WO2024001713A1 - 信息发送方法,通信节点及存储介质 - Google Patents

信息发送方法,通信节点及存储介质 Download PDF

Info

Publication number
WO2024001713A1
WO2024001713A1 PCT/CN2023/099105 CN2023099105W WO2024001713A1 WO 2024001713 A1 WO2024001713 A1 WO 2024001713A1 CN 2023099105 W CN2023099105 W CN 2023099105W WO 2024001713 A1 WO2024001713 A1 WO 2024001713A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
channel
time domain
slot
Prior art date
Application number
PCT/CN2023/099105
Other languages
English (en)
French (fr)
Inventor
陈杰
卢有雄
贺海港
邢卫民
苗婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001713A1 publication Critical patent/WO2024001713A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communication technology, such as information sending methods, communication nodes and storage media.
  • the 3rd Generation Partnership Project (3GPP) system equipment Before the 3rd Generation Partnership Project (3GPP) system equipment sends data on the unlicensed spectrum, it first needs to listen to the channel for a certain period of time according to the business priority, and can continue to send only after it is determined that the channel is idle. data. If the base station successfully accesses the channel in type 1 channel access mode, it can be considered that the base station has initialized a channel occupancy time (Channel Occupancy Time, COT). Within the COT, the base station and the user equipment (User Equipment, UE) scheduled by the base station can Continuously occupy the channel. If the UE successfully accesses the channel in type 1 channel access mode, it can be considered that the UE has initialized a COT.
  • COT Channel Occupancy Time
  • the UE and the base station that schedules the UE can continuously occupy the channel. Therefore, in the 3GPP New Radio in Unlicensed Spectrum (NR-U) system, whether it is the base station or the UE, after successfully initializing a COT, through scheduling, the base station or the UE can be in the COT Perform continuous channel occupation to avoid channel loss.
  • the unlicensed sidelink (SL-U) system proposed in version 18 (also known as R18) supports the sharing of channels between UEs.
  • the SL-U system is a distributed scheduling system in some scenarios. , when a UE successfully initializes a COT and other UEs need to share this COT, how to ensure the continuous occupation of the channel in the COT is an urgent problem that needs to be solved.
  • the embodiment of the present application provides an information sending method, applied to the first communication node, including:
  • the preset resource location includes the frequency domain resource location of the first information, and the first information includes at least one of an occupied signal and an occupied channel; determine the first Resources, the first resource includes candidate time domain resources and candidate RB sets for sending the first information; determine the second resource according to the first resource, and send the first information at the preset resource position of the second resource.
  • An embodiment of the present application provides a communication node, including: a processor; the processor is configured to implement the information sending method of any of the above embodiments when executing a computer program.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the information sending method of any of the above embodiments is implemented.
  • Figure 1 is a schematic diagram of a base station initializing COT
  • Figure 2 is a schematic diagram of UE initializing COT
  • Figure 3 is a schematic diagram of a network of a wireless communication system provided by an embodiment
  • Figure 4 is a schematic diagram of an SL communication resource pool provided by an embodiment
  • Figure 5 is a schematic structural diagram of an SL logical time slot provided by an embodiment
  • Figure 6 is a schematic structural diagram of another SL logical time slot provided by an embodiment
  • FIG. 7 is a schematic flowchart of an information sending method provided by an embodiment
  • Figure 8 is a schematic diagram of the default resource location in each RB set of a resource pool provided by an embodiment
  • Figure 9 is a schematic diagram of a first resource provided by an embodiment
  • Figure 10 is a schematic diagram of a time domain resource result provided by an embodiment
  • Figure 11 is a schematic diagram of another time domain resource result provided by an embodiment
  • Figure 12 is a schematic diagram of another time domain resource result provided by an embodiment
  • Figure 13 is a schematic diagram of yet another time domain resource result provided by an embodiment
  • Figure 14 is a schematic structural diagram of an information sending device provided by an embodiment
  • Figure 15 is a schematic structural diagram of a UE provided by an embodiment.
  • FIG. 1 shows a schematic diagram of a base station initializing COT. Taking the base station as an example, when the base station successfully accesses the channel, it is considered that the base station has initialized (which can also be understood as successfully starting) a COT. The COT has a maximum time limit.
  • Figure 2 shows a schematic diagram of UE initializing COT. Taking the UE as an example, when the UE successfully accesses the channel, it is considered that the UE has initialized a COT. In the COT, the UE and the base station that schedules the UE can use the access success probability Larger type 2 channel access method to access the channel.
  • the device can use the type 2A channel access method in the COT.
  • the device can use the type 2B channel access method to access the channel in the COT; when the gap between the data sent by the device and the previous data transmission When the GAP is less than 16us, the device can use the type 2C channel access method to access the channel in the COT; when the GAP between the data sent by the device and the previous data transmission is greater than 25us, it is generally believed that the current COT may be lost. That is, the channel will be preempted by other non-3GPP system equipment.
  • the sidelink (SL) system can work in centralized scheduling mode (mode1) or distributed scheduling mode (mode2).
  • mode1 centralized scheduling mode
  • mode2 distributed scheduling mode
  • the GAP of transmission between UE and UE is uncontrollable. Therefore, after a UE initializes a COT, within the COT, the GAP between the transmissions of other UEs, or the GAP between the transmissions of other UEs and the initializing UE is greater than 25us, the channel in the COT may be lost, resulting in Other UEs may no longer be able to share the COT.
  • the information sending method provided by this application can be applied to various wireless communication systems, such as long-term evolution (long term evolution, LTE) systems, fourth-generation mobile communication technology (4th-generation, 4G) systems, and fifth-generation mobile communication technology (5th-generation, 5G) system, LTE and 5G hybrid architecture system, 5G NR system, and new communication systems emerging in future communication development, such as the sixth-generation mobile communication technology (6th-generation, 6G) system, etc.
  • LTE long-term evolution
  • 4G fourth-generation mobile communication technology
  • 5th-generation, 5G fifth-generation mobile communication technology
  • 5G LTE and 5G hybrid architecture system
  • 5G NR new communication systems emerging in future communication development
  • 6th-generation mobile communication technology 6th-generation, 6G
  • Figure 3 shows a schematic networking diagram of a wireless communication system provided by an embodiment. As shown in Figure 3, the wireless communication system includes a terminal device 110, an access network device 120 and a core network device 130.
  • the terminal device 110 can be a device with wireless transceiver function, and can be deployed on land (such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.); it can also be deployed on water (such as ships, etc.); it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • land such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.
  • water such as ships, etc.
  • it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • Examples of some terminal devices 110 are: UE, mobile phone, mobile station, tablet computer, notebook computer, ultra-mobile personal computer (UMPC), handheld computer, netbook, personal digital assistant (Personal Digital Assistant, PDA) and other user equipment that can be connected to the Internet, or virtual reality (VR) terminals, augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), and wireless terminals in self-driving (self driving) , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home Wireless terminals in home), or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, or entertainment and game equipment or systems, or global positioning system equipment, etc.
  • the embodiments of the present application do not limit the technology and device form used by the terminal device 110.
  • the terminal device 110 may be referred to as a terminal.
  • the access network device 120 is an access device through which the terminal device 110 wirelessly accesses the wireless communication system, and may be a base station or an evolved base station (Long Term Evolution advanced, LTEA). NodeB, eNB or eNodeB), transmission reception point (TRP), base station or gNB in 5G mobile communication system, base station in future mobile communication system or access in Wireless Fidelity (WiFi) system Nodes etc.
  • Base stations can include various macro base stations, micro base stations, home base stations, wireless remotes, routers, WIFI equipment, or various network-side equipment, location management functions, such as primary cells and secondary cells. , LMF) equipment. It can also be a module or unit that completes some functions of the base station.
  • the access network device 120 can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • CU central unit
  • DU distributed unit
  • the embodiments of this application do not limit the technology and equipment form used by the access network device 120.
  • the access network device 120 may be referred to as a base station.
  • the core network device 130 may include an access and mobility management network element and a session management network element.
  • the terminal device 110 can access the core network through the access network device 120 to implement data transmission.
  • an information sending method, communication node and storage medium that can be run in the above-mentioned wireless communication system are provided, which can ensure that the UE will not have more than one time slot between any transmissions within the initialized COT. ) duration GAP to ensure continuous occupation of channels within the COT.
  • the SL UE in the frequency domain, can determine the working carrier according to the configured information, determine the working bandwidth part (Bandwidth Part, BWP) on the working carrier, and determine the communication resource pool within the BWP.
  • Communication resource pools include sending resource pools and receiving resource pools.
  • the SL communication resource pool on the unlicensed carrier includes an integer resource block set (RB set).
  • An RB set refers to a listen before talk (LBT) bandwidth range.
  • An RB set consists of several It is composed of continuous resource blocks (Resource Block, RB).
  • Figure 4 shows a schematic diagram of an SL communication resource pool provided by an embodiment. As shown in Figure 4, the SL carrier includes N+1 RB sets, and the SL communication resource pool includes 3 consecutive RB sets, namely RB set1, RB set2 and RB set3.
  • the SL UE determines the available time slots on the communication resource pool according to the configured information in all physical time slots of the working carrier, which are called SL logical time slots.
  • An SL logical time slot contains at most 14 consecutive symbols, and the SL logical time slot is divided into two structures: Figure 5 shows a schematic structural diagram of an SL logical time slot provided by an embodiment; Figure 6 shows an embodiment Another SL logic provided Structural diagram of editing time slot. Among them, an Automatic Gain Control (AGC) symbol occupies one symbol, an empty symbol (GAP symbol) occupies one symbol, and a Physical Sidelink Feedback Resource (Physical Sidelink Feedback Channel, PSFCH) symbol occupies one symbol.
