WO2021081951A1 - 上行传输方法及通信装置 - Google Patents

上行传输方法及通信装置 Download PDF

Info

Publication number
WO2021081951A1
WO2021081951A1 PCT/CN2019/114878 CN2019114878W WO2021081951A1 WO 2021081951 A1 WO2021081951 A1 WO 2021081951A1 CN 2019114878 W CN2019114878 W CN 2019114878W WO 2021081951 A1 WO2021081951 A1 WO 2021081951A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
time domain
terminal
resource
data
Prior art date
Application number
PCT/CN2019/114878
Other languages
English (en)
French (fr)
Inventor
丁梦颖
廖树日
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980101310.3A priority Critical patent/CN114556793A/zh
Priority to PCT/CN2019/114878 priority patent/WO2021081951A1/zh
Priority to EP19950579.3A priority patent/EP4044442B1/en
Publication of WO2021081951A1 publication Critical patent/WO2021081951A1/zh
Priority to US17/730,857 priority patent/US20220256559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communication, and in particular to an uplink transmission method and communication device.
  • Wireless communication technology has experienced rapid development in the past few decades. It has successively experienced the first generation of wireless communication systems based on analog communication systems, and the 2G wireless communication system represented by the global system for mobile communication (GSM) , The 3G wireless communication system represented by wideband code division multiple access (WCDMA) has been widely commercialized all over the world and has achieved great success in the long term evolution (LTE) and other 4G wireless communication systems. Communication Systems. The business supported by the wireless communication system has evolved from the initial voice and short message to now support wireless high-speed data communication.
  • GSM global system for mobile communication
  • WCDMA wideband code division multiple access
  • terminal equipment can complete side-line transmission on side-line resources, and between terminal equipment and network equipment can complete uplink transmission on uplink resources, and/or complete downlink transmission on downlink resources.
  • user coordinated transmission means that a terminal device can complete a user coordinated transmission with a network device with the assistance of other terminal devices, such as uplink coordinated transmission and/or downlink coordinated transmission.
  • uplink coordinated transmission means that the second terminal receives data from the first terminal on the first side row resource, and forwards the data to the network device on the uplink resource.
  • the downlink coordinated transmission refers to that the second terminal receives data from the network device on the uplink resource, and forwards the data to the first terminal on the second side line resource.
  • the uplink resource is located behind the first side row resource in the time domain
  • the second side row resource is located behind the downlink resource in the time domain, so that the CUE has enough time to complete the data forwarding operation.
  • the embodiments of the present application provide an uplink transmission method and communication device, which can reduce the time delay of uplink coordinated transmission and improve the efficiency of uplink coordinated transmission.
  • an uplink transmission method includes: a network device sends first scheduling information to a first terminal and a second terminal.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters.
  • the side-line transmission parameters are used for the first terminal to send the first data to the second terminal, and the first uplink transmission parameters are used for the second terminal.
  • the second terminal sends the first data to the network device.
  • the network device receives the first data from the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the uplink transmission method described in the first aspect may further include: the network device receives the second data from the first terminal. In other words, multiple types of wireless connections can be established between the first terminal and the network device at the same time to increase the throughput of uplink data transmission.
  • an uplink transmission method includes: a first terminal receives first scheduling information from a network device.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters.
  • the side-line transmission parameters are used for the first terminal to send the first data to the second terminal, and the first uplink transmission parameters are used for the second terminal.
  • the second terminal sends the first data to the network device.
  • the first terminal sends the first data to the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the uplink transmission method described in the second aspect may further include: the first terminal sends the second data to the network device.
  • an uplink transmission method includes: the second terminal receives first scheduling information from a network device.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters.
  • the side-line transmission parameters are used for the first terminal to send the first data to the second terminal, and the first uplink transmission parameters are used for the second terminal.
  • the second terminal sends the first data to the network device.
  • the second terminal receives the first data from the first terminal and sends the first data to the network device.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the network device can simultaneously indicate the side row resource and the first uplink resource required for uplink coordinated transmission in one scheduling information, thereby improving the efficiency of resource scheduling and avoiding factors Independently scheduled side row resources and uplink resources cannot adapt to the problem of multiple scheduling side row resources and/or uplink resources caused by uplink coordinated transmission, which can reduce the delay of uplink coordinated transmission and improve the efficiency of uplink coordinated transmission.
  • the side-line transmission parameter may include the indication information of the side-line time domain resource, and the side-line time domain resource is used by the first terminal to send to the second terminal.
  • the first data may include the indication information of the first uplink time domain resource, and the first uplink time domain resource is used by the second terminal to send the first data to the network device; the second uplink transmission parameter may include the second uplink time domain resource.
  • the indication information of the domain resource, the second uplink time domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the side row time domain resource may include one or more of the time domain start position, the time domain end position, the single transmission duration, and the number of repetitions of the side row resource.
  • the time domain start position of the side row resource is the start position of the first transmission in one or more transmissions corresponding to the number of repetitions, such as the time slot where the first symbol in the first transmission is located.
  • the time domain end position of the side row resource is the end position of the last transmission in one or more transmissions corresponding to the number of repetitions, such as the slot where the last symbol in the last transmission is located.
  • the number of repetitions is a positive integer, or the number of repetitions may not be configured. In this case, the default is single transmission.
  • the indication information of the first uplink time domain resource may include the time domain start position of the first uplink resource, or the time domain start position of the first uplink resource and the time domain start position or time domain of the side row resource The time domain offset between the end positions.
  • the time domain start position of the first uplink resource may be: one or more of the start symbol (symbol) of the first uplink resource in the time domain and the time slot where the start symbol is located.
  • the time domain offset between the time domain start position of the first uplink resource and the time domain start position or the time domain end position of the side row resource may include one of the following: first time domain offset , The third time domain offset.
  • the first time domain offset may be: the time domain offset between the time domain start position of the first uplink resource and the time domain end position of the side row resource;
  • the third time domain offset may be: The time domain offset between the time domain start position of the first uplink resource and the time domain start position of the side row resource.
  • the time domain start position of the first uplink resource can be directly configured, or it can be determined according to the following way one to way three. This will be explained in detail below.
  • the time domain start position of the first uplink resource is the sum of the time domain start position of the side row resource and the third time domain offset.
  • the time domain start position of the first uplink resource is the sum of the time domain end position of the side row resource and the first time domain offset.
  • the time domain start position of the first uplink resource is the sum of the time domain start position of the side row resource, the total length of side row transmission, and the first time domain offset.
  • the indication information of the second uplink time domain resource may include the time domain start position of the second uplink resource, or the time domain start position of the second uplink resource and the time domain start position or time domain of the side row resource The time domain offset between the end positions.
  • the time domain start position of the second uplink resource may be: one or more of the start symbol (symbol) of the second uplink resource in the time domain and the time slot where the start symbol is located.
  • the time domain offset between the time domain start position of the second uplink resource and the time domain start position or the time domain end position of the side row resource may include one of the following: second time domain offset , The fourth time domain offset.
  • the second time domain offset may be: the time domain offset between the time domain start position of the second uplink resource and the time domain end position of the side row resource;
  • the fourth time domain offset may be: The time domain offset between the time domain start position of the second uplink resource and the time domain start position of the side row resource.
  • the time domain start position of the second uplink resource can be directly configured, or can be determined according to the following manner four to manner six. This will be explained in detail below.
  • the time domain start position of the second uplink resource is the sum of the time domain start position of the side row resource and the fourth time domain offset.
  • the time domain start position of the second uplink resource is: the sum of the time domain end position of the side row resource and the second time domain offset.
  • the time domain starting position of the second uplink resource is: the sum of the time domain starting position of the side row resource, the total length of side row transmission, and the second time domain offset.
  • the side-line transmission is a single transmission
  • the total length of the side-line transmission is the single transmission length
  • the total length of the side-line transmission is the product of the duration of a single transmission and the number of repetitions.
  • the content of the indication information of the first uplink time domain resource and the content of the indication information of the second uplink time domain resource may be all the same, partly the same, or completely different.
  • the same part may be indicated by the same indication field in the first scheduling information, that is, the same part may be indicated only once, so as to save signaling overhead.
  • the first uplink transmission parameter may further include a first uplink MCS
  • the second uplink transmission parameter may further include a second uplink MCS.
  • the first uplink MCS and the second uplink MCS are indicated by the same indication field in the first scheduling information.
  • the first uplink MCS and the second uplink MCS can occupy the same indication field in the first scheduling information to further reduce the signaling overhead.
  • the first uplink transmission parameter may further include indication information of the first uplink frequency domain resource, and the first uplink frequency domain resource is used for The second terminal sends the first data to the network device; the second uplink transmission parameter may further include indication information of the second uplink frequency domain resource, and the second uplink frequency domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are indicated by the same indication field in the first scheduling information.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are the same, the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may occupy the first uplink frequency domain resource.
  • the same indication field in the scheduling information is used to further reduce signaling overhead.
  • the second data may be different from the first data to increase the uplink throughput between the first terminal and the network device, thereby improving the uplink transmission efficiency .
  • the second data can also be the same as the first data, that is, the first data and the second data are both the same original data using the same MCS encoding and modulating data, and the network device can compare the first uplink signal and the second data that carry the first data.
  • the second uplink signal carrying the second data is combined and decoded to increase the decoding success rate, thereby improving the reliability of uplink data transmission.
  • the fourth aspect is to improve a communication device.
  • the communication device communicates with the first terminal and the second terminal as a network device.
  • the communication device includes: a receiving module and a sending module.
  • the sending module is used to send the first scheduling information to the first terminal and the second terminal;
  • the first scheduling information includes the indication information of the sideline transmission parameter and the indication information of the first uplink transmission parameter, and the sideline transmission parameter is used for the first uplink transmission parameter.
  • a terminal sends the first data to the second terminal, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the receiving module is used to receive the first data from the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the receiving module is also used to receive second data from the first terminal.
  • a communication device serves as the first terminal to communicate with the network device and the second terminal.
  • the communication device includes: a receiving module and a sending module.
  • the receiving module is configured to receive first scheduling information from the network device; wherein, the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters, and the side-line transmission parameters are used by the first terminal to send
  • the second terminal sends the first data, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the sending module is used to send the first data to the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the sending module is also used to send second data to the network device.
  • the sixth aspect is to improve a communication device.
  • the communication device serves as the second terminal to communicate with the network device and the first terminal.
  • the communication device includes: a receiving module and a sending module.
  • the receiving module is configured to receive first scheduling information from the network device; wherein, the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters, and the side-line transmission parameters are used by the first terminal to send
  • the second terminal sends the first data, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the receiving module is also used to receive the first data from the first terminal.
  • the sending module is used to send the first data to the network device.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the sideline transmission parameter may include indication information of the sideline time domain resource, and the sideline time domain resource is used by the first terminal to send the second terminal to the second terminal.
  • One data may include the indication information of the first uplink time domain resource, and the first uplink time domain resource is used by the second terminal to send the first data to the network device; the second uplink transmission parameter may include the second uplink time domain resource.
  • the indication information of the domain resource, the second uplink time domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the side row time domain resource may include one or more of the time domain start position, the time domain end position, the single transmission duration, and the number of repetitions of the side row resource.
  • the time domain start position of the side row resource is the start position of the first transmission in one or more transmissions corresponding to the number of repetitions, such as the time slot where the first symbol in the first transmission is located.
  • the time domain end position of the side row resource is the end position of the last transmission in one or more transmissions corresponding to the number of repetitions, such as the slot where the last symbol in the last transmission is located.
  • the number of repetitions is a positive integer, or the number of repetitions may not be configured. In this case, the default is single transmission.
  • the indication information of the first uplink time domain resource may include the time domain start position of the first uplink resource, or the time domain start position of the first uplink resource and the time domain start position or time domain of the side row resource The time domain offset between the end positions.
  • the time domain start position of the first uplink resource may be: one or more of the start symbol (symbol) of the first uplink resource in the time domain and the time slot where the start symbol is located.
  • the time domain offset between the time domain start position of the first uplink resource and the time domain start position or the time domain end position of the side row resource may include one of the following: first time domain offset , The third time domain offset.
  • the first time domain offset may be: the time domain offset between the time domain start position of the first uplink resource and the time domain end position of the side row resource;
  • the third time domain offset may be: The time domain offset between the time domain start position of the first uplink resource and the time domain start position of the side row resource.
  • the time domain start position of the first uplink resource can be directly configured, or it can be determined according to the following way one to way three. This will be explained in detail below.
  • the time domain start position of the first uplink resource is the sum of the time domain start position of the side row resource and the third time domain offset.
  • the time domain start position of the first uplink resource is the sum of the time domain end position of the side row resource and the first time domain offset.
  • the time domain start position of the first uplink resource is the sum of the time domain start position of the side row resource, the total length of side row transmission, and the first time domain offset.
  • the indication information of the second uplink time domain resource may include the time domain start position of the second uplink resource, or the time domain start position of the second uplink resource and the time domain start position or time domain of the side row resource The time domain offset between the end positions.
  • the time domain start position of the second uplink resource may be: one or more of the start symbol of the second uplink resource in the time domain and the time slot where the start symbol is located.
  • the time domain offset between the time domain start position of the second uplink resource and the time domain start position or the time domain end position of the side row resource may include one of the following: second time domain offset , The fourth time domain offset.
  • the second time domain offset may be: the time domain offset between the time domain start position of the second uplink resource and the time domain end position of the side row resource;
  • the fourth time domain offset may be: The time domain offset between the time domain start position of the second uplink resource and the time domain start position of the side row resource.
  • the time domain start position of the second uplink resource can be directly configured, or can be determined according to the following manner four to manner six. This will be explained in detail below.
  • the time domain start position of the second uplink resource is the sum of the time domain start position of the side row resource and the fourth time domain offset.
  • the time domain start position of the second uplink resource is: the sum of the time domain end position of the side row resource and the second time domain offset.
  • the time domain starting position of the second uplink resource is: the sum of the time domain starting position of the side row resource, the total length of side row transmission, and the second time domain offset.
  • the side-line transmission is a single transmission
  • the total length of the side-line transmission is the single transmission length
  • the total length of the side-line transmission is the product of the duration of a single transmission and the number of repetitions.
  • the content of the indication information of the first uplink time domain resource and the content of the indication information of the second uplink time domain resource may be all the same, partly the same, or completely different.
  • the same part may be indicated by the same indication field in the first scheduling information, that is, the same part may be indicated only once, so as to save signaling overhead.
  • the first uplink transmission parameter may further include a first uplink MCS
  • the second uplink transmission parameter may further include a second uplink MCS.
  • the first uplink MCS and the second uplink MCS are indicated by the same indication field in the first scheduling information. That is, when the first uplink MCS and the second uplink MCS are the same, the first uplink MCS and the second uplink MCS can occupy the same indication field in the first scheduling information, so as to reduce signaling overhead.
  • the first uplink transmission parameter may further include indication information of the first uplink frequency domain resource, and the first uplink frequency domain resource is used for the first uplink frequency domain resource.
  • the two terminals send the first data to the network device; the second uplink transmission parameter may also include indication information of the second uplink frequency domain resource, and the second uplink frequency domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are indicated by the same indication field in the first scheduling information.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are the same, the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may occupy the first uplink frequency domain resource.
  • the same indication field in the scheduling information is used to further reduce signaling overhead.
  • the second data may be different from the first data, or may be the same as the first data, which is not limited in the embodiment of the present application.
  • the communication device may further include a processing module and a storage module, and the storage module stores a program or an instruction.
  • the processing module executes the program or instruction
  • the communication device can execute the uplink transmission method according to any one of the first aspect to the third aspect.
  • the communication device may be the first terminal or the second terminal or the network device according to any one of the first aspect to the third aspect, or It is a component or combination device in the first terminal or the second terminal or the network device, and may also be a chip or a chip system provided in the first terminal or the second terminal or the network device, which is not limited in this application.
  • a communication device is provided.
  • the communication device is used to execute the uplink transmission method described in any one of the first aspect to the third aspect.
  • a communication device in an eighth aspect, includes a processor coupled with a memory, and the memory is used to store a computer program.
  • the processor is configured to execute a computer program stored in the memory, so that the communication device executes the uplink transmission method described in any one of the possible implementation manners of the first aspect to the third aspect.
  • the communication device described in the eighth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an input/output port.
  • the transceiver can be used for the communication device to communicate with other communication devices.
  • the communication device described in the eighth aspect may be a terminal device or a network device, or a first terminal or a second terminal or a component or combination device in a network device, or be installed in the terminal device or network device Chip or chip system.
  • a communication device in a ninth aspect, includes a processor, for example, configured to implement a function or method involved in any one of the above-mentioned first to third aspects.
  • the communication device for example, It can be a chip system.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the methods described in the first to third aspects.
  • the chip system in the above aspect may be a system on chip (SOC), or a baseband chip, etc., where the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • the chip system in the above aspect may be composed of chips, or may include chips and other discrete devices.
  • a communication system in a tenth aspect, includes a first terminal and one or more second terminals. Wherein, the first terminal and one or more second terminals belong to the same multicast group.
  • a communication system in an eleventh aspect, includes a first terminal, one or more second terminals, and a network device.
  • a computer-readable storage medium including: computer instructions are stored in the computer-readable storage medium; when the computer instructions are executed on a computer, the computer is caused to execute the first to third aspects. Any one of the possible implementations of the uplink transmission method.
  • a computer program product containing instructions including a computer program or instruction, when the computer program or instruction runs on a computer, the computer can execute any one of the first to third aspects.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application
