WO2023071901A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023071901A1
WO2023071901A1 PCT/CN2022/126322 CN2022126322W WO2023071901A1 WO 2023071901 A1 WO2023071901 A1 WO 2023071901A1 CN 2022126322 W CN2022126322 W CN 2022126322W WO 2023071901 A1 WO2023071901 A1 WO 2023071901A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
coding
order
information
schemes
Prior art date
Application number
PCT/CN2022/126322
Other languages
English (en)
French (fr)
Inventor
宣一荻
谢信乾
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071901A1 publication Critical patent/WO2023071901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a communication method and a communication device.
  • factors such as the distance between a base station and a terminal device and/or the environment will affect the state of a wireless channel. For example, when the distance between the base station and the terminal equipment is relatively short and there are few obstructions, the quality of the wireless channel between the two is better; and when the distance between the base station and the terminal equipment is long and there are many obstructions, the quality of the wireless channel between the two is better. The quality of the wireless channel between them is poor.
  • the new radio interface (NR) system supports multiple modulation coding schemes (MCS). Wherein, different MCSs correspond to different modulation orders and/or coding rates. Modulation techniques in MCS include quadrature phase shift keying (quadrature phase shift keying, QPSK) modulation and quadrature amplitude modulation (quadrature amplitude modulation, QAM).
  • MCS modulation coding schemes
  • Modulation techniques in MCS include quadrature phase shift keying (quadrature phase shift keying, QPSK) modulation and quadrature amplitude modulation (quadrature amplitude modulation, QAM).
  • the highest modulation order supported by the existing NR system is 10, that is, 1024QAM.
  • 1024QAM For terminals with better channel quality, for example, terminals in the center of a cell and with extremely low moving speeds, communication efficiency needs to be improved urgently.
  • the embodiments of the present application provide a communication method and a communication device, by predefining or flexibly configuring the MCS corresponding to 4096QAM, so that terminals with better channel quality can obtain higher communication efficiency.
  • a communication method is provided, which can be executed by a terminal device, or can also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited.
  • a component such as a chip or a circuit
  • the terminal Device execution is taken as an example for description.
  • the method may include: the terminal device determines a first modulation and coding method from N modulation and coding methods, and the N modulation and coding methods include at least one modulation and coding method with a modulation order of 12, and N is a positive integer; the terminal device sends the first Information, where the first information is used to indicate the first modulation and coding mode.
  • At least one of the N modulation and coding methods is predefined, including at least one for 4096QAM corresponding to the MCS, and the terminal device determines the first modulation and coding method among the N modulation and coding methods according to the first information.
  • the requirement of using 4096QAM enables terminals with better channel quality to obtain higher communication efficiency.
  • a communication method is provided. This method may be executed by a network device, or may also be executed by a component (such as a chip or a circuit) of the network device. This is not limited. For the convenience of description, the network Device execution is taken as an example for description.
  • the method may include: the network device receives first information, the first information is used to indicate a first modulation and coding method, the first modulation and coding method is one of N modulation and coding methods, and the N modulation and coding methods include at least one modulation order The number is 12 modulation and coding schemes, and N is a positive integer; the network device receives or sends data according to the first modulation and coding scheme.
  • At least one of the N modulation and coding schemes is predefined, including at least one MCS corresponding to 4096QAM, and the network device instructs the terminal device to use the predefined N modulation and coding schemes through the first information.
  • the first modulation and coding mode is determined, thereby realizing the requirement that network equipment and terminal equipment use 4096QAM in the communication system.
  • each of the N modulation and coding schemes corresponds to a modulation order and a coding rate.
  • the number of at least one modulation and coding scheme with a modulation order of 12 among the N modulation and coding schemes is 4, 5, or 6.
  • the number of at least one modulation and coding scheme with a modulation order of 12 is 4, and the coding rates corresponding to the four modulation and coding schemes with a modulation order of 12 are 829.5/1024, 869/1024, 908.5/1024, 948 /1024; or, the number of at least one modulation and coding method with a modulation order of 12 is 5, and the coding rates corresponding to the five modulation and coding methods with a modulation order of 12 are 821.5/1024, 853/1024, 884.5/1024, 916.5/1024, 948/1024; or, the number of at least one modulation and coding method with a modulation order of 12 is 6, and the coding rates corresponding to the 6 modulation and coding methods with a modulation order of 12 are 816.5/1024 and 842.5/1024 respectively , 869/1024, 895.5/1024, 921.5/1024. 948/1024.
  • the corresponding coding rates are 829.5/1024, 869/1024, 908.5/1024, and 948/1024.
  • the modulation and coding method with the modulation order of 10 (1024QAM) (for example, the code rates corresponding to the modulation and coding method with the modulation order of 10 are 805.5/1024, 853/1024, 900.5/1024, 948/1024 ) corresponding to the interval of 10% BLER-SNR is basically equal to the interval of 10% BLER-SNR corresponding to the four modulation and coding schemes whose modulation order is 12, which is beneficial for the wireless communication system to perform link adaptation.
  • 10% BLER-SNR is the corresponding signal-to-noise ratio when the block error rate is equal to 10%.
  • the number of modulation and coding schemes with a modulation order of 12 is an even number, which simplifies the design of the channel quality indication table, and the modulation and coding schemes with a modulation order of 12 in the MCS table can be selected at equal intervals as the table in the channel quality indication table. item.
  • the two MCSs of 1024 and 948/1024 are used as entries in the CQI table.
  • the corresponding encoding rates are 816.5/1024, 842.5/1024, 869/1024, 895.5/1024, 921.5/1024, 948/1024.
  • the modulation and coding method of 10 (1024QAM) (for example, the code rates corresponding to the modulation and coding method with a modulation order of 10 are 805.5/1024, 853/1024, 900.5/1024, 948/1024) corresponding to the spectral efficiency interval
  • the spectral efficiency intervals corresponding to the six modulation and coding schemes whose modulation order is 12 are basically equal, which is beneficial for the wireless communication system to perform link adaptation to overcome or adapt to the impact of current channel changes.
  • the number of modulation and coding schemes with a modulation order of 12 is an even number, which simplifies the design of the CQI table, and the modulation and coding schemes with a modulation order of 12 in the MCS table can be selected as entries in the CQI table at equal intervals. For example, you can select 3 MCSs whose modulation order is 12 and whose coding rates are 816.5/1024, 869/1024, and 921.5/1024 respectively as entries in the CQI table, or you can choose a modulation order of 12 and a coding rate of The three MCSs of 842.5/1024, 895.5/1024, and 948/1024 are used as entries in the CQI table.
  • the channel quality is good.
  • the CPE equipment is fixedly installed, and the channel changes slowly and stably.
  • the CPE equipment is configured with multiple downlink receiving antennas. Therefore, the possibility that the terminal is configured with low-order modulation (such as QPSK or 16QAM) is low. Therefore, the N modulation and coding schemes may include fewer modulation and coding schemes with low modulation orders.
  • the N modulation and coding schemes do not include a modulation and coding scheme with a modulation order of 2.
  • the number of modulation and coding schemes with a modulation order of 2 among the N modulation and coding schemes is one.
  • the coding rate corresponding to the modulation and coding mode whose modulation order is 2 is 120/1024 or 193/1024.
  • the N modulation and coding schemes do not include a modulation and coding scheme with a modulation order of 4.
  • the number of modulation and coding schemes with a modulation order of 4 among the N modulation and coding schemes is one.
  • the coding rate corresponding to the modulation and coding mode whose modulation order is 4 is 378/1024 or 490/1024.
  • the N modulation and coding methods include at least one modulation and coding method in the first modulation and coding method set and/or at least one modulation and coding method in the second modulation and coding method set, and the first modulation and coding method
  • the highest modulation order of the modulation and coding schemes in the set and the second modulation and coding scheme set is 6 or 8 or 10.
  • a communication method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited.
  • a component such as a chip or a circuit
  • the method may include: the terminal device receives first signaling, the first signaling is used to configure N modulation and coding modes, and N is a positive integer; the terminal device receives first information, and the first information is used to indicate the first modulation and coding mode, The first modulation and coding scheme is one of the N modulation and coding schemes; the terminal device determines the first modulation and coding scheme according to the first information.
  • the network device can flexibly configure N modulation and coding methods through the first signaling according to the communication needs of different terminal devices, so as to avoid that the predefined modulation and coding methods cannot match the actual transmission conditions of the terminal devices The problem.
  • the N modulation and coding schemes include at least one modulation and coding scheme with a modulation order of 12.
  • the first signaling includes second information and third information
  • the second information is used to indicate M modulation and coding schemes
  • the third information is used to indicate L modulation and coding schemes. Coding mode, M and L are positive integers
  • the method further includes: the terminal device receives second signaling, the second signaling is used to indicate a first set of modulation and coding modes, where the first set of modulation and coding modes includes L modulation and coding modes mode and does not include M modulation and coding methods; the terminal device determines the first modulation and coding method from the N modulation and coding methods according to the first information, including: the terminal device determines according to the first signaling, the second signaling and the first information The first modulation and coding method.
  • the terminal device determines the first modulation and coding scheme according to the first signaling, the second signaling, and the first information, including: the terminal device determines the first modulation and coding scheme according to the first signaling and the first signaling
  • the second signaling determines N modulation and coding methods, and the N modulation and coding methods include modulation and coding methods other than the L modulation and coding methods and M modulation and coding methods in the first modulation and coding method set.
  • the first information from the N modulation and coding methods The first modulation and coding mode is determined in the mode.
  • the first set of modulation and coding methods is a predefined set of modulation and coding methods, and the highest modulation order of the modulation and coding methods in the first set of modulation and coding methods is 6 or 8 or 10, the M modulation and coding schemes include at least one modulation and coding scheme with a modulation order of 12.
  • the N modulation and coding modes include at least one modulation and coding mode in the second modulation and coding mode set and/or at least one modulation and coding mode in the third modulation and coding mode set Way.
  • the intervals between the spectral efficiencies corresponding to any two adjacent modulation and coding methods among the N modulation and coding methods are equal, and the spectral efficiency is the modulation order corresponding to the modulation and coding method and The product of the encoding rates.
  • a communication method is provided, and the method may be executed by a network device, or may also be executed by a component (such as a chip or a circuit) of the network device, which is not limited.
  • a component such as a chip or a circuit
  • the network Device execution is taken as an example for description.
  • the method may include: the network device sends a first signaling, the first signaling is used to configure N modulation and coding methods, and N is a positive integer; the network device sends first information, and the first information is used to indicate the N modulation and coding methods The first modulation and coding method.
  • the N modulation and coding schemes include at least one modulation and coding scheme with a modulation order of 12.
  • the first signaling includes second information and third information
  • the second information is used to indicate M modulation and coding schemes
  • the third information is used to indicate L modulation and coding schemes.
  • Coding mode the method further includes: the network device sends a second signaling, the second signaling is used to indicate a first modulation and coding mode set, where the first modulation and coding mode set includes L modulation and coding modes and does not include M modulation and coding modes Encoding method, M and L are natural numbers.
  • the first set of modulation and coding methods is a predefined set of modulation and coding methods, and the highest modulation order of the modulation and coding methods in the first set of modulation and coding methods is 6 or 8 or 10, the M modulation and coding schemes include at least one modulation and coding scheme with a modulation order of 12.
  • the N modulation and coding modes include at least one modulation and coding mode in the second modulation and coding mode set and/or at least one modulation and coding mode in the third modulation and coding mode set mode, the highest modulation orders of the modulation and coding modes in the second modulation and coding mode set and the third modulation and coding mode set are different.
  • the intervals between the spectral efficiencies corresponding to any two adjacent modulation and coding methods among the N modulation and coding methods are equal, and the spectral efficiency is the modulation order corresponding to the modulation and coding method and The product of the encoding rates.
  • a communication device is provided, and the device is configured to execute the method provided in the first aspect or the second aspect.
  • the apparatus may include a unit and/or module for performing the method in the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect, such as a processing unit and/or a communication unit .
  • the apparatus is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, a chip system, or a circuit used in a terminal device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit and the like.
  • a communication device is provided, and the device is configured to execute the method provided in the third aspect or the fourth aspect.
  • the device may include a unit and/or module for performing the method in the third aspect or the fourth aspect and any possible implementation manner of the third aspect or the fourth aspect, such as a processing unit and/or a communication unit .
  • the apparatus is a network device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, a chip system or a circuit used in a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit and the like.
  • a communication device in a seventh aspect, includes: at least one processor, at least one processor is coupled to at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to read from at least one memory
  • the computer program or instruction is called and executed in the communication device, so that the communication device executes the method in any possible implementation manner of the first aspect or the second aspect and the first aspect or the second aspect.
  • the apparatus is a terminal device.
  • the apparatus is a chip, a chip system, or a circuit used in a terminal device.
  • a communication device in an eighth aspect, includes: at least one processor, at least one processor is coupled to at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to read from at least one memory
  • the computer program or instruction is invoked and executed in the communication device, so that the communication device executes the method in any possible implementation manner of the third aspect or the fourth aspect and the third aspect or the fourth aspect.
  • the apparatus is a network device.
  • the apparatus is a chip, a chip system or a circuit used in a network device.
  • the present application provides a processor configured to execute the methods provided in the foregoing aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores program code for execution by a device, and the program code includes a program code for performing the above-mentioned first aspect or second aspect or third aspect or fourth aspect aspect and the method in any possible implementation of the first aspect or the second aspect or the third aspect or the fourth aspect.
