WO2020143366A1 - 发送、接收方法及装置 - Google Patents

发送、接收方法及装置 Download PDF

Info

Publication number
WO2020143366A1
WO2020143366A1 PCT/CN2019/122744 CN2019122744W WO2020143366A1 WO 2020143366 A1 WO2020143366 A1 WO 2020143366A1 CN 2019122744 W CN2019122744 W CN 2019122744W WO 2020143366 A1 WO2020143366 A1 WO 2020143366A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
transmission
code rate
transmission timing
data packet
Prior art date
Application number
PCT/CN2019/122744
Other languages
English (en)
French (fr)
Inventor
胡丹
官磊
李�远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143366A1 publication Critical patent/WO2020143366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to the field of communication technologies, and in particular, to a method and device for sending and receiving.
  • the terminal device may send data packets to the network device at multiple transmission occasions, that is, repeatedly transmit the data packet at multiple transmission occasions.
  • the transmission block size TBS
  • the transmission block size can be determined according to the time-frequency resource and modulation coding method of one transmission opportunity among multiple transmission opportunities, and according to the determined TBS and the modulation coding method, data can be transmitted at multiple transmission opportunities Repeat transmission.
  • a method of determining the TBS according to the time-frequency resources and modulation and coding methods of multiple transmission occasions is proposed.
  • the present application provides a sending and receiving method and device, which are used to determine the modulation and coding method of each transmission opportunity when determining the TBS according to the time-frequency resources and modulation and coding methods of multiple transmission opportunities.
  • an embodiment of the present application provides a sending method, including:
  • the terminal device determines the TBS of the data packet according to the RE for carrying data information and the first modulation and coding method included in the N transmission opportunities, where N is an integer greater than 1; each of the N transmission opportunities is used to The data packet is transmitted once; when the first code rate is greater than the code rate threshold, the terminal device determines the second modulation and coding method, and the first code rate is carried by the data packet corresponding to the TBS in the N transmission opportunities.
  • the bit rate corresponding to a transmission opportunity, the modulation order corresponding to the second modulation and coding method is higher than the modulation order corresponding to the first modulation and coding method; the terminal device according to the TBS and the second modulation and coding method, in the At least one of the N transmission opportunities transmits the data packet.
  • the terminal device determines the TBS of the data packet according to the REs for carrying the data information and the first modulation and coding method included in the N transmission opportunities, and the data packet corresponding to the TBS is carried at the first transmission opportunity.
  • Code rate can be recorded as the first code rate
  • the terminal device determines the second modulation and coding method whose modulation order is less than the first modulation and coding method, and according to the TBS and the second modulation and coding method, the N At least one of the transmission timings sends a data packet, which provides that when the TBS is determined according to the time-frequency resources of multiple transmission timings and the modulation and coding method, the modulation order of the transmission timing is adjusted, thereby reducing the code rate of the transmission timing.
  • This method avoids the problems caused by the excessive transmission rate.
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the repetition of the equal length of the time domain can be achieved.
  • the time domain length of each transmission opportunity in the N transmission opportunities may be smaller than the first time unit, and the first time unit may be a time slot, for example.
  • the second time unit may be smaller than the first time unit.
  • the length of the time domain of each of the N transmission opportunities may be less than or equal to the second time unit.
  • the length of the time domain of each of the N transmission opportunities is unequal.
  • the unequal length of the time domain of each of the N transmission opportunities can be repeated, and the flexibility of repeated transmission is improved.
  • the time domain length of one of the N transmission opportunities may be less than or equal to the first time unit, and the first time unit may be a time slot, for example.
  • the at least one transmission timing is the first transmission timing.
  • the data packet may be sent according to a modulation and coding method other than the second modulation and coding method.
  • the time domain lengths of some of the N transmission opportunities are equal.
  • the time domain lengths of some of the N transmission occasions are equal, so that the time domain lengths are not exactly equal, and the flexibility of repeated transmission is improved.
  • the time domain length of one of the N transmission opportunities may be less than or equal to the first time unit, and the first time unit may be a time slot, for example.
  • the at least one transmission timing is the first transmission timing, and a transmission timing equal to the time domain length of the first transmission timing.
  • the at least one transmission timing is the first transmission timing and the transmission timing equal to the length of the time domain of the first transmission timing, so that the first transmission timing and the length of the time domain equal to the first transmission timing can be realized.
  • the data packet is sent according to the second modulation and coding method.
  • the data packet can be sent according to the modulation and coding method other than the second modulation and coding method.
  • the method further includes: when the second code rate is greater than the code rate threshold, the terminal device determines a third modulation and coding method, and the second code rate is carried by the data packet corresponding to the TBS at The code rate corresponding to the second transmission timing of the N transmission opportunities, the modulation order corresponding to the third modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode; the terminal device according to the TBS and the first In the three-modulation coding method, the data packet is sent at the second transmission timing. The first transmission timing is different from the second transmission timing.
  • the data rate corresponding to the TBS is carried in the code rate corresponding to the second transmission opportunity in the N transmission opportunities (which may be recorded as the second code rate).
  • the terminal device Determining the third modulation and coding method, and sending the data packet at the second transmission timing according to the TBS and the third modulation and coding method can be achieved in addition to the first transmission timing (or, can also include the first transmission timing At the second transmission timing except the transmission timing with the same field length, the data packet is sent according to the second code rate, which improves the flexibility of repeated transmission.
  • the at least one transmission timing is the transmission timing for sending the data packet among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings, so that when the transmission is repeated multiple times, the first transmission timing can send all the information bits.
  • the advantage of this is that the terminal equipment can select the smallest code rate and modulation combination when adjusting to transmit the most redundant information and improve the reliability of transmission.
  • the first transmission timing is the transmission timing with the shortest time domain length among the N transmission timings.
  • the transmission After completing the corresponding information bits according to the TBS, there will be no data on the remaining resources. Zero padding can be used on the remaining resources, or redundant bits can be added.
  • the terminal device can send all the information bits at every transmission opportunity, and the network device can obtain the maximum combining gain when decoding.
  • the code rate threshold is dynamically indicated, predefined or pre-configured.
  • an embodiment of the present invention provides a receiving method, including:
  • the network device determines the transmission block size TBS of the data packet according to the resource element RE for carrying data information included in the N transmission opportunities and the first modulation and coding method, and N is an integer greater than 1; each of the N transmission opportunities
  • the transmission timing is used to transmit the data packet once; the network device receives the data packet corresponding to the TBS sent by the terminal device at least one of the N transmission timings and using the second modulation and coding method, and the second modulation
  • the modulation order corresponding to the coding mode is higher than that corresponding to the first modulation and coding mode, the second modulation and coding mode is determined by the terminal device when the first code rate is greater than the code rate threshold, the first code rate
  • the data packet corresponding to the TBS is carried at the code rate corresponding to the first transmission timing.
  • the network device determines the TBS of the data packet according to the RE for carrying data information and the first modulation and coding method included in the N transmission opportunities, and receives at least one transmission opportunity of the N transmission opportunities from the terminal device,
  • the data packet corresponding to the TBS sent by the second modulation and coding method, the modulation order corresponding to the second modulation and coding method is higher than the modulation order corresponding to the first modulation and coding method, and the second modulation and coding method is the terminal
  • the device determines when the first bit rate is greater than the bit rate threshold, the first bit rate is the bit rate corresponding to the data packet corresponding to the TBS carried at the first transmission opportunity, and provides a time frequency based on multiple transmission opportunities
  • the modulation order of the transmission timing is adjusted to reduce the bit rate of the transmission timing, thereby avoiding the problems caused by the excessive code rate of the transmission timing.
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the repetition of the equal length of the time domain can be achieved.
  • the time domain length of each transmission opportunity in the N transmission opportunities may be smaller than the first time unit, and the first time unit may be a time slot, for example.
  • the second time unit may be smaller than the first time unit.
  • the length of the time domain of each of the N transmission opportunities may be less than or equal to the second time unit.
  • the length of the time domain of each of the N transmission opportunities is unequal.
  • the time domain length of one of the N transmission opportunities may be less than or equal to the first time unit, and the first time unit may be a time slot, for example.
  • the at least one transmission timing is the first transmission timing.
  • the data packet may be sent according to a modulation and coding method other than the second modulation and coding method.
  • the time domain lengths of some of the N transmission opportunities are equal.
  • the time domain lengths of part of the transmission timings among the N transmission occasions are equal, the repetition of the time domain lengths that are not completely equal can be achieved, and the flexibility of repetitive transmission is improved.
  • the time domain length of one of the N transmission opportunities may be less than or equal to the first time unit, and the first time unit may be a time slot, for example.
  • the at least one transmission timing is the first transmission timing, and a transmission timing equal to the time domain length of the first transmission timing.
  • the at least one transmission timing is the first transmission timing and the transmission timing equal to the length of the time domain of the first transmission timing, so that the first transmission timing and the length of the time domain equal to the first transmission timing can be realized.
  • the data packet is sent according to the second modulation and coding method, and for other transmission timings other than these transmission timings among the N transmission opportunities, the data packet can be sent according to the modulation and coding method other than the second modulation and coding method.
  • the method further includes:
  • the network device receives the data packet corresponding to the TBS sent by the third modulation and coding method at the second transmission timing of the terminal equipment in the N transmission opportunities, and the modulation order corresponding to the third modulation and coding method is higher than the first
  • the modulation order corresponding to the modulation and coding method, the third modulation and coding method is determined when the second code rate is greater than the code rate threshold, and the second code rate is carried by the data packet corresponding to the TBS at the second transmission opportunity Corresponding code rate; the first transmission timing is different from the second transmission timing.
  • the data rate corresponding to the TBS is carried in the code rate corresponding to the second transmission opportunity in the N transmission opportunities (which may be recorded as the second code rate).
  • the terminal device Determining the third modulation and coding method, and sending the data packet at the second transmission timing according to the TBS and the third modulation and coding method can be achieved in addition to the first transmission timing (or, can also include the first transmission timing At the second transmission timing except the transmission timing with the same field length, the data packet is sent according to the second code rate, which improves the flexibility of repeated transmission.
  • the at least one transmission timing is the transmission timing for sending the data packet among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings, so that when the transmission is repeated multiple times, the first transmission timing can send all the information bits.
  • the advantage of this is that the terminal equipment can select the smallest code rate and modulation combination when adjusting to transmit the most redundant information and improve the reliability of transmission.
  • the first transmission timing is the transmission timing with the shortest time domain length among the N transmission timings.
  • the transmission After completing the corresponding information bits according to the TBS, there will be no data on the remaining resources. Zero padding can be used on the remaining resources, or redundant bits can be added.
  • the terminal device can send all the information bits at every transmission opportunity, and the network device can obtain the maximum combining gain when decoding.
  • the code rate threshold is dynamically indicated, predefined or pre-configured.
  • an embodiment of the present application further provides a sending device, configured to implement the method described in the first aspect above.
  • the sending device is a terminal device or a sending device that supports the terminal device to implement the method described in the first aspect, for example, the sending device includes a chip system.
  • the sending device includes: a processing module and a sending module.
  • the processing module is used to determine the transmission block size TBS of the data packet according to the resource elements RE for carrying data information included in the N transmission opportunities and the first modulation and coding method, and N is an integer greater than 1; among the N transmission opportunities Each transmission opportunity of is used to transmit the data packet once; the processing module is used to determine the second modulation and coding method when the first code rate is greater than the code rate threshold, the first code rate corresponds to the TBS The data packet is carried at the code rate corresponding to the first transmission timing among the N transmission opportunities, the modulation order corresponding to the second modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode; the sending module is used to The TBS and the second modulation and coding method determined by the processing module send the data packet at least one of the N transmission opportunities.
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the length of the time domain of each of the N transmission opportunities is unequal.
  • the at least one transmission timing is the first transmission timing.
  • the time domain lengths of some of the N transmission opportunities are equal.
  • the at least one transmission timing is the first transmission timing, and a transmission timing equal to the time domain length of the first transmission timing.
  • the processing module is further configured to determine a third modulation and coding mode when the second code rate is greater than the code rate threshold, and the data rate corresponding to the TBS is carried on the N by the second code rate
  • the code rate corresponding to the second transmission opportunity in the transmission opportunities, the modulation order corresponding to the third modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode;
  • the sending module is also used to, according to the TBS and the In the third modulation and coding method, the data packet is sent at the second transmission timing; the first transmission timing is different from the second transmission timing.
  • the at least one transmission timing is the transmission timing for sending the data packet among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings.
  • the first transmission timing is the transmission timing with the shortest time domain length among the N transmission timings.
  • the code rate threshold is dynamically indicated, predefined or pre-configured.
  • an embodiment of the present application further provides a receiving device, configured to implement the method described in the second aspect above.
  • the sending device is a network device or a receiving device that supports the network device to implement the method described in the second aspect.
  • the receiving device includes a chip system.
  • the receiving device includes: a processing module and a receiving module.
  • the processing module is used to determine the transmission block size TBS of the data packet according to the resource elements RE for carrying data information included in the N transmission opportunities and the first modulation and coding method, and N is an integer greater than 1; the N transmission opportunities Each transmission opportunity in is used to transmit the data packet once;
  • a receiving module configured to receive the data packet corresponding to the TBS sent by using a second modulation and coding method at least one of the N transmission opportunities, and the modulation order corresponding to the second modulation and coding method The number is higher than the modulation order corresponding to the first modulation and coding method, the second modulation and coding method is determined by the terminal device when the first code rate is greater than a code rate threshold, and the first code rate is The data packet corresponding to TBS is carried at the code rate corresponding to the first transmission timing.
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the length of the time domain of each of the N transmission opportunities is unequal.
  • the at least one transmission timing is the first transmission timing.
  • the time domain lengths of some of the N transmission opportunities are equal.
  • the at least one transmission timing is the first transmission timing, and a transmission timing equal to the time domain length of the first transmission timing.
  • the processing module is further configured to receive the data packet corresponding to the TBS sent by the third modulation and coding mode at the second transmission timing of the N transmission opportunities, and the third modulation and coding
  • the modulation order corresponding to the mode is higher than the modulation order corresponding to the first modulation and coding mode
  • the third modulation and coding mode is determined when the second code rate is greater than the code rate threshold
  • the second code rate corresponds to the TBS
  • the data packet is carried at a code rate corresponding to the second transmission timing; the first transmission timing is different from the second transmission timing.
  • the at least one transmission timing is the transmission timing for sending the data packet among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings.
  • the first transmission timing is the transmission timing with the shortest time domain length among the N transmission timings.
  • the code rate threshold is dynamically indicated, predefined or pre-configured.
  • an embodiment of the present application provides a terminal device that has a function to implement the terminal device behavior in the above method design.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the module may be software and/or hardware.
  • the structure of the terminal device includes a processor and a transceiver, and the processor is used to determine the data packet according to the resource element RE for carrying data information included in the N transmission opportunities and the first modulation and coding mode
  • the transmission block size TBS of N is an integer greater than 1; each of the N transmission opportunities is used to transmit the data packet once.
  • the processor is further configured to determine a second modulation and coding mode when the first code rate is greater than the code rate threshold, and the first code rate is the first data rate corresponding to the data packet carried in the N transmission opportunities For a code rate corresponding to a transmission opportunity, the modulation order corresponding to the second modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode.
  • the transceiver is configured to support the terminal device to send the data packet at at least one of the N transmission opportunities according to the TBS and the second modulation and coding mode determined by the processor.
  • the processor is further configured to determine a third modulation and coding mode when the second code rate is greater than the code rate threshold, and the second code rate is carried by the data packet corresponding to the TBS at Among the N transmission opportunities, the code rate corresponding to the second transmission opportunity, the modulation order corresponding to the third modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode.
  • the transceiver is also used to support the terminal device to send the data packet at the second transmission timing according to the TBS and the third modulation and coding scheme; the first transmission timing is different from the second transmission timing.
  • an embodiment of the present application provides a network device that has a function to implement the behavior of the network device in the above method.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the network device includes a processor and a transceiver, and the processor is configured to determine according to a resource element RE included in N transmission occasions for carrying data information and a first modulation and coding mode
  • the transmission block size TBS of the data packet, N is an integer greater than 1; each of the N transmission opportunities is used to transmit the data packet once.
  • the transceiver is used to support the network device to receive the data packet corresponding to the TBS sent by the terminal device at least one of the N transmission opportunities and using the second modulation and coding mode, where the second modulation and coding mode corresponds to Is higher than the modulation order corresponding to the first modulation and coding method, the second modulation and coding method is determined by the terminal device when the first code rate is greater than a code rate threshold, the first code rate
  • the data packet corresponding to the TBS is carried at the code rate corresponding to the first transmission timing.
