WO2020237510A1 - 控制信令的检测方法、装置、设备及存储介质 - Google Patents

控制信令的检测方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020237510A1
WO2020237510A1 PCT/CN2019/088857 CN2019088857W WO2020237510A1 WO 2020237510 A1 WO2020237510 A1 WO 2020237510A1 CN 2019088857 W CN2019088857 W CN 2019088857W WO 2020237510 A1 WO2020237510 A1 WO 2020237510A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
information
configuration information
configuration
bit
Prior art date
Application number
PCT/CN2019/088857
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980000978.9A priority Critical patent/CN110337794B/zh
Priority to EP19931257.0A priority patent/EP3979537A4/en
Priority to PCT/CN2019/088857 priority patent/WO2020237510A1/zh
Priority to US17/613,827 priority patent/US20220240314A1/en
Publication of WO2020237510A1 publication Critical patent/WO2020237510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • This application relates to the field of communications, and in particular to a method, device, equipment and storage medium for detecting control signaling.
  • the terminal In the process of wireless communication between the terminal and the base station, the terminal needs to detect the downlink control information (DCI) sent by the base station on the Physical Downlink Control Channel (PDCCH), and then according to the downlink control
  • the signaling indicates to receive data from a physical downlink shared channel (Physical Downlink Share Channel, PDSCH), and the detection position of the DCI in the PDCCH is pre-configured by the base station for the terminal, or predefined by the communication protocol.
  • DCI downlink control information
  • PDSCH Physical Downlink Control Channel
  • the fifth generation mobile communication technology (the 5th generation mobile communication, 5G) system introduces the application of unlicensed frequency bands (UFB), and when the base station sends downlink control signaling to the terminal through the unlicensed frequency band, because The base station needs to use Listen Before Talk (LBT) to detect the channel status, and then occupy the channel when the channel status is idle. Therefore, it cannot predict when the channel can be occupied, which leads to pre-configured control signaling
  • LBT Listen Before Talk
  • the method of detecting location is not applicable to unlicensed frequency bands.
  • the embodiments of the present application provide a control signaling detection method, device, device, and storage medium, which can be used to solve the problem that the method of pre-configured control signaling detection position is not applicable to unlicensed frequency bands.
  • the technical solution is as follows.
  • the technical solution is as follows:
  • a method for detecting control signaling includes:
  • the downlink control information includes an information field, and the information field is used to indicate a detection position of the control signaling in an unlicensed frequency band;
  • the information field includes a fixed length bitmap (bitmap), and each bit in the fixed length bitmap corresponds to a time domain unit;
  • the bit is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • the value of the bit when the value of the bit is the first value, it indicates that the time domain unit corresponding to the bit needs to detect the control signaling;
  • the value of the bit is the second value, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the method further includes:
  • the first configuration signaling includes: at least one of radio resource control (Radio Resource Control, RRC) signaling, media access control element (MAC CE), or physical layer signaling.
  • RRC Radio Resource Control
  • MAC CE media access control element
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information, and the configuration information is used to indicate a time domain unit that needs to detect the control signaling on the physical downlink control channel.
  • the indication information includes an identifier of the target configuration information, and the identifier has a corresponding relationship with the target configuration information in the configuration information set.
  • the correspondence between the configuration information in the configuration information set and the identifier is a predefined correspondence in the terminal.
  • the method further includes:
  • the second configuration signaling includes: at least one of RRC signaling, MAC CE, or physical layer signaling.
  • a method for detecting control signaling includes:
  • the downlink control information includes an information field, the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band, and the detection position is that the control signaling is in the unlicensed frequency band Possible sending locations in.
  • the information field includes a fixed-length bitmap, and each bit in the fixed-length bitmap corresponds to a time domain unit;
  • the bit is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • the value of the bit when the value of the bit is the first value, it indicates that the time domain unit corresponding to the bit needs to detect the control signaling;
  • the value of the bit is the second value, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the method further includes:
  • the first configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information, and the configuration information is used to indicate a time domain unit that needs to detect the control signaling on the physical downlink control channel.
  • the indication information includes an identifier of the target configuration information, and the identifier has a corresponding relationship with the target configuration information in the configuration information set.
  • the correspondence between the configuration information in the configuration information set and the identifier is a predefined correspondence in the access network device.
  • the method further includes:
  • the second configuration signaling includes: at least one of RRC signaling, MAC CE, or physical layer signaling.
  • a device for detecting control signaling includes:
  • a receiving module configured to receive downlink control information, where the downlink control information includes an information field, and the information field is used to indicate a detection position of the control signaling in an unlicensed frequency band;
  • the receiving module is further configured to receive the control signaling according to the detection position of the information field in the unlicensed frequency band.
  • the information field includes a fixed-length bitmap, and each bit in the fixed-length bitmap corresponds to a time domain unit;
  • the bit is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • the value of the bit when the value of the bit is the first value, it indicates that the time domain unit corresponding to the bit needs to detect the control signaling;
  • the value of the bit is the second value, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the receiving module is further configured to receive first configuration signaling, where the first configuration signaling is used to configure the fixed length;
  • the first configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information, and the configuration information is used to indicate a time domain unit that needs to detect the control signaling on the physical downlink control channel.
  • the indication information includes an identifier of the target configuration information, and the identifier has a corresponding relationship with the target configuration information in the configuration information set.
  • the corresponding relationship between the configuration information in the configuration information set and the identifier is a predefined corresponding relationship in the terminal.
  • the receiving module is further configured to receive second configuration signaling, where the second configuration signaling is used to configure the correspondence between the configuration information and the identifier ;
  • the second configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • a device for detecting control signaling includes:
  • the sending module is configured to send downlink control information, the downlink control information includes an information field, the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band, and the detection position is the control signaling The possible sending location in the unlicensed frequency band.
  • the information field includes a fixed-length bitmap, and each bit in the fixed-length bitmap corresponds to a time domain unit;
  • the bit is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • the value of the bit when the value of the bit is the first value, it indicates that the time domain unit corresponding to the bit needs to detect the control signaling;
  • the value of the bit is the second value, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the sending module is further configured to send first configuration signaling, where the first configuration signaling is used to configure the fixed length;
  • the first configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information, and the configuration information is used to indicate a time domain unit that needs to detect the control signaling on the physical downlink control channel.
  • the indication information includes an identifier of the target configuration information, and the identifier has a corresponding relationship with the target configuration information in the configuration information set.
  • the correspondence between the configuration information in the configuration information set and the identifier is a predefined correspondence in the access network device.
  • the sending module is further configured to send second configuration signaling, and the second configuration signaling is used to configure the correspondence between the configuration information and the identifier ;
  • the second configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • a terminal in another aspect, includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the control signaling detection method described in the foregoing embodiment of the present application.
  • an access network device in another aspect, and the access network device includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the control signaling detection method described in the foregoing embodiment of the present application.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the above at least one instruction, at least one program, code set or instruction The set is loaded and executed by the processor to implement the control signaling detection method described in the foregoing embodiment of the present application.
  • the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band, and the terminal receives the control signaling from the physical downlink control channel according to the information field, thereby implementing the control signaling
  • the data exchange with the base station enables the terminal to accurately receive control signaling on the unlicensed frequency band, and realizes the wireless communication between the terminal and the base station through the unlicensed frequency band.
  • FIG. 1 is a schematic diagram of occupation after detecting the channel state according to the LBT mechanism according to an exemplary embodiment of the present application
  • Fig. 2 is a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • FIG. 3 is a flowchart of a method for detecting control signaling provided by another exemplary embodiment of the present application.
  • Fig. 4 is a flowchart of a method for detecting control signaling provided by another exemplary embodiment of the present application.
  • FIG. 5 is a schematic diagram of detecting PDCCH according to a fixed-length bitmap according to an exemplary embodiment of the present application
  • FIG. 6 is a schematic diagram of detecting PDCCH according to a fixed-length bitmap according to another exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of a method for detecting control signaling according to another exemplary embodiment of the present application.
  • Fig. 8 is a block diagram of a device for detecting control signaling according to another exemplary embodiment of the present application.
  • Fig. 9 is a block diagram of a device for detecting control signaling according to another exemplary embodiment of the present application.
  • FIG. 10 is a block diagram of a terminal provided by an exemplary embodiment of the present application.
  • Fig. 11 is a block diagram of an access network device provided by an exemplary embodiment of the present application.