  • FIG. 2 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of an uplink transmission method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram 1 of DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram 1 of the time domain positional relationship between the first uplink resource and the side row resource provided by an embodiment of this application;
  • FIG. 6 is a second schematic diagram of the time domain positional relationship between the first uplink resource and the side row resource provided by an embodiment of this application;
  • FIG. 7 is a second schematic diagram of DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram 1 of the time-domain positional relationship between the first uplink resource, the second uplink resource, and the side row resource provided by an embodiment of this application;
  • FIG. 9 is a second schematic diagram of the time-domain positional relationship between the first uplink resource, the second uplink resource, and the side row resource provided by an embodiment of this application;
  • FIG. 10 is a third schematic diagram of a DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 11 is a fourth schematic diagram of DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 12 is a fifth schematic diagram of DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 13 is a sixth schematic diagram of DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 14 is a seventh schematic diagram of DCI carrying first scheduling information provided by an embodiment of this application.
  • 15 is a schematic diagram eight of DCI carrying first scheduling information provided by an embodiment of this application.
  • FIG. 16 is a second structural diagram of a communication device provided by an embodiment of this application.
  • the network equipment schedules side-line resources through a radio resource control (RRC) signaling, and through another RRC signaling schedules uplink resources.
  • RRC radio resource control
  • the side row resources and uplink resources scheduled by the network equipment may not be able to adapt to the uplink coordinated transmission. That is to say, when the network device independently schedules the side row resources and the uplink resources, it does not consider whether the scheduled uplink resources and the side row resources can be suitable. Equipped with uplink cooperative transmission. For example, take the upstream cooperative transmission as an example.
  • the side-stream resource scheduled by the network device may be located before the upstream resource in time or the distance between the two is too close, so that the second terminal does not have enough time to get from the first terminal.
  • Receive data and complete forwarding operations to network equipment such as receiving and decoding the side-line wireless signal that carries the data, restoring the original information of the data, and re-encoding and modulating the restored original information, and mapping the modulated data It is sent to the network device on the uplink resource.
  • the uplink resource is located before the side row resource in the time domain, or although the uplink resource is located after the side row resource in the time domain, the uplink resource
  • the time interval with the side-line resource is less than the minimum time required for the second terminal to forward the received data, and the network device needs to schedule the uplink resource and the side-line resource again, that is, the above-mentioned resource scheduling operation may require multiple executions.
  • the side row resources and the uplink resources required for the forwarding operation can be scheduled, and the resource scheduling efficiency is low, which results in long delay and low efficiency of the uplink coordinated transmission.
  • the technical solutions of the embodiments of this application can be applied to various communication systems: the fourth generation (4G) mobile communication system, such as the long term evolution (LTE) system, and the fifth generation (5G) mobile communication system.
  • Communication systems such as new radio (NR) systems, and future communication systems, such as 6th generation (6G) mobile communication systems, and wireless fidelity (WiFi) systems, etc.
  • the subscript sometimes as W 1 may form a clerical error at non-target as W1, while not emphasize the difference, to express their meaning is the same.
  • FIG. 1 is a schematic diagram of the architecture of a communication system to which the uplink transmission method provided in an embodiment of the application is applicable.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the communication system includes a network device and at least two terminal devices, such as a first terminal and a second terminal.
  • the second terminal and the network device shown in FIG. 1 may be one or multiple.
  • the first terminal can have multiple communication connections with multiple network devices at the same time through the multiple second terminals, or between multiple second terminals and the same network device.
  • a communication connection is a schematic diagram of the architecture of a communication system to which the uplink transmission method provided in an embodiment of the application is applicable.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the communication system includes a network device and at least two terminal devices, such as a first terminal and a second terminal.
  • the first terminal may establish an indirect communication connection with one or more network devices using one or more second terminals as a relay. It should be understood that the first terminal may also establish a direct communication connection with one or more network devices. That is to say, the communication connection between the first terminal and the network device may be one or multiple.
  • the embodiment of the present application does not deal with the type and number of communication connections that may exist between the first terminal and the network device. Any restrictions.
  • the above-mentioned first terminal may also be referred to as a source terminal (source user equipment, SUE), and the above-mentioned second terminal may also be referred to as a cooperation user equipment (CUE).
  • SUE source user equipment
  • CUE cooperation user equipment
  • a network device is used to send first scheduling information to a first terminal and a second terminal.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters.
  • the side-line transmission parameters are used for the first terminal to send the first data to the second terminal, and the first uplink transmission parameters are used for the second terminal.
  • the second terminal sends the first data to the network device.
  • the network device is also used to receive the first data from the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the network device is also used to receive the second data from the first terminal.
  • the above-mentioned first terminal is configured to receive first scheduling information from a network device.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters.
  • the side-line transmission parameters are used for the first terminal to send the first data to the second terminal, and the first uplink transmission parameters are used for the second terminal.
  • the second terminal sends the first data to the network device.
  • the first terminal is also used to send the first data to the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the first terminal is also used to send second data to the network device.
  • the above-mentioned second terminal is configured to receive the first scheduling information from the network device.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters.
  • the side-line transmission parameters are used for the first terminal to send the first data to the second terminal, and the first uplink transmission parameters are used for the second terminal.
  • the second terminal sends the first data to the network device.
  • the second terminal is also configured to receive the first data from the first terminal and send the first data to the network device.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the above-mentioned network device may be any device with a wireless transceiving function.
  • a wireless transceiving function Including but not limited to: evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional NodeB), base station in NR (gNodeB or gNB) or transmission receiving point/transmission reception point (TRP), 3GPP Subsequent evolution of base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with a base station that supports an LTE network, can also communicate with a base station that supports a 5G network, and can also support communication with a base station of an LTE network and a base station of a 5G network Double connection.
  • the above-mentioned first terminal and second terminal are devices with wireless transceiving functions, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; they can also be deployed on the water (such as ships, etc.); they can also be deployed in the air (For example, airplanes, balloons, satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) Wireless terminals in control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) Wireless terminals in ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • vehicle-mounted terminal equipment wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid, transportation safety (transportation safety) Wireless terminals in )
  • wireless terminals in smart cities wireless terminals in smart homes, wearable terminal devices, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be a fixed terminal or a mobile terminal.
  • the above-mentioned second terminal serves as a relay device between the first terminal and the network device, which may be a terminal device or a network device, which is not limited in the embodiment of the present application.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 1.
  • FIG. 2 is a schematic structural diagram of a communication device 200 that can be used to implement the uplink transmission method provided by an embodiment of the present application.
  • the communication apparatus 200 may be a terminal device, such as the first terminal and the second terminal in FIG. 1, or may be a chip or other components with terminal functions applied to the terminal device.
  • the communication apparatus 200 may be a network device, or a chip applied to the network device or other components with network device functions.
  • the communication device 200 may include a processor 201, a memory 202, and a transceiver 203.
  • the processor 201 is coupled with the memory 202 and the transceiver 203, for example, can be connected through a communication bus.
  • each component of the communication device 200 will be specifically introduced with reference to FIG. 2:
  • the processor 201 is the control center of the communication device 200, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is one or more central processing units (CPU), or an application specific integrated circuit (ASIC), or is configured to implement one or more of the embodiments of the present application.
  • An integrated circuit for example: one or more microprocessors (digital signal processors, DSP), or one or more field programmable gate arrays (FPGA).
  • the processor 201 can execute various functions of the communication device 200 by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device 200 may also include multiple processors, such as the processor 201 and the processor 204 shown in FIG. 2. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication equipment can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 202 may exist independently, or may be integrated with the processor 201.
  • the memory 202 is used to store a software program for executing the solution of the present application, and the processor 201 controls the execution.
  • the processor 201 controls the execution.
  • the transceiver 203 is used for communication with other communication devices. Of course, the transceiver 203 can also be used to communicate with a communication network.
  • the transceiver 203 may include a receiver to implement a receiving function, and a transmitter to implement a sending function.
  • the structure of the communication device 200 shown in FIG. 2 does not constitute a limitation on the communication device.
  • the actual communication device may include more or less components than those shown in the figure, or combine certain components, or Different component arrangements.
  • FIG. 3 is a schematic flowchart of an uplink transmission method provided by an embodiment of the application.
  • the uplink transmission method may be applicable to the uplink coordinated communication between the first terminal and the network device via the second terminal shown in FIG. 1, and/or the uplink direct communication between the first terminal and the network device.
  • the uplink transmission method includes:
  • S301 The network device sends first scheduling information to the first terminal and the second terminal.
  • the first terminal and the second terminal receive the first scheduling information from the network device.
  • the network device may send the first scheduling information to the first terminal and the second terminal on the physical downlink control channel (PDCCH). ) Carries the first scheduling information.
  • PDCCH physical downlink control channel
  • FIG. 4 is the first schematic diagram of the DCI carrying the first scheduling information provided by an embodiment of the application.
  • the content of the first scheduling information will be described in detail below with reference to FIG. 4.
  • the first scheduling information includes indication information of side-line transmission parameters and indication information of the first uplink transmission parameter, and the side-line transmission parameters are used by the first terminal to the second terminal.
  • the first data is sent, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the side-line transmission parameter may include the indication information of the side-line time domain resource, and the side-line time domain resource is used for the first terminal to send the first data to the second terminal;
  • the first uplink transmission parameter may include the first Indication information of an uplink time domain resource, where the first uplink time domain resource is used by the second terminal to send the first data to the network device.
  • the indication information of the side row time domain resource may include one or more of the time domain start position, the time domain end position, the single transmission duration, and the number of repetitions of the side row resource.
  • the time domain start position of the side row resource is the start position of the first transmission in one or more transmissions corresponding to the number of repetitions, such as the time slot where the first symbol in the first transmission is located.
  • the time domain end position of the side row resource is the end position of the last transmission in one or more transmissions corresponding to the number of repetitions, such as the slot where the last symbol in the last transmission is located.
  • the number of repetitions is a positive integer, or the number of repetitions may not be configured. In this case, the default is single transmission.
  • the embodiment of the present application does not specifically limit the content of the indication information of the lateral time domain resource, as long as the time domain location of the lateral resource can be uniquely determined.
  • the indication information of the side-line time domain resources may only include the time-domain start position, single transmission duration, and repetition times of the side-line resource, or only include the time domain end position and single transmission duration. And the number of repetitions.
  • the indication information of the side-line time domain resource may not include the number of repetitions.
  • the indication information of the side row time domain resource may only include the time domain start position and the time domain end position of the side row resource, or only include the time domain start position and the single transmission duration of the side row resource, or only include The end position of the time domain of the side row resource and the duration of a single transmission.
  • the indication information of the first uplink time domain resource may include the time domain start position of the first uplink resource, or the time domain offset between the first uplink resource and the side row resource.
  • the indication information of the first uplink time domain resource may also include the end position of the time domain of the first uplink resource, the transmission duration, and the like.
  • the time domain start position of the first uplink resource may include: the symbol number of the time domain start symbol of the first uplink resource, and/or the time slot number of the time slot where the time domain start symbol is located.
  • the "symbol” can be an orthogonal frequency division multiplexing (OFDM) symbol
  • the "slot” can be a full slot or a short slot. , One of mini slots.
  • the time domain offset between the first uplink resource and the side row resource may include one of the following: a first time domain offset and a third time domain offset.
  • the first time domain offset may be: the time domain offset between the time domain start position of the first uplink resource and the time domain end position of the side row resource;
  • the third time domain offset may be: The time domain offset between the time domain start position of the first uplink resource and the time domain start position of the side row resource.
  • the embodiment of the application does not specifically limit the content of the indication information of the first uplink time domain resource, as long as it can be ensured that the time domain start position of the first uplink resource is located after the time domain end position of the side row resource That is, the time-domain positional relationship between the first uplink resource and the side-line resource can ensure that the second terminal has enough processing time to complete the following operations: receive the first data from the first terminal, demodulate and decode to obtain the first The original information of the data is then modulated and coded again on the original information, and the first data is forwarded to the network device.
  • the indication information of the first uplink time domain resource may only include the time domain start position of the first uplink resource.
  • the indication information of the side-line time domain resource may only include the first time-domain offset the amount.
  • the indication information of the lateral time domain resource includes the time domain start position of the lateral resource, the indication information of the first uplink time domain resource may only include the third time domain offset.
  • the following describes in detail how to determine the time domain start position of the first uplink resource when the indication information of the first uplink time domain resource does not include the time domain start position of the first uplink resource with reference to a specific example.
  • FIG. 5 is the first schematic diagram of the time-domain positional relationship between the side row resource and the first uplink resource provided in an embodiment of the application.
  • the indication information of the side row time domain resource may include one or more of the following: the time domain end position t1 of the side row resource, the time domain start position t2, the single transmission duration L, and the number of repetitions K.
  • SL-i is the side row resource occupied by the i-th transmission, where i is a positive integer and its value range is 1 to K.
  • the number of repetitions K is the number of side-line transmissions or an index value corresponding to the number of side-line transmissions.
  • the single transmission duration L is the duration of a single transmission in K side-line transmissions, for example, it can be the number of consecutive symbols included in the single transmission.
  • the time domain start position t2 is the time domain start position of the first transmission in K repeated transmissions, for example, it can include the symbol number of the time domain start symbol of the first transmission, and/or, the time domain starts The slot number of the slot where the start symbol is located.
  • the time domain end position t1 is the end position of the last transmission in K repeated transmissions, for example, it may include the symbol number of the time domain end symbol of the last transmission, and/or the time slot of the time slot where the time domain end symbol is located Numbering.
  • the indication information of the first uplink time domain resource may include one or more of the following: the time domain start position t3 of the first uplink resource, the time domain start position t3 of the first uplink resource, and the side row
  • the time domain start position of the first uplink resource may include the symbol number of the time domain start symbol of the first uplink resource, and/or the time slot number of the time slot where the time domain start symbol is located.
  • FIG. 6 is a second schematic diagram of the time-domain positional relationship between the side row resource and the first uplink resource provided in an embodiment of this application.
  • the indication information of the side-line time domain resource may not include the number of repetitions K.
  • the time domain start position of the first uplink resource may be determined according to one of the following manners 1 to 3. This will be described in detail below with reference to Figs. 5 and 6.
  • FIG. 7 is a second schematic diagram of the DCI carrying the first scheduling information provided by an embodiment of the application.
  • the content of the first scheduling information will be described in further detail below in conjunction with FIG. 7.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the second uplink transmission parameter may include indication information of the second uplink time domain resource, and the second uplink time domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the second uplink time domain resource may include the time domain start position of the second uplink resource, or the time domain offset between the second uplink resource and the side row resource.
  • the indication information of the second uplink time domain resource may include the end position of the time domain of the second uplink resource, the transmission duration, and the like.
  • the time domain start position of the second uplink resource may include: the symbol number of the time domain start symbol (symbol) of the second uplink resource, and/or the time slot number of the time slot where the time domain start symbol is located.
  • the time domain offset between the second uplink resource and the side row resource may include one of the following: a second time domain offset and a fourth time domain offset.
  • the second time domain offset may be: the time domain offset between the time domain start position of the second uplink resource and the time domain end position of the side row resource;
  • the fourth time domain offset may be: The time domain offset between the time domain start position of the second uplink resource and the time domain start position of the side row resource.
  • the embodiment of the present application does not specifically limit the content of the indication information of the second uplink time domain resource, as long as the time domain start position of the second uplink resource can be uniquely determined, and the second uplink resource is guaranteed
  • the time domain start position is just after the time domain end position of the sideline resource.
  • the indication information of the second uplink time domain resource may only include the time domain start position of the second uplink resource.
  • the indicator information of the side row time domain resource includes the time domain start position of the side row resource, the single transmission duration, and the number of repetitions
  • the indicator information of the second uplink time domain resource may only include the second time domain offset the amount.
  • the indication information of the lateral time domain resource includes the time domain start position of the lateral resource
  • the indication information of the second uplink time domain resource may only include the fourth time domain offset.
  • the first terminal can send the first data to the network device on the sideline resource and the first uplink resource with the assistance of the second terminal, and send the first data to the network device on the second uplink resource.
  • Send the first data so that the network device can combine and decode the first data received on the first uplink resource and the first data received on the second uplink resource, so as to improve the decoding success rate, thereby increasing the uplink data Reliability of transmission.
  • the time-domain positional relationship between the second uplink resource and the first uplink resource also needs to ensure that the time when the first data forwarded by the second terminal on the first uplink resource arrives at the network device, and that the first terminal is in the same position as the first terminal. 2.
  • the time deviation between the arrival time of the first data sent on the uplink resource at the network device is less than or equal to the arrival time deviation threshold, so as to save the amount of storage resources for the network device to cache the first data.
  • the indication information of the second uplink time domain resource may include one or more of the following: the time domain start position t4 of the second uplink resource, and the time domain start position t4 of the second uplink resource.
  • the second time domain offset T2 between the time domain end position t1 of the side row resource and the time domain start position t4 of the second uplink time domain resource and the first time domain start position t2 of the side row resource Four time domain offset T4.
  • the time domain start position of the second uplink resource may include the symbol number of the time domain start symbol of the second uplink resource, and/or the time slot number of the time slot where the time domain start symbol is located.
  • the time domain start position of the second uplink resource may be determined according to the following manner four to manner six. This will be explained in detail below.
  • the total length of the side-line transmission is the single transmission length L .
  • the indication information of the first uplink time domain resource and the indication information of the second uplink time domain resource may be all the same, partly the same, or all different.
  • the same content in the indication information of the first uplink time domain resource and the indication information of the second uplink time domain resource may be indicated by the same indication field in the first scheduling information to reduce signaling overhead.
  • FIGS. 10-12 are schematic diagrams 3 to 5 of DCI carrying first scheduling information provided by an embodiment of the application, respectively.
  • the content of the first scheduling information will be described in further detail with reference to FIGS. 7-9 and 10-12.
  • T1 and T2 can occupy the same indication domain to reduce signaling overhead.
  • T3 and T4 can occupy the same indication domain to reduce signaling overhead.