  • a computer program product containing instructions is provided, and when the computer program product is run on a computer, it causes the computer to execute the first aspect or the second aspect or the third aspect or the fourth aspect and the first aspect or The method in any possible implementation manner of the second aspect, the third aspect, or the fourth aspect.
  • a chip in a twelfth aspect, includes a processor and a communication interface, the processor reads the instructions stored on the memory through the communication interface, and executes the first aspect or the second aspect or the third aspect or the fourth aspect and the first aspect A method in any possible implementation manner of the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • the chip further includes a memory, in which computer programs or instructions are stored, and the processor is used to execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, the processor is used to execute The method in the first aspect or the second aspect or the third aspect or the fourth aspect and any one of the possible implementation modes of the first aspect or the second aspect or the third aspect or the fourth aspect.
  • a communication system in a thirteenth aspect, includes the communication devices shown in the seventh aspect and the eighth aspect.
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 2 is a schematic flow chart of a communication method proposed in this application.
  • Fig. 3 is a schematic flowchart of another communication method proposed by the present application.
  • Fig. 4 is a schematic block diagram of a communication device 1000 provided in this application.
  • FIG. 5 is a schematic structural diagram of a communication device 10 provided by the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, the fifth generation (5th generation, 5G), new radio (new radio, NR), long term evolution (long term evolution, LTE), Internet of Things (Internet of Things) of things, IoT), wireless-fidelity (wireless-fidelity, WiFi), wireless communication related to the 3rd generation partnership project (3GPP), or other wireless communication that may appear in the future, etc.
  • 5G fifth generation
  • new radio new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • Internet of Things Internet of Things
  • IoT Internet of Things
  • WiFi wireless-fidelity
  • 3GPP 3rd generation partnership project
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes at least one network device, such as the network device 110 shown in FIG. 1 ; the communication system 100 may further include at least one terminal device, such as the terminal device 120 and/or the terminal device 130 shown in FIG. 1 .
  • the network device 110 and the terminal device 120/130 can communicate through a wireless link, and then exchange information. It can be understood that network devices and terminal devices may also be referred to as communication devices.
  • a network device is a network-side device with a wireless transceiver function.
  • the network device may be a device that provides a wireless communication function for a terminal device in a radio access network (radio access network, RAN), and is called a RAN device.
  • the network device may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a next generation base station (next generation NodeB, gNB) in a 5G mobile communication system, a base station in the subsequent evolution of 3GPP, a sending and receiving point ( transmission reception point, TRP), access nodes in WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • a network device may contain one or more co-sited or non-co-sited sending and receiving points.
  • the network device may include one or more centralized units (central unit, CU), one or more distributed units (distributed unit, DU), or one or more CUs and one or more DUs.
  • the function of the CU may be implemented by one entity or different entities.
  • the function of the CU is further divided, that is, the control plane and the user plane are separated and realized by different entities, which are the control plane CU entity (ie, the CU-CP entity) and the user plane CU entity (ie, the CU-UP entity).
  • the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the functions of the access network equipment.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • radio resource control radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical (physical, PHY) layer.
  • network functional entities may be network elements in hardware devices, or software functions running on dedicated hardware, or virtualized functions instantiated on a platform (for example, a cloud platform).
  • the network device may also include an active antenna unit (active antenna unit, AAU for short).
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the access network device may be a road side unit (RSU).
  • Multiple access network devices in the communication system may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • the device for realizing the function of the network device may be the network device itself, or a device capable of supporting the network device to realize the function, such as a chip system or a combined device or component capable of realizing the function of the access network device,
  • the device can be installed in network equipment.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • a network device is taken as an example to describe the technical solution.
  • a terminal device is a user-side device with a wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above-mentioned devices (such as a communication module , modem, or chip system, etc.).
  • Terminal devices are used to connect people, things, machines, etc., and can be widely used in various scenarios, such as: cellular communication, device-to-device (D2D) communication, V2X communication, machine-to-machine/machine class Communication (machine-to-machine/machine-type communications, M2M/MTC) communication, Internet of Things, virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), driverless (self driving), remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • D2D device-to-device
  • V2X machine-to-machine/machine class Communication
  • M2M/MTC machine-to-machine/machine-type communications
  • M2M/MTC machine-to-machine/machine-type communications
  • Internet of Things Internet of Things
  • virtual reality virtual reality
  • VR augmented reality
  • AR augmented reality
  • industrial control industrial control
  • driverless self driving
  • the terminal device may be a handheld terminal in cellular communication, a communication device in D2D, an IoT device in MTC, a monitoring camera in smart transportation and smart city, or a communication device on a drone, etc.
  • Terminal equipment may sometimes be referred to as user equipment (UE), user terminal, user device, subscriber unit, subscriber station, terminal, access terminal, access station, UE station, remote station, mobile device, or wireless communication device, etc. wait.
  • the device used to realize the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system or a combined device or component that can realize the function of the terminal device. Can be installed in terminal equipment.
  • a terminal device is used as an example in this application for description.
  • MCS modulation coding scheme
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • network devices For terminal devices with better channel quality, network devices often use relatively high-order modulation methods, such as 64QAM or 256QAM to send downlink signals to terminal devices, or terminal devices use relatively high-order modulation methods to send uplink signals to obtain higher communication efficiency.
  • network equipment For terminal equipment with poor channel quality, network equipment uses relatively low-order modulation methods, such as QPSK or 16QAM, to send downlink signals to the terminal to ensure communication reliability.
  • the MCS also includes the coding rate, which is a decimal or fraction greater than 0 and less than or equal to 1, such as 1/2, 2/3, and so on. The lower the encoding rate, the more redundant bits are added, the higher the reliability of the communication, but the lower the spectral efficiency of the communication. Therefore, for terminal equipment with better channel quality, network equipment often adopts a higher coding rate to maintain high communication efficiency; while for terminal equipment with poor channel quality, network equipment uses a relatively lower coding rate to maintain high communication efficiency. Ensure high communication reliability.
  • modulation orders corresponding to QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, and 4096QAM are 2, 4, 6, 8, 10, and 12, respectively.
  • the way the network device indicates the MCS is to pre-define 4 MCS tables.
  • the network device instructs the terminal device which pre-defined MCS table to use through a high-level parameter (for example: MCS-table), and then through the downlink
  • the MCS indication field in the control information indicates the index of the used MCS in the MCS table.
  • the four predefined MCS tables are shown in Table 1 to Table 4.
  • Table 1 is the high spectral efficiency MCS table with the highest modulation order of 6
  • Table 2 is the MCS table with the highest modulation order of 8
  • Table 3 Table 4 is an MCS table with a maximum modulation order of 10 and a low spectral efficiency MCS table with a maximum modulation order of 6.
  • the network device instructs the terminal device to use Table 2.
  • the actual value of the encoding rate in all the tables of this application is divided by the value of the encoding rate in the table divided by 1024, for example: the actual value of the encoding rate corresponding to the modulation and encoding method whose index is 23 in Table 1 is 719/1024.
  • the spectral efficiency corresponding to a modulation and coding scheme in all tables of this application is the product of the modulation order corresponding to the modulation and coding scheme and the coding rate, or the spectral efficiency of a modulation and coding scheme is the modulation order corresponding to the modulation and coding scheme
  • the approximate value of the product of the number and the coding rate can be understood as the result of retaining S decimal places for the product of the modulation order and the coding rate, and S is a natural number.
  • the coding rate corresponding to the modulation and coding method #1 with the modulation order of 2 is 120/1024
  • the spectral efficiency of the modulation and coding method #1 can be 2*(120/1024), or, the spectrum of the modulation and coding method #1
  • the efficiency can be an approximate value of 2*(120/1024), for example, the approximate value 0.2344 obtained after four decimal places are reserved for 2*(120/1024).
  • the network device will instruct the terminal device to retransmit the modulation and coding method, and the index of the retransmitted modulation and coding method can be less than or equal to the index of the initial transmission
  • the spectral efficiency of the modulation and coding method of the first transmission can be less than or equal to the spectral efficiency of the modulation and coding method of the initial transmission), or the modulation and coding method of the retransmission can be a reserved bit in the MCS table, and the modulation and coding method of the reserved bit corresponds to only one modulation Order. For example, when the network device only indicates the modulation order to the terminal, the data sent or received by the terminal device is still the data generated after the last channel coding, so that there is no need to perform channel coding again, which reduces transmission delay and energy consumption.
  • CPE customer premise equipment
  • NR fixed wireless access
  • 4096QAM can be used to further improve spectrum efficiency.
  • the highest modulation order of the standardized MCS is 10, that is, 1024QAM.
  • the corresponding MCS is not defined and standardized in the existing standard.
  • the present application proposes a communication method that can implement communication using 4096QAM in a communication system, so that terminals with better channel quality can obtain higher communication efficiency.
  • the communication method proposed in this application will be described in detail below.
  • FIG. 2 is a schematic flowchart of a communication method proposed in this application.
  • the following uses the interaction between a terminal device and a network device as an example for description.
  • the network device determines a first modulation and coding scheme from N modulation and coding schemes, where at least one modulation and coding scheme in the N modulation and coding schemes corresponds to a modulation order of 12, where N is a positive integer.
  • a modulation and coding scheme corresponds to a modulation order and a coding rate.
  • the encoding rates corresponding to X modulation and encoding schemes whose modulation order is 12 may be any X of the following values: 790/1024, 821.5/1024, 853/1024, 884.5/1024, 916.5/1024, 829.5/1024, 869/1024, 908.5/1024, 816.5/1024, 842.5/1024, 869/1024, 895.5/1024, 921.5/1024, 948/1024, this application does not make specific limitations.
  • the coding rates corresponding to the four modulation and coding modes are 829.5/1024, 869/1024, 908.5/1024, and 948/1024 respectively.
  • the modulation and coding method with a modulation order of 10 (1024QAM) (for example, the modulation order is
  • the code rates corresponding to the modulation and coding modes of 10 are 805.5/1024, 853/1024, 900.5/1024, and 948/1024) and the corresponding 10% BLER-SNR interval corresponds to the modulation and coding modes of the four modulation orders of 12
  • the intervals of 10% BLER-SNR of the BLER-SNR are basically equal, which is beneficial for the wireless communication system to perform link adaptation.
  • 10% BLER-SNR is the corresponding signal to noise ratio (signal to noise ratio, SNR) when the block error rate (block error rate, BLER) is equal to 10%.
  • SNR signal to noise ratio
  • the number of modulation and coding schemes with a modulation order of 12 is an even number, which simplifies the design of the channel quality indicator (channel quantity indicator, CQI) table, and the modulation and coding schemes with a modulation order of 12 in the MCS table can be selected at equal intervals as An entry in the channel quality indication table.
  • the two MCSs of 1024 and 948/1024 are used as entries in the CQI table.
  • X 5
  • coding rates corresponding to the five modulation and coding modes are 821.5/1024, 853/1024, 884.5/1024, 916.5/1024, and 948/1024 respectively.
  • the encoding rates corresponding to the six modulation and encoding modes are 816.5/1024, 842.5/1024, 869/1024, 895.5/1024, 921.5/1024, and 948/1024 respectively.
  • the modulation and coding method with a modulation order of 10 (1024QAM) (for example, the code rates corresponding to the modulation and coding method with a modulation order of 10 are 805.5/1024, 853/1024, 900.5/1024 , 948/1024) and the spectral efficiency intervals corresponding to the six modulation and coding schemes whose modulation order is 12 are basically equal, which is conducive to the link adaptation of the wireless communication system to overcome or adapt to the current channel change the impact.
  • the number of modulation and coding schemes with a modulation order of 12 is an even number, which simplifies the design of the CQI table, and the modulation and coding schemes with a modulation order of 12 in the MCS table can be selected as entries in the CQI table at equal intervals. For example, you can select 3 MCSs whose modulation order is 12 and whose coding rates are 816.5/1024, 869/1024, and 921.5/1024 respectively as entries in the CQI table, or you can choose a modulation order of 12 and a coding rate of The three MCSs of 842.5/1024, 895.5/1024, and 948/1024 are used as entries in the CQI table.
  • the N modulation and coding schemes may also include one or more modulation and coding schemes corresponding to values such as modulation orders of 2, 4, 6, and 10.
  • the N modulation and coding schemes do not include a modulation and coding scheme with a modulation order of 2, or the number of modulation and coding schemes with a modulation order of 2 among the N modulation and coding schemes is 1.
  • the coding rate corresponding to the modulation and coding mode with a modulation order of 2 is 120/1024, and the spectral efficiency is 0.2344
  • the coding rate corresponding to the modulation and coding scheme whose modulation order is 2 is 193/1024, and the spectral efficiency is 0.3770.
  • the N modulation and coding schemes do not include a modulation and coding scheme with a modulation order of 4, or the number of modulation and coding schemes with a modulation order of 4 among the N modulation and coding schemes is 1.
  • the coding rate corresponding to the modulation and coding mode with a modulation order of 4 is 378/1024, and the spectral efficiency is 1.4766.
  • the coding rate corresponding to the modulation and coding scheme with the modulation order of 4 is 490/1024, and the spectral efficiency is 1.9141.
  • N modulation and coding methods may include fewer modulation and coding methods with low modulation orders.
  • N modulation and coding schemes correspond to one MCS table, and the following examples illustrate the possible corresponding MCS tables of N modulation and coding schemes.