  • AGC Automatic Gain Control
  • GAP symbol empty symbol
  • PSFCH Physical Sidelink Feedback Resource
  • the SL logical time slot does not include PSFCH symbols, and Physical Sidelink Control Channel (PSCCH) symbols/Physical Sidelink Shared Channel (PSSCH) symbols occupy up to 12 symbol; similarly, as shown in Figure 6, the SL logical time slot includes PSFCH symbols, and PSCCH symbols/PSSCH symbols occupy up to 9 symbols.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the method for configuring resource location/information may be: sending it to the UE by the network or base station through signaling, that is, the network or base station configures the resource location/information to the UE; or, by other high-level entities (such as the UE's own higher layers, other network entities, etc.) provide resource locations/information for the UE, that is, other higher layer entities pre-configure the resource locations/information to the UE.
  • configuring resource locations/information also includes pre-configuring resource locations/information, and subsequently higher-level entities will be used to refer to base stations, networks, or other higher-level entities.
  • Figure 7 shows a schematic flowchart of an information sending method provided by an embodiment.
  • the method provided by this embodiment is applicable to the first communication node.
  • the first communication node (which may also be referred to as the first communication node device or the first node) is the UE that initializes the COT
  • the second communication node (which may also be referred to as the second communication node device or the second node) is UEs other than the UE that initialized the COT.
  • the first communication node is denoted as UE1
  • the second communication node is denoted as UE2.
  • the method includes the following operations.
  • the preset resource location includes the frequency domain resource location of the first information, and the first information includes at least one of an occupied signal and an occupied channel.
  • UE1 When UE1 successfully accesses the channel with the first channel access type (type1), UE1 can send its own data and send COT sharing information (ie, COT related information) to UE2, so that UE2 can share according to the received COT The information determines whether to use this COT. If UE2 uses this COT, UE2 first switches from the first channel access type to the second channel access type (type2) with a higher probability of access channel success before sending its own data. However, the prerequisite for switching to the second channel access type is that the gap between transmissions cannot be greater than 25us.
  • COT sharing information ie, COT related information
  • UE1 works in centralized scheduling mode (mode1), the Uu link is on the licensed spectrum, so the base station itself does not have channel occupancy information on the unlicensed spectrum, and the base station cannot guarantee transmission between UEs. It must be continuous in the time domain; if UE1 works in distributed scheduling mode (mode2) Under this situation, the resources of UE1 are determined by itself, and it is even more difficult to ensure that the transmission between UEs is continuous in the time domain.
  • mode1 centralized scheduling mode
  • mode2 distributed scheduling mode
  • this application adopts the method of UE1 sending the first information on the channel idle slot in the COT or the idle symbol in the slot to ensure the continuous occupation of the channel in the COT shared by UE1, which is also beneficial to UE2 Share COT information.
  • this application configures a preset resource location in each RB set of the resource pool.
  • the preset resource location is configured for each RB set in the resource pool. Therefore, the preset resource location includes the frequency domain resource location of the first information.
  • the preset resource location is applicable to all time domains.
  • the first information includes the occupancy signal and the occupancy signal. At least one item in the channel.
  • Figure 8 shows a schematic diagram of preset resource locations in each RB set of a resource pool provided by an embodiment.
  • the resource pool includes two RB sets, namely RB set0 and RB set1.
  • Each RB set is configured with a preset resource location of the first information.
  • the preset resource location is applicable to all time domains (i.e. slot n, slot n+1, slot n+2, slot n+3, slot n+4, etc.).
  • the default resource location is indicated by a bitmap within the RB set.
  • the bitmap corresponds one-to-one to the RBs in the RB set; a 1 in the bitmap indicates that the RB is a default resource location, and a 0 in the bitmap indicates that the RB is not a default resource location.
  • the bitmap has a one-to-one correspondence with the interleave in the RB set; a 1 in the bitmap indicates that the interleave is a preset resource location, and a 0 in the bitmap indicates that the interleave is not a preset resource location.
  • the preset resource location is usually located on the symbol where the PSCCH/PSSCH within the slot is located, or on the symbol where the PSFCH within the slot is located, or on the GAP symbol within the slot.
  • the first resource includes a candidate time domain resource and a candidate RB set for sending the first information.
  • the candidate time domain resources include at least one of the following resources within the channel occupancy time COT obtained by the first communication node performing channel sensing with the first channel access type:
  • the candidate RB set includes at least one RB set of the channel obtained by the first communication node performing channel sensing in at least one of the first channel access type or the second channel access type.
  • Figure 9 shows a schematic diagram of a first resource provided by an embodiment.
  • the COT obtained by UE1 through channel sensing using the first channel access type corresponds to 6 slots.
  • UE1 uses the first channel access type to obtain the COT.
  • the channel obtained by performing channel listening on at least one of the input type or the second channel access type corresponds to 2 RB sets, and the 6 slots are slot n, slot n+1, slot n+2, and slot n+3.
  • slot n+4 and slot n+5 the two RB sets are RB set0 and RB set1 respectively.
  • the candidate time domain resources are all time slots in the COT obtained by UE1 using the first channel access type for channel sensing, and the candidate RB set is at least one of the first channel access type or the second channel access type for UE1.
  • the first resource corresponds to the 12 preset resource positions shown in Figure 9, that is, at the 12 preset resource positions shown in Figure 9 resources can be used as candidate resources for sending the first information.
  • S130 Determine the second resource according to the first resource, and send the first information at the preset resource position of the second resource.
  • UE1 before sending the first information at the preset resource position of the second resource, may also use the second channel access type (type2) to perform channel listening.
  • type2 the second channel access type
  • the second resource can be understood as a complete set or a subset of the first resource.
  • "determining the second resource based on the first resource” may include any of the following two methods:
  • Method 1 Use the determination method of first time domain and then frequency domain.
  • the method of "determining the second resource based on the first resource" may include a1 and a2.
  • the time domain resource result includes the time domain resource that needs to send the first information among the candidate time domain resources in the RB set.
  • the candidate RB set includes RB set0 and RB set1.
  • the time domain resource results of RB set0 and RB set1 are determined in turn.
  • the time domain resource result of RB set0 is included in the candidate time domain within RB set0.
  • the time domain resource in the resource that needs to send the first information; the time domain resource result of RB set1 includes the time domain resource that needs to send the first information among the candidate time domain resources in RB set1.
  • the rule for determining the second resource can be: if the first communication node needs to be in any RB set among all RB sets in the candidate RB set
  • the target time domain position receives the third information, then the first communication node does not send the first information at the target time domain position of all RB sets in the candidate RB set.
  • the third information includes SL signal, SL channel, NR downlink signal, NR At least one of a downlink channel, an NR uplink signal, and an NR uplink channel.
  • the time domain resource results of RB set0 include slot n, slot n+1 and slot n+3, and the time domain resource results of RB set1 include slot n and slot n+1. .
  • the second resources finally determined are slot n and slot n+1 of RB set0 and slot n and slot n+1 of RB set1. That is, UE1 is in the default resource positions of slot n and slot n+1 of RB set0 and slot n and slot n+1 of RB set1.
  • the time domain resource result satisfies at least one of the following five conditions:
  • the time domain resource result does not include the third resource.
  • the third resource is the resource used by the first communication node to send the second information.
  • the second information includes SL signal, SL channel, NR uplink signal, and NR uplink channel. at least one of.
  • SL signals and SL channels can include: PSCCH, PSSCH, PSFCH, sidelink-Synchronization Signal Block (S-SSB), channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) At least one of Reference Signal, SRS), positioning reference signal (positioning reference signal, PRS), phase tracking reference signal (phase tracking reference signal, PTRS) at least one.
  • SRS Reference Signal
  • PRS positioning reference signal
  • phase tracking reference signal phase tracking reference signal
  • the S-SSB may be an S-SS/Physical Sidelink Broadcast Channel (PSBCH) Block.
  • PSBCH Physical Sidelink Broadcast Channel
  • the time domain resource result does not include the fourth resource.
  • the fourth resource is determined based on the detection result.
  • the fourth resource is the resource reserved by the second communication node in the first resource.
  • the detection result includes determining the reference signal received power (RSRP) of the demodulation reference signal (Demodulation Reference Signal, DMRS) on the PSCCH or PSSCH associated with the fourth resource;
  • RSRP reference signal received power
  • DMRS demodulation Reference Signal
  • the RSRP of the DMRS on the PSCCH or PSSCH associated with the fourth resource is greater than or equal to the first preset threshold. That is, only when the RSRP of the DMRS on the PSCCH or PSSCH associated with the fourth resource is greater than or equal to the first preset threshold, the time domain resource result does not include the fourth resource; conversely, the time domain resource result may include the fourth resource.
  • the time domain resource result does not include the fifth resource.
  • the fifth resource is the resource corresponding to the resource occupancy information.
  • the resource occupancy information is carried in the feedback information sent by the second communication node on the feedback resource.
  • the RSRP on the feedback resource where the feedback information is located is greater than or equal to the second preset threshold. That is, only when the RSRP on the feedback resource where the feedback information is located is greater than or equal to the second preset threshold, the time domain resource result does not include the fifth resource; conversely, the time domain resource result may include the fifth resource.
  • each RB set or each resource pool is configured with at least one of time domain information and frequency domain information of feedback resources;
  • the time domain information of feedback resources includes period N, time slot offset within the period ( offset) is at least one of k and the symbol position within the time slot;
  • the feedback resource corresponds to the time slot index after the time slot where the feedback resource is located, and the corresponding relationship is based on the relative time slot index and the feedback resource position within the time slot Determine; or, the feedback resource corresponds to the candidate channel resource index after the time slot where the feedback resource is located, and the corresponding relationship is determined based on the relative candidate channel resource time-frequency index and the feedback resource position within the time slot.
  • the candidate channel may be a PSCCH/PSSCH channel.
  • the time domain resource result does not include the sixth resource.
  • the sixth resource is the resource that the first communication node needs to receive the third information on the second resource.