  • the indication information of the first uplink time domain resource and the indication information of the second uplink time domain resource are all the same, the indication information of the first uplink time domain resource and the indication information of the second uplink time domain resource only need to be transmitted. That's it.
  • the indication information of the first uplink transmission parameter includes the indication information of the first uplink time domain resource, and the indication information of the second uplink transmission parameter does not include the indication information of the second uplink time domain resource. information.
  • the side row transmission parameters may also include a side row coding modulation scheme (MCS)
  • the first uplink transmission parameter information may also include the first uplink MCS
  • the second uplink transmission parameters may also include May include a second uplink MCS.
  • MCS side row coding modulation scheme
  • any two MCSs of the aforementioned side row MCS, the first uplink MCS, and the second uplink MCS may be the same or different.
  • the any two MCSs in the side row MCS, the first uplink MCS, and the second uplink MCS are the same, the any two MCSs can occupy the same indication field in the first scheduling information to further reduce the signaling overhead. For example, if the first uplink MCS and the second uplink MCS are the same, the first uplink MCS and the second uplink MCS may occupy the same indication field in the first scheduling information.
  • FIG. 13 is a sixth schematic diagram of a DCI carrying first scheduling information provided by an embodiment of this application.
  • the first uplink MCS and the second uplink MCS are the same, the first uplink MCS and the second uplink MCS can occupy the same indication field in the first scheduling information to further reduce signaling overhead.
  • the first uplink MCS is the same as the second uplink MCS, it is only necessary to carry the first uplink MCS and the second MCS in the first MCS indication field in the indication information of the first uplink transmission parameter. There is no need to carry the second uplink MCS in the indication information of the second uplink transmission parameter.
  • An uplink MCS indication field carries the first uplink MCS.
  • the side-line transmission parameters may also include indication information of the side-line frequency domain resources
  • the first uplink transmission parameters may also include indication information of the first uplink frequency domain resources, and the first uplink frequency domain resources Used by the second terminal to send the first data to the network device
  • the second uplink transmission parameter may also include indication information of the second uplink frequency domain resource, and the second uplink frequency domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may be the same or different.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may occupy the information in the first scheduling information.
  • the same indication field to further reduce signaling overhead.
  • the above-mentioned indication information of each frequency domain resource may include one or more of the frequency domain start position, the frequency domain end position, and the number of frequency domain resources of the resources on each communication link.
  • the start position and end position of each resource in the frequency domain can be expressed in the following ways: resource block (RB) index, physical resource block (PRB), sub-band (sub-band) index, and sub-band index. Channel (sub-channel) index, etc.
  • the number of frequency domain resources of each resource may include the number of RBs, PRBs, subbands, and subchannels included in each frequency domain resource.
  • the embodiment of the present application does not specifically limit the implementation of the indication information of each frequency domain resource.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may be all the same, partly the same, or all different .
  • the same content in the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may also occupy the same indication domain in the first scheduling information to further reduce signaling overhead.
  • the transmission scheme when part of the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are the same refer to the indication information and the first uplink time domain resource shown in FIG. 10 or FIG. Second, the transmission scheme when parts of the indication information of the uplink time domain resources are the same, will not be repeated here.
  • FIG. 14 is a seventh schematic diagram of a DCI carrying first scheduling information provided by an embodiment of this application.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are all the same, the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may occupy the first uplink frequency domain resource.
  • the same indication field in one scheduling information since the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are all the same, only the indication information of the first uplink frequency domain resource in the indication information of the first uplink transmission parameter is required.
  • the indication information indicates that the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are carried in the indication field, and the indication information of the second uplink frequency domain resource in the indication information of the second uplink transmission parameter is not required.
  • the indication information of the second uplink frequency domain resource is carried in the indication domain.
  • the indication information of the first uplink transmission parameter and the indication information of the second uplink transmission parameter are the same, the indication information of the first uplink transmission parameter and the indication information of the second uplink transmission parameter The same indication field in the first scheduling information can be occupied.
  • FIG. 15 is a schematic diagram 8 of a DCI carrying first scheduling information provided by an embodiment of this application.
  • the indication information of the first uplink transmission parameter and the indication information of the second uplink transmission parameter only occupy the indication information field of the first uplink transmission parameter in the first scheduling information, that is, the indication of the first uplink transmission parameter. Only one information or indication information of the second uplink transmission parameter needs to be transmitted.
  • the first terminal may send an uplink transmission request and a buffer state report (BSR) to the network device.
  • BSR carries the data volume of the uplink data to be transmitted of the first terminal, such as the data volume of the data to be transmitted in the media access control (MAC) buffer of the first terminal.
  • MAC media access control
  • the network device can be based on the amount of data, the service type of the first terminal, the number of idle resources in the second uplink resource between the first terminal and the network device, and the amount of the second uplink channel between the first terminal and the network device.
  • Channel quality, the number of idle resources in the sideline resources between the first terminal and the second terminal, the channel quality of the sideline channel between the first terminal and the second terminal, and other information, one or more second terminals and the network Information such as the number of idle resources in the first uplink resource between the devices, the channel quality of the first uplink channel between one or more second terminals and the network device is determined, and the content of the above-mentioned first scheduling information is determined and sent to the first One terminal, and one or more second terminals.
  • the first terminal, the second terminal, and the network device can complete the transmission of the uplink data to be transmitted by the first terminal according to the first scheduling information, that is, perform the following S302-S303:
  • S302 The first terminal sends the first data to the second terminal.
  • the second terminal receives the first data from the first terminal.
  • the first terminal may send sidelink control information (SCI) to the second terminal on a physical sidelink control channel (PSCCH).
  • PSCCH physical sidelink control channel
  • the second terminal receives the SCI from the first terminal on the PSCCH.
  • the first terminal may send the first data to the second terminal on a physical sidelink shared channel (PSSCH).
  • PSSCH physical sidelink shared channel
  • the second terminal receives the first data from the first terminal on the PSSCH.
  • the SCI carries the side-line demodulation information of the first data, such as the side-line MCS, the time-frequency resource of the demodulation reference signal (DMRS) that carries the side-line link, etc., so that the second terminal can follow the side line Demodulate the information and parse the PSSCH to recover the original information of the first data, that is, the original data before the first data is encoded and modulated.
  • the side-line MCS such as the side-line MCS, the time-frequency resource of the demodulation reference signal (DMRS) that carries the side-line link, etc.
  • the second terminal may send feedback information to the first terminal, and the feedback information is used for the first terminal.
  • a terminal stops sending the first data, so as to save resource overhead between the first terminal and the second terminal, and can reduce the power consumption of the first terminal and the second terminal.
  • the second terminal may send an acknowledgement (ACK) indication to the first terminal on the physical sidelink feedback channel (PSFCH) Bit.
  • ACK acknowledgement
  • PSFCH physical sidelink feedback channel
  • S303 The second terminal sends the first data to the network device.
  • the network device receives the first data from the second terminal.
  • the second terminal may re-encode and modulate the original information of the first data, and On the first uplink resource, the re-coded and modulated first data is sent to the network device.
  • the second terminal may use a decoding and forwarding manner to forward the first data from the first terminal to the network device.
  • the second terminal can also directly transmit the wireless signal of the PSSCH carrying the first data to increase the transmit power.
  • the network device forwards the wireless signal, that is, the first data can be forwarded to the network device in a way of amplification and forwarding.
  • the network device can demodulate and decode the received first data.
  • the wireless signal carrying the first data can be demodulated and decoded according to the first uplink MCS or the side row MCS.
  • the first terminal sends the first data to the network device through the second terminal in FIG. And through other terminals, such as a third terminal (not shown in FIG. 1), the third data is sent to the network device. If the first data and the third data are the same data and the same MCS scheme is adopted, the network device can combine and decode the first data and the third data to improve the decoding performance of the uplink transmission. It is easy to understand that if the first data and the third data are different data, the uplink throughput between the first terminal and the network device can be improved.
  • the first terminal may also directly send the second data to the network device on the second uplink resource. That is to say, the uplink transmission method shown in FIG. 3 may further include S304:
  • S304 The first terminal sends second data to the network device.
  • the network device receives the second data from the first terminal.
  • the second data may be the same as the first data or different from the first data.
  • the second data when the channel environment is good, the second data may be different from the first data, so as to increase the uplink throughput between the first terminal and the network device and improve communication efficiency.
  • the second data when the channel environment is poor, can also be the same as the first data, that is, both the first data and the second data are data obtained by using the same MCS to encode and modulate the same original data.
  • the device can combine and decode the first uplink signal carrying the first data and the second uplink signal carrying the second data to improve the decoding performance and success rate, thereby improving the uplink data transmission between the first terminal and the network device Reliability.
  • the network equipment can simultaneously indicate the side row resource and the first uplink resource required for uplink coordinated transmission in one scheduling information, which improves the efficiency of resource scheduling and can avoid the side row caused by independent scheduling.
  • the problem of multiple scheduling of side resources and/or uplink resources caused by the inability of resources and uplink resources to adapt to uplink coordinated transmission can reduce the delay of uplink coordinated transmission and improve the efficiency of uplink coordinated transmission.
  • the uplink transmission method provided by the embodiment of the present application is described in detail above with reference to FIGS. 3 to 15.
  • the following describes in detail another communication device provided by an embodiment of the present application with reference to FIG. 16.
  • FIG. 16 is a second structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device can be applied to the communication system shown in FIG. 1 to perform the functions of the network equipment in the uplink transmission method shown in FIG. 3.
  • FIG. 16 only shows the main components of the communication device.
  • the communication device 1600 includes a receiving module (or receiving unit) 1601 and a sending module (or sending unit) 1602.
  • the sending module 1602 is configured to send first scheduling information to the first terminal and the second terminal; the first scheduling information includes indication information of side-line transmission parameters and indication information of the first uplink transmission parameter, and the side-line transmission parameters are used for The first terminal sends the first data to the second terminal, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the receiving module 1601 is configured to receive first data from the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the receiving module 1601 is also used to receive second data from the first terminal.
  • the communication device 1600 may also be applicable to the communication system shown in FIG. 1 to perform the function of the first terminal in the uplink transmission method shown in FIG. 3.
  • the receiving module 1601 is configured to receive first scheduling information from a network device; wherein, the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters, and the side-line transmission parameters are used for the first terminal
  • the first data is sent to the second terminal, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the sending module 1602 is used to send the first data to the second terminal.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the sending module 1602 is also used to send second data to the network device.
  • the communication device 1600 may also be applicable to the communication system shown in FIG. 1 to perform the function of the second terminal in the uplink transmission method shown in FIG. 3.
  • the receiving module 1601 is configured to receive first scheduling information from a network device; wherein, the first scheduling information includes indication information of side-line transmission parameters and indication information of first uplink transmission parameters, and the side-line transmission parameters are used for the first terminal
  • the first data is sent to the second terminal, and the first uplink transmission parameter is used by the second terminal to send the first data to the network device.
  • the receiving module 1601 is further configured to receive first data from the first terminal.
  • the sending module 1602 is used to send the first data to the network device.
  • the first scheduling information may further include indication information of a second uplink transmission parameter, and the second uplink transmission parameter is used by the first terminal to send the second data to the network device.
  • the side-line transmission parameters may include indication information of the side-line time domain resources, and the side-line time domain resources are used by the first terminal to send the first data to the second terminal.
  • the first uplink transmission parameter may include the indication information of the first uplink time domain resource, and the first uplink time domain resource is used by the second terminal to send the first data to the network device;
  • the second uplink transmission parameter may include the second uplink time domain resource. The indication information of the domain resource, the second uplink time domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the side row time domain resource may include one or more of the time domain start position, the time domain end position, the single transmission duration, and the number of repetitions of the side row resource.
  • the time domain start position of the side row resource is the start position of the first transmission in one or more transmissions corresponding to the number of repetitions, such as the time slot where the first symbol in the first transmission is located.
  • the time domain end position of the side row resource is the end position of the last transmission in one or more transmissions corresponding to the number of repetitions, such as the slot where the last symbol in the last transmission is located.
  • the number of repetitions is a positive integer, or the number of repetitions may not be configured. In this case, the default is single transmission.
  • the indication information of the first uplink time domain resource may include the time domain start position of the first uplink resource, or the time domain start position of the first uplink resource and the time domain start position or time domain of the side row resource The time domain offset between the end positions.
  • the time domain start position of the first uplink resource may be: one or more of the start symbol (symbol) of the first uplink resource in the time domain and the time slot where the start symbol is located.
  • the time domain offset between the time domain start position of the first uplink resource and the time domain start position or the time domain end position of the side row resource may include one of the following: first time domain offset , The third time domain offset.
  • the first time domain offset may be: the time domain offset between the time domain start position of the first uplink resource and the time domain end position of the side row resource;
  • the third time domain offset may be: The time domain offset between the time domain start position of the first uplink resource and the time domain start position of the side row resource.
  • the time domain start position of the first uplink resource can be directly configured, or it can be determined according to the following way one to way three. This will be explained in detail below.
  • the time domain start position of the first uplink resource is the sum of the time domain start position of the side row resource and the third time domain offset.
  • the time domain start position of the first uplink resource is the sum of the time domain end position of the side row resource and the first time domain offset.
  • the time domain start position of the first uplink resource is the sum of the time domain start position of the side row resource, the total length of side row transmission, and the first time domain offset.
  • the indication information of the second uplink time domain resource may include the time domain start position of the second uplink resource, or the time domain start position of the second uplink resource and the time domain start position or time domain of the side row resource The time domain offset between the end positions.
  • the time domain start position of the second uplink resource may be: one or more of the start symbol of the second uplink resource in the time domain and the time slot where the start symbol is located.
  • the time domain offset between the time domain start position of the second uplink resource and the time domain start position or the time domain end position of the side row resource may include one of the following: second time domain offset , The fourth time domain offset.
  • the second time domain offset may be: the time domain offset between the time domain start position of the second uplink resource and the time domain end position of the side row resource;
  • the fourth time domain offset may be: The time domain offset between the time domain start position of the second uplink resource and the time domain start position of the side row resource.
  • the time domain start position of the second uplink resource can be directly configured, or can be determined according to the following manner four to manner six. This will be explained in detail below.
  • the time domain start position of the second uplink resource is the sum of the time domain start position of the side row resource and the fourth time domain offset.
  • the time domain start position of the second uplink resource is: the sum of the time domain end position of the side row resource and the second time domain offset.
  • the time domain starting position of the second uplink resource is: the sum of the time domain starting position of the side row resource, the total length of side row transmission, and the second time domain offset.
  • the side-line transmission is a single transmission
  • the total length of the side-line transmission is the single transmission length
  • the total length of the side-line transmission is the product of the duration of a single transmission and the number of repetitions.
  • the first uplink transmission parameter may further include a first uplink MCS
  • the second uplink transmission parameter may further include a second uplink MCS.
  • the first uplink MCS and the second uplink MCS are indicated by the same indication field in the first scheduling information. That is, when the first uplink MCS and the second uplink MCS are the same, the first uplink MCS and the second uplink MCS can occupy the same indication field in the first scheduling information, so as to reduce signaling overhead.
  • the first uplink transmission parameter may also include indication information of the first uplink frequency domain resource, and the first uplink frequency domain resource is used by the second terminal to send the first uplink frequency domain resource to the network device.
  • Data; the second uplink transmission parameter may also include indication information of a second uplink frequency domain resource, and the second uplink frequency domain resource is used by the first terminal to send the second data to the network device.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are indicated by the same indication field in the first scheduling information.
  • the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource are the same, the indication information of the first uplink frequency domain resource and the indication information of the second uplink frequency domain resource may occupy the first uplink frequency domain resource.
  • the same indication field in the scheduling information is used to further reduce signaling overhead.
  • the second data may be different from the first data or the same as the first data, which is not limited in the embodiment of the present application.
  • the communication device 1600 shown in FIG. 16 may further include a processing module and/or a storage module (not shown in FIG. 6), and the processing module may control the foregoing sending module 1602 and receiving module 1601 to complete the foregoing method embodiments.
  • the uplink transmission method The storage module stores a program or instruction, and when the processing module executes the program or instruction, the communication device 1600 shown in FIG. 6 can execute the uplink transmission method described in the foregoing method embodiment.
  • the communication device 1600 shown in FIG. 16 may be the first terminal or the second terminal or the network device shown in FIG. 1 or the communication device 200 shown in FIG. 2, or may be installed in the first terminal or the second terminal. 2.
  • a component or combination device in a terminal or a network device, such as a chip or a chip system, is not limited in the embodiment of the present application.
  • the receiving module 1601 and the sending module 1602 can be receivers and transmitters in the terminal device or the network device, respectively, and the receiving module 1601 and the sending module 1602 can also be combined
  • the above-mentioned receiving module 1601, sending module 1602, and transceiver may include an antenna and a radio frequency circuit, etc.; the communication device 1600 shown in FIG.
  • the processing module may be a processor, for example, a central processing unit (CPU).
  • the receiving module 1601 and the sending module 1602 may be radio frequency units, and the processing module may be a processor.
  • the receiving module 1601 and the sending module 1602 may be input and output interfaces of the chip system, and the processing module may be a processor in the chip system.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and an input/output port, and the processor is coupled with a memory containing instructions for controlling the communication device installed with the chip system to implement the uplink transmission method described in the above method embodiment.
  • the above-mentioned memory may be a memory integrated inside the chip system, such as an internal cache, or an external memory located outside the chip system and connected to the chip system in signal, such as an external cache, and may also include both internal memory and external memory.
  • the memory is used to store program instructions and data for implementing the uplink transmission method described in the foregoing method embodiment.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the embodiment of the present application provides a communication system.
  • the system includes a network device and at least two terminal devices, such as a first terminal and a second terminal.
  • the embodiment of the present application provides a computer-readable storage medium, including: the computer-readable storage medium stores computer instructions; when the computer instructions run on a computer, the computer is caused to perform the uplink transmission described in the above method embodiment method.
  • the embodiment of the present application provides a computer program product containing instructions, including a computer program or instruction, when the computer program or instruction runs on a computer, the computer executes the uplink transmission method described in the foregoing method embodiment.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行传输方法及通信装置,能够降低上行协作传输的时延,提高上行协作传输的效率,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于D2D,智能驾驶,智能网联车等领域。该方法包括:网络设备通过一个调度信令,调度第一终端与第二终端之间通信的侧行资源,以及第二终端与网络设备之间通信的第一上行资源,其中第一上行资源在时域上位于侧行资源之后,以便第二终端在侧行资源上从第一终端接收第一数据,并在第一上行资源上向网络设备转发第一数据。

