WO2022056879A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022056879A1
WO2022056879A1 PCT/CN2020/116317 CN2020116317W WO2022056879A1 WO 2022056879 A1 WO2022056879 A1 WO 2022056879A1 CN 2020116317 W CN2020116317 W CN 2020116317W WO 2022056879 A1 WO2022056879 A1 WO 2022056879A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
time
frequency resource
mcs
indication information
Prior art date
Application number
PCT/CN2020/116317
Other languages
English (en)
French (fr)
Inventor
李锐杰
官磊
李胜钰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20953737.2A priority Critical patent/EP4213555A4/en
Priority to PCT/CN2020/116317 priority patent/WO2022056879A1/zh
Priority to CN202080105258.1A priority patent/CN116250322A/zh
Publication of WO2022056879A1 publication Critical patent/WO2022056879A1/zh
Priority to US18/185,727 priority patent/US20230231667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • the 5th generation (5G) system Compared with the previous generations of mobile communication systems, the 5th generation (5G) system has put forward higher requirements in terms of transmission rate, delay and power consumption, and is committed to supporting higher system performance and supporting a variety of service types. , different deployment scenarios and wider spectrum range.
  • 5G 5th generation
  • the two data streams are modulated and encoded according to the reliability requirements of one of the data streams.
  • the reliability requirement for the first data stream is 99%
  • the reliability requirement for the second data stream is 99.999%.
  • the resource allocation goal is to satisfy the reliability of the second data stream, more resources need to be allocated to transmit the first data stream and the second data stream.
  • the requirements are lower than the reliability requirements of the second data stream and, therefore, waste resources. If the resource allocation goal is to meet the reliability requirements of the first data stream, less resources will be allocated to transmit the first data stream and the second data stream. At this time, the reliability requirements of the second data stream cannot be met. .
  • the embodiments of the present application provide a communication method and apparatus, which are used to avoid resource waste while satisfying the reliability of two data streams.
  • a communication method receives the first indication information from the network device indicating the time-frequency resources and the MCS of the first data, the time-frequency resources include the first time-frequency resources and the second time-frequency resources, and the first time-frequency resources are the time-frequency resources that carry the first data.
  • the terminal determines the MCS of the first time-frequency resource, the second time-frequency resource and the second data; wherein the first time-frequency resource, the second time-frequency resource At least one of the resource and the MCS of the second data is determined according to the first indication information; the terminal sends the first data to the network device on the first time-frequency resource according to the MCS of the first data, and sends the first data to the network device according to the MCS of the second data in the second data.
  • the terminal sends the second data to the network device on the time-frequency resource; or, the terminal receives the first data from the network device on the first time-frequency resource according to the MCS of the first data, and sends the second data on the second time-frequency resource according to the MCS of the second data. receiving second data from the network device.
  • the terminal when there are two pieces of data, the terminal can determine the time-frequency resources and MCS of the two pieces of data, so as to meet the reliability requirements of different data and perform data transmission flexibly. Compared with modulating and coding the two data according to the reliability requirements of one of the data (that is, the two data use joint coding, for example, the two data use the same MCS), the two data using their own MCS can meet the requirements of the two data. while avoiding waste of resources.
  • signaling overhead can be reduced compared to all indications using indication information.
  • the first data and the second data are transmitted in the same physical channel.
  • the terminal determines the size of the first data, and determines the first time-frequency resource according to the size of the first data and the MCS of the first data; or, the terminal determines the first time-frequency resource according to the time-frequency resource and the first time-frequency resource The relationship between the time-frequency resource and the time-frequency resource determines the first time-frequency resource; or, the terminal receives the second indication information, and determines the first time-frequency resource according to the second indication information; or, the terminal determines according to the time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource provides multiple methods for determining the first time-frequency resource, so that the first time-frequency resource can be determined under different circumstances, and the flexibility of determining the first time-frequency resource is improved.
  • the terminal receives fifth indication information from the network device, and determines the size of the first data according to the fifth indication information.
  • the terminal determines the second time-frequency resource according to the time-frequency resource and the relationship between the second time-frequency resource and the time-frequency resource; or, the terminal receives the third indication information, and according to the third indication information determining the second time-frequency resource; or, the terminal determines the second time-frequency resource according to the time-frequency resource and the first time-frequency resource; or, the terminal determines the size of the second data, and determines it according to the MCS of the second data and the size of the second data The second time-frequency resource.
  • This possible implementation provides multiple methods for determining the second time-frequency resource, so that the second time-frequency resource can be determined under different circumstances, and the flexibility of determining the second time-frequency resource is improved.
  • the terminal receives sixth indication information from the network device, and determines the size of the second data according to the sixth indication information.
  • the terminal determines the MCS of the second data according to the MCS of the first data and the relationship between the MCS of the first data and the MCS of the second data; or, the terminal receives the fourth indication information, according to The fourth indication information determines the MCS of the second data; or, the terminal determines the size of the second data, and determines the MCS of the second data according to the size of the second data and the second time-frequency resource.
  • This possible implementation provides multiple methods for determining the MCS of the second data, so that the MCS of the second data can be determined in different situations, and the flexibility of determining the MCS of the second data is improved.
  • the terminal sends or receives the first data on the first time-frequency resource according to the MCS of the first data; the terminal sends or receives the second data on the second time-frequency resource according to the MCS of the second data .
  • a communication method is provided.
  • the network device sends the first indication information indicating the time-frequency resource and the MCS of the first data to the terminal, the time-frequency resource includes the first time-frequency resource and the second time-frequency resource, and the first time-frequency resource is the time-frequency bearing the first data.
  • resource, the second time-frequency resource is the time-frequency resource that carries the second data; the network device receives or sends the first data according to the first time-frequency resource and the MCS of the first data; the network device receives or sends the first data according to the second time-frequency resource and the second data
  • the MCS receives or transmits the second data.
  • the first data and the second data are transmitted in the same physical channel.
  • the network device sends second indication information to the terminal, where the second indication information indicates the first time-frequency resource.
  • the network device sends third indication information to the terminal, where the third indication information indicates the second time-frequency resource.
  • the network device sends fourth indication information to the terminal, where the fourth indication information indicates the MCS of the second data.
  • the network device sends fifth indication information to the terminal, where the fifth indication information indicates the size of the first data.
  • the network device sends sixth indication information to the terminal, where the sixth indication information indicates the size of the second data.
  • the network device sends indication information to the terminal, where the indication information indicates at least one of the first time-frequency resource, the second time-frequency resource, and the MCS of the second data.
  • a communication method receives eighth indication information from the network device, where the eighth indication information indicates the first time-frequency resource and the MCS of the first data, and the first time-frequency resource is the time-frequency resource that bears the first data;
  • the terminal determines the MCS of the second time-frequency resource and the second data; wherein, at least one of the second time-frequency resource and the MCS of the second data is determined according to the eighth indication information, and the second time-frequency resource is determined according to the eighth indication information.
  • the frequency resource is the time-frequency resource that carries the second data; the terminal sends the first data to the network device on the first time-frequency resource according to the MCS of the first data, and sends the first data to the network device according to the MCS of the first data.
  • the MCS of the second data sends the second data to the network device on the second time-frequency resource; or, the terminal receives the data from the network device on the first time-frequency resource according to the MCS of the first data the first data of the network device, and receive the second data from the network device on the second time-frequency resource according to the MCS of the second data.
  • the first data and the second data are transmitted in the same physical channel.
  • the terminal receives third indication information, and determines the second time-frequency resource according to the third indication information; the terminal determines the second time-frequency resource according to the MCS of the first data and the first The relationship between the MCS of one data and the MCS of the second data determines the MCS of the second data.
  • the terminal receives fourth indication information, and determines the MCS of the second data according to the fourth indication information; the terminal determines the MCS of the second data according to the first time-frequency resource and the The relationship between a time-frequency resource and the second time-frequency resource determines the second time-frequency resource.
  • the terminal determines the second time-frequency resource according to the first time-frequency resource and the relationship between the first time-frequency resource and the second time-frequency resource;
  • the terminal determines the MCS of the second data according to the MCS of the first data and the relationship between the MCS of the first data and the MCS of the second data.
  • the above-mentioned various implementation manners provide a variety of methods for determining the MCS of the second time-frequency resource and the second data, so that the MCS of the second time-frequency resource and the second data can be determined under different circumstances, which improves the determination of the second time-frequency resource.
  • MCS flexibility of resources and second data
  • a communication method is provided.
  • the network device sends eighth indication information to the terminal, where the eighth indication information indicates the first time-frequency resource and the MCS of the first data, and the first time-frequency resource is the time-frequency resource bearing the first data; wherein, The eighth indication information is further used for the terminal to determine at least one of a second time-frequency resource and an MCS of the second data, where the second time-frequency resource is a time-frequency resource that carries the second data; the The network device sends the first data to the terminal on the first time-frequency resource according to the MCS of the first data, and sends the first data to the terminal on the second time-frequency resource according to the MCS of the second data.
  • the terminal sends the second data; or, the network device receives the first data from the terminal on the first time-frequency resource according to the MCS of the first data, and receives the first data from the terminal according to the second data
  • the MCS of data receives the second data from the terminal on the second time-frequency resource.
  • the first data and the second data are transmitted in the same physical channel.
  • the network device sends third indication information to the terminal, where the third indication information indicates the second time-frequency resource.
  • the network device sends fourth indication information to the terminal, where the fourth indication information indicates the MCS of the second data.
  • a communication method receives the eleventh indication information and the twelfth indication information from the network device, the eleventh indication information indicates the first resource and the third MCS, the twelfth indication information indicates the second resource and the fourth MCS, and the third MCS is the MCS that sends or receives the first data on the first resource, and the fourth MCS is the MCS that sends or receives the second data on the second resource;
  • the terminal sends the first data to the network device on the first time-frequency resource according to the first MCS, and sends the first data to the network device on the second time-frequency resource according to the second MCS the second data; or, the terminal receives the first data from the network device on the first time-frequency resource according to the first MCS, and receives the first data from the network device according to the second MCS in the first time-frequency resource.
  • the second data from the network device is received on two time-frequency resources; wherein the first MCS is the MCS that sends or receives the first data on the first time-frequency resource, and the second MCS is the MCS that sends or receives the first data on the first time-frequency resource.
  • the MCS is the MCS for sending or receiving the second data on the second time-frequency resource; the first resource includes the first time-frequency resource and the second time-frequency resource, or the second time-frequency resource
  • the resources include the first time-frequency resource and the second time-frequency resource.
  • the terminal receives tenth indication information from the network device, where the tenth indication information indicates the first time-frequency resource or the first MCS;
  • the terminal determines the first time-frequency resource according to the tenth indication information, and determines the first time-frequency resource according to the tenth indication information, and determines the first time-frequency resource according to the first time-frequency resource and the eleventh indication information and the twelfth indication information to determine the first MCS, the second time-frequency resource, and the second MCS; in the case that the tenth indication information indicates the first MCS, the terminal according to The tenth indication information determines the first MCS, and determines the first time-frequency resource and the second time-frequency resource according to the first MCS, the eleventh indication information, and the twelfth indication information. frequency resources and the second MCS.
  • the terminal determines according to the size of the first time-frequency resource and the first data the first MCS; the terminal determines the second time-frequency resource according to the first time-frequency resource, and the first resource or the second resource; the terminal determines the second time-frequency resource according to the second time-frequency resource and the size of the second data to determine the second MCS; the size of the first data is determined according to the eleventh indication information, and the size of the second data is determined according to the twelfth indication information.
  • the terminal determines the first MCS according to the size of the first MCS and the first data time-frequency resource; the terminal determines the second time-frequency resource according to the first time-frequency resource, and the first resource or the second resource; the terminal determines the second time-frequency resource according to the second time-frequency resource and the The size of the second data determines the second MCS; the size of the first data is determined according to the eleventh indication information, and the size of the second data is determined according to the twelfth indication information.
  • the first resource includes the first time-frequency resource and the second time-frequency resource
  • the terminal determines the second time-frequency resource according to the second resource
  • the terminal determines the second time-frequency resource according to the second resource.
  • the terminal determines the first time-frequency resource according to the first resource and the second time-frequency resource
  • the second MCS is the fourth MCS
  • the first MCS is the third MCS or the second MCS.
  • the first MCS is determined according to the size of the first time-frequency resource and the first data.
  • the terminal determines that X1 REs in the first resource are the second time-frequency resource, and X1 is the number of REs used for data transmission in the second resource.
  • the second resource includes the first time-frequency resource and the second time-frequency resource
  • the terminal determines the first time-frequency resource according to the first resource
  • the terminal determines the first time-frequency resource according to the first resource.
  • the terminal determines the second time-frequency resource according to the second resource and the first time-frequency resource
  • the first MCS is the third MCS
  • the second MCS is the fourth MCS or the third MCS.
  • the second MCS is determined according to the second time-frequency resource and the size of the second data.
  • the terminal determines that X2 REs in the second resource are the first time-frequency resource, and X2 is the number of REs used for data transmission in the first resource.
  • the first data and the second data are transmitted in the same physical channel.
  • a communication method is provided.
  • the network device sends eleventh indication information and twelfth indication information to the terminal, where the eleventh indication information indicates the first resource and the third MCS, the twelfth indication information indicates the second resource and the fourth MCS, and the third MCS is the The MCS that sends or receives the first data on the first resource, and the fourth MCS is the MCS that sends or receives the second data on the second resource; the first resource and the second resource overlap
  • the eleventh indication information and the twelfth indication information are used to determine at least one of the first time-frequency resource, the first MCS, the second time-frequency resource, and the second MCS; wherein the The first MCS is the MCS that sends or receives the first data on the first time-frequency resource, and the second MCS is the MCS that sends or receives the second data on the second time-frequency resource;
  • the first resource includes the first time-frequency resource and the second time-frequency resource, or the second resource includes the first
  • the network device sends tenth indication information to the terminal, where the tenth indication information indicates the first time-frequency resource or the first MCS.
  • the first resource includes the first time-frequency resource and the second time-frequency resource
  • the second time-frequency resource is determined according to the second resource
  • the first time-frequency resource is determined according to the second resource.
  • the time-frequency resource is determined according to the first resource and the second time-frequency resource
  • the second MCS is the fourth MCS
  • the first MCS is the third MCS or the first MCS is determined according to the The size of the first time-frequency resource and the first data is determined.
  • X1 REs in the first resource are the second time-frequency resource, and X1 is the number of REs used for data transmission in the second resource.
  • the second resource includes the first time-frequency resource and the second time-frequency resource, the first time-frequency resource is determined according to the first resource, and the second time-frequency resource is determined according to the first resource.
  • the time-frequency resource is determined according to the second resource and the first time-frequency resource, the first MCS is the third MCS, the second MCS is the fourth MCS, or the second MCS is determined according to the The size of the second time-frequency resource and the second data is determined.
  • X2 REs in the second resource are the first time-frequency resource, and X2 is the number of REs used for data transmission in the first resource.
  • the first data and the second data are transmitted in the same physical channel.
  • a communication device comprising: a communication unit and a processing unit; the communication unit is configured to receive first indication information from a network device, where the first indication information indicates time-frequency resources and MCS of the first data, when The frequency resource includes a first time-frequency resource and a second time-frequency resource, the first time-frequency resource is a time-frequency resource that bears the first data, and the second time-frequency resource is a time-frequency resource that bears the second data; the processing unit is used for determining the MCS of the first time-frequency resource, the second time-frequency resource and the second data; wherein, at least one of the first time-frequency resource, the second time-frequency resource and the MCS of the second data is determined according to the first indication information; communicating The unit is further configured to: send the first data to the network device on the first time-frequency resource according to the MCS of the first data, and send the second data to the network device on the second time-frequency resource according to the MCS of the second data; or , receiving the first data
  • the first data and the second data are transmitted in the same physical channel.
  • the processing unit is specifically configured to: determine the size of the first data, and determine the first time-frequency resource according to the size of the first data and the MCS of the first data; or, according to the time-frequency resource, and The relationship between the first time-frequency resource and the time-frequency resource determines the first time-frequency resource; or, receiving the second indication information through the communication unit, and determining the first time-frequency resource according to the second indication information; or, according to the time-frequency resource and The second time-frequency resource determines the first time-frequency resource.
  • the communication unit is further configured to receive fifth indication information from the network device; the processing unit is further configured to determine the size of the first data according to the fifth indication information.
  • the processing unit is specifically configured to: determine the second time-frequency resource according to the time-frequency resource and the relationship between the second time-frequency resource and the time-frequency resource; or receive the third time-frequency resource through the communication unit Indication information, the second time-frequency resource is determined according to the third indication information; or, the second time-frequency resource is determined according to the time-frequency resource and the first time-frequency resource; or, the size of the second data is determined, and the MCS and The size of the second data determines the second time-frequency resource.
  • the communication unit is further configured to receive sixth indication information from the network device; the processing unit is further configured to determine the size of the second data according to the sixth indication information.
  • the processing unit is specifically configured to: determine the MCS of the second data according to the MCS of the first data and the relationship between the MCS of the first data and the MCS of the second data; or, through communication
  • the unit receives the fourth indication information, and determines the MCS of the second data according to the fourth indication information; or, determines the size of the second data, and determines the MCS of the second data according to the size of the second data and the second time-frequency resource.
  • a communication device comprising: a communication unit and a processing unit; the processing unit is configured to send first indication information to a terminal through the communication unit, where the first indication information indicates the time-frequency resource and the MCS of the first data,
  • the time-frequency resource includes a first time-frequency resource and a second time-frequency resource, the first time-frequency resource is a time-frequency resource that bears the first data, and the second time-frequency resource is a time-frequency resource that bears the second data;
  • the communication unit further Used for: sending the first data to the terminal on the first time-frequency resource according to the MCS of the first data, and sending the second data to the terminal on the second time-frequency resource according to the MCS of the second data; or, according to the MCS of the first data.
  • the MCS receives the first data from the terminal on the first time-frequency resource, and receives the second data from the terminal on the second time-frequency resource according to the MCS of the second data.
  • the first data and the second data are transmitted in the same physical channel.
  • the processing unit is further configured to send second indication information to the terminal through the communication unit, where the second indication information indicates the first time-frequency resource.
  • the processing unit is further configured to send third indication information to the terminal through the communication unit, where the third indication information indicates the second time-frequency resource.
  • the processing unit is further configured to send fourth indication information to the terminal through the communication unit, where the fourth indication information indicates the MCS of the second data.
  • the processing unit is further configured to send fifth indication information to the terminal through the communication unit, where the fifth indication information indicates the size of the first data.
  • the processing unit is further configured to send sixth indication information to the terminal through the communication unit, where the sixth indication information indicates the size of the second data.
  • a communication apparatus including: a communication unit and a processing unit; the communication unit is configured to receive eighth indication information from a network device, the eighth indication information indicating a first time-frequency resource and a first MCS of one data, the first time-frequency resource is the time-frequency resource that carries the first data; the processing unit is configured to determine the second time-frequency resource and the MCS of the second data; wherein, the second time-frequency resource At least one of the time-frequency resource and the MCS of the second data is determined according to the eighth indication information, and the second time-frequency resource is the time-frequency resource that bears the second data; the communication unit, further using In: sending the first data to the network device on the first time-frequency resource according to the MCS of the first data, and sending the first data to the network device on the second time-frequency resource according to the MCS of the second data The network device sends the second data; or, receives the first data from the network device on the first time-frequency resource according to the MCS of the first data,
  • the first data and the second data are transmitted in the same physical channel.
  • the processing unit is specifically configured to: receive third indication information through the communication unit, and determine the second time-frequency resource according to the third indication information;
  • the MCS of the data, and the relationship between the MCS of the first data and the MCS of the second data determine the MCS of the second data.
  • the processing unit is specifically configured to: receive fourth indication information through the communication unit, and determine the MCS of the second data according to the fourth indication information; The time-frequency resource and the relationship between the first time-frequency resource and the second time-frequency resource determine the second time-frequency resource.
  • the processing unit is specifically configured to: determine the first time-frequency resource according to the first time-frequency resource and the relationship between the first time-frequency resource and the second time-frequency resource second time-frequency resource; determining the MCS of the second data according to the MCS of the first data and the relationship between the MCS of the first data and the MCS of the second data.
  • a communication device including: a communication unit and a processing unit; the processing unit is configured to send eighth indication information to a terminal through the communication unit, where the eighth indication information indicates a first time-frequency resource and the MCS of the first data, the first time-frequency resource is the time-frequency resource that bears the first data; wherein, the eighth indication information is also used by the terminal to determine the second time-frequency resource and the second time-frequency resource At least one of the MCSs of the data, the second time-frequency resource is a time-frequency resource that carries the second data; the communication unit is further configured to: according to the MCS of the first data, at the first time-frequency resource send the first data to the terminal on the frequency resource, and send the second data to the terminal on the second time-frequency resource according to the MCS of the second data; or, according to the first data
  • the MCS of the second data receives the first data from the terminal on the first time-frequency resource, and receives the second data from the terminal on the second time-frequency resource
  • the first data and the second data are transmitted in the same physical channel.
  • the processing unit is further configured to send third indication information to the terminal through the communication unit, where the third indication information indicates the second time-frequency resource.
  • the processing unit is further configured to send fourth indication information to the terminal through the communication unit, where the fourth indication information indicates the MCS of the second data.