  • the third information includes SL signal, SL channel, NR downlink signal, and NR downlink channel, NR uplink signal, and NR uplink channel.
  • the time domain resource result does not include the seventh resource.
  • the seventh resource is all time domain resources after the time domain resource where the first communication node's last valid transmission on the RB set is located.
  • the seventh resource is determined according to at least one of the following methods: determined by the detection result; determined by the transmission resource selected by the first communication node; determined by the feedback information of the second communication node; determined by the sixth resource , the sixth resource is a resource that the first communication node needs to receive the third information on the second resource.
  • the third information includes at least one of the SL signal, SL channel, NR downlink signal, NR downlink channel, NR uplink signal, and NR uplink channel.
  • Method 2 Use the determination method of frequency domain first and then time domain.
  • the method of "determining the second resource based on the first resource” may include b1.
  • the frequency domain resource result includes the RB set that needs to send the first information in the candidate RB set on the time domain resource.
  • the candidate time domain resource includes 6 slots, namely slot n, slot n+1, slot n+2, slot n+3, slot n+4 and slot n+5. , determine the frequency domain resource results of each time domain resource in turn. Assume that the frequency domain resource result of slot n includes RB set0, the frequency domain resource result of slot n+1 is empty, the frequency domain resource result of slot n+2 is empty, the frequency domain resource result of slot n+3 is empty, and the frequency domain resource result of slot n+3 is empty. The frequency domain resource result of +4 includes RB set0, and the frequency domain resource result of slot n+5 includes RB set1.
  • the final determined second resource is RB set0 of slot n, RB set0 of slot n+4 and slot n+ RB set1 of 5. That is, the first information is sent at the preset resource positions of RB set0 of slot n, RB set0 of slot n+4 and RB set1 of slot n+5.
  • the frequency domain resource result satisfies at least one of the following four conditions:
  • the frequency domain resource result does not include the third resource.
  • the third resource is the resource used by the first communication node to send the second information.
  • the second information includes SL signal, SL channel, NR uplink signal, and NR uplink channel. at least one of.
  • the SL signal and SL channel may include: at least one of PSCCH, PSSCH, PSFCH, S-SSB, and CSI-RS; the NR uplink signal and NR uplink channel may include PUSCH, PUCCH, SRS, PRS, and PTRS. at least one of.
  • Condition b2 The frequency domain resource result does not include the fourth resource.
  • the fourth resource is determined based on the detection result.
  • the fourth resource is the resource reserved by the second communication node in the first resource.
  • the detection result includes determining that the RSRP of the DMRS on the PSCCH or PSSCH associated with the fourth resource; the RSRP of the DMRS on the PSCCH or PSSCH associated with the fourth resource is greater than or equal to the first preset threshold. . That is, only when the RSRP of the DMRS on the PSCCH or PSSCH associated with the fourth resource is greater than or equal to the first preset threshold, the frequency domain resource result does not include the fourth resource; conversely, the frequency domain resource result may include the fourth resource.
  • the frequency domain resource result does not include the fifth resource.
  • the fifth resource is the resource corresponding to the resource occupancy information.
  • the resource occupancy information is carried in the feedback information sent by the second communication node on the feedback resource.
  • the RSRP on the feedback resource where the feedback information is located is greater than or equal to the second preset threshold. That is, only when the RSRP on the feedback resource where the feedback information is located is greater than or equal to the second preset threshold, the frequency domain resource result does not include the fifth resource; conversely, the frequency domain resource result may include the fifth resource.
  • each RB set or each resource pool is configured with at least one of time domain information and frequency domain information of feedback resources; the time domain information of feedback resources includes period N, offset within the period k, and time domain information. At least one of the symbol positions in the slot; the feedback resource corresponds to the time slot index after the time slot where the feedback resource is located, and the corresponding relationship is determined based on the relative time slot index and the feedback resource position within the time slot; or, the feedback resource and the feedback resource The candidate channel resource index after the corresponding time slot corresponds to the corresponding relationship, and the corresponding relationship is determined based on the relative candidate channel resource time-frequency index and the feedback resource position within the time slot.
  • the candidate channel may be a PSCCH/PSSCH channel.
  • the frequency domain resource result does not include the sixth resource.
  • the sixth resource is the resource that the first communication node needs to receive the third information on the second resource.
  • the third information includes SL signal, SL channel, NR downlink signal, and NR downlink channel, NR uplink signal, and NR uplink channel.
  • FIG. 10 shows a schematic diagram of a time domain resource result provided by an embodiment.
  • the COT obtained corresponds to 6 slots
  • UE1 performs channel sensing using at least one of the first channel access type or the second channel access type.
  • the channel obtained by listening corresponds to 2 RB sets.
  • the 6 slots are slot n, slot n+1, slot n+2, slot n+3, slot n+4 and slot n+5.
  • the 2 RB sets are RB respectively. set0 and RB set1.
  • UE1 Since UE1 sends the second information on slot n and slot n+2 of RB set0 and the second information on slot n and slot n+2 of RB set1, in order to ensure the continuous occupation of the channel in the COT, on RB set0, UE1 sends the first information at the preset resource positions of the 6 slots in the COT: slot n+1, slot n+3, slot n+4, slot n+5, and in slot n and slot n There is no need to send the first information at the preset resource position of +2; similarly, on RBset1, UE1 is in slot n+1, slot n+3, slot n+4, slot n+ in the 6 slots in COT. 5. The first information is sent at the preset resource positions of these 4 slots. There is no need to send the first information at the preset resource positions of slot n and slot n+2.
  • FIG. 11 shows a schematic diagram of another time domain resource result provided by an embodiment.
  • the COT obtained corresponds to 6 slots
  • UE1 performs channel sensing using at least one of the first channel access type or the second channel access type.
  • the channel obtained by listening corresponds to 2 RB sets.
  • the 6 slots are slot n, slot n+1, slot n+2, slot n+3, slot n+4 and slot n+5.
  • the 2 RB sets are RB respectively. set0 and RB set1.
  • UE1 determines that UE2 has data transmission on slot n+4 based on the detection results before time n (that is, slot n+4 is reserved by UE2), and UE1 sends the second information on slot n of RB set0;
  • UE1 determines that UE2 has data transmission on slot n+2 based on the detection results before time n (that is, slot n+2 is reserved by UE2), and UE1 sends the second information on slot n of RB set1.
  • UE1 sends the first information at the preset resource positions of slot n+1, slot n+2, slot n+3, slot n+5 on the 6 slots in the COT. There is no need to send the first information at the preset resource positions of slot n and slot n+4; similarly, on RBset1, UE1 is in slot n+1, slot n+3, slot n on the 6 slots in the COT. The first information is sent at the preset resource positions of the four slots +4 and slot n+5. There is no need to send the first information at the preset resource positions of slot n and slot n+2.
  • UE1 If the RSRP of the DMRS in slot n+2 of RBset1 on the PSCCH or PSSCH is less than the first preset threshold, then UE1 still needs to send the first information at the preset resource position of slot n+2 of RBset1.
  • FIG. 12 shows a schematic diagram of yet another time domain resource result provided by an embodiment. As shown in Figure 12, it is assumed that the period of the feedback resource PSFCH is 2, corresponding to 2 consecutive slots after the PSFCH.
  • UE1 After UE1 sends the COT sharing information, if three UE2 want to use the COT, these three UE2 are recorded as UE2a, UE2b and UE2c respectively, then UE2a, UE2b and UE2c respectively use the feedback resources (such as PSFCH resources) corresponding to the time slot. Send feedback information.
  • UE1 confirms that there are UEs transmitting data in slot n+2, slot n+3 and slot n+5 respectively based on the received information on the PSFCH feedback resource in slot n+1 and slot n+3.
  • UE1 only needs to send the first information at the preset resource location of slot n+4 in the COT, and does not need to send the first information at the preset resource locations of slot n+2, slot n+3 and slot n+5. information, slot n and slot n+1, since the second information is sent on UE1, there is no need to send the first information.
  • UE1 still needs to send the first information on the preset resource location of slot n+2.
  • UE1 performs channel sensing in the first channel access type and the COT obtained corresponds to 6 slots, and UE1 uses the first channel access type or the second channel access type.
  • the channel obtained by performing channel listening on at least one of the RB sets corresponds to 2 RB sets, and the 6 slots are slot n, slot n+1, slot n+2, slot n+3, slot n+4 and slot n+5.
  • the two RB sets are RB set0 and RB set1 respectively.
  • UE1 Since UE1 sends the second information on slot n and slot n+2 of RB set0 and receives the third information on slot n and slot n+2 of RB set1, in order to ensure the continuous occupation of the channel in the COT, on RBset0, UE1
  • the first information is sent to the default resource positions of slot n+1, slot n+3, slot n+4, slot n+5 among the 6 slots in COT, and the first information is sent in slot n and slot n+
  • the first information is sent at the preset resource positions of these four slots. There is no need to send the first information at the preset resource positions of slot n and slot n+2.
  • FIG. 13 shows a schematic diagram of yet another time domain resource result provided by an embodiment.
  • UE1 successfully initializes COT in slot n and sends the second information on slot n.
  • slot n it is determined that under the RB set that is the same as the data of slot n, slot n+2 and slot n+ There is data transmission on 4, then UE1 determines slot 4 in the COT as the last transmission slot, then UE1 sends the first information at the preset resource positions of slot n+1 and slot n+3, and in slot n There is no need to send the first information to the preset resource positions of +2, slot n+4, and slot n+5.
  • slot n Since the second information is sent on UE1, there is no need to send the first information.
  • the first information between UEs in the 3GPP system does not affect the LBT of the UE.
  • Figure 14 shows a schematic structural diagram of an information sending device provided by an embodiment.
  • the device can be configured in a communication node.
  • the device includes: a configuration module 10, a determination module 11 and a sending module 12.
  • the configuration module 10 is configured to configure a preset resource location within each resource block set RB set of the resource pool.