Description

上行传输方法及通信装置 技术领域
本申请涉及通信领域,尤其涉及一种上行传输方法及通信装置。
背景技术
无线通信技术在过去几十年经历了飞速的发展,先后经历了基于模拟通信系统的第一代无线通信系统,以全球移动通信系统(global system for mobile communication,GSM)为代表的2G无线通信系统,以宽带码分多址(wideband code division multiple access,WCDMA)为代表的3G无线通信系统,再到现在已经在全世界广泛商用并且取得巨大成功的长期演进(long term evolution,LTE)等4G无线通信系统。无线通信系统支持的业务也从最初的语音、短信,发展到现在支持无线高速数据通信。与此同时,全世界范围内的无线连接数量正在经历持续地高速增长,各种新的无线业务类型也大量涌现,例如物联网、自动驾驶等,这些都对下一代无线通信系统,也即5G系统,提出了更高的要求。
目前,终端设备之间可以在侧行资源上完成侧行传输,终端设备与网络设备之间可以在上行资源上完成上行传输,和/或在下行资源上完成下行传输。未来还将支持用户协作传输,用户协作是指终端设备可以在其他终端设备的协助下,完成与网络设备之间的用户协作传输,如上行协作传输和/或下行协作传输。参考图1,上行协作传输是指,第二终端在第一侧行资源上从第一终端接收数据,并在上行资源上向网络设备转发该数据。下行协作传输是指,第二终端在上行资源上从网络设备接收数据,并在第二侧行资源上向第一终端转发该数据。其中,上行资源在时域上位于第一侧行资源之后,第二侧行资源在时域上位于下行资源之后,以便CUE有足够时间完成数据转发操作。
发明内容
本申请实施例提供一种上行传输方法及通信装置,能够降低上行协作传输的时延,提高上行协作传输的效率。
为实现上述效果,本申请采用如下技术方案:
第一方面,提供一种上行传输方法。该方法包括:网络设备向第一终端和第二终端发送第一调度信息。其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。网络设备从第二终端接收第一数据。
在一种可能的设计方法中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。相应地,第一方面所述的上行传输方法还可以包括:网络设备从第一终端接收第二数据。也就是说,第一终端与网络设备之间可以同时建立多种类型的无线连接,以提高上行数据传输的吞吐 量。
第二方面,提供一种上行传输方法。该方法包括:第一终端从网络设备接收第一调度信息。其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。第一终端向第二终端发送第一数据。
在一种可能的设计方法中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。相应地,第二方面所述的上行传输方法还可以包括:第一终端向网络设备发送第二数据。也就是说,第一终端与网络设备之间可以同时建立多种类型的无线连接,以提高上行数据传输的吞吐量。
第三方面,提供一种上行传输方法。该方法包括:第二终端从网络设备接收第一调度信息。其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。第二终端从第一终端接收第一数据,并向网络设备发送第一数据。
在一种可能的设计方法中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。也就是说,第一终端与网络设备之间可以同时建立多种类型的无线连接,以提高上行数据传输的吞吐量。
基于第一方面至第三方面所述的上行传输方法,网络设备能够在一个调度信息中同时指示上行协作传输所需的侧行资源和第一上行资源,提高资源调度的效率,并且可以避免因独立调度的侧行资源和上行资源不能适配上行协作传输而导致的多次调度侧行资源和/或上行资源的问题,能够降低上行协作传输的时延,提高上行协作传输的效率。
在第一方面至第三方面中任一项所述的上行传输方法中,侧行传输参数可以包括侧行时域资源的指示信息,侧行时域资源用于第一终端向第二终端发送第一数据。相应地,第一上行传输参数可以包括第一上行时域资源的指示信息,第一上行时域资源用于第二终端向网络设备发送第一数据;第二上行传输参数可以包括第二上行时域资源的指示信息,第二上行时域资源用于第一终端向网络设备发送第二数据。
示例性地,侧行时域资源的指示信息可以包括侧行资源的时域起始位置、时域结束位置、单次传输时长、重复次数中的一项或多项。其中,侧行资源的时域起始位置为重复次数对应的一次或多次传输中的第一次传输的起始位置,如第一次传输中的第一个符号所在的时隙。侧行资源的时域结束位置为重复次数对应的一次或多次传输中的最后一次传输的结束位置,如最后一次传输中的最后一个符号所在的时隙(slot)。重复次数为正整数,或者重复次数也可以不配置,此时可以默认为单次传输。
示例性地,第一上行时域资源的指示信息可以包括第一上行资源的时域起始位置,或者第一上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量。其中,第一上行资源的时域起始位置可以为:第一上行资源在时域上的起始符号(symbol)、该起始符号所在时隙中的一项或多项。
可选地,第一上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位 置之间的时域偏移量可以包括如下之一:第一时域偏移量、第三时域偏移量。其中,第一时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第三时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
在本申请实施例中,第一上行资源的时域起始位置可以直接配置,也可以根据如下方式一至方式三确定。下面具体说明。
方式一,第一上行资源的时域起始位置为:侧行资源的时域起始位置与第三时域偏移量之和。
方式二,第一上行资源的时域起始位置为:侧行资源的时域结束位置与第一时域偏移量之和。
方式三,第一上行资源的时域起始位置为:侧行资源的时域起始位置、侧行传输总长度、第一时域偏移量之和。
示例性地,第二上行时域资源的指示信息可以包括第二上行资源的时域起始位置,或者第二上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量。其中,第二上行资源的时域起始位置可以为:第二上行资源在时域上的起始符号(symbol)、该起始符号所在时隙中的一项或多项。
可选地,第二上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量可以包括如下之一:第二时域偏移量、第四时域偏移量。其中,第二时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第四时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
在本申请实施例中,第二上行资源的时域起始位置可以直接配置,也可以根据如下方式四至方式六确定。下面具体说明。
方式四,第二上行资源的时域起始位置为:侧行资源的时域起始位置与第四时域偏移量之和。
方式五,第二上行资源的时域起始位置为:侧行资源的时域结束位置与第二时域偏移量之和。
方式六,第二上行资源的时域起始位置为:侧行资源的时域起始位置、侧行传输总长度、第二时域偏移量之和。
需要说明的是,在上述方式三和方式六中,当重复次数配置为1,或重复次数没有配置时,即侧行传输为单次传输,侧行传输总长度即为单次传输长度。
可选地,当重复次数大于1时,如侧行传输为多次连续传输时,侧行传输总长度为单次传输时长与重复次数的乘积。
需要说明的是,上述第一上行时域资源的指示信息的内容与第二上行时域资源的指示信息的内容可以全部相同、部分相同或全部不同。其中,相同部分可以由第一调度信息中的同一个指示域来指示,即相同部分可以只指示一次,以节省信令开销。
进一步地,在第一方面至第三方面中任一项所述的上行传输方法中,第一上行传输参数还可以包括第一上行MCS,第二上行传输参数还可以包括第二上行MCS。其中,第一上行MCS和第二上行MCS是由第一调度信息中的同一个指示域指示的。也 就是说,当第一上行MCS和第二上行MCS相同时,第一上行MCS和第二上行MCS可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。
再进一步地,在第一方面至第三方面中任一项所述的上行传输方法中,第一上行传输参数还可以包括第一上行频域资源的指示信息,第一上行频域资源用于第二终端向网络设备发送第一数据;第二上行传输参数还可以包括第二上行频域资源的指示信息,第二上行频域资源用于第一终端向网络设备发送第二数据。其中,第一上行频域资源的指示信息和第二上行频域资源的指示信息是由第一调度信息中的同一个指示域指示的。也就是说,当第一上行频域资源的指示信息和第二上行频域资源的指示信息相同时,第一上行频域资源的指示信息和第二上行频域资源的指示信息可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。
在第一方面至第三方面中任一项所述的上行传输方法中,第二数据可以与第一数据不同,以提高第一终端与网络设备之间的上行吞吐量,从而提高上行传输效率。或者,第二数据也可以与第一数据相同,即第一数据和第二数据均为同一个原始数据采用同一MCS编码调制后的数据,网络设备可以对承载第一数据的第一上行信号和承载第二数据的第二上行信号进行合并译码,以提高译码成功率,从而提高上行数据传输的可靠性。
第四方面,提高一种通信装置。该通信装置作为网络设备与第一终端和第二终端通信。该通信装置包括:接收模块和发送模块。其中,发送模块,用于向第一终端和第二终端发送第一调度信息;第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。接收模块,用于从第二终端接收第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。接收模块,还用于从第一终端接收第二数据。
第五方面,提高一种通信装置。该通信装置作为第一终端与网络设备和第二终端通信。该通信装置包括:接收模块和发送模块。其中,接收模块,用于从网络设备接收第一调度信息;其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。发送模块,用于向第二终端发送第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。发送模块,还用于向网络设备发送第二数据。
第六方面,提高一种通信装置。该通信装置作为第二终端与网络设备和第一终端通信。该通信装置包括:接收模块和发送模块。其中,接收模块,用于从网络设备接收第一调度信息;其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。接收模块,还用于从第一终端接收第 一数据。发送模块,用于向网络设备发送第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。
在第四方面至第六方面中任一项所述的通信装置中,侧行传输参数可以包括侧行时域资源的指示信息,侧行时域资源用于第一终端向第二终端发送第一数据。相应地,第一上行传输参数可以包括第一上行时域资源的指示信息,第一上行时域资源用于第二终端向网络设备发送第一数据;第二上行传输参数可以包括第二上行时域资源的指示信息,第二上行时域资源用于第一终端向网络设备发送第二数据。
示例性地,侧行时域资源的指示信息可以包括侧行资源的时域起始位置、时域结束位置、单次传输时长、重复次数中的一项或多项。其中,侧行资源的时域起始位置为重复次数对应的一次或多次传输中的第一次传输的起始位置,如第一次传输中的第一个符号所在的时隙。侧行资源的时域结束位置为重复次数对应的一次或多次传输中的最后一次传输的结束位置,如最后一次传输中的最后一个符号所在的时隙(slot)。重复次数为正整数,或者重复次数也可以不配置,此时默认为单次传输。
示例性地,第一上行时域资源的指示信息可以包括第一上行资源的时域起始位置,或者第一上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量。其中,第一上行资源的时域起始位置可以为:第一上行资源在时域上的起始符号(symbol)、该起始符号所在时隙中的一项或多项。
可选地,第一上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量可以包括如下之一:第一时域偏移量、第三时域偏移量。其中,第一时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第三时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
在本申请实施例中,第一上行资源的时域起始位置可以直接配置,也可以根据如下方式一至方式三确定。下面具体说明。
方式一,第一上行资源的时域起始位置为:侧行资源的时域起始位置与第三时域偏移量之和。
方式二,第一上行资源的时域起始位置为:侧行资源的时域结束位置与第一时域偏移量之和。
方式三,第一上行资源的时域起始位置为:侧行资源的时域起始位置、侧行传输总长度、第一时域偏移量之和。
示例性地,第二上行时域资源的指示信息可以包括第二上行资源的时域起始位置,或者第二上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量。其中,第二上行资源的时域起始位置可以为:第二上行资源在时域上的起始符号、该起始符号所在时隙中的一项或多项。
可选地,第二上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量可以包括如下之一:第二时域偏移量、第四时域偏移量。其中,第二时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第四时域偏移量可以为:第二上行资源的时域起始位置与侧行资源 的时域起始位置之间的时域偏移量。
在本申请实施例中,第二上行资源的时域起始位置可以直接配置,也可以根据如下方式四至方式六确定。下面具体说明。
方式四,第二上行资源的时域起始位置为:侧行资源的时域起始位置与第四时域偏移量之和。
方式五,第二上行资源的时域起始位置为:侧行资源的时域结束位置与第二时域偏移量之和。
方式六,第二上行资源的时域起始位置为:侧行资源的时域起始位置、侧行传输总长度、第二时域偏移量之和。
需要说明的是,在上述方式三和方式六中,当重复次数配置为1,或重复次数没有配置时,即侧行传输为单次传输,侧行传输总长度即为单次传输长度。
可选地,当重复次数大于1时,如侧行传输为多次连续传输时,侧行传输总长度为单次传输时长与重复次数的乘积。
需要说明的是,上述第一上行时域资源的指示信息的内容与第二上行时域资源的指示信息的内容可以全部相同、部分相同或全部不同。其中,相同部分可以由第一调度信息中的同一个指示域来指示,即相同部分可以只指示一次,以节省信令开销。
进一步地,在第四方面至第六方面中任一项所述的通信装置中,第一上行传输参数还可以包括第一上行MCS,第二上行传输参数还可以包括第二上行MCS。其中,第一上行MCS和第二上行MCS是由第一调度信息中的同一个指示域指示的。也就是说,当第一上行MCS和第二上行MCS相同时,第一上行MCS和第二上行MCS可以占用第一调度信息中的同一个指示域,以降低信令开销。
再进一步地,在第四方面至第六方面中任一项所述的通信装置中,第一上行传输参数还可以包括第一上行频域资源的指示信息,第一上行频域资源用于第二终端向网络设备发送第一数据;第二上行传输参数还可以包括第二上行频域资源的指示信息,第二上行频域资源用于第一终端向网络设备发送第二数据。其中,第一上行频域资源的指示信息和第二上行频域资源的指示信息是由第一调度信息中的同一个指示域指示的。也就是说,当第一上行频域资源的指示信息和第二上行频域资源的指示信息相同时,第一上行频域资源的指示信息和第二上行频域资源的指示信息可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。
在第四方面至第六方面中任一项所述的通信装置中,第二数据可以与第一数据不同,也可以与第一数据相同,本申请实施例对此不作限定。
可选地,第四方面至第六方面中任一项所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面至第六方面中任一项所述的通信装置可以执行第一方面至第三方面中任一项所述的上行传输方法。
需要说明的是,第四方面至第六方面中任一项所述的通信装置可以是第一方面至第三方面中任一项所述的第一终端或第二终端或网络设备,也可以是第一终端或第二终端或网络设备中的部件或组合器件,还可以是设置于第一终端或第二终端或网络设备中的芯片或芯片系统,本申请对此不做限定。
第七方面,提供一种通信装置。该通信装置用于执行第一方面至第三方面中任一项所述的上行传输方法。
第八方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该存储器用于存储计算机程序。该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面至第三方面中任意一种可能的实现方式所述的上行传输方法。
在一种可能的设计中,第八方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该通信装置与其他通信装置通信。
在本申请中,第八方面所述的通信装置可以为终端设备或网络设备,也可以是第一终端或第二终端或网络设备中的部件或组合器件,或者设置于终端设备或网络设备内部的芯片或芯片系统。
第八方面所述的通信装置的技术效果可以参考第一方面至第三方面中任意一种可能的实现方式所述的上行传输方法的技术效果,此处不再赘述。
第四方面至第八方面中任一项所述的通信装置的技术效果可以参考第一方面至第三方面中任意一种可能的实现方式所述的上行传输方法的技术效果,此处不再赘述。
第九方面,提供了一种通信装置,该通信装置包括处理器,例如,用于实现上述第一方面至第三方面中任意一种可能的实现方式所涉及的功能或方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第一方面至第三方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