  • the terminal In the process of wireless communication between the terminal and the base station, the terminal needs to detect the downlink control signaling (Downlink Control Information, DCI) sent by the base station on the Physical Downlink Control Channel (PDCCH), and then according to the downlink control signal
  • the indication of the control signaling is to receive data from a physical downlink shared channel (Physical Downlink Share Channel, PDSCH), and the detection position of the downlink control signaling in the PDCCH is pre-configured by the base station for the terminal or predefined by the communication protocol.
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Share Channel
  • the 5th generation mobile communication (5G) system has introduced the application of Unlicensed Frequency Bands (UFB).
  • UFB Unlicensed Frequency Bands
  • multiple systems such as : Wi-Fi, radar and other systems
  • LBT Listen Before Talk
  • the base station When the channel state is idle, the channel is occupied. Therefore, the base station cannot predict when the channel can be occupied. As a result, the method of detecting the position through pre-configured control signaling is not suitable for unlicensed frequency bands.
  • the sender of the base station or other system limits the channel occupation time on the unlicensed frequency band by the Maximum Channel Occupancy Time (MCOT), that is, the sender performs a channel state detection and successfully occupies the channel After that, the maximum channel occupation duration cannot exceed the duration defined by MCOT.
  • MCOT Maximum Channel Occupancy Time
  • the transmitter continuously detects the channel status, and when the LBT passes, the channel will be occupied within the duration defined by MCOT; and When the LBT fails, the sender continues to detect the channel status, and when the LBT passes, the channel is occupied again within the time period defined by MCOT.
  • FIG. 2 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include a core network 21, an access network 22, and a terminal 23.
  • the core network 21 includes several core network devices 210.
  • the core network equipment 210 includes access and mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), and user plane management functions (User Plane Function, UPF) and other equipment.
  • AMF uses to control terminal access rights and switching functions, SMF is used to provide server continuity and uninterrupted user experience of the server, such as: IP address and anchor point changes.
  • the access network 22 includes several access network devices 220.
  • the access network device 220 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • LTE Long Term Evolution
  • eNodeB eNodeB
  • gNode B In the New Radio (NR) system
  • gNode B In the New Radio (NR) system
  • the name "base station” may be described and will change.
  • the above-mentioned devices that provide wireless communication functions for terminals are collectively referred to as access network devices.
  • the terminal 23 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of terminal (User Equipment, UE), and mobile stations (Mobile Station). Station, MS), terminal (terminal device), etc.
  • terminals the devices mentioned above are collectively referred to as terminals.
  • the access network device 220 and the terminal 23 communicate with each other through a certain air interface technology, such as a Uu interface.
  • wireless communication may be performed through a licensed frequency band, or wireless communication may be performed through an unlicensed frequency band.
  • wireless communication may be performed through an unlicensed frequency band.
  • the description is given as an example of wireless communication between the terminal 23 and the access network device 220 through an unlicensed frequency band.
  • FIG. 3 shows a flowchart of a method for detecting control signaling provided by an exemplary embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 2 as an example for description.
  • the method includes:
  • Step 301 The access network device sends downlink control information to the terminal, the downlink control information includes an information field, and the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band;
  • the detection position is a possible sending position of the control signaling in the unlicensed frequency band.
  • the detection position corresponds to a time domain unit on the physical downlink control channel that needs to detect control signaling.
  • the time domain unit may be any one of 1 symbol (English: symbol), 1 time slot (English: slot), 1 subframe, and 1 radio frame.
  • a symbol is used as a basic time domain unit as an example for description.
  • the access network device performs channel state detection on the physical downlink control channel of the unlicensed frequency band.
  • the channel state detection is performed through clear channel assessment (CCA).
  • CCA clear channel assessment
  • ED Energy detection
  • the channel status is reported as idle, and an information field is generated based on the detection result.
  • the channel detection result includes idle or The time domain unit that is busy and the detection result is idle is the time domain unit where the access network device may send control signaling to the terminal.
  • the information field includes at least one of the following information fields:
  • Each bit in the fixed-length bitmap corresponds to a time domain unit, where the bits are used to indicate whether the corresponding time domain unit needs to be detected for control signaling;
  • the indication information is used to indicate the target configuration information in the configuration information set.
  • the configuration information set includes one or more configuration information.
  • the configuration information is used to indicate when control signaling needs to be detected on the PDCCH. Domain unit.
  • Step 302 The terminal receives downlink control information sent by the access network device
  • the access network device sends the downlink control information to the terminal through a licensed frequency band, or the access network device sends the downlink control information to the terminal through an unlicensed frequency band.
  • Step 303 The terminal receives control signaling according to the detection position of the information field in the unlicensed frequency band.
  • the terminal receives the control signaling according to the detection position of the information field in the unlicensed frequency band of the PDCCH.
  • the method provided in this embodiment adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal receives the information from the physical downlink control channel according to the information field.
  • Control signaling so as to realize data interaction with the base station according to the control signaling, realize that the terminal can accurately receive the control signaling on the unlicensed frequency band, and realize the wireless communication between the terminal and the base station through the unlicensed frequency band.
  • the steps executed by the access network device can be individually implemented as a detection method for the control signaling on the access network device side, and the steps executed by the terminal can be individually implemented as the control signaling on the terminal side. Signaling detection method.
  • FIG. 4 is a flowchart of a control signaling detection method provided by another exemplary embodiment of the present application, and this method is applied to FIG. 2
  • the method includes:
  • Step 401 The access network device sends downlink control information to the terminal.
  • the downlink control information includes an information field, and the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band.
  • the detection position is a possible sending position of the control signaling in the unlicensed frequency band.
  • the information field includes a fixed-length bitmap, and each bit in the fixed-length bitmap corresponds to a time domain unit.
  • each bit in the fixed-length bitmap corresponds to a symbol, where the bit It is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • each bit in the fixed-length bitmap corresponds to a time domain unit, and the bit is used to indicate whether the corresponding time domain unit in the unlicensed frequency band needs to detect the control signaling through different values.
  • the value of the bit is the first value, it means that the time domain unit corresponding to the bit needs to detect the control signaling, and when the value of the bit is the second value, it means that the bit corresponds to The time domain unit does not need to detect control signaling.
  • the bit value when the bit value is 1, it means that the time domain unit corresponding to the bit needs to detect the control signaling; When the value of the bit is 0, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the bitmap of DCI information 500 includes 28 bits, each bit corresponds to a symbol, and 1 slot includes 14 symbols, then the first 14 bits correspond to slot1, and the last 14 bits The bit corresponds to slot2, and each bit corresponds to a value of 0 or 1.
  • the bit value is 1, it means that the symbol corresponding to the bit needs to be checked for control signaling, and when the bit value is 0 It means that the symbol corresponding to the bit does not need to be detected for control signaling.
  • the value of each bit in the bitmap is "1000001000010000000001000000" in turn, which corresponds to the time domain unit of the physical downlink control channel.
  • the time domain units that need to detect the control signaling are the first symbol, the seventh symbol, and the twelfth symbol of slot1, and the eighth symbol of slot2.
  • the access network device predefines a format for sending DCI; or, the access network device predefines multiple formats for sending DCI, and selects from the multiple DCI formats according to the size of the MCOT when performing wireless communication with the terminal.
  • the length of the information field contained in the DCI of different formats is different.
  • a DCI adapted to the size of the MCOT is selected. For example, if the size of MCOT is 10 slots, the length of DCI is the length of the information field that contains the 10 slots. For example, each slot includes 14 symbols, and each symbol corresponds to a bit, then the DCI The length can be the length that contains 140bit information.
  • the information length of the DCI includes the information length of the fixed-length bitmap, for example, the DCI includes a 28-bit bitmap.
  • the DCI also includes other fields besides the bitmap, for example, the DCI0 also includes a flag bit distinguished by format 0 and format 1A, a frequency modulation flag bit, etc., optionally, the DCI also includes redundant bits.
  • Step 402 The terminal receives downlink control information sent by the access network device;
  • the terminal receives the DCI sent by the access network device through the authorized frequency band or the unlicensed frequency band, and reads the value of each bit of the bitmap in the DCI.
  • the access network device may send DCI to the terminal through the link on the licensed frequency band, and indicate the result of the channel state detection of the access network device on the unlicensed frequency band through the DCI; Or, after the access network equipment completes the channel state detection on the unlicensed frequency band, it can send information to the terminal through the link on the unlicensed frequency band, such as sending DCI to the terminal through the unlicensed frequency band, and instructing the access network equipment to be in the unlicensed frequency band through DCI.
