WO2017135453A1 - ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法 - Google Patents

ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法 Download PDF

Info

Publication number
WO2017135453A1
WO2017135453A1 PCT/JP2017/004111 JP2017004111W WO2017135453A1 WO 2017135453 A1 WO2017135453 A1 WO 2017135453A1 JP 2017004111 W JP2017004111 W JP 2017004111W WO 2017135453 A1 WO2017135453 A1 WO 2017135453A1
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
rnti
base station
downlink control
channel
Prior art date
Application number
PCT/JP2017/004111
Other languages
English (en)
French (fr)
Inventor
真平 安川
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/073,730 priority Critical patent/US20190014562A1/en
Priority to JP2017565670A priority patent/JP6810063B2/ja
Priority to EP17747604.1A priority patent/EP3413616B1/en
Publication of WO2017135453A1 publication Critical patent/WO2017135453A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the present invention relates to an identifier notification method used for identifying a channel and a user in a wireless communication system.
  • Non-Patent Document 1 (7.1 RNTI values) shows that the type is determined by the value or range of values of RNTI, and the transport channel and the logical channel are associated with each other.
  • the RNTI is not explicitly notified from the base station eNB (hereinafter referred to as eNB) to the user apparatus UE (hereinafter referred to as UE).
  • the eNB performs CRC (Cyclic Redundancy Check, check) added to a payload of DCI (Downlink Control Information, downlink control information) transmitted on PDCCH (Physical Downlink Control Channel, physical downlink control channel). Is scrambled with RNTI.
  • the UE that has received the PDCCH performs blind decoding in a predetermined search space using its own RNTI to obtain DCI. For example, if DCI can be obtained using P-RNTI, the UE can identify that it receives a paging channel.
  • MTC Machine-Type Communication
  • C-RNTI uses the same name space as RNTI for SPS (Semi-persistent-Scheduling) and TPC (Transmit-Power Control), and is an effectively usable area. Is even less.
  • the present invention has been made in view of the above points, and provides a technique capable of suppressing an increase in overhead even when an identifier used for identifying a channel is extended in a wireless communication system.
  • the purpose is to do.
  • the user device in the wireless communication system comprising a base station and a user device, the user device that communicates with the base station, An acquisition unit that acquires downlink control information from a downlink control channel using a part of an identifier for identifying a channel, and further acquires a remaining part obtained by removing the part from the identifier from a predetermined resource; ,
  • a user apparatus comprising: an identification unit that identifies a channel using an identifier configured by the part acquired by the acquisition unit and the remaining part.
  • the base station that communicates with the user apparatus in a wireless communication system including the base station and the user apparatus, An identifier processing unit that masks a value for inspection of downlink control information using a part of an identifier for identifying a channel; A transmission unit that transmits the downlink control information with the masked inspection value added thereto using a downlink control channel; The transmission unit transmits a remaining part obtained by removing the part from the identifier using a predetermined resource.
  • a base station is provided.
  • a channel identification method executed by the user apparatus that communicates with the base station in a wireless communication system including a base station and the user apparatus, An acquisition step of acquiring downlink control information from a downlink control channel using a part of an identifier for identifying a channel, and further acquiring a remaining part obtained by removing the part from the identifier from a predetermined resource; , There is provided a channel identification method comprising: an identification step of identifying a channel using an identifier constituted by the part acquired by the acquisition step and the remaining part.
  • an identifier transmission method executed by the base station that communicates with the user apparatus in a wireless communication system including a base station and the user apparatus.
  • the mobile communication system according to the present embodiment assumes a system based on LTE, but the present invention is not limited to LTE and can be applied to other systems.
  • LTE is used in a broad sense that may include a communication system (including 5G) corresponding to 3GPP Rel-12, 13, 14 or later.
  • the RNTI described below is an example of an identifier for identifying a channel, and the present invention is applicable to identifiers other than the RNTI.
  • FIG. 2 shows an overall configuration diagram of a wireless communication (mobile communication) system according to the embodiment of the present invention.
  • the radio communication system according to the present embodiment includes a base station eNB forming a cell and a user apparatus UE (hereinafter referred to as UE) that communicates with the base station eNB (hereinafter referred to as eNB).
  • UE user apparatus UE
  • eNB base station eNB
  • ENB and UE each have at least LTE functions. That is, the eNB scrambles the CRC attached to the DCI payload transmitted by the PDCCH using the RNTI, and transmits the PDCCH.
  • the UE that has received the PDCCH performs blind decoding in a predetermined search space using its own RNTI to obtain DCI. Thereafter, the UE performs channel reception processing or the like according to the type of RNTI (value of RNTI) used to acquire DCI.
  • the RNTI is extended, and the eNB and the UE can use a value (or a smaller value) larger than 16 bits as the RNTI.
  • the eNB pays out the extended RNTI to the UE and transmits DCI (downlink control information) having a CRC masked with the extended RNTI on the PDCCH.
  • the eNB when the eNB performs CRC masking using the extended RNTI, the eNB concatenates the CRC head part or tail part to the original CRC as a repetitive part. “Part” is the same length as the extended RNTI. Then, “CRC + repeated portion” is masked with the extended RNTI.
  • the UE that uses the extended RNTI obtains the target DCI by taking out the CRC from the “CRC + repeated portion” descrambled by the extended RNTI and performing a CRC check.
  • a method of aligning the lengths of the extended RNTI and CRC the use of repeated portions as described above is an example.
  • a CRC generator polynomial may be used so that an extended RNTI length CRC is generated.
  • CRC masking may be performed using the existing RNTI length portion of the extended RNTI.
  • all UEs may use a common RNTI length, or the RNTI length used for each UE may be switched.
  • the eNB determines the length of the RNTI according to the capability of the UE (eg, whether the capability corresponds to the MTC), pays out the RNTI of the determined length to the UE, Used for CRC masks.
  • the UE also uses the RNTI.
  • RNTI length to be used may be switched depending on the DCI format to be transmitted.
  • the eNB uses a short RNTI length in the case of transmission of DCI format 1C, and uses a long RNTI length in the case of DCI format 2.
  • RNTI length extension As described above, by making it possible to change the RNTI length for each UE and for each DCI, a short RNTI length can be used for some UEs or some DCIs, and the overhead increases due to the RNTI length extension. The influence of can be suppressed.
  • the eNB uses an extended RNTI longer than the existing RNTI
  • the eNB uses a part of the extended RNTI (the length of the existing CRC).
  • the DCI with the CRC is transmitted on the PDCCH.
  • the eNB transmits the remaining part of the extended RNTI (extended RNTI remaining part) using another resource different from the CRC part.
  • Another resource is used, for example, for purposes other than the RNTI notification, and thereby, it is possible to reduce the overhead associated with the RNTI extension.
  • the eNB transmits the remaining portion of the extended RNTI as a part of the field of DCI to which the CRC masked with a part of the extended RNTI (a portion other than the remaining portion, the same applies hereinafter) is attached.
  • the CRC masked with a part of the extended RNTI (a portion other than the remaining portion, the same applies hereinafter) is attached.
  • step S101 the UE acquires DCI by blind decoding processing using a part of the extended RNTI that is held.
  • the UE acquires an extended RNTI remaining portion (information corresponding thereto) from a predetermined field of DCI.
  • step S103 the UE collates the acquired extended RNTI remaining part with the corresponding extended RNTI part, and if they match, receives the channel (PDSCH) addressed to itself related to the received DCI.
  • the type of channel eg, transport channel, logical channel, etc.
  • the UE can identify that the received transport channel is a DL-SCH addressed to itself.
  • the eNB may use any one of a beam index, a time / frequency resource, and a code used for DCI transmission, or any of a plurality (all)
  • the remainder of the extended RNTI is transmitted using a combination of
  • eNB of this Embodiment is provided with the beam forming function which forms a some beam.
  • the eNB when the beam index is used, if the extended RNTI remaining part is “15”, the eNB is attached with a CRC masked by a part of the extended RNTI with a downlink beam identified by No. 15. DCI (PDCCH) is transmitted.
  • the UE knows the resources for each downlink beam in advance, and acquires DCI from the PDCCH received using the resource corresponding to No. 15 using a part of the extended RNTI. Then, “15” is compared with the corresponding portion of the extended RNTI held, and if it matches “15”, it is understood that the channel addressed to itself related to the received DCI is received.
  • a PDCCH search space or a subset thereof can be used as the time / frequency resource.
  • a predetermined search space is divided into a plurality of areas, and the divided areas are associated with the values of the remaining extended RNTI.
  • the UE grasps the value of the remaining portion of the extended RNTI notified from the eNB based on the region where the DCI with the CRC masked by a part of the extended RNTI can be acquired.
  • the eNB may notify the UE of the extended RNTI remaining part by using the time / frequency resource and / or the sequence of the reference signal used for PDCCH demodulation.
  • the time / frequency resource of the reference signal is associated with the value of the extended RNTI remaining portion, and the UE holds the corresponding information by broadcast information or the like. Then, when the UE can acquire the DCI with the CRC masked by a part of the extended RNTI, the UE uses the time / frequency resource of the reference signal used in the demodulation of the PDCCH based on the correspondence information. Get the value of the remaining extended RNTI.
  • the eNB may notify the UE of the remaining extended RNTI using an upper layer identifier such as a MAC header.
  • an upper layer identifier such as a MAC header.
  • the UE first obtains the DCI with the CRC masked with a part of the extended RNTI, and then receives the PDSCH using the DCI, and obtains the MAC header from the data of the PDSCH. Then, the remaining extended RNTI is collated.
  • the eNB may notify the UE of the remaining extended RNTI using information for identifying Numerology.
  • Numerology is an example of “resource”. Numerology is a parameter used in a wireless communication system, such as subframe length, slot length, subcarrier interval, symbol length, sampling frequency, FFT size, number of subcarriers, CP length, and the like.
