据权利要求10或11所述的方法,其特征在于,所述DCI还包括重复次数域,所述重复次数域为N比特,其中所述N为正整数;所述DCI能够用于指示所述第一调制方式或者所述第二调制方式时,所述DCI还包括用于指示所述第一调制方式的MCS索引的域,所述指示所述第一调制方式的MCS索引的域为K比特,其中所述K为正整数且所述K小于或等于所述N,所述DCI中不包含所述重复次数域,或者所述DCI还包括重复次数域且所述重复次数域小于或等于N-K比特。
  13. 根据权利要求12所述的方法,其特征在于,所述K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
  14. 根据权利要求10所述的方法,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI还包括确认反馈或者回溯指示域。
  15. 根据权利要求10或14所述的方法,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI用于指示所述第一调制方式时,所述DCI中还包括用于指示所述第一调制方式的MCS索引的域,所述DCI中不包括重复次数调整域。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述MCS域为4比特。
  17. 根据权利要求10-16所述的方法,其特征在于,所述第一状态为“1111”,所述第二状态为“0000-1111”中除了1111和1110之外的其他状态。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述第一调制方式为16正交幅度调制QAM,所述第二调制方式为正交相移键控QPSK。
  19. 根据权利要求10-18任一项所述的方法,其特征在于,所述根据所述DCI接收或发送数据包括:根据所述DCI指示的所述第一调制方式及第一调制方式的MCS索引,或所述第二调制方式及第二调制方式的MCS索引接收或发送数据。
  20. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于生成下行控制消息DCI,所述DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示所述第二调制方式,所述DCI中包括调制编码策略MCS域,当所述MCS域为第一状态时,所述DCI用于指示第一调制方式,当所述MCS域为第二状态时,所述DCI用于指示第二调制方式和所述第二调制方式的MCS索引;
    发送单元,用于发送所述DCI。
  21. 根据权利要求20所述的装置,其特征在于,所述DCI中还包括重复次数域;
    所述第一状态为“1111”,所述第一调制方式为16正交幅度调制QAM,所述DCI用于指示所述16QAM时,所述重复次数域被转换为所述DCI中用于指示所述16QAM的MCS索引的域。
  22. 根据权利要求20或21所述的装置,其特征在于,所述DCI还包括重复次数域,所述重复次数域为N比特,其中所述N为正整数;所述DCI能够用于指示所述第一调制方式或者所述第二调制方式时,所述DCI还包括用于指示所述第一调制方式的MCS索引的域,所述指示所述第一调制方式的MCS索引的域为K比特,其中所述K为正整数且所述K小于或等于所述N,所述DCI中不包含所述重复次数域,或者所述DCI还包括重复次数域且所述重复次数域小于或等于N-K比特。
  23. 根据权利要求22所述的装置,其特征在于,所述K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
  24. 根据权利要求20的所述的装置,其特征在于,所述DCI为PUR-RNTI加扰后的控制 信息,所述DCI还包括确认反馈或者回溯指示域。
  25. 根据权利要求20或24所述的装置,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI用于指示所述第一调制方式时,所述DCI中还包括用于指示所述第一调制方式的MCS索引的域,所述DCI中不包括重复次数调整域。
  26. 根据权利要求20-25任一项所述的装置,其特征在于,所述MCS域为4比特。
  27. 根据权利要求20-26任一项所述的装置,其特征在于,所述第一状态为“1111”,所述第二状态为“0000-1111”中除了1111和1110之外的一个状态。
  28. 根据权利要求20-27任一项所述的装置,其特征在于,所述第一调制方式为16正交幅度调制QAM,所述第二调制方式为正交相移键控QPSK。
  29. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于接收下行控制信息DCI,所述DCI能够用于指示第一调制方式或第二调制方式,或者仅能够用于指示所述第二调制方式,所述DCI中包括调制编码策略MCS域,当所述MCS域为第一状态时,所述DCI用于指示第一调制方式,当所述MCS域为第二状态时,所述DCI用于指示第二调制方式和所述第二调制方式的MCS索引;
    收发单元,用于根据所述DCI接收或发送数据。
  30. 根据权利要求29所述的装置,其特征在于,所述DCI中还包括重复次数域;
    所述第一状态为“1111”,所述第一调制方式为16正交幅度调制QAM,所述DCI用于指示所述16QAM时,所述重复次数域被转换为所述DCI中用于指示所述16QAM的MCS索引的域。
  31. 根据权利要求29或30所述的装置,其特征在于,所述DCI还包括重复次数域,所述重复次数域为N比特,其中所述N为正整数,所述DCI能够用于指示所述第一调制方式或者所述第二调制方式时,所述DCI还包括用于指示所述第一调制方式的MCS索引的域,所述指示所述第一调制方式的MCS索引的域为K比特,其中所述K为正整数且所述K小于或等于所述N,所述DCI中不包含所述重复次数域,或者所述DCI还包括重复次数域且所述重复次数域小于或等于N-K比特。
  32. 根据权利要求31所述的装置,其特征在于,所述K为3比特,和/或,DCI调度上行传输时,N为3比特,调度下行传输时,N为4比特。
  33. 根据权利要求29所述的装置,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI还包括确认反馈或者回溯指示域。
  34. 根据权利要求29或33所述的装置,其特征在于,所述DCI为PUR-RNTI加扰后的控制信息,所述DCI用于指示所述第一调制方式时,所述DCI中还包括用于指示所述第一调制方式的MCS索引的域,所述DCI中不包括重复次数调整域。
  35. 根据权利要求29-34任一项所述的装置,其特征在于,所述MCS域为4比特。
  36. 根据权利要求29-35任一项所述的装置,其特征在于,所述第一状态为“1111”,所述第二状态为“0000-1111”中除了1111和1110之外的其他状态。
  37. 根据权利要求29-36任一项所述的装置,其特征在于,所述第一调制方式为16正交幅度调制QAM,所述第二调制方式为正交相移键控QPSK。
  38. 根据权利要求29-37任一项所述的装置,其特征在于,所述收发单元具体用于:根据所述DCI指示的所述第一调制方式及第一调制方式的MCS索引,或所述第二调制方式及第二调制方式的MCS索引接收或发送数据。
  39. 一种通信装置,其特征在于,所述装置包括处理器和接口电路;
    所述接口电路,用于交互代码指令至所述处理器;
    所述处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1-9中任一项所述的方法,或者使得所述装置执行如权利要求10-19中任一项所述的方法。
  40. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1-9中任一项所述的方法被实现,或者使如权利要求10-19中任一项所述的方法被实现。
  41. 一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1-9中任一项所述的方法;或者使得计算机执行如权利要求10-19中任一项所述的方法。
PCT/CN2022/085021 2021-04-02 2022-04-02 数据传输方法及装置 WO2022206990A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22779170.4A EP4311179A1 (en) 2021-04-02 2022-04-02 Data transmission method and apparatus
JP2023560443A JP2024512686A (ja) 2021-04-02 2022-04-02 データ伝送方法および装置
US18/477,497 US20240030942A1 (en) 2021-04-02 2023-09-28 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110362864.8 2021-04-02
CN202110362864.8A CN115173989B (zh) 2021-04-02 数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,497 Continuation US20240030942A1 (en) 2021-04-02 2023-09-28 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022206990A1 true WO2022206990A1 (zh) 2022-10-06