  • the network device may further include a memory for coupling with the processor, which stores necessary program instructions and data of the network device.
  • the receiver is further configured to support the network device to receive the data packet corresponding to the TBS sent by the terminal device at the second transmission opportunity and using the third modulation and coding mode among the N transmission opportunities ,
  • the modulation order corresponding to the third modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode, and the third modulation and coding mode is determined by the terminal device when the second code rate is greater than the code rate threshold ,
  • the second code rate is the code rate corresponding to the data packet corresponding to the TBS carried at the second transmission timing; the first transmission timing is different from the second transmission timing.
  • an embodiment of the present application further provides a computer-readable storage medium, including: computer software instructions; when the computer software instructions run in the sending device, the sending device is caused to perform the method described in the first aspect.
  • an embodiment of the present application further provides a computer-readable storage medium, including: computer software instructions; when the computer software instructions run in the receiving device, the receiving device executes the method described in the second aspect.
  • an embodiment of the present application further provides a computer program product containing instructions.
  • the sending device causes the sending device to execute the method described in the first aspect.
  • an embodiment of the present application further provides a computer program product containing instructions.
  • the computer program product runs in a receiving device, the receiving device causes the receiving device to execute the method described in the second aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor, and may further include a memory, configured to implement the functions of the network device or the terminal device in the foregoing method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application further provides a communication system, the communication system includes the terminal device described in the third aspect or a transmission device that supports the terminal device to implement the method described in the first aspect, and the fourth aspect describes A network device or a receiving device that supports the network device to implement the method described in the second aspect;
  • the communication system includes the terminal device described in the fifth aspect or a transmission device that supports the terminal device to implement the method described in the first aspect, and the network device described in the sixth aspect or a network device that supports the method implemented by the second aspect Receiver.
  • the names of the terminal device, network device, and information indicating device do not limit the device itself, and in actual implementation, these devices may appear under other names. As long as the functions of each device are similar to the embodiments of the present application, they fall within the scope of the claims of the present application and their equivalent technologies.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of this application.
  • FIG. 3 is a flowchart of a method for sending and receiving according to an embodiment of the present application
  • 4A to 4F are schematic diagrams of time domain lengths of transmission opportunities provided by embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a sending device according to an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a receiving device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another receiving device provided by this application.
  • FIG. 8 is a schematic structural diagram of another receiving device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a core network device 110, a radio access network device 120, and at least one terminal device (such as terminal device 130 and terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device may be independent and different physical devices, or they may integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or may be a physical device It integrates the functions of part of the core network equipment and part of the functions of the wireless access network equipment.
  • the terminal device may be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1.
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the communication system.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division Multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System, UMTS
  • GSM global system for mobile communications
  • WiMAX Worldwide Interoperability for Microwave Access, WiMAX
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communications networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PDAs personal digital assistants
  • the terminal device, or the terminal device in the NR communication system, etc. is not limited in this embodiment of the present application.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. It is a general term for applying wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not depend on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application functions, which need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for sign monitoring.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global mobile communication (global system for mobile communications, GSM) system or code division multiple access (Code Division Multiple Access, CDMA)
  • the base station (base transceiver) (BTS) in the system can also be the base station (NodeB, NB) in the wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, or the evolved base station (evolved) in the LTE system NodeB, eNB or eNodeB), can also be a wireless controller in the cloud radio access network (cloud-radio access network, C-RAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device As well as network equipment in the future 5G network or network equipment in the future evolved PLMN network, or a new generation base station (new NodeB, gNodeB) in the NR system, etc., the embodiments of the present application are
  • the network device provides services for the cell
  • the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources or spectrum resources) used by the cell
  • the cell may be a network device (for example, a base station )
  • the corresponding cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: urban cell (metro cell), micro cell (micro cell), and pico cell (pico cell) ), femtocells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CDs), digital universal discs (digital discs, digital discs, DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Enhanced Mobile Broadband eMBB
  • High-Reliability and Low-Latency Communication Ultra-Reliable and Low
  • mMTC Mass Machine-Type Communications
  • Typical URLLC services are: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and haptic interaction applications such as remote repair and remote surgery. The main characteristics of these services are the requirements for ultra-high reliability Performance, low latency, less data transmission and burstiness.
  • Typical mMTC services are: smart grid distribution automation, smart cities, etc. The main features are the large number of networked devices, the small amount of data transmitted, and the data is insensitive to transmission delay. These mMTC terminals need to meet low cost and very long standby The need for time.
  • Typical eMBB services are: ultra high-definition video, augmented reality (augmented reality, AR), virtual reality (virtual reality, VR), etc. The main characteristics of these services are large data transmission volume and high transmission rate.
  • the NR system supports various time scheduling units, and the length may be one or more time domain symbols.
  • the time domain symbol may be an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM).
  • OFDM orthogonal frequency division multiplexing
  • the OFDM symbol may use transform precoding or may not use transform precoding. If the OFDM symbol uses conversion precoding, it can also be called single carrier frequency division multiplexing (SC-FDM).
  • SC-FDM single carrier frequency division multiplexing
  • the NR system is composed of slots, and a slot can include 14 symbols.
  • the NR system also supports multiple subcarrier spacing. The length of time corresponding to a slot may be different at different subcarrier intervals. For example, when the subcarrier spacing is 15 kHz, the time length corresponding to a slot can be 1 ms.
  • the time length corresponding to one slot may be 0.5 ms.
  • the time length corresponding to one slot may be 0.25 ms.
  • the time length corresponding to a slot may be 0.125 ms. It should be understood that, since the number of symbols in a time slot can be configured as a fixed value, for example, 14 symbols, the length of time corresponding to the symbol can also vary with the change of the subcarrier interval.
  • the time-frequency domain resources include time-domain resources and/or frequency-domain resources.
  • the frequency domain resource may be one or more resource blocks (RB), one or more resource units (RE), one or more carriers/cells, or one or more Multiple partial bandwidths (BWP) can also be one or more RBs on one or more BWPs on one or more carriers, or one or more BWPs on one or more carriers One or more REs on one or more RBs.
  • the time domain resource may be one or more time slots, or one or more symbols on one or more time slots.
  • both uplink data transmission terminal equipment sending data to network equipment
  • downlink data transmission network equipment sending data to terminal equipment
  • the terminal device For downlink transmission, if it is based on dynamic scheduling, the terminal device will receive the downlink control information DCI used to indicate the PDSCH, and this DCI will carry indication information indicating the time-frequency domain resources and modulation methods occupied by the PDSCH . After receiving the DCI, the terminal device can determine on which resource to receive the PDSCH. Further, after receiving the PDSCH, the terminal device may feed back the final decoding result to the network device. Among them, if the terminal device receives the PDSCH correctly, the feedback information is an acknowledgment (ACK), and if the terminal device receives the PDSCH incorrectly, the feedback information is a negative acknowledgment (NACK).
  • ACK acknowledgment
  • NACK negative acknowledgment
  • the above ACK and NACK can be collectively referred to as hybrid automatic repeat request (HARQ) information in the communication system.
  • HARQ hybrid automatic repeat request
  • the terminal device will feed back the HARQ information corresponding to the PDSCH, so that the network device can quickly retransmit the terminal device after learning that the terminal device received the error in order to ensure the reliability of data transmission.
  • the terminal device can send data to the network device at multiple transmission occasions respectively, and based on the time-frequency resources and modulation coding method of one of the multiple transmission occasions, Determine the TBS, and repeat the transmission in the multiple transmission opportunities according to the modulation and coding scheme and the TBS (hereinafter referred to as Mode 1).
  • each of the multiple transmission occasions may include M1 symbols, which are repeated M2 times.
  • method 2 a method of determining a TBS based on time-frequency resources and modulation and coding methods of multiple transmission occasions and repeating transmission in multiple transmission occasions based on the TBS (hereinafter referred to as method 2) is proposed.
  • the subcarrier spacing SCS 60kHz.
  • PRBs physical resource blocks
  • TBS TBS
  • ⁇ MCS NPRB ⁇
  • the TBS can be selected from 18 ⁇ MCS, NPRB ⁇ combinations
  • the TBS can be selected from 23 ⁇ MCS, NPRB ⁇ combinations. Therefore, calculating TBS according to way 2 has better scheduling flexibility.
  • This application is mainly used to describe how to determine the modulation and coding method for each transmission timing in the above method 2.
  • a slot format can include 14 orthogonal frequency division multiple access (OFDM) symbols, each OFDM The CP of the symbol is a normal CP; or, a slot format may include 12 OFDM symbols, and the CP of each OFDM symbol is an extended CP; or, a slot format may include 7 OFDM symbols, each The CP of each OFDM symbol is a normal CP.
  • the OFDM symbols in a time slot can be used for uplink transmission; they can be used for downlink transmission; some can be used for downlink transmission, some can be used for uplink transmission, and some can be reserved for no transmission. It should be understood that the above examples are only illustrative, and should not constitute any limitation to this application.
  • 1ms may include different number of slots (slot), for example, when the subcarrier interval is 15kHz, 1ms includes 1 slot, the time slot occupies 1ms; when the subcarrier interval At 30 kHz, 1 ms includes 2 time slots, and each time slot occupies 0.5 ms.
  • the symbol can also be called a time domain symbol, which is the smallest unit of time domain resources.
  • the embodiment of the present application does not limit the time length of a symbol.
  • the symbol may include an uplink symbol and a downlink symbol.
  • the uplink symbol may be called a single carrier-frequency division multiple access (SC-FDMA) symbol or an OFDM symbol; the downlink symbol may be called, for example. OFDM symbol.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM symbol OFDM symbol
  • Resource element It can be called a resource particle, the smallest scheduling unit of time-frequency resources.
  • One RE can occupy 1 OFDM symbol in the time domain and 1 subcarrier in the frequency domain.
  • Transport block size (transport block size, TBS): the amount of data (bits) carried on the transport block.
  • Physical resource block corresponds to a resource element, which represents a symbol in the time domain and a subcarrier in the frequency domain.
  • a physical resource block may be composed of 14x12 resource elements, where 14 represents 14 symbols in a time slot and 12 represents 12 subcarriers in a frequency band. It can be understood that when the time unit of the physical resource block is less than the time slot, the number of resource elements in one physical resource block may be less than 14x12.
  • FIG. 3 is a flowchart of a method for sending and receiving according to an embodiment of the present application. This embodiment mainly describes that the terminal device repeatedly sends data to the network device in N transmission occasions.
  • the network device may be, for example, the above-mentioned unlimited access network device.
  • the method in this embodiment may include:
  • Step 301 The terminal device determines the TBS according to the RE for carrying data information included in the N transmission opportunities and the first modulation and coding mode, and N is an integer greater than 1.
  • each of the N transmission opportunities is used to transmit the data packet once. It can be understood that, in the process of actually sending the data packet, the terminal device may use all N transmission opportunities, or may use one of the N transmission opportunities or some (two or more) transmission opportunities. , This application may not be limited.
  • the transmission opportunity can represent the time-domain scheduling granularity of data scheduling.
  • the time domain scheduling granularity may be smaller than the first time unit, or the time domain scheduling granularity may be smaller than or equal to the second time unit, and the second time unit is smaller than the first time unit.
  • the first time unit may include multiple symbols
  • the second time unit may include one or more symbols
  • the number of symbols included in the second time unit is less than the first time unit.
  • Enhanced Mobile Broadband Enhanced Mobile Broadband
  • URLLC Ultra- Reliable and Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • Typical URLLC services are: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and haptic interaction applications such as remote repair and remote surgery. The main characteristics of these services are the requirements for ultra-high reliability Performance, low latency, less data transmission and burstiness.
  • Typical mMTC services are: smart grid distribution automation, smart cities, etc. The main features are the large number of networked devices, the small amount of data transmitted, and the data is insensitive to transmission delay. These mMTC terminals need to meet low cost and very long standby The need for time.
  • Typical eMBB services are: ultra high-definition video, augmented reality (augmented reality, AR), virtual reality (virtual reality, VR), etc. The main characteristics of these services are large data transmission volume and high transmission rate.
  • the URLLC service has extremely high latency requirements.
  • Transport Industry
  • V2X vehicle to everything
  • the reliability required for the vehicle to the outside world is 99.999%.
  • the end-to-end delay is 5ms; power distribution requires reliability of 99.9999%, end-to-end delay of 5ms; factory automation reliability of 99.9999%, and end-to-end delay of 2ms.
  • mMTC services have lower latency requirements than URLLC services.
  • the time-domain scheduling granularity of transmission timing under the eMBB service is the first time unit (or, may also be referred to as a time unit, which is not made in this application)
  • a time-domain scheduling granularity smaller than the first time unit that is, the second time unit (or, may also be referred to as micro-time unit, mini-slot) , Non-slots, etc., this application does not limit).
  • the application of the first time unit may not be limited, and optionally, the first time unit may be a time slot, a subframe, and so on. Any time unit that satisfies less than the first time unit may be regarded as the second time unit.
  • the first time unit may be referred to as a slot, and the second time unit may be referred to as a micro-slot; or, the first time unit may be referred to as a subframe, and the second inter-unit may be referred to as a micro-subframe; etc. Wait.
  • a time slot can include 14 symbols, for example, a mini-slot includes less than 14, such as 2 or 4 or 7, etc.; or, a slot can include 14 symbols, a mini-slot includes The number of symbols is less than 14, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13; or, for example, a slot may include 7 symbols and a mini-slot The number of symbols is less than 7, such as 2 or 4, etc. The specific value is not limited.
  • the application of the first time unit may not be limited, and optionally, the first time unit may be a time slot, a subframe, and so on. Any time unit that satisfies less than the first time unit may be regarded as the second time unit.
  • the first time unit may be referred to as a slot, and the second time unit may be referred to as a micro-slot; or, the first time unit may be referred to as a subframe, and the second inter-unit may be referred to as a micro-subframe; etc. Wait.
  • a time slot can include 14 symbols, for example, a mini-slot includes less than 14, such as 2 or 4 or 7, etc.; or, a slot can include 14 symbols, a mini-slot includes The number of symbols is less than 14, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13; or, for example, a slot may include 7 symbols and a mini-slot The number of symbols is less than 7, such as 2 or 4, etc. The specific value is not limited.
  • the relationship between the length of the time domain of each transmission opportunity in the N transmission opportunities may not be limited in this application.
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the time domain length of each transmission opportunity may be smaller than the first time unit.
  • the first time unit may be a time slot or a subframe, which is 14 OFDM symbols. It can also be N time slots, or N subframes, 14*N OFDM symbols.
  • each of the N transmission opportunities has a time domain length equal to the second time unit.
  • the second time unit may be smaller than the first time length. For example, taking N equal to 4 as an example, as shown in FIG.
  • the time domain lengths of transmission opportunity 1 to transmission opportunity 4 are all equal to the second time unit.
  • the length of the time domain from transmission opportunity 1 to transmission opportunity 2 is all equal to the second time unit.
  • N equal to 8 is an example, as shown in FIG. 4C.
  • part of the N transmission opportunities have the same time domain length.
  • the time domain lengths of transmission opportunity 1 and transmission opportunity 2 are equal, and are different from the time domain lengths of transmission opportunity 3 and transmission opportunity 4.
  • the time domain boundaries of transmission opportunities 3 and 4 may be the boundaries of time slots.
  • the length of the time domain of each of the N transmission opportunities is not equal.
  • N the time domain lengths of transmission opportunity 1 and transmission opportunity 2 are not equal.
  • the boundary between transmission opportunity 1 and transmission opportunity 2 is a time slot boundary.
  • N taking N equal to 3 and the first time unit as a time slot as an example, as shown in FIG. 4F, the time domain lengths of transmission opportunity 1 and transmission opportunity 3 are shorter than the time slots and are not equal, and the time domain length of transmission opportunity 2 is equal to Time slot.
  • the boundary between transmission opportunities is the time slot boundary.
  • the method may further include: the terminal device receives configuration information or indication information sent by the wireless access network device, and the configuration information or indication information may be used to indicate time-frequency resources (that is, the total time-frequency of N transmission opportunities) Resource) and the first modulation and coding method.
  • the terminal device may receive indication information sent by the wireless access network device, and the indication information may specifically be downlink control information (DCI). Further optionally, the indication information may also include the number of repeated transmissions, that is, N.
  • DCI downlink control information
  • the terminal device may receive the configuration information sent by the wireless access network device. Further, the configuration information may also include the number of repeated transmissions, that is, N.
  • the number of repeated transmissions may be configured by higher-layer parameters, or may be determined by the terminal device according to re-determination, which may not be limited in this application.