  • a specific Numerology value (for example, CP length) is associated with the value of the remaining extended RNTI, and the UE holds the corresponding information as broadcast information or the like. Then, when the UE is able to acquire the DCI with the CRC masked by a part of the extended RNTI, the UE determines the remainder of the extended RNTI based on the correspondence information from the value of Numerology used when demodulating the PDCCH. Get the value of.
  • the eNB may notify the UE of the remaining extended RNTI using the resource pool identifier.
  • the eNB notifies the UE of an identifier of a resource pool (eg, a range of time / frequency resources) used by the UE for signal reception (or signal transmission) by broadcast information or the like.
  • the eNB notifies the UE of correspondence information between the resource pool identifier and the value of the remaining extended RNTI.
  • the UE can acquire the DCI with the CRC masked by a part of the extended RNTI, the UE acquires the value of the remaining extended RNTI from the identifier of the resource pool, and performs collation.
  • the eNB may change the RNTI size (division ratio) used for the CRC mask according to the DCI format. Also, for example, in DCI transmission to a specific UE (eg, MTC-UE), the size of the CRC mask is reduced (eg, 8 bits), and the remaining RNTI is used as a time resource (eg, a time set described later), for example. It is good also as reducing overhead by notifying by.
  • a specific UE eg, MTC-UE
  • the size of the CRC mask is reduced (eg, 8 bits), and the remaining RNTI is used as a time resource (eg, a time set described later), for example. It is good also as reducing overhead by notifying by.
  • a part of the above-described extended RNTI may be an existing RNTI, and the remaining extended RNTI may be positioned as an extension identifier for extending the existing RNTI. Even when the remaining extended RNTI is used as an extended identifier, the operation is the same as in the above example.
  • a time set for enabling RNTI is set from the eNB to the UE by higher layer signaling. Or it sets to UE beforehand.
  • UE-A is set to have RNTI enabled in time set A and UE-B has been set to have RNTI enabled in time set B orthogonal to time set A.
  • the eNB allocates the same RNTI to UE-A and UE-B.
  • UE-A monitors DCI using RNTI in time set A
  • UE-B monitors DCI using RNTI in time set B.
  • the time resource distinction is an extended identifier, but instead of the time resource or in addition to the time resource, the frequency resource distinction may be used as the extended identifier.
  • burst transmission / reception of data may be enabled by providing a time window that is activated for a certain period of time, triggered by resource allocation from the eNB to the UE or transmission of a special control signal from the eNB to the UE. .
  • the extension identifier may be associated with the DCI format.
  • the UE for which the extended identifier is set monitors a special DCI format including the extended identifier (or corresponding to the extended identifier).
  • the MAC header only a MAC header of a type in which only the UE for which the extension identifier is set can notify the extension identifier may be monitored.
  • RNTI extension a part of RNTI having an existing length (normal-RNTI, which will be described later) (part of the range in the space) may be reserved for RNTI extension.
  • Long-RNTI long RNTI
  • Normal-RNTI normal RNTI
  • the eNB issues a Normal-RNTI to the UE in the random access procedure, and separately issues a Long-RNTI to the UE according to the UE capability or the UE type by higher layer signaling.
  • a processing sequence in this case will be described with reference to FIG. FIG. 6 shows an example of a collision type random access procedure as an example.
  • the random access is performed when the UE establishes a connection with the eNB at the time of transmission or by handover or the like, and its main purpose is to establish uplink synchronization.
  • step S201 the UE transmits a RACH preamble (selected preamble sequence) by PRACH (Physical Random Access Channel) using one preamble sequence from a predetermined number of preamble sequences.
  • RACH Physical Random Access Channel
  • step S202 the eNB transmits a RACH response including the issued Normal-RNTI (Temporary C-RNTI) to the UE using DL-SCH (downlink shared channel).
  • DL-SCH downlink shared channel
  • the UE that has received the RACH response transmits a control message such as an RRC connection request to the eNB by using UL-SCH (uplink shared channel) using resources allocated in the UL grant included in the RACH response (step S203).
  • a control message such as an RRC connection request to the eNB by using UL-SCH (uplink shared channel) using resources allocated in the UL grant included in the RACH response (step S203).
  • step S204 the eNB transmits contention resolution (contention resolution message) on the DL-SCH.
  • the UE that has received the contention resolution can complete the random access process by confirming that its own Normal-RNTI is included, and thereafter can transmit and receive data using the Normal-RNTI.
  • UE capability information (UE capability) is transmitted to the eNB.
  • Normal-RNTI is used.
  • the eNB determines whether or not to issue Long-RNTI to the UE based on the capability information (eg, UE category, UE type, etc.) (step S206).
  • the eNB determines that the UE has capability information corresponding to the MTC terminal, issues a Long-RNTI, and transmits the Long-RNTI to the UE by an RRC message, a broadcast signal, or a physical signal ( Step S207). Thereafter, the UE performs DCI monitoring and the like using Long-RNTI.
  • the information transmitted here may be the Long-RNTI itself, or may be an extended identifier that constitutes the Long-RNTI when used together with the Normal-RNTI.
  • the UE (and eNB) uses “Normal-RNTI + extended identifier” as the Long-RNTI.
  • the eNB notifies the UE of the configuration information of the resources used for RACHRACpreamble transmission and the UE capability or UE type (hereinafter collectively referred to as UE capability) by a broadcast signal (or higher layer signaling). ) And correspondence information.
  • the configuration information includes, for example, any one of a time resource, a frequency resource, and a preamble sequence, a combination of any two, or a combination of three.
  • the UE transmits a RACH preamble using configuration information corresponding to its own UE capability based on the above correspondence information (step S212).
  • the eNB determines an RNTI (Long-RNTI or Normal-RNTI) to be paid out to the UE based on the received RACH preamble configuration information (resource), and includes the determined RNTI (Long-RNTI or Normal-RNTI) RACH response is transmitted to the UE (step S213).
  • RNTI Long-RNTI or Normal-RNTI
  • the eNB reports the correspondence information between the window for monitoring RACHRACresponse and the UE capability from the eNB to the UE.
  • RACH response including Normal-RNTI is transmitted within the window of UE capability corresponding to Normal-RNTI, and the UE monitors the window corresponding to its own UE capability based on the above correspondence information. Then, the RACH response may be received.
  • RACH preamble transmission resources can be shared between UEs.
  • the eNB notifies the UE of correspondence information between the RACH response format (RNTI or DCI format used for transmission) and the UE capability, and the eNB transmits the RACH response including the Long-RNTI in the RACH response transmission.
  • Long-RNTI is transmitted in a format corresponding to Normal-RNTI
  • RACH response including Normal-RNTI is transmitted in a format corresponding to Normal-RNTI.
  • the UE monitors the format according to its own UE capability. Then, the RACH response may be received. Also in this case, RACH preamble transmission resources can be shared between UEs.
  • a UE that has set Long-RNTI by any one of the above methods uses DCI by using a part of Long-RNTI as Normal-RNTI. Detect and identify the rest of the remaining Long-RNTI with another resource. This remaining portion may be the extended identifier described above.
  • the eNB may use a search space corresponding to Long-RNTI and / or a DCI format corresponding to Long-RNTI.
  • the eNB notifies the UE of information on a search space corresponding to Long-RNTI and / or information on a DCI format corresponding to Long-RNTI by a broadcast signal or the like.
  • the UE uses the Long-RNTI stored in the CRC-masked DCI using the Long-RNTI, and the search space corresponding to the Long-RNTI and / or the DCI corresponding to the Long-RNTI. Detect by monitoring the format.
  • the RNTI used for transmission of the RACH response is, for example, two types (for Normal-RNTI) having the RNTI length of Normal-RNTI RNTI corresponding to the RNTI to be paid out.
  • an RNTI having a RNTI length of Normal-RNTI is used.
  • an RNTI having a RNTI length of Long-RNTI may be used. Good. In this way, the UE can identify the RNTI type that has been paid out based on the RNTI used for receiving the RACH response.
  • the time / frequency resources to which resources can be allocated may be limited by RNTI.
  • the eNB transmits a resource (example) : DL data transmission resource, UL data transmission resource, etc.). Further, the eNB allocates resources in the resource set 2 to UEs to which the extended RNTI assigned with B as an extension identifier is assigned.
  • the eNB Since each UE grasps a resource set to which resources may be allocated based on the allocated extension identifier (extended RNTI), the eNB reduces the information amount for resource allocation (the resources in the resource set). The amount of information that identifies Thereby, the signaling overhead for resource allocation can be reduced.
  • the UE instead of the eNB paying out the RNTI to the UE, the UE sets a predetermined rule based on the UE-ID (eg, IMSI: International Mobile Subscriber Identity stored in the SIM card). RNTI may be generated and used.
  • the eNB acquires the UE-ID from the UE, so the eNB generates and uses the RNTI according to the same rule as that of the UE.
  • the above RNTI may be the extended RNTI (Long-RNTI) described so far. Moreover, the usage method of the said RNTI is the same as the method demonstrated with reference to FIG. 4 etc., for example.
  • the UE-ID to RNTI conversion process in the UE may be performed when the UE receives a conversion instruction from the eNB with a broadcast signal. Moreover, you may designate the conversion method (conversion formula) with the said alerting
  • the UE-ID may be extended beyond the RNTI length. For example, an extension such as changing the IMSI from 32 bits to 128 bits may be performed. Thereby, it is possible to support multi-terminal connection in an upper layer.
  • the UE-ID (generated from IMSI) notified by Paging is expanded more than 1024, or multiple time / frequency resource sets for Paging monitor are set, and the UE-ID set notified for each set is changed implicitly. Some UE-ID notifications may be performed.
  • the RNTI is used not only for CRC masking, but also for generation of a scramble code of a predetermined channel, generation of a reference signal (RS) sequence, and the like.
  • RS reference signal
  • RNTI values having a plurality of different lengths are used as RNTI values used for purposes other than the CRC mask. Introduces a common RNTI value (referred to as a logical RNTI value).