Family

ID=83458107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085021 WO2022206990A1 (zh) 2021-04-02 2022-04-02 数据传输方法及装置

Country Status (4)

Country Link
US (1) US20240030942A1 (zh)
EP (1) EP4311179A1 (zh)
JP (1) JP2024512686A (zh)
WO (1) WO2022206990A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253121A1 (en) * 2018-04-06 2019-08-15 Intel Corporation Configuration and design of cqi and mcs tables for 5g communications
US20200077381A1 (en) * 2017-05-05 2020-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Indication of Modulation and Coding Scheme for Wireless Device in Coverage Enhanced Mode
CN111670602A (zh) * 2018-02-09 2020-09-15 华为技术有限公司 一种数据传输方法及相关设备
CN111901067A (zh) * 2020-02-12 2020-11-06 中兴通讯股份有限公司 一种配置、接收方法、装置、设备及存储介质
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200077381A1 (en) * 2017-05-05 2020-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Indication of Modulation and Coding Scheme for Wireless Device in Coverage Enhanced Mode
CN111670602A (zh) * 2018-02-09 2020-09-15 华为技术有限公司 一种数据传输方法及相关设备
US20190253121A1 (en) * 2018-04-06 2019-08-15 Intel Corporation Configuration and design of cqi and mcs tables for 5g communications
CN111901067A (zh) * 2020-02-12 2020-11-06 中兴通讯股份有限公司 一种配置、接收方法、装置、设备及存储介质
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Support 16QAM for NBIoT", 3GPP DRAFT; R1-2008920, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201019 - 20201106, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946732 *

Also Published As

Publication number Publication date
CN115173989A (zh) 2022-10-11
JP2024512686A (ja) 2024-03-19
US20240030942A1 (en) 2024-01-25
EP4311179A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US10447425B2 (en) Method and apparatus for determining transport block size
TW201815109A (zh) 指示以及實現新ue能力的方法以及裝置
US10681587B2 (en) Method and apparatus for wireless communication
US11570800B2 (en) Data transmission method, terminal device and network device
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
US10911978B2 (en) Data transmission method, device, and communications system
US11632219B2 (en) Resource determining method, indication method, and apparatus
WO2018228579A1 (zh) 确定传输块大小的方法及装置
WO2019024927A1 (zh) 一种上行控制信息传输方法和装置
EP3648390B1 (en) Communication method and device
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
US20220368505A1 (en) Data feedback method and apparatus
WO2022206990A1 (zh) 数据传输方法及装置
EP4144012A1 (en) Harq retransmission termination based on lost redundancy version
CN115173989B (zh) 数据传输方法及装置
WO2019191911A1 (zh) 数据传输的方法和设备
WO2022082371A1 (zh) 一种通信方法、装置、系统及芯片
WO2022150985A1 (zh) 一种重复传输方法、电子设备及存储介质
WO2024031540A1 (zh) 通信方法及通信装置
WO2023071901A1 (zh) 通信方法和通信装置
WO2022151434A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2023040688A1 (zh) 一种通信方法、装置及系统
WO2023093531A1 (zh) 一种通信方法及装置
US20240040573A1 (en) Information transmission method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023560443

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022779170

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779170

Country of ref document: EP

Effective date: 20231020

NENP Non-entry into the national phase

Ref country code: DE