  • the channel status detection result on the licensed frequency band.
  • Step 403 The terminal detects the time domain unit that needs to be detected according to the bitmap in the downlink control information.
  • each bit in the fixed-length bitmap corresponds to a time domain unit, and the bit is used to indicate whether the corresponding time domain unit needs to detect control signaling through different values.
  • the value of the bit when the value of the bit is the first value, it means that the time domain unit corresponding to the bit needs to detect control signaling; when the value of the bit is the second value, it means that The time domain unit corresponding to the bit does not need to detect the control signaling.
  • the first value is 1 and the second value is 0 as an example for description.
  • bit value is 1, it means that the time domain unit corresponding to the bit needs to detect control signaling;
  • value of the bit is 0, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the fixed length of the above-mentioned bitmap bitmap may be predefined, or pre-configured by the access network equipment to the terminal, for example: the access network equipment sends the first configuration signaling to the terminal, and the first configuration signaling Used to configure a fixed length.
  • the first configuration signaling includes at least one of RRC signaling, MAC CE), or physical layer signaling.
  • the occupation of the channel by the access network equipment is restricted by MCOT
  • the length of the information field in the DCI can correspond to the size of the MCOT.
  • the size of the MCOT is 10 slots, and each slot includes 14 symbol, and each symbol corresponds to a 1-bit character in the bitmap
  • the DCI can include the 140-bit bitmap.
  • the access network device may send the DCI to indicate the detection position within an MCOT, for example, the length of the bitmap in the DCI is 28 bits, Corresponding to 28 symbols, that is, corresponding to 2 slots, and the size of the MCOT is 10 slots, the access network device can periodically send DCI 5 times to indicate the detection position in one MCOT. Schematically, please refer to Figure 6.
  • the size of MCOT is 10 slots. If the length of the bitmap in DCI is 28 bits, which corresponds to 28 symbols, which corresponds to 2 slots, the detection position can be performed by sending DCI 5 times. Indication: If the length of the bitmap in the DCI is 140bit, corresponding to 140 symbols, that is, corresponding to 10 slots, the access network device sends the DCI to the terminal to indicate the detection position in an MCOT.
  • the terminal may determine the available information in the DCI based on a predefined rule or by receiving instruction information sent by an access network device. For example: the time domain corresponding to the information field in the DCI is 5 slots, and the length of the MCOT is 2 slots, it is pre-defined that the indication information on the fields corresponding to the 2 slots from the high bit in the information field in the DCI is an available indication information.
  • Step 404 The terminal receives control signaling from the time domain unit.
  • the terminal detects the control signaling in the corresponding time domain unit in the physical downlink control channel according to the time domain unit that needs to be detected, and when the control signaling is detected, the control signaling in the time domain unit is detected. Order to receive.
  • the terminal receives data from the PDSCH through the indication of the control signaling, so as to realize data exchange with the access network equipment.
  • the method for detecting control signaling adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal obtains physical information based on the information field.
  • Control signaling is received in the downlink control channel, so as to realize data exchange with the base station according to the control signaling, so that the terminal can accurately receive control signaling on the unlicensed frequency band, and realize the communication between the terminal and the base station through the unlicensed frequency band.
  • a bitmap for indicating the detection position in the unlicensed channel is added to the DCI, and different values of the bits are used in the bitmap to indicate whether to detect the time domain unit, thereby instructing the terminal from In the PDCCH, the control signaling is received according to the value of the bit, so that the terminal can accurately receive the control signaling on the unlicensed frequency band, and the wireless communication between the terminal and the base station is realized through the unlicensed frequency band.
  • FIG. 7 is a flowchart of a method for detecting control signaling provided by another exemplary embodiment of the present application, and the method is applied as shown in FIG. 2 As an example in the communication system, as shown in Figure 7, the method includes:
  • Step 701 The access network device sends downlink control information to the terminal.
  • the downlink control information includes an information field, and the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band.
  • the detection position is a possible sending position of the control signaling in the unlicensed frequency band.
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information.
  • the configuration information is used to indicate that control signaling needs to be controlled on the PDCCH.
  • the time domain unit for testing is used to indicate that control signaling needs to be controlled on the PDCCH.
  • the indication information includes an identifier of the target configuration information, and the indication has a corresponding relationship with the target configuration information in the configuration information set.
  • the correspondence between the configuration information and the identifier in the configuration information set is a predefined correspondence in the access network device, that is, a correspondence given in the protocol.
  • the corresponding relationship between the configuration information and the identifier may also be a corresponding relationship pre-configured by the access network device for the terminal, for example: the access network device sends second configuration signaling to the terminal, and the second configuration signaling is used for Indicates the correspondence between the configuration information and the identifier, where the second configuration signaling includes at least one of RRC signaling, MAC CE signaling, or physical layer signaling.
  • the identifier in the DCI has a corresponding relationship with the configuration identifier in Table 1.
  • the indication information in the DCI is 00, it means that the detection position indicated in the DCI corresponds to the configuration information in the identifier 1.
  • the detection position of the first slot when the indication information in the DCI is 01, it means that the detection position indicated in the DCI corresponds to the configuration information in the identifier 2, that is, the detection position of the first slot and the second slot ;
  • the indication information of the DCI 10
  • the detection position indicated in the DCI corresponds to the configuration information in the identifier 3
  • the detection position of the first slot, the second slot, the third slot, and the fourth slot when the indication information in the DCI is 11, it means that the detection position indicated in the DCI corresponds to the configuration information in the identifier 4, that is, the first slot, the second slot, the third slot, the fourth slot, and the fourth slot.
  • configuration information sets applied to different terminals may be different or the same.
  • Step 702 The terminal receives downlink control information sent by the access network device
  • the terminal receives the DCI sent by the access network device through the authorized frequency band or the unlicensed frequency band, and reads the indication information in the DCI.
  • Step 703 The terminal matches the indication information in the downlink control information with the configuration information in the configuration information set to obtain target configuration information.
  • the indication information in the DCI includes "01", 01 is used to indicate the identifier, then the indication information is matched with the configuration information set to obtain the indication
  • the configuration information corresponding to ID 2 matched by information 01, as shown in the above table, the configuration information corresponding to ID 2 is "the detection position of the first slot; the detection position of the second slot". Then the terminal detects the control signaling at the corresponding position according to the detection positions of the first and second slots indicated in the configuration information.
  • Step 704 The terminal receives control signaling from the time domain unit.
  • the terminal detects the control signaling in the corresponding time domain unit in the physical downlink control channel according to the time domain unit that needs to be detected, and when the control signaling is detected, the control signaling in the time domain unit is detected. Order to receive.
  • the terminal implements interactions such as receiving data, sending data, and receiving control signaling from the PDSCH through the instruction of the control signaling, so as to achieve data interaction with the access network equipment.
  • the method for detecting control signaling adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal obtains physical information based on the information field.
  • Control signaling is received in the downlink control channel to realize data exchange with the base station according to the control signaling, so that the terminal can accurately receive control signaling on the unlicensed frequency band, and realize the communication between the terminal and the base station through the unlicensed frequency band.
  • the method provided in this embodiment adds indication information for indicating the detection position in the PDCCH in the DCI, and corresponds the indication information to the target configuration information in the configuration information set, thereby instructing the terminal to select the target configuration information from the PDCCH.
  • Configure to receive control signaling so that the terminal can accurately receive control signaling on the unlicensed frequency band, and realize wireless communication between the terminal and the base station through the unlicensed frequency band.
  • Fig. 8 shows a block diagram of a device for detecting control signaling provided by an exemplary embodiment of the present application.
  • the device can be implemented as part or all of a terminal through software, hardware or a combination of the two.
  • the device includes:
  • the receiving module 801 is configured to receive downlink control information, where the downlink control information includes an information field, and the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band;
  • the receiving module 801 is further configured to receive the control signaling according to the detection position of the information field in the unlicensed frequency band.
  • the receiving module 801 may be a hardware device such as a radio frequency antenna, and is used to implement steps related to receiving.
  • the information field includes a fixed-length bitmap, and each bit in the fixed-length bitmap corresponds to a time domain unit;
  • the bit is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • the value of the bit when the value of the bit is the first value, it indicates that the time domain unit corresponding to the bit needs to detect the control signaling;
  • the value of the bit is the second value, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the receiving module 801 is further configured to receive first configuration signaling, where the first configuration signaling is used to configure the fixed length;
  • the first configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information, and the configuration information is used to indicate a time domain unit that needs to detect the control signaling on the physical downlink control channel.