  • the logical RNTI value a common part in a plurality of RNTIs having different lengths can be used.
  • the common part is, for example, Normal-RNTI when “Normal-RNTI + extended identifier” is used as Long-RNTI.
  • a logical RNTI value that is zero-padded to a short RNTI so as to be the maximum length (size) of the RNTI may be used. That is, each of the UE and the eNB generates a logical RNTI value from a plurality of RNTIs having different lengths as described above, and uses the RNTI value for generating a scramble code and a reference signal sequence.
  • an identifier for identifying each RNTI having a different size is added to the generation formula for generating the scrambling code / RS generation sequence of each channel, and the RNTI is given.
  • a scrambling code or the like corresponding to the above may be generated.
  • the eNB may issue the same RNTI to a plurality of UEs, and each UE to which the same RNTI is issued may perform DCI monitoring using the RNTI in accordance with an instruction from the eNB. Specifically, the eNB instructs activation / de-activate of DCI monitoring using RNTI for each UE to which the same RNTI is assigned.
  • the UE that has received the Activate control signal performs DCI monitoring, and the UE that has received the de-activate control signal does not perform DCI monitoring.
  • the eNB may transmit the Activate / de-activate control signal using the common search space, or set another group search space monitored by the UE sharing the RNTI,
  • the Activate / de-activate control signal may be transmitted by higher layer signaling.
  • a UE identifier set separately or a UE identifier of an upper layer is set, and thereby the UE identifies a control signal addressed to itself.
  • an identifier for notifying an ACK / NACK feedback resource in L1 / L2 signaling may be added to the Activate / de-activate control signal for each UE.
  • you may transmit so that an Activate / de-activate control signal may be selectively received by specific UE by beam forming of eNB.
  • UE1 and UE2 exist.
  • the eNB assigns RNTI-A to UE2 in step S301 in the random access procedure or the like in UE1 and UE2, and assigns the same RNTI-A as that assigned to UE2 to UE1 in step S302.
  • step S303 the eNB transmits a control signal instructing activation to UE1, and when UE1 receives this, UE1 performs DCI monitoring using RNTI-A (step S304). During this period, the eNB does not transmit a control signal for instructing the UE 2 to activate, and the UE 2 does not perform DCI monitoring using the RNTI-A.
  • step S305 when UE1 receives a control signal instructing de-activate from the eNB, the implementation of DCI monitoring is stopped.
  • the eNB transmits a control signal instructing activation to the UE 2 in step S306 and the UE 2 receives the control signal, the UE 2 performs DCI monitoring using the RNTI-A (step S307).
  • FIG. 10 shows a functional configuration diagram of the UE.
  • the UE includes a UL transmission unit 101, a DL reception unit 102, an RRC management unit 103, an RNTI management unit 104, and an RNTI processing unit 105.
  • FIG. 10 shows only functional units particularly relevant to the present invention in the UE, and the UE also has a function (not shown) for performing an operation based on at least LTE.
  • the UL transmission unit 101 includes a function of generating various signals of the physical layer from information on higher layers to be transmitted from the UE and transmitting the signals to the eNB.
  • the DL receiving unit 102 includes a function of receiving various downlink signals from the eNB and acquiring higher layer information from the received physical layer signals.
  • the UL transmission unit 101 and the DL reception unit 102 include a function for executing a random access procedure.
  • the RRC management unit 103 acquires a broadcast signal, an upper layer signal, and the like from the eNB via the DL reception unit 102, acquires setting information and the like from these signals, and stores them.
  • the RRC management unit 103 has an operation control function based on the Activate / de-activate control signal described in the modification.
  • the RRC management unit 103 includes a function of managing and notifying UE capability information.
  • the RNTI management unit 104 receives the RNTI from the eNB and stores the RNTI that has been paid out.
  • the RNTI management unit 104 includes a function of generating and storing an RNTI from the UE-ID.
  • the RNTI processing unit 105 executes processing related to the RNTI described in the present embodiment, such as DCI monitoring using RNTI, identification of a channel addressed to itself. That is, the RNTI processing unit 105 acquires downlink control information from the downlink control channel using a part of the identifier for identifying the channel, and further, removes the remaining part from the identifier, An acquisition unit that acquires from a predetermined resource received from a base station, and an identification unit that identifies a channel using an identifier configured by the part and the remaining part acquired by the acquisition unit.
  • the configuration of the UE shown in FIG. 10 may be entirely realized by a hardware circuit (eg, one or a plurality of IC chips), a part is constituted by a hardware circuit, and the other part is a CPU and a program. And may be realized.
  • a hardware circuit eg, one or a plurality of IC chips
  • a part is constituted by a hardware circuit
  • the other part is a CPU and a program. And may be realized.
  • FIG. 11 is a diagram illustrating an example of a hardware (HW) configuration of the UE.
  • FIG. 11 shows a configuration closer to the mounting example than FIG.
  • the UE controls an apparatus that performs processing such as an RE (Radio Equipment) module 151 that performs processing related to a radio signal, a BB (Base Band) processing module 152 that performs baseband signal processing, and a higher layer. It has a module 153 and a USIM slot 154 which is an interface for accessing a USIM card.
  • RE Radio Equipment
  • BB Base Band
  • the RE module 151 should transmit from the antenna by performing D / A (Digital-to-Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB processing module 152 Generate a radio signal.
  • a digital baseband signal is generated by performing frequency conversion, A / D (Analog to Digital) conversion, demodulation, and the like on the radio signal received from the antenna, and passes it to the BB processing module 152.
  • the RE module 151 includes functions such as a physical layer in the UL transmission unit 101 and the DL reception unit 102 in FIG.
  • the BB processing module 152 performs processing for mutually converting an IP packet and a digital baseband signal.
  • a DSP (Digital Signal Processor) 162 is a processor that performs signal processing in the BB processing module 152.
  • the memory 172 is used as a work area for the DSP 162.
  • the BB processing module 152 includes, for example, functions such as layer 2 in the UL transmission unit 101 and DL reception unit 102 in FIG. 10, functions of the RRC management unit 103, the RNTI management unit 104, and the RNTI processing unit 105. Note that all or part of the functions of the RRC management unit 103, the RNTI management unit 104, and the RNTI processing unit 105 may be included in the device control module 153.
  • the device control module 153 performs IP layer protocol processing, various application processing, and the like.
  • the processor 163 is a processor that performs processing performed by the device control module 153.
  • the memory 173 is used as a work area for the processor 163.
  • the processor 163 reads and writes data with the USIM through the USIM slot 154.
  • FIG. 12 shows a functional configuration diagram of the eNB.
  • the eNB includes a DL transmission unit 201, a UL reception unit 202, an RRC management unit 203, an RNTI management unit 204, and an RNTI processing unit 205.
  • FIG. 12 shows only functional units particularly related to the embodiment of the present invention in the eNB, and the eNB also has a function (not shown) for performing an operation based on at least the LTE scheme.
  • the DL transmission unit 201 includes a function of generating and transmitting various physical layer signals from upper layer information to be transmitted from the eNB.
  • the UL reception unit 202 includes a function of receiving various uplink signals from the UE and acquiring higher layer information from the received physical layer signals.
  • the DL transmission unit 201 and the UL reception unit 202 include a function of performing beam forming.
  • the RRC management unit 203 includes a function of creating a notification signal including setting information, an upper layer signal, and the like and transmitting it to the UE via the DL transmission unit 201.
  • the RRC management unit 203 has the function of creating and transmitting the Activate / de-activate control signal described in the modification.
  • the RNTI management unit 204 pays out the RNTI to the UE and stores the paid out RNTI. Further, the RNTI management unit 204 includes a function of generating and storing an RNTI from the UE-ID. Further, the RNTI processing unit 205 has a function of performing a CRC mask of DCI using RNTI and a function of performing notification of a remaining part (including an extension identifier) of RNTI using another resource via the DL transmission unit 201. Including.
  • the configuration of the eNB shown in FIG. 12 may be entirely realized by a hardware circuit (eg, one or a plurality of IC chips), a part is constituted by a hardware circuit, and the other part is a CPU and a program. And may be realized.
  • a hardware circuit eg, one or a plurality of IC chips
  • a part is constituted by a hardware circuit
  • the other part is a CPU and a program. And may be realized.
  • FIG. 13 is a diagram illustrating an example of a hardware (HW) configuration of the eNB.
  • HW hardware
  • FIG. 13 shows a configuration closer to the mounting example than FIG.
  • the eNB is connected to the network by an RE module 251 that performs processing related to a radio signal, a BB processing module 252 that performs baseband signal processing, a device control module 253 that performs processing such as an upper layer, and the like.
  • a communication IF 254 which is an interface for this purpose.
  • the RE module 251 generates a radio signal to be transmitted from the antenna by performing D / A conversion, modulation, frequency conversion, power amplification, and the like on the digital baseband signal received from the BB processing module 252.
  • a digital baseband signal is generated by performing frequency conversion, A / D conversion, demodulation, and the like on the radio signal received from the antenna, and is passed to the BB processing module 252.
  • the RE module 251 includes functions such as a physical layer in the DL transmission unit 201 and the UL reception unit 202 in FIG.
  • the BB processing module 252 performs processing for mutually converting an IP packet and a digital baseband signal.
  • the DSP 262 is a processor that performs signal processing in the BB processing module 252.
  • the memory 272 is used as a work area for the DSP 252.
  • the BB processing module 252 includes, for example, functions such as layer 2 in the DL transmission unit 201 and the UL reception unit 202 in FIG. 12, an RRC management unit 203, an RNTI management unit 204, and an RNTI processing unit 205. Note that all or part of the functions of the RRC management unit 203, the RNTI management unit 204, and the RNTI processing unit 205 may be included in the device control module 253.
  • the device control module 253 performs IP layer protocol processing, OAM processing, and the like.