  • the N modulation and coding methods include 1 modulation and coding method with a modulation order of 2, 1 modulation and coding method with a modulation order of 4, and 4 modulation and coding methods with a modulation order of 12, and a modulation and coding method with a modulation order of 12
  • the encoding rates corresponding to the encoding methods are 829.5/1024, 869/1024, 908.5/1024, 948/1024 respectively.
  • the MCS indexes of all tables in this application are arranged in ascending order of modulation order, and the modulation and coding schemes corresponding to the same modulation order are arranged in ascending order of coding rate.
  • Table 5 contains the same number of indexes as the existing standardized MCS table, including 32 indexes in total, and indexes 26 to 31 are modulation codes with modulation orders of 2, 4, 6, 8, 10, and 12, respectively. Mode reserved bits. That is to say, some of the N modulation and coding schemes may only correspond to one modulation order.
  • the N modulation and coding methods include one modulation and coding method with a modulation order of 2, one modulation and coding method with a modulation order of 4, and 5 modulation and coding methods with a modulation order of 12, where the modulation order is 12
  • the coding rates corresponding to the modulation and coding methods are 821.5/1024, 853/1024, 884.5/1024, 916.5/1024, and 948/1024 respectively.
  • the N modulation and coding methods include one modulation and coding method with a modulation order of 2, one modulation and coding method with a modulation order of 4, and 6 modulation and coding methods with a modulation order of 12, where the modulation order is 12
  • the coding rates corresponding to the modulation and coding methods are 816.5/1024, 842.5/1024, 869/1024, 895.5/1024, 921.5/1024.948/1024 respectively.
  • the N modulation and coding methods do not include the modulation and coding method with a modulation order of 2, including 1 modulation and coding method with a modulation order of 4 and 4 modulation and coding methods with a modulation order of 12, where the modulation order is 12
  • the coding rates corresponding to the modulation and coding methods are 829.5/1024, 869/1024, 908.5/1024, 948/1024 respectively.
  • the above possible MCS table may not include reserved bits with a modulation order of 2 and/or reserved bits with a modulation order of 4.
  • the base station usually selects a modulation and coding method with a higher modulation order during the initial transmission. Therefore, when retransmitting , the network device shall not indicate the corresponding reserved bit with a lower modulation order in the MCS table.
  • the reserved bit indicated by the network device is a reserved bit with a lower modulation order in the MCS table
  • the actual transmitted encoding rate may be higher than the maximum encoding rate limit, or even if the actual transmitted encoding rate is not The maximum bit rate limit is exceeded, but due to the relatively high encoding rate, the transmission performance is impaired.
  • the network device will not instruct the terminal device to use the reserved bit with a modulation order of 2, because in this In some cases, the coding rate corresponding to the reserved bits with the modulation order of 2 will exceed the limit of the highest modulation coding rate of 0.95.
  • the MCS table may not include reserved bits whose modulation order is 2.
  • the MCS table exemplified in this application may also contain a different number of indexes from the existing standardized MCS table, for example, the MCS table may also include 64 MCSs.
  • the N modulation and coding schemes do not include a modulation and coding scheme with a modulation order of 10 and a coding rate of 948/1024, but include a modulation and coding scheme with a modulation order of 12 and a coding rate of 790/1024.
  • the modulation and coding schemes in Table 4 to Table 8 with a modulation order of 10 and a coding rate of 948/1024 can be replaced with a modulation order of 12 and a coding rate of 790/1024, and no more details are given here. form.
  • the coding rates corresponding to the six modulation and coding modes with modulation order 12 are 790/1024, 821.5/1024, 853/1024, 884.5/1024, 916.5/1024, 948/ 1024. It should be understood that in this design mode, similar spectral efficiency intervals can be guaranteed between all modulation and coding schemes with a modulation order of 12 and a modulation order of 10, which is conducive to link adaptation and avoids problems caused by channel state changes. Impact.
  • the number of modulation and coding schemes with a modulation order of 12 is an even number, which simplifies the design of the CQI table, and the modulation and coding schemes with a modulation order of 12 in the MCS table can be selected as entries in the CQI table at equal intervals. For example, you can select 3 MCSs whose modulation order is 12 and whose coding rates are 790/1024, 853/1024, and 916.5/1024 respectively as entries in the CQI table, or you can choose a modulation order of 12 and a coding rate of The three MCSs of 821.5/1024, 884.5/1024, and 948/1024 are used as entries in the CQI table.
  • the reason for replacing the modulation and coding method with a modulation order of 10 and a coding rate of 948/1024 with a modulation order of 12 and a coding rate of 790/1024 is as follows: In the existing NR system, it is actually used for transmission The overhead of some signals may not match the equivalent overhead when calculating the transmission block size, resulting in the actual coding rate being greater than the coding rate corresponding to the modulation and coding mode indicated by the network device.
  • the modulation order of 10 and the coding rate of 948/1024 modulation and coding method because its coding rate itself is very high, the increase of this coding rate will lead to a sharp decline in its performance, which may exceed the limit of the highest coding rate. Therefore, when designing the MCS table, consider A modulation and coding method with a modulation order of 12 and an equivalent code rate of 790/1024 is used with nearly the same spectral efficiency but a lower code rate.
  • part of the modulation and coding schemes in the N modulation and coding schemes may be selected by the network device from one or more of the four existing standardized MCS tables, wherein the existing standardized four The highest modulation order of the modulation and coding scheme in a predefined MCS table is 6 or 8 or 10.
  • the network device sends first information to the terminal device, where the first information is used to indicate a first modulation and coding scheme.
  • the terminal device receives the first information.
  • the first information indicates the MSC index in Table 5 of the first modulation and coding scheme.
  • the first information is an MCS indication field in the DCI.
  • the network device does not indicate to the terminal device which MCS table to use, it can be understood that Table 5 is a default predefined MCS table for the network device and the terminal device, that is, the terminal device does not indicate which table to use when the network device
  • the first modulation and coding scheme is determined from default Table 5 according to the first indication information. For example, if the network device does not instruct the terminal device to use the MCS table with the highest modulation order of 6, 8 or 10, the terminal device uses a default MCS table of 4096QAM, as shown in Table 5.
  • the network device may also indicate a specific MSC table to the terminal device, then, before S202, the method further includes: the network device sends a first signaling to the terminal device, and the first signaling is used to indicate the MCS table# 1.
  • the high-level parameter indicates that the terminal device uses the MCS table of 4096QAM, that is, the MCS table with the highest modulation order of 12. If the high-level parameter MCS-table is configured as 'qam4096', the terminal device uses the MCS table of 4096QAM, as shown in Table 5 .
  • the terminal device receives the first signaling, determines to use Table 5, and then determines the first modulation and coding scheme from Table 5 according to the first information.
  • the terminal device receives or sends data according to the first modulation and coding scheme.
  • the embodiment corresponding to FIG. 2 predefines the MCS table for 4096QAM, which realizes the requirement of using 4096QAM in the communication system, so that terminals with better channel quality can obtain higher communication efficiency.
  • the above-mentioned predefined 4096QAM MCS table can only include fixed entries, and is limited by the fixed size of the MCS table.
  • the MCS table only includes 32 entries. Due to the complex and changeable communication environment, the predefined The table is no longer sufficient for wireless communication systems after the introduction of high-order modulation (such as 4096QAM), and greatly restricts the flexibility of modulation and coding methods that can be used by terminal equipment. In view of this, this application proposes a flexible configuration The MCS way.
  • FIG. 3 is a schematic flowchart of another communication method proposed by the present application.
  • the network device sends first signaling to the terminal device, where the first signaling is used to configure N modulation and coding schemes, where N is a positive integer.
  • the terminal device receives the first signaling, and determines the N modulation and coding schemes configured in the first signaling.
  • the N modulation and coding schemes include at least one modulation and coding scheme with a modulation order of 12. That is to say, the network device can flexibly configure N modulation and coding schemes through the first signaling, and the N modulation and coding schemes may include one or more modulation and coding schemes with a modulation order of 12.
  • the N modulation and coding methods configured by the network device may include only one modulation and coding method with a modulation order of 12, and the coding rate of the modulation and coding method may be 816.5/1024; the N modulation and coding methods configured by the network device may include There are two modulation and coding modes with a modulation order of 12, and the coding rates of the two modulation and coding modes can be 816.5/1024 and 842.5/1024 respectively.
  • the N modulation and coding modes are flexibly configured by the network device according to the channel quality between the terminal device and the network device.
  • the network device can configure more relatively high-order modulation methods, such as 1024QAM or 4086QAM to send downlink signals to the terminal device, or the terminal device uses a relatively high-order modulation method to send uplink signals.
  • the terminal device uses a relatively high-order modulation method to send uplink signals.
  • network equipment can be configured with more relatively low-order modulation methods, such as QPSK or 16QAM, to send downlink signals to the terminal to ensure communication reliability.
  • the first signaling includes second information and third information
  • the second information is used to indicate M modulation and coding schemes
  • the third information is used to indicate L modulation and coding schemes, where M and L are positive integers , wherein the M modulation and coding schemes are newly added modulation and coding schemes in the first modulation and coding scheme set, and the L modulation and coding schemes are modulation and coding schemes that are reduced or not used in the first modulation and coding scheme set.
  • the N modulation and coding schemes configured by the network device through the first signaling include modulation and coding schemes other than the L modulation and coding schemes and M modulation and coding schemes in the first modulation and coding scheme set.
  • the first set of modulation and coding schemes is a set of modulation and coding schemes indicated by the network device to the terminal device through the second signaling.
  • the first set of modulation and coding schemes is a predefined MCS table in which the highest modulation order of the modulation and coding schemes is 6, 8, or 10.
  • the first set of modulation and coding schemes may be any one of the MCS tables shown in Table 1 to Table 4.
  • the first set of modulation and coding schemes is any one of the predefined 4096QAM MCS tables in the embodiment corresponding to FIG. 2 .
  • the first signaling and the second signaling may be included in the same signaling and sent at the same time, or may not be sent at the same time, which is not specifically limited in this application.
  • the first set of modulation and coding methods is shown in Table 10.
  • the highest modulation order of the modulation and coding methods in the first set of modulation and coding methods is 10, and the second information in the first signaling indicates that the first modulation and coding method is newly added.
  • the 4 modulation and coding methods, the newly added 4 modulation and coding methods are shown in Table 11, the third information in the first signaling indicates that the index of the first modulation and coding method set is 1, 2, 4, 5, 7, the N modulation and coding modes configured in the first signaling are shown in Table 12.
  • the N modulation and coding schemes configured in the first signaling include at least one modulation and coding scheme in the second modulation and coding scheme set and/or at least one modulation and coding scheme in the third modulation and coding scheme set.
  • the second set of modulation and coding schemes may be understood as one or more tables in the predefined MCS tables whose highest modulation order of the modulation and coding schemes is 6, 8, or 10.
  • the first set of modulation and coding schemes is any one of the MCS tables shown in Table 1 to Table 4.
  • the third modulation and coding mode set may be understood as one or more tables in the predefined 4096QAM MCS table.
  • the N modulation and coding schemes indicated by the first signaling may be included in the second modulation and coding scheme set, or the N modulation and coding schemes may be included in the third modulation and coding scheme set, or part of the N modulation and coding schemes Included in the second set of modulation and coding methods, and another part is included in the third set of modulation and coding methods.
  • the network device may configure the MCS indexes of the N modulation and coding schemes in the corresponding second modulation and coding scheme set or the third modulation and coding scheme set through the first signaling.
  • the first signaling indicates MCS indexes #3 and #4 in Table 5 above, MCS indexes #7 and #8 in Table 6, MCS indexes #10 and #11 in Table 7, and MCS indexes #23 and #2 in Table 8. #24, that is, the first signaling is configured with the above eight modulation and coding modes.
  • the first signaling configures N modulation and coding schemes, where the first signaling includes one or more fourth information, and each piece of fourth information is used to indicate one or more modulation and coding schemes,
  • the modulation orders corresponding to one or more modulation and coding modes indicated by each piece of fourth information are the same and the corresponding coding rates are different.
  • the fourth information indicates modulation orders corresponding to the one or more modulation and coding schemes, and coding rates respectively corresponding to the one or more modulation and coding schemes.
  • the first signaling includes information #1 to information #3, where information #1 indicates 4 modulation and coding schemes, the modulation order of the 4 modulation and coding schemes is 8 and the coding rates are 797/1024, 841/ 1024, 885/1024, 916.5/1024; information #2 indicates 4 modulation and coding methods, the modulation orders corresponding to the 4 modulation and coding methods are all 10 and the coding rates are 790/1024, 805.5/1024, 853/1024, 900.5/1024, information #3 indicates 5 modulation and coding methods, the modulation order of the 5 modulation and coding methods is 12 and the coding rates are 790/1024, 805.5/1024, 853/1024, 900.5/1024, 948/1024 respectively.
  • the fourth information may indicate coding rates corresponding to one or more modulation and coding methods in the following manner:
  • the fourth information may include one or more sub-information, and one or more sub-information corresponds to one or more modulation and coding methods indicated by the fourth information, and each sub-information is indicated by indicating a coding rate index One or more encoding rates.
  • the coding rate index is the index of the coding rate of the modulation and coding mode corresponding to the sub-information in the coding rate set.