  • the indication information includes an identifier of the target configuration information, and the identifier has a corresponding relationship with the target configuration information in the configuration information set.
  • the correspondence between the configuration information in the configuration information set and the identifier is a predefined correspondence in the terminal.
  • the receiving module 801 is further configured to receive second configuration signaling, where the second configuration signaling is used to configure the correspondence between the configuration information and the identifier relationship;
  • the second configuration signaling includes: at least one of RRC signaling, MAC CE, or physical layer signaling.
  • the device for detecting control signaling provided in this embodiment adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal obtains physical information based on the information field.
  • Control signaling is received in the downlink control channel to realize data exchange with the base station according to the control signaling, so that the terminal can accurately receive control signaling on the unlicensed frequency band, and realize the communication between the terminal and the base station through the unlicensed frequency band.
  • Wireless communication is provided in this embodiment adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal obtains physical information based on the information field.
  • Figure 9 shows a block diagram of a device for detecting control signaling provided by another exemplary embodiment of the present application.
  • the device can be implemented as part or all of the access network equipment through software, hardware or a combination of the two.
  • the device includes :
  • the sending module 901 is configured to send downlink control information.
  • the downlink control information includes an information field.
  • the information field is used to indicate the detection position of the control signaling in the unlicensed frequency band. The possible sending location in the unlicensed frequency band.
  • the sending module 901 may be a hardware device such as a radio frequency antenna, and is used to implement related sending steps.
  • the information field includes a fixed-length bitmap, and each bit in the fixed-length bitmap corresponds to a time domain unit;
  • the bit is used to indicate whether the corresponding time domain unit needs to detect the control signaling.
  • the value of the bit when the value of the bit is the first value, it indicates that the time domain unit corresponding to the bit needs to detect the control signaling;
  • the value of the bit is the second value, it means that the time domain unit corresponding to the bit does not need to detect the control signaling.
  • the sending module 901 is further configured to send first configuration signaling, where the first configuration signaling is used to configure the fixed length;
  • the first configuration signaling includes at least one of RRC signaling, MAC CE, or physical layer signaling.
  • the information field includes indication information
  • the indication information is used to indicate target configuration information in the configuration information set
  • the configuration information set includes one or more configuration information, and the configuration information is used to indicate a time domain unit that needs to detect the control signaling on the physical downlink control channel.
  • the indication information includes an identifier of the target configuration information, and the identifier has a corresponding relationship with the target configuration information in the configuration information set.
  • the correspondence between the configuration information in the configuration information set and the identifier is a predefined correspondence in the access network device.
  • the sending module 901 is further configured to send second configuration signaling, and the second configuration signaling is used to configure the correspondence between the configuration information and the identifier relationship;
  • the second configuration signaling includes: at least one of radio resource control RRC signaling, MAC CE signaling, or physical layer signaling.
  • the device for detecting control signaling provided in this embodiment adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal obtains physical information based on the information field.
  • Control signaling is received in the downlink control channel to realize data exchange with the base station according to the control signaling, so that the terminal can accurately receive control signaling on the unlicensed frequency band, and realize the communication between the terminal and the base station through the unlicensed frequency band.
  • Wireless communication is provided in this embodiment adds an information field for indicating the detection position of the control signaling in the unlicensed frequency band in the downlink control information, and the terminal obtains physical information based on the information field.
  • FIG. 10 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • the terminal includes a processor 1001, a receiver 1002, a transmitter 1003, a memory 1004, and a bus 1005.
  • the processor 1001 includes one or more processing cores, and the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 1004 is connected to the processor 1001 through a bus 1005.
  • the memory 1004 may be used to store at least one instruction, and the processor 1001 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static at any time access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which can be executed by the processor of the terminal to complete the control signaling detection method described above.
  • Side execution method may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium When the instructions in the non-transitory computer storage medium are executed by the processor of the terminal, the terminal can execute the above control signaling detection method.
  • Fig. 11 is a block diagram showing an access network device 1100 according to an exemplary embodiment.
  • the access network device 1100 may be a base station.