  • the processor 263 is a processor that performs processing performed by the device control module 253.
  • the memory 273 is used as a work area for the processor 263.
  • the auxiliary storage device 283 is an HDD, for example, and stores various setting information for the base station eNB itself to operate.
  • the configuration (functional category) of the apparatus shown in FIGS. 10 to 13 is merely an example of a configuration that implements the processing described in the present embodiment.
  • the mounting method (specific arrangement of functional units, names, and the like) is not limited to a specific mounting method.
  • the user apparatus that communicates with the base station in a wireless communication system including the base station and the user apparatus, and uses a part of the identifier for identifying the channel. Then, acquiring downlink control information from the downlink control channel, and further, acquiring the remaining part excluding the part from the identifier from a predetermined resource, and the part acquired by the acquiring unit, A user apparatus including an identification unit that identifies a channel using an identifier configured by the remaining portion is provided.
  • the predetermined resource is, for example, the field of the downlink control information, the transmission resource of the downlink control channel, the transmission resource of the reference signal used for demodulation of the downlink control channel, and the communication between the base station and the user apparatus It is a numeric or resource pool identifier used for With these resources, the remaining part can be transmitted with little or no overhead.
  • the user apparatus receives a second identifier shorter than the identifier from the base station, and after the random access procedure, A transmission unit that transmits capability information of the user apparatus to the base station, and the reception unit may receive the identifier paid out from the base station according to the capability information.
  • the user apparatus receives a second identifier shorter than the identifier from the base station, and after the random access procedure, A transmission unit that transmits capability information of the user apparatus to the base station, and the reception unit receives an extension identifier issued from the base station according to the capability information, and receives the second identifier and the extension An identifier may be used as the identifier. Also with this configuration, it is possible to use an identifier that is extended only by some user devices based on the capability information (capability, type, etc.) of the user devices. Thereby, an increase in overhead can be suppressed.
  • the user apparatus in a random access procedure executed between the base station and the user apparatus, transmits a random access signal to the base station using a resource configuration corresponding to the capability of the user apparatus And a receiving unit that receives the identifier issued according to the resource configuration from the base station that has received the random access signal. Also with this configuration, it is possible to use an identifier that is extended only by some user devices based on the capability information (capability, type, etc.) of the user devices. Thereby, an increase in overhead can be suppressed.
  • the acquisition unit may use an identifier generated from the identification information of the user device as the identifier. With this configuration, it is possible to reduce overhead related to identifier payout.
  • the acquisition unit may acquire the downlink control information by monitoring a search space corresponding to the identifier or a format of the downlink control information corresponding to the identifier. With this configuration, downlink control information can be acquired efficiently.
  • the base station communicates with the user apparatus, and uses a part of an identifier for identifying a channel to perform downlink control.
  • An identifier processing unit that masks a value for inspection of information, and a transmission unit that transmits the downlink control information added with the masked inspection value using a downlink control channel, and the transmission unit includes: There is provided a base station that transmits a remaining part obtained by removing the part from the identifier using a predetermined resource.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the base station eNB and the user apparatus UE have been described using functional block diagrams, but such an apparatus may be realized by hardware, software, or a combination thereof.
  • software that is operated by a processor included in the user equipment UE and the base station eNB includes random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk ( (HDD), a removable disk, a CD-ROM, a database, a server, or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC signaling, MAC signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC message may be referred to as RRC signaling.
  • the RRC message may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • UE is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “determining”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the notification of the predetermined information is not limited to explicitly performed, and may be performed implicitly (for example, notification of the predetermined information is not performed). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置において、チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、所定のリソースから取得する取得部と、前記取得部により取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別部とを備える。

Description

ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法
 本発明は、無線通信システムにおいてチャネル及びユーザを識別するために使用される識別子の通知方法に関連するものである。
 LTEに準拠した無線通信システムでは、RNTI(Radio Network Temporary Identifier)と呼ばれる識別子が使用される。RNTIは、チャネルを識別するための識別子である。また、RNTIは、ユーザを識別する識別子でもある。非特許文献1(7.1 RNTI values)には、RNTIの値又は値の範囲により、その種別が定められ、その種別によりトランスポートチャネル及び論理チャネルが対応付けられていることが示されている。