  • a communication device comprising: one or more functional units, the one or more functional units are used to implement any one of the methods provided in the fifth aspect, for example, including a communication unit and a processing unit; processing The unit is configured to perform, through the communication unit, the actions of sending and/or receiving in any one of the methods provided in the fifth aspect, and the processing unit is further configured to perform other actions in any one of the methods provided in the fifth aspect.
  • a twelfth aspect provides a communication device, including: one or more functional units, the one or more functional units are used to implement any one of the methods provided in the sixth aspect, for example, including a communication unit and a processing unit; processing The unit is configured to perform, through the communication unit, the actions of sending and/or receiving in any one of the methods provided in the sixth aspect, and the processing unit is further configured to perform other actions in any one of the methods provided in the sixth aspect.
  • a communication device comprising: one or more processors and transceivers; the one or more processors and transceivers support the communication device to perform any one of the first to sixth aspects. any method.
  • a fourteenth aspect provides a communication device, comprising: a processor and a communication interface, the processor is coupled with the memory through the communication interface, and when the processor executes the computer program or computer instructions in the memory, the first aspect to the sixth Any method provided by any of the aspects is performed.
  • a fifteenth aspect provides a computer-readable storage medium, comprising computer instructions that, when the computer instructions are executed on a communication device, cause the communication device to execute any one of the first to sixth aspects provided method.
  • a sixteenth aspect provides a computer program product comprising computer instructions that, when executed on a communication device, cause the communication device to perform any one of the methods provided in any one of the first to sixth aspects.
  • a communication system including the above network device and the above terminal.
  • 1 is a schematic diagram of communication between a terminal and a network device
  • Fig. 2 is the flow chart of uplink and downlink data transmission
  • FIG. 3 is a schematic diagram of resources of PDSCH
  • Fig. 4 is the schematic diagram of RBG
  • 5 is a schematic diagram of frequency domain resources occupied by PDSCH
  • 6 is a schematic diagram of codeword mapping to layers
  • FIG. 7 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the locations of a first time-frequency resource and a second time-frequency resource according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of the locations of still another first time-frequency resource and a second time-frequency resource according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the locations of still another first time-frequency resource and a second time-frequency resource according to an embodiment of the present application.
  • FIG. 11 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the locations of a first time domain resource and a second time domain resource according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of the locations of a first frequency domain resource and a second frequency domain resource provided by an embodiment of the present application;
  • FIG. 14 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 15 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of resource overlap for network device scheduling according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of the composition of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a hardware structure of another communication apparatus provided by an embodiment of the present application.
  • the network elements involved in the embodiments of the present application include network equipment and terminals in the communication system, and details can be referred to FIG. 1 .
  • the network device sends a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) ).
  • the terminal first detects the PDCCH, and receives the PDSCH according to the indication information in the PDCCH. After receiving the PDSCH, the terminal decodes the PDSCH. If the PDSCH decoding is successful, the terminal sends an acknowledgement (acknowledgement, ACK) to the network device. If the PDSCH decoding fails, the terminal sends a negative acknowledgement (NACK) to the network device.
  • the network device detects ACK or NACK on the corresponding resource.
  • the network device sends the PDCCH, the terminal first detects the PDCCH, and then sends the physical downlink shared channel according to the indication information in the PDCCH. , PUSCH). The network device detects the PUSCH on the corresponding resource.
  • PDSCH, PDCCH, and PUSCH are only examples of the downlink data channel, downlink control channel, and uplink data channel of the physical layer.
  • the data channel and control channels may have different names, which are not limited in the embodiments of the present application.
  • the communication system in the embodiment of the present application may be a fourth generation (4th Generation, 4G) system, various systems based on 4G system evolution, 5G systems, various systems based on 5G system evolution, and future mobile communication systems.
  • the core network of the 4G system may be called an evolved packet core (EPC) system, and the access network may be called a long term evolution (LTE) system.
  • the core network of the 5G system can be called a 5GC (5G core) system, and the access network can be called a new radio (NR) system.
  • EPC evolved packet core
  • LTE long term evolution
  • 5G core 5GC
  • NR new radio
  • the present application can be applied to enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low-latency communication (URLLC) and other business scenarios.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low-latency communication
  • the network device in this embodiment of the present application is an entity on the network side that is used to send and receive signals.
  • a network device may be a device deployed in a radio access network (RAN) to provide wireless communication functions for terminals, for example, a transmission reception point (TRP), a base station, and various forms of control nodes , roadside unit (roadside unit, RSU) and so on.
  • the base station may be various forms of a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point (access point, AP), and the like.
  • the base station may be an evolved NodeB (evolved NodeB, eNB or eNodeB), a next generation node base station (gNB), a next generation eNB (next generation eNB, ng-eNB), a relay node (relay node) , RN), integrated access and backhaul (IAB) nodes, etc.
  • eNB or eNodeB a next generation node base station
  • gNB next generation eNB
  • ng-eNB next generation eNB
  • relay node relay node
  • IAB integrated access and backhaul
  • the names of devices with base station functions may vary.
  • it may be called eNB or eNodeB in LTE system, and may be called gNB in 5G system or NR system, and the specific name of the base station is not limited in this application.
  • the control node can connect to multiple base stations, and configure resources for multiple terminals covered by multiple base stations.
  • the terminal in this embodiment of the present application may be an entity on the user side for receiving and sending signals.
  • the terminal is used to provide one or more of voice service and data connectivity service to the user.
  • a terminal may also be referred to as user equipment (UE), terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, mobile terminal, remote station, remote terminal, mobile device, user terminal.
  • the terminal can be a vehicle to everything (V2X) device, for example, a smart car, a digital car, a driverless car, and the like.
  • the terminal can also be a device to device (device to device, D2D) device.
  • the terminal can also be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a virtual reality terminal device, an augmented reality terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in remote surgery, and a smart grid.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the resource allocation of uplink data includes two modes: configured grant (CG) and dynamic grant (DG).
  • the resource allocation of downlink data includes semi-persistent scheduling (SPS) and DG.
  • the allocation of CG resources is semi-persistently scheduled. After the network device allocates resources to the terminal, the terminal can use the above allocated resources for a period of time in the future, which is characterized by "one allocation, multiple use". Specifically, the network device may configure a period of time domain resources that appear periodically for the terminal.
  • the CG resources may include type 1 (type1) CG (configured grant type-1) resources, and type 2 (type2) CG (configured grant type-2) resources.
  • the type1 CG resource is a transmission resource directly configured by the network device to the terminal through radio resource control (RRC) signaling, and the terminal can directly use the CG resource to transmit data.
  • RRC radio resource control
  • the type2 CG resource is the period in which the network device configures the transmission resource through RRC signaling, and then activates the transmission resource through the downlink control information (DCI) in the PDCCH.
  • DCI downlink control information
  • the DG resource is the transmission resource dynamically allocated to the terminal by the network device through the DCI in the PDCCH.
  • the first part Indication of PDSCH time domain resources.
  • the PDSCH time domain resource is determined by time domain resource information, and the time domain resource information includes a PDSCH mapping type (PDSCH mapping type), K 0 , S and L.
  • K 0 represents the slot interval of the PDSCH relative to its corresponding PDCCH
  • S and L respectively represent the starting position (eg, starting symbol) and length of the PDSCH in the slot indicated by K 0 .
  • a certain row in the table preconfigured by the higher layer is selected as the time domain resource of the PDSCH.
  • ⁇ PDSCH and ⁇ PDCCH may be determined according to the subcarrier spacing. is the round down symbol.
  • the second part indication of PDSCH frequency domain resources.
  • the PDSCH frequency domain resources are indicated by the frequency domain resource indication field of the PDCCH. There are two indication methods for frequency domain resources.
  • the first way of indicating is type 0 (type0).
  • the frequency domain granularity of the indication method is resource block groups (RBG). Taking the bandwidth as 10 resource blocks (RBs) and the size of the RBG (that is, the number of RBs included in the RBG) as 2 as an example, as shown in Figure 4, the 10 RBs can be divided into 5 groups to obtain 5 RBGs.
  • the frequency domain resources occupied by the PDSCH are indicated in the form of a bitmap. Taking the indication information in the PDCCH as 10001 as an example, the PDSCH occupies RBG0 and RBG4.
  • the frequency domain resources occupied by PDSCH are RB2, RB3 and RB4.
  • the indication method of PUSCH time domain resources is similar to PDSCH. The difference is that for PDSCH, the slot offset is denoted by K 0 , and for PUSCH, the slot offset is denoted by K 2 .
  • the indication method of PUSCH frequency domain resources is similar to PDSCH.
  • MCS is used to describe the modulation mode and target code rate used to transmit information.
  • a protocol is predefined or a network device configures an MCS index table (index table) through signaling.
  • index table In the table, each row corresponds to a set of modulation order and code rate.
  • the network device can select a row in the table through the indication information, and then notify the terminal of the modulation mode and code rate used for data transmission.
  • Table 2 is an example of an MCS table in the prior art. In this table, different modulation orders correspond to different modulation modes.
  • each table corresponds to different reliability requirements, and which table is selected specifically can be configured to the terminal by high-level configuration parameters.
  • the data sent from the media access control (MAC) layer to the physical layer is organized in the form of transport block (TB), and the data transmission between the network device and the terminal is also in TB. carried out for the unit.
  • the terminal After determining the time-frequency resource allocated for the data, the terminal needs to determine the TBS according to the time-frequency resource and the MCS.
  • the third information can be obtained by calculation according to any two of the size of the data, the MCS of the data, and the time-frequency resources of the data.
  • TBS For the detailed calculation process of TBS, please refer to the relevant description in NR R15 protocol 38.214.
  • the two TBs are independently encoded, and after modulation, they are mapped on different layers, that is, different TBs are distinguished by spatial dimensions.
  • the number of layers indicates the number of data streams that can be independently transmitted
  • one layer indicates that one data stream can be independently transmitted on the same time-frequency resource
  • two layers indicate that it can be independently transmitted on the same time-frequency resource. 2 data streams.
  • the transmission of multi-stream data on the same time-frequency resource is achieved through the spatial dimension.
  • codewords correspond to two TBs.
  • Codeword 1 corresponds to TB1
  • the symbols obtained after coding and modulation are d(0), d(1), d(2) and d(3).
  • Codeword 2 corresponds to TB2, which is coded and modulated independently of TB1.
  • the resulting symbols are h(0), h(1), h(2), h(3), h(4) and h(5).
  • the current PDSCH transmission is 5 layers, the modulated symbols corresponding to TB1 will be mapped to the first and second layers, and the modulated symbols corresponding to TB2 will be mapped to the third, fourth and fifth layers. That is to say, the modulated symbols corresponding to different TBs will be independently mapped to different spatial dimensions.
  • mapping process reference may be made to the prior art, and details are not repeated here.
  • terminals multiplex multiple services there is a wide range of scenarios in which terminals multiplex multiple services.
  • smart grid terminals will integrate three services: differential protection, three remote services (telemetry, remote signaling, and remote control) and network timing services.
  • Different services have different requirements for performance indicators such as reliability, delay, and data rate.
  • the uplink and downlink ratio of the existing public network is 7:3 or 8:2, that is, there are only a few uplink time slots. Therefore, if a terminal multiplexes multiple services, it will face the requirement of transmitting two or more services at the same scheduling moment. In general, data transmitted in one physical channel will use the same MCS.
  • the selected MCS meets the requirements of services with high reliability requirements (such as URLLC services)
  • the spectral efficiency of services with low reliability requirements such as eMBB services
  • the spectral efficiency will be relatively high, it may not be able to meet the needs of the high reliability service.
  • Scenario 1 The same MCS is used for the two business data, which cannot meet the requirements of the two business data at the same time.
  • Case 2 Two kinds of service data are multiplexed through spatial dimension, that is, transport blocks corresponding to different service data occupy different layers.
  • spatial dimension that is, transport blocks corresponding to different service data occupy different layers.
  • different service data can be independently encoded and modulated, the flexibility is limited.
  • not all scenarios can support a high spatial dimension. For example, for some terminals, there are only one or two transmitting antennas, which makes it difficult to support a high number of layers to transmit data.
  • the multiplexing of two service data through the spatial dimension limits that the two TBs must occupy the same time-frequency resources, thus making data transmission inflexible.
  • the number of symbols on different layers is 2, that is to say, the number of symbols corresponding to the two TBs transmitted must have a definite correspondence.
  • the ratio of the number of modulation symbols corresponding to TB1 and TB2 is 2:3. This determined proportional relationship cannot flexibly support data transmission. For example, when the data volume of one service is very large and the data volume corresponding to another service is very small, the existing technology cannot flexibly support it.
  • the embodiment of the present application provides a communication method, and the communication method can be implemented as follows: The methods shown in Examples 1 to 3 are implemented.
  • the common point of Embodiment 1 to Embodiment 3 is that the terminal must determine the time-frequency resource and MCS of the two data, the difference is that in Embodiment 1, the network device indicates to the terminal the total time-frequency of the two data. resource and the MCS of one of the data, in the second embodiment, the network device indicates to the terminal the time-frequency resource and MCS of one of the two data, in the third embodiment, the network device indicates at least the terminal of the two data. size and total time-frequency resources for both data.
  • the function of the network device may also be performed by a module (eg, a chip) in the network device, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here can be the control center in industrial IoT application scenarios such as smart grid, factory automation, and intelligent transportation.
  • the functions of the terminal can also be performed by a module (eg, a chip) in the terminal.
  • FIG. 7 is a communication method provided by Embodiment 1 of the present application.
  • the network device sends first indication information to the terminal, where the first indication information indicates the time-frequency resource and the MCS of the first data, the time-frequency resource includes the first time-frequency resource and the second time-frequency resource, and the first time-frequency resource is the bearer The time-frequency resource for the first data, and the second time-frequency resource is the time-frequency resource for carrying the second data.
  • the terminal receives the first indication information from the network device.
  • the first data and the second data in this application may be TB.
  • the first data and the second data may be two data of different service types, or may be two data of the same service type but with different reliability requirements.
  • the first data and the second data may both be newly transmitted data or both may be retransmitted data, and one may be newly transmitted data and the other may be retransmitted data.
  • the first data and the second data may be uplink data or downlink data.
  • the time-frequency resource includes the first time-frequency resource and the second time-frequency resource, which can be understood in two ways.
  • the time-frequency resource is composed of the first time-frequency resource and the second time-frequency resource, that is, the time-frequency resource only includes the first time-frequency resource and the second time-frequency resource, and does not include other resources.
  • the time-frequency resource includes other resources besides the first time-frequency resource and the second time-frequency resource, for example, a resource for transmitting DMRS.
  • the first time-frequency resource and the second time-frequency resource included in the time-frequency resource may all overlap, partially overlap, or may not overlap at all. As shown in (a) of FIG. 8 and (b) of FIG.
  • the first time-frequency resource and the second time-frequency resource do not overlap at all.
  • the time-frequency resource includes only the first time-frequency resource and the second time-frequency resource.
  • the time-frequency resource includes other resources besides the first time-frequency resource and the second time-frequency resource. As shown in (a) of FIG. 9 and (b) of FIG. 9 , the first time-frequency resource and the second time-frequency resource partially overlap.
  • the time-frequency resource includes only the first time-frequency resource and the second time-frequency resource.
  • the time-frequency resource includes other resources besides the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource all overlap.
  • the time-frequency resource includes only the first time-frequency resource and the second time-frequency resource.
  • the time-frequency resource includes other resources besides the first time-frequency resource and the second time-frequency resource.
  • the first data and the second data may be transmitted through different layers on the overlapping time-frequency resources. For example, if the overlapping time-frequency resources Four layers of data can be transmitted, the first data can occupy one layer, and the second data can occupy three layers.
  • the first data and the second data may be transmitted with different powers, for example, the first data and the second data may be transmitted with different powers.
  • the power of the data is P1
  • the power of transmitting the second data is P2
  • the receiving end can distinguish the first data and the second data according to the difference between P1 and P2.
  • the terminal determines the MCS of the first time-frequency resource, the second time-frequency resource, and the second data.
  • the method further includes step 703 or step 704 .
  • the terminal sends the first data to the network device on the first time-frequency resource according to the MCS of the first data, and sends the second data to the network device on the second time-frequency resource according to the MCS of the second data.
  • the network device receives the first data from the terminal on the first time-frequency resource according to the MCS of the first data, and receives the second data from the terminal on the second time-frequency resource according to the MCS of the second data.
  • the network device sends the first data to the terminal on the first time-frequency resource according to the MCS of the first data, and sends the second data to the terminal on the second time-frequency resource according to the MCS of the second data.
  • the terminal receives the first data from the network device on the first time-frequency resource according to the MCS of the first data, and receives the second data from the network device on the second time-frequency resource according to the MCS of the second data.
  • the first data and the second data are transmitted in the same physical channel.
  • the physical channel is PUSCH; when the first data and the second data are downlink data, the physical channel is PDSCH.
  • the first data and the second data may be scheduled by the same DCI.
  • the above-mentioned first indication information may be carried in the DCI.
  • the terminal may determine the first time-frequency resource in any one of the following manners 11 to 14.
  • Manner 11 The terminal determines the size of the first data, and determines the first time-frequency resource according to the size of the first data and the MCS of the first data indicated by the first indication information. Specifically, the network device may send fifth indication information to the terminal, where the fifth indication information indicates the size of the first data. Correspondingly, the terminal receives the fifth indication information from the network device, and determines the size of the first data according to the fifth indication information.
  • the fifth indication information is carried in high-layer signaling (eg, RRC signaling).
  • RRC signaling e.g., RRC signaling
  • this implementation can meet business needs.
  • the network device configures a TBS candidate set for the terminal through high-layer signaling.
  • the candidate set may include TBS1, TBS2, and TBS3.
  • the fifth indication information in the DCI is used from the candidate set.
  • One TBS is indicated as the TBS of the first data.
  • the DCI here may be the DCI that schedules the first data and the second data.
  • the fifth indication information is indication information indicating that the first data is retransmission data.
  • the terminal can determine the size of the retransmitted data according to the size of the newly transmitted data corresponding to the retransmitted data.
  • the fifth indication information may indicate that the first data is retransmission data through a new data indicator (new data indicator, NDI) indication field in the DCI.
  • the MCS indication field is not used to indicate the MCS of the first data
  • the fifth indication information may also be the MCS indication field. For example, referring to Table 2, if the MCS index of the first data is 28, 29, 30 or 31, The first data may be indicated as retransmission data.
  • the terminal may determine the first data according to the correspondence the size of.
  • the determination of the size of the second data is similar to that of the first data.
  • the size of the second data may also be determined according to the time-frequency resource carrying the second data and the MCS of the second data.
  • the size of the first data and the size of the second data may differ by a fixed difference X. For example, when the first data is A1, the size of the second data is A1+X. X can be positive or negative.
  • the size of the first data and the size of the second data may differ by a scale factor R0, where R0 is a positive real number.
  • R0 is a positive real number.
  • the size of the second data is an integer value corresponding to A1 multiplied by R0 (or A1 divided by R0).
  • the integer value corresponding to a real number can be obtained by one of the following three rounding schemes, which can be rounded down (to get 179), rounded up (to get 180), or rounded to the nearest integer (to get 180) 179).
  • the third information can be obtained by calculation according to any two of the size of the data, the MCS of the data, and the time-frequency resources of the data.
  • the terminal may determine the first time-frequency resource according to the size of the first data and the MCS of the first data. For example, if the number of resource elements (REs) used to transmit data in the first time-frequency resource is N, and the TBS of the first data is X, then the spectral efficiency SE1 can be calculated, and the spectral efficiency SE1 can be used in the MCS table. Select the modulation method and code rate that meet the requirements.
  • REs resource elements
  • the modulation scheme and code rate corresponding to the spectral efficiency closest to the spectral efficiency SE1 in the MCS table can be selected, and the modulation scheme and code rate corresponding to the spectral efficiency greater than the spectral efficiency SE1 and closest to the spectral efficiency SE1 in the MCS table can be selected.
  • the modulation mode and code rate corresponding to the spectral efficiency that is smaller than the spectral efficiency SE1 and closest to the spectral efficiency SE1 in the MCS table may also be selected.
  • Manner 12 The terminal determines the first time-frequency resource according to the time-frequency resource indicated by the first indication information and the relationship between the first time-frequency resource and the time-frequency resource.
  • the relationship between the first time-frequency resource and the time-frequency resource may be a proportional relationship, for example, the proportion of the time-frequency resource occupied by the first time-frequency resource (referred to as R1, where R1 is greater than 0 and less than or equal to 1).
  • R1 may be indicated to the terminal by the network device.
  • R1 may notify the terminal through DCI, RRC and other signaling.
  • a set of R1s can be configured through RRC signaling.
  • the set of R1s includes A, B, C, and D, and an R1, such as A, is indicated from the set of R1s through DCI as the actual R1.
  • the relationship between the first time-frequency resource and the time-frequency resource may also be a corresponding relationship, for example, when the time-frequency resource is A3, the first time-frequency resource is B3, and when the time-frequency resource is A4, the first time-frequency resource is B4. Wherein B3 and B4 can be the same or different.
  • the correspondence between the first time-frequency resource and the time-frequency resource may be notified to the terminal through RRC signaling.
  • the network device sends second indication information to the terminal, where the second indication information indicates the first time-frequency resource.
  • the terminal receives the second indication information, and determines the first time-frequency resource according to the second indication information.