  • the preset resource location includes the frequency domain resource location of the first information, and the first information includes at least one of the occupied signal and the occupied channel.
  • One item; the determining module 11 is configured to determine a first resource, the first resource includes a candidate time domain resource and a candidate RB set for sending the first information; and determine the second resource according to the first resource.
  • Source; sending module 12, configured to send the first information at a preset resource position of the second resource.
  • the information sending device provided by this embodiment implements the information sending method of the embodiment shown in Figure 7.
  • the implementation principles and technical effects of the information sending device provided by this embodiment are similar to those of the above embodiment, and will not be described again here.
  • the default resource location is indicated by a bitmap; the bitmap corresponds one-to-one to the resource blocks RB in the RB set; or the bitmap corresponds one-to-one to the interleaves in the RB set.
  • the candidate time domain resources include at least one of the following resources within the channel occupancy time COT obtained by the first communication node performing channel sensing with the first channel access type:
  • the candidate RB set includes at least one RB set of the channel obtained by the first communication node performing channel sensing in at least one of the first channel access type or the second channel access type.
  • the sending module 12 is further configured to use the second channel access type to perform channel listening before sending the first information at the preset resource location of the second resource.
  • the determination module 11 is configured to determine the time domain resource result of each RB set in the candidate RB set.
  • the time domain resource result includes the time when the first information needs to be sent in the candidate time domain resource in the RB set.
  • Domain resources determine the second resource based on the time domain resource results of all RB sets in the candidate RB set.
  • the determination module 11 is configured to determine the frequency domain resource result of each time domain resource in the candidate time domain resource.
  • the frequency domain resource result includes the first information that needs to be sent in the candidate RB set on the time domain resource. RB set.
  • the time domain resource result or the frequency domain resource result does not include the third resource.
  • the third resource is the resource for the first communication node to send the second information.
  • the second information includes the sidelink SL signal, the SL channel, At least one of a new radio NR uplink signal and an NR uplink channel.
  • the time domain resource result or the frequency domain resource result does not include the fourth resource.
  • the fourth resource is determined based on the detection result.
  • the fourth resource is a resource reserved by the second communication node in the first resource.
  • the detection result includes determining that the reference signal received power RSRP of the demodulation reference signal DMRS on the PSCCH or PSSCH associated with the fourth resource is greater than or equal to the first Preset threshold.
  • the time domain resource result or the frequency domain resource result does not include the fifth resource.
  • the fifth resource is the resource corresponding to the resource occupancy information.
  • the resource occupancy information is carried in the second communication node when feeding back the resource. in the feedback message sent on.
  • the RSRP on the feedback resource where the feedback information is located is greater than or equal to the second preset threshold.
  • each RB set or each resource pool is configured with at least one of time domain information and frequency domain information of feedback resources;
  • the time domain information of feedback resources includes period N and time slot offset offset within the period. is at least one of k and the symbol position in the time slot;
  • the feedback resource corresponds to the time slot index after the time slot where the feedback resource is located, and the corresponding relationship is determined based on the relative time slot index and the feedback resource position within the time slot; or, feedback The resource corresponds to the candidate channel resource index after the time slot where the feedback resource is located, and the corresponding relationship is determined based on the relative candidate channel resource time-frequency index and the feedback resource position within the time slot.
  • the time domain resource result or the frequency domain resource result does not include the sixth resource.
  • the sixth resource is the resource that the first communication node needs to receive the third information on the second resource.
  • the third information includes SL signal, SL channel, NR downlink signal, NR downlink channel, NR uplink signal, and NR uplink channel.
  • the time domain resource result does not include the seventh resource
  • the seventh resource is all time domain resources after the time domain resource where the last valid transmission of the first communication node on the RB set is located.
  • the seventh resource is determined according to at least one of the following methods: determined by the detection result; determined by the transmission resource selected by the first communication node; determined by the feedback information of the second communication node; determined by the sixth resource , the sixth resource is a resource that the first communication node needs to receive the third information on the second resource.
  • the third information includes at least one of the SL signal, SL channel, NR downlink signal, NR downlink channel, NR uplink signal, and NR uplink channel.
  • the determination module 11 is configured to need to receive the third information at the target time domain position of any RB set in all RB sets in the candidate RB set, and the target of all RB sets in the candidate RB set is The first information is not sent at any time domain position, and the third information includes at least one of SL signal, SL channel, NR downlink signal, NR downlink channel, NR uplink signal, and NR uplink channel.
  • An embodiment of the present application also provides a communication node, including: a processor, and the processor is configured to implement the method provided by any embodiment of the present application when executing a computer program.
  • the communication node can be a terminal device provided in any embodiment of the present application, and this application does not limit this.
  • the following embodiment provides a schematic structural diagram in which the communication node is a UE.
  • FIG. 15 shows a schematic structural diagram of a UE provided by an embodiment.
  • the UE can be implemented in various forms.
  • the UE in this application can include but is not limited to mobile phones, smart phones, notebook computers, digital broadcast receivers, etc. , personal digital assistant (Personal Digital Assistant, PDA), tablet computer (Portable Device, PAD), portable multimedia player (Portable Media Player, PMP), Mobile terminal equipment such as navigation devices, vehicle-mounted terminal equipment, vehicle-mounted display terminals, vehicle-mounted electronic rearview mirrors, etc., and fixed terminal equipment such as digital television (TV), desktop computers, etc.
  • PDA Personal Digital Assistant
  • PAD Portable Device
  • PMP portable multimedia player
  • Mobile terminal equipment such as navigation devices, vehicle-mounted terminal equipment, vehicle-mounted display terminals, vehicle-mounted electronic rearview mirrors, etc.
  • fixed terminal equipment such as digital television (TV), desktop computers, etc.
  • the UE 50 may include a wireless communication unit 51, an audio/video (Audio/Video, A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, and an interface unit. 57. Processor 58 and power supply unit 59 and so on.
  • Figure 15 illustrates a UE that includes a variety of components, but it should be understood that implementation of all illustrated components is not required. More or fewer components may alternatively be implemented.
  • the wireless communication unit 51 allows radio communication between the UE 50 and the base station or network.
  • A/V input unit 52 is arranged to receive audio or video signals.
  • the user input unit 53 may generate key input data according to commands input by the user to control various operations of the UE 50.
  • the sensing unit 54 detects the current state of the UE 50, the position of the UE 50, the presence or absence of the user's touch input to the UE 50, the orientation of the UE 50, the acceleration or deceleration movement and direction of the UE 50, etc., and generates a signal for controlling the UE 50. 50 operation commands or signals.
  • the interface unit 57 serves as an interface through which at least one external device can connect to the UE 50.
  • the output unit 55 is configured to provide an output signal in a visual, audio and/or tactile manner.
  • the memory 56 may store software programs for processing and control operations executed by the processor 58 and the like, or may temporarily store data that has been output or is to be output.
  • Memory 56 may include at least one type of storage medium.
  • UE 50 may cooperate with a network storage device that performs the storage functions of memory 56 over a network connection.
  • Processor 58 generally controls the overall operation of UE 50.
  • the power supply unit 59 receives external power or internal power under the control of the processor 58 and provides appropriate power required to operate various elements and components.