上述方面中的芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供一种通信系统。该通信系统包括第一终端,以及一个或多个第二终端。其中,所述第一终端,以及一个或多个第二终端属于同一个组播组。
第十一方面,提供一种通信系统。该通信系统包括第一终端、一个或多个第二终端,以及网络设备。
第十二方面,提供一种计算机可读存储介质,包括:该计算机可读存储介质中存储有计算机指令;当该计算机指令在计算机上运行时,使得该计算机执行第一方面至第三方面中任意一种可能的实现方式所述的上行传输方法。
第十三方面,提供了一种包含指令的计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第三方面中任意一种可能的实现方式所述的上行传输方法。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的通信装置的结构示意图一;
图3为本申请实施例提供的上行传输方法的流程示意图;
图4为本申请实施例提供的承载第一调度信息的DCI的示意图一;
图5为本申请实施例提供的第一上行资源与侧行资源的时域位置关系的示意图一;
图6为本申请实施例提供的第一上行资源与侧行资源的时域位置关系的示意图二;
图7为本申请实施例提供的承载第一调度信息的DCI的示意图二;
图8为本申请实施例提供的第一上行资源、第二上行资源与侧行资源的时域位置关系的示意图一;
图9为本申请实施例提供的第一上行资源、第二上行资源与侧行资源的时域位置关系的示意图二;
图10为本申请实施例提供的承载第一调度信息的DCI的示意图三;
图11为本申请实施例提供的承载第一调度信息的DCI的示意图四;
图12为本申请实施例提供的承载第一调度信息的DCI的示意图五;
图13为本申请实施例提供的承载第一调度信息的DCI的示意图六;
图14为本申请实施例提供的承载第一调度信息的DCI的示意图七;
图15为本申请实施例提供的承载第一调度信息的DCI的示意图八;
图16为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
下面以上行协作传输为例,介绍用户协作传输的可能存在的问题。
参考图1,在用户协作传输中,若侧行资源和上行资源是网络设备独立调度的,如网络设备通过一个无线资源控制(radio resource control,RRC)信令调度了侧行资源,通过另一个RRC信令调度了上行资源。网络设备调度的侧行资源和上行资源可能不能适配上行协作传输,也就是说,网络设备在独立调度侧行资源和上行资源时,并没有考虑到调度的上行资源和侧行资源是否能够适配上行协作传输。例如,以上行协作传输为例,在一种情况下,网络设备调度的侧行资源可能时间上位于上行资源之前或两者之间距离过近,以至于第二终端没有足够时间从第一终端接收数据并完成向网络设备转发的操作,如接收和解码承载该数据的侧行无线信号,恢复该数据的原始信息,以及对恢复后的原始信息重新做编码调制,并把调制后的数据映射在上行资源上发送给网络设备。
然而,因此,倘若调度的上行资源和侧行资源不能适配上行协作传输,如上行资源在时域上位于侧行资源之前,或者虽然上行资源在时域上位于侧行资源之后,但是上行资源与侧行资源之间的时间间隔小于第二终端对接收到的数据做转发操作所需要的最短时间,则还需要网络设备再次调度上行资源和侧行资源,即上述资源调度操作可能需要执行多次,才能调度到满足转发操作所需要的侧行资源和上行资源,资源调度效率低下,从而导致上行协作传输的时延较长且效率低下。
为了解决上述问题,本申请实施例提供一种适用于上行协作传输的技术方案。下面将结合附图,对本申请提供的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统:第四代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统,以及无线保真(wireless fidelity,WiFi)系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或 特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的某些设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以图1所示的通信系统中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信系统中,相应的名称也可以用其他移动通信系统中的对应功能的名称进行替代。
图1为本申请实施例提供的上行传输方法所适用的一种通信系统的架构示意图。为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示,该通信系统包括网络设备和至少两个终端设备,如第一终端、第二终端。图1中所示第二终端和网络设备可以为一个,也可以为多个。当第二终端为多个时,第一终端可以通过该多个第二终端同时与多个网络设备之间存在多个通信连接,也可以通过多个第二终端与同一个网络设备之间存在一个通信连接。也就是说,第一终端可以建立以一个或多个第二终端为中继(rerlay),与一个或多个网络设备之间建立间接的通信连接。应理解,第一终端还可以与一个或多个网络设备之间建立直接的通信连接。也就是说,第一终端与网络设备之间的通信连接可以是一个,也可以是多个,本申请实施例对于第一终端与网络设备之间可能存在的通信连接的类型和数量,不做任何限定。
需要说明的是,在本申请实施例中,上述第一终端也可以称之为源终端(source user equipment,SUE),上述第二终端也可以称之为协作终端(cooperation user equipment,CUE)。
参考图1,网络设备,用于向第一终端和第二终端发送第一调度信息。其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。网络设备,还用于从第二终端接收第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息, 第二上行传输参数用于第一终端向网络设备发送第二数据。相应地,网络设备,还用于从第一终端接收第二数据。也就是说,第一终端与网络设备之间可以同时建立多种类型的无线连接,以提高上行数据传输的吞吐量。
上述第一终端,用于从网络设备接收第一调度信息。其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。第一终端,还用于向第二终端发送第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。相应地,第一终端,还用于向网络设备发送第二数据。
上述第二终端,用于从网络设备接收第一调度信息。其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。第二终端,还用于从第一终端接收第一数据,并向网络设备发送第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。
在本申请实施例中,上述网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
上述第一终端和第二终端为具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也 可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定中终端或者移动终端。
需要说明的是,上述第二终端作为第一终端与网络设备之间的中继设备,其可以是终端设备,也可以是网络设备,本申请实施例对此不作限定。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
图2为可用于执行本申请实施例提供的上行传输方法的一种通信装置200的结构示意图。一方面,通信装置200可以是终端设备,如图1中的第一终端和第二终端,也可以是应用于终端设备中的芯片或者其他具有终端功能的部件。另一方面,通信装置200可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有网络设备功能的部件。
如图2所示,通信装置200可以包括处理器201、存储器202和收发器203。其中,处理器201与存储器202和收发器203耦合,如可以通过通信总线连接。
下面结合图2对通信装置200的各个构成部件进行具体的介绍:
处理器201是通信装置200的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行通信装置200的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置200也可以包括多个处理器,例如图2中所示的处理器201和处理器204。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以独立存在,也可以和处理器201集成在一起。
其中,所述存储器202用于存储执行本申请方案的软件程序,并由处理器201来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
收发器203,用于与其他通信装置之间的通信。当然,收发器203还可以用于与通信网络通信。收发器203可以包括接收器实现接收功能,以及发送器实现发送功能。
需要说明的是,图2中示出的通信装置200的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面将结合图3-图5对本申请实施例提供的上行传输方法进行具体阐述。
图3为本申请实施例提供的上行传输方法的流程示意图。该上行传输方法可以适用于图1所示的第一终端经由第二终端与网络设备之间的上行协作通信,和/或,第一终端与网络设备之间的上行直接通信。
如图3所示,该上行传输方法包括:
S301,网络设备向第一终端和第二终端发送第一调度信息。相应地,第一终端和第二终端从网络设备接收第一调度信息。
示例性地,网络设备可以在物理下行控制信道(physical downlink control channel,PDCCH)上,向第一终端和第二终端发送第一调度信息,如可以在PDCCH的下行控制信息(downlink control information,DCI)中承载第一调度信息。
示例性地,图4为本申请实施例提供的承载第一调度信息的DCI的示意图一。下面结合图4,详细说明第一调度信息的内容。
在一种可能的设计方法中,如图4所示,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。
其中,如图4所示,侧行传输参数可以包括侧行时域资源的指示信息,侧行时域资源用于第一终端向第二终端发送第一数据;第一上行传输参数可以包括第一上行时域资源的指示信息,第一上行时域资源用于第二终端向网络设备发送第一数据。
示例性地,如图4所示,侧行时域资源的指示信息可以包括侧行资源的时域起始位置、时域结束位置、单次传输时长、重复次数中的一项或多项。其中,侧行资源的时域起始位置为重复次数对应的一次或多次传输中的第一次传输的起始位置,如第一次传输中的第一个符号所在的时隙。侧行资源的时域结束位置为重复次数对应的一次或多次传输中的最后一次传输的结束位置,如最后一次传输中的最后一个符号所在的时隙(slot)。重复次数为正整数,或者重复次数也可以不配置,此时可以默认为单次传输。
需要说明的是,本申请实施例对于侧行时域资源的指示信息的内容,不做具体限定,只要能够唯一地确定侧行资源的时域位置即可。例如,对于多次侧行传输,侧行时域资源的指示信息可以只包括侧行资源的时域起始位置、单次传输时长和重复次数,或者只包括时域结束位置、单次传输时长和重复次数。再例如,对于单次侧行传输,侧行时域资源的指示信息可以不包括重复次数。进一步地,侧行时域资源的指示信息可以只包括侧行资源的时域起始位置和时域结束位置,或者只包括侧行资源的时域起始位置和单次传输时长,或者只包括侧行资源的时域结束位置和单次传输时长。
示例性地,如图4所示,第一上行时域资源的指示信息可以包括第一上行资源的时域起始位置,或者第一上行资源与侧行资源之间的时域偏移量。此外,第一上行时域资源的指示信息还可以包括第一上行资源的时域结束位置、传输时长等。其中,第一上行资源的时域起始位置可以包括:第一上行资源的时域起始符号的符号编号,和/或,该时域起始符号所在时隙的时隙编号。其中,“符号(symbol)”可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,“时隙(slot)”可以是完整时隙(full slot)、短时隙(short slot)、迷你时隙(mini slot)中的一种。
可选地,如图4所示,第一上行资源与侧行资源之间的时域偏移量可以包括如下之一:第一时域偏移量、第三时域偏移量。其中,第一时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第三时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
需要说明的是,本申请实施例对于第一上行时域资源的指示信息的内容,不做具体限定,只要能够确保第一上行资源的时域起始位置位于侧行资源的时域结束位置之后即可,即第一上行资源与侧行资源之间的时域位置关系能够确保第二终端拥有足够的处理时间完成下述操作:从第一终端接收第一数据,解调译码获取第一数据的原始信息,然后对该原始信息重新作调制编码,并向网络设备转发第一数据。例如,第一上行时域资源的指示信息可以只包括第一上行资源的时域起始位置。又例如,倘若侧行时域资源的指示信息包括侧行资源的时域起始位置、单次传输时长和重复次数,则第一上行时域资源的指示信息可以只包括第一时域偏移量。再例如,倘若侧行时域资源的指示信息包括侧行资源的时域起始位置,则第一上行时域资源的指示信息可以只包括第三时域偏移量。
下面结合具体示例,详细说明当第一上行时域资源的指示信息不包括第一上行资源的时域起始位置时,如何确定第一上行资源的时域起始位置。
示例性地,图5为本申请实施例提供的侧行资源与第一上行资源之间的时域位置关系的示意图一。如图5所示,侧行时域资源的指示信息可以包括如下一项或多项:侧行资源的时域结束位置t1、时域起始位置t2、单次传输时长L、重复次数K。SL-i为第i次传输占用的侧行资源,其中,i为正整数,其取值范围为1至K。其中,重复次数K为侧行传输次数或与该侧行传输次数一一对应的索引值。单次传输时长L为K次侧行传输中的单次传输的持续时长,如可以为该单次传输包含的连续符号的个数。时域起始位置t2为K次重复传输中的第一次传输的时域起始位置,如可以包括该第一次传输的时域起始符号的符号编号,和/或,该时域起始符号所在时隙的时隙编号。时域结束位置t1为K次重复传输中的最后一次传输的结束位置,如可以包括该最后一次传输的时域结束符号的符号编号,和/或,该时域结束符号所在时隙的时隙编号。
如图5所示,第一上行时域资源的指示信息可以包括如下一项或多项:第一上行资源的时域起始位置t3、第一上行资源的时域起始位置t3与侧行资源的时域结束位置t1之间的第一时域偏移量T1、第一上行时域资源的时域起始位置t3与侧行资源的时域起始位置t2之间的第三时域偏移量T3。其中,第一上行资源的时域起始位置可以包括第一上行资源的时域起始符号的符号编号,和/或,该时域起始符号所在时隙的时隙编号。
需要说明的是,参考图5,当K=1时,可以视为单次传输。或者,当不配置重复次数K时,也可以默认为单次传输。示例性地,图6为本申请实施例提供的侧行资源与第一上行资源之间的时域位置关系的示意图二。参考图5,如图6所示,在单次传输场景下,侧行时域资源的指示信息可以不包括重复次数K。
在本申请实施例中,第一上行资源的时域起始位置可以根据如下方式一至方式三中的一项确定。下面结合图5和图6具体说明。
方式一,第一上行资源的时域起始位置t3可以为:侧行资源的时域结束位置t1与第一时域偏移量T1之和,即如图5和图6所示,t3=t1+T1。
方式二,第一上行资源的时域起始位置t3可以为:侧行资源的时域起始位置t2、侧行传输总长度、第一时域偏移量T1之和,即如图5所示,t3=t2+K*L+T1。其中,当重复次数大于1,且侧行传输为多次连续传输时,侧行传输总长度为重复次数K与单次传输时长L之积K*L。
方式三,第一上行资源的时域起始位置t3可以为:侧行资源的时域起始位置t2与第三时域偏移量T3之和,即如图5和图6所示,t3=t2+T3。
示例性地,图7为本申请实施例提供的承载第一调度信息的DCI的示意图二。下面结合图7,进一步详细说明第一调度信息的内容。
在一种可能的设计方法中,如图7所示,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。
可选地,结合图4,如图7所示,第二上行传输参数可以包括第二上行时域资源的指示信息,第二上行时域资源用于第一终端向网络设备发送第二数据。
示例性地,如图7所示,第二上行时域资源的指示信息可以包括第二上行资源的时域起始位置,或者第二上行资源与侧行资源之间的时域偏移量。此外,第二上行时域资源的指示信息可以可以包括第二上行资源的时域结束位置、传输时长等。其中,第二上行资源的时域起始位置可以包括:第二上行资源的时域起始符号(symbol)的符号编号,和/或,该时域起始符号所在时隙的时隙编号。
可选地,如图7所示,第二上行资源与侧行资源之间的时域偏移量可以包括如下之一:第二时域偏移量、第四时域偏移量。其中,第二时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第四时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
需要说明的是,本申请实施例对于第二上行时域资源的指示信息的内容,不做具体限定,只要能够唯一地确定第二上行资源的时域起始位置,且确保第二上行资源的时域起始位置位于侧行资源的时域结束位置之后即可。例如,第二上行时域资源的指示信息可以只包括第二上行资源的时域起始位置。又例如,倘若侧行时域资源的指示信息包括侧行资源的时域起始位置、单次传输时长和重复次数,则第二上行时域资源的指示信息可以只包括第二时域偏移量。再例如,倘若侧行时域资源的指示信息包括侧行资源的时域起始位置,则第二上行时域资源的指示信息可以只包括第四时域偏移量。