  • the network device may notify the terminal device of the respective time-frequency resources of the N transmission opportunities (for example, in FIG. 4C, the network device notifies the terminal device of the respective time-domain resources of transmission opportunity 1, transmission opportunity 2, and transmission opportunity 3); or , The network device may notify the terminal device of the time-frequency resources of the first transmission opportunity among the N transmission opportunities, and the terminal device determines the respective time-frequency resources of the N transmission opportunities (for example, as shown in FIG.
  • the network device notifies the terminal device The time-frequency resource of transmission opportunity 1 in 2 transmission opportunities, the terminal device determines the time-frequency resource of transmission opportunity 2 in 2 transmission opportunities); or, the network device may notify the terminal device to repeatedly transmit a total time-frequency resource,
  • the terminal device determines the respective time-frequency resources of the N transmission opportunities in the total time-frequency resources (for example, as shown in FIGS. 4D-4F, the network device is configured with the total time-frequency resources of the transmission opportunities. Determine the respective time-frequency resources of the N transmission opportunities); or, the network device may notify the terminal device of the time-frequency resources of 1 transmission, and the terminal device may determine the time of each of the N transmission opportunities according to the time-frequency resources of the 1 transmission Frequency resource (for example, as shown in FIG.
  • the network device notifies the terminal device of the time-frequency resource of transmission opportunity 1, and the terminal device determines that N is equal to 2, and determines the time-frequency resource of transmission opportunity 2); or, the network device may notify the terminal device Notifying the respective time-frequency resources of the N′ transmission opportunities, the UE may determine the respective video resources of the N transmission opportunities according to the respective time-frequency resources of the N′ transmission opportunities, where N′ is different from N.
  • the first modulation and coding method may be configured by a network device, and similarly, may be grant-based or grant-free; or, optionally, the first modulation
  • the encoding method may be predefined or pre-configured by the terminal device.
  • N TBS coderate ⁇ N RE ⁇ Q m formula (1)
  • the TBS can be determined according to the REs for carrying the data information included in the N transmission opportunities and the first modulation and coding scheme. Specifically, based on formula (1), the TBS may be determined according to the REs for carrying the data information included in the N transmission opportunities, the modulation order corresponding to the first modulation and coding method, and the code rate corresponding to the first modulation and coding method.
  • an overhead factor may not be considered, and the overhead factor may include, for example, a demodulation reference signal (demodulation) Reference signal (DMRS) overhead, parameter configuration overhead, etc.
  • DMRS demodulation reference signal
  • the product of the number of PRBs included in N transmission opportunities N PRB , the number of subcarriers included in one PRB N c and the number of symbols included in N transmission opportunities N s may be used as the number of REs included in N transmission opportunities N RE .
  • the data information may include uplink control information (uplink control information, UCI), UCI may be feedback information HARQ-ACK, channel state information CSI (channel statement) information, channel quality indication information CQI (channel quality indication) , Scheduling request SR (scheduling request), etc.
  • uplink control information uplink control information
  • UCI may be feedback information HARQ-ACK, channel state information CSI (channel statement) information, channel quality indication information CQI (channel quality indication) , Scheduling request SR (scheduling request), etc.
  • N is equal to 4
  • each of the 4 transmission opportunities has the same length of the time domain, and both are 2 symbols
  • the modulation order corresponding to the first modulation and coding method is 2
  • the code rate corresponding to the first modulation and coding method It is 251/1024
  • N c is equal to 12
  • N is equal to 2
  • one of the two transmission opportunities has a time domain length of 2 symbols
  • the other transmission opportunity has a time domain length of 6 symbols
  • the first modulation coding mode corresponds to a modulation order of 2
  • the code rate corresponding to the first modulation and coding method is 679/1024
  • N c is equal to 12
  • the transmission block size N TBS determined according to the REs included in the two transmission opportunities and the first modulation and coding method satisfies the following formula (3).
  • the modulation order (Modulation Order) and the code rate (Target code) corresponding to the first modulation and coding method can be determined by querying the following Table 3 according to the MCS index used to represent the first modulation and coding method.
  • N is equal to 4, and the time domain length of each of the four transmission opportunities is the same, and they are both 2 symbols.
  • the MCS index used to indicate the first modulation and coding method is equal to 9.
  • N is equal to 2
  • one of the two transmission opportunities has a time domain length of 2 symbols
  • the other transmission opportunity has a time domain length of 6 symbols.
  • the index is equal to 15.
  • Step 302 the data packet corresponding to the TBS is carried in the code rate corresponding to the first transmission opportunity among the N transmission opportunities, and when the code rate threshold is greater than the code rate threshold, the terminal device determines the second modulation and coding mode.
  • the modulation order corresponding to the second modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode.
  • the data packet corresponding to the TBS is carried at the first transmission timing, that is, the size of the data packet transmitted at the first transmission timing is the TBS.
  • the code rate corresponding to the modulation and coding method is usually by adjusting the code rate corresponding to the modulation and coding method, rather than adjusting the modulation order corresponding to the modulation and coding method, so that the size of the data packet transmitted at the first transmission opportunity reaches the TBS.
  • the TBS since the size of the data packet transmitted at the first transmission opportunity is the TBS, and the TBS is determined according to the REs included in the N transmission opportunities for carrying data information, and the N transmission opportunities include data for carrying data
  • the number of REs of information is greater than the number of REs included in the first transmission opportunity for carrying data information, so the data packet corresponding to the TBS is carried at the code rate corresponding to the first transmission opportunity (hereinafter referred to as the first (Code rate) may be greater than the code rate corresponding to the first modulation and coding scheme.
  • the first code rate is determined according to the modulation order of the first modulation and coding method, the TBS, and the RE at the first transmission timing.
  • N is equal to 4
  • each of the 4 transmission opportunities has the same length of the time domain, and both are 2 symbols
  • the modulation order corresponding to the first modulation and coding method is 2
  • the data packet corresponding to the TBS The code rate corresponding to two symbols with a time domain length of 2 symbols may be, for example, 251/1024, that is, 1004/1024.
  • N is equal to 2
  • one of the two transmission opportunities has a time domain length of 2 symbols
  • the other transmission opportunity has a time domain length of 6 symbols.
  • the data packet corresponding to the TBS is carried in the time domain
  • the code rate corresponding to 6 symbols in length may be, for example, 679/1024 which is 4/3 times, that is, 679/768.
  • the code rate is limited according to the code rate threshold.
  • the code rate threshold as the maximum code rate 772/1024 in Table 3 as an example, for Example 3, the data packet corresponding to the TBS is carried in a code corresponding to 2 symbols in the time domain.
  • the rate 1004/1024 is greater than the code rate threshold 772/1024, so the second modulation and coding method is determined; the data packet corresponding to the TBS is carried in the time domain with a length of 6 symbols.
  • the code rate 679/768 is greater than the code rate threshold 772/1024, so the second modulation and coding method is determined.
  • the modulation order corresponding to the modulation and coding method according to the first transmission timing may be equal to the modulation order corresponding to the first modulation and coding method.
  • the modulation order and the code rate are inversely proportional, the modulation order corresponding to this second modulation and coding method is higher than the modulation order corresponding to the first modulation and coding method.
  • the code rate corresponding to the second modulation and coding mode is less than the first code rate, so that the problem caused by the excessive code rate can be avoided.
  • the relationship between the code rate corresponding to the second modulation and coding mode and the code rate threshold may not be limited in this application.
  • the code rate corresponding to the second modulation and coding method may be greater than the code rate threshold, or the code rate corresponding to the second modulation and coding method may be less than the code rate threshold, or the code rate corresponding to the second modulation and coding method may be equal to the code Rate threshold.
  • the code rate threshold is the maximum code rate 772/1024 in Table 3
  • the code rate corresponding to the second modulation and coding method is less than or equal to the code rate threshold, for example, N is equal to 4, and each of the 4 transmission opportunities
  • the transmission time domain length is the same and both symbols are 2 symbols.
  • the modulation order corresponding to the first modulation and coding method is 2, as shown in Table 4 below, the modulation order can be changed from 2 (corresponding to the first modulation and coding method).
  • the modulation order is 2) adjusted to 4 (that is, the modulation order corresponding to the second modulation and coding method is 4), so that the terminal device adjusts the code rate from 1004/1024 to 526/1024, and 526/1024 is less than the code rate threshold 772/1024.
  • the code rate threshold value as the maximum code rate in Table 3 of 772/1024
  • the code rate corresponding to the second modulation and coding method is less than or equal to the code rate threshold value for example, for example, N is equal to 2
  • 2 transmission opportunities In one of the transmission opportunities, the time domain length is 2 symbols, and in the other transmission opportunity, the time domain length is 6 symbols.
  • the modulation order can be adjusted from 2 to 4, so that the terminal equipment will The code rate is adjusted from 679/768 to 679/1536, and 679/1536 is less than the code rate threshold 772/1024.
  • the modulation order is adjusted from 2 to 4 (for example, the modulation method can be adjusted from QPSK to 16QAM).
  • the modulation method is adjusted from QPSK to 16QAM and the modulation method is adjusted from QPSK to 64QAM, the code rate does not exceed the first code rate threshold, and TBS remains unchanged, then the minimum change to the modulation method is taken.
  • the modulation method is adjusted from QPSK to 16QAM.
  • the MCS index corresponding to the first modulation and coding method is 11 to 13 adjust the modulation method from QPSK to 64QAM.
  • the MCS index indicated by the base station is 11 to 13
  • adjusting the modulation mode from QPSK to 16QAM cannot simultaneously satisfy the two conditions that the code rate does not exceed the code rate threshold and TBS remains unchanged.
  • the MCS index corresponding to the first modulation and coding mode exceeds 13, no matter how the modulation mode is adjusted, the two conditions that the code rate does not exceed the code rate threshold and the TBS remains unchanged cannot be satisfied at the same time.
  • the specific method for the sending device to obtain the bit rate threshold value may not be limited in this application.
  • the code rate threshold is obtained by dynamic indication, predefined or pre-configured, for example, it can be indicated by high-level parameter configuration, or dynamically indicated by DCI, or it can also be the maximum value 772/1024 in Table 3 above.
  • Step 303 The terminal device sends the data packet according to the TBS and the second modulation and coding scheme at least one of the N transmission opportunities.
  • the at least one transmission timing may be the N transmission timings, or may be part of the N transmission timings.
  • the data packet sent by each transmission opportunity in the at least one transmission opportunity can be understood as a data packet obtained based on the same information bit, the TBS, and the second modulation and coding method.
  • the content of the data packet sent by each transmission timing in at least one transmission timing may be the same, or the content of the data packet sent by each transmission timing in at least one transmission timing may be different, or, at least The content of the data packet sent by each transmission opportunity in a transmission opportunity may be partially the same.
  • the terminal device when the terminal device sends the data packet according to the TBS and the second modulation and coding method, at least one of the N transmission occasions transmits the data packet, each of the at least one transmission opportunity
  • the modulation order of is the same, which is the modulation order corresponding to the second modulation and coding mode, and the code rate of each transmission opportunity in the at least one transmission opportunity can be flexibly determined according to actual transmission requirements.
  • the at least one transmission timing is the transmission timing at which the data packet is sent among the N transmission timings, that is, the modulation according to the transmission timing at which the data packet is sent among the N transmission timings
  • the encoding methods are all second modulation encoding methods.
  • the first transmission timing may be the first transmission timing among the N transmission timings.
  • the bit rate corresponding to the data packet corresponding to the TBS carried in any one of the N transmission opportunities is not equal.
  • the data packets corresponding to the TBS are carried in the N transmission opportunities.
  • the code rates corresponding to the transmission opportunities with equal time domain lengths are equal, However, the data packets corresponding to the TBS are carried in the N transmission occasions in which the code rates corresponding to the transmission occasions whose time domain lengths are not equal are not equal.
  • a transmission opportunity can be selected as the First transmission timing.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings; or, the first transmission timing is the transmission with the shortest time domain length among the N transmission timings. opportunity.
  • the The data packet corresponding to the TBS is carried in a case where the code rate corresponding to any one of the other transmission opportunities is greater than the code rate threshold. Therefore, when other transmission occasions are also transmitted according to the second modulation and coding scheme, there is still a problem that the code rate is too large, for example, a part of information bits may be lost. However, since the transmission is repeated multiple times, all information bits can be sent at the first transmission opportunity.
  • the advantage of this is that the terminal equipment can select the smallest code rate and modulation combination when adjusting to transmit the most redundant information and improve the reliability of transmission.
  • the transmission is completed according to the After the corresponding information bits of TBS, there will be no data on the remaining resources. Zero padding can be used on the remaining resources, or redundant bits can be added.
  • the terminal device can send all the information bits at every transmission opportunity, and the network device can obtain the maximum combining gain when decoding.
  • scenario 2 when the length of the time domain of each of the N transmission opportunities is not equal, the following scenario 2 may also be corresponding.
  • the at least one transmission timing is the first transmission timing, that is, the modulation and coding method according to the transmission timing at which the data packet is sent in the first transmission timing is the second modulation and coding method, the Among the N transmission timings, the modulation and coding modes according to the transmission timings other than the first transmission timing are not the second modulation and coding methods.
  • the modulation order according to the transmission timing other than the first transmission timing among the N transmission timings may not be adjusted. That is, the bit rate corresponding to the data packet corresponding to the TBS carried at the other transmission timing may be unchanged. Specifically, it can be determined that the data packet corresponding to the TBS is carried on the corresponding to the transmission timing according to the modulation order corresponding to the first modulation and coding method, the RE of the transmission timing of the TBS and the other transmission timing
  • the code rate (hereinafter may be referred to as code rate 1), and the data packet is sent at the transmission timing according to the modulation order corresponding to the first modulation and coding method, code rate 1, and the TBS.
  • the modulation order according to the second transmission timing of the N transmission timings may be modulated, and the second transmission timing is different from the first transmission timing.
  • the method of this embodiment may further include the following steps A and B.
  • step A the data packet corresponding to the TBS is carried in the code rate corresponding to the second transmission opportunity of the N transmission opportunities, and when the code rate threshold is greater than the code rate threshold, the terminal device determines the third modulation and coding mode.
  • the modulation order corresponding to the third modulation and coding method is higher than the modulation order corresponding to the first modulation and coding method; similar to the first transmission timing, for a certain modulation and coding method, usually by adjusting the modulation and coding The code rate corresponding to the mode, rather than adjusting the modulation order corresponding to the modulation and coding mode, so that the size of the data packet transmitted at the second transmission opportunity reaches the TBS.
  • the TBS since the size of the data packet transmitted at the second transmission opportunity is the TBS, and the TBS is determined according to the REs included in the N transmission opportunities for carrying data information, and the N transmission opportunities include data for carrying data
  • the number of REs of information is greater than the number of REs included in the second transmission opportunity for carrying data information, so the data packet corresponding to the TBS is carried at the code rate corresponding to the second transmission opportunity (hereinafter referred to as the second (Code rate) may be greater than the code rate corresponding to the first modulation and coding scheme.
  • the second code rate is determined according to the modulation order corresponding to the first modulation and coding method, the TBS, and the RE at the second transmission timing.
  • the modulation order corresponding to this third modulation and coding method is higher than the modulation order corresponding to the first modulation and coding method, so that The code rate corresponding to the third modulation and coding mode is less than the second code rate, so that the problem caused by the excessive code rate can be avoided.
  • the modulation order corresponding to the modulation and coding method according to the second transmission timing may be equal to the modulation order corresponding to the first modulation and coding method.
  • the relationship between the code rate corresponding to the third modulation and coding method and the code rate threshold may not be limited in this application.
  • the code rate corresponding to the third modulation and coding method may be greater than the code rate threshold, or the code rate corresponding to the third modulation and coding method may be less than the code rate threshold, or the code rate corresponding to the third modulation and coding method may be equal to the code Rate threshold.
  • Step B The terminal device sends the data packet at the second transmission timing according to the TBS and the third modulation and coding method.
  • the second transmission timing may traverse other transmission timings than the first transmission timing among the N transmission timings, that is, other transmissions than the first transmission timing for the N transmission timings
  • Each of the transmission timings may perform the above steps A and B (that is, individually adjust the modulation order), or the second transmission timing may be the N transmission timings other than the first transmission timing
  • the timing of partial transmission is not limited in this application.
  • scenario 3 when the length of a part of transmission time domains in the N transmission opportunities is equal, the following scenario 3 may also be corresponding.
  • the at least one transmission timing is the first transmission timing and the transmission timing equal to the time domain length of the first transmission timing, that is, the first transmission timing and the first transmission timing
  • the transmission timing at which the data packet is transmitted in the transmission timing with the same time domain length is based on the second modulation and coding method.
  • the first transmission timing and the A transmission timing other than the transmission timing with the same time domain length of the transmission timing is not based on the second modulation and coding manner.