  • the second indication information may be carried in the signaling.
  • various messages or information may be carried in signaling, and the signaling may be RRC signaling, media access control control element (media access control control element, MAC CE) signaling or DCI. Different messages or information in this application may be carried in the same signaling, or may be carried in different signaling.
  • certain message or information and the first indication information may be carried in different DCIs, or may be carried in the same DCI.
  • Manner 14 The terminal determines the first time-frequency resource according to the time-frequency resource indicated by the first indication information and the second time-frequency resource.
  • the terminal may determine the first time-frequency resource according to the time-frequency resource indicated by the first indication information and the second time-frequency resource by using a preset rule.
  • the method for determining the second time-frequency resource may refer to the following.
  • the terminal may determine that among the time-frequency resources indicated by the first indication information, the time-frequency resources other than the second time-frequency resource used for data transmission are: The first time-frequency resource.
  • the time-frequency resources may include resources used for transmitting other signals, and these resources cannot be used for data transmission resources. Therefore, the time-frequency resources other than the second time-frequency resources in the time-frequency resources may All the time-frequency resources cannot be used as the first time-frequency resources, but the time-frequency resources used for data transmission are used as the first time-frequency resources.
  • the terminal may determine the second time-frequency resource in any one of the following manners 21 to 24.
  • the terminal determines the size of the second data, and determines the second time-frequency resource according to the MCS of the second data and the size of the second data.
  • the network device may send sixth indication information to the terminal, where the sixth indication information indicates the size of the second data.
  • the terminal receives the sixth indication information from the network device, and determines the size of the second data according to the sixth indication information.
  • the method for the terminal to determine the size of the second data can be directly obtained according to the foregoing method 11.
  • the second time-frequency resource may be determined according to the size of the second data and the MCS of the second data.
  • the method for determining the MCS of the second data can be referred to below.
  • Manner 22 The terminal determines the second time-frequency resource according to the time-frequency resource indicated by the first indication information and the relationship between the second time-frequency resource and the time-frequency resource indicated by the first indication information.
  • the specific implementation process can be directly obtained according to the above-mentioned method 12.
  • Manner 23 The network device sends third indication information to the terminal, where the third indication information indicates the second time-frequency resource.
  • the terminal receives the third indication information, and determines the second time-frequency resource according to the third indication information.
  • Manner 24 The terminal determines the second time-frequency resource according to the time-frequency resource indicated by the first indication information and the first time-frequency resource.
  • the terminal may use a preset rule to determine the second time-frequency resource according to the time-frequency resource indicated by the first indication information and the first time-frequency resource.
  • the method for determining the first time-frequency resource may refer to the above.
  • the terminal may determine the MCS of the second data in any one of the following manners 31 to 33.
  • Manner 31 The terminal determines the MCS of the second data according to the MCS of the first data indicated by the first indication information and the relationship between the MCS of the first data and the MCS of the second data.
  • an index (index) of the MCS of the second data there is a corresponding relationship between an index (index) of the MCS of the second data and an index of the MCS of the first data.
  • index index of the MCS of the first data
  • offset can be positive or negative.
  • the terminal determines that the index in the MCS table (for example, Table 2 above) is 6.
  • the MCS is the MCS of the second data.
  • the terminal determines that the MCS with index 3 in the MCS table is the MCS of the second data.
  • the offset may be the default value, or may be indicated by the network device through the indication information.
  • the index closest to the calculated index in the MCS table can be selected as the index of the MCS of the second data, so the index of the MCS of the second data can be obtained as 0.
  • the index closest to the calculated index in the MCS table can also be used as the MCS index of the second data.
  • the MCS includes a modulation method and a code rate
  • the modulation method of the second data can be the same as the modulation method of the first data
  • the code rate of the second data is the same as the code rate of the first data.
  • rate has a certain relationship.
  • the relationship between the code rate of the second data and the code rate of the first data may be a proportional relationship.
  • the code rate of the second data is R2 (R2 is greater than 0) times the code rate of the first data.
  • the code rate of the data is Rx
  • the code rate of the second data is: Rx*R2.
  • R2 may be indicated to the terminal by the network device.
  • R2 may be 0. If R2 is 0, it means that the second data is not transmitted. That is, there is only one data transfer.
  • the network device may indicate how many data to transmit by whether R2 is 0.
  • Manner 32 The network device sends fourth indication information to the terminal, where the fourth indication information indicates the MCS of the second data, for example, the fourth indication information may be the index of the MCS of the second data.
  • the terminal receives the fourth indication information, and determines the MCS of the second data according to the fourth indication information.
  • Manner 33 The terminal determines the size of the second data, and determines the MCS of the second data according to the size of the second data and the second time-frequency resource.
  • the method for the terminal to determine the size of the second data can be directly obtained according to the method for determining the size of the first data in the foregoing manner 11.
  • the terminal may determine the MCS of the second data according to the size of the second data and the second time-frequency resource.
  • the method for determining the second time-frequency resource may refer to the above.
  • step 702 may have various solutions as shown in Table 3.
  • Each scheme shown in Table 3 makes full use of the relationship between time-frequency resources, data size and MCS to determine the MCS of the first time-frequency resource, the second time-frequency resource and the second data, which can save the indication signal order cost.
  • the MCS of the first time-frequency resource, the second time-frequency resource, and the second data may not be determined according to the first indication information.
  • the implementation of step 702 may have various solutions as shown in Table 4.
  • the determination of the MCS of the first time-frequency resource, the second time-frequency resource and the second data is decoupled from the first indication information, so that the indication of resources and MCS can be performed more flexibly.
  • the terminal in the case of two data, can determine the time-frequency resource and MCS of the two data, so as to meet the reliability requirements of different data, and flexibly perform data transmission.
  • the two data use their own MCS to meet the reliability of the two data while avoiding resources. waste.
  • signaling overhead can be reduced compared to all indications using indication information.
  • an appropriate MCS can be selected according to service requirements, which can ensure the robustness of data with higher reliability requirements on the one hand, and the spectral efficiency of data with lower reliability requirements on the other hand.
  • FIG. 11 is a communication method provided by Embodiment 2 of the present application.
  • the network device sends eighth indication information to the terminal, where the eighth indication information indicates the first time-frequency resource and the MCS of the first data, and the first time-frequency resource is the time-frequency resource that carries the first data; wherein, the eighth indication information It is also used for the terminal to determine at least one of the second time-frequency resource and the MCS of the second data, where the second time-frequency resource is the time-frequency resource that bears the second data.
  • the terminal receives the eighth indication information from the network device.
  • the related description about the first data, the second data, the first time-frequency resource, and the second time-frequency resource may refer to Embodiment 1.
  • the terminal determines the second time-frequency resource and the MCS of the second data.
  • the method further includes step 1103 or step 1104 .
  • the terminal sends the first data to the network device on the first time-frequency resource according to the MCS of the first data, and sends the second data to the network device on the second time-frequency resource according to the MCS of the second data.
  • the network device receives the first data from the terminal on the first time-frequency resource according to the MCS of the first data, and receives the second data from the terminal on the second time-frequency resource according to the MCS of the second data.
  • step 1103 reference may be made to the above-mentioned step 703, which will not be repeated.
  • the network device sends the first data to the terminal on the first time-frequency resource according to the MCS of the first data, and sends the second data to the terminal on the second time-frequency resource according to the MCS of the second data.
  • the terminal receives the first data from the network device on the first time-frequency resource according to the MCS of the first data, and receives the second data from the network device on the second time-frequency resource according to the MCS of the second data.
  • step 1104 reference may be made to the above-mentioned step 704, and details are not repeated here.
  • the first data and the second data are transmitted in the same physical channel.
  • this optional feature reference may be made to the corresponding feature in Embodiment 1, and details are not repeated here.
  • the terminal may determine the second time-frequency resource in the following manner 11 or manner 12.
  • Manner 11 The network device sends third indication information to the terminal, where the third indication information indicates the second time-frequency resource.
  • the terminal receives the third indication information, and determines the second time-frequency resource according to the third indication information.
  • Manner 12 The terminal determines the second time-frequency resource according to the first time-frequency resource indicated by the eighth indication information and the relationship between the first time-frequency resource and the second time-frequency resource; or, the terminal determines the second time-frequency resource according to the two indication information respectively
  • the time domain resources (denoted as the second time domain resources) and frequency domain resources (denoted as the second frequency domain resources) included in the second time-frequency resources that is, the second time domain resources and the second frequency domain resources are both indicated by the network device) ).
  • the manner 12 may have various implementation manners.
  • the second time-domain resource is indicated by the network device, and the second frequency-domain resource is related to the frequency-domain resource (referred to as the first frequency-domain resource) in the first time-frequency resource.
  • the terminal may determine the second time domain resource according to the instruction of the network device, and determine the second frequency domain resource by using the relationship between the second frequency domain resource and the first frequency domain resource.
  • the second frequency domain resource is indicated by the network device, and the second time domain resource is related to the time domain resource (referred to as the first time domain resource) in the first time frequency resource.
  • the terminal may determine the second frequency domain resource according to the instruction of the network device, and determine the second time domain resource according to the relationship between the second time domain resource and the first time domain resource.
  • the second frequency domain resources are related to the first frequency domain resources
  • the second time domain resources are related to the first time domain resources.
  • the terminal may determine the second frequency domain resource according to the relationship between the second frequency domain resource and the first frequency domain resource, and determine the second time domain according to the relationship between the second time domain resource and the first time domain resource resource.
  • the relationship between the second time domain resource and the first time domain resource may include the following:
  • the second time domain resource and the first time domain resource are located in the same row of the time domain resource allocation table (eg, Table 1 above).
  • several columns of information indicating the second time domain resources may be added to the time domain resource allocation table. Taking Table 1 as an example, four more columns can be added, and these four columns respectively indicate the PDSCH mapping type of the second time domain resource, the K 0 of the second time domain resource, the S of the second time domain resource, and the value of the second time domain resource. L.
  • the second time domain resource is also determined.
  • offset there is an offset (offset) between the index of the second time domain resource and the index of the first time domain resource.
  • offset can be positive or negative. Exemplarily, if the index of the first time domain resource is 1, and if the offset is 5, then the index of the second time domain resource is 6, and the terminal determines that the index in the time domain resource allocation table (for example, Table 1 above) is The time domain resource of 6 is the second time domain resource. If the index of the first time domain resource is 5, and if the offset is -2, then the index of the second time domain resource is 3, and the terminal determines that the time domain resource with index 3 in the time domain resource allocation table is the second time domain resource .
  • the offset can be the default value, or can be indicated by the network device through the indication information.
  • the index closest to the calculated index in the time domain resource allocation table can be selected as the index of the second time domain resource. Therefore, it can be obtained that the index of the second time domain resource is 0 .
  • the calculated index is too large, it may exceed the index range of the time domain resource allocation table. In this case, the index closest to the calculated index in the time domain resource allocation table can also be used as the second time domain resource. index.
  • both 1) and 2) can be considered as having an index relationship between the second time domain resource and the first time domain resource, but they are only two cases in this scenario.
  • the second time domain resource and the first time domain resource there is a certain interval between the second time domain resource and the first time domain resource (ie, there is an offset between the two). Further, the number of symbols occupied by the second time domain resource and the first time domain resource is the same, or may have a certain proportional relationship. Wherein, the interval may be 0, or may be a value greater than 0.
  • the ratio of the number of symbols occupied by the second time domain resource to the first time domain resource may be indicated by a scale factor, and the scale factor may be a value greater than 0.
  • the interval and scale factor can be indicated by the network device, or can be pre-configured (for example, the scale factor can be configured in the time-domain resource allocation table, in this case, when a row in the time-domain resource allocation table is indicated, not only is it indicated the line resource, while indicating a scale factor).
  • a time slot includes 14 symbols, the starting symbol of the first time domain resource is symbol 3, and the symbol length is 5 symbols, that is, the first time domain resource occupies symbols 3 to 7 in the time slot. If the interval is 4 symbols and the scale factor is 1 (that is, the symbol length of the second time domain resource is also 5 symbols), it can be determined that the starting symbol of the second time domain resource is symbol 12, then within this time slot Only two symbols, symbol 12 and symbol 13, are available.
  • the second time domain resource has crossed the time slot boundary.
  • the second time domain resource is allowed to cross the time slot boundary. At this time, the second time domain resource is symbol 12 and symbol 13; 2) Referring to (b) in FIG. 12, the second time domain resource is allowed to cross the time slot boundary. At this time, the second time domain resource is allowed to cross the time slot boundary.
  • the second time domain resources are symbols 12 and 13 and symbols 1 to 3 of the next time slot.
  • the second time domain resource and the first time domain resource may be indicated by the same indication field, that is, the second time domain resource may be determined by the indication field indicating the first time domain resource.
  • the relationship between the second frequency domain resource and the first frequency domain resource may include the following:
  • the second frequency domain resource is the same as the first frequency domain resource. At this time, after the first frequency domain resource is determined, the second frequency domain resource is also determined.
  • the number of RBs occupied by the second frequency domain resource and the first frequency domain resource may be equal, or may have a certain proportional relationship. Wherein, the interval may be 0, or may be a value greater than 0.
  • the ratio of the number of RBs occupied by the second frequency domain resource and the first frequency domain resource may be indicated by a scale factor, and the scale factor may be a value greater than 0.
  • the interval and scale factor can be indicated by the network device or can be pre-configured. For example, referring to FIG.
  • the starting RB of the first frequency domain resource is RB1
  • the RB length is 3 RBs, that is, the first frequency domain resource occupies RB1 to RB3. If the interval is 4 RBs and the scale factor is 1 (that is, the RB length of the second frequency domain resource is also 3 RBs), it can be determined that the RBs occupied by the second frequency domain resource are RB8 to RB10.
  • the terminal may determine the MCS of the second data through the following manner 21 or manner 22.
  • Manner 21 The terminal determines the MCS of the second data according to the MCS of the first data indicated by the eighth indication information and the relationship between the MCS of the first data and the MCS of the second data. For the specific implementation of the manner 21, reference may be made to the manner 31 in the first embodiment.
  • Manner 22 The network device sends fourth indication information to the terminal, where the fourth indication information indicates the MCS of the second data, for example, the fourth indication information may indicate the index of the MCS of the second data.
  • the terminal receives the fourth indication information, and determines the MCS of the second data according to the fourth indication information. Based on the foregoing various manners, optionally, at least one of the second time-frequency resource and the MCS of the second data is determined according to the eighth indication information. In this case, the implementation of step 1102 may have various solutions as shown in Table 5.
  • the MCS of the second data is determined by the relationship between the MCS of the first data and the MCS of the second data, which can save the signaling overhead of indicating the MCS of the second data.
  • the MCS of the second time-frequency resource and the second data are determined by the MCS of the first time-frequency resource and the first data respectively, which can save signaling overhead of indicating the MCS of the second time-frequency resource and the second data.
  • the determination of the MCS of the second data does not depend on the MCS of the first data, which can effectively improve the flexibility of the MCS indication of the second data.
  • neither the second time-frequency resource nor the MCS of the second data may be determined according to the eighth indication information.
  • the implementation of step 1102 may adopt the solution shown in Table 6.
  • the terminal in the case of two data, can determine the time-frequency resource and MCS of the two data, so as to meet the reliability requirements of different data, and flexibly perform data transmission. Compared with the joint modulation and coding of two data according to the reliability requirements of one of the data (for example, the two data use the same MCS), the two data use their own MCS to meet the reliability of the two data while avoiding resources. waste.
  • signaling overhead can be reduced compared to all indications using the indication information.
  • an appropriate MCS can be selected according to service requirements, which can ensure the robustness of data with higher reliability requirements on the one hand, and the spectral efficiency of data with lower reliability requirements on the other hand.
  • FIG. 14 provides a communication method according to Embodiment 3 of the present application.
  • the network device sends ninth indication information to the terminal, where the ninth indication information indicates the time-frequency resource, the size of the first data and the size of the second data, the time-frequency resource includes the first time-frequency resource and the second time-frequency resource, and the The first time-frequency resource is the time-frequency resource that carries the first data, and the second time-frequency resource is the time-frequency resource that carries the second data.
  • the terminal receives the ninth indication information from the network device.
  • the ninth indication information may directly or indirectly indicate the size of the first data and the size of the second data.
  • the ninth indication information indicates the first data by indicating the information for determining the size of the first data.
  • the size of the data indicates the size of the second data by indicating the information for determining the size of the second data.
  • the first data and the second data are transmitted in the same physical channel.
  • the network device sends tenth indication information to the terminal, where the tenth indication information is used to determine a first time-frequency resource or a first MCS, where the first MCS is an MCS for sending or receiving the first data on the first time-frequency resource.
  • the terminal receives the tenth indication information from the network device.
  • the tenth indication information may directly indicate the first time-frequency resource.
  • the terminal may directly determine the first time-frequency resource according to the tenth indication information.
  • the tenth indication information may also indirectly indicate the first time-frequency resource, for example, indicate the relationship between the first time-frequency resource and the time-frequency resource (for example, the proportion of the first time-frequency resource occupied by the time-frequency resource), in this case, The terminal may determine the first time-frequency resource according to the tenth indication information and the time-frequency resource.
  • Mode 12 for a specific method, reference may be made to Mode 12 in Embodiment 1, and details are not repeated here.
  • the tenth indication information may indicate the first MCS, and the terminal determines the first MCS according to the tenth indication information.
  • the terminal determines the first time-frequency resource according to the tenth indication information, and determines the first MCS and the second time-frequency resource according to the first time-frequency resource and the ninth indication information. frequency resources and the second MCS; when the tenth indication information indicates the first MCS, the terminal determines the first MCS according to the tenth indication information, and determines the first time-frequency resource, the second MCS according to the first MCS and the ninth indication information time-frequency resources and a second MCS.
  • the second MCS is an MCS for sending or receiving second data on the second time-frequency resource.
  • the implementation process of step 1403 includes: 11) Determine the first time-frequency resource according to the tenth indication information. 12) Determine the first MCS according to the first time-frequency resource and the size of the first data indicated by the ninth indication information. 13) Determine the second time-frequency resource according to the first time-frequency resource and the time-frequency resource indicated by the ninth indication information. 14) Determine the second MCS according to the second time-frequency resource and the size of the second data indicated by the ninth indication information.
  • the implementation process of step 1403 includes: 21) Determine the first MCS according to the tenth indication information. 22) Determine the first time-frequency resource according to the first MCS and the size of the first data indicated by the ninth indication information. 23) Determine the second time-frequency resource according to the first time-frequency resource and the time-frequency resource indicated by the ninth indication information. 24) Determine the second MCS according to the second time-frequency resource and the size of the second data indicated by the ninth indication information.
  • the method further includes step 1404 or step 1405 .
  • the terminal sends the first data to the network device on the first time-frequency resource according to the first MCS, and sends the second data to the network device on the second time-frequency resource according to the second MCS.
  • the network device receives the first data from the terminal on the first time-frequency resource according to the first MCS, and receives the second data from the terminal on the second time-frequency resource according to the second MCS.
  • step 1404 please refer to the above-mentioned step 703.
  • the network device sends the first data to the terminal on the first time-frequency resource according to the first MCS, and sends the second data to the terminal on the second time-frequency resource according to the second MCS.
  • the terminal receives the first data from the network device on the first time-frequency resource according to the first MCS, and receives the second data from the network device on the second time-frequency resource according to the second MCS.
  • step 1405 please refer to the above-mentioned step 704.
  • the terminal in the case of two data, can determine the time-frequency resource and MCS of the two data, so as to meet the reliability requirements of different data, and flexibly perform data transmission.
  • the two data use their own MCS to meet the reliability of the two data while avoiding resources. waste.
  • the prior art cannot flexibly indicate MCS and allocate time-frequency resources when two or more service data are transmitted in one physical channel.
  • an appropriate MCS can be selected according to service requirements, which can ensure the robustness of data with higher reliability requirements on the one hand, and the spectral efficiency of data with lower reliability requirements on the other hand.
  • FIG. 15 is a communication method provided by Embodiment 4 of the present application.
  • the network device sends eleventh indication information and twelfth indication information to the terminal, where the eleventh indication information indicates the first resource and the third MCS, the twelfth indication information indicates the second resource and the fourth MCS, and the third MCS
  • the fourth MCS is the MCS that sends or receives the first data on the first resource
  • the fourth MCS is the MCS that sends or receives the second data on the second resource.
  • the terminal receives the eleventh indication information and the twelfth indication information from the network device.
  • the first resource and the second resource may both be CG resources, or both may be DG resources, and one may be a CG resource and the other may be a DG resource.
  • the size of the first data may be determined according to the first resource indicated by the eleventh indication information and the third MCS, and the size of the second data may be determined according to the second resource indicated by the twelfth indication information and the fourth MCS.
  • the first data and the second data are transmitted in the same physical channel. A description of this alternative method can be found above.
  • step 1502 or 1503 is performed.
  • the terminal sends the first data to the network device on the first time-frequency resource according to the first MCS, and sends the first data to the network device on the second time-frequency resource according to the second MCS.
  • Send second data the network device receives the first data from the terminal on the first time-frequency resource according to the first MCS, and receives the second data from the terminal on the second time-frequency resource according to the second MCS.
  • the network device sends the first data to the terminal on the first time-frequency resource according to the first MCS, and sends the first data to the terminal on the second time-frequency resource according to the second MCS.