 ただし、RNTIの配布を除いて、RNTIは明示的には基地局eNB(以下、eNBとする)からユーザ装置UE(以下、UEとする)に通知されない。図1に示すように、eNBは、PDCCH(Physical Downlink Control Channel、物理下り制御チャネル)で伝達されるDCI(Downlink Control Information、下り制御情報)のペイロードに付与されるCRC(Cyclic Redundancy Check、検査用の値)を、RNTIでスクランブルする。PDCCHを受信したUEは、自分が持つRNTIを用いて所定のサーチスペースでブラインド復号を行ってDCIを取得する。例えば、P-RNTIを使用してDCIを取得できた場合、UEは、ページングチャネルを受信することを識別できる。
3GPP TS 36.321 V12.6.0 (2015-06)
 今後、MTC(Machine-Type Communication)が普及し、ネットワークに接続される端末(UE)の数が飛躍的に増大することが予想される。その場合、既存のRNTIの名前空間(容量)が不足する可能性がある。
 現在のLTE仕様ではUE個別に設定するC-RNTIの数は65,462である。しかし、非特許文献1に示されるように、C-RNTIは、SPS(Semi persistent Scheduling)やTPC(Transmit Power Control)用のRNTIと同じ名前空間を使用しており、実効的に利用可能な領域は更に少ない。
 名前空間の不足を解消するために、RNTI長の拡張を行うことが考えられる。しかし、RNTI長の拡張により、シグナリングオーバーヘッドが増加する。シグナリングオーバーヘッドの増加は、UEのカバレッジ縮退、UEのバッテリー消費の増大等を招く可能性があり好ましくない。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、チャネルを識別するために使用される識別子を拡張する場合でも、オーバーヘッドの増加を抑制することを可能とする技術を提供することを目的とする。
 本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、
 チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、所定のリソースから取得する取得部と、
 前記取得部により取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別部と
 を備えることを特徴とするユーザ装置が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局であって、
 チャネルを識別するための識別子の一部を使用して、下り制御情報の検査用の値をマスクする識別子処理部と、
 前記マスクがされた検査用の値を付加した前記下り制御情報を、下り制御チャネルで送信する送信部と、を備え、
 前記送信部は、前記識別子から前記一部を除いた残部分を、所定のリソースで送信する
 ことを特徴とする基地局が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行するチャネル識別方法であって、
 チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、所定のリソースから取得する取得ステップと、
 前記取得ステップにより取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別ステップと
 を備えることを特徴とするチャネル識別方法が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局が実行する識別子送信方法であって、
 チャネルを識別するための識別子の一部を使用して、下り制御情報の検査用の値をマスクするステップと、
 前記マスクがされた検査用の値を付加した前記下り制御情報を、下り制御チャネルで送信するステップと、
 前記識別子から前記一部を除いた残部分を、所定のリソースで送信するステップと
 を備えることを特徴とすることを特徴とする識別子送信方法が提供される。
 無線通信システムにおいて、チャネルを識別するために使用される識別子を拡張する場合でも、オーバーヘッドの増加を抑制することを可能とする技術が提供される。
従来のRNTIを説明するための図である。 本発明の実施の形態における通信システムの構成図である。 16ビットよりも大きなサイズのRNTIの例を示す図である。 実施の形態の概要を説明するための図である。 ユーザ装置UEにおける識別動作例を説明するための図である。 能力に応じてLong/normal-RNTIを設定する処理例1を説明するためのシーケンス図である。 能力に応じてLong/normal-RNTIを設定する処理例2を説明するためのシーケンス図である。 RNTIによりリソース割り当て可能な時間・周波数リソースを限定する例を説明するための図である。 変形例におけるシーケンスの例を示す図である。 ユーザ装置UEの構成図である。 ユーザ装置UEのHW構成図である。 基地局eNBの構成図である。 基地局eNBのHW構成図である。
 以下、図面を参照して本発明の実施の形態を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る移動通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。また、本明細書及び特許請求の範囲において、「LTE」は、3GPPのRel-12、13、14もしくはそれ以降に対応する通信方式(5Gを含む)を含み得る広い意味で使用する。また、以下で説明するRNTIは、チャネルを識別する識別子の一例であり、本発明はRNTI以外の識別子にも適用可能である。
 (システム構成、動作概要)
 図2に、本発明の実施の形態に係る無線通信(移動通信)システムの全体構成図を示す。本実施の形態に係る無線通信システムは、セルを形成する基地局eNB、及び基地局eNB(以下、eNB)と通信を行うユーザ装置UE(以下、UE)を有する。
 eNBとUEはそれぞれLTEの機能を少なくとも有する。すなわち、eNBは、PDCCHで伝達されるDCIのペイロードに付与されるCRCを、RNTIでスクランブルし、PDCCHを送信する。PDCCHを受信したUEは、自分が持つRNTIを用いて所定のサーチスペースでブラインド復号を行ってDCIを取得する。その後、UEは、DCIの取得に用いたRNTIの種別(RNTIの値)に応じたチャネル受信処理等を行う。
 本実施の形態では、RNTIを拡張し、eNB及びUEは、RNTIとして16ビットよりも大きい値(又は小さい値)を使用することができる。例えば、eNBは、UEに対して、拡張RNTIを払い出すとともに、拡張RNTIでマスクしたCRCを有するDCI(下り制御情報)をPDCCHで送信する。
 例えば、図3に示すように、eNBは、拡張RNTIを使用してCRCのマスクを行う際に、CRCの先頭部分もしくは末尾部分を、繰り返し部分として元のCRCに連結することで、「CRC+繰り返し部分」を拡張RNTIと同じ長さにする。そして、「CRC+繰り返し部分」に対して拡張RNTIでマスクをする。
 拡張RNTIを使用するUEは、拡張RNTIでデスクランブルした「CRC+繰り返し部分」からCRCを取り出してCRCチェックを行うことで目的のDCIを取得する。
 拡張RNTIとCRCの長さを揃える方法として、上記のように繰り返し部分を使用することは一例である。例えば、拡張RNTIの長さのCRCが生成されるような、CRC生成多項式を使用してもよい。また、拡張RNTIとCRCの長さを揃えないこととしてもよい。以下に詳しく説明するように、拡張RNTIのうちの既存RNTIの長さの部分を使用して、CRCマスクを行うこととしてもよい。
 本実施の形態では、全UEが共通のRNTI長を用いてもよいし、UE毎に使用するRNTI長を切り替えてもよい。例えば、eNBは、UEの能力(例:MTCに相当する能力かどうか)に応じてRNTIの長さを決定し、当該UEに対して、決定した長さのRNTIを払い出すとともに、当該RNTIをCRCマスク等に使用する。UEも、当該RNTIを使用する。
 また、送信するDCIフォーマットによって使用するRNTI長を切り替えてもよい。一例として、eNBは、DCIフォーマット1Cの送信の場合には短いRNTI長を使用し、DCIフォーマット2であれば長いRNTI長を使用する。
 上記のように、UE毎、DCI毎にRNTI長を変更可能とすることで、一部のUE、もしくは、一部のDCIには短いRNTI長を使用することができ、RNTI長拡張によるオーバーヘッド増大の影響を抑制できる。
 (実施の形態の具体例)
 以下、本実施の形態をより具体的に説明する。以下で説明する例では、図4に示したように、eNBは、既存のRNTIよりも長い拡張RNTIを使用する場合において、拡張RNTIの一部(既存のCRCの長さ)を使用してCRCのマスクを行い、当該CRCの付されたDCIをPDCCHで送信する。また、eNBは、拡張RNTIの残りの部分(拡張RNTI残部分)を、CRC部分とは異なる別のリソースを用いて送信する。別のリソースは、例えば、RNTI通知以外の目的で使用されるものであり、これにより、RNTI拡張に係るオーバーヘッドの削減が可能となる。
 例えば、eNBは、拡張RNTI残部分を、拡張RNTIの一部(残部分以外の部分、以下、同様)でマスクしたCRCが付されたDCIのフィールドの一部として送信する。この場合に、PDCCHを受信したUEの識別動作例を、図5を参照して説明する。
 ステップS101で、UEは、保持している拡張RNTIの一部を用いたブラインド復号処理によりDCIを取得する。ステップS102で、UEは、DCIの所定のフィールドから、拡張RNTI残部分(に相当する情報)を取得する。ステップS103で、UEは、取得した拡張RNTI残部分と、保持する拡張RNTIの対応部分とを照合し、合致していれば、受信したDCIに関連する自分宛てのチャネル(PDSCH)を受信することを把握するとともに、チャネル(例:トランスポートチャネル、論理チャネル等)の種別(拡張RNTIに対応する種別)を識別できる。例えば、保持するC-RNTI(拡張されたもの)を使用してDCIを取得できた場合、UEは、受信するトランスポートチャネルが、自分宛てのDL-SCHであることを識別できる。
 また、拡張RNTI残部分を別のリソースを用いて送信する方法として、例えば、eNBは、DCIの送信に使用するビームインデックス、時間・周波数リソース、符号のいずれか1つ、又はいずれか複数(全部含む)の組み合わせを用いて拡張RNTI残部分を送信する。なお、本実施の形態のeNBは、複数のビームを形成するビームフォーミング機能を備えている。
 例えば、ビームインデックスを使用する場合、拡張RNTI残部分が「15」であるとした場合に、eNBは、15番で識別される下りビームで、拡張RNTIの一部でマスクしたCRCが付されたDCI(PDCCH)を送信する。この場合、UEは、下りビーム毎のリソースを予め知っており、15番に対応するリソースで受信したPDCCHから、拡張RNTIの一部を用いてDCIを取得する。そして、「15」と、保持する拡張RNTIの対応部分とを照合して、「15」に合致すれば、受信したDCIに関連する自分宛てのチャネルを受信することを把握する。
 また、例えば、上記の時間・周波数リソースとして、PDCCHのサーチスペース、もしくはそのサブセットを使用することもできる。例えば、所定のサーチスペースを複数に分割し、分割した領域と拡張RNTI残部分の値を対応付ける。UEは、拡張RNTIの一部でマスクしたCRCが付されたDCIを取得できた領域により、eNBから通知された拡張RNTI残部分の値を把握する。
 また、eNBは、PDCCHの復調に用いる参照信号の時間・周波数リソース及び系列の両方又はいずれかを用いて拡張RNTI残部分をUEに通知してもよい。例えば、参照信号の時間・周波数リソースが、拡張RNTI残部分の値に対応付けられており、UEは、当該対応情報を報知情報等により保持している。そして、UEは、拡張RNTIの一部でマスクしたCRCが付されたDCIを取得できた場合に、そのPDCCHの復調の際に使用した参照信号の時間・周波数リソースから、上記対応情報に基づいて拡張RNTI残部分の値を取得する。
 また、eNBは、MACヘッダ等の上位レイヤ識別子を用いて、拡張RNTI残部分をUEに通知してもよい。MACヘッダを使用する場合、UEは、まず、拡張RNTIの一部でマスクしたCRCが付されたDCIを取得し、その後、DCIを用いてPDSCHを受信し、当該PDSCHのデータからMACヘッダを取得して、拡張RNTI残部分の照合を行う。
 また、eNBは、Numerology(ニューメロロジー)を識別する情報を使用して拡張RNTI残部分をUEに通知してもよい。なお、本実施の形態において、Numerologyは「リソース」の一例である。Numerologyとは、例えば、サブフレーム長、スロット長、サブキャリア間隔、シンボル長、サンプリング周波数、FFTサイズ、サブキャリア数、CP長等、無線通信システムで使用されるパラメータである。
 例えば、特定のNumerologyの値(例:CP長)が拡張RNTI残部分の値に対応付けられており、UEは、当該対応情報を報知情報等により保持している。そして、UEは、拡張RNTIの一部でマスクしたCRCが付されたDCIを取得できた場合に、そのPDCCHの復調の際に使用したNumerologyの値から、上記対応情報に基づいて拡張RNTI残部分の値を取得する。