  • the order of modulation other than the first transmission timing and the transmission timing equal to the time domain length of the first transmission timing among the N transmission timings may be omitted. Make adjustments. That is, the bit rate corresponding to the data packet corresponding to the TBS carried at the other transmission timing may be unchanged. Specifically, it can be determined that the data packet corresponding to the TBS is carried on the corresponding to the transmission timing according to the modulation order corresponding to the first modulation and coding method, the RE of the transmission timing of the TBS and the other transmission timing
  • the code rate (hereinafter may be referred to as code rate 1), and the data packet is sent at the transmission timing according to the modulation order corresponding to the first modulation and coding method, code rate 1, and the TBS.
  • the modulation order according to the second transmission timing of the N transmission timings may be modulated, and the second transmission timing and the first transmission timing have different time domain lengths.
  • the method of this embodiment may further include the following steps C and D.
  • Step C when the data packet corresponding to the TBS is carried in the code rate corresponding to the second transmission opportunity out of the N transmission opportunities, and when it is greater than the code rate threshold, the terminal device determines the third modulation and coding method.
  • step C is similar to step A and will not be repeated here.
  • Step D The terminal device sends the data packet at the second transmission timing according to the TBS and the third modulation and coding method.
  • step D is similar to step B and will not be repeated here.
  • step 304 the network device determines the TBS of the data packet according to the resource element RE included in the N transmission opportunities for carrying the data information and the first modulation and coding mode.
  • the network device since the amount of data sent by the terminal device and the amount of data received by the network device need to be aligned and understood, the network device also needs to determine the TBS.
  • step 304 is mainly that step 301 is performed by the terminal device, and step 304 is performed by the network device.
  • step 301 is performed by the terminal device
  • step 304 is performed by the network device.
  • the implementation principles and technical effects are similar, and will not be repeated here.
  • step 304 and step 301 there is no restriction on the order of step 304 and step 301 to step 303.
  • Step 305 The network device receives the data packet corresponding to the TBS sent by the terminal device at least one of the N transmission opportunities and using the second modulation and coding mode.
  • the modulation order corresponding to the second modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode, and the second modulation and coding mode is the location of the terminal device corresponding to the TBS.
  • the data packet is carried at a code rate corresponding to the first transmission opportunity, and is determined when it is greater than a code rate threshold.
  • the network device receives, according to the TSB, the data packet corresponding to the TBS sent by the terminal device in step 303 using the second modulation and coding method at the at least one transmission opportunity.
  • step 302 for the specific content of the first transmission timing and the second modulation and coding mode, reference may be made to related descriptions in step 302 and step 303, and details are not described herein again.
  • the method of this embodiment may further include the following steps:
  • the network device receives the data packet corresponding to the TBS sent by the terminal device at the second transmission opportunity and using the third modulation and coding mode among the N transmission opportunities.
  • the network device may decode the data packet received in step 305 according to the TBS determined in step 304.
  • step 305 there is no restriction on the order of steps between step 305 and step 304.
  • the terminal device determines the TBS of the data packet according to the RE for carrying data information and the first modulation and coding method included in the N transmission opportunities, and the data packet corresponding to the TBS is carried in the code corresponding to the first transmission opportunity
  • the terminal device determines the second modulation and coding method whose modulation order is less than the first modulation and coding method, and sends data at at least one of the N transmission opportunities according to the TBS and the second modulation and coding method
  • the package provides a way to reduce the bit rate of the transmission opportunity by adjusting the modulation order of the transmission opportunity when determining the TBS according to the time-frequency resources of multiple transmission opportunities and the modulation and coding method, thus avoiding the excessive transmission rate Big problems.
  • each network element such as a terminal device and a network device, includes a hardware structure and/or a software module corresponding to performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the function modules of the terminal device and the network device according to the above method examples.
  • each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 5 is a schematic structural diagram of a sending apparatus 500 provided by an embodiment of the present application.
  • the sending device is a terminal device or a sending device that supports the terminal device to implement the method provided in the embodiment, for example, the sending device may be a chip system.
  • the device 500 includes a processing module 510 and a sending module 520.
  • the processing module 510 is configured to determine the transmission block size TBS of the data packet according to the resource elements RE for carrying data information included in the N transmission opportunities and the first modulation and coding method, where N is An integer greater than 1; each of the N transmission opportunities is used to transmit the data packet once; the processing module 510 is also used to determine the second when the first code rate is greater than the code rate threshold Modulation and coding method, the first code rate is the code rate corresponding to the first transmission opportunity in the N transmission opportunities for the data packets corresponding to the TBS, and the modulation order corresponding to the second modulation and coding method The number is higher than the modulation order corresponding to the first modulation and coding method; the sending module 520 is configured to, based on the TBS and the second modulation and coding method determined by the processing module 510, in the N transmission opportunities At least one transmission opportunity to send the data packet.
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the length of the time domain of each of the N transmission opportunities is unequal.
  • the at least one transmission timing is the first transmission timing.
  • some of the N transmission opportunities have the same time domain length.
  • the at least one transmission timing is the first transmission timing, and a transmission timing equal to the length of the time domain of the first transmission timing.
  • the processing module 510 is further configured to determine a third modulation and coding method when the second code rate is greater than the code rate threshold, and the second code rate is carried by the data packet corresponding to the TBS at The code rate corresponding to the second transmission opportunity in the N transmission opportunities, the modulation order corresponding to the third modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode; the sending module 520 is further used to, according to The TBS and the third modulation and coding scheme send the data packet at the second transmission timing; the first transmission timing is different from the second transmission timing.
  • the at least one transmission timing is a transmission timing for sending the data packet among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings.
  • the first transmission timing is the transmission timing with the shortest time domain length among the N transmission timings.
  • the code rate threshold is obtained by dynamic indication, predefined or pre-configured.
  • the physical device corresponding to the sending module is a transmitter
  • the physical device corresponding to the processing module is a processor
  • the device 500 here is embodied in the form of a functional unit.
  • the term "module” here may refer to an application-specific integrated circuit (application specific integrated circuit, ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor or a group) for executing one or more software or firmware programs Processor, etc.) and memory, merge logic, and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor or a group
  • memory merge logic, and/or other suitable components that support the described functions.
  • the apparatus 500 may specifically be the terminal device in the foregoing embodiment, and the apparatus 500 may be used to execute various processes and/or steps corresponding to the terminal device in the foregoing method embodiment, To avoid repetition, I will not repeat them here.
  • FIG. 6 is a schematic structural diagram of a receiving device 600 provided by an embodiment of the present application.
  • the receiving device can execute the network in any of the method embodiments of the present application. The steps performed by the device are shown in FIG. 6, and the receiving device is a network device or a receiving device that supports the network device to implement the method provided in the embodiment.
  • the receiving device may be a chip system.
  • the device 600 includes a processing module 610 and a receiving module 620.
  • the processing module 610 is configured to determine the transmission block size TBS of the data packet according to the resource elements RE for carrying data information included in the N transmission opportunities and the first modulation and coding scheme, where N is An integer greater than 1; each of the N transmission opportunities is used to transmit the data packet once; the receiving module 620 is used to receive at least one of the N transmission opportunities of the terminal device 2.
  • the data packet corresponding to the TBS sent using the second modulation and coding method the modulation order corresponding to the second modulation and coding method is higher than the modulation order corresponding to the first modulation and coding method
  • the second The modulation and coding method is determined by the terminal device when the first code rate is greater than a code rate threshold, and the first code rate is the code rate corresponding to the data packet corresponding to the TBS carried at the first transmission opportunity .
  • the length of the time domain of each of the N transmission opportunities is equal.
  • the length of the time domain of each of the N transmission opportunities is unequal.
  • the at least one transmission timing is the first transmission timing.
  • some of the N transmission opportunities have the same time domain length.
  • the at least one transmission timing is the first transmission timing, and a transmission timing equal to the length of the time domain of the first transmission timing.
  • the receiving module 620 is further configured to receive the data packet corresponding to the TBS sent by the terminal device at the second transmission opportunity and using the third modulation and coding mode among the N transmission opportunities,
  • the modulation order corresponding to the third modulation and coding mode is higher than the modulation order corresponding to the first modulation and coding mode
  • the third modulation and coding mode is determined by the terminal device when the second code rate is greater than the code rate threshold
  • the second bit rate is a bit rate corresponding to the data packet corresponding to the TBS carried at the second transmission timing.
  • the at least one transmission timing is a transmission timing for sending the data packet among the N transmission timings.
  • the first transmission timing is the transmission timing with the longest time domain length among the N transmission timings.
  • the first transmission timing is the transmission timing with the shortest time domain length among the N transmission timings.
  • the code rate threshold is obtained by dynamic indication, predefined or pre-configured.
  • the physical device corresponding to the processing module is a processor
  • the physical device corresponding to the receiving module is a receiver
  • the device 600 here is embodied in the form of a functional unit.
  • the term "module” here may refer to an application-specific integrated circuit (application specific integrated circuit, ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor or a group) for executing one or more software or firmware programs Processor, etc.) and memory, merge logic, and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor or a group
  • memory merge logic, and/or other suitable components that support the described functions.
  • the apparatus 600 may be specifically the first network device in the foregoing embodiment, and the apparatus 600 may be used to execute various processes corresponding to the first network device in the foregoing method embodiment and /Or steps, to avoid repetition, they will not be repeated here.
  • the apparatus 500 and the apparatus 600 of the above solutions have functions to implement the corresponding steps performed by the terminal device and the network device in the above method; the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the sending module may be replaced by a transmitter, the receiving module may be replaced by a receiver, and other modules, such as processing modules, may be replaced by processors, respectively executed The sending and receiving operations and related processing operations in each method embodiment. That is, the foregoing receiving module may be a receiver, the transmitting module may be a transmitter, and the processing module may be a processor.
  • the devices in FIG. 5 and FIG. 6 may also be chips or chip systems, for example, a system on chip (SoC).
  • the receiving module and the sending module may be the transceiver circuit of the chip, which is not limited herein.
  • the network device 700 shown in FIG. 7 includes a transmitter/receiver 701, a controller/processor 702, and a memory 703.
  • the transmitter/receiver 701 is used to support the sending and receiving of information between the network device and the terminal device described in the above embodiment.
  • the controller/processor 702 performs various functions for communicating with terminal devices.
  • On the uplink the uplink signal from the terminal device is received via the antenna, mediated by the receiver 701, and further processed by the controller/processor 702 to recover the service data and signaling information sent by the terminal device .
  • On the downlink the service data and signaling messages are processed by the controller/processor 702 and mediated by the transmitter 701 to generate a downlink signal, which is transmitted to the terminal device via the antenna.
  • the controller/processor 702 also executes the processing procedures related to the network device and/or other procedures for the technology described in this application in the above method embodiments.
  • the memory 703 is used to store program codes and data of network devices.
  • the controller/processor 702 is configured to determine the transmission block size TBS, N of the data packet according to the resource element RE for carrying data information included in the N transmission opportunities and the first modulation and coding method It is an integer greater than 1; each of the N transmission opportunities is used to transmit the data packet once.
  • Transmitter/receiver 701 used to receive the data packet corresponding to the TBS sent by the terminal device in at least one of the N transmission opportunities and using the second modulation and coding method, the second modulation and coding method
  • the corresponding modulation order is higher than the modulation order corresponding to the first modulation and coding mode
  • the second modulation and coding mode is determined by the terminal device when the first code rate is greater than a code rate threshold
  • the first code The rate is the bit rate corresponding to the data packet corresponding to the TBS carried at the first transmission opportunity.
  • the transmitter/receiver 701 is configured to receive the data packet corresponding to the TBS sent by the third modulation and coding mode at the second transmission opportunity of the N transmission opportunities, and the first The modulation order corresponding to the three modulation encoding method is higher than the modulation order corresponding to the first modulation encoding method.
  • the third modulation encoding method is determined by the terminal device when the second code rate is greater than the code rate threshold.
  • the second code rate is the code rate corresponding to the data packet corresponding to the TBS carried at the second transmission timing;
  • the network device 700 may be specifically the network device in the foregoing embodiments, and may be used to execute various steps and/or processes corresponding to the network device in the foregoing method embodiments.
  • the memory 703 may include a read-only memory and a random access memory, and provide instructions and data to the controller/processor 702.
  • a portion of the memory 703 may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the controller/processor 702 may be used to execute instructions stored in the memory, and when the controller/processor 702 executes instructions stored in the memory, the controller/processor 702 is used to execute the above-mentioned corresponding to the network device Various steps and/or processes of method embodiments.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application, which may be a simplified schematic diagram of a possible design structure of the terminal device involved in the foregoing embodiment.
  • the terminal device 800 shown in FIG. 8 includes a transmitter 801, a receiver 802, a controller/processor 803, a memory 804, and a modem processor 805.
  • the transmitter 801 is used to send an uplink signal, and the uplink signal is transmitted to the network device described in the foregoing embodiment via an antenna.
  • the antenna receives the downlink signal (DCI) transmitted by the network device in the above embodiment.
  • the receiver 802 is used to receive a downlink signal (DCI) received from an antenna.
  • the encoder 806 receives the service data and signaling messages to be sent on the uplink, and processes the service data and signaling messages.
  • the modulator 807 further processes (eg, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 805 processes (eg, demodulates) the input samples and provides symbol estimates.
  • the decoder 808 processes (eg, decodes) the symbol estimate and provides the decoded data and signaling messages sent to the terminal device.
  • the encoder 806, the modulator 807, the decoder 808, and the demodulator 809 may be implemented by a synthesized modem processor 605. These units are processed according to the wireless access technology adopted by the wireless access network.
  • the controller/processor 803 controls and manages the actions of the terminal device, and is used to execute the processing performed by the terminal device in the foregoing method embodiment.
  • the controller/processor 803 is configured to determine the transmission block size TBS of the data packet according to the resource elements RE for carrying data information included in the N transmission opportunities and the first modulation and coding method, and N is greater than 1.
  • the transmission timing of each of the N transmission timings is used to transmit the data packet once; the controller/processor 803 is also used to determine the number of times when the first code rate is greater than the code rate threshold Two modulation and coding methods, the first code rate is the code rate corresponding to the first transmission opportunity in the N transmission opportunities when the data packet corresponding to the TBS is carried, and the modulation corresponding to the second modulation and coding method The order is higher than the modulation order corresponding to the first modulation and coding method; the transmitter 801 is used for the TBS and the second modulation and coding method determined by the controller/processor 803, in the N At least one of the transmission opportunities transmits the data packet.
  • the terminal device 800 may be specifically the terminal device in the foregoing embodiments, and may be used to execute various steps and/or processes corresponding to the terminal device in the foregoing method embodiments.
  • the memory 804 may include a read-only memory and a random access memory, and provide instructions and data to the controller/processor 803.