  • the set of encoding rates may be predefined. For example, the encoding rate set is shown in Table 13 below. When the sub-information indicates the encoding rate index 0, 3, 6, and 9, it indicates that the encoding rates corresponding to the four modulation and encoding modes corresponding to the sub-information are 0.5, 0.125, 0.2, 0.275.
  • encoding rate index encoding rate 0 0.5 1 0.75 2 0.1 3 0.125 4 0.15 5 0.175 6 0.2 7 0.225 8 0.25 9 0.275 10 0.3 11 0.325 12 0.35 13 0.375 14 0.4 15 0.425 16 0.45 17 0.475
  • the fourth information may include one or more sub-information, and one or more sub-information corresponds to one or more modulation and coding methods indicated by the fourth information, and each sub-information represents a coding by 10 bits (bit). rate.
  • the fourth information may include sub-information #1 and sub-information #2, both of which are 10 bits, wherein, sub-information #1 indicates 900 through 10 bits, and sub-information #1 indicates 948 through 10 bits, that is, the two sub-informations indicate two A code rate of 900/1024 and 948/1024.
  • the intervals of spectral efficiencies corresponding to any two adjacent modulation and coding schemes among the N modulation and coding schemes predefined or flexibly configured in this application are equal, wherein, the N modulation and coding schemes are arranged in ascending order of modulation order Arrangement, the modulation and coding methods corresponding to the same modulation order are arranged according to the coding rate from small to large, and the order of arrangement can be reversed, that is, the N modulation and coding methods are arranged according to the modulation order from large to small, corresponding to the modulation of the same modulation order
  • the coding methods are arranged in descending order according to the coding rate, which is not specifically limited in this application.
  • the network device sends first information to the terminal device, where the first information is used to indicate a first modulation and coding scheme, where the first modulation and coding scheme is one of the N modulation and coding schemes.
  • the terminal device receives the first information.
  • the terminal device determines a first modulation and coding scheme from the N modulation and coding schemes according to the first information.
  • the terminal device receives or sends data according to the first modulation and coding scheme.
  • the network device can flexibly configure the MCS table through the first signaling according to the communication quality of different terminal devices, avoiding the problem that the predefined MCS table cannot match the actual transmission situation of the terminal device.
  • FIG. 4 is a schematic block diagram of a communication device 1000 provided in this application.
  • the communication device 1000 includes a receiving unit 1100 and a processing unit 1200 .
  • the communication device 1000 can implement the steps or processes corresponding to the execution of the terminal device in the above method embodiments, for example, the communication device 1000 can be a terminal device, or can also be a chip or a circuit configured in the terminal device.
  • the receiving unit 1100 is configured to perform receiving-related operations of the terminal device in the above method embodiments
  • the processing unit 1200 is configured to perform processing-related operations of the terminal device in the above method embodiments.
  • the receiving unit 1100 is configured to receive first information, where the first information is used to indicate a first modulation and coding scheme, where the first modulation and coding scheme is one of the N modulation and coding schemes, and the N
  • the modulation and coding schemes include at least one modulation and coding scheme with a modulation order of 12, and the N is a positive integer
  • the processing unit 1200 is configured to receive or send data according to the first modulation and coding scheme.
  • the N modulation and coding schemes and the first information reference may be made to the description in the embodiment corresponding to FIG. 2 above, which will not be repeated here.
  • the receiving unit 1100 is configured to receive the first signaling, and the first signaling is used to configure N modulation and coding schemes, where N is a positive integer; the receiving unit 1100 is also configured to receive the first information, The first information is used to indicate a first modulation and coding scheme, and the first modulation and coding scheme is one of the N modulation and coding schemes; the processing unit 1200 is configured to determine the first modulation and coding scheme according to the first information.
  • N modulation and coding schemes the first signaling, and the first information, reference may be made to the description in the embodiment corresponding to FIG. 3 above, and details are not repeated here.
  • the first signaling includes second information and third information
  • the second information is used to indicate M modulation and coding schemes
  • the third information is used to indicate L modulation and coding schemes
  • M and L are positive integers
  • the receiving unit 1200 further receiving second signaling, where the second signaling is used to indicate a first set of modulation and coding schemes, where the first set of modulation and coding schemes includes L modulation and coding schemes and does not include M modulation and coding schemes; the processing unit 1200.
  • the processing unit 1200 is specifically configured to determine N modulation and coding schemes according to the first signaling and the second signaling, and the N modulation and coding schemes include modulations other than the L modulation and coding schemes in the first modulation and coding scheme set.
  • the coding method and the M modulation and coding methods determine the first modulation and coding method from the N modulation and coding methods according to the first information.
  • the communication device 1000 further includes a sending unit 1300 .
  • the sending unit 1300 and the receiving unit 1100 can also be integrated into a transceiver unit, which has both receiving and sending functions, which is not limited here.
  • the sending unit 1300 may be a transmitter, and the receiving unit 1100 may be a receiver. Receiver and transmitter can also be integrated into a transceiver.
  • the processing unit 1200 may be a processing device.
  • the functions of the processing device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the processing device may include a memory and a processor, where the memory is used to store computer programs, and the processor reads and executes the computer programs stored in the memory, so that the communication device 1000 executes the operations and operations performed by the terminal device in each method embodiment. /or processing.
  • the processing means may comprise only a processor, and the memory for storing the computer program is located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer programs stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • the sending unit 1300 and the receiving unit 1100 may be a communication interface or an interface circuit, for example, the sending unit 1300 is an output interface or an output circuit, the receiving unit 1100 is an input interface or an input circuit.
  • the processing unit 1200 may be a processor or a microprocessor integrated on the chip or integrated circuit. It is not limited here.
  • the communication device 1000 includes a processing unit 1200 and a sending unit 1300 .
  • the communication device 1000 can implement the steps or processes corresponding to the execution of the network device in the above method embodiments.
  • the communication device 1000 can be a network device, or can also be a chip or a circuit configured in the network device.
  • the sending unit 1300 is configured to perform reception-related operations of the network device in the above method embodiments
  • the processing unit 1200 is configured to perform processing-related operations of the network device in the above method embodiments.
  • the processing unit 1200 is configured to determine a first modulation and coding method from N modulation and coding methods, where the N modulation and coding methods include at least one modulation and coding method with a modulation order of 12, and the N is a positive integer; the sending unit 1300 is configured to send first information, where the first information is used to indicate the first modulation and coding mode.
  • N modulation and coding schemes and the first information reference may be made to the description in the embodiment corresponding to FIG. 2 above, which will not be repeated here.
  • the communication device 1000 may further include a processing unit 1200, and the sending unit 1300 and the receiving unit 1100 may also be integrated into a transceiver unit that has both receiving and sending functions, which is not limited here.
  • the sending unit 1300 is configured to send the first signaling, and the first signaling is used to configure N modulation and coding schemes, where N is a positive integer; the sending unit 1300 is also configured to send the first information, where the first information is used to indicate a first modulation and coding scheme among the N modulation and coding schemes.
  • N modulation and coding schemes the first signaling, and the first information, reference may be made to the description in the embodiment corresponding to FIG. 3 above, and details are not repeated here.
  • the first signaling includes second information and third information
  • the second information is used to indicate M modulation and coding schemes
  • the third information is used to indicate L modulation and coding schemes
  • the sending unit 1300 and is also used to send second signaling
  • the second signaling is used to indicate a first set of modulation and coding schemes
  • the first set of modulation and coding schemes includes the L modulation and coding schemes and does not include the M Modulation and coding methods
  • M and L are natural numbers.
  • the communication device 1000 further includes a receiving unit 1100 .
  • the sending unit 1300 and the receiving unit 1100 can also be integrated into a transceiver unit, which has both receiving and sending functions, which is not limited here.
  • the sending unit 1300 may be a transmitter, and the receiving unit 1100 may be a receiver. Receiver and transmitter can also be integrated into a transceiver.
  • the processing unit 1200 may be a processing device.
  • the functions of the processing device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the processing device may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication device 1000 performs the operations and operations performed by the network device in each method embodiment. /or processing.
  • the processing means may comprise only a processor, and the memory for storing the computer program is located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer programs stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • the sending unit 1300 and the receiving unit 1100 may be communication interfaces or interface circuits.
  • the sending unit 1300 is an output interface or an output circuit
  • the receiving unit 1100 is an input interface or an input circuit.
  • the processing unit 1200 may be a processor or a microprocessor integrated on the chip or integrated circuit. It is not limited here.
  • FIG. 5 is a schematic structural diagram of a communication device 10 provided in the present application.
  • the device 10 includes a processor 11, the processor 11 is coupled with a memory 12, the memory 12 is used to store computer programs or instructions and/or data, and the processor 11 is used to execute the computer programs or instructions stored in the memory 12, or to read the memory 12
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 11 there are one or more processors 11 .
  • the memory 12 is integrated with the processor 11, or is set separately.
  • the device 10 further includes a transceiver 13, and the transceiver 13 is used for receiving and/or sending signals.
  • the processor 11 is configured to control the transceiver 13 to receive and/or send signals.
  • the apparatus 10 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 11 is configured to execute computer programs or instructions stored in the memory 12, so as to implement related operations performed by the terminal device in the above method embodiments. For example, implement the method performed by the terminal device in the embodiment shown in FIG. 2 or FIG. 3 .
  • the apparatus 10 is configured to implement the operations performed by the network device in each method embodiment above.
  • the processor 11 is configured to execute computer programs or instructions stored in the memory 12, so as to implement related operations performed by the network device in the foregoing method embodiments. For example, implement the method performed by the network device in the embodiment shown in FIG. 2 or FIG. 3 .
  • the present application also provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on the computer, in each method embodiment of the present application, the terminal device or the network device The action performed and/or the process is performed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions. When the computer program codes or instructions are run on the computer, the operations performed by the terminal device or the network device in each method embodiment of the present application and /or the process is executed.
  • the present application also provides a chip, and the chip includes a processor.
  • the memory used to store the computer program is set independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operations and/or processes performed by the terminal device or network device in any method embodiment are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may further include a memory.
  • the present application also provides a communication system, including the terminal device and the network device in the embodiment of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip capable of processing signals.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the processor can be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuits, ASICs), field programmable Gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware coded processor, or executed by a combination of hardware and software modules in the coded processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DRRAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.
  • references to "an embodiment” throughout this specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Thus, the various embodiments throughout the specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • first and second mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance etc.
  • first information and the second information do not indicate the difference in information volume, content, priority or importance.
  • At least one means one or more, and “multiple” means two or more.
  • At least one item or similar expressions refer to one item or multiple items, that is, any combination of these items, including any combination of a single item or plural items.
  • at least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the project.
  • the expression is "the project includes at least one of the following: A, B, ..., and X"
  • the applicable entries for this item can also be obtained according to the aforementioned rules.
  • a and/or B may indicate: A exists alone, and A and B exist simultaneously. B, the case where B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • A/B means: A or B.
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.