  • the processor 58 executes at least one functional application and data processing by running the program stored in the memory 56, for example, implementing the method provided by the embodiment of the present application.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the method provided by any embodiment of the present application is implemented.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connections having one or more conductors, portable computer disks, hard drives, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), electrically erasable programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage devices , magnetic storage device, or the above Any suitable combination.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, the data signal carrying computer-readable program code. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), and also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program operations, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program operations and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc DVD or CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

信息发送方法,通信节点及存储介质。该信息发送方法包括:配置资源池的每个资源块集合RB set内的预设资源位置,预设资源位置包括第一信息的频域资源位置,第一信息包括占用信号和占用信道中的至少一项(S110);确定第一资源,第一资源包括用于发送第一信息的候选时域资源和候选RB set(S120);根据第一资源,确定第二资源,并在第二资源的预设资源位置上发送第一信息(S130)。

Description

信息发送方法,通信节点及存储介质 技术领域
本申请涉及通信技术领域,例如涉及信息发送方法,通信节点及存储介质。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)系统设备在非授权频谱上发送数据前,首先需要根据业务优先级进行一定时长的信道侦听,在确定信道空闲的前提下才可以继续发送数据。如果基站以type1的信道接入方式成功接入信道,则可以认为基站初始化了一个信道占用时间(Channel Occupancy Time,COT),在COT内基站和被基站调度的用户设备(User Equipment,UE)可以对信道进行连续占用。如果UE以type1的信道接入方式成功接入信道,则可以认为UE初始化了一个COT,在COT内UE和调度该UE的基站可以对信道进行连续占用。因此,在3GPP新无线电-未获授权的频谱(New Radio in Unlicensed Spectrum,NR-U)系统中,无论是基站还是UE,成功初始化了一个COT之后,通过调度,基站或者UE都能够在COT内进行连续的信道占用从而避免信道丢失。在版本18(又称R18)立项的非授权侧行链路(sidelink-unlicense,SL-U)系统支持UE和UE之间共享信道,然而,SL-U系统在一些场景下是分布式调度系统,当一个UE成功初始化了一个COT,其他UE需要共享这个COT时,如何保证COT内信道的持续占用是一个亟待解决的问题。
发明内容
本申请实施例提供信息发送方法,应用于第一通信节点,包括:
配置资源池的每个资源块集合RB set内的预设资源位置,预设资源位置包括第一信息的频域资源位置,第一信息包括占用信号和占用信道中的至少一项;确定第一资源,第一资源包括用于发送第一信息的候选时域资源和候选RB set;根据第一资源,确定第二资源,并在第二资源的预设资源位置上发送第一信息。
本申请实施例提供一种通信节点,包括:处理器;处理器用于在执行计算机程序时实现上述任一实施例的信息发送方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的信息发送方法。
附图说明
图1是一种基站初始化COT的示意图;
图2是一种UE初始化COT的示意图;
图3是一实施例提供的一种无线通信系统的组网示意图;
图4是一实施例提供的一种SL通信资源池的示意图;
图5是一实施例提供的一种SL逻辑时隙的结构示意图;
图6是一实施例提供的另一种SL逻辑时隙的结构示意图;
图7是一实施例提供的一种信息发送方法的流程示意图;
图8是一实施例提供的一种资源池的每个RB set内的预设资源位置的示意图;
图9是一实施例提供的一种第一资源的示意图;
图10是一实施例提供的一种时域资源结果的示意图;
图11是一实施例提供的另一种时域资源结果的示意图;
图12是一实施例提供的又一种时域资源结果的示意图;
图13是一实施例提供的再一种时域资源结果的示意图;
图14是一实施例提供的一种信息发送装置的结构示意图;
图15是一实施例提供的一种UE的结构示意图。
具体实施方式
此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。下文中将结合附图对本申请的实施例进行详细说明。
在非授权频谱上,可能存在非3GPP系统的设备(如蓝牙、Wi-Fi等)。当3GPP系统的设备需要在非授权频谱上工作时,为了和其他系统能够比较公平的共存,需要进行干扰避免技术,NR-U标准化了基站和UE在信道接入时的一些行为。例如,基站或者UE可以根据业务优先级使用type1的信道接入方式来进行数据发送前的信道侦听。图1示出了一种基站初始化COT的示意图。以基站为例,当基站成功接入信道后,就认为基站初始化(又可以理解为成功开始)了一个COT,COT有最大时间限制,在COT内基站和被基站调度的UE可以使用接入成功概率更大的type2的信道接入方式来接入信道。同理,图2示出了一种UE初始化COT的示意图。以UE为例,当UE成功接入信道后,就认为UE初始化了一个COT,在COT内UE和调度该UE的基站可以使用接入成功概率 更大的type2的信道接入方式来接入信道。
在COT内使用type2的信道接入方式接入信道需要遵循COT共享的一些限制。例如,当设备发送的数据与之前的数据传输之间的GAP(又可以理解为相邻两次数据传输之间的GAP)为25us时,设备在COT内可以使用type 2A的信道接入方式接入信道;当设备发送的数据与之前的数据传输之间的GAP为16us时,设备在COT内可以使用type 2B的信道接入方式接入信道;当设备发送的数据与之前的数据传输之间的GAP小于16us时,设备在COT内可以使用type 2C的信道接入方式接入信道;当设备发送的数据与之前的数据传输之间的GAP大于25us时,通常认为当前的COT可能会丢失,即信道会被其他非3GPP系统的设备抢占。
侧行链路(sidelink,SL)系统可以工作在集中式调度模式(mode1),也可以工作在分布式调度模式(mode2)。在分布式调度模式下,没有类似基站这样的集中控制节点,每个UE都是自己确定的自己的数据的时频资源。当SL-U设备工作在非授权频谱,并且工作在mode2模式下时,UE和UE之间的传输的GAP是不可控的。因此当一个UE初始化了一个COT之后,在该COT内,其他UE的传输之间的GAP,或者其他UE和初始化UE的传输之间的GAP大于25us时,COT内的信道可能就会丢失,导致其他UE可能无法再继续共享该COT。
本申请提供的信息发送方法可以应用于各类无线通信系统中,例如长期演进(long term evolution,LTE)系统、第四代移动通信技术(4th-generation,4G)系统、第五代移动通信技术(5th-generation,5G)系统、LTE与5G混合架构系统、5G NR系统、以及未来通信发展中出现的新的通信系统,如第六代移动通信技术(6th-generation,6G)系统等。尤其适用于SL-U系统。图3示出了一实施例提供的一种无线通信系统的组网示意图。如图3所示,该无线通信系统包括终端设备110、接入网设备120和核心网设备130。
终端设备110可以是一种具有无线收发功能的设备,可以部署在陆地上(如室内或室外、手持、穿戴或车载等);也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星等)。一些终端设备110的举例为:UE、手机、移动台、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)等可以联网的用户设备,或虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart  home)中的无线终端等,或物联网中的物联网节点,或车联网中的车载通信装置,或娱乐、游戏设备或系统,或全球定位系统设备等。本申请的实施例对终端设备110所采用的技术和设备形态不做限定,另外,终端设备110可以简称终端。
接入网设备120是终端设备110通过无线方式接入到该无线通信系统中的接入设备,可以是基站(base station)、长期演进增强(Long Term Evolutionadvanced,LTEA)中的演进型基站(evolved NodeB,eNB或eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的基站或gNB、未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、WIFI设备或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备、定位管理功能(location management function,LMF)设备。也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对接入网设备120所采用的技术和设备形态不做限定,另外,接入网设备120可以简称基站。
核心网设备130可以包括接入与移动性管理网元和会话管理网元。示例性地,终端设备110可以通过接入网设备120接入核心网,从而实现数据传输。
在本申请实施例中,提供一种可运行于上述无线通信系统的信息发送方法,通信节点及存储介质,能够保证UE在初始化的COT内,任意传输之间不会出现大于一个时隙(slot)时长的GAP,从而保证COT内信道的持续占用。
首先,对本申请下述实施例涉及的概念进行解释:
在本申请实施例中,频域上,SL UE可以根据配置的信息确定工作载波,在工作载波上确定工作带宽部分(Bandwidth Part,BWP),在BWP内确定通信资源池。通信资源池包括发送资源池和接收资源池。通常,非授权载波上的SL通信资源池包括整数个资源块集合(Resource Block set,RB set),一个RB set指一个先听后发(Listen Before Talk,LBT)带宽范围,一个RB set由若干个连续的资源块(Resource Block,RB)组成。图4示出了一实施例提供的一种SL通信资源池的示意图。如图4所示,SL载波包括N+1个RB set,SL通信资源池包括3个连续的RB set,分别为RB set1、RB set2和RB set3。
在本申请实施例中,时域上,SL UE在工作载波的所有物理时隙中,根据配置的信息确定通信资源池上的可用时隙,称为SL逻辑时隙。一个SL逻辑时隙最多包含连续14个符号,SL逻辑时隙分为两种结构:图5示出了一实施例提供的一种SL逻辑时隙的结构示意图;图6示出了一实施例提供的另一种SL逻 辑时隙的结构示意图。其中,一个自动增益控制(Automatic Gain Control,AGC)符号占用一个符号,一个空符号(GAP符号)占用一个符号,一个物理边链路反馈资源(Physical Sidelink Feedback Channel,PSFCH)符号占用一个符号。如图5所示,SL逻辑时隙不包括PSFCH符号,物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)符号/物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH)符号最多占用12个符号;同理,如图6所示,SL逻辑时隙包括PSFCH符号,PSCCH符号/PSSCH符号最多占用9个符号。