此外,在信道质量较差的场景下,第一终端可以在侧行资源和第一上行资源上,在第二终端协助下向网络设备发送第一数据,且在第二上行资源上向网络设备发送第 一数据,以便网络设备对在第一上行资源上接收到的第一数据和在第二上行资源上接收到的第一数据作合并译码,以提高译码成功率,进而提高上行数据传输的可靠性。在此情况下,第二上行资源与第一上行资源之间的时域位置关系还需要确保第二终端在第一上行资源上转发的第一数据到达网络设备的时间,与第一终端在第二上行资源上发送的第一数据到达网络设备时间之间的时间偏差,小于或等于到达时间偏差阈值,以节省网络设备缓存第一数据的存储资源的数量。
下面结合具体示例,详细说明第二上行资源的时域起始位置的确定方法。
如图8和图9所示,第二上行时域资源的指示信息可以包括如下一项或多项:第二上行资源的时域起始位置t4、第二上行资源的时域起始位置t4与侧行资源的时域结束位置t1之间的第二时域偏移量T2、第二上行时域资源的时域起始位置t4与侧行资源的时域起始位置t2之间的第四时域偏移量T4。其中,第二上行资源的时域起始位置可以包括第二上行资源的时域起始符号的符号编号,和/或,该时域起始符号所在时隙的时隙编号。
在本申请实施例中,第二上行资源的时域起始位置可以根据如下方式四至方式六确定。下面具体说明。
方式四,第二上行资源的时域起始位置t4可以为:侧行资源的时域结束位置t1与第二时域偏移量T2之和,即如图8和图9所示,t4=t1+T2。
方式五,第二上行资源的时域起始位置t4可以为:侧行资源的时域起始位置t2、侧行传输总长度、第二时域偏移量T2之和,即如图8所示,t4=t2+K*L+T2。其中,当重复次数大于1,且侧行传输为多次连续传输时,侧行传输总长度为重复次数K与单次传输时长L之积K*L。
方式六,第二上行资源的时域起始位置t4可以为:侧行资源的时域起始位置t2与第四时域偏移量T4之和,即如图8和图9所示,t4=t2+T4。
需要说明的是,在上述方式二和方式五中,当侧行传输为单次传输时,如重复次数配置为1,或重复次数没有配置,则侧行传输总长度即为单次传输长度L。
容易理解,第一上行时域资源的指示信息和第二上行时域资源的指示信息可以全部相同、部分相同或全部不同。其中,第一上行时域资源的指示信息和第二上行时域资源的指示信息中的相同内容,可以由第一调度信息中的同一个指示域进行指示,以降低信令开销。例如,如图8和图9所示,第一上行时域资源的指示信息和第二上行时域资源的指示信息部分相同可以包括如下一项或多项:t3=t4,T1=T2,T3=T4。
示例性地,图10-图12分别为本申请实施例提供的承载第一调度信息的DCI的示意图三至五。下面结合图7-图9、图10-图12,进一步详细说明第一调度信息的内容。
参考图7-图9,假定T1=T2,即第一时域偏移量等于第二时域偏移量,则T1和T2可以占用同一个指示域,以降低信令开销。如图10所示,由于T1=T2,则只在第一上行时域指示信息中承载了T1,不需要在第二上行时域指示信息中承载T2。当然,也可以只在第二上行时域指示信息中承载T2,不需要在第一上行时域指示信息中承载T1。也即是说,由于T1=T2,第一时域偏移量指示域和第二时域偏移量只需要传输一个即可。
同理,参考图7-图9,假定T3=T4,即第三时域偏移量等于第四时域偏移量,则 T3和T4可以占用同一个指示域,以降低信令开销。如图11所示,由于T3=T4,则只在第一上行时域指示信息中承载了T3,不需要在第二上行时域指示信息中承载T4。当然,也可以只在第二上行时域指示信息中承载T4,不需要在第一上行时域指示信息中承载T3。也即是说,由于T3=T4,第三时域偏移量和第四时域偏移量只需要传输一个即可。
进一步地,倘若第一上行时域资源的指示信息和第二上行时域资源的指示信息全部相同,则第一上行时域资源的指示信息和第二上行时域资源的指示信息只需要传输一个即可。示例性地,如图12所示,第一上行传输参数的指示信息中包括第一上行时域资源的指示信息,且第二上行传输参数的指示信息中不包括第二上行时域资源的指示信息。
进一步地,如图7所示,侧行传输参数还可以包括侧行编码调制方案(modulation and coding scheme,MCS),第一上行传输参数息还可以包括第一上行MCS,第二上行传输参数还可以包括第二上行MCS。其中,上述侧行MCS、第一上行MCS、第二上行MCS中的任意两个MCS可以相同,也可以不同。当上述侧行MCS、第一上行MCS、第二上行MCS中的任意两个MCS相同时,该任意两个MCS可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。例如,倘若第一上行MCS和第二上行MCS相同,则第一上行MCS和第二上行MCS可以占用第一调度信息中的同一个指示域。
示例性地,图13为本申请实施例提供的承载第一调度信息的DCI的示意图六。结合图7,假定第一上行MCS与第二上行MCS相同,则第一上行MCS与第二上行MCS可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。如图13所示,由于第一上行MCS与第二上行MCS相同,则只需要在第一上行传输参数的指示信息中的第一MCS指示域中承载第一上行MCS和第二MCS即可,不需要在第二上行传输参数的指示信息中承载第二上行MCS。当然,也可以只在第二上行传输参数的指示信息中的第二上行MCS指示域中承载第一上行MCS和第二上行MCS即可,不需要在第一上行传输参数的指示信息中的第一上行MCS指示域中承载第一上行MCS。
再进一步地,如图7所示,侧行传输参数还可以包括侧行频域资源的指示信息,第一上行传输参数还可以包括第一上行频域资源的指示信息,第一上行频域资源用于第二终端向网络设备发送第一数据;第二上行传输参数还可以包括第二上行频域资源的指示信息,第二上行频域资源用于第一终端向网络设备发送第二数据。其中,第一上行频域资源的指示信息和第二上行频域资源的指示信息可以相同,也可以不同。当第一上行频域资源的指示信息和第二上行频域资源的指示信息相同时,第一上行频域资源的指示信息和第二上行频域资源的指示信息可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。其中,上述各频域资源的指示信息可以包括各通信链路上的资源的频域起始位置、频域结束位置、频域资源数量中的一项或多项。各资源的频域起始位置、频域结束位置可以采用如下方式表示:资源块(resource block,RB)索引、物理资源块(physical resource block,PRB)、子带(sub-band)索引、子信道(sub-channel)索引等。各资源的频域资源数量可以包括各频域资源包括的RB、PRB、子带、子信道的个数。本申请实施例对于各频域资源的指示信息的实现方式,不做具 体限定。
与第一上行时域资源的指示信息和第二上行时域资源的指示信息类似,第一上行频域资源的指示信息和第二上行频域资源的指示信息可以全部相同、部分相同或全部不同。其中,第一上行频域资源的指示信息和第二上行频域资源的指示信息中的相同内容,也可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。对于第一上行频域资源的指示信息和第二上行频域资源的指示信息中的部分相同时的传输方案,可以参考图10或图11所示的第一上行时域资源的指示信息和第二上行时域资源的指示信息中的部分相同时的传输方案,此处不再赘述。
示例性地,图14为本申请实施例提供的承载第一调度信息的DCI的示意图七。结合图7,假定第一上行频域资源的指示信息与第二上行频域资源的指示信息全部相同,则第一上行频域资源的指示信息与第二上行频域资源的指示信息可以占用第一调度信息中的同一个指示域。如图14所示,由于第一上行频域资源的指示信息与第二上行频域资源的指示信息全部相同,则只需要在第一上行传输参数的指示信息中的第一上行频域资源的指示信息指示域中承载第一上行频域资源的指示信息和第二上行频域资源的指示信息即可,不需要在第二上行传输参数的指示信息中的第二上行频域资源的指示信息指示域中承载第二上行频域资源的指示信息。当然,也可以只在第二上行传输参数的指示信息中的第二上行频域资源的指示信息指示域中承载第一上行频域资源的指示信息和第二上行频域资源的指示信息即可,不需要在第一上行传输参数的指示信息中的第一上行频域资源的指示信息指示域中承载第一上行频域资源的指示信息。
再进一步地,参考图7,倘若第一上行传输参数的指示信息和第二上行传输参数的指示信息中的全部内容相同,则第一上行传输参数的指示信息与第二上行传输参数的指示信息可以占用第一调度信息中的同一个指示域。
示例性地,图15为本申请实施例提供的承载第一调度信息的DCI的示意图八。如图15所示,第一上行传输参数的指示信息和第二上行传输参数的指示信息只占用第一调度信息中的第一上行传输参数的指示信息指示域,即第一上行传输参数的指示信息或第二上行传输参数的指示信息只需要传输一个即可。
在一种可能的设计方法中,在执行上述S301之前,还可以执行如下步骤:
当第一终端需要向网络设备发送数据时,第一终端可以向网络设备发送上行传输请求和缓存状态报告(buffer state report,BSR)。其中,BSR承载第一终端的待传输上行数据的数据量,如第一终端的媒体接入控制层(media access control,MAC)缓存(buffer)中的待发送数据的数据量。
然后,网络设备可以根据该数据量、第一终端的业务类型、第一终端与网络设备之间的第二上行资源中的空闲资源数量、第一终端与网络设备之间的第二上行信道的信道质量、第一终端与第二终端之间的侧行资源中的空闲资源数量、第一终端与第二终端之间的侧行信道的信道质量等信息、一个或多个第二终端与网络设备之间的第一上行资源中的空闲资源数量、一个或多个第二终端与网络设备之间的第一上行信道的信道质量等信息,确定上述第一调度信息的内容,并发送给第一终端,以及一个或多个第二终端。
在执行S301之后,第一终端、第二终端、网络设备即可根据第一调度信息,完成 第一终端的待传输上行数据的传输,即执行下述S302-S303:
S302,第一终端向第二终端发送第一数据。相应地,第二终端从第一终端接收第一数据。
示例性地,第一终端可以在物理侧行控制信道(physical sidelink control channel,PSCCH)上,向第二终端发送侧行控制信息(sidelink control information,SCI)。相应地,第二终端在PSCCH上,从第一终端接收SCI。然后,第一终端可以在物理侧行共享信道(physical sidelink shared channel,PSSCH)上,向第二终端发送第一数据。相应地,第二终端在PSSCH上,从第一终端接收第一数据。
其中,SCI承载第一数据的侧行解调信息,如侧行MCS、承载侧行链路的解调参考信号(demodulation reference signal,DMRS)的时频资源等,以便第二终端根据该侧行解调信息,解析PSSCH,从而恢复第一数据的原始信息,即第一数据编码调制前的原始数据。
需要说明的是,在重复次数大于1的场景下,如K=8,倘若第二终端已经成功译码第一数据,则第二终端可以向第一终端发送反馈信息,该反馈信息用于第一终端停止发送第一数据,以节省第一终端与第二终端之间的资源开销,且可以降低第一终端和第二终端的功耗。示例性地,倘若第二终端对第一数据译码成功,则第二终端可以在物理侧行反馈信道(physical sidelink feedback channel,PSFCH)上,向第一终端发送肯定应答(acknowledgement,ACK)指示比特(bit)。本申请实施例对于第二终端向第一终端发送的反馈信息的具体实现方式,不做具体限定。
S303,第二终端向网络设备发送第一数据。相应地,网络设备从第二终端接收第一数据。
示例性地,倘若第二终端根据第一上行MCS,成功译码第一数据,即成功获取到第一数据的原始信息,则第二终端可以重新对第一数据的原始信息做编码调制,并在第一上行资源上,向网络设备发送重新做编码调制后的第一数据。也就是说,第二终端可以采用解码转发的方式,向网络设备转发来自第一终端的第一数据。
或者,可选地,倘若第二终端基于侧行解调信息,对第一数据解码失败,则第二终端也可以将承载第一数据的PSSCH的无线信号,以增加发射功率的方式,直接向网络设备转发该无线信号,即可以采用放大转发的方式向网络设备转发第一数据。
然后,网络设备即可对接收到的第一数据作解调译码。例如,可以根据第一上行MCS或侧行MCS,对承载第一数据的无线信号作解调译码。
需要说明的是,在本申请实施例中,为第一终端提供上行协作传输服务的协作终端也可以为多个,如第一终端通过图1中的第二终端向网络设备发送第一数据,且通过其他终端,如第三终端(图1中未示出)向网络设备发送第三数据。倘若第一数据和第三数据为同一个数据,且采用同一MCS方案,则网络设备可以对第一数据和第三数据做合并译码,以提高上行传输的译码性能。容易理解,倘若第一数据和第三数据为不同数据,则可以提高第一终端与网络设备之间的上行吞吐量。
容易理解,第一终端也可以在第二上行资源上,直接向网络设备发送第二数据。也就是说,图3所示的上行传输方法还可以包括S304:
S304,第一终端向网络设备发送第二数据。相应地,网络设备从第一终端接收第 二数据。
其中,第二数据可以与第一数据相同,也可以与第一数据不同。具体地,当信道环境良好时,第二数据可以与第一数据不同,以提高第一终端与网络设备之间的上行吞吐量,提高通信效率。或者,可选地,当信道环境较差时,第二数据也可以与第一数据相同,即第一数据和第二数据均为采用同一MCS对同一个原始数据作编码调制后的数据,网络设备可以对承载第一数据的第一上行信号和承载第二数据的第二上行信号进行合并译码,以提高译码性能和成功率,从而提高第一终端与网络设备之间的上行数据传输的可靠性。
基于图3所示的上行传输方法,网络设备能够在一个调度信息中同时指示上行协作传输所需的侧行资源和第一上行资源,提高资源调度的效率,并且可以避免因独立调度的侧行资源和上行资源不能适配上行协作传输而导致的多次调度侧行资源和/或上行资源的问题,能够降低上行协作传输的时延,提高上行协作传输的效率。
以上结合图3-图15详细说明了本申请实施例提供的上行传输方法。以下结合图16详细说明本申请实施例提供的另一种通信装置。
图16是本申请实施例提供的通信装置的结构示意图二。该通信装置可适用于图1所示出的通信系统中,执行图3所示的上行传输方法中网络设备的功能。为了便于说明,图16仅示出了该通信装置的主要部件。
如图16所示,通信装置1600包括:接收模块(或接收单元)1601和发送模块(或发送单元)1602。
其中,发送模块1602,用于向第一终端和第二终端发送第一调度信息;第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。
接收模块1601,用于从第二终端接收第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。接收模块1601,还用于从第一终端接收第二数据。
在另一种可能的设计中,通信装置1600也可适用于图1所示出的通信系统中,执行图3所示的上行传输方法中第一终端的功能。
其中,接收模块1601,用于从网络设备接收第一调度信息;其中,第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。发送模块1602,用于向第二终端发送第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。发送模块1602,还用于向网络设备发送第二数据。
在另一种可能的设计中,通信装置1600也可适用于图1所示出的通信系统中,执行图3所示的上行传输方法中第二终端的功能。
其中,接收模块1601,用于从网络设备接收第一调度信息;其中,第一调度信息 包括侧行传输参数的指示信息和第一上行传输参数的指示信息,侧行传输参数用于第一终端向第二终端发送第一数据,第一上行传输参数用于第二终端向网络设备发送第一数据。
接收模块1601,还用于从第一终端接收第一数据。发送模块1602,用于向网络设备发送第一数据。
在一种可能的设计中,第一调度信息还可以包括第二上行传输参数的指示信息,第二上行传输参数用于第一终端向网络设备发送第二数据。
在图16所示的通信装置1600中,侧行传输参数可以包括侧行时域资源的指示信息,侧行时域资源用于第一终端向第二终端发送第一数据。相应地,第一上行传输参数可以包括第一上行时域资源的指示信息,第一上行时域资源用于第二终端向网络设备发送第一数据;第二上行传输参数可以包括第二上行时域资源的指示信息,第二上行时域资源用于第一终端向网络设备发送第二数据。
示例性地,侧行时域资源的指示信息可以包括侧行资源的时域起始位置、时域结束位置、单次传输时长、重复次数中的一项或多项。其中,侧行资源的时域起始位置为重复次数对应的一次或多次传输中的第一次传输的起始位置,如第一次传输中的第一个符号所在的时隙。侧行资源的时域结束位置为重复次数对应的一次或多次传输中的最后一次传输的结束位置,如最后一次传输中的最后一个符号所在的时隙(slot)。重复次数为正整数,或者重复次数也可以不配置,此时默认为单次传输。
示例性地,第一上行时域资源的指示信息可以包括第一上行资源的时域起始位置,或者第一上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量。其中,第一上行资源的时域起始位置可以为:第一上行资源在时域上的起始符号(symbol)、该起始符号所在时隙中的一项或多项。
可选地,第一上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量可以包括如下之一:第一时域偏移量、第三时域偏移量。其中,第一时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第三时域偏移量可以为:第一上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
在本申请实施例中,第一上行资源的时域起始位置可以直接配置,也可以根据如下方式一至方式三确定。下面具体说明。
方式一,第一上行资源的时域起始位置为:侧行资源的时域起始位置与第三时域偏移量之和。
方式二,第一上行资源的时域起始位置为:侧行资源的时域结束位置与第一时域偏移量之和。
方式三,第一上行资源的时域起始位置为:侧行资源的时域起始位置、侧行传输总长度、第一时域偏移量之和。