Abstract

本申请实施例提供了一种通信方法和通信装置,该方法中,网络设备通过预定义或灵活配置对应于4096QAM的调制编码方式,并指示终端设备在预定义或灵活配置的多个调制编码方式中确定出需要使用的调制编码方式,从而使得信道质量较好的终端能够获得更高的通信效率。

Description

通信方法和通信装置
本申请要求于2021年10月29日提交中国国家知识产权局、申请号为202111274087.8、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,更具体地,涉及一种通信方法和通信装置。
背景技术
无线通信系统中,基站和终端设备之间的距离和/或环境等因素会影响无线信道状态。例如,当基站与终端设备之间距离较近且遮挡物较少时,二者之间的无线信道质量较好;而当基站与终端设备之间距离较远且遮挡物较多时,二者之间的无线信道质量较差。
为了满足不同终端设备的通信需求或匹配不同的无线信道质量,新空口(new radio interface,NR)系统支持多种调制编码方式(modulation coding scheme,MCS)。其中,不同的MCS对应不同的调制阶数和/或编码速率。MCS中的调制技术包括正交相移键控(quadrature phase shift keying,QPSK)调制和正交幅度调制(quadrature amplitude modulation,QAM)。
现有NR系统支持的最高调制阶数为10,即1024QAM。对于信道质量较好的终端,例如,小区中心且移动速度极低的终端,通信效率亟待提高。
发明内容
本申请实施例提供一种通信方法和通信装置,通过预定义或灵活配置4096QAM对应的MCS,使得信道质量较好的终端能够获得更高的通信效率。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备从N个调制编码方式中确定第一调制编码方式,N个调制编码方式中包括至少一个调制阶数为12的调制编码方式,N为正整数;终端设备发送第一信息,第一信息用于指示第一调制编码方式。
上述技术方案中,预定义了N个调制编码方式中包括至少一个用于4096QAM对应MCS,终端设备根据第一信息在N个调制编码方式中确定出第一调制编码方式,实现了在通信系统中使用4096QAM的需求,使得信道质量较好的终端能够获得更高的通信效率。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备接收第一信息,第一信息用于指示第一调制编码方式,第一调制编码方式为N个调制编码方式中的一个,N个调制编码方式中包括至少一个调制阶数为12的调制编码方式,N为正整数;网络设备根据第一调制编码方式接收或发送数据。
上述第一方面或第二方面的技术方案中,预定义了N个调制编码方式中包括至少一个用于4096QAM对应MCS,网络设备通过第一信息指示终端设备在预定义的N个调制编码方式中确定出第一调制编码方式,从而实现了网络设备和终端设备在通信系统中使用4096QAM的需求。
结合第一方面或第二方面,N个调制编码方式中的每个调制编码方式对应一个调制阶数和一个编码速率。
结合第一方面或第二方面,N个调制编码方式中至少一个调制阶数为12的调制编码方式的数量为4或者5或者6。
示例性地,至少一个调制阶数为12的调制编码方式的数量为4,4个调制阶数为12的调制编码方式对应的编码速率分别为829.5/1024,869/1024,908.5/1024,948/1024;或,至少一个调制阶数为12的调制编码方式的数量为5,5个调制阶数为12的调制编码方式对应的编码速率分别为821.5/1024,853/1024,884.5/1024,916.5/1024,948/1024;或,至少一个调制阶数为12的调制编码方式的数量为6,6个调制阶数为12的调制编码方式对应的编码速率分别为816.5/1024,842.5/1024,869/1024,895.5/1024,921.5/1024.948/1024。
在4个调制阶数为12的调制编码方式对应的编码速率分别为829.5/1024,869/1024,908.5/1024,948/1024这种设计方式下,通过仿真验证可以发现,在加性高斯白噪声信道下,调制阶数为10(1024QAM)的调制编码方式(示例的,调制阶数为10的调制编码方式对应的码率分别为805.5/1024、853/1024、900.5/1024、948/1024)对应的10%BLER-SNR的间隔与该4个调制阶数为12的调制编码方式对应的10%BLER-SNR的间隔基本相等,这有利于无线通信系统进行链路自适应。其中,10%BLER-SNR为在块差错率等于10%时对应的信噪比。同时,调制阶数为12的调制编码方式的数量为偶数,简化了信道质量指示表格的设计,可以等间隔的选择MCS表格中调制阶数为12的调制编码方式作为信道质量指示表格中的表项。示例的,可以选择调制阶数为12,编码速率分别为829.5/1024,908.5/1024的2个MCS作为CQI表格中的表项,或者,可以选择调制阶数为12,编码速率分别为869/1024,948/1024的2个MCS作为CQI表格中的表项。
在6个调制阶数为12的调制编码方式对应的编码速率分别为816.5/1024,842.5/1024,869/1024,895.5/1024,921.5/1024,948/1024这种设计方式下,调制阶数为10(1024QAM)的调制编码方式(示例的,调制阶数为10的调制编码方式对应的码率分别为805.5/1024,、853/1024、900.5/1024、948/1024)对应的频谱效率间隔与该6个调制阶数为12的调制编码方式对应的频谱效率间隔基本相等,这有利于无线通信系统进行链路自适应,以克服或者适应当前信道变化带来的影响。同时,调制阶数为12的调制编码方式的数量为偶数,简化了CQI表格的设计,可以等间隔的选择MCS表格中调制阶数为12的调制编码方式作为CQI表格中的表项。示例的,可以选择调制阶数为12,编码速率分别为816.5/1024,869/1024,921.5/1024的3个MCS作为CQI表格中的表项,或者,可以选择调制阶数为12,编码速率分别为842.5/1024,895.5/1024,948/1024的3个MCS作为CQI表格中的表项。
应理解,对于能够使用4096QAM的潜在应用场景,信道质量优良。例如,固定无线接入场景中,CPE设备固定安装,信道变化缓慢且稳定,同时CPE设备配置有多根下行接收天线。因此,该终端被配置低阶调制(如QPSK或16QAM)的可能性低,因此,在N个调制编码方式中可以包含较少的调制阶数低的调制编码方式。
结合第一方面和第二方面,N个调制编码方式中不包括调制阶数为2的调制编码方式。
结合第一方面和第二方面,N个调制编码方式中调制阶数为2的调制编码方式的数量为1。示例性地,调制阶数为2的调制编码方式对应的编码速率为120/1024或193/1024。
结合第一方面和第二方面,N个调制编码方式中不包括调制阶数为4的调制编码方式。
结合第一方面和第二方面,N个调制编码方式中调制阶数为4的调制编码方式的数量为1。示例性地,调制阶数为4的调制编码方式对应的编码速率为378/1024或490/1024。
结合第一方面和第二方面,N个调制编码方式包括第一调制编码方式集合中的至少一个调制编码方式和/或第二调制编码方式集合中的至少一个调制编码方式,第一调制编码方式集合和第二调制编码方式集合中的调制编码方式的最高调制阶数为6或8或10。
第三方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收第一信令,第一信令用于配置N个调制编码方式,N为正整数;终端设备接收第一信息,第一信息用于指示第一调制编码方式,第一调制编码方式为N个调制编码方式中的一个;终端设备根据第一信息,确定第一调制编码方式。
上述技术方案中,上述技术方案中,网络设备可以针对不同终端设备的通信需求,通过第一信令灵活配置N个调制编码方式,避免了预定义的调制编码方式不能匹配终端设备的实际传输情况的问题。
结合第三方面,在第三方面的某些实现方式中,N个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
上述技术方案中,可实现网络设备和终端设备在通信系统中使用4096QAM的需求。
结合第三方面,在第三方面的某些实现方式中,第一信令包括第二信息和第三信息,第二信息用于指示M个调制编码方式,第三信息用于指示L个调制编码方式,M和L为正整数,该方法还包括:终端设备接收第二信令,第二信令用于指示第一调制编码方式集合,其中,第一调制编码方式集合包括L个调制编码方式且不包括M个调制编码方式;终端设备根据第一信息,从N个调制编码方式中确定第一调制编码方式,包括:终端设备根据第一信令、第二信令和第一信息确定第一调制编码方式。
结合第三方面,在第三方面的某些实现方式中,终端设备根据第一信令、第二信令和第一信息确定第一调制编码方式,包括:终端设备根据第一信令和第二信令确定N个调制编码方式,N个调制编码方式包括第一调制编码方式集合中除L个调制编码方式外的调制编码方式和M个调制编码方式根据第一信息,从N个调制编码方式中确定第一调制编码方式。
结合第三方面,在第三方面的某些实现方式中,第一调制编码方式集合为预定义的调制编码方式集合,第一调制编码方式集合中的调制编码方式的最高调制阶数为6或8或10,M个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
结合第三方面,在第三方面的某些实现方式中,N个调制编码方式包括第二调制编码方式集合中的至少一个调制编码方式和/或第三调制编码方式集合中的至少一个调制编码方式。
结合第三方面,在第三方面的某些实现方式中,N个调制编码方式中任意两个相邻的调制编码方式对应的频谱效率的间隔相等,频谱效率为调制编码方式对应调制阶数与编码速率的乘积。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备发送第一信令,第一信令用于配置N个调制编码方式,N为正整数;网络设备发送第一信息,第一信息用于指示N个调制编码方式中的第一调制编码方式。
结合第四方面,在第四方面的某些实现方式中,N个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
结合第四方面,在第四方面的某些实现方式中,第一信令包括第二信息和第三信息,第二信息用于指示M个调制编码方式,第三信息用于指示L个调制编码方式,该方法还包括:网络设备发送第二信令,第二信令用于指示第一调制编码方式集合,其中,第一调制编码方式集合包括L个调制编码方式且不包括M个调制编码方式,M和L为自然数。
结合第四方面,在第四方面的某些实现方式中,第一调制编码方式集合为预定义的调制编码方式集合,第一调制编码方式集合中的调制编码方式的最高调制阶数为6或8或10,M个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
结合第四方面,在第四方面的某些实现方式中,N个调制编码方式包括第二调制编码方式集合中的至少一个调制编码方式和/或第三调制编码方式集合中的至少一个调制编码方式,第二调制编码方式集合和第三调制编码方式集合中的调制编码方式的最高调制阶数不同。
结合第四方面,在第四方面的某些实现方式中,N个调制编码方式中任意两个相邻的调制编码方式对应的频谱效率的间隔相等,频谱效率为调制编码方式对应调制阶数与编码速率的乘积。
第五方面,提供一种通信装置,该装置用于执行上述第一方面或第二方面提供的方法。具体地,该装置可以包括用于执行第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供一种通信装置,该装置用于执行上述第三方面或第四方面提供的方法。 具体地,该装置可以包括用于执行第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第七方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置为终端设备。
在另一种实现方式中,该装置为用于终端设备中的芯片、芯片系统或电路。
第八方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置为网络设备。
在另一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。
第九方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面或第三方面或第四方面以及第一方面或第二方面或第三方面或第四方面中任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面或第四方面以及第一方面或第二方面或第三方面或第四方面中任一种可能实现方式中的方法。
第十二方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第二方面或第三方面或第四方面以及第一方面或第二方面或第三方面或第四方面中任一种可能实现方式中的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第二方面或第三方面或第四方面以及第一方面或第二方面或第三方面或第四方面中任一种可能实现方式中的方法。
第十三方面,提供一种通信系统,该通信系统包括第七方面以及第八方面所示的通信 装置。
附图说明
图1是本申请实施例提供的一种通信系统的示意图。
图2是本申请提出的一种通信方法的示意性流程图。
图3是本申请提出的另一种通信方法的示意性流程图。
图4是本申请提供的通信装置1000的示意性框图。
图5为本申请提供的通信装置10的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如,第五代(5th generation,5G),新无线(new radio,NR),长期演进(long term evolution,LTE),物联网(internet of things,IoT),无线保真(wireless-fidelity,WiFi),第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的无线通信,或未来可能出现的其他无线通信等。
图1是本申请实施例提供的一种通信系统示意图。该通信系统中包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120和/或终端设备130。该网络设备110与终端设备120/130可通过无线链路通信,进而交互信息。可以理解的是,网络设备和终端设备也可以被称为通信设备。
网络设备是一种具有无线收发功能的网络侧设备。网络设备可以是无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,称为RAN设备。例如,该网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、3GPP后续演进的基站、发送接收点(transmission reception point,TRP)、WiFi系统中的接入节点、无线中继节点、无线回传节点等。在采用不同的无线接入技术(radio access technology,RAT)的通信系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。网络设备可以包含一个或多个共站址或非共站址的发送接收点。再如,网络设备可以包括一个或多个集中式单元(central unit,CU)、一个或多个分布式单元(distributed unit,DU)、或一个或多个CU和一个或多个DU。示例性地,CU的功能可以由一个实体或者不同的实体来实现。例如,CU的功能进行进一步切分,即将控制面和用户面分离并通过不同实体来实现,分别为控制面CU实体(即CU-CP实体)和用户面CU实体(即CU-UP实体),CU-CP实体和CU-UP实体可以与DU相耦合,共同完成接入网设备的功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。这样可以通过多个网络功能实体来实现无线接入网设备的部分功能。这些网路功能实体可以是硬件设备中的网络元 件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。网络设备还可以包括有源天线单元(active antenna unit,简称AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。又如,车到一切(vehicle to everything,V2X)技术中,接入网设备可以为路侧单元(road side unit,RSU)。通信系统中的多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以网络设备为例,描述技术方案。