  • a portion of the memory 804 may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the controller/processor 803 may be used to execute instructions stored in the memory, and when the controller/processor 803 executes instructions stored in the memory, the controller/processor 803 is used to execute the above-mentioned corresponding to the terminal device Various steps and/or processes of method embodiments.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may be implemented or Perform the disclosed methods, steps, and logical block diagrams in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function, which is used to store program instructions and/or data.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, devices, or units, and may also be electrical, mechanical, or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology, or all or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium
  • several instructions are included to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种发送、接收方法及装置。该方法,包括:终端设备根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;N个传输时机中的每个传输时机用于对数据包进行一次传输;在TBS对应的数据包承载于N个传输时机中第一传输时机所对应的码率大于码率阈值时,终端设备确定第二调制编码方式,第二调制编码方式对应的调制阶数高于第一调制编码方式对应的调制阶数;终端设备根据TBS以及第二调制编码方式,在N个传输时机中的至少一个传输时机发送数据包。本申请通过调整传输时机的调制阶数,从而减小传输时机的码率的方式,避免了传输时机的码率过大所带来的问题。

Description

发送、接收方法及装置
本申请要求于2019年01月11日提交中国专利局、申请号为201910028833.1、申请名称为“种发送、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种发送、接收方法及装置。
背景技术
随着通信技术的不断发展,对传输可靠性的要求越来越高。
为了提高传输的可靠性,终端设备可以将数据分别在多个传输时机发送数据包至网络设备,即在多个传输时机中对该数据包进行重复传输。通常,可以根据多个传输时机中一个传输时机的时频资源以及调制编码方式,确定传输块大小(transport block size,TBS),并根据确定的TBS以及该调制编码方式,在多个传输时机数据进行重复传输。进一步的,为了提高调度灵活性,在多个传输时机中对该数据进行重复传输时,提出了根据多个传输时机的时频资源以及调制编码方式,确定TBS的方式。
但是,在根据多个传输时机的时频资源以及调制编码方式确定TBS时,如何确定各传输时机的调制编码方式,成为目前亟待解决的问题。
发明内容
本申请提供一种发送、接收方法及装置,用以实现在根据多个传输时机的时频资源以及调制编码方式确定TBS时,确定各传输时机的调制编码方式。
第一方面,本申请实施例提供一种发送方法,包括:
终端设备根据N个传输时机包括的用于承载数据信息的RE以及第一调制编码方式,确定数据包的TBS,N为大于1的整数;该N个传输时机中的每个传输时机用于对该数据包进行一次传输;在第一码率大于码率阈值时,该终端设备确定第二调制编码方式,该第一码率为该TBS对应的该数据包承载于该N个传输时机中第一传输时机所对应的码率,该第二调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数;该终端设备根据该TBS以及该第二调制编码方式,在该N个传输时机中的至少一个传输时机发送该数据包。
在上述方案中,通过终端设备根据N个传输时机包括的用于承载数据信息的RE以及第一调制编码方式,确定数据包的TBS,在TBS对应的数据包承载于第一传输时机所对应的码率(可以记为第一码率),大于码率阈值时,终端设备确定调制阶数小于第一调制编码方式的第二调制编码方式,并根据TBS以及第二调制编码方式,在N个传输时机中的至少一个传输时机发送数据包,提供了在根据多个传输时机的时频资 源以及调制编码方式确定TBS时,通过调整传输时机的调制阶数,从而减小传输时机的码率的方式,避免了传输时机的码率过大所带来的问题。
在一种可能的实现中,该N个传输时机中每个传输时机的时域长度相等。
在上述方案中,通过N个传输时机中每个传输时机的时域长度相等,可以实现时域长度相等的重复。这里,N个传输时机中每个传输时机的时域长度可以小于第一时间单元,该第一时间单元例如可以为时隙。第二时间单元可以小于第一时间单元,进一步的,N个传输时机中每个传输时机的时域长度可以小于或等于第二时间单元。
在一种可能的实现中,该N个传输时机中的每个传输时机的时域长度不等。
在上述方案中,通过N个传输时机中每个传输时机的时域长度不相等,可以实现时域长度完全不相等的重复,提高了重复传输的灵活性。这里,N个传输时机中一个传输时机的时域长度可以小于或等于第一时间单元,该第一时间单元例如可以为时隙。
在一种可能的实现中,该至少一个传输时机为该第一传输时机。
在上述方案中,通过至少一个传输时机为第一传输时机,可以实现对于第一传输时机根据第二调制编码方式发送数据包,对于N个传输时机中除第一传输时机之外的其他传输时机,可以根据第二调制编码方式之外的调制编码方式发送数据包。
在一种可能的实现中,该N个传输时机中部分传输时机的时域长度相等。
在上述方案中,通过N个传输时机中部分传输时机的时域长度相等,可以实现时域长度不完全相等的重复,提高了重复传输的灵活性。这里,N个传输时机中一个传输时机的时域长度可以小于或等于第一时间单元,该第一时间单元例如可以为时隙。
在一种可能的实现中,该至少一个传输时机为该第一传输时机,以及与该第一传输时机的时域长度相等的传输时机。
在上述方案中,通过至少一个传输时机为第一传输时机以及与该第一传输时机的时域长度相等的传输时机,可以实现对于第一传输时机以及与第一传输时机的时域长度相等的传输时机,根据第二调制编码方式发送数据包,对于N个传输时机中除这些传输时机之外的其他传输时机,可以根据第二调制编码方式之外的调制编码方式发送数据包。
在一种可能的实现中,该方法还包括:在第二码率大于该码率阈值时,该终端设备确定第三调制编码方式,该第二码率为该TBS对应的该数据包承载于该N个传输时机中第二传输时机所对应的码率,该第三调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数;该终端设备根据该TBS以及该第三调制编码方式,在该第二传输时机发送该数据包。其中,该第一传输时机与第二传输时机不同。
在上述方案中,通过该TBS对应的该数据包承载于该N个传输时机中第二传输时机所对应的码率(可以记为第二码率),大于该码率阈值时,该终端设备确定第三调制编码方式,并根据该TBS以及该第三调制编码方式,在该第二传输时机发送该数据包,可以实现对于除第一传输时机(或者,还可以包括与第一传输时机时域长度相等的传输时机)之外的第二传输时机,根据第二码率发送数据包,提高了重复传输的灵活性。
在一种可能的实现中,该至少一个传输时机为该N个传输时机中发送该数据包的传输时机。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最长的传输时机。
上述方案中,通过第一传输时机为该N个传输时机中时域长度最长的传输时机,使得重复传输多次时,第一传输时机能发送所有的信息比特。这样做的好处是,终终端设备在调整时能够选择最小的码率和调制方式组合,以传输最多的冗余信息,提高传输的可靠性。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最短的传输时机。
在上述方案中,通过在所述第一传输时机为所述N个传输时机中时域长度最短的传输时机时,对于N个传输时机中时域长度大于第一传输时机的其他传输时机,传输完根据所述TBS相应的信息比特后,会有剩余资源上没有数据。在剩余资源上可以采取补零的方式,或者添加冗余比特。这样做的好处是,终端设备在每个传输时机都能发送所有的信息比特,网络设备在解码时能够获得最大的合并增益。
在一种可能的实现中,该码率阈值为动态指示、预定义或预配置得到。
第二方面,本发明实施例提供一种接收方法,包括:
网络设备根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;该N个传输时机中的每个传输时机用于对该数据包进行一次传输;该网络设备接收终端设备在该N个传输时机中至少一个传输时机、采用第二调制编码方式发送的该TBS对应的该数据包,该第二调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数,该第二调制编码方式为该终端设备在第一码率大于码率阈值时确定的,该第一码率为该TBS对应的该数据包承载于第一传输时机所对应的码率。
上述方案中,通过网络设备根据N个传输时机包括的用于承载数据信息的RE以及第一调制编码方式,确定数据包的TBS,并接收终端设备在该N个传输时机中至少一个传输时机、采用第二调制编码方式发送的该TBS对应的该数据包,该第二调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数,该第二调制编码方式为该终端设备在第一码率大于码率阈值时确定的,该第一码率为该TBS对应的该数据包承载于第一传输时机所对应的码率,提供了在根据多个传输时机的时频资源以及调制编码方式确定TBS时,通过调整传输时机的调制阶数,从而减小传输时机的码率的方式,避免了传输时机的码率过大所带来的问题。
在一种可能的实现中,该N个传输时机中每个传输时机的时域长度相等。
在上述方案中,通过N个传输时机中每个传输时机的时域长度相等,可以实现时域长度相等的重复。这里,N个传输时机中每个传输时机的时域长度可以小于第一时间单元,该第一时间单元例如可以为时隙。第二时间单元可以小于第一时间单元,进一步的,N个传输时机中每个传输时机的时域长度可以小于或等于第二时间单元。
在一种可能的实现中,该N个传输时机中的每个传输时机的时域长度不等。
在上述方案中,通过N个传输时机中每个传输时机的时域长度不相等,可以实现时域长度完全不相等的重复,提高了重复传输的灵活性。这里,N个传输时机中一个传输时机的时域长度可以小于或等于第一时间单元,该第一时间单元例如可以为时隙。
在一种可能的实现中,该至少一个传输时机为该第一传输时机。
在上述方案中,通过至少一个传输时机为第一传输时机,可以实现对于第一传输时机根据第二调制编码方式发送数据包,对于N个传输时机中除第一传输时机之外的其他传输时机,可以根据第二调制编码方式之外的调制编码方式发送数据包。
在一种可能的实现中,该N个传输时机中部分传输时机的时域长度相等。
在上述方案中,通过N个传输时机中部分传输时机的时域长度相等,可以实现时域长度不完全相等的重复,提高了重复传输的灵活性。这里,N个传输时机中一个传输时机的时域长度可以小于或等于第一时间单元,该第一时间单元例如可以为时隙。
在一种可能的实现中,该至少一个传输时机为该第一传输时机,以及与该第一传输时机的时域长度相等的传输时机。
在上述方案中,通过至少一个传输时机为第一传输时机以及与该第一传输时机的时域长度相等的传输时机,可以实现对于第一传输时机以及与第一传输时机的时域长度相等的传输时机,根据第二调制编码方式发送数据包,对于N个传输时机中除这些传输时机之外的其他传输时机,可以根据第二调制编码方式之外的调制编码方式发送数据包。
在一种可能的实现中,该方法还包括:
该网络设备接收终端设备在该N个传输时机中第二传输时机、采用第三调制编码方式发送的该TBS对应的该数据包,该第三调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数,该第三调制编码方式为在第二码率大于码率阈值时确定的,且第二码率为该TBS对应的该数据包承载于该第二传输时机所对应的码率;该第一传输时机与第二传输时机不同。
在上述方案中,通过该TBS对应的该数据包承载于该N个传输时机中第二传输时机所对应的码率(可以记为第二码率),大于该码率阈值时,该终端设备确定第三调制编码方式,并根据该TBS以及该第三调制编码方式,在该第二传输时机发送该数据包,可以实现对于除第一传输时机(或者,还可以包括与第一传输时机时域长度相等的传输时机)之外的第二传输时机,根据第二码率发送数据包,提高了重复传输的灵活性。
在一种可能的实现中,该至少一个传输时机为该N个传输时机中发送该数据包的传输时机。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最长的传输时机。
上述方案中,通过第一传输时机为该N个传输时机中时域长度最长的传输时机,使得重复传输多次时,第一传输时机能发送所有的信息比特。这样做的好处是,终终端设备在调整时能够选择最小的码率和调制方式组合,以传输最多的冗余信息,提高传输的可靠性。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最短的传输时机。
在上述方案中,通过在所述第一传输时机为所述N个传输时机中时域长度最短的传输时机时,对于N个传输时机中时域长度大于第一传输时机的其他传输时机,传输 完根据所述TBS相应的信息比特后,会有剩余资源上没有数据。在剩余资源上可以采取补零的方式,或者添加冗余比特。这样做的好处是,终端设备在每个传输时机都能发送所有的信息比特,网络设备在解码时能够获得最大的合并增益。
在一种可能的实现中,该码率阈值为动态指示、预定义或预配置得到。
第三方面,本申请实施例还提供了一种发送装置,用于实现上述第一方面描述的方法。发送装置为终端设备或支持终端设备实现该第一方面描述的方法的发送装置,例如该发送装置包括芯片系统。例如,该发送装置包括:处理模块和发送模块。处理模块,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;该N个传输时机中的每个传输时机用于对该数据包进行一次传输;该处理模块,用于在第一码率大于码率阈值时,确定第二调制编码方式,该第一码率为该TBS对应的该数据包承载于该N个传输时机中第一传输时机所对应的码率,该第二调制编码方式对应的调制阶数高于第一调制编码方式对应的调制阶数;发送模块,用于根据该处理模块确定的该TBS以及该第二调制编码方式,在该N个传输时机中的至少一个传输时机发送该数据包。
在一种可能的实现中,该N个传输时机中每个传输时机的时域长度相等。
在一种可能的实现中,该N个传输时机中的每个传输时机的时域长度不等。
在一种可能的实现中,该至少一个传输时机为该第一传输时机。
在一种可能的实现中,该N个传输时机中部分传输时机的时域长度相等。
在一种可能的实现中,该至少一个传输时机为该第一传输时机,以及与该第一传输时机的时域长度相等的传输时机。
在一种可能的实现中,处理模块,还用于在第二码率大于该码率阈值时,确定第三调制编码方式,该第二码率为该TBS对应的该数据包承载于该N个传输时机中第二传输时机所对应的码率,该第三调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数;发送模块还用于,根据该TBS以及该第三调制编码方式,在该第二传输时机发送该数据包;该第一传输时机与第二传输时机不同。
在一种可能的实现中,该至少一个传输时机为该N个传输时机中发送该数据包的传输时机。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最长的传输时机。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最短的传输时机。
在一种可能的实现中,该码率阈值为动态指示、预定义或预配置得到。
第四方面,本申请实施例还提供了一种接收装置,用于实现上述第二方面描述的方法。发送装置为网络设备或支持网络设备实现该第二方面描述的方法的接收装置,例如该接收装置包括芯片系统。例如,该接收装置包括:处理模块和接收模块。处理模块,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;
接收模块,用于接收终端设备在所述N个传输时机中至少一个传输时机、采用第 二调制编码方式发送的所述TBS对应的所述数据包,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在第一码率大于码率阈值时确定的,所述第一码率为所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率。
在一种可能的实现中,该N个传输时机中每个传输时机的时域长度相等。
在一种可能的实现中,该N个传输时机中的每个传输时机的时域长度不等。
在一种可能的实现中,该至少一个传输时机为该第一传输时机。
在一种可能的实现中,该N个传输时机中部分传输时机的时域长度相等。
在一种可能的实现中,该至少一个传输时机为该第一传输时机,以及与该第一传输时机的时域长度相等的传输时机。
在一种可能的实现中,处理模块,还用于接收终端设备在该N个传输时机中第二传输时机、采用第三调制编码方式发送的该TBS对应的该数据包,该第三调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数,该第三调制编码方式为在第二码率大于码率阈值时确定的,且第二码率为该TBS对应的该数据包承载于该第二传输时机所对应的码率;该第一传输时机与第二传输时机不同。
在一种可能的实现中,该至少一个传输时机为该N个传输时机中发送该数据包的传输时机。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最长的传输时机。
在一种可能的实现中,该第一传输时机为该N个传输时机中时域长度最短的传输时机。
在一种可能的实现中,该码率阈值为动态指示、预定义或预配置得到。
第五方面,本申请实施例提供了一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的实现中,终端设备的结构中包括处理器和收发器,处理器,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输。处理器,还用于在第一码率大于码率阈值时,确定第二调制编码方式,所述第一码率为所述TBS对应的所述数据包承载于所述N个传输时机中第一传输时机所对应的码率,所述第二调制编码方式对应的调制阶数高于第一调制编码方式对应的调制阶数。收发器被配置为支持终端设备根据所述处理器确定的所述TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包。
在一个可能的实现中,处理器,还用于第二码率大于所述码率阈值时,确定第三调制编码方式,所述第二码率为所述TBS对应的所述数据包承载于所述N个传输时机中第二传输时机所对应的码率,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数。收发器,还用于支持终端设备根据所述TBS以及所述 第三调制编码方式,在所述第二传输时机发送所述数据包;所述第一传输时机与第二传输时机不同。
第六方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的实现中,网络设备的结构中包括处理器和收发器,所述处理器被配置为根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输。所述收发器用于支持网络设备接收终端设备在所述N个传输时机中至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在第一码率大于码率阈值时确定的,所述第一码率为所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率。所述网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
在一种可能的实现中,接收器,还用于支持网络设备接收终端设备在所述N个传输时机中第二传输时机、采用第三调制编码方式发送的所述TBS对应的所述数据包,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第三调制编码方式为终端设备在第二码率大于码率阈值时确定的,所述第二码率为所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率;所述第一传输时机与第二传输时机不同。
第七方面,本申请实施例还提供了一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在发送装置中运行时,使得发送装置执行上述第一方面所述的方法。
第八方面,本申请实施例还提供了一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在接收装置中运行时,使得接收装置执行上述第二方面所述的方法。
第九方面,本申请实施例还提供了一种包含指令的计算机程序产品,当计算机程序产品在发送装置中运行时,使得发送装置执行上述第一方面所述的方法。