  • the access network device 1100 may include: a processor 1101, a receiver 1102, a transmitter 1103, and a memory 1104.
  • the receiver 1102, the transmitter 1103, and the memory 1104 are respectively connected to the processor 1101 through a bus.
  • the processor 1101 includes one or more processing cores, and the processor 1101 runs a software program and a module to execute the method executed by the access network device in the control signaling detection method provided by the embodiment of the present disclosure.
  • the memory 1104 can be used to store software programs and modules. Specifically, the memory 1104 may store an operating system 1141, an application module 1142 required by at least one function.
  • the receiver 1102 is used to receive communication data sent by other devices, and the transmitter 1103 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a control signaling detection system (or communication system), the system includes: a terminal and an access network device;
  • the terminal includes the control signaling detection device provided in the embodiment shown in FIG. 8;
  • the access network equipment includes the control signaling detection device provided in the embodiment shown in FIG. 9.
  • An exemplary embodiment of the present disclosure also provides a control signaling detection system (or communication system), and the downlink signal receiving system includes: a terminal and an access network device;
  • the terminal includes the terminal provided in the embodiment shown in FIG. 10;
  • the access network equipment includes the access network equipment provided in the embodiment shown in FIG. 11.
  • An exemplary embodiment of the present disclosure further provides a computer-readable storage medium, in which at least one instruction, at least one program, code set or instruction set is stored, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the steps performed by the terminal or the access network device in the control signaling detection method provided by the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种控制信令的检测方法、装置、设备及存储介质,属于通信领域。该方法包括:终端接收下行控制信息,下行控制信息中包括信息字段,信息字段用于指示所述控制信令在非授权频段中的检测位置;根据信息字段在非授权频段中的检测位置接收控制信令。通过在下行控制信息中增加信息字段,该信息字段用于指示在控制信令在非授权频段中的检测位置,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。

Description

控制信令的检测方法、装置、设备及存储介质 技术领域
本申请涉及通信领域,特别涉及一种控制信令的检测方法、装置、设备及存储介质。
背景技术
在终端与基站之间进行无线通信的过程中,终端需要在物理下行控制信道(Physical Downlink Control Channel,PDCCH)对基站发送的下行控制信息(Downlink Control Information,DCI)进行检测后,根据该下行控制信令的指示从物理下行共享信道(Physical Downlink Share Channel,PDSCH)接收数据,而该DCI在PDCCH中的检测位置为基站预先配置给该终端的,或者通信协议预定义的。
第五代移动通信技术(the 5th generation mobile communication,5G)系统中引入了对非授权频段(Unlicensed Frequency Bands,UFB)的应用,而在基站通过非授权频段向终端发送下行控制信令时,由于基站需要使用先听后说(Listen Before Talk,LBT)对信道状态进行检测后,当信道状态为空闲状态时再占用信道,因此无法预知何时能够对信道进行占用,导致通过预先配置控制信令的检测位置的方式不适用于非授权频段。
发明内容
本申请实施例提供了一种控制信令的检测方法、装置、设备及存储介质,可以用于解决通过预先配置控制信令检测位置的方式不适用于非授权频段上的问题。所述技术方案如下。所述技术方案如下:
一个方面,提供了一种控制信令的检测方法,所述方法包括:
接收下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置;
根据所述信息字段在所述非授权频段中的检测位置接收所述控制信令。
在一个可选的实现方式中,所述信息字段包括固定长度的位图(bitmap), 所述固定长度的bitmap中的每个比特位对应一个时域单元;
其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
在一个可选的实现方式中,所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
在一个可选的实现方式中,所述方法还包括:
接收第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
其中,所述第一配置信令包括:无线资源控制(Radio Resource Control,RRC)信令、媒体访问控制控制单元(Media Access Control Element,MAC CE)或物理层信令中的至少一种。
在一个可选的实现方式中,所述信息字段包括指示信息;
所述指示信息用于指示配置信息集中的目标配置信息;
所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
在一个可选的实现方式中,所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
在一个可选的实现方式中,所述配置信息集中的配置信息与所述标识的对应关系为终端中预定义的对应关系。
在一个可选的实现方式中,所述方法还包括:
接收第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
其中,所述第二配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
另一方面,提供了一种控制信令的检测方法,所述方法包括:
发送下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置,所述检测位置为控制信令在所述非授权频段中可能的发送位置。
在一个可选的实现方式中,所述信息字段包括固定长度的bitmap,所述固定长度的bitmap中的每个比特位对应一个时域单元;
其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
在一个可选的实现方式中,所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
在一个可选的实现方式中,所述方法还包括:
发送第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
其中,所述第一配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
在一个可选的实现方式中,所述信息字段包括指示信息;
所述指示信息用于指示配置信息集中的目标配置信息;
所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
在一个可选的实现方式中,所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
在一个可选的实现方式中,所述配置信息集中的配置信息与所述标识的对应关系为接入网设备中预定义的对应关系。
在一个可选的实现方式中,所述方法还包括:
发送第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
其中,所述第二配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
另一方面,提供了一种控制信令的检测装置,所述装置包括:
接收模块,被配置为接收下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置;
所述接收模块,还被配置为根据所述信息字段在所述非授权频段中的检测位置接收所述控制信令。
在一个可选的实现方式中,所述信息字段包括固定长度的bitmap,所述固定长度的bitmap中的每个比特位对应一个时域单元;
其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令 的检测。
在一个可选的实现方式中,所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
在一个可选的实现方式中,所述接收模块,还被配置为接收第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
其中,所述第一配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
在一个可选的实现方式中,所述信息字段包括指示信息;
所述指示信息用于指示配置信息集中的目标配置信息;
所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
在一个可选的实现方式中,所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
在一个可选的实现方式中,所述配置信息集中的配置信息与所述标识的对应关系为终端中预定义的对应关系。
在一个可选的实现方式中,所述接收模块,还被配置为接收第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
其中,所述第二配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
另一方面,提供了一种控制信令的检测装置,所述装置包括:
发送模块,被配置为发送下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置,所述检测位置为控制信令在所述非授权频段中可能的发送位置。
在一个可选的实现方式中,所述信息字段包括固定长度的bitmap,所述固定长度的bitmap中的每个比特位对应一个时域单元;
其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
在一个可选的实现方式中,所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
在一个可选的实现方式中,所述发送模块,还被配置为发送第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
其中,所述第一配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
在一个可选的实现方式中,所述信息字段包括指示信息;
所述指示信息用于指示配置信息集中的目标配置信息;
所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
在一个可选的实现方式中,所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
在一个可选的实现方式中,所述配置信息集中的配置信息与所述标识的对应关系为接入网设备中预定义的对应关系。
在一个可选的实现方式中,所述发送模块,还被配置为发送第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
其中,所述第二配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本申请实施例所述的控制信令的检测方法。
另一方面,提供了一种接入网设备,该接入网设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本申请实施例所述的控制信令的检测方法。