终端设备是一种具有无线收发功能的用户侧设备,可以是固定设备,移动设备、手持设备(例如手机)、可穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。终端设备用于连接人,物,机器等,可广泛用于各种场景,例如:蜂窝通信、设备到设备(device-to-device,D2D)通信、V2X通信中的、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)通信、物联网、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景。示例性的,终端设备可以是蜂窝通信中的手持终端,D2D中的通信设备,MTC中的物联设备,智能交通和智慧城市中的监控摄像头,或,无人机上的通信设备等。终端设备有时可称为用户设备(user equipment,UE)、用户终端、用户装置、用户单元、用户站、终端、接入终端、接入站、UE站、远方站、移动设备或无线通信设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。为描述方便,本申请中以终端设备为例进行说明。
如上所述,NR系统支持多种调制编码方式(modulation coding scheme,MCS),不同的MCS对应不同的调制阶数和/或编码速率。在一定的编码速率的条件下,调制阶数越大,则通信的频谱效率越高。MCS从技术类型维度包括正交相移键控(quadrature phase shift keying,QPSK)调制和正交幅度调制(quadrature amplitude modulation,QAM),对于QAM技术按调制阶数的不同又可以包括16QAM、64QAM、256QAM和1024QAM等调制方式。对于信道质量较好的终端设备,网络设备往往采用相对高阶的调制方式,如64QAM或256QAM向终端设备发送下行信号,或者终端设备采用相对高阶的调制方式发送上行信号,以获得更高的通信效率。对于信道质量较差的终端设备,网络设备则采用相对低阶的调制方式,如QPSK或16QAM向终端发送下行信号,以保证通信的可靠性。 MCS除包含调制阶数外,还包括编码速率,编码速率为大于0,小于等于1的小数或分数,如1/2、2/3等。编码速率越低表示增加的冗余比特越多,通信的可靠性就越高,但通信的频谱效率就越低。因此,对于信道质量较好的终端设备,网络设备常采用较高的编码速率,以保持较高的通信效率;而对于信道质量较差的终端设备,网络设备则采用相对更低编码速率,以保证较高的通信可靠性。
需要说明的是,QPSK、16QAM、64QAM、256QAM、1024QAM和4096QAM对应的调制阶数分别为2、4、6、8、10、12。
在一种技术中,网络设备指示MCS的方式为,预定义了4张MCS表格,网络设备通过高层参数(例如:MCS-table),指示终端设备使用哪张预定义的MCS表格,之后通过下行控制信息(downlink control information,DCI)中的MCS指示字段指示所使用的MCS在该MCS表格中的索引。示例的,预定义的4张MCS表格如表1至表4所示,表1为最高调制阶数为6的高频谱效率MCS表格,表2为最高调制阶数为8的MCS表格,表3为最高调制阶数为6的低频谱效率MCS表格,表4为最高调制阶数为10的MCS表格。示例的,当高层参数MCS-table被配置为‘qam256’时,即网络设备指示终端设备使用表2。
应理解,本申请所有表格中编码速率的实际取值为表中的编码速率的数值除以1024的取值,例如:表1中索引为23的调制编码方式对应的编码速率的实际取值为719/1024。
还应理解,本申请所有表格中的一个调制编码方式对应的频谱效率为该调制编码方式对应调制阶数与编码速率的乘积,或者,一个调制编码方式的频谱效率为该调制编码方式对应调制阶数与编码速率的乘积的近似值,该近似值可以理解为对调制阶数与编码速率的乘积保留S位小数后的结果,S为自然数。例如:调制阶数为2的调制编码方式#1对应的编码速率为120/1024,则调制编码方式#1的频谱效率可以为2*(120/1024),或者,调制编码方式#1的频谱效率可以为2*(120/1024)的近似值,例如2*(120/1024)保留四位小数后得到的近似值0.2344。
表1
Figure PCTCN2022126322-appb-000001
Figure PCTCN2022126322-appb-000002
表2
Figure PCTCN2022126322-appb-000003
Figure PCTCN2022126322-appb-000004
表3
Figure PCTCN2022126322-appb-000005
Figure PCTCN2022126322-appb-000006
表4
Figure PCTCN2022126322-appb-000007
Figure PCTCN2022126322-appb-000008
可以看到,以上表格中有一些保留位,该保留位用于重传。若初次传输失败,则在重新传输时,网络设备会指示终端设备重新传输的调制编码方式,重新传输的调制编码方式的索引可以小于或等于初次传输的调制编码方式的索引(或者说,重新传输的调制编码方式的频谱效率可以小于或等于初次传输的调制编码方式的频谱效率),或者,重新传输的调制编码方式可以为MCS表格中的保留位,该保留位的调制编码方式仅对应一个调制阶数。示例的,当网络设备仅向终端指示调制阶数时,终端设备发送或者接收的数据仍为上次信道编码后产生的数据,这样无需再次进行信道编码,降低了传输时延和能量损耗。
在固定无线接入(fixed wireless access,FWA)场景中,客户前置设备(customer premise equipment,CPE)设备通常配置多根接收天线,因此,信道质量相较于传统的移动接入用户(如手机用户)更加优良,可以使用4096QAM,以进一步提高频谱效率。但是现有NR系统中,已经标准化的MCS的最高调制阶数为10,即1024QAM,对于4096QAM,现有标准中没有定义和标准化其对应的MCS。
有鉴于此,本申请提出一种通信方法,能够实现在通信系统中使用4096QAM进行通信,使得信道质量较好的终端能够获得更高的通信效率。下面对本申请提出的通信方法进行详细描述。
参见图2,图2是本申请提出的一种通信方法的示意性流程图。为了便于描述,下面以终端设备和网络设备交互为例进行说明。
S201,网络设备从N个调制编码方式中确定第一调制编码方式,N个调制编码方式中的至少一个调制编码方式对应的调制阶数为12,其中,N为正整数。
可选地,一个调制编码方式对应一个调制阶数和一个编码速率。
可选地,N个调制编码方式中调制阶数为12的调制编码方式的个数为X,X≤N且X为正整数,例如:X=4或者5或者6。
可选地,X个调制阶数为12的调制编码方式对应的编码速率可能为以下取值中的任意X个:790/1024,821.5/1024,853/1024,884.5/1024,916.5/1024,829.5/1024,869/1024,908.5/1024,816.5/1024,842.5/1024,869/1024,895.5/1024,921.5/1024,948/1024,本申请不作具体限定。
可选地,X=4,4个调制编码方式对应的编码速率分别为829.5/1024,869/1024,908.5/1024,948/1024。在此种设计方式下,通过仿真验证可以发现,在加性高斯白噪声(additive white gaussian noise,AWGN)信道下,调制阶数为10(1024QAM)的调制编码方式(示例的,调制阶数为10的调制编码方式对应的码率分别为805.5/1024、853/1024、900.5/1024、948/1024)对应的10%BLER-SNR的间隔与该4个调制阶数为12的调制编码 方式对应的10%BLER-SNR的间隔基本相等,这有利于无线通信系统进行链路自适应。其中,10%BLER-SNR为在块差错率(block error rate,BLER)等于10%时对应的信噪比(signal to noise ratio,SNR)。同时,调制阶数为12的调制编码方式的数量为偶数,简化了信道质量指示(channel quantity indicator,CQI)表格的设计,可以等间隔的选择MCS表格中调制阶数为12的调制编码方式作为信道质量指示表格中的表项。示例的,可以选择调制阶数为12,编码速率分别为829.5/1024,908.5/1024的2个MCS作为CQI表格中的表项,或者,可以选择调制阶数为12,编码速率分别为869/1024,948/1024的2个MCS作为CQI表格中的表项。
可选地,X=5,5个调制编码方式对应的编码速率分别为821.5/1024,853/1024,884.5/1024,916.5/1024,948/1024。
可选地,X=6,6个调制编码方式对应的编码速率分别为816.5/1024,842.5/1024,869/1024,895.5/1024,921.5/1024,948/1024。在此种设计方式下,调制阶数为10(1024QAM)的调制编码方式(示例的,调制阶数为10的调制编码方式对应的码率分别为805.5/1024,、853/1024、900.5/1024、948/1024)对应的频谱效率间隔与该6个调制阶数为12的调制编码方式对应的频谱效率间隔基本相等,这有利于无线通信系统进行链路自适应,以克服或者适应当前信道变化带来的影响。同时,调制阶数为12的调制编码方式的数量为偶数,简化了CQI表格的设计,可以等间隔的选择MCS表格中调制阶数为12的调制编码方式作为CQI表格中的表项。示例的,可以选择调制阶数为12,编码速率分别为816.5/1024,869/1024,921.5/1024的3个MCS作为CQI表格中的表项,或者,可以选择调制阶数为12,编码速率分别为842.5/1024,895.5/1024,948/1024的3个MCS作为CQI表格中的表项。
可选地,N个调制编码方式中还可以包括调制阶数为2、4、6、10等数值对应的调制编码方式的一个或多个。
可选地,N个调制编码方式中不包括调制阶数为2的调制编码方式,或,N个调制编码方式中调制阶数为2的调制编码方式的数量为1。
可选地,当N个调制编码方式中调制阶数为2的调制编码方式的数量为1时,该调制阶数为2的调制编码方式对应的编码速率为120/1024,频谱效率为0.2344,或者,该调制阶数为2的调制编码方式对应的编码速率为193/1024,频谱效率为0.3770。
可选地,N个调制编码方式中不包括调制阶数为4的调制编码方式,或,N个调制编码方式中调制阶数为4的调制编码方式的数量为1。
可选地,当N个调制编码方式中调制阶数为4的调制编码方式的数量为1时,该调制阶数为4的调制编码方式对应的编码速率为378/1024,频谱效率为1.4766,或者,该调制阶数为4的调制编码方式对应的编码速率为490/1024,频谱效率为1.9141。
应理解,对于能够使用4096QAM的用户来说,其信道质量优良,例如:在4096QAM的潜在应用场景——固定无线接入场景中,CPE设备固定安装,信道变化缓慢且稳定,同时CPE设备配置有多根下行接收天线,使用低阶调制(如QPSK或16QAM)的可能性低,因此,在N个调制编码方式中可以包含较少的调制阶数低的调制编码方式。在一种具体的实现方式中,N个调制编码方式对应一个MCS表格,下面举例说明N个调制编码方式可能对应的MCS表格。
表5为N(N=32)个调制编码方式对应的MCS表格的一种可能的示例。N个调制编码方式中包括1个调制阶数为2的调制编码方式,1个调制阶数为4的调制编码方式以及4个调制阶数为12的调制编码方式,调制阶数为12的调制编码方式对应的编码速率分别为829.5/1024,869/1024,908.5/1024,948/1024。
作为示例,本申请所有表格的MCS索引按照调制阶数从小到大排列,对应于同一调制阶数的调制编码方式按照编码速率从小到大排列。
表5
Figure PCTCN2022126322-appb-000009
Figure PCTCN2022126322-appb-000010
示例的,表5与现有已标准化的MCS表格包含的索引个数相同,共包括32个索引,索引26至31分别为调制阶数为2、4、6、8、10、12的调制编码方式的保留位。也就是说,N个调制编码方式中的一些调制编码方式可以只对应一个调制阶数。
表6为N(N=32)个调制编码方式对应的MCS表格的另一种可能的示例。N个调制编码方式中包括1个调制阶数为2的调制编码方式,1个调制阶数为4的调制编码方式以及5个调制阶数为12的调制编码方式,其中,调制阶数为12的调制编码方式对应的编码速率分别为821.5/1024,853/1024,884.5/1024,916.5/1024,948/1024。
表6
Figure PCTCN2022126322-appb-000011
Figure PCTCN2022126322-appb-000012
表7为N(N=32)个调制编码方式对应的MCS表格的又一种可能的示例。N个调制编码方式中包括1个调制阶数为2的调制编码方式,1个调制阶数为4的调制编码方式以及6个调制阶数为12的调制编码方式,其中,调制阶数为12的调制编码方式对应的编码速率分别为816.5/1024,842.5/1024,869/1024,895.5/1024,921.5/1024.948/1024。
表7
Figure PCTCN2022126322-appb-000013
Figure PCTCN2022126322-appb-000014
表8为N(N=32)个调制编码方式对应的MCS表格的又一种可能的示例。N个调制编码方式中不包括调制阶数为2的调制编码方式,包括1个调制阶数为4的调制编码方式以及4个调制阶数为12的调制编码方式,其中,调制阶数为12的调制编码方式对应的编码速率分别为829.5/1024,869/1024,908.5/1024,948/1024。
表8
Figure PCTCN2022126322-appb-000015
Figure PCTCN2022126322-appb-000016
可选地,上述可能的MCS表格中也可以不包括调制阶数为2的保留位和/或调制阶数为4的保留位。原因如下,考虑到对于配置了包括4096QAM的MCS表格的终端设备,其信道质量通常较好,因而在初次传输时,基站通常会选择调制阶数较高的调制编码方式,因而,在重新传输时,网络设备应不会指示MCS表格中对应的调制阶数较低的保留位。原因是重新传输时,若网络设备指示的保留位是MCS表格中调制阶数较低的保留位,则可能会造成实际传输的编码速率高于最高编码速率限制,或者,即使实际传输编码速率未超过最高码率限制,但是由于编码速率比较高,导致传输性能受损。示例的,若初次传输时网络设备指示使用调制阶数为6且编码速率为466/1024的调制编码方式时,网络设备不会指示终端设备使用调制阶数为2的保留位,因为在这种情况下,调制阶数为2的保留位对应的编码速率会超过了最高调制编码速率0.95的限制。示例的,如表9所示,MCS表格中也可以不包括调制阶数为2的保留位。
表9
Figure PCTCN2022126322-appb-000017
Figure PCTCN2022126322-appb-000018
可选地,本申请中示例的MCS表格也可以与现有已标准化的MCS表格包含的索引个数不相同,例如:MCS表格中也可以包括64个MCS。
可选的,N个调制编码方式中不包括调制阶数为10且编码速率为948/1024的调制编码方式,且包括调制阶数为12且编码速率为790/1024的调制编码方式。作为示例,可以将表4至表8中的调制阶数为10且编码速率为948/1024的调制编码方式,替换为调制阶数为12且编码速率为790/1024,这里不再给出具体的表格。仅简单示例说明,当X=6时,6个调制阶数为12的调制编码方式对应的编码速率分别为790/1024,821.5/1024,853/1024,884.5/1024,916.5/1024,948/1024。应理解,在此种设计方式下,调制阶数为12和调制阶数为10的所有调制编码方式之间可以保证相近的频谱效率间隔,有利于进行链路自适应,避免信道状态变化带来的影响。同时,调制阶数为12的调制编码方式的数量为偶数,简化了CQI表格的设计,可以等间隔的选择MCS表格中调制阶数为12的调制编码方式作为CQI表格中的表项。示例的,可以选择调制阶数为12,编码速率分别为790/1024,853/1024,916.5/1024的3个MCS作为CQI表格中的表项,或者,可以选择调制阶数为12,编码速率分别为821.5/1024,884.5/1024,948/1024的3个MCS作为CQI表格中的表项。
可以理解,将调制阶数为10且编码速率为948/1024的调制编码方式,替换为调制阶数为12且编码速率为790/1024的原因如下:在现有NR系统中,实际用于传输某些信号的开销与计算传输块大小时的等效开销会出现不匹配的情况,导致实际编码速率会大于网络设备指示的调制编码方式对应的编码速率,对于调制阶数为10且编码速率为948/1024的调制编码方式而言,由于其编码速率本身就很高,这种编码速率的提升会导致其性能急速下降,可能会超过最高编码速率的限制,因而,在设计MCS表格时,考虑使用频谱效率近相当但码率更低的调制阶数为12且等效码率为790/1024的调制编码方式。
可选地,N个调制编码方式中的部分调制编码方式可以是网络设备从现有已经标准化的4张预定义MCS表格中的一个或多个表格中选取的,其中,现有已经标准化的4张预 定义MCS表格中的调制编码方式的最高调制阶数为6或8或10。
应理解,以上示例仅是示意性的给出4096QAM对应的MCS表格的几种可能的设计方式,并不对本申请构成任何限定。
S202,网络设备向终端设备发送第一信息,第一信息用于指示第一调制编码方式。