第十方面,本申请实施例还提供了一种包含指令的计算机程序产品,当计算机程序产品在接收装置中运行时,使得接收装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述方法中网络设备或终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例还提供了一种通信系统,所述通信系统包括第三方面描述的终端设备或支持终端设备实现该第一方面描述的方法的发送装置,以及第四方面描述的网络设备或支持网络设备实现该第二方面描述的方法的接收装置;
或所述通信系统包括第五方面描述的终端设备或支持终端设备实现该第一方面描述的方法的发送装置,以及第六方面描述的网络设备或支持网络设备实现该第二方面 描述的方法的接收装置。
另外,上述任意方面的设计方式所带来的技术效果可参见第一方面和第二方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请实施例中,终端设备、网络设备和信息指示装置的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请实施例类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2本申请实施例提供的应用场景示意图;
图3为本申请实施例提供的一种发送、接收方法的流程图;
图4A至图4F为本申请实施例提供的传输时机的时域长度的示意图;
图5为本申请实施例提供的一种发送装置的结构示意图;
图6为本申请实施例提供的一种接收装置的结构示意图;
图7为本申请提供的另一种接收装置的结构示意图;
图8为本申请实施例提供的另一接收装置的结构示意图。
具体实施方式
图1为本申请实施例提供的通信系统的架构示意图。如图1所示,该通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址接入(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用 户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备,或者NR通信系统中的终端设备等等,本申请实施例对此并不限定。
作为示例而非限定,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,C-RAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或者NR系统中的新一代基站(new generation NodeB,gNodeB)等等,本申请实施例并不限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源或者频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码 的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
下面,先介绍一下本申请的相关基础知识。
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(5th Generation,5G)移动通信系统应运而生。国际电信联盟(International Telecommunication Union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(Enhanced Mobile Broadband,eMBB)、高可靠低时延通信(Ultra-Reliable and Low-Latency Communications,URLLC)以及海量机器类通信(Massive Machine-Type Communications,mMTC)。
典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。
应理解,NR系统支持各种时间调度单元,长度可以为一个或多个时域符号。该时域符号可以是正交频分复用符号(orthogonal frequency division multiplexing,OFDM)。其中OFDM符号可以使用转换预编码(transform precoding),也可以不使用转换预编码。如果OFDM符号使用了转换预编码,又可以被称为单载波频分复用(single carrier-frequency division multiplexing,SC-FDM)。NR系统是由时隙(slot)组成的,一个slot可以包括14个符号。NR系统还支持多种子载波间隔。不同的子载波间隔下slot对应的时间长度可以不同。例如,当子载波间隔为15kHz,那么一个slot对应的时间长度可以为1ms。又例如,当子载波间隔30kHz,那么一个slot对应的时间长度可以为0.5ms。又例如,当子载波间隔60kHz,那么一个slot对应的时间长度可以为0.25ms。再例如,当子载波间隔120kHz,那么一个slot对应的时间长度可以为0.125ms。应理解,由于一个时隙的符号数可以配置成一个固定的数值, 例如,14个符号,因此,符号对应的时间长度也可以随着子载波间隔的变化而变化。
时频域资源包括时域资源和/或频域资源。频域资源可以是一个或多个资源块(resource block,RB),也可以是一个或多个资源单元(resource element,RE),也可以是一个或多个载波/小区,也可以是一个或多个部分带宽(bandwidth part,BWP),也可以是一个或多个载波上的一个或多个BWP上的一个或多个RB,还可以是一个或多个载波上的一个或多个BWP上的一个或多个RB上的一个或多个RE。时域资源可以是一个或多个时隙,也可以是一个或多个时隙上的一个或多个符号。
在无线通信系统中,上行数据传输(终端设备向网络设备发送数据)或下行数据传输(网络设备向终端设备发送数据)都需要传输参考信号。这是因为接收端在进行数据译码之前,需要使用参考信号对信道进行信道估计,进而使用信道估计的结果将空间信道对数据的影响消除掉,从而进行译码。
对于下行传输来说,如果是基于动态调度的,那么终端设备会接收到下行控制信息DCI用于指示PDSCH,此DCI中会携带用于指示该PDSCH占用的时频域资源、调制方式等指示信息。终端设备接收到DCI,就可以确定在哪个资源上接收PDSCH。进一步地,终端设备接收PDSCH之后,可以将最终译码的结果反馈给网络设备。其中,如果终端设备对PDSCH接收正确则反馈的信息为肯定答复(acknowledgment,ACK),如果终端设备对PDSCH接收错误则反馈的信息为否定答复(negative acknowledgment,NACK)。上述ACK和NACK在通信系统中可以统称为混合自动重传请求(hybrid automatic repeat request,HARQ)信息。一般情况下,终端设备都会反馈PDSCH对应的HARQ信息,以便于网络设备在获知终端设备错误接收后可以快速对终端设备进行重新传输,以保证数据传输的可靠性。
最初,为了提高传输的可靠性,提出了终端设备可以将数据分别在多个传输时机发送至网络设备的方式,并且是根据该多个传输时机中一个传输时机的时频资源和调制编码方式,确定TBS,并根据该调制编码方式和该TBS在该多个传输时机中进行重复传输(以下记为方式1)。具体的,多个传输时机中每个传输时机可以包括M1个符号,重复M2次。
但是,通过方式1进行重复传输存在调度灵活性较差的问题。因此,目前提出了根据多个传输时机的时频资源以及调制编码方式确定TBS,并根据该TBS在多个传输时机中进行重复传输的方式(以下记为方式2)。
以M1等于2,M2等于4,且目标TBS等于100字节(bytes)和250字节为例,假设带宽为40MHz,子载波间隔SCS=60kHz。基于协议规定的MCS表格中所有的MCS索引(index),确定所有能够支持得到目标TBS的物理资源块(physical resource block,PRB)数目(NPRB),用这种方法选出了相应的MCS index如下表1和表2中所示。
表1
Figure PCTCN2019122744-appb-000001
Figure PCTCN2019122744-appb-000002
表2
Figure PCTCN2019122744-appb-000003
从表1和表2可以看出,根据方式1计算TBS和根据方式2计算TBS相比,为了获得相同的TBS对于{MCS,NPRB}组合的选择性更差。例如对于目标TBS等于100字节,根据方式1计算TBS可从18个{MCS,NPRB}组合中选一个,而根据方式2计算TBS则可以从23个{MCS,NPRB}组合中选一个。因此,根据方式2计算TBS具有更好的调度灵活性。
需要说明的是,在上述表1和表2中“8符号,重复1次”是用于确定目标TBS可以选择的{MCS,NPRB}组合,在具体传输时,是可以根据选择的该{MCS,NPRB}组合,按照“2符号,重复4次”的方式进行传输。
本申请主要用于描述上述方式2中如何确定各传输时机的调制编码方式。
为便于理解本申请实施例,下面先对本文涉及的相关术语进行简单的介绍。
1、时隙(slot):时域资源的最小调度单位,在NR中,一种时隙的格式可以为包含14个正交频分多址(orthogonal frequency division multiplexing,OFDM)符号,每个OFDM符号的CP为正常CP;或者,一种时隙的格式可以为包含12个OFDM符号,每个OFDM符号的CP为扩展CP;或者,一种时隙的格式可以为包含7个OFDM符号,每个OFDM符号的CP为正常CP。一个时隙中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分预留不进行传输。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,时隙格式不限于以上示例。NR中,根据不同的子载波间隔,1ms中可以包括不同数量的时隙(slot),例如,当子载波间隔为15kHz时,1ms包括1个时隙,该时隙占用1ms;当子载波间隔为30kHz时,1ms包括2个时隙,每个时隙占用0.5ms。
2、符号(symbol):也可以称为时域符号,是时域资源的最小单位,本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。符号可以包括上行符号和下行符号,作为示例而非限定,上行符号例如可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或OFDM符号;下行符号例如可以称为OFDM符号。
3、资源元素(resource element,RE):可以称为资源粒子,时频资源的最小调度单元,一个RE在时域上可以占用1个OFDM符号,在频域上可以占用1个子载波。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,RE格式不限于以上示例。
4、传输块大小(transport block size,TBS):传输块上承载的数据量(比特数)。
5、物理资源块(physical resource block,PRB):物理资源块与资源元素相对应,资源元素是代表时域上一个符号且频域上一个子载波。以长期演进(long term evolution,LTE)协议为例,一个物理资源块可以是由14x12个资源元素组成,其中14代表一个时隙中有14个符号,12代表一个频带有12个子载波。可以理解的是,在物理资源块的时间单元小于时隙时,一个物理资源块中资源元素的数目可以小于14x12个。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图3为本申请实施例提供的一种发送、接收方法的流程图。本实施例主要描述了终端设备在N个传输时机中向网络设备重复发送数据,网络设备例如可以为上述无限接入网设备,如图3所示,本实施例的方法可以包括:
步骤301,终端设备根据N个传输时机包括的用于承载数据信息的RE以及第一调制编码方式,确定TBS,N为大于1的整数。
本步骤中,所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输。可以理解的是,终端设备在实际发送所述数据包的过程中,可以使用全部的N个传输时机,也可以使用N个传输时机中的一个传输时机或者部分(二个或多个)传输时机,本申请对此可以不作限定。
其中,传输时机(transmission occasion,TO)可以表示数据调度的时域调度粒度。可选的,所述时域调度粒度可以小于第一时间单元,或者,所述时域调度粒度可以小于或等于第二时间单元,所述第二时间单元小于所述第一时间单元。以符号作为时域资源的最小单位,第一时间单元可以包括多个符号,第二时间单元可以包括一个或多个符号,且第二时间单元包括的符号个数小于第一时间单元。对于第一时间单元和第二时间单元,做如下说明:
具体的,国际电信联盟(International Telecommunication Union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(Enhanced Mobile Broadband,eMBB)、高可靠低时延通信(Ultra-Reliable and Low-Latency Communications,URLLC)以及海量机器类通信(Massive Machine-Type Communications,mMTC)。
典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。
并且,URLLC业务对时延要求极高,对于URLLC的典型应用场景:运输业(Transport Industry)具体来讲例如V2X(vehicle to everything,车对外界的信息交换)需要的可 靠性为99.999%,端到端时延为5ms;配电(power distribution)需要可靠性为99.9999%,端到端时延为5ms;工厂自动化(Factory automation)可靠性为99.9999%,端到端时延为2ms。然而,mMTC业务对于时延的要求相比于URLLC业务要低。
可以看出,由于URLLC业务和eMBB业务对通信系统的时延需求不同,在eMBB业务下传输时机的时域调度粒度为第一时间单元(或者,也可以称为时间单元,本申请对此不作限定)的基础上,对于为了适应时延要求更高的URLLC业务,提出了小于第一时间单元的时域调度粒度,即第二时间单元(或者,也可以称为微时间单元,迷你时隙、非时隙等,本申请对此不作限定)。
需要说明的是,对于第一时间单元的划分方式,本申请可以不作限定,可选的,第一时间单元可以为时隙、子帧等。任何满足小于第一时间单元的时间单元均可以认为是第二时间单元。例如,第一时间单元可以称为时隙(slot),第二时间单元可以称为微时隙;或者,第一时间单元可以称为子帧,第二间单元可以称为微子帧;等等。其中,一个时隙比如可以包括14个符号,一个微时隙包括的符号数小于14,比如2或4或7等等;或者,一个时隙比如可以包括14个符号,一个微时隙包括的符号数小于14,比如1、2、3、4、5、6、7、8、9、10、11、12或13;或者,一个时隙比如可以包括7个符号,一个微时隙包括的符号数小于7,比如2或4等等,具体取值也不做限定。
需要说明的是,对于第一时间单元的划分方式,本申请可以不作限定,可选的,第一时间单元可以为时隙、子帧等。任何满足小于第一时间单元的时间单元均可以认为是第二时间单元。例如,第一时间单元可以称为时隙(slot),第二时间单元可以称为微时隙;或者,第一时间单元可以称为子帧,第二间单元可以称为微子帧;等等。其中,一个时隙比如可以包括14个符号,一个微时隙包括的符号数小于14,比如2或4或7等等;或者,一个时隙比如可以包括14个符号,一个微时隙包括的符号数小于14,比如1、2、3、4、5、6、7、8、9、10、11、12或13;或者,一个时隙比如可以包括7个符号,一个微时隙包括的符号数小于7,比如2或4等等,具体取值也不做限定。
需要说明的是,对于N个传输时机中每个传输时机的时域长度之间的关系,本申请可以不作限定。可选的,所述N个传输时机中每个传输时机的时域长度相等。这里,在N个传输时机中每个传输时机的时域长度相等时,每个传输时机的时域长度可以小于第一时间单元。所述第一时间单元可以为时隙或者子帧,为14个OFDM符号。也可以为N个时隙,或者N个子帧,为14*N个OFDM符号。进一步可选的,N个传输时机中每个传输时机的时域长度均等于第二时间单元。第二时间单元可以小于所述第一时间长度。例如,以N等于4为例,如图4A所示,传输时机1至传输时机4的时域长度均等于第二时间单元。又例如,以N等于2为例,如图4B所示,传输时机1至传输时机2的时域长度均等于第二时间单元。又例如,以N等于8为例,如图4C所示,传输时机1至传输时机8的时域长度均等于第二时间单元。
或者,可选的,所述N个传输时机中部分传输时机的时域长度相等。如图4D所示,传输时机1与传输时机2的时域长度相等,且与传输时机3和传输时机4的时域长度不同。传输时机3和4的时域边界可以为时隙的边界。
或者,可选的,所述N个传输时机中每个传输时机的时域长度不相等。例如,以N等于2为例,如图4E所示,传输时机1和传输时机2的时域长度不相等。传输时机1与传输时机2的边界为时隙边界。又例如,以N等于3且第一时间单元为时隙为例,如图4F所示,传输时机1和传输时机3的时域长度小于时隙且不相等,传输时机2的时域长度等于时隙。且传输时机之间的边界为时隙边界。
示例性的,步骤301之前还可以包括:终端设备接收无线接入网设备发送的配置信息或指示信息,该配置信息或指示信息可以用于指示时频资源(即N个传输时机总的时频资源)以及第一调制编码方式。
示例性的,若是基于调度的(grant-based),则终端设备可以接收无线接入网设备发送的指示信息,且该指示信息具体可以为下行控制信息(downlink control information,DCI)。进一步可选的,指示信息中还可以包括重复传输次数,即N。
示例性的,若是免调度的(grant free/configured grant),则终端设备可以接收无线接入网设备发送的配置信息。进一步,配置信息中还可以包括重复传输次数,即N。
示例性的,重复传输次数可以是由高层参数配置,或者,也可以由终端设备根据重确定,本申请对此可以不作限定。
例如,网络设备可以向终端设备通知N个传输时机各自的时频资源(例如,图4C中,网络设备向终端设备通知传输时机1、传输时机2和传输时机3各自的时域资源);或者,网络设备可以向终端设备通知N个传输时机中第一个传输时机的时频资源,由终端设备确定N个传输时机各自的时频资源(例如,如图4B中,网络设备向终端设备通知2个传输时机中的传输时机1的时频资源,终端设备确定2个传输时机中的传输时机2的时频资源);或者,网络设备可以向终端设备通知重复传输一个总的时频资源,终端设备在该总的时频资源中确定N个传输时机各自的时频资源(例如,如图4D-图4F中,网络设备配置了传输时机总的时频资源,终端设备可以根据时隙边界确定N个传输时机各自的时频资源);或者,网络设备可以向终端设备通知1次传输的时频资源,终端设备可以根据该1次传输的时频资源中确定N个传输时机各自的时频资源(例如,如图4B中,网络设备向终端设备通知传输时机1的时频资源,终端设备确定N等于2,并确定传输时机2的时频资源);或者,网络设备可以向终端设备通知N’个传输时机各自的时频资源,UE可以根据N’个传输时机各自的时频资源确定N个传输时机各自的视频资源,其中N’与N不同。
示例性的,第一调制编码方式可以由网络设备配置,类似的,可以是基于调度的(Grant-based),也可以是免调度的(grant-free);或者,可选的,第一调制编码方式可以是由终端设备预定义或预配置。
根据传输块大小N TBS与RE的数目N RE、调制阶数Q m以及码率coderate之间的关系可以满足如下公式(1)。
N TBS=coderate×N RE×Q m       公式(1)
从而,可以根据N个传输时机包括的用于承载数据信息的RE以及第一调制编码方式,确定TBS。具体的,基于公式(1)可以根据N个传输时机包括的用于承载数据信息的RE、第一调制编码方式对应的调制阶数以及第一调制编码方式对应的码率,确定 TBS。
示例性的,为了便于计算,在根据N个传输时机的时频资源以及第一调制编码方式,确定TBS时,可以不考虑开销(overhead)因素,该开销因素例如可以包括解调参考信号(demodulation reference signal,DMRS)开销,参数配置开销等。具体的,可以将N个传输时机包括的PRB数目N PRB、一个PRB中包括的子载波数N c以及N个传输时机包括的符号数N s的乘积,作为N个传输时机包括的RE数N RE
可选的,所述数据信息可以包括上行控制信息(uplink control information,UCI),UCI可以为反馈信息HARQ-ACK,信道状态信息CSI(channel statement information),信道质量指示信息CQI(channel quality indicator),调度请求SR(scheduling request)等。
例如,N等于4,4个传输时机中每个传输时机的时域长度相同,且均为2个符号,第一调制编码方式对应的调制阶数为2,第一调制编码方式对应的码率为251/1024,N c等于12,则根据4个传输时机包括的RE以及第一调制编码方式,确定的传输块大小N TBS,满足如下公式(2)。
N TBS==251/1024×(N PRB×12×2×4)×2      公式(2)
例如,N等于2,2个传输时机中其中一个传输时机的时域长度为2个符号,另一个传输时机的时域长度为6个符号,第一调制编码方式对应的调制阶数为2,第一调制编码方式对应的码率为679/1024,N c等于12,则根据2个传输时机包括的RE以及第一调制编码方式,确定的传输块大小N TBS,满足如下公式(3)。
N TBS==679/1024×(N PRB×12×(2+4))×2      公式(3)
例如,可以根据用于表示第一调制编码方式的MCS索引,通过查询如下表3,确定第一调制编码方式对应的调制阶数(Modulation Order)和码率(Target code Rate)。