另一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述本申请实施例 所述的控制信令的检测方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过在下行控制信息中增加信息字段,该信息字段用于指示控制信令在非授权频段中的检测位置,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的根据LBT机制对信道状态进行检测后占用的示意图;
图2是本申请一个示例性实施例提供的通信系统的框图;
图3是本申请另一个示例性实施例提供的控制信令的检测方法的流程图;
图4是本申请另一个示例性实施例提供的控制信令的检测方法的流程图;
图5是本申请一个示例性实施例提供的根据固定长度的bitmap对PDCCH进行检测的示意图;
图6是本申请另一个示例性实施例提供的根据固定长度的bitmap对PDCCH进行检测的示意图;
图7是本申请另一个示例性实施例提供的控制信令的检测方法的流程图;
图8是本申请另一个示例性实施例提供的控制信令的检测装置的框图;
图9是本申请另一个示例性实施例提供的控制信令的检测装置的框图;
图10是本申请一个示例性实施例提供的终端的框图;
图11是本申请一个示例性实施例提供的接入网设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在终端与基站之间进行无线通信的过程中,终端需要在物理下行控制信道(Physical Downlink Control Channel,PDCCH)对基站发送的下行控制信令(Downlink Control Information,DCI)进行检测后,根据该下行控制信令的指示从物理下行共享信道(Physical Downlink Share Channel,PDSCH)接收数据,而该下行控制信令在PDCCH中的检测位置为基站预先配置给该终端的,或者通信协议预定义的。
为了满足业务需求,第五代移动通信技术(the 5th generation mobile communication,5G)系统中引入了对非授权频段(Unlicensed Frequency Bands,UFB)的应用,而在非授权频段上,多个系统(如:Wi-Fi、雷达等系统)需要竞争使用信道资源,基站通过非授权频段向终端发送下行控制信令时,需要使用先听后说(Listen Before Talk,LBT)机制对信道状态进行检测后,当信道状态为空闲状态时占用信道,因此基站无法预知何时能够对信道进行占用,导致通过预先配置控制信令检测位置的方式不适用于非授权频段上。
可选地,基站或其他系统的发送端在非授权频段上对信道的占用时间通过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)进行限制,也即发送端执行一次信道状态检测并成功占用信道后,最大的信道占用时长不能超过MCOT定义的时长,示意性的,请参考图1,发送端持续对信道状态进行检测,并当LBT通过后,在MCOT定义的时长内对信道进行占用;而当LBT失败时,发送端持续对信道状态进行检测,并当LBT通过后,再次在MCOT定义的时长内对信道进行占用。
图2示出了本公开一个示意性实施例提供的通信系统的框图,该通信系统可以包括:核心网21、接入网22和终端23。
核心网21中包括若干个核心网设备210。核心网设备210包括接入和移动管理功能(Access and Mobility Management Function,AMF),会话管理功能(Session Management Function,SMF)以及用户面管理功能(User Plane Function,UPF)等设备,其中,AMF用于控制终端的接入权限以及切换等功能,SMF用于提供服务器连续性、服务器的不间断用户体验,如:IP地址和锚点变化等。
接入网22中包括若干个接入网设备220。接入网设备220可以是基站,基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括 各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为eNodeB或者eNB;在5G新空口(New Radio,NR)系统中,称为gNode B或者gNB。随着通信技术的演进,“基站”这一名称可能描述,会变化。为方便本申请实施例中,上述为终端提供无线通信功能的装置统称为接入网设备。
终端23可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的终端(User Equipment,UE),移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备220与终端23之间通过某种空口技术互相通信,例如Uu接口。
可选地,以上述终端23和接入网设备220之间进行无线通信的过程中,可以通过授权频段进行无线通信,也可以通过非授权频段进行无线通信。可选地,本申请实施例中,针对终端23和接入网设备220之间通过非授权频段进行无线通信为例进行说明。
图3示出了本申请一个示例性实施例提供的控制信令的检测方法的流程图,本实施例以该方法应用于图2所示的通信系统中为例进行说明。如图3所示,该方法包括:
步骤301,接入网设备向终端发送下行控制信息,下行控制信息包括信息字段,该信息字段用于指示控制信令在非授权频段中的检测位置;
可选地,该检测位置为控制信令在非授权频段中可能的发送位置。
可选地,该检测位置对应物理下行控制信道上需要对控制信令进行检测的时域单元。可选地,该时域单元可以是1个符号(英文:symbol)、1个时隙(英文:slot)、1个子帧以及1个无线帧中的任意一种。本申请实施例中,以1个symbol作为一个基本的时域单元为例进行说明。
可选地,接入网设备对非授权频段的物理下行控制信道进行信道状态检测,可选地,该信道状态检测是通过空闲信道评估(Clear Channel Assessment,CCA)进行的,可选地,CCA模式中,通过能量检测(Energy Detection,ED)对能量进行检测,当能量不超过ED阈值时,则报告信道状态为空闲,并根据检测结果生成信息字段,可选地,信道检测结果包括空闲或繁忙,检测结果为空闲的时 域单元即为接入网设备向终端发送控制信令可能的时域单元。
可选地,该信息字段包括如下信息字段中的至少一种:
第一,固定长度的bitmap,该固定长度的bitmap中的每个比特位对应一个时域单元,其中,比特位用于表示对应的时域单元是否需要进行对控制信令的检测;
第二,指示信息,该指示信息用于指示配置信息集中的目标配置信息,该配置信息集中包括一个或多个配置信息,该配置信息用于表示在PDCCH上需要对控制信令进行检测的时域单元。
步骤302,终端接收接入网设备发送的下行控制信息;
可选地,接入网设备通过授权频段向终端发送该下行控制信息,或,接入网设备通过非授权频段向终端发送该下行控制信息。
步骤303,终端根据信息字段在非授权频段中的检测位置接收控制信令。
可选地,终端根据信息字段在PDCCH的非授权频段中的检测位置接收该控制信令。
综上所述,本实施例提供的方法,通过在下行控制信息中增加用于指示在控制信令在非授权频段中的检测位置的信息字段,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
值得注意的是,在本申请实施例中,由接入网设备执行的步骤可单独实现成为接入网设备侧的控制信令的检测方法,由终端执行的步骤可单独实现成为终端侧的控制信令的检测方法。
在一个可选的实施例中,上述信息字段中包括固定长度的bitmap,图4是本申请另一个示例性实施例提供的控制信令的检测方法的流程图,以该方法应用于如图2所示的通信系统中为例进行说明,如图4所示,该方法包括:
步骤401,接入网设备向终端发送下行控制信息,下行控制信息包括信息字段,该信息字段用于指示控制信令在非授权频段中的检测位置;
可选地,该检测位置为控制信令在非授权频段中可能的发送位置。
可选地,该信息字段包括固定长度的bitmap,该固定长度的bitmap中的每个比特位对应一个时域单元,如:固定长度的bitmap中每个比特位对应一个 symbol,其中,该比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
可选地,固定长度的bitmap中的每个比特位对应一个时域单元,该比特位用于通过不同的取值表示非授权频段中对应的时域单元是否需要对控制信令进行检测。可选地,当比特位的取值为第一取值时,表示比特位对应的时域单元需要对控制信令进行检测,当比特位的取值为第二取值时,表示比特位对应的时域单元不需要对控制信令进行检测。
示意性的,以第一取值为1,第二取值为0为例进行说明,当比特位取值为1时,表示比特位对应的时域单元需要对控制信令进行检测;当比特位的取值为0时,表示比特位对应的时域单元不需要对控制信令进行检测。
示意性的,请参考图5,DCI信息500的bitmap中包括28个比特位,每个比特位对应一个symbol,1个slot中包括14个symbol,则前14个比特位对应slot1,后14个比特位对应slot2,每个比特位对应一个取值0或1,当比特位取值为1时表示该比特位对应的symbol需要进行对控制信令的检测,而当比特位取值为0时表示该比特位对应的symbol无需进行对控制信令的检测,如图5所示,该bitmap中每个比特位的取值依次为“1000001000010000000001000000”,则对应至物理下行控制信道的时域单元,需要进行对控制信令的检测的时域单元为slot1的第1个symbol、第7个symbol以及第12个symbol,以及slot2的第8个symbol。
可选地,接入网设备预先定义发送DCI的格式;或,接入网设备预先定义多个发送DCI的格式,并根据MCOT的大小从该多个DCI格式中选择与终端进行无线通信时所应用的DCI,其中,不同格式的DCI包含的信息字段的长度是不同的。可选地,根据MCOT的大小,选择与该MCOT大小适应的DCI。如:MCOT的大小为10个slot,则DCI的长度为包含该10个slot对应的信息字段的长度,如:每个slot中包括14个symbol,每个symbol对应一个比特位,则该DCI的长度可以是包含140bit信息的长度。
可选地,该DCI的信息长度包含该固定长度的bitmap的信息长度,如:DCI包括28bit的bitmap。
可选地,DCI中还包括除bitmap以外的其他字段,如:DCI0中还包括格式0和格式1A区分的标志位、调频标志位等,可选地,该DCI中还包括冗余比特。
步骤402,终端接收接入网设备发送的下行控制信息;
可选地,终端接收接入网设备通过授权频段或非授权频段发送的DCI,并对该DCI中的bitmap的每一个比特位的取值进行读取。
可选地,接入网设备在非授权频段上完成信道状态检测后,可以通过授权频段上的链接向终端发送DCI,通过DCI指示接入网设备在非授权频段上的信道状态检测的结果;或,接入网设备在非授权频段上完成信道状态检测后,可以通过非授权频段上的链接向终端发送信息,如:通过非授权频段向终端发送DCI,通过DCI指示接入网设备在非授权频段上的信道状态检测结果。
步骤403,终端根据下行控制信息中的位图bitmap对需要检测的时域单元进行检测。
可选地,该固定长度的bitmap中的每个比特位对应一个时域单元,比特位用于通过不同的取值表示对应的时域单元是否需要对控制信令进行检测。
可选地,当比特位的取值为第一取值时,表示该比特位对应的时域单元需要进行对控制信令的检测;当比特位的取值为第二取值时,表示该比特位对应的时域单元无需进行对控制信令的检测。
示意性的,以第一取值为1,第二取值为0为例进行说明,当比特位取值为1时,表示该比特位对应的时域单元需要进行对控制信令的检测;当比特位的取值为0时,表示该比特位对应的时域单元无需进行对控制信令的检测。
可选地,上述位图bitmap的固定长度可以是预定义的,也可以接入网设备向终端预配置的,如:接入网设备向终端发送第一配置信令,该第一配置信令用于对固定长度进行配置。其中,该第一配置信令包括:RRC信令、MAC CE)或物理层信令中的至少一种。
可选地,接入网设备对信道的占用受MCOT的限制,DCI中的信息字段的长度根据该MCOT的大小可以对应不同,如:MCOT的大小为10个slot,每个slot中包括14个symbol,而每个symbol在bitmap中对应1bit字符,则DCI中可以包括该140bit的bitmap。可选地,当DCI中信息字段的长度对应的时域大小小于该MCOT的大小时,接入网设备可以发送该DCI以指示一个MCOT内的检测位置,如:DCI中bitmap的长度为28bit,对应28个symbol,也即对应2个slot,而MCOT的大小为10个slot,则接入网设备可以周期性发送5次DCI以指示一个MCOT内的检测位置。示意性的,请参考图6,MCOT的大小为10个slot,若DCI中bitmap的长度为28bit,对应28个symbol,也即对应2个slot,则可以通过发送5次DCI对该检测位置进行指示;若DCI中bitmap的长度为 140bit,对应140个symbol,也即对应10个slot,则接入网设备向终端发送该DCI以指示一个MCOT内的检测位置。
可选地,当DCI中信息字段所对应的时域大小大于MCOT时,则终端可以基于预先定义的规则,或通过接收接入网设备发送的指示信息确定该DCI中的可用信息。如:DCI中信息字段对应的时域为5个slot,而MCOT的长度为2个slot,则预先定义该DCI中信息字段中从高位开始2个slot所对应字段上的指示信息为可用的指示信息。
步骤404,终端从时域单元接收控制信令。
可选地,终端根据需要被检测的时域单元在物理下行控制信道中对应的时域单元对该控制信令进行检测,并当检测得到控制信令时,对该时域单元内的控制信令进行接收。
可选地,终端通过控制信令的指示从PDSCH上接收数据,从而实现与接入网设备之间的数据交互。
综上所述,本实施例提供的控制信令的检测方法,通过在下行控制信息中增加用于指示在控制信令在非授权频段中的检测位置的信息字段,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
本实施例提供的方法,通过在DCI中增加用于指示在非授权信道中的检测位置的bitmap,并在bitmap中通过比特位的不同取值表示是否对时域单元进行检测,从而指示终端从PDCCH中根据比特位的取值接收控制信令,实现在非授权频段上终端能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
在一个可选的实施例中,上述信息字段中包括指示信息,图7是本申请另一个示例性实施例提供的控制信令的检测方法的流程图,以该方法应用于如图2所示的通信系统中为例进行说明,如图7所示,该方法包括:
步骤701,接入网设备向终端发送下行控制信息,下行控制信息包括信息字段,该信息字段用于指示控制信令在非授权频段中的检测位置;
可选地,该检测位置为控制信令在非授权频段中可能的发送位置。
可选地,该信息字段包括指示信息,该指示信息用于指示配置信息集中的 目标配置信息,该配置信息集中包括一个或多个配置信息该配置信息用于表示在PDCCH上需要对控制信令进行检测的时域单元。
可选地,该指示信息中包括目标配置信息的标识,该表示与配置信息集中的目标配置信息存在对应关系。
可选地,配置信息集中配置信息与标识的对应关系为接入网设备中预定义的对应关系,即协议中给定的对应关系。
可选地,该配置信息与标识的对应关系还可以是接入网设备为终端预配置的对应关系,如:接入网设备向终端发送第二配置信令,该第二配置信令用于指示配置信息与标识之间的对应关系,其中,第二配置信令包括RRC信令、MAC CE信令或物理层信令中的至少一种。
可选地,该标识与配置信息的对应关系请参考如下表一:
表一
Figure PCTCN2019088857-appb-000001
可选地,DCI中的标识与上述表一中的配置标识存在对应关系,示意性的,当DCI中的指示信息为00时,表示DCI中指示的检测位置与标识1中的配置信息对应,也即第1个slot的检测位置;当DCI中的指示信息为01时,表示DCI中指示的检测位置与标识2中的配置信息对应,也即第1个slot和第2个slot的检测位置;当DCI的指示信息为10时,表示DCI中指示的检测位置与标识3中的配置信息对应,也即第1个slot、第2个slot、第3个slot以及第4个slot的检测位置;当DCI中的指示信息为11时,表示DCI中指示的检测位置与 标识4中的配置信息对应,也即第1个slot、第2个slot、第3个slot、第4个slot、第5个slot、第6个slot、第7个slot以及第8个slot的检测位置。
值得注意的是,针对不同的终端所应用的配置信息集可以是不同的,也可以是相同的。
步骤702,终端接收接入网设备发送的下行控制信息;
可选地,终端接收接入网设备通过授权频段或非授权频段发送的DCI,并对该DCI中的指示信息进行读取。
步骤703,终端根据下行控制信息中的指示信息与配置信息集中的配置信息进行匹配,得到目标配置信息。
示意性的,结合上述表一所示的配置信息集进行举例说明,DCI中的指示信息包括“01”,01用于表示标识,则将该指示信息与配置信息集进行匹配,得到与该指示信息01匹配的标识2对应的配置信息,如上表中所示,标识2对应的配置信息是“第1个slot的检测位置;第2个slot的检测位置”。那么终端就根据配置信息中指示的第1个和第2个slot的检测位置在相应的位置上检测控制信令。
步骤704,终端从时域单元接收控制信令。
可选地,终端根据需要被检测的时域单元在物理下行控制信道中对应的时域单元对该控制信令进行检测,并当检测得到控制信令时,对该时域单元内的控制信令进行接收。
可选地,终端通过控制信令的指示从PDSCH上实现接收数据、发送数据、接收控制信令等交互,从而实现与接入网设备之间的数据交互。
综上所述,本实施例提供的控制信令的检测方法,通过在下行控制信息中增加用于指示在控制信令在非授权频段中的检测位置的信息字段,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
本实施例提供的方法,通过在DCI中增加用于指示在PDCCH中的检测位置的指示信息,并将指示信息与配置信息集中的目标配置信息对应,从而指示终端从PDCCH中根据目标配置信息的配置接收控制信令,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
图8示出了本申请一个示例性实施例提供的控制信令的检测装置的框图,该装置可以通过软件、硬件或者二者的结合实现成为终端的部分或者全部,该装置包括:
接收模块801,被配置为接收下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示控制信令在非授权频段中的检测位置;
所述接收模块801,还被配置为根据所述信息字段在所述非授权频段中的检测位置接收所述控制信令。
接收模块801可以为射频天线等硬件设备,用于实现有关接收的步骤。
在一个可选的实施例中,所述信息字段包括固定长度的bitmap,所述固定长度的bitmap中的每个比特位对应一个时域单元;
其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
在一个可选的实施例中,所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
在一个可选的实施例中,所述接收模块801,还被配置为接收第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
其中,所述第一配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
在一个可选的实施例中,所述信息字段包括指示信息;
所述指示信息用于指示配置信息集中的目标配置信息;
所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
在一个可选的实施例中,所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
在一个可选的实施例中,所述配置信息集中的配置信息与所述标识的对应关系为终端中预定义的对应关系。
在一个可选的实施例中,所述接收模块801,还被配置为接收第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
其中,所述第二配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
综上所述,本实施例提供的控制信令的检测装置,通过在下行控制信息中增加用于指示在控制信令在非授权频段中的检测位置的信息字段,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
图9示出了本申请另一个示例性实施例提供的控制信令的检测装置的框图,该装置可以通过软件、硬件或者二者的结合实现成为接入网设备的部分或者全部,该装置包括:
发送模块901,被配置为发送下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示控制信令在非授权频段中的检测位置,所述检测位置为控制信令在所述非授权频段中可能的发送位置。
发送模块901可以为射频天线等硬件设备,用于实现有关发送的步骤。
在一个可选的实施例中,所述信息字段包括固定长度的bitmap,所述固定长度的bitmap中的每个比特位对应一个时域单元;
其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
在一个可选的实施例中,所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
在一个可选的实施例中,所述发送模块901,还被配置为发送第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
其中,所述第一配置信令包括:RRC信令、MAC CE或物理层信令中的至少一种。
在一个可选的实施例中,所述信息字段包括指示信息;
所述指示信息用于指示配置信息集中的目标配置信息;
所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
在一个可选的实施例中,所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
在一个可选的实施例中,所述配置信息集中的配置信息与所述标识的对应关系为接入网设备中预定义的对应关系。
在一个可选的实施例中,所述发送模块901,还被配置为发送第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
其中,所述第二配置信令包括:无线资源控制RRC信令、MAC CE信令或物理层信令中的至少一种。
综上所述,本实施例提供的控制信令的检测装置,通过在下行控制信息中增加用于指示在控制信令在非授权频段中的检测位置的信息字段,终端根据该信息字段从物理下行控制信道中接收控制信令,从而根据控制信令实现与基站之间的数据交互,实现在非授权频段上终端也能准确的接收控制信令,通过非授权频段实现终端和基站之间的无线通信。
图10示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述控制信令的检测方法中由终端侧执行的方法。例如,所述非临时性计算机可读存储 介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述非临时性计算机存储介质中的指令由终端的处理器执行时,使得终端能够执行上述控制信令的检测方法。
图11是根据一示例性实施例示出的一种接入网设备1100的框图。该接入网设备1100可以是基站。
接入网设备1100可以包括:处理器1101、接收机1102、发射机1103和存储器1104。接收机1102、发射机1103和存储器1104分别通过总线与处理器1101连接。
其中,处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块以执行本公开实施例提供的控制信令的检测方法中接入网设备所执行的方法。存储器1104可用于存储软件程序以及模块。具体的,存储器1104可存储操作系统1141、至少一个功能所需的应用程序模块1142。接收机1102用于接收其他设备发送的通信数据,发射机1103用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种控制信令的检测系统(或称通信系统),所述系统包括:终端和接入网设备;
所述终端包括如图8所示实施例提供的控制信令的检测装置;
所述接入网设备包括如图9所示实施例提供的控制信令的检测装置。
本公开一示例性实施例还提供了一种控制信令的检测系统(或称通信系统),所述下行信号的接收系统包括:终端和接入网设备;
所述终端包括如图10所示实施例提供的终端;
所述接入网设备包括如图11所示实施例提供的接入网设备。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的控制信令的检测方法中由终端或者接入网设备执行的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描 述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (35)

  1. 一种控制信令的检测方法,其特征在于,所述方法包括:
    接收下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置;
    根据所述信息字段在所述非授权频段中的检测位置接收所述控制信令。
  2. 根据权利要求1所述的方法,其特征在于,
    所述信息字段包括固定长度的位图bitmap,所述固定长度的位图bitmap中的每个比特位对应一个时域单元;
    其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
  3. 根据权利要求2所述的方法,其特征在于,
    所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
    所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
    其中,所述第一配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,所述信息字段包括指示信息;
    所述指示信息用于指示配置信息集中的目标配置信息;
    所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
  6. 根据权利要求5所述的方法,其特征在于,
    所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息 集中的目标配置信息存在对应关系。
  7. 根据权利要求6所述的方法,其特征在于,所述配置信息集中的配置信息与所述标识的对应关系为终端中预定义的对应关系。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
    其中,所述第二配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  9. 一种控制信令的检测方法,其特征在于,所述方法包括:
    发送下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置,所述检测位置为控制信令在所述非授权频段中可能的发送位置。
  10. 根据权利要求9所述的方法,其特征在于,
    所述信息字段包括固定长度的位图bitmap,所述固定长度的位图bitmap中的每个比特位对应一个时域单元;
    其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
  11. 根据权利要求10所述的方法,其特征在于,
    所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
    所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    发送第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
    其中,所述第一配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  13. 根据权利要求9所述的方法,其特征在于,所述信息字段包括指示信息;
    所述指示信息用于指示配置信息集中的目标配置信息;
    所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
  14. 根据权利要求13所述的方法,其特征在于,
    所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
  15. 根据权利要求14所述的方法,其特征在于,
    所述配置信息集中的配置信息与所述标识的对应关系为接入网设备中预定义的对应关系。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    发送第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