对应的,终端设备接收第一信息。
为便于理解,这里以N个调制编码方式对应表5为例进行说明。
可选地,第一信息指示第一调制编码方式在表5中的MSC索引。
可选地,第一信息为DCI中的MCS指示字段。
可选的,如果网络设备没有向终端设备指示具体使用哪个MCS表格,那么可以理解为表5为网络设备和终端设备默认的一个预定义MCS表格,即终端设备在网络设备未指示具体使用哪张MCS表格的情况下,根据第一指示信息从默认的表5中确定第一调制编码方式。示例的,网络设备没有指示终端设备使用最高调制阶数为6或8或10的MCS表格,则终端设备使用默认的一个4096QAM的MCS表格,如表5。
可选地,网络设备也可以向终端设备指示一个具体的MSC表格,那么,在S202之前,该方法还包括:网络设备向终端设备发送第一信令,第一信令用于指示MCS表格#1。示例的,高层参数指示终端设备使用4096QAM的MCS表格,即最高调制阶数为12的MCS表格,如高层参数MCS-table被配置为‘qam4096’,则终端设备使用4096QAM的MCS表格,如表5。
对应的,终端设备接收第一信令,确定使用表5,之后,终端设备再根据第一信息从表5中确定出第一调制编码方式。
S203,终端设备根据第一调制编码方式接收或发送数据。
可以理解,图2对应的实施例预定义了用于4096QAM的MCS表格,实现了在通信系统中使用4096QAM的需求,使得信道质量较好的终端能够获得更高的通信效率。
可以看出,上述预定义的4096QAM的MCS表格仅能包括固定的表项,并且受限于MCS表格的固定大小,如MCS表格仅包括32个表项,由于通信环境复杂多变,预定义的表格对于引入高阶调制(如4096QAM)后的无线通信系统已经不再足够,并且,大大约束了终端设备所能使用的调制编码方式的灵活性,有鉴于此,本申请提出了一种灵活配置MCS的方式。
参见图3,图3是本申请提出的另一种通信方法的示意性流程图。
S301,网络设备向终端设备发送第一信令,第一信令用于配置N个调制编码方式,N为正整数。
对应的,终端设备接收第一信令,确定第一信令配置的N个调制编码方式。可选地,N个调制编码方式中包括至少一个调制阶数为12的调制编码方式。也就是说,网络设备可以通过第一信令灵活的配置N个调制编码方式,N个调制编码方式中可以包括一个或多个调制阶数为12的调制编码方式。示例的,网络设备配置N个调制编码方式中可以仅包括一个调制阶数为12的调制编码方式,该调制编码方式的编码速率可以为816.5/1024;网络设备配置N个调制编码方式中可以包括两个调制阶数为12的调制编码方式,两个调制编码方式的编码速率可以分别为816.5/1024,842.5/1024。
可以理解,N个调制编码方式是网络设备根据终端设备与网络设备之间的信道质量灵 活配置的。例如:对于信道质量较好的终端设备,网络设备可以配置较多的相对高阶的调制方式,如1024QAM或4086QAM向终端设备发送下行信号,或者终端设备采用相对高阶的调制方式发送上行信号,以获得更高的通信效率。对于信道质量较差的终端设备,网络设备则可以配置较多的相对低阶的调制方式,如QPSK或16QAM向终端发送下行信号,以保证通信的可靠性。
在一种实现方式中,第一信令包括第二信息和第三信息,第二信息用于指示M个调制编码方式,第三信息用于指示L个调制编码方式,M和L为正整数,其中,M个调制编码方式为在第一调制编码方式集合中新增的调制编码方式,L个调制编码方式为在第一调制编码方式集合中减少的或者被不被使用的调制编码方式,那么,可以理解,网络设备通过第一信令所配置的N个调制编码方式包括第一调制编码方式集合中除L个调制编码方式外的调制编码方式和M个调制编码方式。
可选地,第一调制编码方式集合为网络设备通过第二信令指示给终端设备的调制编码方式集合。
可选地,第一调制编码方式集合为调制编码方式的最高调制阶数为6或8或10的预定义的MCS表格。示例的,第一调制编码方式集合可以为表1至表4所示的MCS表格中的任意一个。
可选地,第一调制编码方式集合为图2对应的实施例中预定义的4096QAM的MCS表格中的任意一个。
可选地,第一信令和第二信令可以包含在同一信令中同时发送,也可以不同时发送,本申请对此不作具体限定。
下面对第一信令灵活配置N个调制编码方式进行举例说明。
第一调制编码方式集合如表10所示,第一调制编码方式集合中的调制编码方式的最高调制阶数为10,第一信令中的第二信息指示在第一调制编码方式中新增的4个调制编码方式,新增的4个调制编码方式如表11所示,第一信令中的第三信息指示禁止使用第一调制编码方式集合中索引为1、2、4、5、7的5个调制编码方式,则第一信令配置的N个调制编码方式如表12所示。
表10
Figure PCTCN2022126322-appb-000019
Figure PCTCN2022126322-appb-000020
表11
Figure PCTCN2022126322-appb-000021
表12
Figure PCTCN2022126322-appb-000022
Figure PCTCN2022126322-appb-000023
在另一种实现方式中,第一信令配置的N个调制编码方式包括第二调制编码方式集合中的至少一个调制编码方式和/或第三调制编码方式集合中的至少一个调制编码方式。其中,第二调制编码方式集合可以理解为调制编码方式的最高调制阶数为6或8或10的预定义的MCS表格中的一个或多个表格。示例的,第一调制编码方式集合为表1至表4所示的MCS表格中的任意一个。第三调制编码方式集合可以理解为预定义的4096QAM的MCS表格中的一个或多个表格。例如:第一信令指示的N个调制编码方式可以包含于第二调制编码方式集合,或者,N个调制编码方式可以包含于第三调制编码方式集合,或者,N个调制编码方式中的一部分包括在第二调制编码方式集合,另一部分包括在第三调制编码方式集合中。
一种具体实现方式,网络设备可以通过第一信令配置N个调制编码方式在对应的第二调制编码方式集合或第三调制编码方式集合中的MCS索引。例如:第一信令指示上文中表5的MCS索引#3、#4,表6的MCS索引#7、#8,表7的MCS索引#10、#11,表8的MCS索引#23、#24,即第一信令配置了以上8个调制编码方式。
在又一种实现方式中,第一信令配置N个调制编码方式,其中,第一信令包括一个或 多个第四信息,每个第四信息用于指示一个或多个调制编码方式,每个第四信息指示的一个或多个调制编码方式对应的调制阶数相同且对应的编码速率不相同。
可选的,第四信息指示一个或多个调制编码方式对应的调制阶数,以及,一个或多个调制编码方式分别对应的编码速率。
举例说明,第一信令包括信息#1至信息#3,其中,信息#1指示4个调制编码方式,4个调制编码方式的调制阶数为8且编码速率分别为797/1024、841/1024、885/1024、916.5/1024;信息#2指示4个调制编码方式,4个调制编码方式对应的调制阶数都为10且编码速率分别为790/1024、805.5/1024、853/1024、900.5/1024,信息#3指示5个调制编码方式,5个调制编码方式的调制阶数为12且编码速率分别为790/1024、805.5/1024、853/1024、900.5/1024、948/1024。
示例的,第四信息可以通过以下方式指示一个或多个调制编码方式分别对应的编码速率:
可选方式一:第四信息可以包括一个或多个子信息,一个或多个子信息与第四信息指示的一个或多个调制编码方式一一对应,每个子信息通过指示编码速率索引的方式来指示一个或多个编码速率。其中,编码速率索引为该子信息对应的调制编码方式的编码速率在编码速率集合中的索引。该编码速率集合可以为预先定义的。示例的,编码速率集合如下表13所示,当子信息指示编码速率索引0、3、6、9时,即指示该子信息对应的4个调制编码方式对应的编码速率分别为0.5、0.125、0.2、0.275。
表13
编码速率索引 编码速率
0 0.5
1 0.75
2 0.1
3 0.125
4 0.15
5 0.175
6 0.2
7 0.225
8 0.25
9 0.275
10 0.3
11 0.325
12 0.35
13 0.375
14 0.4
15 0.425
16 0.45
17 0.475
18 0.5
19 0.525
20 0.55
21 0.575
22 0.6
23 0.625
24 0.65
25 0.675
26 0.7
27 0.725
28 0.75
29 0.775
30 0.8
31 0.825
32 0.85
33 0.875
34 0.9
35 0.925
可选方式二:第四信息可以包括一个或多个子信息,一个或多个子信息与第四信息指示的一个或多个调制编码方式一一对应,每个子信息通过10比特(bit)表示一个编码速率。示例:第四信息可以包括子信息#1和子信息#2,两个子信息都为10bit,其中,子信息#1通过10bit指示900,子信息#1通过10bit指示948,即两个子信息指示了两个码率速率900/1024和948/1024。
可选地,本申请中预定义或灵活配置的N个调制编码方式中任意两个相邻的调制编码方式对应的频谱效率的间隔相等,其中,N个调制编码方式按照调制阶数从小到大排列,对应于同一调制阶数的调制编码方式按照编码速率从小到大排列,排列顺序反之亦可,即N个调制编码方式按照调制阶数从大到小排列,对应于同一调制阶数的调制编码方式按照编码速率从大到小排列,本申请对此不作具体限定。
S302,网络设备向终端设备发送第一信息,第一信息用于指示第一调制编码方式,第一调制编码方式为N个调制编码方式中的一个。
对应的,终端设备接收第一信息。
S303,终端设备根据第一信息,从N个调制编码方式中确定出第一调制编码方式。
之后,终端设备根据第一调制编码方式接收或发送数据。
可以看出,上述技术方案中,网络设备可以针对不同终端设备的通信质量,通过第一信令灵活配置MCS表格,避免了预定义的MCS表格不能匹配终端设备的实际传输情况的问题。
以上对本申请提供的通信方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图4,图4是本申请提供的通信装置1000的示意性框图。
在一种可能的设计中,通信装置1000包括接收单元1100、处理单元1200。该通信装置1000可实现对应于上文方法实施例中终端设备执行的步骤或者流程,例如,该通信装置1000可以为终端设备,或者也可以为配置终端设备中的芯片或电路。接收单元1100用于执行上文方法实施例中终端设备的接收相关操作,处理单元1200用于执行上文方法实施例中终端设备的处理相关操作。
一种可能的实现方式,接收单元1100,用于接收第一信息,该第一信息用于指示第一调制编码方式,该第一调制编码方式为该N个调制编码方式中的一个,该N个调制编码方式中包括至少一个调制阶数为12的调制编码方式,所述N为正整数;处理单元1200,用于根据所述第一调制编码方式接收或发送数据。其中,该N个调制编码方式和该第一信息可以参见上述图2对应的实施例中的描述,在此不再赘述。
另一种可能的实现方式,接收单元1100,用于接收第一信令,第一信令用于配置N个调制编码方式,N为正整数;接收单元1100,还用于接收第一信息,第一信息用于指示第一调制编码方式,第一调制编码方式为N个调制编码方式中的一个;处理单元1200,用于根据第一信息,确定第一调制编码方式。其中,该N个调制编码方式、第一信令和该第一信息可以参见上述图3对应的实施例中的描述,在此不再赘述。
可选地,第一信令包括第二信息和第三信息,第二信息用于指示M个调制编码方式,第三信息用于指示L个调制编码方式,M和L为正整数,接收单元1200,还用于接收第二信令,第二信令用于指示第一调制编码方式集合,其中,第一调制编码方式集合包括L个调制编码方式且不包括M个调制编码方式;处理单元1200,具体用于根据第一信令、第二信令和第一信息确定第一调制编码方式。
可选地,处理单元1200,具体用于根据第一信令和第二信令确定N个调制编码方式,N个调制编码方式包括第一调制编码方式集合中除L个调制编码方式外的调制编码方式和M个调制编码方式根据第一信息,从N个调制编码方式中确定第一调制编码方式。
可选地,通信装置1000还包括发送单元1300。发送单元1300和接收单元1100也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选的,在通信装置1000为方法实施例中的终端设备这种实现方式中,发送单元1300可以为发射器,接收单元1100可以为接收器。接收器和发射器也可以集成为一个收发器。处理单元1200可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由终端设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如,处理装置可以芯片或集成电路。
可选地,在通信装置1000为安装在终端设备中的芯片或集成电路这种实现方式中,发送单元1300和接收单元1100可以为通信接口或者接口电路,例如,发送单元1300为输出接口或输出电路,接收单元1100为输入接口或输入电路。处理单元1200可以为该芯片或集成电路上集成的处理器或者微处理器。在此不做限定。
在另一种可能的设计中,通信装置1000包括处理单元1200和发送单元1300。该通 信装置1000可实现对应于上文方法实施例中网络设备执行的步骤或者流程,例如,该通信装置1000可以为网络设备,或者也可以为配置网络设备中的芯片或电路。发送单元1300用于执行上文方法实施例中网络设备的接收相关操作,处理单元1200用于执行上文方法实施例中网络设备的处理相关操作。
一种可能的实现方式,处理单元1200,用于从N个调制编码方式中确定第一调制编码方式,所述N个调制编码方式中包括至少一个调制阶数为12的调制编码方式,所述N为正整数;发送单元1300,用于发送第一信息,所述第一信息用于指示所述第一调制编码方式。其中,该N个调制编码方式和该第一信息可以参见上述图2对应的实施例中的描述,在此不再赘述。
可选地,通信装置1000还可以包括处理单元1200,发送单元1300和接收单元1100也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
另一种可能的实现方式,发送单元1300,用于发送第一信令,所述第一信令用于配置N个调制编码方式,N为正整数;发送单元1300,还用于发送第一信息,所述第一信息用于指示所述N个调制编码方式中的第一调制编码方式。其中,该N个调制编码方式、该第一信令和该第一信息可以参见上述图3对应的实施例中的描述,在此不再赘述。
可选地,所述第一信令包括第二信息和第三信息,所述第二信息用于指示M个调制编码方式,所述第三信息用于指示L个调制编码方式,发送单元1300,还用于发送第二信令,所述第二信令用于指示第一调制编码方式集合,其中,所述第一调制编码方式集合包括所述L个调制编码方式且不包括所述M个调制编码方式,M和L为自然数。
可选地,通信装置1000还包括接收单元1100。发送单元1300和接收单元1100也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选的,在通信装置1000为方法实施例中的网络设备这种实现方式中,发送单元1300可以为发射器,接收单元1100可以为接收器。接收器和发射器也可以集成为一个收发器。处理单元1200可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由网络设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如,处理装置可以为芯片或集成电路。
可选地,在通信装置1000为安装在网络设备中的芯片或集成电路这种实现方式中,发送单元1300和接收单元1100可以为通信接口或者接口电路。例如,发送单元1300为输出接口或输出电路,接收单元1100为输入接口或输入电路。处理单元1200可以为该芯片或集成电路上集成的处理器或者微处理器。在此不做限定。
参见图5,图5是本申请提供的通信装置10的示意性结构图。该装置10包括处理器11,处理器11与存储器12耦合,存储器12用于存储计算机程序或指令和/或数据,处理器11用于执行存储器12存储的计算机程序或指令,或读取存储器12存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器11为一个或多个。
可选地,存储器12为一个或多个。
可选地,该存储器12与该处理器11集成在一起,或者分离设置。
可选地,如图5所示,该装置10还包括收发器13,收发器13用于信号的接收和/或发送。例如,处理器11用于控制收发器13进行信号的接收和/或发送。
作为一种方案,该装置10用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器11用于执行存储器12存储的计算机程序或指令,以实现上文各个方法实施例中由终端设备执行的相关操作。例如,实现图2或图3所示实施例中的终端设备执行的方法。
作为另一种方案,该装置10用于实现上文各个方法实施例中由网络设备执行的操作。