表3
Figure PCTCN2019122744-appb-000004
Figure PCTCN2019122744-appb-000005
例如,N等于4,4个传输时机中每个传输时机的时域长度相同,且均为2个符号,基于表3,用于表示第一调制编码方式的MCS索引等于9。对于N等于2,2个传输时机中其中一个传输时机的时域长度为2个符号,另一个传输时机的时域长度为6个符号,基于表3,用于表示第一调制编码方式的MCS索引等于15。
步骤302,所述TBS对应的所述数据包承载于所述N个传输时机中第一传输时机所对应的码率,大于码率阈值时,所述终端设备确定第二调制编码方式。
本步骤中,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数。这里,所述TBS对应的所述数据包承载于第一传输时机,即所述第一传输时机传输的数据包的大小为所述TBS。
对于一定的调制编码方式,通常是通过调整该调制编码方式对应的码率,而不是调整该调制编码方式对应的调制阶数,使得第一传输时机传输的数据包的大小达到所述TBS。并且,由于第一传输时机传输的数据包的大小为所述TBS,而所述TBS根据N个传输时机包括的用于承载数据信息的RE确定的,且N个传输时机包括的用于承载数据信息的RE的数量是大于第一传输时机包括的用于承载数据信息的RE的数量,因此所述TBS对应的所述数据包承载于第一传输时机所对应的码率(以下记为第一码率)可以大于所述第一调制编码方式对应的码率。
需要说明的是,第一码率是根据第一调制编码方式的调制阶数、所述TBS和所述第一传输时机的RE确定。例如,N等于4,4个传输时机中每个传输时机的时域长度相同,且均为2个符号,第一调制编码方式对应的调制阶数为2,所述TBS对应的所述数据包承载于时域长度为2个符号所对应的码率例如可以为4倍的251/1024,即1004/1024。例如,N等于2,2个传输时机中其中一个传输时机的时域长度为2个符号,另一个传输时机的时域长度为6个符号,所述TBS对应的所述数据包承载于时域 长度为6个符号所对应的码率例如可以为4/3倍的679/1024,即679/768。
考虑到码率过大时会存在一定的问题,例如,丢失数据或解码失败等,因此,本申请实施例中根据码率阈值对码率进行限制。
进一步的,以所述码率阈值为表3中的最大码率772/1024为例,则对于举例3,所述TBS对应的所述数据包承载于时域长度为2个符号所对应的码率1004/1024大于码率阈值772/1024,因此确定第二调制编码方式;所述TBS对应的所述数据包承载于时域长度为6个符号所对应的码率679/768大于码率阈值772/1024,因此确定第二调制编码方式。
可以理解的是,在所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率,小于或等于所述码率阈值时,可以不考虑由于所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率过大,而导致的问题。因此,所述第一传输时机所根据的调制编码方式对应的调制阶数,可以与第一调制编码方式对应的调制阶数相等。
由于对于相同的TBS以及RE的数目,调制阶数与码率之间是反比关系,因此通过此第二调制编码方式对应的调制阶数高于第一调制编码方式对应的调制阶数,可以使得第二调制编码方式对应的码率小于第一码率,从而可以避免由于码率过大带来的问题。
需要说明的是,对于第二调制编码方式对应的码率与码率阈值的大小关系,本申请可以不作限定。可选的,第二调制编码方式对应的码率可以大于码率阈值,或者,第二调制编码方式对应的码率可以小于码率阈值,或者,第二调制编码方式对应的码率可以等于码率阈值。
例如,以所述码率阈值为表3中的最大码率772/1024,且第二调制编码方式对应的码率小于或等于码率阈值为例,N等于4,4个传输时机中每个传输时机的时域长度相同,且均为2个符号,第一调制编码方式对应的调制阶数为2,则如下表4所示,可以将调制阶数从2(第一调制编码方式对应的调制阶数为2)调整为4(即,第二调制编码方式对应的调制阶数为4),从而,终端设备将码率从1004/1024调整为526/1024,526/1024小于码率阈值772/1024。
例如,以所述码率阈值为表3中的最大码率772/1024,且第二调制编码方式对应的码率小于或等于码率阈值为例,对于例如,N等于2,2个传输时机中其中一个传输时机的时域长度为2个符号,另一个传输时机的时域长度为6个符号,则如下表4所示,可以将调制阶数从2调整为4,从而,终端设备将码率从679/768调整为679/1536,679/1536小于码率阈值772/1024。
表4
Figure PCTCN2019122744-appb-000006
Figure PCTCN2019122744-appb-000007
基于表4,在N个传输时机中每个传输时机的时域长度相等时,达到码率小于码率门限772/1024,则N与调整方式的关系可以如下:
1)、N=2时,调制阶数从2调整至4(例如,调制方式可以由QPSK调整至16QAM)。可选的,因为调制阶数的改变对传输可靠性影响较大,如果将调制方式从QPSK调整至16QAM和将调制方式从QPSK调整至64QAM都可以满足码率不超过第一码率门限,且TBS保持不变,则取对调制方式的最小改动。
2)、N=4时,且第一调制编码方式对应的MCS index为9,和10时,调制方式从QPSK调整至16QAM。当第一调制编码方式对应的MCS index为11~13时,将调制方式从QPSK调整至64QAM。因为基站指示的MCS index为11~13时,将调制方式从QPSK调整至16QAM无法同时满足码率不超过码率阈值,和TBS保持不变两个条件。当第一调制编码方式对应的MCS index超过13时,无论如何调整调制方式都无法同时满足码率不超过码率阈值,和TBS保持不变两个条件。
3)、N=8时,且第一调制编码方式对应的MCS index为5,6和7时,调制方式从QPSK调整至16QAM。当且第一调制编码方式对应的MCS index为8和9时,将调制方式从QPSK调整至64QAM。当且第一调制编码方式对应的MCS index超过9时,无论如何调整调制方式都无法同时满足码率不超过码率阈值,和TBS保持不变两个条件。
需要说明的是,对于所述发送设备得到所述码率阈值的具体方式,本申请可以不作限定。可选的,所述码率阈值为动态指示、预定义或预配置得到,例如可以为通过高层参数配置指示,或者由DCI动态指示,或者还可以为上述表3中的最大值772/1024。
步骤303,所述终端设备根据所述TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包。
本步骤中,所述至少一个传输时机可以为所述N个传输时机,或者,可以为所述N个传输时机中的部分传输时机。
需要说明的是,所述至少一个传输时机中每个传输时机发送的所述数据包可以理解为基于相同的信息比特、所述TBS以及所述第二调制编码方式得到的数据包。可选的,至少一个传输时机中每个传输时机发送的所述数据包的内容可以相同,或者,至少一个传输时机中每个传输时机发送的所述数据包的内容可以不相同,或者,至少一个传输时机中每个传输时机发送的所述数据包的内容可以部分相同。
可以理解的是,在终端设备根据TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包时,所述至少一个传输时机中每个传输时机的调制阶数相同,均为所述第二调制编码方式对应的调制阶数,对于所述至少一个传输时机中每个传输时机的码率可以根据实际的传输需求灵活确定。
场景1,可选的,所述至少一个传输时机为所述N个传输时机中发送所述数据包的传输时机,即所述N个传输时机中发送所述数据包的传输时机所根据的调制编码方式均为第二调制编码方式。
当所述N个传输时机中每个传输时机的时域长度相等时,所述TBS对应的所述数据包承载于所述N个传输时机中任意一个传输时机所对应的码率均相等。因此,进一步可选的,为了便于计算,所述第一传输时机可以为所述N个传输时机中的第一个传输时机。
在所述N个传输时机中每个传输时机时域长度不相等时,所述TBS对应的所述数据包承载于所述N个传输时机中任意一个传输时机所对应的码率均不相等。在所述N个传输时机中部分传输时机的时域长度相等时,所述TBS对应的所述数据包承载于所述N个传输时机中时域长度相等的传输时机所对应的码率相等,但所述TBS对应的所述数据包承载于所述N个传输时机中时域长度不相等的传输时机所对应的码率不相等。因此,对于场景1,在所述N个传输时机中每个传输时机时域长度不相等,或者所述N个传输时机中部分传输时机的时域长度相等时,可以选择一个传输时机作为所述第一传输时机。进一步可选的,所述第一传输时机为所述N个传输时机中时域长度最长的传输时机;或者,所述第一传输时机为所述N个传输时机中时域长度最短的传输时机。
其中,在所述第一传输时机为所述N个传输时机中时域长度最长的传输时机时,对于N个传输时机中时域长度小于第一传输时机的其他传输时机,仍存在所述TBS对应的所述数据包承载于所述其他传输时机中任意一个传输时机所对应的码率,大于码 率阈值的情况。因此,对于其他传输时机也按照第二调制编码方式进行发送时,还是存在码率过大的问题,例如会丢失一部分信息比特。但是,由于重复传输多次,第一传输时机能发送所有的信息比特。这样做的好处是,终终端设备在调整时能够选择最小的码率和调制方式组合,以传输最多的冗余信息,提高传输的可靠性。
其中,在所述第一传输时机为所述N个传输时机中时域长度最短的传输时机时,对于N个传输时机中时域长度大于第一传输时机的其他传输时机,传输完根据所述TBS相应的信息比特后,会有剩余资源上没有数据。在剩余资源上可以采取补零的方式,或者添加冗余比特。这样做的好处是,终端设备在每个传输时机都能发送所有的信息比特,网络设备在解码时能够获得最大的合并增益。
可替换的,在所述N个传输时机中每个传输时机时域长度不相等时,还可以对应如下场景2。
场景2,可选的,所述至少一个传输时机为所述第一传输时机,即第一传输时机中发送所述数据包的传输时机所根据的调制编码方式为第二调制编码方式,所述N个传输时机中除所述第一传输时机之外的其他传输时机所根据的调制编码方式不为所述第二调制编码方式。
进一步可选的,可以不对所述N个传输时机中除所述第一传输时机之外的其他传输时机所根据的调制阶数进行调整。即,所述TBS对应的所述数据包承载于所述其他传输时机所对应的码率可以不变。具体的,可以根据第一调制编码方式对应的调制阶数、所述TBS和所述其他传输时机中一个传输时机的RE,确定所述TBS对应的所述数据包承载于该传输时机所对应的码率(以下可以记为码率1),并根据第一调制编码方式对应的调制阶数、码率1以及所述TBS,在该传输时机发送所述数据包。
或者,可选的,可以对所述N个传输时机中第二传输时机所根据的调制阶数进行调制,所述第二传输时机与所述第一传输时机不同。进一步可选的,本实施例的方法还可以包括如下步骤A和步骤B。
步骤A,所述TBS对应的所述数据包承载于所述N个传输时机中第二传输时机所对应的码率,大于所述码率阈值时,所述终端设备确定第三调制编码方式。
其中,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;与第一传输时机类似,对于一定的调制编码方式,通常是通过调整该调制编码方式对应的码率,而不是调整该调制编码方式对应的调制阶数,使得第二传输时机传输的数据包的大小达到所述TBS。并且,由于第二传输时机传输的数据包的大小为所述TBS,而所述TBS根据N个传输时机包括的用于承载数据信息的RE确定的,且N个传输时机包括的用于承载数据信息的RE的数量是大于第二传输时机包括的用于承载数据信息的RE的数量,因此所述TBS对应的所述数据包承载于第二传输时机所对应的码率(以下记为第二码率)可以大于所述第一调制编码方式对应的码率。需要说明的是,第二码率是根据第一调制编码方式对应的调制阶数、所述TBS和所述第二传输时机的RE确定。
由于对于相同的TBS以及RE的数目,调制阶数与码率之间是反比关系,因此通过此第三调制编码方式对应的调制阶数高于第一调制编码方式对应的调制阶数,可以使得第三调制编码方式对应的码率小于第二码率,从而可以避免由于码率过大带来的问 题。
可以理解的是,在所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率,小于或等于所述码率阈值时,可以不考虑由于所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率过大,而导致的问题。因此,所述第二传输时机所根据的调制编码方式对应的调制阶数,可以与第一调制编码方式对应的调制阶数相等。
需要说明的是,对于第三调制编码方式对应的码率与码率阈值的大小关系,本申请可以不作限定。可选的,第三调制编码方式对应的码率可以大于码率阈值,或者,第三调制编码方式对应的码率可以小于码率阈值,或者,第三调制编码方式对应的码率可以等于码率阈值。
步骤B,所述终端设备根据所述TBS以及所述第三调制编码方式,在所述第二传输时机发送所述数据包。
可选的,所述第二传输时机可以遍历所述N个传输时机中除第一传输时机之外的其他传输时机,即,对于N个传输时机除所述第一传输时机之外的其他传输时机中的每一个传输时机均可以执行上述步骤A和步骤B(即,单独调整调制阶数),或者,所述第二传输时机可以为所述N个传输时机中除第一传输时机之外的部分传输时机,本申请对此可以不作限定。
可替换的,在所述N个传输时机中部分传输时机时域长度相等时,还可以对应如下场景3。
场景3,可选的,所述至少一个传输时机为所述第一传输时机以及与所述第一传输时机的时域长度相等的传输时机,即第一传输时机以及与所述第一传输时机的时域长度相等的传输时机中发送所述数据包的传输时机所根据的调制编码方式为第二调制编码方式,所述N个传输时机中,除所述第一传输时机以及与所述第一传输时机的时域长度相等的传输时机之外的其他传输时机,所根据的调制编码方式不为所述第二调制编码方式。
进一步可选的,可以不对所述N个传输时机中除所述第一传输时机以及与所述第一传输时机的时域长度相等的传输时机之外的其他传输时机,所根据的调制阶数进行调整。即,所述TBS对应的所述数据包承载于所述其他传输时机所对应的码率可以不变。具体的,可以根据第一调制编码方式对应的调制阶数、所述TBS和所述其他传输时机中一个传输时机的RE,确定所述TBS对应的所述数据包承载于该传输时机所对应的码率(以下可以记为码率1),并根据第一调制编码方式对应的调制阶数、码率1以及所述TBS,在该传输时机发送所述数据包。
或者,可选的,可以对所述N个传输时机中第二传输时机所根据的调制阶数进行调制,所述第二传输时机与所述第一传输时机的时域长度不同。进一步可选的,本实施例的方法还可以包括如下步骤C和步骤D。
步骤C,所述TBS对应的所述数据包承载于所述N个传输时机中第二传输时机所对应的码率,大于所述码率阈值时,所述终端设备确定第三调制编码方式。
需要说明的是,步骤C与步骤A类似,在此不再赘述。
步骤D,所述终端设备根据所述TBS以及所述第三调制编码方式,在所述第二传输时机发送所述数据包。
需要说明的是,步骤D与步骤B类似,在此不再赘述。
步骤304,网络设备根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的TBS。
本步骤中,由于终端设备发送的数据量与网络设备接收的数据量需要对齐理解,因此网络设备也需要确定所述TBS。
需要说明的是,步骤304与步骤301的区别主要在于步骤301由终端设备执行,步骤304由网络设备执行,其实现原理以及技术效果类似,在此不再赘述。
需要说明的是,步骤304与步骤301至步骤303之间并没有先后顺序的限制。
步骤305,所述网络设备接收终端设备在所述N个传输时机中至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包。
本步骤中,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率,大于码率阈值时确定。
所述网络设备根据所述TSB接收所述终端设备在步骤303中在所述至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包。
需要说明的是,本步骤中,关于所述第一传输时机、所述第二调制编码方式的具体内容可以参见步骤302和步骤303中的相关描述,在此不再赘述。
可选的,与终端设备对应的,本实施例的方法还可以包括如下步骤:
所述网络设备接收终端设备在所述N个传输时机中第二传输时机、采用第三调制编码方式发送的所述TBS对应的所述数据包。
需要说明的是,本步骤中关于所述第二传输时机、所述第三调制编码方式的具体内容可以参见步骤303中的相关描述,在此不再赘述。
可选的,在步骤305之后,网络设备可以根据步骤304确定的所述TBS对步骤305接收到的所述数据包进行解码。
需要说明的是,步骤305与步骤304之间并没有先后顺序的限制。
本实施例中,通过终端设备根据N个传输时机包括的用于承载数据信息的RE以及第一调制编码方式,确定数据包的TBS,TBS对应的数据包承载于第一传输时机所对应的码率,大于码率阈值时,终端设备确定调制阶数小于第一调制编码方式的第二调制编码方式,并根据TBS以及第二调制编码方式,在N个传输时机中的至少一个传输时机发送数据包,提供了在根据多个传输时机的时频资源以及调制编码方式确定TBS时,通过调整传输时机的调制阶数,从而减小传输时机的码率的方式,避免了传输时机的码率过大所带来的问题。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上述本申请提供的实施例中,分别从终端设备、网络设备、以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。可以理解的是,各个网元,例如终端设备、网络设备为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请 能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备、网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上文中结合图1至图4,详细描述了根据本申请实施例的发送、接收方法,下面将结合图5至图8,详细描述根据本申请实施例的发送、接收装置。
在采用对应各个功能划分各个功能模块的情况下,图5为本申请实施例提供的一种发送装置500的结构示意图。所述发送装置为终端设备或支持终端设备实现实施例中提供的方法的发送装置,例如该发送装置可以是芯片系统。该装置500包括:处理模块510和发送模块520。
在一种可能的实现方式中,该处理模块510,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;该处理模块510,还用于在第一码率大于码率阈值时,确定第二调制编码方式,所述第一码率为所述TBS对应的所述数据包承载于所述N个传输时机中第一传输时机所对应的码率,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;该发送模块520,用于根据该处理模块510确定的所述TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包。
示例性地,该N个传输时机中每个传输时机的时域长度相等。
示例性地,该N个传输时机中的每个传输时机的时域长度不等。
示例性地,该至少一个传输时机为该第一传输时机。
示例性地,该N个传输时机中部分传输时机的时域长度相等。
示例性地,该至少一个传输时机为该第一传输时机,以及与该第一传输时机的时域长度相等的传输时机。
在一种可能的实现中,该处理模块510,还用于在第二码率大于该码率阈值时,确定第三调制编码方式,该第二码率为该TBS对应的该数据包承载于该N个传输时机中第二传输时机所对应的码率,该第三调制编码方式对应的调制阶数高于该第一调制编码方式对应的调制阶数;该发送模块520还用于,根据该TBS以及该第三调制编码方式,在该第二传输时机发送该数据包;该第一传输时机与第二传输时机不同。
示例性地,该至少一个传输时机为该N个传输时机中发送该数据包的传输时机。
示例性地,该第一传输时机为该N个传输时机中时域长度最长的传输时机。
示例性地,该第一传输时机为该N个传输时机中时域长度最短的传输时机。
示例性地,该码率阈值为动态指示、预定义或预配置得到。
应理解,装置500中,发送模块对应的实体设备为发送器,处理模块对应的实体 设备为处理器。
应理解,这里的装置500以功能单元的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的终端设备,装置500可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图6为本申请实施例提供的一种接收装置600的结构示意图,该接收装置能执行本申请各方法实施例中任一方法实施例中网络设备所执行的步骤,如图6所示,所述接收装置为网络设备或支持网络设备实现实施例中提供的方法的接收装置,例如该接收装置可以是芯片系统。该装置600包括:处理模块610和接收模块620。
在一种可能的实现方式中,该处理模块610,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;该接收模块620,用于接收终端设备在所述N个传输时机中至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在第一码率大于码率阈值时确定的,所述第一码率为所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率。
示例性地,该N个传输时机中每个传输时机的时域长度相等。
示例性地,该N个传输时机中的每个传输时机的时域长度不等。
示例性地,该至少一个传输时机为该第一传输时机。
示例性地,该N个传输时机中部分传输时机的时域长度相等。
示例性地,该至少一个传输时机为该第一传输时机,以及与该第一传输时机的时域长度相等的传输时机。