在本申请实施例中,配置资源位置/信息的方法可以为:通过信令的方式由网络或基站发送给UE,即由网络或基站将资源位置/信息配置给UE;或者,由其他高层实体(如UE自身的高层、其他网络实体等)为UE提供资源位置/信息,即由其他高层实体将资源位置/信息预配置给UE。在本申请下述实施例中,配置资源位置/信息也包括预配置资源位置/信息的情况,并且后续将以高层实体代指基站,网络或其他高层实体。
下面,对信息发送方法,通信节点及其技术效果进行描述。
图7示出了一实施例提供的一种信息发送方法的流程示意图,如图7所示,本实施例提供的方法适用于第一通信节点。在本示例中,第一通信节点(也可以称为第一通信节点设备或者第一节点)为初始化COT的UE,第二通信节点(也可以称为第二通信节点设备或者第二节点)为除了初始化COT的UE以外的其他UE。下述实施例中将第一通信节点记为UE1,将第二通信节点记为UE2。该方法包括如下操作。
S110、配置资源池的每个资源块集合RB set内的预设资源位置,预设资源位置包括第一信息的频域资源位置,第一信息包括占用信号和占用信道中的至少一项。
当UE1以第一信道接入类型(type1)成功接入信道后,UE1可以发送自己的数据,并将COT共享信息(即COT的相关信息)发送给UE2,以使得UE2根据接收到的COT共享信息判断是否使用该COT,若UE2使用该COT,则UE2在发送自己的数据之前,首先从第一信道接入类型切换到接入信道成功概率更高的第二信道接入类型(type2),但是切换为第二信道接入类型的前提是传输之间的gap不能大于25us。
另外,UE1如果工作在集中式调度模式(mode1)下,Uu链路是在授权频谱上的,因此基站本身是没有非授权频谱上的信道占用信息的,基站也并不能保证UE之间的传输一定是时域连续的;UE1如果工作在分布式调度模式(mode2) 下,UE1的资源都是自己确定的,更加难以保证UE之间的传输是时域连续的。
因此,本申请为了保证信道的持续占用,采用UE1在COT内的信道空闲slot或者slot内的空闲符号上发送第一信息的方式,保证UE1分享的COT内的信道的持续占用,也有利于UE2共享COT信息。
基于上述描述,本申请为了避免第一信息干扰其他信息的传输,同时也为了节省开销,在资源池的每个RB set内配置了预设资源位置。预设资源位置是针对资源池内的每个RB set配置的,因此,预设资源位置包括第一信息的频域资源位置,预设资源位置适用于所有时域,第一信息包括占用信号和占用信道中的至少一项。
图8示出了一实施例提供的一种资源池的每个RB set内的预设资源位置的示意图。如图8所示,资源池包括两个RB set,分别为RB set0和RB set1,每个RB set内配置了第一信息的预设资源位置,预设资源位置适用于所有时域(即slot n,slot n+1,slot n+2,slot n+3,slot n+4等等)。
在一实施例中,对于每个RB set,预设资源位置在该RB set内采用位图(bitmap)指示。
在一种示例中,bitmap与该RB set内的RB一一对应;bitmap中的1表示该RB为预设资源位置,bitmap中的0表示该RB不为预设资源位置。
在另一种示例中,bitmap与该RB set内的交织一一对应;bitmap中的1表示该交织为预设资源位置,bitmap中的0表示该交织不为预设资源位置。
在时域上,预设资源位置通常位于slot内的PSCCH/PSSCH所在的符号上,或者位于slot内的PSFCH所在的符号上,或者位于slot内的GAP符号上。
S120、确定第一资源,第一资源包括用于发送第一信息的候选时域资源和候选RB set。
在一实施例中,候选时域资源包括第一通信节点以第一信道接入类型进行信道侦听获得的信道占用时间COT内的以下资源中的至少之一:
所有时隙,部分时隙,时隙内的物理边链路控制信道PSCCH符号,时隙内的物理边链路共享信道PSSCH符号,时隙内的物理边链路反馈信道PSFCH符号,时隙内的GAP符号。
在一实施例中,候选RB set包括第一通信节点以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道的至少一个RB set。
图9示出了一实施例提供的一种第一资源的示意图。如图9所示,UE1以第一信道接入类型进行信道侦听获得的COT对应6个slot,UE1以第一信道接 入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道对应2个RB set,6个slot分别为slot n,slot n+1,slot n+2,slot n+3,slot n+4和slot n+5,2个RB set分别为RB set0和RB set1。假设候选时域资源为UE1以第一信道接入类型进行信道侦听获得的COT内的所有时隙,候选RB set为UE1以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道的所有RB set,那么,在时频域上,第一资源对应图9所示的12个预设资源位置,即图9所示的12个预设资源位置处的资源可以作为发送第一信息的候选资源。
S130、根据第一资源,确定第二资源,并在第二资源的预设资源位置上发送第一信息。
在一实施例中,UE1在第二资源的预设资源位置上发送第一信息前,还可以使用第二信道接入类型(type2)进行信道侦听。
第二资源可以理解为第一资源的全集或者子集。在一实施例中,“根据第一资源,确定第二资源”可以包括如下两种方式中的任意一种:
方式一:采用先时域后频域的确定方式。
在方式一中,“根据第一资源,确定第二资源”的方法可以包括a1和a2。
a1、确定候选RB set中的每个RB set的时域资源结果,时域资源结果包括在RB set内候选时域资源中需要发送第一信息的时域资源。
以图9所示的第一资源为例,候选RB set包括RB set0和RB set1,依次确定RB set0和RB set1的时域资源结果,RB set0的时域资源结果包括在RB set0内候选时域资源中需要发送第一信息的时域资源;RB set1的时域资源结果包括在RB set1内候选时域资源中需要发送第一信息的时域资源。
a2、根据候选RB set中的所有RB set的时域资源结果,确定第二资源。
在a2中,根据候选RB set中的所有RB set的时域资源结果,确定第二资源的规则可以为:若第一通信节点需要在候选RB set中的所有RB set中的任一RB set的目标时域位置接收第三信息,则第一通信节点在候选RB set中的所有RB set的目标时域位置均不发送第一信息,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
继续以图9所示的第一资源为例,假设RB set0的时域资源结果包括slot n、slot n+1和slot n+3,RB set1的时域资源结果包括slot n和slot n+1。如果UE1需要在RB set1的slot n+3接收第三信息,那么UE1在所有RB set的slot n+3均不发送第一信息。因此,基于RB set0的时域资源结果和RB set1的时域资源结果,最终确定的第二资源是RB set0的slot n、slot n+1,RB set1的slot n、slot n+1。即,UE1在RB set0的slot n、slot n+1,RB set1的slot n、slot n+1的预设资源位 置上发送第一信息。
在一实施例中,时域资源结果满足以下五个条件中的至少之一:
条件a1:时域资源结果不包括第三资源,第三资源为第一通信节点发送第二信息的资源,第二信息包括SL信号、SL信道、NR上行链路信号、NR上行链路信道中的至少一项。
SL信号和SL信道可以包括:PSCCH、PSSCH、PSFCH、边链路同步信号块(sidelink-Synchronization Signal Block,S-SSB)、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)中的至少一项;NR上行链路信号和NR上行链路信道可以包括物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、信道探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(positioning reference signal,PRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)中的至少一项。
在一实施例中,S-SSB可以为S-SS/物理侧行链路广播信道(PSBCH)Block。
条件a2:时域资源结果不包括第四资源,第四资源根据检测结果确定,第四资源为第二通信节点在第一资源中预留的资源。
在条件a2的基础上,可选的,检测结果包括确定第四资源关联的PSCCH或者PSSCH上的解调参考信号(Demodulation Reference Signal,DMRS)的参考信号接收功率(Reference Signal Received Power,RSRP);第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP大于或者等于第一预设阈值。即,只有在第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP大于或者等于第一预设阈值时,时域资源结果才不包括第四资源;反之,时域资源结果可以包括第四资源。
条件a3:时域资源结果不包括第五资源,第五资源为资源占用信息对应的资源,资源占用信息携带在第二通信节点在反馈资源上发送的反馈信息中。
在条件a3的基础上,可选的,反馈信息所在的反馈资源上的RSRP大于或者等于第二预设阈值。即,只有在反馈信息所在的反馈资源上的RSRP大于或者等于第二预设阈值时,时域资源结果才不包括第五资源;反之,时域资源结果可以包括第五资源。
在一实施例中,每个RB set或者每个资源池配置反馈资源的时域信息和频域信息中的至少一项;反馈资源的时域信息包括周期N、周期内的时隙偏移(offset)为k、时隙内的符号位置中的至少一项;反馈资源与反馈资源所在时隙之后的时隙索引对应,对应关系根据相对时隙索引和时隙内的反馈资源位置 确定;或者,反馈资源与反馈资源所在时隙之后的候选信道资源索引对应,对应关系根据相对候选信道资源时频索引和时隙内的反馈资源位置确定。
候选信道可以为PSCCH/PSSCH信道。
条件a4:时域资源结果不包括第六资源,第六资源为第一通信节点需要在第二资源上接收第三信息的资源,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
条件a5:时域资源结果时域资源结果不包括第七资源,第七资源为第一通信节点在RB set上最后一个有效的传输所在的时域资源之后的所有时域资源。
在一实施例中,第七资源根据以下方式中的至少之一确定:通过检测结果确定;通过第一通信节点选择的发送资源确定;通过第二通信节点的反馈信息确定;通过第六资源确定,第六资源为第一通信节点需要在第二资源上接收第三信息的资源,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
方式二:采用先频域后时域的确定方式。
在方式二中,“根据第一资源,确定第二资源”的方法可以包括b1。
b1、确定候选时域资源中的每个时域资源的频域资源结果,频域资源结果包括在时域资源上候选RB set中需要发送第一信息的RB set。
以图9所示的第一资源为例,候选时域资源包括6个slot,分别为slot n,slot n+1,slot n+2,slot n+3,slot n+4和slot n+5,依次确定每个时域资源的频域资源结果。假设slot n的频域资源结果包括RB set0,slot n+1的频域资源结果为空,slot n+2的频域资源结果为空,slot n+3的频域资源结果为空,slot n+4的频域资源结果包括RB set0,slot n+5的频域资源结果包括RB set1,因此,最终确定的第二资源是slot n的RB set0,slot n+4的RB set0和slot n+5的RB set1。即,在slot n的RB set0,slot n+4的RB set0和slot n+5的RB set1的预设资源位置上发送第一信息。
在一实施例中,频域资源结果满足以下四个条件中的至少之一:
条件b1:频域资源结果不包括第三资源,第三资源为第一通信节点发送第二信息的资源,第二信息包括SL信号、SL信道、NR上行链路信号、NR上行链路信道中的至少一项。
SL信号和SL信道可以包括:PSCCH、PSSCH、PSFCH、S-SSB、CSI-RS中的至少一项;NR上行链路信号和NR上行链路信道可以包括PUSCH、PUCCH、SRS、PRS、PTRS中的至少一项。
条件b2:频域资源结果不包括第四资源,第四资源根据检测结果确定,第四资源为第二通信节点在第一资源中预留的资源。
在条件b2的基础上,可选的,检测结果包括确定第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP;第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP大于或者等于第一预设阈值。即,只有在第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP大于或者等于第一预设阈值时,频域资源结果才不包括第四资源;反之,频域资源结果可以包括第四资源。
条件b3:频域资源结果不包括第五资源,第五资源为资源占用信息对应的资源,资源占用信息携带在第二通信节点在反馈资源上发送的反馈信息中。
在条件b3的基础上,可选的,反馈信息所在的反馈资源上的RSRP大于或者等于第二预设阈值。即,只有在反馈信息所在的反馈资源上的RSRP大于或者等于第二预设阈值时,频域资源结果才不包括第五资源;反之,频域资源结果可以包括第五资源。