  • Second data the terminal receives the first data from the network device on the first time-frequency resource according to the first MCS, and receives the second data from the network device on the second time-frequency resource according to the second MCS.
  • the first MCS is the MCS that sends or receives the first data on the first time-frequency resource
  • the second MCS is the MCS that sends or receives the second data on the second time-frequency resource
  • the first resource includes the first time-frequency resource and The second time-frequency resource
  • the second resource includes the first time-frequency resource and the second time-frequency resource.
  • the terminal may determine that the first data and the second data are multiplexed in one physical channel for transmission. Specifically, the priority of multiplexing the first resource and the second resource may be higher. In the case of a resource containing a large number of REs or a resource containing a large number of REs, in the case that one of the first resource and the second resource is a CG resource and the other is a DG resource, the DGs in the first resource and the second resource can also be multiplexed. On the resource or on the CG resource.
  • the terminal may use the following manner A or manner B to determine the first time-frequency resource, the second time-frequency resource, the first MCS and the second MCS.
  • the terminal receives the tenth indication information from the network device, where the tenth indication information indicates the first time-frequency resource or the first MCS; when the tenth indication information indicates the first time-frequency resource, the terminal determines the first time-frequency resource according to the tenth indication information.
  • the terminal determines the first MCS according to the tenth indication information, and determines the first time-frequency resource, the second time-frequency resource and the second MCS according to the first MCS, the eleventh indication information and the twelfth indication information.
  • the specific implementation of way A may include:
  • the terminal determines the first time-frequency resource according to the tenth indication information.
  • the terminal determines the first MCS according to the first time-frequency resource and the size of the first data; or, the terminal determines the first MCS according to the third MCS or the fourth MCS.
  • the size of the first data is determined according to the eleventh indication information.
  • 33) Determine the second time-frequency resource according to the first time-frequency resource and the first resource or the second resource (specifically which resource depends on which resource the terminal decides to multiplex the first data and the second data on).
  • the terminal determines the second MCS according to the second time-frequency resource and the size of the second data.
  • the size of the second data is determined according to the twelfth indication information.
  • the process that the terminal determines the first MCS according to the third MCS or the fourth MCS may include: using the modulation mode of the third MCS as the modulation mode in the first MCS, and determining the spectral efficiency according to the first time-frequency resource and the size of the first data, The spectral efficiency is divided by the modulation order of the third MCS to obtain the code rate in the first MCS, and the first MCS can be determined after determining the modulation mode in the first MCS and the code rate in the first MCS;
  • the modulation mode of the MCS is used as the modulation mode in the first MCS, and the spectral efficiency is determined according to the first time-frequency resource and the size of the first data, and the spectral efficiency is divided by the modulation order of the fourth MCS to obtain the code rate in the first MCS,
  • the first MCS can be determined after the modulation mode in the first MCS and the code rate in the first MCS are determined.
  • the way A may include:
  • the terminal determines the first MCS according to the tenth indication information. 42) The terminal determines the first time-frequency resource according to the size of the first MCS and the first data. The size of the first data is determined according to the eleventh indication information. 43) The terminal determines the second time-frequency resource according to the first time-frequency resource and the first resource or the second resource (specifically which resource depends on which resource the terminal decides to multiplex the first data and the second data on). 44) The terminal determines the second MCS according to the second time-frequency resource and the size of the second data. The size of the second data is determined according to the twelfth indication information.
  • Step 41) can be implemented in the following manner a1 or manner a2.
  • the first MCS is determined according to the third MCS.
  • the third MCS includes a modulation scheme and a code rate R third MCS .
  • the tenth indication information may indicate beta.
  • the first MCS is determined according to the fourth MCS.
  • the fourth MCS includes a modulation scheme and a code rate R4MCS .
  • the tenth indication information may indicate beta.
  • the method further includes: the network device sends tenth indication information to the terminal.
  • the first resource includes a first time-frequency resource and a second time-frequency resource (that is, the terminal decides to multiplex the first data and the second data into the first resource), and the terminal determines the second resource according to the second resource.
  • Time-frequency resource the terminal determines the first time-frequency resource according to the first resource and the second time-frequency resource
  • the second MCS is the fourth MCS
  • the first MCS is the third MCS (at this time, the size of the first data actually transmitted is based on The first MCS and the first time-frequency resource are determined) or the first MCS is determined according to the size of the first time-frequency resource and the first data.
  • the first resource is greater than the second resource.
  • the terminal determines that X1 REs in the first resource are the second time-frequency resource, and X1 is the number of REs used for data transmission in the second resource.
  • the second resource includes the first time-frequency resource and the second time-frequency resource (that is, the terminal decides to multiplex the first data and the second data into the second resource), and the terminal determines the first time-frequency resource according to the first resource.
  • a time-frequency resource the terminal determines the second time-frequency resource according to the second resource and the first time-frequency resource, the first MCS is the third MCS, and the second MCS is the fourth MCS (at this time, the size of the second data actually transmitted is Determined according to the second MCS and the second time-frequency resource) or the second MCS is determined according to the size of the second time-frequency resource and the second data.
  • the second resource is larger than the first resource.
  • the terminal determines that X2 REs in the second resource are the first time-frequency resource, and X2 is the number of REs used to transmit data in the first resource.
  • the network device may further allocate DG resources to the terminal.
  • the DG resources and the CG resources overlap (overlap), for example, The situation shown in Figure 16.
  • overlap There are two meanings of overlap, one is overlap in time domain, and the other is overlap in frequency domain.
  • the time domain overlap means that at least one symbol of the time domain information corresponding to the two time-frequency resources is the same.
  • simultaneous transmission on CG resources and DG resources is not allowed, and one resource is selected for data transmission according to certain rules, that is, only one data can be sent.
  • the method provided in Embodiment 4 may be used to multiplex the two data in one physical channel for transmission.
  • two data can be simultaneously transmitted on one of the following resources: 1) DG resource; 2) CG resource; 3) resource with high priority; 4) resource containing more REs resource.
  • the priority of the resource can be indicated by DCI.
  • the resource with higher priority is preferentially used, if two resources have the same priority, the resource can be transmitted on the resource corresponding to 1) or 2) or 4).
  • the network device For the data sent on the CG resource (assuming it is the first resource), the network device will indicate the MCS (ie the third MCS), then according to the CG resource and the third MCS, the data sent on the CG resource (ie the first data) can be determined. Size, for the data sent on the DG resource (assuming the second resource), the network device will also indicate the MCS (ie the fourth MCS), then the data sent on the DG resource (ie the second MCS) can be determined according to the DG resource and the fourth MCS. data) size.
  • the two data After multiplexing the physical channels, due to limited resources, the two data cannot use the MCS indicated by the network device for data transmission. Therefore, the MCS and time-frequency resources need to be re-determined for the two data.
  • the method provided in Embodiment 4 of the present application may be used to determine the time-frequency resources (ie, the first time-frequency resource and the second time-frequency resource) and the MCS (ie, the first MCS and the second MCS) of the two data.
  • the tenth indication information may not be used to determine the first time-frequency resource or the first MCS, but may be used to determine the second time-frequency resource or the second MCS.
  • the implementation process Similar to the implementation process described in Embodiment 3 and Embodiment 4 above, it is only necessary to replace the first time-frequency resource and the second time-frequency resource in the description related to the tenth indication information.
  • the data can be replaced by each other for understanding, and will not be repeated here.
  • Embodiment 3 and Embodiment 4 if the implementation process of each step is not described in detail, reference may be made to the description of the corresponding steps in Embodiment 1 and Embodiment 2, and details are not repeated here.
  • the existing technology does not allow new transmission data and retransmission data for different data to be transmitted in the same physical channel.
  • the newly transmitted data and the retransmitted data can be transmitted in the same physical channel, and the above method can be used to determine the time-frequency resources and MCS of the newly transmitted data and the retransmitted data.
  • the delay can be effectively reduced.
  • each scheduling is only allowed to schedule retransmission data or schedule initial transmission data. If the retransmission data is scheduled, the initial data transmission can only be scheduled in the next time, which will cause the delay of the initial transmission data. Likewise, if the initial transmission of data is scheduled, reliability will be reduced. Reliability and delay are two very important indicators for the URLLC system. This solution can bring benefits to URLLC.
  • each network element includes at least one of a hardware structure and a software module corresponding to executing each function.
  • a hardware structure includes at least one of a hardware structure and a software module corresponding to executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • each network element may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in actual implementation.
  • FIG. 17 shows a possible schematic structural diagram of the communication device (referred to as the communication device 170 ) involved in the foregoing embodiment, where the communication device 170 includes a processing unit 1701 and a communication unit 1702 .
  • a storage unit 1703 is also included.
  • the communication apparatus 170 may be used to illustrate the structure of the network device and the terminal in the above-mentioned embodiments.
  • the processing unit 1701 is used to control and manage the actions of the terminal.
  • the processing unit 1701 is used to execute 701 to 704 in FIG. 1101 to 1104 of , 1401 to 1405 in FIG. 14 , 1501 to 1503 in FIG. 15 , and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processing unit 1701 may communicate with other network entities through the communication unit 1702, for example, with the network device in FIG. 7 .
  • the storage unit 1703 is used to store program codes and data of the terminal.