 また、eNBは、リソースプール識別子を使用して拡張RNTI残部分をUEに通知してもよい。この場合、例えば、eNBは、UEに対して報知情報等により、UEが信号受信(あるいは信号送信)に使用するリソースプール(例:時間・周波数リソースの範囲等)の識別子を通知する。また、eNBは、リソースプール識別子と拡張RNTI残部分の値との対応情報をUEに通知する。UEは、拡張RNTIの一部でマスクしたCRCが付されたDCIを取得できた場合に、当該リソースプールの識別子から拡張RNTI残部分の値を取得して、照合を行う。
 なお、eNBは、CRCマスクに用いるRNTIサイズ(分割比)をDCIフォーマットによって変更してもよい。また、例えば、特定のUE(例:MTC-UE)に対するDCI送信の際には、CRCマスクのサイズを小さく(例:8ビット)し、残りのRNTIを例えば時間リソース(後述の時間セット等)で通知することでオーバーヘッドを削減することとしてもよい。
  <拡張識別子について>
 上述した拡張RNTIのうちの一部を既存のRNTIとし、拡張RNTI残部分を、既存RNTIを拡張するための拡張識別子と位置付けてもよい。拡張RNTI残部分を拡張識別子とする場合でも、動作は上記の例と同じである。
 拡張識別子を時間リソースで通知する場合の例として、例えば、RNTI(既存のRNTI)を有効とする時間セットを上位レイヤシグナリングでeNBからUEに設定する。あるいは、UEに予め設定する。
 例えば、UE-Aは時間セットAでRNTIが有効であり、UE-Bは時間セットAと直交した時間セットBでRNTIが有効であると設定がなされたものとする。この場合、eNBは、同一のRNTIをUE-AとUE-Bに割り当てる。一方、UE-Aは時間セットAでRNTIを用いてDCIの監視を行い、UE-Bは、時間セットBでRNTIを用いてDCIの監視を行う。
 上記の例では、時間リソースの区別を拡張識別子とした例であるが、時間リソースに代えて、又は、時間リソースに加えて周波数リソースの区別を拡張識別子としてもよい。
 また、eNBからUEへのリソース割り当て、又は、eNBからUEへの特別な制御信号の送信をトリガとして、一定期間有効化される時間ウィンドウを設けることで、データのバースト送受信を可能にしてもよい。
 また、拡張識別子がDCIフォーマットに対応付けられていてもよい。この場合、拡張識別子が設定されたUEのみが、拡張識別子を含む(あるいは、拡張識別子に対応する)特別なDCIフォーマットをモニタする。また、MACヘッダに関しても同様に、拡張識別子が設定されたUEのみが拡張識別子を通知可能なタイプのMACヘッダのみをモニタしてもよい。
 なお、既存の長さのRNTI(後述するNormal-RNTI)のうちの一部(空間の中の一部の範囲)をRNTI拡張のために予約してもよい。これにより、RNTI拡張を認識できるUEと、認識できないUEとの混在運用が可能となる。
 (一部のUEを対象に拡張RNTIを適用する場合の具体例)
 前述したように、本実施の形態では、一部のUEを対象に拡張RNTIを適用することが可能である。その場合の具体例を以下に説明する。
 本実施の形態の無線通信システムにおいてLong-RNTI(長いRNTI)とNormal-RNTI(通常RNTI)が定義される。Long-RNTIは、これまでに説明した拡張RNTIに対応し、Normal-RNTIは既存のRNTIに対応する。
 例えば、eNBは、ランダムアクセス手順の中でNormal-RNTIをUEに払い出し、別途上位レイヤシグナリングで、UE能力又はUE種別に応じてLong-RNTIをUEに払い出す。この場合の処理のシーケンスを、図6を参照して説明する。図6は、例として、衝突型のランダムアクセス手順の例を示している。なお、ランダムアクセスは、UEが、発信時あるいはハンドオーバ等により、eNBと接続を確立する場合等に行われ、その主な目的は上り同期を確立することである。
 ステップS201において、UEは、所定数のプリアンブル系列の中から1つのプリアンブル系列を使用して、PRACH(Physical Random Access Channel)により、RACH preamble(選択したプリアンブル系列)を送信する。
 ステップS202において、eNBは、DL-SCH(下り共有チャネル)を利用して、払い出したNormal-RNTI(Temporary C-RNTI)を含むRACH responseをUEに送信する。
 RACH responseを受信したUEは、RACH responseに含まれるUL grantで割り当てられたリソースを用いてUL-SCH(上り共有チャネル)により、RRC connection request等の制御メッセージをeNBに送信する(ステップS203)。
 ステップS204において、eNBは、contention resolution(競合解決メッセージ)をDL-SCHで送信する。contention resolutionを受信したUEは、自分のNormal-RNTIが含まれていることを確認することで、ランダムアクセス処理を完了し、以降、Normal-RNTIを使用してデータの送受信を行うことができる。
 本実施の形態では、例えばステップS205で、UEの能力情報(UE capability)がeNBに送信される。この送信においては、Normal-RNTIが使用される。eNBは、当該能力情報(例えばUEカテゴリ、UE種別等)に基づいて、UEに対してLong-RNTIを払い出すかどうかを判定する(ステップS206)。ここでは、例えば、eNBは、UEがMTC端末に相当する能力情報を持つことを判別し、Long-RNTIを払い出し、Long-RNTIを、RRCメッセージあるいは報知信号あるいは物理信号により、UEに送信する(ステップS207)。その後、UEは、Long-RNTIを使用して、DCIモニタリング等を行う。
 なお、ここで送信する情報は、Long-RNTIそのものでもよいし、Normal-RNTIといっしょに使用することでLong-RNTIを構成する拡張識別子でもよい。例えばUE(及びeNB)は、「Normal-RNTI+拡張識別子」をLong-RNTIとして使用する。
 Long-RNTIを払い出すシーケンスの他の例を、図7を参照して説明する。ステップS211において、eNBは、UEに、報知信号(あるいは上位レイヤシグナリング)により、RACH preambleの送信に使用するリソースの構成情報と、UE能力あるいはUE種別(以降、これらを総称してUE能力と呼ぶ)との対応情報を通知する。当該構成情報は、例えば、時間リソース、周波数リソース、プリアンブル系列のいずれか1つ、又は、いずれか2つの組み合わせ、又は、3つの組み合わせからなる。
 UEは、上記の対応情報に基づいて、自身のUE能力に対応した構成情報を使用してRACH preambleを送信する(ステップS212)。eNBは、受信したRACH preambleの構成情報(リソース)に基づいて、当該UEに払い出すRNTI(Long-RNTI又はNormal-RNTI)を決定し、決定したRNTI(Long-RNTI又はNormal-RNTI)を含むRACH responseをUEに送信する(ステップS213)。
 また、RACH responseをモニタするウィンドウと、UE能力との対応情報をeNBからUEに報知し、eNBは、RACH responseの送信において、Long-RNTIを含むRACH responseを、Long-RNTIに対応するUE能力のウィンドウ内で送信し、Normal-RNTIを含むRACH responseを、Normal-RNTIに対応するUE能力のウィンドウ内で送信し、UEは、上記対応情報に基づき、自身のUE能力に応じたウィンドウを監視して、RACH responseを受信することとしてもよい。この場合、RACH preambleの送信リソースをUE間で共通化できる。
 また、RACH responseのフォーマット(送信に使用するRNTI又はDCIフォーマット)と、UE能力との対応情報をeNBからUEに報知し、eNBは、RACH responseの送信において、Long-RNTIを含むRACH responseを、Long-RNTIに対応するフォーマットで送信し、Normal-RNTIを含むRACH responseを、Normal-RNTIに対応するフォーマットで送信し、UEは、上記対応情報に基づき、自身のUE能力に応じたフォーマットを監視して、RACH responseを受信することとしてもよい。この場合も、RACH preambleの送信リソースをUE間で共通化できる。
 上記の方法のうちのいずれかの方法でLong-RNTIを設定されたUEは、例えば、前述した方法(図4)を用いることで、Long-RNTIの一部をNormal-RNTIとして用いてDCIを検出し、別のリソースで残りのLong-RNTIの残り部分を識別する。この残り部分は、前述した拡張識別子であってもよい。
 また、eNBは、Long-RNTIに対応するサーチスペース、及び/又は、Long-RNTIに対応するDCIフォーマットを使用することとしてもよい。この場合、eNBは、Long-RNTIに対応するサーチスペースの情報、及び/又は、Long-RNTIに対応するDCIフォーマットの情報を報知信号等によりUEに通知する。そして、UEは、Long-RNTIを用いてCRCマスクのされたDCIを、自身が保持するLong-RNTIを用いて、Long-RNTIに対応するサーチスペース、及び/又は、Long-RNTIに対応するDCIフォーマットをモニタすることで検出する。
 eNBが、RACH responseでNormal-RNTI又はLong-RNTIをUEに払い出す際に、当該RACH responseの送信に使用するRNTIとしては、例えば、Normal-RNTIのRNTI長を持つ2種類(Normal-RNTI用、Long-RNTI用)のうちの、払い出すRNTIに対応したRNTIを用いる。また、Normal-RNTIを払い出す際には、Normal-RNTIのRNTI長を持つRNTIを使用し、Long-RNTIを払い出す際には、Long-RNTIのRNTI長を持つRNTIを使用することとしてもよい。このようにすることで、UEは、RACH response受信に使用したRNTIにより、払い出されたRNTI種別を識別できる。
 (リソース割り当て可能な時間・周波数リソースの限定について)
 本実施の形態では、RNTIにより、リソース割り当て可能な時間・周波数リソースを限定してもよい。
 例えば、RNTIを拡張識別子で拡張する場合において、図8に示すように、拡張識別子としてAが付された拡張RNTIを割り当てられたUEに対しては、eNBは、リソースセット1内でリソース(例:DLデータ送信リソース、ULデータ送信リソース等)を割り当てる。また、拡張識別子としてBが付された拡張RNTIを割り当てられたUEに対しては、eNBは、リソースセット2内でリソースを割り当てる。
 各UEは、割り当てられた拡張識別子(拡張RNTI)により、リソースが割り当てられる可能性があるリソースセットを把握するので、eNBは、リソース割り当てのための情報量を少ない情報量(リソースセット内のリソースを識別する情報の量)とすることができる。これにより、リソース割り当てのためのシグナリングオーバーヘッドを削減することができる。
 (RNTIの生成について)
 本実施の形態では、RNTIをeNBがUEに対して払い出すことに代えて、UEがUE-ID(例、SIMカードに格納されているIMSI:International Mobile Subscriber Identity)を元に、所定の規則でRNTIを生成して利用してもよい。また、UEのネットワーク接続時等において、eNBは、UEからUE-IDを取得するので、eNBは、UEでの規則と同じ規則でRNTIを生成し、利用する。
 上記のRNTIは、これまでに説明した拡張RNTI(Long-RNTI)であってよい。また、当該RNTIの使用方法は、例えば、図4等を参照して説明した方法と同様である。UEにおけるUE-IDからRNTIへの変換処理は、UEが、報知信号でeNBから変換指示を受けた場合に行うこととしてもよい。また、当該報知信号で変換方法(変換式)を指定してもよい。また、報知信号に基づいて、UEは、UE-IDから国や事業者用のコードを除いた情報からRNTIを生成してもよい。
 上記のように、UE-IDからRNTIを生成することで、RNTI払い出しのオーバーヘッドを削減することが可能となる。
 なお、UEがeNBにUE-IDを送信する際には、直接送信せずに、ハッシュ化してから送信することで、プライバシー保護が可能となる。更に、UE-IDもRNTI長以上に拡張することとしてもよい。例えば、IMSIを32ビットから128ビットに変更する等の拡張を行ってもよい。これにより、上位レイヤでの多端末接続のサポートが可能になる。
 また、Pagingで通知するUE-ID(IMSIから生成)を1024より大きく拡張したり、Pagingモニタの時間・周波数リソースセットを複数設定し、セットごとに通知するUE-IDセットを変更することで暗黙的な一部のUE-ID通知を行なってもよい。
 (異なる複数のRNTI長の扱いについて)
 RNTIは、CRCのマスクで使用されるばかりでなく、所定のチャネルのスクランブルコードの生成や、参照信号(RS)の系列の生成等にも使用される。このような目的で使用されるRNTIに関して、異なる複数のRNTI長のそれぞれに対して、スクランブルコードの生成や、参照信号の系列の生成のための式を定義する必要性は低い。
 そこで、本実施の形態では、これまでに説明したように、長さが異なる複数のRNTIを使用する場合でも、CRCのマスク以外の用途に使用するRNTIの値として、異なる複数の長さのRNTIに共通のRNTI値(これを論理RNTI値と呼ぶ)を導入する。