示例性地,第二上行时域资源的指示信息可以包括第二上行资源的时域起始位置,或者第二上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量。其中,第二上行资源的时域起始位置可以为:第二上行资源在时域上的起始符号、该起始符号所在时隙中的一项或多项。
可选地,第二上行资源的时域起始位置与侧行资源的时域起始位置或时域结束位置之间的时域偏移量可以包括如下之一:第二时域偏移量、第四时域偏移量。其中,第二时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域结束位置之间的时域偏移量;第四时域偏移量可以为:第二上行资源的时域起始位置与侧行资源的时域起始位置之间的时域偏移量。
在本申请实施例中,第二上行资源的时域起始位置可以直接配置,也可以根据如下方式四至方式六确定。下面具体说明。
方式四,第二上行资源的时域起始位置为:侧行资源的时域起始位置与第四时域偏移量之和。
方式五,第二上行资源的时域起始位置为:侧行资源的时域结束位置与第二时域偏移量之和。
方式六,第二上行资源的时域起始位置为:侧行资源的时域起始位置、侧行传输总长度、第二时域偏移量之和。
需要说明的是,在上述方式三和方式六中,当重复次数配置为1,或重复次数没有配置时,即侧行传输为单次传输,侧行传输总长度即为单次传输长度。
可选地,当重复次数大于1时,如侧行传输为多次连续传输时,侧行传输总长度为单次传输时长与重复次数的乘积。
进一步地,在第一方面至第三方面中任一项所述的上行传输方法中,第一上行传输参数还可以包括第一上行MCS,第二上行传输参数还可以包括第二上行MCS。其中,第一上行MCS和第二上行MCS是由第一调度信息中的同一个指示域指示的。也就是说,当第一上行MCS和第二上行MCS相同时,第一上行MCS和第二上行MCS可以占用第一调度信息中的同一个指示域,以降低信令开销。
再进一步地,在图16所示的通信装置1600中,第一上行传输参数还可以包括第一上行频域资源的指示信息,第一上行频域资源用于第二终端向网络设备发送第一数据;第二上行传输参数还可以包括第二上行频域资源的指示信息,第二上行频域资源用于第一终端向网络设备发送第二数据。其中,第一上行频域资源的指示信息和第二上行频域资源的指示信息是由第一调度信息中的同一个指示域指示的。也就是说,当第一上行频域资源的指示信息和第二上行频域资源的指示信息相同时,第一上行频域资源的指示信息和第二上行频域资源的指示信息可以占用第一调度信息中的同一个指示域,以进一步降低信令开销。
在图16所示的通信装置1600中,第二数据可以与第一数据不同,也可以与第一数据相同,本申请实施例对此不作限定。
可选地,图16所示的通信装置1600还可以包括处理模块和/或存储模块(图6中未示出),处理模块可以控制上述发送模块1602和接收模块1601完成上述方法实施例所述的上行传输方法。该存储模块存储有程序或指令,当处理模块执行该程序或指令时,使得图6所示的通信装置1600可以执行上述方法实施例所述的上行传输方法。
需要说明的是,图16所示的通信装置1600可以是图1所示的第一终端或第二终端或网络设备或图2所示的通信装置200,也可以是设置于第一终端或第二终端或网络设备中的部件或组合器件,如芯片或芯片系统,本申请实施例对此不做限定。
当图16所示的通信装置1600是终端设备或网络设备时,接收模块1601和发送模块1602可以分别是终端设备或网络设备中的接收器和发送器,接收模块1601和发送模块1602也可以组合为一个部件,如终端设备或网络设备中具有接收功能和发送功能的收发器,上述接收模块1601、发送模块1602、收发器可以包括天线和射频电路等;图16所示的通信装置1600中的处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。
当通信装置1600是具有上述终端设备功能或网络设备功能的部件,如芯片或芯片系统时,接收模块1601和发送模块1602可以是射频单元,处理模块可以是处理器。当通信装置1600是芯片系统时,接收模块1601和发送模块1602可以是芯片系统的输入输出接口、处理模块可以是芯片系统中的处理器。
通信装置1600的技术效果,可以参考图3所示的上行传输方法的技术效果,此处不再赘述。
本申请实施例提供一种芯片系统。该芯片系统包括处理器和输入/输出端口,该处理器与包含指令的存储器耦合,用于控制安装该芯片系统的通信装置实现上述方法实施例所述的上行传输方法。
上述存储器可以是集成在芯片系统内部的存储器,如内部缓存,也可以位于芯片系统外部,且与芯片系统存在信号连接的外部存储器,如外部缓存,还可以同时包括内部存储器和外部存储器。该存储器用于存储实现上述方法实施例所述的上行传输方法的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种通信系统。该系统包括网络设备和至少两个终端设备,如第一终端、第二终端。
本申请实施例提供一种计算机可读存储介质,包括:该计算机可读存储介质中存储有计算机指令;当该计算机指令在计算机上运行时,使得该计算机执行上述方法实施例所述的上行传输方法。
本申请实施例提供了一种包含指令的计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行上述方法实施例所述的上行传输方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器 (random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可 以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种上行传输方法,其特征在于,包括:
    网络设备向第一终端和第二终端发送第一调度信息;所述第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,所述侧行传输参数用于所述第一终端向第二终端发送第一数据,所述第一上行传输参数用于所述第二终端向所述网络设备发送所述第一数据;
    所述网络设备从所述第二终端接收所述第一数据。
  2. 根据权利要求1所述的上行传输方法,其特征在于,所述第一调度信息还包括第二上行传输参数的指示信息,所述第二上行传输参数用于所述第一终端向所述网络设备发送第二数据;
    所述上行传输方法还包括:
    所述网络设备从所述第一终端接收所述第二数据。
  3. 一种上行传输方法,其特征在于,包括:
    第一终端从网络设备接收第一调度信息;其中,所述第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,所述侧行传输参数用于所述第一终端向第二终端发送第一数据,所述第一上行传输参数用于所述第二终端向所述网络设备发送所述第一数据;
    所述第一终端向所述第二终端发送所述第一数据。
  4. 根据权利要求3所述的上行传输方法,其特征在于,所述第一调度信息还包括第二上行传输参数的指示信息,所述第二上行传输参数用于所述第一终端向所述网络设备发送第二数据;
    所述上行传输方法还包括:
    所述第一终端向所述网络设备发送所述第二数据。
  5. 一种上行传输方法,其特征在于,包括:
    第二终端从网络设备接收第一调度信息;其中,所述第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,所述侧行传输参数用于第一终端向所述第二终端发送第一数据,所述第一上行传输参数用于所述第二终端向所述网络设备发送所述第一数据;
    所述第二终端从所述第一终端接收所述第一数据;
    所述第二终端向所述网络设备发送所述第一数据。
  6. 根据权利要求5所述的上行传输方法,其特征在于,所述第一调度信息还包括第二上行传输参数的指示信息,所述第二上行传输参数用于所述第一终端向所述网络设备发送第二数据。
  7. 根据权利要求2、4、6中任一项所述的上行传输方法,其特征在于,所述侧行传输参数包括侧行时域资源的指示信息,所述侧行时域资源用于所述第一终端向所述第二终端发送所述第一数据;
    所述第一上行传输参数包括第一上行时域资源的指示信息,所述第一上行时域资源用于所述第二终端向所述网络设备发送所述第一数据;
    所述第二上行传输参数包括第二上行时域资源的指示信息,所述第二上行时域资 源用于所述第一终端向所述网络设备发送第二数据。
  8. 根据权利要求7所述的上行传输方法,其特征在于,所述侧行时域资源的指示信息包括侧行资源的时域起始位置、时域结束位置、单次传输时长和重复次数,所述第一上行时域资源的指示信息包括第一时域偏移量,所述第一时域偏移量为第一上行资源的时域起始位置与所述侧行资源的时域结束位置之间的时域偏移量。
  9. 根据权利要求8所述的上行传输方法,其特征在于,所述第一上行资源的时域起始位置为:所述侧行资源的时域起始位置、所述单次传输时长与所述重复次数的乘积、所述第一时域偏移量之和。
  10. 根据权利要求7所述的上行传输方法,其特征在于,所述侧行时域资源的指示信息包括侧行资源的时域起始位置、时域结束位置、单次传输时长和重复次数,所述第二上行时域资源的指示信息包括第二时域偏移量,所述第二时域偏移量为第二上行资源的时域起始位置与所述侧行资源的时域结束位置之间的时域偏移量。
  11. 根据权利要求10所述的上行传输方法,其特征在于,所述第二上行资源的时域起始位置为:所述侧行资源的时域起始位置、所述单次传输时长和所述重复次数的乘积、所述第二时域偏移量之和。
  12. 根据权利要求2、4、6-11中任一项所述的上行传输方法,其特征在于,所述第一上行传输参数还包括第一上行MCS,所述第二上行传输参数还包括第二上行MCS;
    其中,所述第一上行MCS和所述第二上行MCS是由所述第一调度信息中的同一个指示域指示的。
  13. 根据权利要求2、4、6-12中任一项所述的上行传输方法,其特征在于,所述第一上行传输参数还包括第一上行频域资源的指示信息,所述第一上行频域资源用于所述第二终端向所述网络设备发送所述第一数据;所述第二上行传输参数还包括第二上行频域资源的指示信息,所述第二上行频域资源用于所述第一终端向所述网络设备发送所述第二数据;
    所述第一上行频域资源和所述第二上行频域资源是由所述第一调度信息中的同一个指示域指示的。
  14. 根据权利要求2、4、6-13中任一项所述的上行传输方法,其特征在于,所述第二数据和所述第一数据相同。
  15. 一种通信装置,其特征在于,所述通信装置作为网络设备与第一终端和第二终端通信,所述通信装置包括:接收模块和发送模块;其中,
    所述发送模块,用于向所述第一终端和所述第二终端发送第一调度信息;所述第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,所述侧行传输参数用于所述第一终端向所述第二终端发送第一数据,所述第一上行传输参数用于所述第二终端向所述网络设备发送所述第一数据;
    所述接收模块,用于从所述第二终端接收所述第一数据。
  16. 根据权利要求15所述的通信装置,其特征在于,所述第一调度信息还包括第二上行传输参数的指示信息,所述第二上行传输参数用于所述第一终端向所述网络设备发送第二数据;
    所述接收模块,还用于从所述第一终端接收所述第二数据。
  17. 一种通信装置,其特征在于,所述通信装置作为第一终端与网络设备和第二终端通信,所述通信装置包括:接收模块和发送模块;其中,
    所述接收模块,用于从所述网络设备接收第一调度信息;其中,所述第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,所述侧行传输参数用于所述第一终端向所述第二终端发送第一数据,所述第一上行传输参数用于所述第二终端向所述网络设备发送所述第一数据;
    所述发送模块,用于向所述第二终端发送所述第一数据。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一调度信息还包括第二上行传输参数的指示信息,所述第二上行传输参数用于所述第一终端向所述网络设备发送第二数据;
    所述发送模块,还用于向所述网络设备发送所述第二数据。
  19. 一种通信装置,其特征在于,所述通信装置作为第二终端与网络设备和第一终端通信,所述通信装置包括:接收模块和发送模块;其中,
    所述接收模块,用于从所述网络设备接收第一调度信息;其中,所述第一调度信息包括侧行传输参数的指示信息和第一上行传输参数的指示信息,所述侧行传输参数用于所述第一终端向所述第二终端发送第一数据,所述第一上行传输参数用于所述第二终端向所述网络设备发送所述第一数据;
    所述接收模块,还用于从所述第一终端接收所述第一数据;
    所述发送模块,用于向所述网络设备发送所述第一数据。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第一调度信息还包括第二上行传输参数的指示信息,所述第二上行传输参数用于所述第一终端向所述网络设备发送第二数据。
  21. 根据权利要求16、18、20中任一项所述的通信装置,其特征在于,所述侧行传输参数包括侧行时域资源的指示信息,所述侧行时域资源用于所述第一终端向所述第二终端发送所述第一数据;
    所述第一上行传输参数包括第一上行时域资源的指示信息,所述第一上行时域资源用于所述第二终端向所述网络设备发送所述第一数据;
    所述第二上行传输参数包括第二上行时域资源的指示信息,所述第二上行时域资源用于所述第一终端向所述网络设备发送第二数据。
  22. 根据权利要求21所述的通信装置,其特征在于,所述侧行时域资源的指示信息包括侧行资源的时域起始位置、时域结束位置、单次传输时长和重复次数,所述第一上行时域资源的指示信息包括第一时域偏移量,所述第一时域偏移量为第一上行资源的时域起始位置与所述侧行资源的时域结束位置之间的时域偏移量。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第一上行资源的时域起始位置为:所述侧行资源的时域起始位置、所述单次传输时长与所述重复次数的乘积、所述第一时域偏移量之和。
  24. 根据权利要求21所述的通信装置,其特征在于,所述侧行时域资源的指示信息包括侧行资源的时域起始位置、时域结束位置、单次传输时长和重复次数,所述第二上行时域资源的指示信息包括第二时域偏移量,所述第二时域偏移量为第二上行资 源的时域起始位置与所述侧行资源的时域结束位置之间的时域偏移量。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第二上行资源的时域起始位置为:所述侧行资源的时域起始位置、所述单次传输时长和所述重复次数的乘积、所述第二时域偏移量之和。
  26. 根据权利要求16、18、20-25中任一项所述的通信装置,其特征在于,所述第一上行传输参数还包括第一上行MCS,所述第二上行传输参数还包括第二上行MCS;
    其中,所述第一上行MCS和所述第二上行MCS是由所述第一调度信息中的同一个指示域指示的。
  27. 根据权利要求16、18、20-26中任一项所述的通信装置,其特征在于,所述第一上行传输参数还包括第一上行频域资源的指示信息,所述第一上行频域资源用于所述第二终端向所述网络设备发送所述第一数据;所述第二上行传输参数还包括第二上行频域资源的指示信息,所述第二上行频域资源用于所述第一终端向所述网络设备发送所述第二数据;
    其中,所述第一上行频域资源的指示信息和所述第二上行频域资源的指示信息是由所述第一调度信息中的同一个指示域指示的。
  28. 根据权利要求16、18、20-27中任一项所述的通信装置,其特征在于,所述第二数据和所述第一数据相同。
  29. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-14中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述通信装置包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得所述通信装置实现如权利要求1-14中任一项所述的方法。
  31. 一种芯片系统,其特征在于,所述芯片系统包括处理器和输入/输出端口,所述处理器与包含指令的存储器耦合,用于控制安装所述芯片系统的通信装置实现如权利要求1-14中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括程序或指令,当所述程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
PCT/CN2019/114878 2019-10-31 2019-10-31 上行传输方法及通信装置 WO2021081951A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980101310.3A CN114556793A (zh) 2019-10-31 2019-10-31 上行传输方法及通信装置
PCT/CN2019/114878 WO2021081951A1 (zh) 2019-10-31 2019-10-31 上行传输方法及通信装置
EP19950579.3A EP4044442B1 (en) 2019-10-31 2019-10-31 Uplink transmission methods and communication apparatus
US17/730,857 US20220256559A1 (en) 2019-10-31 2022-04-27 Uplink transmission method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114878 WO2021081951A1 (zh) 2019-10-31 2019-10-31 上行传输方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/730,857 Continuation US20220256559A1 (en) 2019-10-31 2022-04-27 Uplink transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021081951A1 true WO2021081951A1 (zh) 2021-05-06