  • the processing unit 1701 is used to control and manage the actions of the network equipment, for example, the processing unit 1701 is used to execute 701, 703 and 704 in FIG. 7 . , 1101, 1103, and 1104 in FIG. 11, 1401, 1402, 1404, and 1405 in FIG. 14, 1501 to 1503 in FIG. 15, and/or performed by the network device in other processes described in the embodiments of the present application action.
  • the processing unit 1701 may communicate with other network entities through the communication unit 1702, for example, communicate with the terminal in FIG. 7 .
  • the storage unit 1703 is used to store program codes and data of the network device.
  • the communication apparatus 170 may be a device or a chip or a chip system.
  • the processing unit 1701 may be a processor; the communication unit 1702 may be a communication interface, a transceiver, or an input interface and/or an output interface.
  • the transceiver may be a transceiver circuit.
  • the input interface may be an input circuit, and the output interface may be an output circuit.
  • the communication unit 1702 may be a communication interface, input interface and/or output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc. on the chip or chip system.
  • the processing unit 1701 may be a processor, a processing circuit, a logic circuit, or the like.
  • the integrated units in FIG. 17, if implemented in the form of software functional modules and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • An embodiment of the present application also provides a schematic diagram of a hardware structure of a communication apparatus, see FIG. 18 or FIG. 19 , the communication apparatus includes a processor 1801 , and optionally, a memory 1802 connected to the processor 1801 .
  • the processor 1801 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 1801 may also include multiple CPUs, and the processor 1801 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 1802 may be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory, optical disk-only or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disc storage medium or other magnetic storage device, or capable of being used to carry or store desired in the form of instructions or data structures and any other medium that can be accessed by a computer, which is not limited in this embodiment of the present application.
  • the memory 1802 may exist independently (in this case, the memory may be located outside the communication device, or may be located in the communication device), or may be integrated with the processor 1801 . Among them, the memory 1802 may contain computer program code.
  • the processor 1801 is configured to execute the computer program codes stored in the memory 1802, thereby implementing the methods provided by the embodiments of the present application.
  • the communication device further includes a transceiver 1803 .
  • the processor 1801, the memory 1802 and the transceiver 1803 are connected by a bus.
  • the transceiver 1803 is used to communicate with other devices or communication networks.
  • the transceiver 1803 may include a transmitter and a receiver.
  • a device in the transceiver 1803 for implementing the receiving function may be regarded as a receiver, and the receiver is configured to perform the receiving steps in the embodiments of the present application.
  • a device in the transceiver 1803 for implementing the sending function may be regarded as a transmitter, and the transmitter is used to perform the sending step in the embodiment of the present application.
  • FIG. 18 may be used to illustrate the structures of network devices and terminals involved in the foregoing embodiments.
  • the processor 1801 can be used to implement the function of the processing unit 1701 in FIG. 17
  • the memory 1802 can be used to implement the function of the storage unit 1703 in FIG. 17
  • the transceiver 1803 is used to implement the function of the communication unit 1702 in FIG. 17 .
  • the processor 1801 includes a logic circuit, and an input interface and/or an output interface.
  • the output interface is used for performing the sending action in the corresponding method
  • the input interface is used for performing the receiving action in the corresponding method.
  • FIG. 19 Based on the second possible implementation manner, refer to FIG. 19 .
  • the schematic structural diagram shown in FIG. 19 may be used to illustrate the structures of the network devices and terminals involved in the foregoing embodiments.
  • the processor 1801 is used to control and manage the actions of the terminal.
  • the logic circuit in the processor 1801 is used to execute 701 to 704 in FIG. 7 . , 1101 to 1104 in FIG. 11 , 1401 to 1405 in FIG. 14 , 1501 to 1503 in FIG. 15 , and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • Logic in processor 1801 may communicate with other network entities, eg, with the network device in FIG. 7, through input interfaces and/or output interfaces.
  • the memory 1802 is used to store program codes and data of the terminal.
  • the processor 1801 is used to control and manage the actions of the network device, for example, the logic circuit in the processor 1801 is used to execute 701 in FIG. 7 , 703 and 704, 1101, 1103 and 1104 in FIG. 11, 1401, 1402, 1404 and 1405 in FIG. 14, 1501 to 1503 in FIG. 15, and/or in other processes described in the embodiments of the present application An action performed by a network device.
  • the logic in the processor 1801 may communicate with other network entities, eg, with the terminal in FIG. 7 , through the input interface and/or the output interface.
  • the memory 1802 is used to store program codes and data of the network device.
  • each step in the method provided in this embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a communication device, cause the communication device to execute any of the foregoing methods.
  • Embodiments of the present application also provide a computer program product containing instructions, which, when executed on a communication device, cause the communication device to execute any of the above methods.
  • the embodiment of the present application also provides a communication system, including: a network device and a terminal.
  • the embodiment of the present application also provides a chip, including: a processor and a communication interface, the processor is coupled to the memory through the communication interface, and when the processor executes the computer program or instruction in the memory, any one of the above-mentioned embodiments method is executed.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line) or wireless means to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or data storage devices including one or more servers, data centers, etc., that can be integrated with the media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state drives), and the like.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,涉及通信技术领域。终端接收网络设备发送的指示时频资源和第一数据的MCS的第一指示信息,并确定承载第一数据的第一时频资源、承载第二数据的第二时频资源和第二数据的MCS。其中,时频资源包括第一时频资源和第二时频资源。该方法中,在有两个数据的情况下,终端可以确定两个数据的时频资源和MCS,从而满足不同的数据的需求,灵活的进行数据传输。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代(5th generation,5G)系统相比于前几代移动通信系统在传输速率、时延及功耗方面都提出了更高的要求,致力于支持更高系统性能,支持多种业务类型、不同部署场景和更宽的频谱范围。
在5G系统中,针对两个不同业务的数据流或两个相同业务但可靠性要求不同的数据流,按照其中一个数据流的可靠性要求对两个数据流进行调制编码,由于可靠性要求不同,在满足一个数据流的可靠性时,可能导致资源浪费或其中一个数据流的可靠性无法满足。例如,第一个数据流的可靠性要求为99%,第二个数据流的可靠性要求为99.999%。此时,若以满足第二个数据流的可靠性为资源分配目标,需要分配较多的资源来传输第一数据流和第二数据流,该情况下,由于第一个数据流的可靠性要求比第二个数据流的可靠性要求低,因此,会造成资源浪费。若以满足第一个数据流的可靠性要求为资源分配目标,则会分配较少的资源来传输第一数据流和第二数据流,此时,无法满足第二个数据流的可靠性要求。
发明内容
本申请实施例提供了一种通信方法及装置,用于在满足两个数据流的可靠性的同时,避免资源浪费。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种通信方法。终端接收来自网络设备的指示时频资源和第一数据的MCS的第一指示信息,时频资源包括第一时频资源和第二时频资源,第一时频资源为承载第一数据的时频资源,第二时频资源为承载第二数据的时频资源;终端确定第一时频资源、第二时频资源和第二数据的MCS;其中,第一时频资源、第二时频资源和第二数据的MCS中的至少一个根据第一指示信息确定;终端根据第一数据的MCS在第一时频资源上向网络设备发送第一数据,并根据第二数据的MCS在第二时频资源上向网络设备发送第二数据;或者,终端根据第一数据的MCS在第一时频资源上接收来自网络设备的第一数据,并根据第二数据的MCS在第二时频资源上接收来自网络设备的第二数据。第一方面提供的方法,在有两个数据的情况下,终端可以确定两个数据的时频资源和MCS,从而满足不同数据对可靠性的需求,灵活的进行数据传输。相比按照其中一个数据的可靠性要求对两个数据进行调制编码(即两个数据采用联合编码,例如,两个数据采用相同的MCS),两个数据采用各自的MCS可以在满足两个数据的可靠性的同时,避免资源浪费。另外,在第一时频资源、第二时频资源和第二数据的MCS中的至少一个根据第一指示信息确定的情况下,相比全部采用指示信息指示而言,可以减少信令开销。
在一种可能的实现方式中,第一数据和第二数据在同一个物理信道中传输。
在一种可能的实现方式中,终端确定第一数据的大小,根据第一数据的大小和第 一数据的MCS确定第一时频资源;或者,终端根据时频资源,以及第一时频资源和时频资源之间的关系确定第一时频资源;或者,终端接收第二指示信息,根据第二指示信息确定第一时频资源;或者,终端根据时频资源和第二时频资源确定第一时频资源。该种可能的实现方式,提供了多种确定第一时频资源的方法,从而可以在不同情况下确定第一时频资源,提高了确定第一时频资源的灵活性。
在一种可能的实现方式中,第一时频资源和时频资源之间具有预设的比例关系;或者,第一时频资源和时频资源之间具有预设的对应关系。
在一种可能的实现方式中,终端接收来自网络设备的第五指示信息,根据第五指示信息确定第一数据的大小。
在一种可能的实现方式中,终端根据时频资源,以及第二时频资源和时频资源之间的关系确定第二时频资源;或者,终端接收第三指示信息,根据第三指示信息确定第二时频资源;或者,终端根据时频资源和第一时频资源确定第二时频资源;或者,终端确定第二数据的大小,根据第二数据的MCS和第二数据的大小确定第二时频资源。该种可能的实现方式,提供了多种确定第二时频资源的方法,从而可以在不同情况下确定第二时频资源,提高了确定第二时频资源的灵活性。
在一种可能的实现方式中,第二时频资源和时频资源之间具有预设的比例关系;或者,第二时频资源和时频资源之间具有预设的对应关系。在一种可能的实现方式中,终端接收来自网络设备的第六指示信息,根据第六指示信息确定第二数据的大小。
在一种可能的实现方式中,终端根据第一数据的MCS,以及第一数据的MCS和第二数据的MCS之间的关系确定第二数据的MCS;或者,终端接收第四指示信息,根据第四指示信息确定第二数据的MCS;或者,终端确定第二数据的大小,根据第二数据的大小和第二时频资源确定第二数据的MCS。该种可能的实现方式,提供了多种确定第二数据的MCS的方法,从而可以在不同情况下确定第二数据的MCS,提高了确定第二数据的MCS的灵活性。
在一种可能的实现方式中,第一数据的MCS和第二数据的MCS之间具有预设的索引关系;或者,第一数据的MCS和第二数据的MCS中的调制方式相同,第一数据的MCS和第二数据的MCS中的码率具有预设的比例关系。
在一种可能的实现方式中,终端根据第一数据的MCS在第一时频资源上发送或者接收第一数据;终端根据第二数据的MCS在第二时频资源上发送或者接收第二数据。
第二方面,提供了一种通信方法。网络设备向终端发送指示时频资源和第一数据的MCS的第一指示信息,时频资源包括第一时频资源和第二时频资源,第一时频资源为承载第一数据的时频资源,第二时频资源为承载第二数据的时频资源;网络设备根据第一时频资源和第一数据的MCS接收或者发送第一数据;网络设备根据第二时频资源和第二数据的MCS接收或者发送第二数据。
在一种可能的实现方式中,第一数据和第二数据在同一个物理信道中传输。
在一种可能的实现方式中,网络设备向终端发送第二指示信息,第二指示信息指示第一时频资源。
在一种可能的实现方式中,网络设备向终端发送第三指示信息,第三指示信息指示第二时频资源。
在一种可能的实现方式中,网络设备向终端发送第四指示信息,第四指示信息指示第二数据的MCS。
在一种可能的实现方式中,网络设备向终端发送第五指示信息,第五指示信息指示第一数据的大小。
在一种可能的实现方式中,网络设备向终端发送第六指示信息,第六指示信息指示第二数据的大小。
在一种可能的实现方式中,网络设备向终端发送指示信息,指示信息指示第一时频资源、第二时频资源、第二数据的MCS中的至少一个。
第三方面,提供了一种通信方法。终端接收来自网络设备的第八指示信息,所述第八指示信息指示第一时频资源和第一数据的MCS,所述第一时频资源为承载所述第一数据的时频资源;所述终端确定第二时频资源和第二数据的MCS;其中,所述第二时频资源和所述第二数据的MCS中的至少一个根据所述第八指示信息确定,所述第二时频资源为承载所述第二数据的时频资源;所述终端根据所述第一数据的MCS在所述第一时频资源上向所述网络设备发送所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上向所述网络设备发送所述第二数据;或者,所述终端根据所述第一数据的MCS在所述第一时频资源上接收来自所述网络设备的所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上接收来自所述网络设备的所述第二数据。第三方面提供的方法的有益效果可以参考第一方面的有益效果的相关描述。
在一种可能的实现方式中,所述第一数据和所述第二数据在同一个物理信道中传输。
在一种可能的实现方式中,所述终端接收第三指示信息,根据所述第三指示信息确定所述第二时频资源;所述终端根据所述第一数据的MCS,以及所述第一数据的MCS与所述第二数据的MCS之间的关系确定所述第二数据的MCS。
在一种可能的实现方式中,所述终端接收第四指示信息,根据所述第四指示信息确定所述第二数据的MCS;所述终端根据所述第一时频资源,以及所述第一时频资源与所述第二时频资源之间的关系确定所述第二时频资源。
在一种可能的实现方式中,所述终端根据所述第一时频资源,以及所述第一时频资源与所述第二时频资源之间的关系确定所述第二时频资源;所述终端根据所述第一数据的MCS,以及所述第一数据的MCS与所述第二数据的MCS之间的关系确定所述第二数据的MCS。
上述多种实现方式提供了多种确定第二时频资源和第二数据的MCS的方法,从而可以在不同情况下确定第二时频资源和第二数据的MCS,提高了确定第二时频资源和第二数据的MCS的灵活性。
第四方面,提供了一种通信方法。网络设备向终端发送第八指示信息,所述第八指示信息指示第一时频资源和第一数据的MCS,所述第一时频资源为承载所述第一数据的时频资源;其中,所述第八指示信息还用于所述终端确定第二时频资源和第二数据的MCS中的至少一个,所述第二时频资源为承载所述第二数据的时频资源;所述网络设备根据所述第一数据的MCS在所述第一时频资源上向所述终端发送所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上向所述终端发送所述第二数据; 或者,所述网络设备根据所述第一数据的MCS在所述第一时频资源上接收来自所述终端的所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上接收来自所述终端的所述第二数据。
在一种可能的实现方式中,所述第一数据和所述第二数据在同一个物理信道中传输。
在一种可能的实现方式中,所述网络设备向所述终端发送第三指示信息,所述第三指示信息指示所述第二时频资源。
在一种可能的实现方式中,所述网络设备向所述终端发送第四指示信息,所述第四指示信息指示所述第二数据的MCS。
在一种可能的实现方式中,所述第一时频资源和所述第二时频资源之间存在关系;所述第一数据的MCS和所述第二数据的MCS之间存在关系。
第五方面,提供了一种通信方法。终端接收来自于网络设备的第十一指示信息和第十二指示信息,第十一指示信息指示第一资源和第三MCS,第十二指示信息指示第二资源和第四MCS,第三MCS为在所述第一资源上发送或接收第一数据的MCS,所述第四MCS为在所述第二资源上发送或接收第二数据的MCS;在所述第一资源和所述第二资源重叠的情况下,所述终端根据第一MCS在第一时频资源上向所述网络设备发送所述第一数据,并根据第二MCS在第二时频资源上向所述网络设备发送所述第二数据;或者,所述终端根据所述第一MCS在所述第一时频资源上接收来自所述网络设备的所述第一数据,并根据所述第二MCS在所述第二时频资源上接收来自所述网络设备的所述第二数据;其中,所述第一MCS为在所述第一时频资源上发送或接收所述第一数据的MCS,所述第二MCS为在所述第二时频资源上发送或接收所述第二数据的MCS;所述第一资源包括所述第一时频资源和所述第二时频资源,或者,所述第二资源包括所述第一时频资源和所述第二时频资源。
在一种可能的实现方式中,所述终端接收来自所述网络设备的第十指示信息,所述第十指示信息指示所述第一时频资源或所述第一MCS;在所述第十指示信息指示所述第一时频资源的情况下,所述终端根据所述第十指示信息确定所述第一时频资源,并根据所述第一时频资源、所述第十一指示信息和所述第十二指示信息确定所述第一MCS、所述第二时频资源和所述第二MCS;在所述第十指示信息指示所述第一MCS的情况下,所述终端根据所述第十指示信息确定所述第一MCS,并根据所述第一MCS、所述第十一指示信息和所述第十二指示信息确定所述第一时频资源、所述第二时频资源和所述第二MCS。
在一种可能的实现方式中,在所述第十指示信息用于确定所述第一时频资源的情况下,所述终端根据所述第一时频资源和所述第一数据的大小确定所述第一MCS;所述终端根据所述第一时频资源,以及所述第一资源或所述第二资源确定所述第二时频资源;所述终端根据所述第二时频资源和所述第二数据的大小确定所述第二MCS;所述第一数据的大小根据所述第十一指示信息确定,所述第二数据的大小根据所述第十二指示信息确定。
在一种可能的实现方式中,在所述第十指示信息用于确定所述第一MCS的情况下,所述终端根据所述第一MCS和所述第一数据的大小确定所述第一时频资源;所述终端 根据所述第一时频资源,以及所述第一资源或所述第二资源确定所述第二时频资源;所述终端根据所述第二时频资源和所述第二数据的大小确定所述第二MCS;所述第一数据的大小根据所述第十一指示信息确定,所述第二数据的大小根据所述第十二指示信息确定。
在一种可能的实现方式中,所述第一资源包括所述第一时频资源和所述第二时频资源,所述终端根据所述第二资源确定所述第二时频资源,所述终端根据所述第一资源和所述第二时频资源确定所述第一时频资源,所述第二MCS为所述第四MCS,所述第一MCS为所述第三MCS或者所述第一MCS根据所述第一时频资源和所述第一数据的大小确定。
在一种可能的实现方式中,所述终端确定所述第一资源中的X1个RE为所述第二时频资源,X1为所述第二资源中用于传输数据的RE的个数。
在一种可能的实现方式中,所述第二资源包括所述第一时频资源和所述第二时频资源,所述终端根据所述第一资源确定所述第一时频资源,所述终端根据所述第二资源和所述第一时频资源确定所述第二时频资源,所述第一MCS为所述第三MCS,所述第二MCS为所述第四MCS或者所述第二MCS根据所述第二时频资源和所述第二数据的大小确定。
在一种可能的实现方式中,所述终端确定所述第二资源中的X2个RE为所述第一时频资源,X2为所述第一资源中用于传输数据的RE的个数。
在一种可能的实现方式中,所述第一数据和所述第二数据在同一个物理信道中传输。