 当該論理RNTI値としては、長さが異なる複数のRNTIにおける共通部分を使用することができる。共通部分とは、例えば、「Normal-RNTI+拡張識別子」をLong-RNTIとして使用する場合におけるNormal-RNTIである。また、論理RNTI値として、最大長のRNTIの長さ(サイズ)になるように、短いサイズのRNTIにゼロパディングしたものを使用してもよい。つまり、UEとeNBはそれぞれ、上記のようにして、異なる複数の長さのRNTIから論理RNTI値を生成し、スクランブルコードの生成や、参照信号の系列の生成のために使用する。
 また、上記のように、論理RNTI値を導入することに代えて、各チャネルのスクランブリングコード・RS生成系列生成のための生成式に、サイズの異なる各RNTIを識別する識別子を付与し、RNTIに応じたスクランブリングコード等が生成されるようにしてもよい。これにより、異なるRNTIフォーマットが混在する環境でも、UE毎に異なるスクランブリング・RSを適用できる。
 (変形例)
 eNBから複数UEに対して、同一のRNTIを払い出し、同一のRNTIが払い出された各UEは、eNBからの指示に従って、当該RNTIを使用したDCIモニタリングを行うこととしてもよい。具体的には、eNBは、同じRNTIを割り当てたUE毎に、RNTIを使用したDCIモニタリングのActivate/de-activateを指示する。Activateの制御信号を受信したUEは、DCIモニタリングを行い、de-activateの制御信号を受信したUEはDCIモニタリングを行わない。
 例えば、eNBは、コモンサーチスペースを用いてActivate/de-activate 制御信号を送信することとしてもよいし、 RNTIを共有するUEがモニタする別のグループサーチスペースを設定しておき、そのサーチスペースを用いて上位レイヤシグナリングによりActivate/de-activate 制御信号を送信することとしてもよい。各UEに対するActivate/de-activate 制御信号には、別途設定したUEの識別子、もしくは上位レイヤのUE識別子が設定されており、これにより、UEは、自分宛ての制御信号を識別する。また、各UEに対するActivate/de-activate制御信号にL1/L2シグナリングでのACK/NACKフィードバックリソースを通知する識別子を付与してもよい。また、eNBのビームフォーミングにより、Activate/de-activate制御信号が特定のUEに選択的に受信されるように送信を行ってもよい。
 シーケンスの例を図9に示す。この例では、UE1とUE2が存在している。まず、eNBは、UE1とUE2におけるランダムアクセス手順等の中で、ステップS301で、UE2にRNTI-Aを割り当て、ステップS302で、UE1に対し、UE2に割り当てたものと同じRNTI-Aを割り当てる。
 ここで、ステップS303で、eNBがUE1に対してActivateを指示する制御信号を送信し、UE1がこれを受信すると、以降、UE1はRNTI-Aを用いたDCIモニタリングを実施する(ステップS304)。この期間では、eNBはUE2に対してActivateを指示する制御信号を送信せず、UE2は、RNTI-Aを用いたDCIモニタリングを実施しない。
 ステップS305で、UE1がde-activateを指示する制御信号をeNBから受信すると、DCIモニタリングの実施を停止する。一方、ステップS306で、eNBがUE2に対してActivateを指示する制御信号を送信し、UE2がこれを受信すると、以降、UE2はRNTI-Aを用いたDCIモニタリングを実施する(ステップS307)。
 (装置構成)
 次に、本発明の実施の形態におけるUEとeNBの構成例を説明する。
  <ユーザ装置UE>
 図10に、UEの機能構成図を示す。図10に示すように、UEは、UL送信部101、DL受信部102、RRC管理部103、RNTI管理部104、RNTI処理部105を備える。なお、図10は、UEにおいて本発明に特に関連する機能部のみを示すものであり、UEは、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。
 UL送信部101は、UEから送信されるべき上位のレイヤの情報から、物理レイヤの各種信号を生成し、eNBに対して送信する機能を含む。DL受信部102は、eNBから各種の下り信号を受信し、受信した物理レイヤの信号からより上位のレイヤの情報を取得する機能を含む。UL送信部101とDL受信部102は、ランダムアクセス手順を実行する機能を含む。
 RRC管理部103は、DL受信部102を介して、eNBから報知信号、上位レイヤ信号等を取得し、これらの信号から、設定情報等を取得して、記憶する。また、RRC管理部103は、変形例で説明した、Activate/de-activate制御信号に基づく、動作制御機能を有する。また、RRC管理部103は、UE能力情報を管理、通知する機能を含む。
 RNTI管理部104は、eNBからRNTIの払い出しを受けて、払い出されたRNTIを記憶する。また、RNTI管理部104は、UE-IDからRNTIを生成し、記憶する機能を含む。
 また、RNTI処理部105は、RNTIを使用したDCIモニタ、自分宛てのチャネルの識別等、本実施の形態で説明したRNTIに関する処理を実行する。すなわち、RNTI処理部105は、チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、前記基地局から受信する所定のリソースから取得する取得部と、前記取得部により取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別部とを含む。
 図10に示すUEの構成は、全体をハードウェア回路(例:1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPUとプログラムとで実現してもよい。
 図11は、UEのハードウェア(HW)構成の例を示す図である。図11は、図10よりも実装例に近い構成を示している。図11に示すように、UEは、無線信号に関する処理を行うRE(Radio Equipment)モジュール151と、ベースバンド信号処理を行うBB(Base Band)処理モジュール152と、上位レイヤ等の処理を行う装置制御モジュール153と、USIMカードにアクセスするインタフェースであるUSIMスロット154とを有する。
 REモジュール151は、BB処理モジュール152から受信したデジタルベースバンド信号に対して、D/A(Digital-to-Analog)変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、アンテナから受信した無線信号に対して、周波数変換、A/D(Analog to Digital)変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール152に渡す。REモジュール151は、例えば、図10のUL送信部101、DL受信部102における物理レイヤ等の機能を含む。
 BB処理モジュール152は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP(Digital Signal Processor)162は、BB処理モジュール152における信号処理を行うプロセッサである。メモリ172は、DSP162のワークエリアとして使用される。BB処理モジュール152は、例えば、図10のUL送信部101、DL受信部102におけるレイヤ2等の機能、RRC管理部103、RNTI管理部104、RNTI処理部105の機能を含む。なお、RRC管理部103、RNTI管理部104、及びRNTI処理部105の機能の全部又は一部を装置制御モジュール153に含めることとしてもよい。
 装置制御モジュール153は、IPレイヤのプロトコル処理、各種アプリケーションの処理等を行う。プロセッサ163は、装置制御モジュール153が行う処理を行うプロセッサである。メモリ173は、プロセッサ163のワークエリアとして使用される。また、プロセッサ163は、USIMスロット154を介してUSIMとの間でデータの読出し及び書込みを行う。
  <基地局eNB>
 図12に、eNBの機能構成図を示す。図12に示すように、eNBは、DL送信部201、UL受信部202、RRC管理部203、RNTI管理部204、RNTI処理部205を備える。なお、図12は、eNBにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、eNBは、少なくともLTE方式に準拠した動作を行うための図示しない機能も有するものである。
 DL送信部201は、eNBから送信されるべき上位のレイヤの情報から、物理レイヤの各種信号を生成し、送信する機能を含む。UL受信部202は、UEから各種の上り信号を受信し、受信した物理レイヤの信号からより上位のレイヤの情報を取得する機能を含む。DL送信部201及びUL受信部202はビームフォーミングを行う機能を含む。
 RRC管理部203は、設定情報を含む報知信号、上位レイヤ信号等を作成し、DL送信部201を介してUEに送信する機能を含む。また、RRC管理部203は、変形例で説明した、Activate/de-activate制御信号の作成、送信制御機能を有する。
 RNTI管理部204は、UEへRNTIを払い出し、払い出したRNTIを記憶する。また、RNTI管理部204は、UE-IDからRNTIを生成し、記憶する機能を含む。また、RNTI処理部205は、RNTIを使用してDCIのCRCマスクを行う機能、別リソースを使用したRNTIの残部分(拡張識別子を含む)の通知等をDL送信部201を介して行う機能を含む。
 図12に示すeNBの構成は、全体をハードウェア回路(例:1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPUとプログラムとで実現してもよい。
 図13は、eNBのハードウェア(HW)構成の例を示す図である。図13は、図12よりも実装例に近い構成を示している。図13に示すように、eNBは、無線信号に関する処理を行うREモジュール251と、ベースバンド信号処理を行うBB処理モジュール252と、上位レイヤ等の処理を行う装置制御モジュール253と、ネットワークと接続するためのインタフェースである通信IF254とを有する。
 REモジュール251は、BB処理モジュール252から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、アンテナから受信した無線信号に対して、周波数変換、A/D変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール252に渡す。REモジュール251は、例えば、図12のDL送信部201及びUL受信部202における物理レイヤ等の機能を含む。
 BB処理モジュール252は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP262は、BB処理モジュール252における信号処理を行うプロセッサである。メモリ272は、DSP252のワークエリアとして使用される。BB処理モジュール252は、例えば、図12のDL送信部201及びUL受信部202におけるレイヤ2等の機能、RRC管理部203、RNTI管理部204、及びRNTI処理部205を含む。なお、RRC管理部203、RNTI管理部204、及びRNTI処理部205の機能の全部又は一部を装置制御モジュール253に含めることとしてもよい。
 装置制御モジュール253は、IPレイヤのプロトコル処理、OAM処理等を行う。プロセッサ263は、装置制御モジュール253が行う処理を行うプロセッサである。メモリ273は、プロセッサ263のワークエリアとして使用される。補助記憶装置283は、例えばHDD等であり、基地局eNB自身が動作するための各種設定情報等が格納される。
 なお、図10~図13に示す装置の構成(機能区分)は、本実施の形態で説明する処理を実現する構成の一例に過ぎない。本実施の形態で説明する処理を実現できるのであれば、その実装方法(具体的な機能部の配置、名称等)は、特定の実装方法に限定されない。
 (実施の形態のまとめ)
 以上、説明したように、開示の技術により、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、所定のリソースから取得する取得部と、前記取得部により取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別部とを備えるユーザ装置が提供される。
 上記の構成により、無線通信システムにおいて、チャネルを識別するために使用される識別子を拡張する場合でも、オーバーヘッドの増加を抑制することが可能となる。
 前記所定のリソースは、例えば、前記下り制御情報のフィールド、前記下り制御チャネルの送信リソース、前記下り制御チャネルの復調に用いられる参照信号の送信リソース、前記基地局と前記ユーザ装置との間の通信に使用されるニューメロロジー、又は、リソースプール識別子である。これらのリソースにより、残部分をオーバーヘッドなく、あるいは少ないオーバーヘッドで送信できる。
 前記ユーザ装置は、前記基地局と前記ユーザ装置との間で実行されるランダムアクセス手順において、前記識別子よりも短い第2識別子を前記基地局から受信する受信部と、前記ランダムアクセス手順の後に、前記ユーザ装置の能力情報を前記基地局に送信する送信部と、を備え、前記受信部は、前記能力情報に応じて前記基地局から払い出される前記識別子を受信することとしてもよい。この構成により、ユーザ装置の能力情報(能力、種別等)に基づき、一部のユーザ装置のみが拡張した識別子を使用することが可能となる。これにより、オーバーヘッドの増加を抑制できる。