Family

ID=75715755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114878 WO2021081951A1 (zh) 2019-10-31 2019-10-31 上行传输方法及通信装置

Country Status (4)

Country Link
US (1) US20220256559A1 (zh)
EP (1) EP4044442B1 (zh)
CN (1) CN114556793A (zh)
WO (1) WO2021081951A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11937277B2 (en) * 2019-12-20 2024-03-19 Qualcomm Incorporated Concurrent sidelink and uplink transmission
US11889541B2 (en) * 2020-01-24 2024-01-30 Qualcomm Incorporated Superposition transmission of sidelink and uplink

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089185A1 (ko) * 2014-12-05 2016-06-09 엘지전자 주식회사 기기 간 사이드링크를 이용하여 단말이 신호를 송수신하는 방법 및 장치
CN108512576A (zh) * 2017-02-28 2018-09-07 华为技术有限公司 一种实现用户设备协作的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180054807A1 (en) * 2014-12-30 2018-02-22 Lg Electronics Inc. Method and apparatus for allocating recources for bi-directional transmission in wireless communication system
US10244522B2 (en) * 2017-03-03 2019-03-26 Qualcomm Incorporated Signaling for multiplexing of low latency communication and sidelink communications
CN109600852B (zh) * 2017-09-30 2021-11-19 华为技术有限公司 一种资源指示方法、通信装置及网络设备
WO2021068259A1 (zh) * 2019-10-12 2021-04-15 华为技术有限公司 联合调度的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089185A1 (ko) * 2014-12-05 2016-06-09 엘지전자 주식회사 기기 간 사이드링크를 이용하여 단말이 신호를 송수신하는 방법 및 장치
CN108512576A (zh) * 2017-02-28 2018-09-07 华为技术有限公司 一种实现用户设备协作的方法及装置

Also Published As

Publication number Publication date
EP4044442A4 (en) 2022-10-19
CN114556793A (zh) 2022-05-27
US20220256559A1 (en) 2022-08-11
EP4044442B1 (en) 2023-09-13
EP4044442A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
WO2020220230A1 (zh) 上行数据传输方法、装置及存储介质
WO2021057805A1 (zh) 一种通信方法及装置
JP5663444B2 (ja) 混合型中継ノード、基地局及び混合型中継方法
JP2013255230A (ja) Lteアドバンスト異種ネットワークにおけるビットレベルpdschミューティングおよび/または受信機パンクチャリングのための方法ならびに装置
WO2018202163A1 (zh) 一种资源指示方法及装置
WO2020063130A1 (zh) 一种资源确定方法及装置
WO2018228579A1 (zh) 确定传输块大小的方法及装置
US20220256559A1 (en) Uplink transmission method and communication apparatus
JP2018026703A (ja) 通信装置、通信方法及び記録媒体
WO2020249031A1 (zh) 应答信息的传输方法及装置
WO2016067690A1 (ja) 通信制御装置、無線通信装置、通信制御方法、無線通信方法及びプログラム
WO2021204196A1 (zh) 控制信息传输方法、装置及系统
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2021212391A1 (zh) 信息传输方法及装置
WO2024001713A1 (zh) 信息发送方法,通信节点及存储介质
US20220368505A1 (en) Data feedback method and apparatus
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2021073584A1 (zh) 一种数据传输方法、装置及相关设备
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN109906646A (zh) 信息传输方法、基站和终端设备
WO2021088091A1 (zh) 通信方法及装置
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
CN107889239B (zh) 一种上行控制信息发送、接收方法及设备
WO2019153369A1 (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019950579

Country of ref document: EP

Effective date: 20220505

NENP Non-entry into the national phase

Ref country code: DE