第六方面,提供了一种通信方法。网络设备向终端发送第十一指示信息和第十二指示信息,第十一指示信息指示第一资源和第三MCS,第十二指示信息指示第二资源和第四MCS,第三MCS为在所述第一资源上发送或接收第一数据的MCS,所述第四MCS为在所述第二资源上发送或接收第二数据的MCS;在所述第一资源和所述第二资源重叠的情况下,所述第十一指示信息和所述第十二指示信息用于确定第一时频资源、第一MCS、第二时频资源和第二MCS中的至少一个;其中,所述第一MCS为在所述第一时频资源上发送或接收所述第一数据的MCS,所述第二MCS为在所述第二时频资源上发送或接收所述第二数据的MCS;所述第一资源包括所述第一时频资源和所述第二时频资源,或者,所述第二资源包括所述第一时频资源和所述第二时频资源;在所述第一资源和所述第二资源重叠的情况下,所述网络设备根据所述第一MCS在所述第一时频资源上向所述终端发送所述第一数据,并根据所述第二MCS在所述第二时频资源上向所述终端发送所述第二数据;或者,所述网络设备根据所述第一MCS在所述第一时频资源上接收来自所述终端的所述第一数据,并根据所述第二MCS在所述第二时频资源上接收来自所述终端的所述第二数据。
在一种可能的实现方式中,所述网络设备向所述终端发送第十指示信息,所述第十指示信息指示所述第一时频资源或所述第一MCS。
在一种可能的实现方式中,所述第一资源包括所述第一时频资源和所述第二时频资源,所述第二时频资源根据所述第二资源确定,所述第一时频资源根据所述第一资源和所述第二时频资源确定,所述第二MCS为所述第四MCS,所述第一MCS为所述 第三MCS或者所述第一MCS根据所述第一时频资源和所述第一数据的大小确定。
在一种可能的实现方式中,所述第一资源中的X1个RE为所述第二时频资源,X1为所述第二资源中用于传输数据的RE的个数。
在一种可能的实现方式中,所述第二资源包括所述第一时频资源和所述第二时频资源,所述第一时频资源根据所述第一资源确定,所述第二时频资源根据所述第二资源和所述第一时频资源确定,所述第一MCS为所述第三MCS,所述第二MCS为所述第四MCS或者所述第二MCS根据所述第二时频资源和所述第二数据的大小确定。
在一种可能的实现方式中,所述第二资源中的X2个RE为所述第一时频资源,X2为所述第一资源中用于传输数据的RE的个数。
在一种可能的实现方式中,所述第一数据和所述第二数据在同一个物理信道中传输。
第七方面,提供了一种通信装置,包括:通信单元和处理单元;通信单元,用于接收来自网络设备的第一指示信息,第一指示信息指示时频资源和第一数据的MCS,时频资源包括第一时频资源和第二时频资源,第一时频资源为承载第一数据的时频资源,第二时频资源为承载第二数据的时频资源;处理单元,用于确定第一时频资源、第二时频资源和第二数据的MCS;其中,第一时频资源、第二时频资源和第二数据的MCS中的至少一个根据第一指示信息确定;通信单元,还用于:根据第一数据的MCS在第一时频资源上向网络设备发送第一数据,并根据第二数据的MCS在第二时频资源上向网络设备发送第二数据;或者,根据第一数据的MCS在第一时频资源上接收来自网络设备的第一数据,并根据第二数据的MCS在第二时频资源上接收来自网络设备的第二数据。
在一种可能的实现方式中,第一数据和第二数据在同一个物理信道中传输。
在一种可能的实现方式中,处理单元,具体用于:确定第一数据的大小,根据第一数据的大小和第一数据的MCS确定第一时频资源;或者,根据时频资源,以及第一时频资源和时频资源之间的关系确定第一时频资源;或者,通过通信单元接收第二指示信息,根据第二指示信息确定第一时频资源;或者,根据时频资源和第二时频资源确定第一时频资源。
在一种可能的实现方式中,通信单元,还用于接收来自网络设备的第五指示信息;所述处理单元,还用于根据第五指示信息确定第一数据的大小。
在一种可能的实现方式中,处理单元,具体用于:根据时频资源,以及第二时频资源和时频资源之间的关系确定第二时频资源;或者,通过通信单元接收第三指示信息,根据第三指示信息确定第二时频资源;或者,根据时频资源和第一时频资源确定第二时频资源;或者,确定第二数据的大小,根据第二数据的MCS和第二数据的大小确定第二时频资源。
在一种可能的实现方式中,通信单元,还用于接收来自网络设备的第六指示信息;所述处理单元,还用于根据第六指示信息确定第二数据的大小。
在一种可能的实现方式中,处理单元,具体用于:根据第一数据的MCS,以及第一数据的MCS和第二数据的MCS之间的关系确定第二数据的MCS;或者,通过通信单元接收第四指示信息,根据第四指示信息确定第二数据的MCS;或者,确定第二数 据的大小,根据第二数据的大小和第二时频资源确定第二数据的MCS。
第八方面,提供了一种通信装置,包括:通信单元和处理单元;处理单元,用于通过通信单元向终端发送第一指示信息,第一指示信息指示时频资源和第一数据的MCS,时频资源包括第一时频资源和第二时频资源,第一时频资源为承载第一数据的时频资源,第二时频资源为承载第二数据的时频资源;通信单元,还用于:根据第一数据的MCS在第一时频资源上向终端发送第一数据,根据第二数据的MCS在第二时频资源上向终端发送第二数据;或者,根据第一数据的MCS在第一时频资源上接收来自终端的第一数据,根据第二数据的MCS在第二时频资源上接收来自终端的第二数据。
在一种可能的实现方式中,第一数据和第二数据在同一个物理信道中传输。
在一种可能的实现方式中,处理单元,还用于通过通信单元向终端发送第二指示信息,第二指示信息指示第一时频资源。
在一种可能的实现方式中,处理单元,还用于通过通信单元向终端发送第三指示信息,第三指示信息指示第二时频资源。
在一种可能的实现方式中,处理单元,还用于通过通信单元向终端发送第四指示信息,第四指示信息指示第二数据的MCS。
在一种可能的实现方式中,处理单元,还用于通过通信单元向终端发送第五指示信息,第五指示信息指示第一数据的大小。
在一种可能的实现方式中,处理单元,还用于通过通信单元向终端发送第六指示信息,第六指示信息指示第二数据的大小。
第九方面,提供了一种通信装置,包括:通信单元和处理单元;所述通信单元,用于接收来自网络设备的第八指示信息,所述第八指示信息指示第一时频资源和第一数据的MCS,所述第一时频资源为承载所述第一数据的时频资源;所述处理单元,用于确定第二时频资源和第二数据的MCS;其中,所述第二时频资源和所述第二数据的MCS中的至少一个根据所述第八指示信息确定,所述第二时频资源为承载所述第二数据的时频资源;所述通信单元,还用于:根据所述第一数据的MCS在所述第一时频资源上向所述网络设备发送所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上向所述网络设备发送所述第二数据;或者,根据所述第一数据的MCS在所述第一时频资源上接收来自所述网络设备的第一数据,并根据所述第二数据的MCS在所述第二时频资源上接收来自所述网络设备的第二数据。
在一种可能的实现方式中,所述第一数据和所述第二数据在同一个物理信道中传输。
在一种可能的实现方式中,所述处理单元,具体用于:通过所述通信单元接收第三指示信息,根据所述第三指示信息确定所述第二时频资源;根据所述第一数据的MCS,以及所述第一数据的MCS与所述第二数据的MCS之间的关系确定所述第二数据的MCS。
在一种可能的实现方式中,所述处理单元,具体用于:通过所述通信单元接收第四指示信息,根据所述第四指示信息确定所述第二数据的MCS;根据所述第一时频资源,以及所述第一时频资源与所述第二时频资源之间的关系确定所述第二时频资源。
在一种可能的实现方式中,所述处理单元,具体用于:根据所述第一时频资源, 以及所述第一时频资源与所述第二时频资源之间的关系确定所述第二时频资源;根据所述第一数据的MCS,以及所述第一数据的MCS与所述第二数据的MCS之间的关系确定所述第二数据的MCS。
第十方面,提供了一种通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元向终端发送第八指示信息,所述第八指示信息指示第一时频资源和第一数据的MCS,所述第一时频资源为承载所述第一数据的时频资源;其中,所述第八指示信息还用于所述终端确定第二时频资源和第二数据的MCS中的至少一个,所述第二时频资源为承载所述第二数据的时频资源;所述通信单元,还用于:根据所述第一数据的MCS在所述第一时频资源上向所述终端发送所述第一数据,根据所述第二数据的MCS在所述第二时频资源上向所述终端发送所述第二数据;或者,根据所述第一数据的MCS在所述第一时频资源上接收来自所述终端的所述第一数据,根据所述第二数据的MCS在所述第二时频资源上接收来自所述终端的所述第二数据。
在一种可能的实现方式中,所述第一数据和所述第二数据在同一个物理信道中传输。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述终端发送第三指示信息,所述第三指示信息指示所述第二时频资源。
在一种可能的实现方式中,所述处理单元,还用于通过所述通信单元向所述终端发送第四指示信息,所述第四指示信息指示所述第二数据的MCS。
在一种可能的实现方式中,所述第一时频资源和所述第二时频资源之间存在关系;所述第一数据的MCS和所述第二数据的MCS之间存在关系。
第十一方面,提供了一种通信装置,包括:一个或多个功能单元,一个或多个功能单元用于实现第五方面提供的任意一种方法,例如,包括通信单元和处理单元;处理单元用于通过通信单元执行第五方面提供的任意一种方法中的发送和/或接收的动作,处理单元还用于执行第五方面提供的任意一种方法中的其他动作。
第十二方面,提供了一种通信装置,包括:一个或多个功能单元,一个或多个功能单元用于实现第六方面提供的任意一种方法,例如,包括通信单元和处理单元;处理单元用于通过通信单元执行第六方面提供的任意一种方法中的发送和/或接收的动作,处理单元还用于执行第六方面提供的任意一种方法中的其他动作。
第十三方面,提供了一种通信装置,包括:一个或多个处理器、收发器;一个或多个处理器、收发器支持通信装置执行第一方面至第六方面中任一方面提供的任意一种方法。
第十四方面,提供了一种通信装置,包括:处理器和通信接口,处理器通过通信接口与存储器耦合,当处理器执行存储器中的计算机程序或计算机指令时,使得第一方面至第六方面中任一方面提供的任意一种方法被执行。
第十五方面,提供了一种计算机可读存储介质,包括计算机指令,当该计算机指令在通信装置上运行时,使得通信装置执行第一方面至第六方面中任一方面提供的任意一种方法。
第十六方面,提供了一种计算机程序产品,包含计算机指令,当该计算机指令在通信装置上运行时,使得通信装置执行第一方面至第六方面中任一方面提供的任意一 种方法。
第十七方面,提供了一种通信系统,包括上述网络设备和上述终端。
第七方面至第十七方面中的任一种实现方式所带来的技术效果可参见第一方面至第六方面中对应实现方式所带来的技术效果,此处不再赘述。
需要说明的是,在方案不矛盾的前提下,上述各个方面中的方案均可以结合。
附图说明
图1为终端与网络设备的通信示意图;
图2为上下行数据传输的流程图;
图3为PDSCH的资源示意图;
图4为RBG的示意图;
图5为PDSCH占用的频域资源的示意图;
图6为码字映射到层的示意图;
图7为本申请实施例提供的一种通信方法的流程图;
图8为本申请实施例提供的一种第一时频资源和第二时频资源的位置示意图;
图9为本申请实施例提供的又一种第一时频资源和第二时频资源的位置示意图;
图10为本申请实施例提供的又一种第一时频资源和第二时频资源的位置示意图;
图11为本申请实施例提供的又一种通信方法的流程图;
图12为本申请实施例提供的一种第一时域资源和第二时域资源的位置示意图;
图13为本申请实施例提供的一种第一频域资源和第二频域资源的位置示意图;
图14为本申请实施例提供的又一种通信方法的流程图;
图15为本申请实施例提供的又一种通信方法的流程图;
图16为本申请实施例提供的一种网络设备调度的资源重叠示意图;
图17为本申请实施例提供的一种通信装置的组成示意图;
图18为本申请实施例提供的一种通信装置的硬件结构示意图;
图19为本申请实施例提供的又一种通信装置的硬件结构示意图。
具体实施方式
本申请实施例涉及的网元包括通信系统中的网络设备和终端,具体可参见图1。
基于图1所示的通信场景,对于下行数据传输,参见图2中的(a),网络设备发送物理下行控制信道(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH)。终端首先检测PDCCH,根据PDCCH中的指示信息,接收PDSCH。在接收到PDSCH之后,终端对PDSCH进行解码。如果PDSCH解码成功,则终端向网络设备发送确认应答(acknowledgement,ACK)。如果PDSCH解码失败,则终端向网络设备发送否认应答(negative acknowledgement,NACK)。网络设备在对应资源上检测ACK或NACK。
基于图1所示的通信场景,对于上行数据传输,参见图2中的(b),网络设备发送PDCCH,终端首先检测PDCCH,然后根据PDCCH中的指示信息发送物理上行共享信道(physical downlink shared channel,PUSCH)。网络设备在对应的资源上检测PUSCH。
可以理解的是,本申请的实施例中,PDSCH、PDCCH和PUSCH只是作为物理层的下行数据信道、下行控制信道和上行数据信道的一种举例,在不同的系统和不同的场景中, 数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
本申请实施例中的通信系统可以为第四代(4th Generation,4G)系统、基于4G系统演进的各种系统、5G系统、基于5G系统演进的各种系统以及未来的移动通信系统中。4G系统的核心网可以称为演进分组核心网(evolved packet core,EPC)系统,接入网可以称为长期演进(long term evolution,LTE)系统。5G系统的核心网可以称为5GC(5G core)系统,接入网可以称为新无线(new radio,NR)系统。
示例性的,本申请可以应用于增强移动宽带(enhanced mobile broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC),超可靠低延迟通信(ultra-reliable and low-latency communications,URLLC)等业务场景。
本申请实施例中的网络设备为网络侧的一种用于发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,RAN)中为终端提供无线通信功能的装置,例如,可以为传输接收点(transmission reception point,TRP)、基站、各种形式的控制节点、路侧单元(road side unit,RSU)等。其中,基站可以为各种形式的宏基站、微基站(也称为小站)、中继站、接入点(access point,AP)等。例如,基站可以为演进型基站(evolved NodeB,eNB或eNodeB)、下一代基站节点(next generation node base station,gNB)、下一代eNB(next generation eNB,ng-eNB)、中继节点(relay node,RN)、接入回传一体化(integrated access and backhaul,IAB)节点等。在采用不同的无线接入技术(radio access technology,RAT)的系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。控制节点可以连接多个基站,并为多个基站覆盖下的多个终端配置资源。
本申请实施例中的终端可以是用户侧的一种用于接收信号和发送信号的实体。终端用于向用户提供语音服务和数据连通性服务中的一种或多种。终端还可以称为用户设备(user equipment,UE)、终端设备、用户单元、用户站、移动站、移动台、移动终端、远方站、远程终端、移动设备、用户终端。终端可以是车联网(vehicle to everything,V2X)设备,例如,智能汽车、数字汽车、无人驾驶汽车等。终端也可以是设备到设备(device to device,D2D)设备。终端还可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
为了使得本申请实施例更加的清楚,以下对本申请实施例中涉及的部分内容作简单介绍。
1、上下行数据的资源分配。
上行数据的资源分配包括配置授权(configured grant,CG)和动态授权(dynamic grant,DG)两种方式。下行数据的资源分配包括半静态调度(semi-persistent scheduling,SPS)和DG两种方式。
CG资源的分配是半静态调度的。网络设备为终端分配资源之后,未来一段时间内,终端都可以使用上述分配的资源,特点是“一次分配,多次使用”。具体的,网络设备可以为 终端配置一段周期性出现的时域资源。CG资源可以包括类型1(type1)CG(configured grant type-1)资源、类型2(type2)CG(configured grant type-2)资源。type1 CG资源是网络设备通过无线资源控制(radio resource control,RRC)信令直接配置给终端的传输资源,终端可以直接使用该CG资源传输数据。type2 CG资源是网络设备通过RRC信令配置传输资源的周期,再通过PDCCH中的下行控制信息(downlink control information,DCI)激活该传输资源。
DG资源是网络设备通过PDCCH中的DCI动态分配给终端的传输资源。
2、PDSCH时频资源的指示机制。
第一部分:PDSCH时域资源的指示。
PDSCH时域资源通过时域资源信息确定,时域资源信息包括PDSCH映射类型(PDSCH mapping type),K 0,S和L。其中,K 0表示PDSCH相对于和其对应的PDCCH的时隙(slot)间隔,S和L分别表示PDSCH在K 0指示的时隙中的起始位置(例如,起始符号)和长度。
目前,通过PDCCH中的时域资源指示域(4bit),选择高层预配置的表格中的某一行,作为PDSCH的时域资源。以高层预配置的表格为表1为例。例如,当PDCCH中的时域资源指示域指示的行索引(row index)为1,解调参考信号(demodulation reference signal,DMRS)-类型A-位置(dmrs-TypeA-Position)为2时,PDSCH映射类型为类型A,K 0=0,S=2,L=12。
表1
Figure PCTCN2020116317-appb-000001
示例性的,参见图3,若用于调度PDSCH的下行控制信息(downlink control information,DCI)所属的PDCCH在时隙n上发送,且S=3,L=5,则PDSCH位于时隙
Figure PCTCN2020116317-appb-000002
的符号3至符号7上。其中,μ PDSCH和μ PDCCH可以根据子载波间隔确定。
Figure PCTCN2020116317-appb-000003
为下取整符号。
第二部分:PDSCH频域资源的指示。
PDSCH频域资源通过PDCCH的频域资源指示域进行指示。频域资源有两种指示方法。
第一种指示方式是类型0(type0)。该指示方法的频域粒度为资源块组(resource block groups,RBG)。以带宽为10资源块(resource block,RB),RBG的大小(即RBG中包含的RB的个数)为2为例,如图4所示,可以将10个RB分为5组,得到5个RBG。通过位图(bitmap)的形式指示PDSCH占用的频域资源。以PDCCH中指示信息为10001为例,则PDSCH占用RBG0和RBG4。
第二种指示方式是类型1(type1),该指示方式中PDCCH中指示频域的RB的起始位置(记为RB start)和L,L表示占用RB的长度。以带宽为10RB为例,参见图5,若RB start=2,L=3。则PDSCH占用的频域资源为RB2,RB3和RB4。
3、PUSCH时频资源的指示机制。
PUSCH时域资源的指示方法类似于PDSCH。区别在于,对于PDSCH而言,时隙偏移用K 0表示,对于PUSCH而言,时隙偏移用K 2表示。
PUSCH频域资源的指示方法类似于PDSCH。
4、MCS的指示机制。
MCS用于描述传输信息所采用的调制方式和目标码率(target code rate)。现有技术中,协议预定义或网络设备通过信令配置了MCS索引表格(index table)。表格中,每一行对应一组调制阶数和码率。网络设备可以通过指示信息选择表格中的一行,进而通知终端传输数据采用的调制方式和码率。表2为现有技术中的一种MCS表格示例。该表格中,不同的调制阶数对应于不同的调制方式。例如,调制阶数Q m=2对应于正交相移键控(quadrature phase shift keying,QPSK)调制方式,Q m=4对应于16正交振幅调制(quadrature amplitude modulation,QAM),Q m=6对应于64QAM,Q m=8对应于256QAM。一般而言,调制方式和码率通过MCS索引确定。例如,网络设备通知终端的MCS索引为3,则根据表格可以知道,调制阶数Q m=2,码率为449/1024。即终端采用的调制方式为QPSK,码率为449/1024。
表2
Figure PCTCN2020116317-appb-000004
为了能支持更广泛的应用,现有技术提供了三个表格。每个表格对应于不同的可靠性需求,具体选择哪个表格,可以由高层配置参数配置给终端。
5、传输块大小(transport block size,TBS)的计算。
通信过程中,从媒体接入控制(media access control,MAC)层发往物理层的数据是以传输块(transport block,TB)的形式组织的,网络设备与终端之间的数据传输也是以TB为单位进行的。终端在确定为数据分配的时频资源之后,需要根据时频资源和MCS确定TBS。
根据数据的大小、数据的MCS和数据的时频资源中的任意两个可以计算得到第三个信息。TBS的详细计算过程可参见NR R15协议38.214中的相关描述。
6、同一个物理信道(PDSCH或PUSCH)中传输两个TB的方式。
两个TB在一个物理信道中传输时,两个TB分别经过独立的编码,调制之后,映射在不同的层上,即通过空间维度来区分不同的TB。其中,层数表示的是能够独立传输的数据流的个数,一层表示在相同的时频资源上能独立传输1个数据流,两层表示的 是在相同的时频资源上能独立传输2个数据流。在相同的时频资源上传输多流数据,是通过空间维度实现的。
具体的,参见图6,两个码字(codeword)对应两个TB。码字1对应TB1,其经过编码调制之后得到的符号为d(0),d(1),d(2)和d(3),码字2对应TB2,其经过与TB1相互独立的编码调制之后,得到的符号为h(0),h(1),h(2),h(3),h(4)和h(5)。当前PDSCH传输为5层,则TB1对应的调制后的符号将会映射到第一层和第二层,TB2对应的调制后的符号将会映射到第三层,第四层和第五层。也就是说,不同TB对应的调制后的符号将会独立映射到不同的空间维度上。具体的映射过程可参见现有技术,不再赘述。
在5G系统的众多应用场景中,广泛存在一个终端复用多种业务的场景,例如智能电网终端将集成三种业务:差动保护、三遥业务(遥测、遥信、遥控)以及网络授时业务。不同业务之间对于可靠性,时延,数据速率等性能指标的需求有很大的差异。同时,在很多场景中,由于传输的时隙有限,例如现有公网的上下行配比为7:3或者8:2,即只有少数的上行时隙。因此,如果一个终端复用了多种业务,将会面临在同一个调度时刻传输两种或者多种业务的需求。一般而言,在一个物理信道中传输的数据将会采用相同的MCS。此时,如果选择的MCS满足高可靠性需求的业务(例如URLLC业务)的需求,则会降低低可靠性需求的业务(例如eMBB业务)的频谱效率;反之,如果选择的MCS满足低可靠性需求的业务的需求,虽然频谱效率会比较高,但是可能又无法满足高可靠性需求的业务的需求。
如果两种业务数据在一个物理信道中传输,通过现有技术实现会有两种情况。情况一:两种业务数据采用的是相同的MCS,这样无法同时满足两种业务数据的需求。情况二:通过空间维度来复用两种业务数据,即不同业务数据对应的传输块占据不同的层(layer)。情况二虽然能够针对不同业务数据独立编码和调制,但是灵活性受限。一方面,并不是所有的场景都能够支持很高的空间维度,例如,对于有些终端,发送天线只有1根或者2根,很难支持很高的层数传输数据。另一方面,通过空间维度复用两个业务数据,限制两个TB必须占用相同的时频资源,从而使得数据传输不够灵活。例如,在图6中,在不同层上的符号数都是2,也就是说,传输的两个TB对应的符号数必须有确定的对应关系,在图6中,因为传输TB1的层数为2,传输TB2的层数为3,因此,TB1和TB2对应的调制符号数比例为2:3。这种确定的比例关系,不能够灵活的支持数据传输。例如,当一种业务数据量非常大,另外一种业务对应的数据量非常小时,现有技术就无法灵活支持。
为了满足不同数据的需求,并且灵活的进行数据传输,两个数据最好使用各自的MCS和时频资源,为此,本申请实施例提供了一种通信方法,该通信方法具体可以通过以下实施例一至实施例三所示的方法实现。实施例一至实施例三的共同点在于,终端都要确定两个数据的时频资源和MCS,区别点在于,在实施例一中,网络设备为终端指示的为两个数据的总的时频资源和其中一个数据的MCS,在实施例二中,网络设备为终端指示的为两个数据中一个数据的时频资源和MCS,在实施例三中,网络设备至少为终端指示两个数据的大小和两个数据的总的时频资源。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以 是智能电网、工厂自动化以及智能交通等工业物联网应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片)来执行。
实施例一
图7为本申请的实施例一提供的通信方法。
701、网络设备向终端发送第一指示信息,第一指示信息指示时频资源和第一数据的MCS,时频资源包括第一时频资源和第二时频资源,第一时频资源为承载第一数据的时频资源,第二时频资源为承载第二数据的时频资源。相应的,终端接收来自网络设备的第一指示信息。
本申请中的第一数据和第二数据可以为TB。第一数据和第二数据可以为不同业务类型的两个数据,也可以为同一业务类型但可靠性要求不同的两个数据。第一数据和第二数据可以均为新传数据,也可以均为重传数据,还可以一个为新传数据,另一个为重传数据。第一数据和第二数据可以为上行数据,也可以为下行数据。
时频资源包括第一时频资源和第二时频资源可以有两种理解。一种理解为:时频资源由第一时频资源和第二时频资源组成,也就是说,时频资源中仅包括第一时频资源和第二时频资源,不包括其他资源。另一种理解为:时频资源除了包括第一时频资源和第二时频资源之外,还包括其他资源,例如,用于传输DMRS的资源。时频资源包括的第一时频资源和第二时频资源可以全部重叠,部分重叠,也可以完全不重叠。如图8中的(a)和图8中的(b)所示,第一时频资源和第二时频资源完全不重叠。在图8中的(a)中,时频资源仅包括第一时频资源和第二时频资源。在图8中的(b)中,时频资源除了包括第一时频资源和第二时频资源之外,还包括其他资源。如图9中的(a)和图9中的(b)所示,第一时频资源和第二时频资源部分重叠。在图9中的(a)中,时频资源仅包括第一时频资源和第二时频资源。在图9中的(b)中,时频资源除了包括第一时频资源和第二时频资源之外,还包括其他资源。如图10中的(a)和图10中的(b)所示,第一时频资源和第二时频资源全部重叠。在图10中的(a)中,时频资源仅包括第一时频资源和第二时频资源。在图10中的(b)中,时频资源除了包括第一时频资源和第二时频资源之外,还包括其他资源。
在第一时频资源和第二时频资源全部重叠或部分重叠时,在重叠的时频资源上,可以通过不同的层传输第一数据和第二数据,例如,若重叠的时频资源上可以传输4层数据,则第一数据可以占据其中的一层,第二数据可以占据其中的三层。
可选的,在第一时频资源和第二时频资源全部重叠或者部分重叠时,在重叠的时频资源上,可以通过不同的功率来传输第一数据和第二数据,例如传输第一数据的功率为P1,传输第二数据的功率为P2,接收端可以根据P1和P2的不同,区分第一数据和第二数据。
702、终端确定第一时频资源、第二时频资源和第二数据的MCS。
参见图7,该方法还包括步骤703或步骤704。
703、终端根据第一数据的MCS在第一时频资源上向网络设备发送第一数据,并根据第二数据的MCS在第二时频资源上向网络设备发送第二数据。相应的,网络设备根据第一数据的MCS在第一时频资源上接收来自终端的第一数据,根据第二数据的MCS在第二时频资源上接收来自终端的第二数据。
704、网络设备根据第一数据的MCS在第一时频资源上向终端发送第一数据,根据第二数据的MCS在第二时频资源上向终端发送第二数据。相应的,终端根据第一数据 的MCS在第一时频资源上接收来自网络设备的第一数据,并根据第二数据的MCS在第二时频资源上接收来自网络设备的第二数据。
可选的,第一数据和第二数据在同一个物理信道中传输。其中,第一数据和第二数据为上行数据时,该物理信道为PUSCH;第一数据和第二数据为下行数据时,该物理信道为PDSCH。第一数据和第二数据可以由同一个DCI调度。上述第一指示信息可以承载在该DCI中。
终端可以通过以下方式11至方式14中的任意一种方式确定第一时频资源。
方式11:终端确定第一数据的大小,根据第一数据的大小和第一指示信息指示的第一数据的MCS确定第一时频资源。具体的,网络设备可以向终端发送第五指示信息,第五指示信息指示第一数据的大小。相应的,终端接收来自网络设备的第五指示信息,根据第五指示信息确定第一数据的大小。