在一种可能的实现中,该接收模块620,还用于接收终端设备在所述N个传输时机中第二传输时机、采用第三调制编码方式发送的所述TBS对应的所述数据包,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第三调制编码方式为终端设备在第二码率大于码率阈值时确定的,所述第二码率为所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率。
示例性地,该至少一个传输时机为该N个传输时机中发送该数据包的传输时机。
示例性地,该第一传输时机为该N个传输时机中时域长度最长的传输时机。
示例性地,该第一传输时机为该N个传输时机中时域长度最短的传输时机。
示例性地,该码率阈值为动态指示、预定义或预配置得到。
应理解,装置600中,处理模块对应的实体设备为处理器,接收模块对应的实体设备为接收器。
应理解,这里的装置600以功能单元的形式体现。这里的术语“模块”可以指应 用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的第一网络设备,装置600可以用于执行上述方法实施例中与第一网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置500和装置600分别具有实现上述方法中终端设备和网络设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如处理模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。即上述接收模块可以是接收器,发送模块可以是发送器,处理模块可以是处理器。
在本申请的实施例,图5和图6中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收模块和发送模块可以是该芯片的收发电路,在此不做限定。
图7为本申请提供的一种网络设备的结构示意图。图7所示的网络设备700包括发射器/接收器701、控制器/处理器702和存储器703。
其中,发射器/接收器701用于支持网络设备与上述实施例中的所述的终端设备之间收发信息。所述控制器/处理器702执行各种用于与终端设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器701进行调解,并进一步由控制器/处理器702进行处理来恢复终端设备所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器702进行处理,并由发射器701进行调解来产生下行链路信号,并经由天线发射给终端设备。控制器/处理器702还执行上述方法实施例中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。存储器703用于存储网络设备的程序代码和数据。
示例性地,所述控制器/处理器702用于:用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输。发射器/接收器701:用于接收终端设备在所述N个传输时机中至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在第一码率大于码率阈值时确定的,所述第一码率为所述TBS对应的所述数据包承载于所述第一传输时机所对应的码率。
示例性地,发射器/接收器701用于:接收终端设备在所述N个传输时机中第二传输时机、采用第三调制编码方式发送的所述TBS对应的所述数据包,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第三调制编码方式为终端设备在第二码率大于码率阈值时确定的,所述第二码率为所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率;
应理解,网络设备700可以具体为上述实施例中的网络设备,并且可以用于执行 上述方法实施例中与网络设备对应的各个步骤和/或流程。可选地,该存储器703可以包括只读存储器和随机存取存储器,并向控制器/处理器702提供指令和数据。存储器703的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该控制器/处理器702可以用于执行存储器中存储的指令,并且当该控制器/处理器702执行存储器中存储的指令时,该控制器/处理器702用于执行上述与网络设备对应的方法实施例的各个步骤和/或流程。
图8为本申请实施例提供的终端设备的结构示意图,其可以是上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。图8所示的终端设备800包括发射器801、接收器802、控制器/处理器803、存储器804和调制解调处理器805。
其中,发射器801用于发送上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发射的下行链路信号(DCI)。接收器802用于接收从天线接收到的下行链路信号(DCI)。在调制解调处理器805中,编码器806接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理。调制器807进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器805处理(例如,解调)该输入采样并提供符号估计。解码器808处理(例如,解码)该符号估计并提供发送给终端设备的已解码的数据和信令消息。编码器806、调制器807、解码器808和解调器809可以由合成的调制解调处理器605来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
控制器/处理器803对终端设备的动作进行控制管理,用于执行上述方法实施例中由终端设备进行的处理。示例性地,该控制器/处理器803,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;该控制器/处理器803,还用于在第一码率大于码率阈值时,确定第二调制编码方式,所述第一码率为所述TBS对应的所述数据包承载于所述N个传输时机中第一传输时机所对应的码率,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;发射器801,用于根据该控制器/处理器803确定的所述TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包。
应理解,终端设备800可以具体为上述实施例中的终端设备,并且可以用于执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器804可以包括只读存储器和随机存取存储器,并向控制器/处理器803提供指令和数据。存储器804的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该控制器/处理器803可以用于执行存储器中存储的指令,并且当该控制器/处理器803执行存储器中存储的指令时,该控制器/处理器803用于执行上述与终端设备对应的方法实施例的各个步骤和/或流程。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处 理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种发送方法,其特征在于,包括:
    终端设备根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;
    在第一码率大于码率阈值时,所述终端设备确定第二调制编码方式,所述第一码率为所述TBS对应的所述数据包承载于所述N个传输时机中第一传输时机所对应的码率,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;
    所述终端设备根据所述TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包。
  2. 一种接收方法,其特征在于,包括:
    网络设备根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;
    所述网络设备接收终端设备在所述N个传输时机中至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在第一码率大于码率阈值时确定的,所述第一码率为所述TBS对应的所述数据包承载于第一传输时机所对应的码率。
  3. 一种发送装置,其特征在于,包括:
    处理模块,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;
    所述处理模块,用于在第一码率大于码率阈值时,确定第二调制编码方式,所述第一码率为所述TBS对应的所述数据包承载于所述N个传输时机中第一传输时机所对应的码率,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;
    发送模块,用于根据所述处理模块确定的所述TBS以及所述第二调制编码方式,在所述N个传输时机中的至少一个传输时机发送所述数据包。
  4. 一种接收装置,其特征在于,包括:
    处理模块,用于根据N个传输时机包括的用于承载数据信息的资源元素RE以及第一调制编码方式,确定数据包的传输块大小TBS,N为大于1的整数;所述N个传输时机中的每个传输时机用于对所述数据包进行一次传输;
    接收模块,用于接收终端设备在所述N个传输时机中至少一个传输时机、采用第二调制编码方式发送的所述TBS对应的所述数据包,所述第二调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第二调制编码方式为所述终端设备在第一码率大于码率阈值时确定的,所述第一码率为所述TBS对应的所述数据包承载于第一传输时机所对应的码率。
  5. 根据权利要求1或2所述的方法,或者权利要求3或4所述的装置,其特征在于,所述N个传输时机中每个传输时机的时域长度相等。
  6. 根据权利要求1或2所述的方法,或者权利要求3或4所述的装置,其特征在于,所述N个传输时机中的每个传输时机的时域长度不等。
  7. 根据权利要求6所述的方法或装置,其特征在于,所述至少一个传输时机为所述第一传输时机。
  8. 根据权利要求1或2所述的方法,或者权利要求3或4所述的装置,其特征在于,所述N个传输时机中部分传输时机的时域长度相等。
  9. 根据权利要求8所述的方法或装置,其特征在于,所述至少一个传输时机为所述第一传输时机,以及与所述第一传输时机的时域长度相等的传输时机。
  10. 根据权利要求7或9所述的方法,其特征在于,所述方法还包括:
    在第二码率大于所述码率阈值时,所述终端设备确定第三调制编码方式,所述第二码率为所述TBS对应的所述数据包承载于所述N个传输时机中第二传输时机所对应的码率,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;
    所述终端设备根据所述TBS以及所述第三调制编码方式,在所述第二传输时机发送所述数据包;所述第一传输时机与所述第二传输时机不同。
  11. 根据权利要求1-4、5-6或8任一项所述的方法或装置,其特征在于,所述至少一个传输时机为所述N个传输时机中发送所述数据包的传输时机。
  12. 根据权利要求6或8所述的方法或装置,其特征在于,所述第一传输时机为所述N个传输时机中时域长度最长的传输时机。
  13. 根据权利要求6或8所述的方法或装置,其特征在于,所述第一传输时机为所述N个传输时机中时域长度最短的传输时机。
  14. 根据权利要求1-13任一项所述的方法或装置,其特征在于,所述码率阈值为动态指示、预定义或预配置得到。
  15. 根据权利要求7或9所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备在所述N个传输时机中第二传输时机、采用第三调制编码方式发送的所述TBS对应的所述数据包,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第三调制编码方式为终端设备在第二码率大于所述码率阈值时确定的,所述第二码率为所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率;所述第一传输时机与第二传输时机不同。
  16. 根据权利要求7或9所述的装置,其特征在于,所述处理模块还用于:
    在第二码率大于所述码率阈值时,确定第三调制编码方式,所述第二码率为所述TBS对应的所述数据包承载于所述N个传输时机中第二传输时机所对应的码率,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数;
    所述发送模块,还用于根据所述TBS以及所述第三调制编码方式,在所述第二传输时机向网络设备发送所述数据包;所述第一传输时机与第二传输时机不同。
  17. 根据权利要求7或9所述的装置,其特征在于,所述接收模块还用于接收终端设备在所述N个传输时机中第二传输时机、采用第三调制编码方式发送的所述TBS对应的所述数据包,所述第三调制编码方式对应的调制阶数高于所述第一调制编码方式对应的调制阶数,所述第三调制编码方式为终端设备在第二码率大于码率阈值时确定的,所述第二码率为所述TBS对应的所述数据包承载于所述第二传输时机所对应的码率;所述第一传输时机与第二传输时机不同。
  18. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;当所述计算机软件指令在发送装置上运行时,使得所述发送装置执行权利要求1、5-14任一项权利要求所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;当所述计算机软件指令在接收装置上运行时,使得所述接收装置执行权利要求2、5-9、11-15 任一项权利要求所述的方法。
  20. 一种计算机程序产品,其特征在于,当所述计算机程序产品在发送装置上运行时,使得所述计算机执行如权利要求1、5-14任一项权利要求所述的方法。
  21. 一种计算机程序产品,其特征在于,当所述计算机程序产品在接收装置上运行时,使得所述计算机执行如权利要求2、5-9、11-15任一项权利要求所述的方法。
PCT/CN2019/122744 2019-01-11 2019-12-03 发送、接收方法及装置 WO2020143366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028833.1A CN111435859B (zh) 2019-01-11 2019-01-11 发送、接收方法及装置
CN201910028833.1 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020143366A1 true WO2020143366A1 (zh) 2020-07-16

Family

ID=71521388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122744 WO2020143366A1 (zh) 2019-01-11 2019-12-03 发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN111435859B (zh)
WO (1) WO2020143366A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115334629A (zh) * 2021-05-10 2022-11-11 华为技术有限公司 上行传输的方法和装置
WO2023000236A1 (en) * 2021-07-21 2023-01-26 Nec Corporation Method, device and computer storage medium of communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494469A (zh) * 2008-01-23 2009-07-29 大唐移动通信设备有限公司 通讯系统的调制方式确定方法及装置
CN105577324A (zh) * 2015-12-22 2016-05-11 京信通信技术(广州)有限公司 通信链路自适应调整方法和系统
WO2017175818A1 (ja) * 2016-04-08 2017-10-12 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109150403A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 确定传输块大小的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142923A (ja) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 無線通信装置及びmcs決定方法
CN101621352B (zh) * 2008-07-04 2013-03-27 电信科学技术研究院 天线模式自适应切换方法、系统及设备
CN101754289B (zh) * 2008-11-28 2012-11-14 中兴通讯股份有限公司 一种适用于多种用户状态的调制编码方式调度方法及系统
CN102724016B (zh) * 2012-06-05 2017-02-08 青岛艾特网络发展有限公司 调制编码方案的自适应调整方法及装置
CN107666369B (zh) * 2016-07-29 2021-02-12 华为技术有限公司 一种重传极化码的方法及其发送设备、接收设备
CN114268414B (zh) * 2017-05-04 2024-04-26 华为技术有限公司 无线通信方法及装置
CN109150395B (zh) * 2018-01-18 2019-09-13 华为技术有限公司 发送数据的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494469A (zh) * 2008-01-23 2009-07-29 大唐移动通信设备有限公司 通讯系统的调制方式确定方法及装置
CN105577324A (zh) * 2015-12-22 2016-05-11 京信通信技术(广州)有限公司 通信链路自适应调整方法和系统
WO2017175818A1 (ja) * 2016-04-08 2017-10-12 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109150403A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 确定传输块大小的方法及装置

Also Published As

Publication number Publication date
CN111435859A (zh) 2020-07-21
CN111435859B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2020143524A1 (zh) 传输下行信道的方法和装置
AU2021204172B2 (en) Allocation of communication resources for control signals in the uplink
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
WO2020164784A1 (en) User equipment and system performing transmission and reception operations
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
WO2020211752A1 (zh) 上行传输方法和通信装置
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2020143366A1 (zh) 发送、接收方法及装置
WO2020164474A1 (zh) 一种码本的处理方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN109803408A (zh) 信道状态信息报告的传输方法及通信设备
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2020199767A1 (zh) 通信方法、通信装置和系统
WO2020143514A1 (zh) 一种功率控制的方法以及功率控制的装置
TWI794078B (zh) 載波切換的傳輸處理方法、裝置及處理器可讀存儲介質
CN103053212B (zh) 资源调度方法和数据传输方法及设备和系统
WO2021147214A1 (zh) 通信方法和通信装置
KR20230128563A (ko) Uci 멀티플렉싱 전송 방법, 장치 및 저장 매체
WO2023051417A1 (zh) 一种通信方法及装置
WO2022056879A1 (zh) 通信方法及装置
WO2022199607A1 (zh) 数据传输方法及装置
WO2023283958A1 (zh) 信息处理方法、装置、设备及存储介质
WO2024119494A1 (zh) 通信方法、装置、系统及计算机相关产品
WO2024031646A1 (en) Wireless communication method and related devices
WO2023134661A1 (zh) Uci传输方法、终端、网络设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908274

Country of ref document: EP

Kind code of ref document: A1