例如,处理器11用于执行存储器12存储的计算机程序或指令,以实现上文各个方法实施例中由网络设备执行的相关操作。例如,实现图2或图3所示实施例中的网络设备执行的方法。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备或网络设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备或网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备或网络设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括存储器。
此外,本申请还提供一种通信系统,包括本申请实施例中的终端设备和网络设备。
应理解,本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。 易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例 中。
还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息并不表示信息量大小、内容、优先级或者重要程度等的不同。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一项(个)”或其类似表达,是指一项(个)或多项(个),即这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c。
还应理解,本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    从N个调制编码方式中确定第一调制编码方式,所述N个调制编码方式中包括至少一个调制阶数为12的调制编码方式,所述N为正整数;
    发送第一信息,所述第一信息用于指示所述第一调制编码方式。
  2. 一种通信方法,其特征在于,包括:
    接收第一信息,所述第一信息用于指示第一调制编码方式,所述第一调制编码方式为所述N个调制编码方式中的一个,所述N个调制编码方式中包括至少一个调制阶数为12的调制编码方式,所述N为正整数;
    根据所述第一调制编码方式接收或发送数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个调制编码方式中的每个调制编码方式对应一个调制阶数和一个编码速率。
  4. 根据权利要求3所述的方法,其特征在于,所述N个调制编码方式中不包括调制阶数为2的调制编码方式,或,所述N个调制编码方式中调制阶数为2的调制编码方式的数量为1。
  5. 根据权利要求4所述的方法,其特征在于,所述N个调制编码方式中调制阶数为2的调制编码方式的数量为1,所述调制阶数为2的调制编码方式对应的编码速率为120/1024或193/1024。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述N个调制编码方式中不包括调制阶数为4的调制编码方式,或,所述N个调制编码方式中调制阶数为4的调制编码方式的数量为1。
  7. 根据权利要求6所述的方法,其特征在于,所述N个调制编码方式中调制阶数为4的调制编码方式的数量为1,所述调制阶数为4的调制编码方式对应的编码速率为378/1024或490/1024。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述N个调制编码方式中所述至少一个调制阶数为12的调制编码方式的数量为4或者5或者6。
  9. 根据权利要求8所述的方法,其特征在于,
    所述至少一个调制阶数为12的调制编码方式的数量为4,4个调制阶数为12的调制编码方式对应的编码速率分别为829.5/1024,869/1024,908.5/1024,948/1024;或
    所述至少一个调制阶数为12的调制编码方式的数量为5,5个调制阶数为12的调制编码方式对应的编码速率分别为821.5/1024,853/1024,884.5/1024,916.5/1024,948/1024;或
    所述至少一个调制阶数为12的调制编码方式的数量为6,6个调制阶数为12的调制编码方式对应的编码速率分别为816.5/1024,842.5/1024,869/1024,895.5/1024,921.5/1024.948/1024。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述N个调制编码方式包括第一调制编码方式集合中的至少一个调制编码方式和/或第二调制编码方式集合中的 至少一个调制编码方式,所述第一调制编码方式集合和所述第二调制编码方式集合中的调制编码方式的最高调制阶数为6或8或10。
  11. 一种通信方法,其特征在于,包括:
    接收第一信令,所述第一信令用于配置N个调制编码方式,N为正整数;
    接收第一信息,所述第一信息用于指示第一调制编码方式,所述第一调制编码方式为所述N个调制编码方式中的一个;
    根据所述第一信息,确定所述第一调制编码方式。
  12. 根据权利要求11所述的方法,其特征在于,所述N个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一信令包括第二信息和第三信息,所述第二信息用于指示M个调制编码方式,所述第三信息用于指示L个调制编码方式,M和L为正整数,所述方法还包括:
    接收第二信令,所述第二信令用于指示第一调制编码方式集合,其中,所述第一调制编码方式集合包括所述L个调制编码方式且不包括所述M个调制编码方式;
    所述根据所述第一信息,从所述N个调制编码方式中确定所述第一调制编码方式,包括:
    根据所述第一信令、所述第二信令和所述第一信息确定所述第一调制编码方式。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述第一信令、所述第二信令和所述第一信息确定所述第一调制编码方式,包括:
    根据所述第一信令和所述第二信令确定所述N个调制编码方式,所述N个调制编码方式包括所述第一调制编码方式集合中除所述L个调制编码方式外的调制编码方式和所述M个调制编码方式根据所述第一信息,从所述N个调制编码方式中确定所述第一调制编码方式。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一调制编码方式集合为预定义的调制编码方式集合,所述第一调制编码方式集合中的调制编码方式的最高调制阶数为6或8或10,所述M个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
  16. 根据权利要求11或12所述的方法,其特征在于,所述N个调制编码方式包括第二调制编码方式集合中的至少一个调制编码方式和/或第三调制编码方式集合中的至少一个调制编码方式。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述N个调制编码方式中任意两个相邻的调制编码方式对应的频谱效率的间隔相等,所述频谱效率为调制编码方式对应调制阶数与编码速率的乘积。
  18. 一种通信方法,其特征在于,包括:
    发送第一信令,所述第一信令用于配置N个调制编码方式,N为正整数;
    发送第一信息,所述第一信息用于指示所述N个调制编码方式中的第一调制编码方式。
  19. 根据权利要求18所述的方法,其特征在于,所述N个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一信令包括第二信息和 第三信息,所述第二信息用于指示M个调制编码方式,所述第三信息用于指示L个调制编码方式,所述方法还包括:
    发送第二信令,所述第二信令用于指示第一调制编码方式集合,其中,所述第一调制编码方式集合包括所述L个调制编码方式且不包括所述M个调制编码方式,M和L为自然数。
  21. 根据权利要求20所述的方法,其特征在于,所述第一调制编码方式集合为预定义的调制编码方式集合,所述第一调制编码方式集合中的调制编码方式的最高调制阶数为6或8或10,所述M个调制编码方式中包括至少一个调制阶数为12的调制编码方式。
  22. 根据权利要求18或19所述的方法,其特征在于,所述N个调制编码方式包括第二调制编码方式集合中的至少一个调制编码方式和/或第三调制编码方式集合中的至少一个调制编码方式。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述N个调制编码方式中任意两个相邻的调制编码方式对应的频谱效率的间隔相等,所述频谱效率为调制编码方式对应调制阶数与编码速率的乘积。
  24. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序或指令,所述至少一个处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1和3至10中任一项所述的方法被执行,使得权利要求2至10中任一项所述的方法被执行,使得权利要求11至17中任一项所述的方法被执行,或者,使得权利要求18至23中任一项所述的方法被执行。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1和3至10中任一项所述的方法被执行,如权利要求2至10中任一项所述的方法被执行,如权利要求11至17中任一项所述的方法被执行,或者,如权利要求18至23中任一项所述的方法被执行。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1和3至10中任一项所述的方法被执行,如权利要求2至10中任一项所述的方法被执行,如权利要求11至17中任一项所述的方法被执行,或者,如权利要求18至23中任一项所述的方法被执行。
PCT/CN2022/126322 2021-10-29 2022-10-20 通信方法和通信装置 WO2023071901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111274087.8A CN116073942A (zh) 2021-10-29 2021-10-29 通信方法和通信装置
CN202111274087.8 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071901A1 true WO2023071901A1 (zh) 2023-05-04

Family

ID=86159145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126322 WO2023071901A1 (zh) 2021-10-29 2022-10-20 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116073942A (zh)
WO (1) WO2023071901A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190104011A1 (en) * 2017-10-02 2019-04-04 Qualcomm Incorporated Apparatus and methods for uniform constellations and non-uniform constellations in wireless local area networks
US20190132824A1 (en) * 2017-10-27 2019-05-02 Comcast Cable Communications, Llc Group Common DCI for Wireless Resources
CN110460409A (zh) * 2014-03-21 2019-11-15 株式会社Kt 用于发送和接收下行链路控制信息的方法和设备
US20200403723A1 (en) * 2019-06-20 2020-12-24 Nokia Technologies Oy Communication system having a configurable modulation order and an associated method and apparatus
US20210266098A1 (en) * 2020-02-22 2021-08-26 Nxp Usa, Inc. Method and apparatus for communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460409A (zh) * 2014-03-21 2019-11-15 株式会社Kt 用于发送和接收下行链路控制信息的方法和设备
US20190104011A1 (en) * 2017-10-02 2019-04-04 Qualcomm Incorporated Apparatus and methods for uniform constellations and non-uniform constellations in wireless local area networks
US20190132824A1 (en) * 2017-10-27 2019-05-02 Comcast Cable Communications, Llc Group Common DCI for Wireless Resources
US20200403723A1 (en) * 2019-06-20 2020-12-24 Nokia Technologies Oy Communication system having a configurable modulation order and an associated method and apparatus
US20210266098A1 (en) * 2020-02-22 2021-08-26 Nxp Usa, Inc. Method and apparatus for communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CABLELABS: "Enhanced FWA Capability", 3GPP RAN TSG MEETING #93-E, RP-211681, 6 September 2021 (2021-09-06), XP052050303 *

Also Published As

Publication number Publication date
CN116073942A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
EP3468277B1 (en) Method and apparatus for determining transport block size
US10348450B2 (en) Coding method and apparatus, base station, and user equipment
CN110663205B (zh) 一种数据处理方法及数据处理装置
US11082923B2 (en) Method for direct communication between stations in wireless local area network and related device
WO2018228579A1 (zh) 确定传输块大小的方法及装置
US20230246743A1 (en) Multi-Resource-Unit Aggregation
WO2020001579A1 (zh) 控制信息传输方法、网络设备、终端和计算机存储介质
WO2016183714A1 (zh) 通信方法和通信设备
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
WO2020143366A1 (zh) 发送、接收方法及装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN111010254B (zh) 一种通信方法、通信装置、计算机存储介质
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2023071901A1 (zh) 通信方法和通信装置
WO2022137659A1 (ja) 端末及び通信方法
WO2022022516A1 (zh) 无线通信的方法和装置
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022140907A1 (zh) 一种数据发送方法及装置
WO2022052131A1 (zh) 通信方法、装置
WO2021147214A1 (zh) 通信方法和通信装置
WO2022206990A1 (zh) 数据传输方法及装置
CN112423313B (zh) 传输块大小确定方法及装置
WO2022030069A1 (ja) 端末、基地局及び通信方法
WO2022068686A1 (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2021244403A1 (zh) 一种信号发送方法、信号接收方法与相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885779

Country of ref document: EP

Kind code of ref document: A1