在第一数据为新传数据的情况下,一种实现方式中,第五指示信息携带在高层信令(例如,RRC信令)中。在某些场景下,这种实现方式可以满足业务需求。例如,在第一数据为URLLC业务数据的情况下,URLLC业务数据为小包,且包大小比较固定,因此,通过高层信令配置数据的大小。在另一种实现方式中,网络设备通过高层信令给终端配置一个TBS的候选集合,例如,候选集合可以包括TBS1、TBS2和TBS3,进一步的,通过DCI中的第五指示信息从候选集合中指示一个TBS作为第一数据的TBS。这里的DCI可以是调度第一数据和第二数据的DCI。
在第一数据为重传数据的情况下,第五指示信息为指示第一数据为重传数据的指示信息。该情况下,终端根据该重传数据对应的新传数据的大小,即可确定该重传数据的大小。可选的,第五指示信息可以通过DCI中的新数据指示(new data indicator,NDI)指示域指示第一数据为重传数据。在MCS指示域不用于指示第一数据的MCS的情况下,第五指示信息也可以为MCS指示域,例如,参见表2,若第一数据的MCS index是28,29,30或31时,可以指示第一数据为重传数据。
在另一种实现方式中,第一数据的大小与第二数据的大小之间可以存在对应关系,该情况下,在获知第二数据的大小之后,则终端可以根据该对应关系确定第一数据的大小。其中,第二数据为新传数据或重传数据时,第二数据的大小的确定与第一数据类似。另外,第二数据的大小还可以根据承载第二数据的时频资源和第二数据的MCS确定。具体的,第一数据的大小与第二数据的大小之间可以相差固定的差值X。例如,当第一数据为A1时,第二数据的大小为A1+X。X可以为正值,也可以为负值。或者,第一数据的大小与第二数据的大小之间可以相差比例因子R0,R0为正实数。例如,当第一数据为A1时,第二数据的大小为A1乘以R0(或者为A1除以R0)对应的整数值。例如,当A1=256,R0=0.7时,A1乘以R0为179.2。在本申请中,实数对应的整数值可以通过以下三种取整方案中的一种得到,可以为向下取整(得到179),向上取整(得到180),或者为四舍五入取整(得到179)。
在方式11中,根据数据的大小、数据的MCS和数据的时频资源中的任意两个可以计算得到第三个信息。在终端确定第一数据的大小,并且根据第一指示信息确定第一数据的MCS之后,终端可以根据第一数据的大小和第一数据的MCS确定第一时频资源。例如,若第一时频资源中用于传输数据的资源元素(resource element,RE)个数为N,第一数据的 TBS为X,则可以计算得到频谱效率SE1,通过频谱效率SE1在MCS表格中选择满足要求的调制方式和码率。例如,可以选择MCS表格中最接近频谱效率SE1的频谱效率对应的调制方式和码率,可以选择MCS表格中大于频谱效率SE1,且最接近频谱效率SE1的频谱效率对应的调制方式和码率,也可以选择MCS表格中小于频谱效率SE1,且最接近频谱效率SE1的频谱效率对应的调制方式和码率。
方式12:终端根据第一指示信息指示的时频资源,以及第一时频资源和时频资源之间的关系确定第一时频资源。
具体的,第一时频资源和时频资源之间的关系可以为比例关系,例如,第一时频资源占据时频资源的比例(记为R1,R1大于0小于等于1)。该情况下,终端根据第一指示信息确定时频资源之后,若时频资源中包括M(M为大于0的整数)个RE,则第一时频资源中的RE的个数为:M*R1对应的整数值。“*”表示“乘以”。其中,R1可以为网络设备指示给终端的。可选的,R1可以通过DCI,RRC等信令通知终端。例如,可以通过RRC信令配置一个R1的集合,例如,R1的集合中包括A、B、C、D,通过DCI从R1的集合中指示一个R1,例如A,作为实际使用的R1。
第一时频资源和时频资源之间的关系也可以为对应关系,例如时频资源为A3时,第一时频资源为B3,时频资源为A4时,第一时频资源为B4。其中B3和B4可以相同,也可以不同。可选的,第一时频资源和时频资源之间的对应关系可以通过RRC信令通知给终端。
方式13:网络设备向终端发送第二指示信息,第二指示信息指示第一时频资源。终端接收第二指示信息,根据第二指示信息确定第一时频资源。第二指示信息可以承载在信令中。在本申请中,各种消息或信息可以承载在信令中,信令可以是RRC信令、媒体接入控制控制元素(media access control control element,MAC CE)信令或DCI。本申请中的不同的消息或信息可以携带在同一个信令中,也可以携带在不同的信令中。例如,某个/某些消息或信息与第一指示信息可以携带在不同的DCI中,也可以携带在相同的DCI中。
方式14:终端根据第一指示信息指示的时频资源,以及第二时频资源确定第一时频资源。
在终端已经确定第二时频资源的情况下,终端可以采用预设的规则根据第一指示信息指示的时频资源和第二时频资源确定第一时频资源。其中,确定第二时频资源的方法可参见下文。
在第一时频资源和第二时频资源不重叠的情况下,终端可以确定第一指示信息指示的时频资源中的除第二时频资源之外的用于传输数据的时频资源为第一时频资源。需要说明的是,时频资源中可能包括用于传输其他信号的资源,这些资源不能够用于传输数据的资源,因此,时频资源中的除第二时频资源之外的时频资源可能无法全部作为第一时频资源,而是用于传输数据的时频资源作为第一时频资源。
终端可以通过以下方式21至方式24中的任意一种方式确定第二时频资源。
方式21:终端确定第二数据的大小,根据第二数据的MCS和第二数据的大小确定第二时频资源。网络设备可以向终端发送第六指示信息,第六指示信息指示第二数据的大小。相应的,终端接收来自网络设备的第六指示信息,根据第六指示信息确定 第二数据的大小。终端确定第二数据的大小的方法可根据上述方式11直接得到。
若终端确定了第二数据的大小,还确定了第二数据的MCS,则可以根据第二数据的大小和第二数据的MCS确定第二时频资源。其中,确定第二数据的MCS的方法可参见下文。
方式22:终端根据第一指示信息指示的时频资源,以及第二时频资源和第一指示信息指示的时频资源之间的关系确定第二时频资源。具体实现过程可以根据上述方式12直接得到。
方式23:网络设备向终端发送第三指示信息,第三指示信息指示第二时频资源。终端接收第三指示信息,根据第三指示信息确定第二时频资源。
方式24:终端根据第一指示信息指示的时频资源,以及第一时频资源确定第二时频资源。
在终端已经确定第一时频资源的情况下,终端可以采用预设的规则根据第一指示信息指示的时频资源和第一时频资源确定第二时频资源。其中,确定第一时频资源的方法可参见上文。
终端可以通过以下方式31至方式33中的任意一种方式确定第二数据的MCS。
方式31:终端根据第一指示信息指示的第一数据的MCS,以及第一数据的MCS和第二数据的MCS之间的关系确定第二数据的MCS。
在第一种实现方式中,第二数据的MCS的索引(index)和第一数据的MCS的index存在对应关系。例如,第一数据的MCS的index和第二数据的MCS的index存在一定偏移(offset)。offset可以为正数,也可以为负数。示例性的,若第一数据的MCS对应的index为1,如果offset是5,则第二数据的MCS对应的index就为6,终端确定MCS表格(例如,上述表2)中的index为6的MCS为第二数据的MCS。若第一数据的MCS对应的index为5,如果offset是-2,则第二数据的MCS对应的index为3,终端确定MCS表格中的index为3的MCS为第二数据的MCS。其中,offset可以是默认的,也可以为网络设备通过指示信息指示的。
需要说明的是,若通过offset确定的第二数据的MCS的index超出了MCS表格的index范围,例如,第一数据的MCS的index为3,但是offset为-5,计算之后发现index为-2,在这种情况下,则可以选择MCS表格中的最接近计算得到的index的index作为第二数据的MCS的index,因此,可以得到第二数据的MCS的index为0。类似的,计算得到的index太大的时候也可能超出MCS表格的index范围,此时也可以采用MCS表格中的最接近计算得到的index的index作为第二数据的MCS的index。
在第二种实现方式中,根据上文可知,MCS包括调制方式和码率,则第二数据的调制方式可以和第一数据的调制方式相同,第二数据的码率和第一数据的码率存在一定的关系。第二数据的码率和第一数据的码率之间的关系可以为比例关系,例如,第二数据的码率为第一数据的码率的R2(R2大于0)倍,则若第一数据的码率为Rx,则第二数据的码率为:Rx*R2。其中,R2可以为网络设备指示给终端的。可选的,R2可以为0,如果R2为0,则表示不传输第二数据。也就是仅有一个数据传输。可选的,网络设备可以通过R2是否为0来指示传输几个数据。
方式32:网络设备向终端发送第四指示信息,第四指示信息指示第二数据的MCS, 例如,第四指示信息可以为第二数据的MCS的index。终端接收第四指示信息,根据第四指示信息确定第二数据的MCS。
方式33:终端确定第二数据的大小,根据第二数据的大小和第二时频资源确定第二数据的MCS。
终端确定第二数据的大小的方法可根据上述方式11中确定第一数据的大小的方法直接得到。在终端确定第二数据的大小之后,若终端还确定了第二时频资源,则终端可以根据第二数据的大小和第二时频资源确定第二数据的MCS。其中,确定第二时频资源的方法可参见上文。
基于上述各种方式,可选的,第一时频资源、第二时频资源和第二数据的MCS中的至少一个根据第一指示信息确定。该情况下,步骤702的实现可以有表3所示的多种方案。
表3
Figure PCTCN2020116317-appb-000005
Figure PCTCN2020116317-appb-000006
表3所示的各个方案,充分利用了时频资源、数据的大小和MCS三者之间的关系来确定第一时频资源、第二时频资源和第二数据的MCS,能够节省指示信令的开销。
基于上述各种方式,可选的,也可以第一时频资源、第二时频资源和第二数据的MCS都不根据第一指示信息确定。该情况下,步骤702的实现可以有表4所示的多种方案。
表4
Figure PCTCN2020116317-appb-000007
表4所示的各个方案,第一时频资源、第二时频资源和第二数据的MCS的确定和第一指示信息解耦,这样就能够更灵活的进行资源和MCS的指示。
实施例一提供的方法,在有两个数据的情况下,终端可以确定两个数据的时频资源和MCS,从而满足不同数据对可靠性的需求,灵活的进行数据传输。相比按照其中一个数据的可靠性要求对两个数据进行联合调制编码(例如,两个数据采用相同的MCS),两个数据采用各自的MCS在满足两个数据的可靠性的同时,避免资源浪费。另外,在第一时频资源、第二时频资源和第二数据的MCS中的至少一个根据第一指示信息确定的情况下,相比全部采用指示信息指示而言,可以减少信令开销。
另外,现有技术在一个物理信道中传输两个或者多个业务数据时,不能够灵活的指示MCS和分配时频资源。而本申请中,可以根据业务需求选择合适的MCS,一方面能够保证可靠性要求较高的数据的鲁棒性,另一方面能够保证可靠性要求较低的数据的频谱效率。
实施例二
图11为本申请的实施例二提供的通信方法。
1101、网络设备向终端发送第八指示信息,第八指示信息指示第一时频资源和第一数据的MCS,第一时频资源为承载第一数据的时频资源;其中,第八指示信息还用于终端确 定第二时频资源和第二数据的MCS中的至少一个,第二时频资源为承载第二数据的时频资源。相应的,终端接收来自网络设备的第八指示信息。
其中,关于第一数据、第二数据、第一时频资源和第二时频资源的相关描述可参见实施例一。
1102、终端确定第二时频资源和第二数据的MCS。
参见图11,该方法还包括步骤1103或步骤1104。
1103、终端根据第一数据的MCS在第一时频资源上向网络设备发送第一数据,并根据第二数据的MCS在第二时频资源上向网络设备发送第二数据。相应的,网络设备根据第一数据的MCS在第一时频资源上接收来自终端的第一数据,根据第二数据的MCS在第二时频资源上接收来自终端的第二数据。关于步骤1103的相关描述可参见上述步骤703,不再赘述。
1104、网络设备根据第一数据的MCS在第一时频资源上向终端发送第一数据,根据第二数据的MCS在第二时频资源上向终端发送第二数据。相应的,终端根据第一数据的MCS在第一时频资源上接收来自网络设备的第一数据,并根据第二数据的MCS在第二时频资源上接收来自网络设备的第二数据。关于步骤1104的相关描述可参见上述步骤704,不再赘述。
可选的,第一数据和第二数据在同一个物理信道中传输。关于该可选的特征的相关描述可参见实施例一中的相应特征,不再赘述。
终端可以通过以下方式11或方式12确定第二时频资源。
方式11:网络设备向终端发送第三指示信息,第三指示信息指示第二时频资源。终端接收第三指示信息,根据第三指示信息确定第二时频资源。
方式12:终端根据第八指示信息指示的第一时频资源,以及第一时频资源与第二时频资源之间的关系确定第二时频资源;或者,终端根据两个指示信息分别确定第二时频资源包括的时域资源(记为第二时域资源)和频域资源(记为第二频域资源)(即第二时域资源和第二频域资源均由网络设备指示)。
在终端根据第八指示信息指示的第一时频资源,以及第一时频资源与第二时频资源之间的关系确定第二时频资源时,方式12可以有多种实现方式。
第一种实现方式中,第二时域资源由网络设备指示,第二频域资源与第一时频资源中的频域资源(记为第一频域资源)有关系。该情况下,终端可以根据网络设备的指示确定第二时域资源,通过第二频域资源与第一频域资源之间的关系确定第二频域资源。
第二种实现方式中,第二频域资源由网络设备指示,第二时域资源与第一时频资源中的时域资源(记为第一时域资源)有关系。该情况下,终端可以根据网络设备的指示确定第二频域资源,通过第二时域资源与第一时域资源之间的关系确定第二时域资源。
第三种实现方式中,第二频域资源与第一频域资源有关系,第二时域资源与第一时域资源有关系。该情况下,终端可以通过第二频域资源与第一频域资源之间的关系确定第二频域资源,通过第二时域资源与第一时域资源之间的关系确定第二时域资源。
其中,第二时域资源与第一时域资源之间的关系可以有以下几种:
1)第二时域资源与第一时域资源位于时域资源分配表(例如,上述表1)的同一行。该情况下,时域资源分配表中可以再增加几列指示第二时域资源的信息。以表1为例,可以再增加4列,这4列分别指示第二时域资源的PDSCH映射类型、第二时域资源的K 0、第二时域资源的S和第二时域资源的L。此时,第一时域资源确定之后,第二时域资源也确定了。
2)第二时域资源的索引与第一时域资源的索引之间有一个偏移(offset)。offset可以为正数,也可以为负数。示例性的,若第一时域资源的index为1,如果offset是5,则第二时域资源的index就为6,终端确定时域资源分配表(例如,上述表1)中的index为6的时域资源为第二时域资源。若第一时域资源的index为5,如果offset是-2,则第二时域资源的index为3,终端确定时域资源分配表中的index为3的时域资源为第二时域资源。offset可以是默认的,也可以为网络设备通过指示信息指示的。
需要说明的是,若通过offset确定的第二时域资源的index超出了时域资源分配表的index范围,例如,第一时域资源的index为3,但是offset为-5,计算之后发现index为-2,在这种情况下,则可以选择时域资源分配表中的最接近计算得到的index的index作为第二时域资源的index,因此,可以得到第二时域资源的index为0。类似的,计算得到的index太大的时候也可能超出时域资源分配表的index范围,此时也可以采用时域资源分配表中的最接近计算得到的index的index作为第二时域资源的index。
其中,1)和2)都可以认为是第二时域资源和第一时域资源存在索引关系,只不过是这种场景下的两种情况。
3)第二时域资源与第一时域资源之间具有一定的间隔(即二者之间存在一个offset)。进一步的,第二时域资源与第一时域资源所占据的符号数相同,或者可以具备一定的比例关系。其中,该间隔可以为0,也可以为大于0的值。第二时域资源与第一时域资源所占据的符号数的比例可以通过比例因子指示,比例因子可以为大于0的值。间隔和比例因子可以通过网络设备指示,也可以为预配置的(例如,比例因子可以配置在时域资源分配表中,此时,当指示时域资源分配表中的某一行时,不仅指示了该行资源,同时指示了一个比例因子)。例如,一个时隙包括14个符号,第一时域资源的起始符号为符号3,符号长度为5个符号,即第一时域资源占据时隙中的符号3至符号7。若间隔为4个符号,比例因子为1(即第二时域资源的符号长度也为5个符号),则可以确定第二时域资源的起始符号为符号12,则在该时隙内只有符号12和符号13两个符号可用,此时认为第二时域资源越过了时隙边界,则可以有两种方法确定第二时域资源:1)参见图12中的(a),不允许第二时域资源越过时隙边界,此时,第二时域资源为符号12和符号13;2)参见图12中的(b),允许第二时域资源越过时隙边界,此时,第二时域资源为符号12和符号13以及下一个时隙的符号1至符号3。
可选的,第二时域资源与第一时域资源可以通过同一个指示域指示,也就是说,通过指示第一时域资源的指示域可以确定第二时域资源。其中,第二频域资源与第一频域资源之间的关系可以有以下几种:
1)第二频域资源与第一频域资源相同。此时,第一频域资源确定之后,第二频域资源也确定了。
2)第二频域资源与第一频域资源之间具有一定的间隔(即二者之间存在一个offset)。进一步的,第二频域资源与第一频域资源所占据的RB数可以相等,也可以具备一定的比例关系。其中,该间隔可以为0,也可以为大于0的值。第二频域资源与第一频域资源所占据的RB数的比例可以通过比例因子指示,比例因子可以为大于0的值。间隔和比例因子可以通过网络设备指示,也可以为预配置的。例如,参见图13,第一频域资源的起始RB为RB1,RB长度为3个RB,即第一频域资源占据RB1至RB3。若间隔为4个RB,比例因子为1(即第二频域资源的RB长度也为3个RB),则可以确定第二频域资源占据的RB为RB8至RB10。
终端可以通过以下方式21或方式22确定第二数据的MCS。
方式21:终端根据第八指示信息指示的第一数据的MCS,以及第一数据的MCS与第二数据的MCS之间的关系确定第二数据的MCS。方式21的具体实现可参见实施例一中的方式31。
方式22:网络设备向终端发送第四指示信息,第四指示信息指示第二数据的MCS,例如,第四指示信息可以指示第二数据的MCS的index。终端接收第四指示信息,根据第四指示信息确定第二数据的MCS。基于上述各种方式,可选的,第二时频资源和第二数据的MCS中的至少一个根据第八指示信息确定。该情况下,步骤1102的实现可以有表5所示的多种方案。
表5
Figure PCTCN2020116317-appb-000008
针对方案1,通过第一数据的MCS和第二数据的MCS之间的关系来确定第二数据的MCS,能够节省指示第二数据的MCS的信令开销。针对方案2,第二时频资源和第二数据的MCS分别通过第一时频资源和第一数据的MCS确定,能够节省指示第二时频资源和第二数据的MCS的信令开销。针对方案3,第二数据的MCS的确定不依赖于第一数据的MCS,这样能够有效提高第二数据的MCS指示的灵活性。
基于上述各种方式,可选的,也可以第二时频资源和第二数据的MCS都不根据第八指示信息确定。该情况下,步骤1102的实现可以通过表6所示的方案。
表6
方案 计算第二时频资源的方式 计算第二数据的MCS的方式
方案1 方式11 方式22
实施例二提供的方法,在有两个数据的情况下,终端可以确定两个数据的时频资源和MCS,从而满足不同数据对可靠性的需求,灵活的进行数据传输。相比按照其中一个数据的可靠性要求对两个数据进行联合调制编码(例如,两个数据采用相同的MCS),两个数据采用各自的MCS在满足两个数据的可靠性的同时,避免资源浪费。另外,在第二时频资源和第二数据的MCS中的至少一个根据第八指示信息确定的情况下,相比全部采用指示信息指示而言,可以减少信令开销。
另外,现有技术在一个物理信道中传输两个或者多个业务数据时,不能够灵活的 指示MCS和分配时频资源。而本申请中,可以根据业务需求选择合适的MCS,一方面能够保证可靠性要求较高的数据的鲁棒性,另一方面能够保证可靠性要求较低的数据的频谱效率。
实施例三
图14为本申请的实施例三提供的通信方法。
1401、网络设备向终端发送第九指示信息,第九指示信息指示时频资源、第一数据的大小和第二数据的大小,时频资源包括第一时频资源和第二时频资源,第一时频资源为承载第一数据的时频资源,第二时频资源为承载第二数据的时频资源。相应的,终端接收来自网络设备的第九指示信息。其中,关于第一数据、第二数据、第一时频资源和第二时频资源的相关描述可参见实施例一,不再赘述。
第九指示信息可以直接或间接的指示第一数据的大小和第二数据的大小,例如,在间接指示的情况下,第九指示信息通过指示用于确定第一数据的大小的信息指示第一数据的大小,通过指示用于确定第二数据的大小的信息指示第二数据的大小。可选的,第一数据和第二数据在同一个物理信道中传输。该可选的方法的相关描述可参见上文,不再赘述。
1402、网络设备向终端发送第十指示信息,第十指示信息用于确定第一时频资源或第一MCS,第一MCS为在第一时频资源上发送或接收第一数据的MCS。相应的,终端接收来自网络设备的第十指示信息。
在第十指示信息用于确定第一时频资源的情况下,第十指示信息可以直接指示第一时频资源,该情况下,终端可以直接根据第十指示信息确定第一时频资源。第十指示信息也可以间接指示第一时频资源,例如,指示第一时频资源与时频资源之间的关系(例如,第一时频资源占据时频资源的比例),该情况下,终端可以根据第十指示信息和时频资源确定第一时频资源,具体方法可参见实施例一中的方式12,不再赘述。
在第十指示信息用于确定第一MCS的情况下,第十指示信息可以指示第一MCS,终端根据第十指示信息确定第一MCS。
1403、在第十指示信息指示第一时频资源的情况下,终端根据第十指示信息确定第一时频资源,并根据第一时频资源和第九指示信息确定第一MCS、第二时频资源和第二MCS;在第十指示信息指示第一MCS的情况下,终端根据第十指示信息确定第一MCS,并根据第一MCS和第九指示信息确定第一时频资源、第二时频资源和第二MCS。其中,第二MCS为在第二时频资源上发送或接收第二数据的MCS。
在第十指示信息用于确定第一时频资源的情况下,步骤1403的实现过程包括:11)根据第十指示信息确定第一时频资源。12)根据第一时频资源和第九指示信息指示的第一数据的大小确定第一MCS。13)根据第一时频资源和第九指示信息指示的时频资源确定第二时频资源。14)根据第二时频资源和第九指示信息指示的第二数据的大小确定第二MCS。
在第十指示信息用于确定第一MCS的情况下,步骤1403的实现过程包括:21)根据第十指示信息确定第一MCS。22)根据第一MCS和第九指示信息指示的第一数据的大小确定第一时频资源。23)根据第一时频资源和第九指示信息指示的时频资源确定第二时频资源。24)根据第二时频资源和第九指示信息指示的第二数据的大小确定第 二MCS。关于步骤1403的实现过程中的各个步骤的具体实现可参见上文,不再赘述。
参见图14,该方法还包括步骤1404或步骤1405。
1404、终端根据第一MCS在第一时频资源上向网络设备发送第一数据,并根据第二MCS在第二时频资源上向网络设备发送第二数据。相应的,网络设备根据第一MCS在第一时频资源上接收来自终端的第一数据,并根据第二MCS在第二时频资源上接收来自终端的第二数据。关于步骤1404的相关描述可参见上述步骤703。
1405、网络设备根据第一MCS在第一时频资源上向终端发送第一数据,并根据第二MCS在第二时频资源上向终端发送第二数据。相应的,终端根据第一MCS在第一时频资源上接收来自网络设备的第一数据,并根据第二MCS在第二时频资源上接收来自网络设备的第二数据。关于步骤1405的相关描述可参见上述步骤704。
实施例三提供的方法,在有两个数据的情况下,终端可以确定两个数据的时频资源和MCS,从而满足不同数据对可靠性的需求,灵活的进行数据传输。相比按照其中一个数据的可靠性要求对两个数据进行联合调制编码(例如,两个数据采用相同的MCS),两个数据采用各自的MCS在满足两个数据的可靠性的同时,避免资源浪费。另外,现有技术在一个物理信道中传输两个或者多个业务数据时,不能够灵活的指示MCS和分配时频资源。而本申请中,可以根据业务需求选择合适的MCS,一方面能够保证可靠性要求较高的数据的鲁棒性,另一方面能够保证可靠性要求较低的数据的频谱效率。
实施例四
图15为本申请的实施例四提供的通信方法。
1501、网络设备向终端发送第十一指示信息和第十二指示信息,第十一指示信息指示第一资源和第三MCS,第十二指示信息指示第二资源和第四MCS,第三MCS为在第一资源上发送或接收第一数据的MCS,第四MCS为在第二资源上发送或接收第二数据的MCS。相应的,终端接收来自于网络设备的第十一指示信息和第十二指示信息。
第一资源和第二资源可以均为CG资源,也可以均为DG资源,还可以一个为CG资源,一个为DG资源。
根据第十一指示信息指示的第一资源和第三MCS可以确定第一数据的大小,根据第十二指示信息指示的第二资源和第四MCS可以确定第二数据的大小。可选的,第一数据和第二数据在同一个物理信道中传输。该可选的方法的相关描述可参见上文。
在步骤1501之后,执行步骤1502或1503。
1502、在第一资源和第二资源重叠的情况下,终端根据第一MCS在第一时频资源上向网络设备发送第一数据,并根据第二MCS在第二时频资源上向网络设备发送第二数据。相应的,网络设备根据第一MCS在第一时频资源上接收来自终端的第一数据,并根据第二MCS在第二时频资源上接收来自终端的第二数据。
1503、在第一资源和第二资源重叠的情况下,网络设备根据第一MCS在第一时频资源上向终端发送第一数据,并根据第二MCS在第二时频资源上向终端发送第二数据。相应的,终端根据第一MCS在第一时频资源上接收来自网络设备的第一数据,并根据第二MCS在第二时频资源上接收来自网络设备的第二数据。
第一MCS为在第一时频资源上发送或接收第一数据的MCS,第二MCS为在第二 时频资源上发送或接收第二数据的MCS;第一资源包括第一时频资源和第二时频资源,或者,第二资源包括第一时频资源和第二时频资源。
可选的,在步骤1502和步骤1503之前,终端可以确定将第一数据和第二数据复用在一个物理信道中传输,具体可以是复用在第一资源和第二资源中的优先级高的资源或包含的RE个数较多的资源上,在第一资源和第二资源中一个为CG资源一个为DG资源的情况下,也可以复用在第一资源和第二资源中的DG资源上或CG资源上。
可选的,在步骤1502和步骤1503之前,终端可以采用以下方式A或方式B确定第一时频资源、第二时频资源、第一MCS和第二MCS。
方式A
终端接收来自网络设备的第十指示信息,第十指示信息指示第一时频资源或第一MCS;在第十指示信息指示第一时频资源的情况下,终端根据第十指示信息确定第一时频资源,并根据第一时频资源、第十一指示信息和第十二指示信息确定第一MCS、第二时频资源和第二MCS;在第十指示信息指示第一MCS的情况下,终端根据第十指示信息确定第一MCS,并根据第一MCS、第十一指示信息和第十二指示信息确定第一时频资源、第二时频资源和第二MCS。
在第十指示信息用于确定第一时频资源的情况下,方式A在具体实现时可以包括:
31)终端根据第十指示信息确定第一时频资源。32)终端根据第一时频资源和第一数据的大小确定第一MCS;或者,终端根据第三MCS或第四MCS确定第一MCS。其中,第一数据的大小根据第十一指示信息确定。33)根据第一时频资源,以及第一资源或第二资源(具体为哪个资源取决于终端决定将第一数据和第二数据复用到哪个资源上)确定第二时频资源。34)终端根据第二时频资源和第二数据的大小确定第二MCS。其中,第二数据的大小根据第十二指示信息确定。
终端根据第三MCS或第四MCS确定第一MCS的过程可以包括:将第三MCS的调制方式作为第一MCS中的调制方式,根据第一时频资源、第一数据的大小确定频谱效率,频谱效率除以第三MCS的调制阶数,得到第一MCS中的码率,确定第一MCS中的调制方式和第一MCS中的码率之后即可确定第一MCS;或者,将第四MCS的调制方式作为第一MCS中的调制方式,根据第一时频资源、第一数据的大小确定频谱效率,频谱效率除以第四MCS的调制阶数,得到第一MCS中的码率,确定第一MCS中的调制方式和第一MCS中的码率之后即可确定第一MCS。
在第十指示信息用于确定第一MCS的情况下,方式A在具体实现时可以包括:
41)终端根据第十指示信息确定第一MCS。42)终端根据第一MCS和第一数据的大小确定第一时频资源。其中,第一数据的大小根据第十一指示信息确定。43)终端根据第一时频资源,以及第一资源或第二资源(具体为哪个资源取决于终端决定将第一数据和第二数据复用到哪个资源上)确定第二时频资源。44)终端根据第二时频资源和第二数据的大小确定第二MCS。其中,第二数据的大小根据第十二指示信息确定。
步骤41)可以通过以下方式a1或方式a2实现。
方式a1、第一MCS根据第三MCS确定。第三MCS包括调制方式和码率R 第三MCS。此外,第十指示信息可以指示beta。该情况下,第一MCS的调制方式与第三MCS的 调制方式相同,第一MCS的码率根据R 第三MCS和beta确定,例如,第一MCS的码率=beta*R 第三MCS,或者,第一MCS的码率=R 第三MCS/beta。
方式a2、第一MCS根据第四MCS确定。第四MCS包括调制方式和码率R 第四MCS。此外,第十指示信息可以指示beta。该情况下,第一MCS的调制方式与第四MCS的调制方式相同,第一MCS的码率根据R 第四MCS和beta确定,例如,第一MCS的码率=beta*R 第四MCS,或者,第一MCS的码率=R 第四MCS/beta。
在方式A下,可选的,该方法还包括:网络设备向终端发送第十指示信息。
方式B
一种情况下,第一资源包括第一时频资源和第二时频资源(也就是说终端决定将第一数据和第二数据复用到第一资源),终端根据第二资源确定第二时频资源,终端根据第一资源和第二时频资源确定第一时频资源,第二MCS为第四MCS,第一MCS为第三MCS(此时,实际传输的第一数据的大小根据第一MCS和第一时频资源确定)或者第一MCS根据第一时频资源和第一数据的大小确定。该情况下,第一资源大于第二资源。可选的,终端确定第一资源中的X1个RE为第二时频资源,X1为第二资源中用于传输数据的RE的个数。