    其中,所述第二配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  17. 一种控制信令的检测装置,其特征在于,所述装置包括:
    接收模块,被配置为接收下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置;
    所述接收模块,还被配置为根据所述信息字段在所述非授权频段中的检测位置接收所述控制信令。
  18. 根据权利要求17所述的装置,其特征在于,
    所述信息字段包括固定长度的位图bitmap,所述固定长度的位图bitmap中的每个比特位对应一个时域单元;
    其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
  19. 根据权利要求18所述的装置,其特征在于,
    所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
    所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
  20. 根据权利要求18所述的装置,其特征在于,
    所述接收模块,还被配置为接收第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
    其中,所述第一配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  21. 根据权利要求17所述的装置,其特征在于,所述信息字段包括指示信息;
    所述指示信息用于指示配置信息集中的目标配置信息;
    所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
  22. 根据权利要求21所述的装置,其特征在于,
    所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
  23. 根据权利要求22所述的装置,其特征在于,所述配置信息集中的配置信息与所述标识的对应关系为终端中预定义的对应关系。
  24. 根据权利要求22所述的装置,其特征在于,所述接收模块,还被配置为接收第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
    其中,所述第二配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  25. 一种控制信令的检测装置,其特征在于,所述装置包括:
    发送模块,被配置为发送下行控制信息,所述下行控制信息中包括信息字段,所述信息字段用于指示所述控制信令在非授权频段中的检测位置,所述检测位置为控制信令在所述非授权频段中可能的发送位置。
  26. 根据权利要求25所述的装置,其特征在于,
    所述信息字段包括固定长度的位图bitmap,所述固定长度的位图bitmap中的每个比特位对应一个时域单元;
    其中,所述比特位用于表示对应的时域单元是否需要进行对所述控制信令的检测。
  27. 根据权利要求26所述的装置,其特征在于,
    所述比特位的取值为第一取值时,表示所述比特位对应的所述时域单元需要进行对所述控制信令的检测;
    所述比特位的取值为第二取值时,表示所述比特位对应的所述时域单元无需进行对所述控制信令的检测。
  28. 根据权利要求26所述的装置,其特征在于,所述发送模块,还被配置为发送第一配置信令,所述第一配置信令用于对所述固定长度进行配置;
    其中,所述第一配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  29. 根据权利要求25所述的装置,其特征在于,所述信息字段包括指示信息;
    所述指示信息用于指示配置信息集中的目标配置信息;
    所述配置信息集中包括一个或多个配置信息,所述配置信息用于表示在所述物理下行控制信道上需要对所述控制信令进行检测的时域单元。
  30. 根据权利要求29所述的装置,其特征在于,
    所述指示信息中包括所述目标配置信息的标识,所述标识与所述配置信息集中的目标配置信息存在对应关系。
  31. 根据权利要求30所述的装置,其特征在于,
    所述配置信息集中的配置信息与所述标识的对应关系为接入网设备中预定义的对应关系。
  32. 根据权利要求30所述的装置,其特征在于,所述发送模块,还被配置为发送第二配置信令,所述第二配置信令用于配置所述配置信息与所述标识之间的所述对应关系;
    其中,所述第二配置信令包括:无线资源控制RRC信令、媒体访问控制控制单元MAC CE或物理层信令中的至少一种。
  33. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至8任一所述的控制信令的检测方法。
  34. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求9至16任一所述的控制信令的检测方法。
  35. 一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集由处理器加载并执行以实现如权利要求1至16任一所述的控制信令的检测方法。
PCT/CN2019/088857 2019-05-28 2019-05-28 控制信令的检测方法、装置、设备及存储介质 WO2020237510A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980000978.9A CN110337794B (zh) 2019-05-28 2019-05-28 控制信令的检测方法、装置、设备及存储介质
EP19931257.0A EP3979537A4 (en) 2019-05-28 2019-05-28 CONTROL SIGNAL DETECTION METHOD AND DEVICE, DEVICE AND STORAGE MEDIUM
PCT/CN2019/088857 WO2020237510A1 (zh) 2019-05-28 2019-05-28 控制信令的检测方法、装置、设备及存储介质
US17/613,827 US20220240314A1 (en) 2019-05-28 2019-05-28 Detection method, device, and storage medium for detecting control signaling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088857 WO2020237510A1 (zh) 2019-05-28 2019-05-28 控制信令的检测方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020237510A1 true WO2020237510A1 (zh) 2020-12-03

Family

ID=68150207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088857 WO2020237510A1 (zh) 2019-05-28 2019-05-28 控制信令的检测方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20220240314A1 (zh)
EP (1) EP3979537A4 (zh)
CN (1) CN110337794B (zh)
WO (1) WO2020237510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012193A1 (zh) * 2019-07-23 2021-01-28 北京小米移动软件有限公司 信息配置及上报方法及装置、基站和用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992373A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
CN106301733A (zh) * 2015-06-26 2017-01-04 中兴通讯股份有限公司 数据的传输方法及装置
WO2017135726A1 (ko) * 2016-02-05 2017-08-10 삼성전자 주식회사 이동 통신 시스템에서 통신 방법 및 장치
CN108242990A (zh) * 2012-11-30 2018-07-03 华为技术有限公司 接收信息的方法、发送信息的方法、基站和用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
US20160135056A1 (en) * 2014-11-06 2016-05-12 Htc Corporation Device of Handling Measurement Signal on Unlicensed Carrier
CN105682241B (zh) * 2014-11-21 2020-06-16 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
CN105722229B (zh) * 2016-02-05 2019-08-27 北京佰才邦技术有限公司 信道的选择方法和装置
CN105704834B (zh) * 2016-04-01 2019-03-22 宇龙计算机通信科技(深圳)有限公司 非授权载波上前导码的配置方法、发送方法和相关设备
WO2020029147A1 (zh) * 2018-08-08 2020-02-13 北京小米移动软件有限公司 传输harq反馈信息的方法、装置、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242990A (zh) * 2012-11-30 2018-07-03 华为技术有限公司 接收信息的方法、发送信息的方法、基站和用户设备
CN105992373A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
CN106301733A (zh) * 2015-06-26 2017-01-04 中兴通讯股份有限公司 数据的传输方法及装置
WO2017135726A1 (ko) * 2016-02-05 2017-08-10 삼성전자 주식회사 이동 통신 시스템에서 통신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979537A4 *

Also Published As

Publication number Publication date
US20220240314A1 (en) 2022-07-28
EP3979537A1 (en) 2022-04-06
CN110337794B (zh) 2022-04-22
CN110337794A (zh) 2019-10-15
EP3979537A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
CN107948988B (zh) 一种资源控制方法及相关设备
CN111132344B (zh) 跨载波调度方法、装置及存储介质
CN108024340B (zh) 控制信息的检测方法与发送方法及设备
US20230085484A1 (en) Power saving method and apparatus, device, and readable storage medium
CN108923902B (zh) 上行探测信号的触发方法、装置、用户设备及存储介质
CN111294960B (zh) 识别下行控制信息的方法及设备
WO2017135453A1 (ja) ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法
US10959225B2 (en) Techniques for handling semi-persistent scheduling collisions for wireless networks
WO2021243655A1 (zh) 信息配置方法、装置、设备及可读存储介质
US10873430B2 (en) Signal sending method and apparatus
CN110572879A (zh) 资源控制方法、装置及存储介质
EP3993524A1 (en) Communication method and device
US11528714B2 (en) Data transmission method and apparatus
EP3993542B1 (en) Transmission of configuration information for detecting multiple signals on an unlicensed frequency band
CN111418177B (zh) 可靠性传输方法及相关产品
JP2018537907A (ja) スケジューリング情報送信方法および装置
CN111867101B (zh) 数据发送的方法、网络设备、终端、存储介质及电子设备
WO2021159272A1 (zh) 通信方法、装置、设备及可读存储介质
WO2021155604A1 (zh) 信息处理方法及设备
WO2020237510A1 (zh) 控制信令的检测方法、装置、设备及存储介质
CN115866771A (zh) 载波调度的方法及装置
US20220232619A1 (en) Method processing for split resources and processing device
EP4346303A1 (en) Resource reselection method and apparatus, device, and storage medium
US11595183B2 (en) Joint resource assigning method and device for allocating resources to terminal
WO2021023294A1 (zh) 信息传输方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931257

Country of ref document: EP

Effective date: 20220103