在一实施例中,每个RB set或者每个资源池配置反馈资源的时域信息和频域信息中的至少一项;反馈资源的时域信息包括周期N、周期内的offset为k、时隙内的符号位置中的至少一项;反馈资源与反馈资源所在时隙之后的时隙索引对应,对应关系根据相对时隙索引和时隙内的反馈资源位置确定;或者,反馈资源与反馈资源所在时隙之后的候选信道资源索引对应,对应关系根据相对候选信道资源时频索引和时隙内的反馈资源位置确定。
其中,候选信道可以为PSCCH/PSSCH信道。
条件b4:频域资源结果不包括第六资源,第六资源为第一通信节点需要在第二资源上接收第三信息的资源,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
下面,罗列一些示例性实施方式,用于解释说明本申请上述实施例中时域资源结果满足的五个条件,下述示例性实施方式可以单一执行,也可以组合执行。另外,本申请上述实施例中频域资源结果满足的四个条件与下述实施例类似,为了简洁,此处不再赘述。
在第一个示例性实施方式中,图10示出了一实施例提供的一种时域资源结果的示意图。如图10所示,假设UE1以第一信道接入类型进行信道侦听获得的COT对应6个slot,UE1以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道对应2个RB set,6个slot分别为slot n,slot n+1,slot n+2,slot n+3,slot n+4和slot n+5,2个RB set分别为RB set0和RB set1。
由于UE1在RB set0的slot n和slot n+2上发送第二信息、在RB set1的slot n和slot n+2上发送第二信息,为了保证COT内信道的持续占用,在RB set0上,UE1在COT内的6个slot上的slot n+1,slot n+3,slot n+4,slot n+5这4个slot的预设资源位置上发送第一信息,在slot n和slot n+2的预设资源位置上不需要发送第一信息;同理,在RBset1上,UE1在COT内的6个slot上的slot n+1,slot n+3,slot n+4,slot n+5这4个slot的预设资源位置上发送第一信息,在slot n和slot n+2的预设资源位置上不需要发送第一信息。
在第二个示例性实施方式中,图11示出了一实施例提供的另一种时域资源结果的示意图。如图11所示,假设UE1以第一信道接入类型进行信道侦听获得的COT对应6个slot,UE1以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道对应2个RB set,6个slot分别为slot n,slot n+1,slot n+2,slot n+3,slot n+4和slot n+5,2个RB set分别为RB set0和RB set1。
对于RB set0,UE1根据时刻n之前的检测结果,确定UE2在slot n+4上有数据传输(即slot n+4被UE2预留),并且UE1在RB set0的slot n上发送第二信息;对于RB set1,UE1根据时刻n之前的检测结果,确定UE2在slot n+2上有数据传输(即slot n+2被UE2预留),并且UE1在RB set1的slot n上发送第二信息。
因此,在RBset0上,UE1在COT内的6个slot上的slot n+1,slot n+2,slot n+3,slot n+5这4个slot的预设资源位置上发送第一信息,在slot n和slot n+4的预设资源位置上不需要发送第一信息;同理,在RBset1上,UE1在COT内的6个slot上的slot n+1,slot n+3,slot n+4,slot n+5这4个slot的预设资源位置上发送第一信息,在slot n和slot n+2的预设资源位置上不需要发送第一信息。
如果RBset1的slot n+2在PSCCH或者PSSCH上的DMRS的RSRP小于第一预设阈值,那么,UE1仍旧需要在RBset1的slot n+2的预设资源位置上发送第一信息。
在第三个示例性实施方式中,图12示出了一实施例提供的又一种时域资源结果的示意图。如图12所示,假设反馈资源PSFCH的周期为2,对应PSFCH之后的2个连续slot。
UE1发送了COT共享信息后,如果有三个UE2要使用该COT,这三个UE2分别记为UE2a、UE2b和UE2c,那么UE2a、UE2b和UE2c分别在时隙对应的反馈资源(如PSFCH资源)上发送反馈信息,UE1在slot n+1和slot n+3上根据PSFCH反馈资源上的接收信息,确认了在slot n+2,slot n+3和slot n+5上分别有UE发射数据,那么UE1只需要在COT内的slot n+4的预设资源位置上发送第一信息,slot n+2,slot n+3和slot n+5的预设资源位置上不需要发送第一信 息,slot n和slot n+1由于UE1上发送了第二信息,因此也不需要发送第一信息。
如果slot n+2对应的反馈信息所在的反馈资源上的RSRP小于第二预设阈值,那么,UE1仍旧需要在slot n+2的预设资源位置上发送第一信息。
在第四个示例性实施方式中,参考图10,假设UE1以第一信道接入类型进行信道侦听获得的COT对应6个slot,UE1以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道对应2个RB set,6个slot分别为slot n,slot n+1,slot n+2,slot n+3,slot n+4和slot n+5,2个RB set分别为RB set0和RB set1。
由于UE1在RB set0的slot n和slot n+2上发送第二信息、在RB set1的slot n和slot n+2上接收第三信息,为了保证COT内信道的持续占用,在RBset0上,UE1在COT内的6个slot上的slot n+1,slot n+3,slot n+4,slot n+5这4个slot的预设资源位置上发送第一信息,在slot n和slot n+2的预设资源位置上不需要发送第一信息;同理,在RBset1上,UE1在COT内的6个slot上的slot n+1,slot n+3,slot n+4,slot n+5这4个slot的预设资源位置上发送第一信息,在slot n和slot n+2的预设资源位置上不需要发送第一信息。
在第五个示例性实施方式中,图13示出了一实施例提供的再一种时域资源结果的示意图。如图13所示,UE1在slot n初始化COT成功,并在slot n上发送第二信息,在slot n之前,确定了与slot n的数据相同的RB set下,slot n+2和slot n+4上有数据传输,那么UE1确定了COT内slot 4为最后一个传输slot,那么UE1在slot n+1和slot n+3这2个slot的预设资源位置上发送第一信息,在slot n+2,slot n+4,slot n+5的预设资源位置上均不用发送第一信息。slot n由于UE1上发送了第二信息,因此也不需要发送第一信息。
在本申请中,当UE1发送了第一信号之后,为了不影响block其他不共享该UE1COT的UE正常发射数据,可以认为3GPP系统内UE之间的第一信息不影响UE的LBT。
图14示出了一实施例提供的一种信息发送装置的结构示意图,该装置可以配置于通信节点中,如图14所示,该装置包括:配置模块10、确定模块11和发送模块12。
配置模块10,设置为配置资源池的每个资源块集合RB set内的预设资源位置,预设资源位置包括第一信息的频域资源位置,第一信息包括占用信号和占用信道中的至少一项;确定模块11,设置为确定第一资源,第一资源包括用于发送第一信息的候选时域资源和候选RB set;以及根据第一资源,确定第二资 源;发送模块12,设置为在第二资源的预设资源位置上发送第一信息。
本实施例提供的信息发送装置为实现图7所示实施例的信息发送方法,本实施例提供的信息发送装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,预设资源位置采用位图bitmap指示;bitmap与RB set内的资源块RB一一对应;或者,bitmap与RB set内的交织一一对应。
在一实施例中,候选时域资源包括第一通信节点以第一信道接入类型进行信道侦听获得的信道占用时间COT内的以下资源中的至少之一:
所有时隙,部分时隙,时隙内的物理边链路控制信道PSCCH符号,时隙内的物理边链路共享信道PSSCH符号,时隙内的物理边链路反馈信道PSFCH符号,时隙内的GAP符号。
在一实施例中,候选RB set包括第一通信节点以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道的至少一个RB set。
在一实施例中,发送模块12,在第二资源的预设资源位置上发送第一信息前,还设置为使用第二信道接入类型进行信道侦听。
在一实施例中,确定模块11,是设置为确定候选RB set中的每个RB set的时域资源结果,时域资源结果包括在RB set内候选时域资源中需要发送第一信息的时域资源;根据候选RB set中的所有RB set的时域资源结果,确定第二资源。
在一实施例中,确定模块11,是设置为确定候选时域资源中的每个时域资源的频域资源结果,频域资源结果包括在时域资源上候选RB set中需要发送第一信息的RB set。
在一实施例中,时域资源结果或者频域资源结果不包括第三资源,第三资源为第一通信节点发送第二信息的资源,第二信息包括侧行链路SL信号、SL信道、新无线电NR上行链路信号、NR上行链路信道中的至少一项。
在一实施例中,时域资源结果或者频域资源结果不包括第四资源,第四资源根据检测结果确定,第四资源为第二通信节点在第一资源中预留的资源。
在一实施例中,检测结果包括确定第四资源关联的PSCCH或者PSSCH上的解调参考信号DMRS的参考信号接收功率RSRP;第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP大于或者等于第一预设阈值。
在一实施例中,时域资源结果或者频域资源结果不包括第五资源,第五资源为资源占用信息对应的资源,资源占用信息携带在第二通信节点在反馈资源 上发送的反馈信息中。
在一实施例中,反馈信息所在的反馈资源上的RSRP大于或者等于第二预设阈值。
在一实施例中,每个RB set或者每个资源池配置反馈资源的时域信息和频域信息中的至少一项;反馈资源的时域信息包括周期N、周期内的时隙偏移offset为k、时隙内的符号位置中的至少一项;反馈资源与反馈资源所在时隙之后的时隙索引对应,对应关系根据相对时隙索引和时隙内的反馈资源位置确定;或者,反馈资源与反馈资源所在时隙之后的候选信道资源索引对应,对应关系根据相对候选信道资源时频索引和时隙内的反馈资源位置确定。
在一实施例中,时域资源结果或者频域资源结果不包括第六资源,第六资源为第一通信节点需要在第二资源上接收第三信息的资源,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
在一实施例中,时域资源结果不包括第七资源,第七资源为第一通信节点在RB set上最后一个有效的传输所在的时域资源之后的所有时域资源。
在一实施例中,第七资源根据以下方式中的至少之一确定:通过检测结果确定;通过第一通信节点选择的发送资源确定;通过第二通信节点的反馈信息确定;通过第六资源确定,第六资源为第一通信节点需要在第二资源上接收第三信息的资源,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
在一实施例中,确定模块11,是设置为需要在候选RB set中的所有RB set中的任一RB set的目标时域位置接收第三信息,在候选RB set中的所有RB set的目标时域位置均不发送第一信息,第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
本申请实施例还提供了一种通信节点,包括:处理器,处理器用于在执行计算机程序时实现如本申请任意实施例所提供的方法。通信节点可以为本申请任意实施例所提供的终端设备,本申请对此不作限制。
示例性的,下述实施例提供一种通信节点为UE的结构示意图。
图15示出了一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、 导航装置、车载终端设备、车载显示终端、车载电子后视镜等等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等等的固定终端设备。
如图15所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等等。图15示出了包括多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。
本实施例中,无线通信单元51允许UE 50与基站或网络之间的无线电通信。A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等等,并且生成用于控制UE 50的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视觉、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的 任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序操作,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序操作与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (19)