另一种情况下,第二资源包括第一时频资源和第二时频资源(也就是说终端决定将第一数据和第二数据复用到第二资源),终端根据第一资源确定第一时频资源,终端根据第二资源和第一时频资源确定第二时频资源,第一MCS为第三MCS,第二MCS为第四MCS(此时,实际传输的第二数据的大小根据第二MCS和第二时频资源确定)或者第二MCS根据第二时频资源和第二数据的大小确定。该情况下,第二资源大于第一资源。可选的,终端确定第二资源中的X2个RE为第一时频资源,X2为第一资源中用于传输数据的RE的个数。
示例性的,在进行上行数据调度的情况下,网络设备在为终端分配了CG资源之后,还可能再为终端分配DG资源,有些情况下,DG资源和CG资源发生重叠(overlap),例如,图16所示的情况。重叠的含义有两种,一种是时域上有重叠,另一种是频域上有重叠。可选的,时域重叠是指两个时频资源对应的时域信息至少有一个符号是相同的。在时域上有重叠的情况下,现有技术中,不允许同时在CG资源和DG资源上传输,按照一定的规则选择一个资源上进行数据传输,也就是只能发送一个数据。在这个场景下,可以采用实施例四提供的方法,将两个数据复用在一个物理信道中传输。在复用物理信道之后,两个数据可以同时在以下资源中的一个资源上传输:1)DG资源;2)CG资源;3)优先级高的资源;4)包含的RE个数较多的资源。其中,资源的优先级可以通过DCI指示,在优先采用优先级高的资源时,若两个资源优先级相同,则可以在1)或2)或4)对应的资源上传输。
针对CG资源(假设为第一资源)上发送的数据,网络设备会指示MCS(即第三MCS),那么根据CG资源和第三MCS可以确定CG资源上发送的数据(即第一数据)的大小,针对DG资源(假设为第二资源)上发送的数据,网络设备也会指示MCS(即第四MCS),那么根据DG资源和第四MCS可以确定DG资源上发送的数据(即第二数据)的大小。
在复用物理信道之后,由于资源有限,两个数据没有办法采用网络设备指示的 MCS进行数据传输,因此,需要重新为两个数据确定MCS和时频资源。该情况下,就可以采用本申请实施例四提供的方法确定两个数据的时频资源(即第一时频资源和第二时频资源)和MCS(即第一MCS和第二MCS)。
实施例四的有益效果可参见实施例三,不再赘述。
上述实施例三和实施例四中,第十指示信息也可以不用于确定第一时频资源或第一MCS,而是用于确定第二时频资源或第二MCS,该情况下,实现过程与上述实施例三和上述实施例四中描述的实现过程类似,只需要将与第十指示信息相关的描述中的第一时频资源和第二时频资源互相替换,第一数据和第二数据互相替换进行理解即可,不再赘述。上述实施例三和实施例四中,各个步骤的实现过程未详述的可以参见实施例一和实施例二中的相应步骤的描述,不再赘述。
需要说明的是,本申请上述各个实施例中以两个数据为例对上述确定MCS和时频资源的方法进行示例性说明,在实际实现时,也可以是更多个数据,确定方法类似,不再赘述。
需要说明的是,现有技术中不允许针对不同数据的新传数据和重传数据在同一个物理信道中传输,即使通过多层进行数据传输,也不允许一个是新传数据,一个是重传数据,而本申请中,新传数据和重传数据可以在同一个物理信道中传输,并且可以采用上述方法确定新传数据和重传数据的时频资源和MCS。相比现有技术,能够有效降低时延。在现有技术中,每次调度,仅仅允许调度重传数据或者调度初传数据。如果调度了重传数据,只能在下一次调度初传数据,将会导致初传数据的时延。同样的,如果调度了初传数据,则将会导致可靠性降低。而可靠性和时延对于URLLC系统是非常重要的两个指标。通过该方案,能够为URLLC带来增益。
上述主要从网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对各个网元进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性的,图17示出了上述实施例中所涉及的通信装置(记为通信装置170)的一种可能的结构示意图,该通信装置170包括处理单元1701和通信单元1702。可选的,还包括存储单元1703。通信装置170可以用于示意上述实施例中的网络设备和终端的结构。
当图17用于示意上述实施例中所涉及的终端的结构时,处理单元1701用于对终端的动作进行控制管理,例如,处理单元1701用于执行图7中的701至704,图11中的1101至1104,图14中的1401至1405,图15中的1501至1503,和/或本申请实施例中所描述的 其他过程中的终端执行的动作。处理单元1701可以通过通信单元1702与其他网络实体通信,例如,与图7中的网络设备通信。存储单元1703用于存储终端的程序代码和数据。
当图17用于示意上述实施例中所涉及的网络设备的结构时,处理单元1701用于对网络设备的动作进行控制管理,例如,处理单元1701用于执行图7中的701、703和704,图11中的1101、1103和1104,图14中的1401、1402、1404和1405,图15中的1501至1503,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理单元1701可以通过通信单元1702与其他网络实体通信,例如,与图7中的终端通信。存储单元1703用于存储网络设备的程序代码和数据。
示例性的,通信装置170可以为一个设备也可以为芯片或芯片系统。
当通信装置170为一个设备时,处理单元1701可以是处理器;通信单元1702可以是通信接口、收发器,或,输入接口和/或输出接口。可选地,收发器可以为收发电路。可选地,输入接口可以为输入电路,输出接口可以为输出电路。
当通信装置170为芯片或芯片系统时,通信单元1702可以是该芯片或芯片系统上的通信接口、输入接口和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理单元1701可以是处理器、处理电路或逻辑电路等。
图17中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种通信装置的硬件结构示意图,参见图18或图19,该通信装置包括处理器1801,可选的,还包括与处理器1801连接的存储器1802。
处理器1801可以是一个通用中央处理单元(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器1801也可以包括多个CPU,并且处理器1801可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器1802可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器、只读光盘或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器1802可以是独立存在(此时,存储器可以位于通信装置外,也可以位于通信装置内),也可以和处理器1801集成在一起。其中,存储器1802中可以包含计算机程序代码。处理器1801用于执行存储器1802中存储的计 算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图18,通信装置还包括收发器1803。处理器1801、存储器1802和收发器1803通过总线相连接。收发器1803用于与其他设备或通信网络通信。可选的,收发器1803可以包括发射机和接收机。收发器1803中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器1803中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图18可以用于示意上述实施例中所涉及的网络设备和终端的结构。处理器1801可以用于实现图17中处理单元1701的功能,存储器1802用于实现图17中存储单元1703的功能,收发器1803用于实现图17中通信单元1702的功能。
在第二种可能的实现方式中,处理器1801包括逻辑电路,以及输入接口和/或输出接口。示例性的,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图19,图19所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端的结构。
当图19用于示意上述实施例中所涉及的终端的结构时,处理器1801用于对终端的动作进行控制管理,例如,处理器1801中的逻辑电路用于执行图7中的701至704,图11中的1101至1104,图14中的1401至1405,图15中的1501至1503,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1801中的逻辑电路可以通过输入接口和/或输出接口与其他网络实体通信,例如,与图7中的网络设备通信。存储器1802用于存储终端的程序代码和数据。
当图19用于示意上述实施例中所涉及的网络设备的结构时,处理器1801用于对网络设备的动作进行控制管理,例如,处理器1801中的逻辑电路用于执行图7中的701、703和704,图11中的1101、1103和1104,图14中的1401、1402、1404和1405,图15中的1501至1503,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器1801中的逻辑电路可以通过输入接口和/或输出接口与其他网络实体通信,例如,与图7中的终端通信。存储器1802用于存储网络设备的程序代码和数据。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在通信装置上运行时,使得通信装置执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:网络设备和终端。
本申请实施例还提供了一种芯片,包括:处理器和通信接口,处理器通过通信接口与存储器耦合,当处理器执行存储器中的计算机程序或指令时,使得上述实施例提供的任意一种方法被执行。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实 现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请的描述中,除非另有说明,“至少一个”是指一个或多个,“多个”是指两个或多于两个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息指示时频资源和第一数据的调制和编码方案MCS,所述时频资源包括第一时频资源和第二时频资源,所述第一时频资源为承载所述第一数据的时频资源,所述第二时频资源为承载第二数据的时频资源;
    确定所述第一时频资源、所述第二时频资源和所述第二数据的MCS;其中,所述第一时频资源、所述第二时频资源和所述第二数据的MCS中的至少一个是根据所述第一指示信息确定的;
    根据所述第一数据的MCS在所述第一时频资源上向所述网络设备发送所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上向所述网络设备发送所述第二数据;或者,根据所述第一数据的MCS在所述第一时频资源上接收来自所述网络设备的所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上接收来自所述网络设备的所述第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数据和所述第二数据在同一个物理信道中传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定所述第一时频资源,包括:
    确定所述第一数据的大小,根据所述第一数据的大小和所述第一数据的MCS确定所述第一时频资源;或者,
    根据所述时频资源,以及所述第一时频资源和所述时频资源之间的关系确定所述第一时频资源;或者,
    接收第二指示信息,根据所述第二指示信息确定所述第一时频资源;或者,
    根据所述时频资源和所述第二时频资源确定所述第一时频资源。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第五指示信息;
    根据所述第五指示信息确定所述第一数据的大小。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述确定所述第二时频资源,包括:
    根据所述时频资源,以及所述第二时频资源和所述时频资源之间的关系确定所述第二时频资源;或者,
    接收第三指示信息,根据所述第三指示信息确定所述第二时频资源;或者,
    根据所述时频资源和所述第一时频资源确定所述第二时频资源;或者,
    确定所述第二数据的大小,根据所述第二数据的MCS和所述第二数据的大小确定所述第二时频资源。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第六指示信息;
    根据所述第六指示信息确定所述第二数据的大小。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定所述第二数据的 MCS,包括:
    根据所述第一数据的MCS,以及所述第一数据的MCS和所述第二数据的MCS之间的关系确定所述第二数据的MCS;或者,
    接收第四指示信息,根据所述第四指示信息确定所述第二数据的MCS;或者,
    确定所述第二数据的大小,根据所述第二数据的大小和所述第二时频资源确定所述第二数据的MCS。
  8. 一种通信方法,其特征在于,包括:
    向终端发送第一指示信息,所述第一指示信息指示时频资源和第一数据的调制和编码方案MCS,所述时频资源包括第一时频资源和第二时频资源,所述第一时频资源为承载所述第一数据的时频资源,所述第二时频资源为承载第二数据的时频资源;
    根据所述第一数据的MCS在所述第一时频资源上向所述终端发送所述第一数据,根据所述第二数据的MCS在所述第二时频资源上向所述终端发送所述第二数据;或者,根据所述第一数据的MCS在所述第一时频资源上接收来自所述终端的所述第一数据,根据所述第二数据的MCS在所述第二时频资源上接收来自所述终端的所述第二数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第一数据和所述第二数据在同一个物理信道中传输。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二指示信息,所述第二指示信息指示所述第一时频资源。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第三指示信息,所述第三指示信息指示所述第二时频资源。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第四指示信息,所述第四指示信息指示所述第二数据的MCS。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第五指示信息,所述第五指示信息指示所述第一数据的大小。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第六指示信息,所述第六指示信息指示所述第二数据的大小。
  15. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于接收来自网络设备的第一指示信息,所述第一指示信息指示时频资源和第一数据的调制和编码方案MCS,所述时频资源包括第一时频资源和第二时频资源,所述第一时频资源为承载所述第一数据的时频资源,所述第二时频资源为承载第二数据的时频资源;
    所述处理单元,用于确定所述第一时频资源、所述第二时频资源和所述第二数据的MCS;其中,所述第一时频资源、所述第二时频资源和所述第二数据的MCS中的至少一个是根据所述第一指示信息确定的;
    所述通信单元,还用于:根据所述第一数据的MCS在所述第一时频资源上向所述网络设备发送所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上向所述网络设备发送所述第二数据;或者,根据所述第一数据的MCS在所述第一时频资源上接收来自所述网络设备的所述第一数据,并根据所述第二数据的MCS在所述第二时频资源上接收来自所述网络设备的所述第二数据。
  16. 根据权利要求15所述的通信装置,其特征在于,所述第一数据和所述第二数据在同一个物理信道中传输。
  17. 根据权利要求15或16所述的通信装置,其特征在于,所述处理单元,具体用于:
    确定所述第一数据的大小,根据所述第一数据的大小和所述第一数据的MCS确定所述第一时频资源;或者,
    根据所述时频资源,以及所述第一时频资源和所述时频资源之间的关系确定所述第一时频资源;或者,
    通过所述通信单元接收第二指示信息,根据所述第二指示信息确定所述第一时频资源;或者,
    根据所述时频资源和所述第二时频资源确定所述第一时频资源。
  18. 根据权利要求15-17任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收来自所述网络设备的第五指示信息;
    所述处理单元,还用于根据所述第五指示信息确定所述第一数据的大小。
  19. 根据权利要求15-18任一项所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据所述时频资源,以及所述第二时频资源和所述时频资源之间的关系确定所述第二时频资源;或者,
    通过所述通信单元接收第三指示信息,根据所述第三指示信息确定所述第二时频资源;或者,
    根据所述时频资源和所述第一时频资源确定所述第二时频资源;或者,
    确定所述第二数据的大小,根据所述第二数据的MCS和所述第二数据的大小确定所述第二时频资源。
  20. 根据权利要求15-19任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收来自所述网络设备的第六指示信息;
    所述处理单元,还用于根据所述第六指示信息确定所述第二数据的大小。
  21. 根据权利要求15-20任一项所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据所述第一数据的MCS,以及所述第一数据的MCS和所述第二数据的MCS之间的关系确定所述第二数据的MCS;或者,
    通过所述通信单元接收第四指示信息,根据所述第四指示信息确定所述第二数据的MCS;或者,
    确定所述第二数据的大小,根据所述第二数据的大小和所述第二时频资源确定所述第二数据的MCS。
  22. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元向终端发送第一指示信息,所述第一指示信息指示时频资源和第一数据的调制和编码方案MCS,所述时频资源包括第一时频资源和第二时频资源,所述第一时频资源为承载所述第一数据的时频资源,所述第二时频资源为承载第二数据的时频资源;
    所述通信单元,还用于:根据所述第一数据的MCS在所述第一时频资源上向所述终端发送所述第一数据,根据所述第二数据的MCS在所述第二时频资源上向所述终端发送所述第二数据;或者,根据所述第一数据的MCS在所述第一时频资源上接收来自所述终端的所述第一数据,根据所述第二数据的MCS在所述第二时频资源上接收来自所述终端的所述第二数据。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第一数据和所述第二数据在同一个物理信道中传输。
  24. 根据权利要求22或23所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述终端发送第二指示信息,所述第二指示信息指示所述第一时频资源。
  25. 根据权利要求22-24任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述终端发送第三指示信息,所述第三指示信息指示所述第二时频资源。
  26. 根据权利要求22-25任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述终端发送第四指示信息,所述第四指示信息指示所述第二数据的MCS。
  27. 根据权利要求22-26任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述终端发送第五指示信息,所述第五指示信息指示所述第一数据的大小。
  28. 根据权利要求22-27任一项所述的通信装置,其特征在于,
    所述处理单元,还用于通过所述通信单元向所述终端发送第六指示信息,所述第六指示信息指示所述第二数据的大小。
  29. 一种通信装置,其特征在于,所述通信装置包括一个或多个处理器、收发器;所述一个或多个处理器、所述收发器支持所述通信装置执行如权利要求1-7任一项所述的方法,或者,执行如权利要求8-14任一项所述的方法。
  30. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述处理器通过所述通信接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或计算机指令时,使得如权利要求1-7任一项所述的方法被执行,或者,使得如权利要求8-14任一项所述的方法被执行。
  31. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在通信装置上运行时,使得所述通信装置执行如权利要求1-7中任一项所述的方法;或者,执行如权利要求8-14中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在通信装置上运行时,使得所述通信装置执行如权利要求1-7中任一项所述的方法;或者,执行如权利要求8-14中任一项所述的方法。
PCT/CN2020/116317 2020-09-18 2020-09-18 通信方法及装置 WO2022056879A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20953737.2A EP4213555A4 (en) 2020-09-18 2020-09-18 COMMUNICATION METHOD AND DEVICE
PCT/CN2020/116317 WO2022056879A1 (zh) 2020-09-18 2020-09-18 通信方法及装置
CN202080105258.1A CN116250322A (zh) 2020-09-18 2020-09-18 通信方法及装置
US18/185,727 US20230231667A1 (en) 2020-09-18 2023-03-17 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116317 WO2022056879A1 (zh) 2020-09-18 2020-09-18 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/185,727 Continuation US20230231667A1 (en) 2020-09-18 2023-03-17 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022056879A1 true WO2022056879A1 (zh) 2022-03-24

Family

ID=80777424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116317 WO2022056879A1 (zh) 2020-09-18 2020-09-18 通信方法及装置

Country Status (4)

Country Link
US (1) US20230231667A1 (zh)
EP (1) EP4213555A4 (zh)
CN (1) CN116250322A (zh)
WO (1) WO2022056879A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430106A (zh) * 2017-01-03 2018-08-21 华为技术有限公司 无线通信的方法和装置
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置
CN109963335A (zh) * 2017-12-23 2019-07-02 华为技术有限公司 通信方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023665A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种数据传输方法及装置、电子设备
CN109802813B (zh) * 2017-11-17 2021-03-02 华为技术有限公司 上行控制信息传输方法和设备
WO2019157897A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 一种上行数据的发送方法、接收方法和装置
KR102150689B1 (ko) * 2018-08-06 2020-09-02 단국대학교 산학협력단 무선 통신 시스템에서 초저지연 고신뢰성 통신을 위한 데이터 전송 방법 및 이를 위한 장치
CN111083782B (zh) * 2018-10-19 2023-09-08 荣耀终端有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430106A (zh) * 2017-01-03 2018-08-21 华为技术有限公司 无线通信的方法和装置
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置
CN109963335A (zh) * 2017-12-23 2019-07-02 华为技术有限公司 通信方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "DL URLLC/eMBB dynamic multiplexing and indication design", 3GPP DRAFT; R1-1702639 DL URLLCEMBB DYNAMIC MULTIPLEXING AND INDICATION DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051209790 *
See also references of EP4213555A4 *

Also Published As

Publication number Publication date
CN116250322A (zh) 2023-06-09
US20230231667A1 (en) 2023-07-20
EP4213555A1 (en) 2023-07-19
EP4213555A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2019137245A1 (zh) 上行控制信息传输方法及装置
US20210250159A1 (en) Resource configuration method and apparatus
WO2019062840A1 (zh) 信息传输方法和装置
WO2018076565A1 (zh) 资源配置方法及资源配置装置
WO2018202163A1 (zh) 一种资源指示方法及装置
WO2019011307A1 (zh) 通信方法和设备
EP3501150B1 (en) Wireless communication transceiver and wireless communication method
WO2018228579A1 (zh) 确定传输块大小的方法及装置
WO2018228573A1 (zh) 信号传输方法、相关装置及系统
WO2020200014A1 (zh) 通信方法及装置
WO2018201915A1 (zh) 数据处理方法和装置
WO2022151987A1 (zh) 信号发送、接收方法及装置
WO2021161861A1 (ja) 端末及び通信方法
WO2020143366A1 (zh) 发送、接收方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2022116458A1 (zh) 一种tbs确定方法
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2021081951A1 (zh) 上行传输方法及通信装置
WO2022056879A1 (zh) 通信方法及装置
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
CN111669251B (zh) 传输块大小的确定方法及通信装置
WO2021147214A1 (zh) 通信方法和通信装置
WO2020177735A1 (zh) 传输块大小的确定方法及通信装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020953737

Country of ref document: EP

Effective date: 20230410