  1. 一种信息发送方法,应用于第一通信节点,包括:
    配置资源池的每个资源块集合RB set内的预设资源位置,所述预设资源位置包括第一信息的频域资源位置,所述第一信息包括占用信号和占用信道中的至少一项;
    确定第一资源,所述第一资源包括用于发送所述第一信息的候选时域资源和候选RB set;
    根据所述第一资源,确定第二资源,并在所述第二资源的所述预设资源位置上发送所述第一信息。
  2. 根据权利要求1所述的方法,其中,所述预设资源位置采用位图bitmap指示;
    所述bitmap与所述RB set内的资源块RB一一对应;或者,所述bitmap与所述RB set内的交织一一对应。
  3. 根据权利要求1所述的方法,其中,所述候选时域资源包括所述第一通信节点以第一信道接入类型进行信道侦听获得的信道占用时间COT内的以下资源中的至少之一:
    所有时隙,部分时隙,时隙内的物理边链路控制信道PSCCH符号,时隙内的物理边链路共享信道PSSCH符号,时隙内的物理边链路反馈信道PSFCH符号,时隙内的GAP符号。
  4. 根据权利要求1所述的方法,其中,所述候选RB set包括所述第一通信节点以第一信道接入类型或者第二信道接入类型中的至少之一进行信道侦听获得的信道的至少一个RB set。
  5. 根据权利要求1所述的方法,在所述第二资源的所述预设资源位置上发送所述第一信息前,还包括:
    使用第二信道接入类型进行信道侦听。
  6. 根据权利要求1所述的方法,其中,所述根据所述第一资源,确定第二资源,包括:
    确定所述候选RB set中的每个RB set的时域资源结果,所述时域资源结果包括在所述RB set内所述候选时域资源中需要发送所述第一信息的时域资源;
    根据所述候选RB set中的所有RB set的时域资源结果,确定所述第二资源。
  7. 根据权利要求1所述的方法,其中,所述根据所述第一资源,确定第二资源,包括:
    确定所述候选时域资源中的每个时域资源的频域资源结果,所述频域资源结果包括在所述时域资源上所述候选RB set中需要发送所述第一信息的RB set。
  8. 根据权利要求6或7所述的方法,其中,所述时域资源结果或者所述频域资源结果不包括第三资源,所述第三资源为所述第一通信节点发送第二信息的资源,所述第二信息包括侧行链路SL信号、SL信道、新无线电NR上行链路信号、NR上行链路信道中的至少一项。
  9. 根据权利要求6或7所述的方法,其中,所述时域资源结果或者所述频域资源结果不包括第四资源,所述第四资源根据检测结果确定,所述第四资源为第二通信节点在所述第一资源中预留的资源。
  10. 根据权利要求9所述的方法,其中,所述检测结果包括确定所述第四资源关联的PSCCH或者PSSCH上的解调参考信号DMRS的参考信号接收功率RSRP;
    所述第四资源关联的PSCCH或者PSSCH上的DMRS的RSRP大于或者等于第一预设阈值。
  11. 根据权利要求6或7所述的方法,其中,所述时域资源结果或者所述频域资源结果不包括第五资源,所述第五资源为资源占用信息对应的资源,所述资源占用信息携带在第二通信节点在反馈资源上发送的反馈信息中。
  12. 根据权利要求11所述的方法,其中,所述反馈信息所在的所述反馈资源上的RSRP大于或者等于第二预设阈值。
  13. 根据权利要求11所述的方法,其中,每个RB set或者每个资源池配置所述反馈资源的时域信息和频域信息中的至少一项;所述反馈资源的时域信息包括周期N、周期内的时隙偏移offset为k、时隙内的符号位置中的至少一项;
    所述反馈资源与所述反馈资源所在时隙之后的时隙索引对应,对应关系根据相对时隙索引和时隙内的反馈资源位置确定;或者,所述反馈资源与所述反馈资源所在时隙之后的候选信道资源索引对应,对应关系根据相对候选信道资源时频索引和时隙内的反馈资源位置确定。
  14. 根据权利要求6或7所述的方法,其中,所述时域资源结果或者所述频域资源结果不包括第六资源,所述第六资源为所述第一通信节点需要在所述第二资源上接收第三信息的资源,所述第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
  15. 根据权利要求6所述的方法,其中,所述时域资源结果不包括第七资源,所述第七资源为所述第一通信节点在所述RB set上最后一个有效的传输所 在的时域资源之后的所有时域资源。
  16. 根据权利要求15所述的方法,其中,所述第七资源根据以下方式中的至少之一确定:
    通过检测结果确定;
    通过所述第一通信节点选择的发送资源确定;
    通过第二通信节点的反馈信息确定;
    通过第六资源确定,所述第六资源为所述第一通信节点需要在所述第二资源上接收第三信息的资源,所述第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
  17. 根据权利要求6所述的方法,其中,所述根据所述候选RB set中的所有RB set的时域资源结果,确定所述第二资源,包括:
    所述第一通信节点需要在所述候选RB set中的所有RB set中的一RB set的目标时域位置接收第三信息,所述第一通信节点在所述候选RB set中的所有RB set的所述目标时域位置均不发送所述第一信息,所述第三信息包括SL信号、SL信道、NR下行信号、NR下行信道、NR上行信号、NR上行信道中的至少一项。
  18. 一种通信节点,包括:处理器;所述处理器设置为在执行计算机程序时实现如权利要求1-17中任一所述的信息发送方法。
  19. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-17中任一所述的信息发送方法。
PCT/CN2023/099105 2022-06-30 2023-06-08 信息发送方法,通信节点及存储介质 WO2024001713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210772495.4 2022-06-30
CN202210772495.4A CN115866758A (zh) 2022-06-30 2022-06-30 一种信息发送方法,通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2024001713A1 true WO2024001713A1 (zh) 2024-01-04

Family

ID=85660246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099105 WO2024001713A1 (zh) 2022-06-30 2023-06-08 信息发送方法,通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN115866758A (zh)
WO (1) WO2024001713A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115866758A (zh) * 2022-06-30 2023-03-28 中兴通讯股份有限公司 一种信息发送方法,通信节点及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386736A (zh) * 2017-11-10 2020-07-07 华为技术有限公司 一种通信方法、装置以及系统
US20210092783A1 (en) * 2019-09-25 2021-03-25 Qualcomm Incorporated Channel occupancy time (cot) sharing for sidelink
CN113396633A (zh) * 2019-02-14 2021-09-14 索尼集团公司 用户设备、网络侧设备、无线通信方法和存储介质
WO2022078387A1 (zh) * 2020-10-15 2022-04-21 维沃移动通信有限公司 信息处理方法、装置及通信设备
WO2022085799A1 (en) * 2020-10-22 2022-04-28 Sharp Kabushiki Kaisha Terminal devices, base station devices, and communication methods
CN115866758A (zh) * 2022-06-30 2023-03-28 中兴通讯股份有限公司 一种信息发送方法,通信节点及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386736A (zh) * 2017-11-10 2020-07-07 华为技术有限公司 一种通信方法、装置以及系统
CN113396633A (zh) * 2019-02-14 2021-09-14 索尼集团公司 用户设备、网络侧设备、无线通信方法和存储介质
US20210092783A1 (en) * 2019-09-25 2021-03-25 Qualcomm Incorporated Channel occupancy time (cot) sharing for sidelink
WO2022078387A1 (zh) * 2020-10-15 2022-04-21 维沃移动通信有限公司 信息处理方法、装置及通信设备
WO2022085799A1 (en) * 2020-10-22 2022-04-28 Sharp Kabushiki Kaisha Terminal devices, base station devices, and communication methods
CN115866758A (zh) * 2022-06-30 2023-03-28 中兴通讯股份有限公司 一种信息发送方法,通信节点及存储介质

Also Published As

Publication number Publication date
CN115866758A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
EP3965341A1 (en) Rate matching method, device and storage medium
JP7249405B2 (ja) V2xトラフィックに対応するための制御チャネル構造設計
US20230171792A1 (en) Method and apparatus for sidelink communication
WO2024001713A1 (zh) 信息发送方法,通信节点及存储介质
CN116326057A (zh) 用于免许可频谱中的nr侧链通信的harq反馈
CN115699970A (zh) 确定要避免的传输
JP2023517032A (ja) ネットワーク装置、端末装置、及び方法
KR20210101324A (ko) 전력 제어 방법 및 장치
WO2021081951A1 (zh) 上行传输方法及通信装置
JP2022540181A (ja) アンライセンススペクトル上のチャネル状態指示方法、装置及び記憶媒体
WO2021185353A1 (zh) 一种资源确定方法及装置
WO2020237510A1 (zh) 控制信令的检测方法、装置、设备及存储介质
WO2023134163A1 (zh) 一种信息接收、发送方法,通信节点及存储介质
WO2024087116A1 (zh) 一种通信方法及装置
WO2023202350A1 (zh) 数据传输的方法和装置
US11937276B1 (en) Method and device for sidelink communication
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备
EP4346288A1 (en) Method for determining service access point, and information sending method, communication node and storage medium
WO2022077226A1 (en) Discontinuous reception in sidelink communication
WO2022206914A1 (zh) 监听方法与装置、终端和网络设备
US20230363053A1 (en) Method for sidelink communication, terminal device, non-transitory computer-readable storage medium
WO2021226747A1 (en) Resource selection in sidelink
US20230403700A1 (en) Method for Beam Mapping
WO2022002342A1 (en) Communication system
CN117939655A (zh) 一种载波指示方法、系统、通信实体及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829897

Country of ref document: EP

Kind code of ref document: A1