 前記ユーザ装置は、前記基地局と前記ユーザ装置との間で実行されるランダムアクセス手順において、前記識別子よりも短い第2識別子を前記基地局から受信する受信部と、前記ランダムアクセス手順の後に、前記ユーザ装置の能力情報を前記基地局に送信する送信部と、を備え、前記受信部は、前記能力情報に応じて前記基地局から払い出される拡張識別子を受信し、前記第2識別子及び前記拡張識別子が前記識別子として使用されるようにしてもよい。この構成によっても、ユーザ装置の能力情報(能力、種別等)に基づき、一部のユーザ装置のみが拡張した識別子を使用することが可能となる。これにより、オーバーヘッドの増加を抑制できる。
 前記ユーザ装置は、前記基地局と前記ユーザ装置との間で実行されるランダムアクセス手順において、前記ユーザ装置の能力に応じたリソース構成を使用してランダムアクセス信号を前記基地局に送信する送信部と、前記ランダムアクセス信号を受信した前記基地局から、前記リソース構成に応じて払い出された前記識別子を受信する受信部とを備えることとしてもよい。この構成によっても、ユーザ装置の能力情報(能力、種別等)に基づき、一部のユーザ装置のみが拡張した識別子を使用することが可能となる。これにより、オーバーヘッドの増加を抑制できる。
 前記取得部は、前記識別子として、前記ユーザ装置の識別情報から生成された識別子を使用することとしてもよい。この構成により、識別子払い出しに係るオーバーヘッドを削減できる。
 前記取得部は、前記識別子に対応するサーチスペース、又は、前記識別子に対応する前記下り制御情報のフォーマットをモニタすることにより、前記下り制御情報を取得することとしてもよい。この構成により、下り制御情報を効率的に取得できる。
 また、開示の技術により、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局であって、チャネルを識別するための識別子の一部を使用して、下り制御情報の検査用の値をマスクする識別子処理部と、前記マスクがされた検査用の値を付加した前記下り制御情報を、下り制御チャネルで送信する送信部と、を備え、前記送信部は、前記識別子から前記一部を除いた残部分を、所定のリソースで送信する基地局が提供される。
 上記の構成により、無線通信システムにおいて、チャネルを識別するために使用される識別子を拡張する場合でも、オーバーヘッドの増加を抑制することが可能となる。
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。説明の便宜上、基地局eNB及びユーザ装置UEは機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って、ユーザ装置UE及び基地局eNBが有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
   <実施形態の補足>
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCメッセージは、RRCシグナリングと呼ばれてもよい。また、RRCメッセージは、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 判定又は判断は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。
 UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 また、本明細書で説明した各態様/実施形態の処理手順、シーケンスなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本発明は上記実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本特許出願は2016年2月4日に出願した日本国特許出願第2016-020324号に基づきその優先権を主張するものであり、日本国特許出願第2016-020324号の全内容を本願に援用する。
101 UL送信部
102 DL受信部
103 RRC管理部
104 RNTI管理部
105 RNTI処理部
152 BB処理モジュール
153 装置制御モジュール
154 USIMスロット
201 DL送信部
202 UL受信部
203 RRC管理部
204 RNTI管理部
205 RNTI処理部
251 REモジュール
252 BB処理モジュール
253 装置制御モジュール
254 通信IF

Claims (10)

  1.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、
     チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、所定のリソースから取得する取得部と、
     前記取得部により取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別部と
     を備えることを特徴とするユーザ装置。
  2.  前記所定のリソースは、前記下り制御情報のフィールド、前記下り制御チャネルの送信リソース、前記下り制御チャネルの復調に用いられる参照信号の送信リソース、前記基地局と前記ユーザ装置との間の通信に使用されるニューメロロジー、又は、リソースプール識別子である
     ことを特徴とする請求項1に記載のユーザ装置。
  3.  前記基地局と前記ユーザ装置との間で実行されるランダムアクセス手順において、前記識別子よりも短い第2識別子を前記基地局から受信する受信部と、
     前記ランダムアクセス手順の後に、前記ユーザ装置の能力情報を前記基地局に送信する送信部と、を備え、
     前記受信部は、前記能力情報に応じて前記基地局から払い出される前記識別子を受信する
     ことを特徴とする請求項1又は2に記載のユーザ装置。
  4.  前記基地局と前記ユーザ装置との間で実行されるランダムアクセス手順において、前記識別子よりも短い第2識別子を前記基地局から受信する受信部と、
     前記ランダムアクセス手順の後に、前記ユーザ装置の能力情報を前記基地局に送信する送信部と、を備え、
     前記受信部は、前記能力情報に応じて前記基地局から払い出される拡張識別子を受信し、前記第2識別子及び前記拡張識別子が前記識別子として使用される
     ことを特徴とする請求項1又は2に記載のユーザ装置。
  5.  前記基地局と前記ユーザ装置との間で実行されるランダムアクセス手順において、前記ユーザ装置の能力に応じたリソース構成を使用してランダムアクセス信号を前記基地局に送信する送信部と、
     前記ランダムアクセス信号を受信した前記基地局から、前記リソース構成に応じて払い出された前記識別子を受信する受信部と
     を備えることを特徴とする請求項1又は2に記載のユーザ装置。
  6.  前記取得部は、前記識別子として、前記ユーザ装置の識別情報から生成された識別子を使用する
     ことを特徴とする請求項1又は2に記載のユーザ装置。
  7.  前記取得部は、前記識別子に対応するサーチスペース、又は、前記識別子に対応する前記下り制御情報のフォーマットをモニタすることにより、前記下り制御情報を取得する
     ことを特徴とする請求項1ないし6のうちいずれか1項に記載のユーザ装置。
  8.  基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局であって、
     チャネルを識別するための識別子の一部を使用して、下り制御情報の検査用の値をマスクする識別子処理部と、
     前記マスクがされた検査用の値を付加した前記下り制御情報を、下り制御チャネルで送信する送信部と、を備え、
     前記送信部は、前記識別子から前記一部を除いた残部分を、所定のリソースで送信する
     ことを特徴とする基地局。
  9.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行するチャネル識別方法であって、
     チャネルを識別するための識別子の一部を使用して、下り制御チャネルから下り制御情報を取得し、更に、前記識別子から前記一部を除いた残部分を、所定のリソースから取得する取得ステップと、
     前記取得ステップにより取得された前記一部と前記残部分とにより構成される識別子を用いて、チャネルを識別する識別ステップと
     を備えることを特徴とするチャネル識別方法。
  10.  基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局が実行する識別子送信方法であって、
     チャネルを識別するための識別子の一部を使用して、下り制御情報の検査用の値をマスクするステップと、
     前記マスクがされた検査用の値を付加した前記下り制御情報を、下り制御チャネルで送信するステップと、
     前記識別子から前記一部を除いた残部分を、所定のリソースで送信するステップと
     を備えることを特徴とすることを特徴とする識別子送信方法。
PCT/JP2017/004111 2016-02-04 2017-02-03 ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法 WO2017135453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/073,730 US20190014562A1 (en) 2016-02-04 2017-02-03 User equipment, base station, channel identifiying method, and identifier transmitting method
JP2017565670A JP6810063B2 (ja) 2016-02-04 2017-02-03 ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法
EP17747604.1A EP3413616B1 (en) 2016-02-04 2017-02-03 User equipment, base station, channel identifying method, and identifier transmitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020324 2016-02-04
JP2016-020324 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135453A1 true WO2017135453A1 (ja) 2017-08-10

Family

ID=59499707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004111 WO2017135453A1 (ja) 2016-02-04 2017-02-03 ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法

Country Status (4)

Country Link
US (1) US20190014562A1 (ja)
EP (1) EP3413616B1 (ja)
JP (1) JP6810063B2 (ja)
WO (1) WO2017135453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005506A (ko) * 2019-04-30 2022-01-13 지티이 코포레이션 연장된 식별자들을 사용한 무선 통신 방식들

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10841915B2 (en) * 2016-06-23 2020-11-17 Lg Electronics Inc. Method and device for monitoring control channel
US10631271B2 (en) * 2016-08-25 2020-04-21 Qualcomm Incorporated Autonomous resource selection for multiple transmissions in device-to-device communications
WO2018211807A1 (ja) * 2017-05-16 2018-11-22 ソニー株式会社 通信装置及び通信方法
US11121808B2 (en) 2017-09-08 2021-09-14 Apple Inc. Method and apparatus for channel coding in the fifth generation new radio system
WO2019064072A1 (en) * 2017-09-29 2019-04-04 Lenovo (Singapore) Pte. Ltd. UCI COMMUNICATION IN AUTONOMOUS UPLINK TRANSMISSIONS
US10701700B2 (en) 2018-10-29 2020-06-30 Apple Inc. Signaling messaging and UE capability with tag and compression
US11388621B2 (en) * 2019-11-12 2022-07-12 Samsung Electronics Co., Ltd. Flexible high capacity-radio network temporary identifier
CN111182571B (zh) * 2020-01-13 2021-02-02 电子科技大学 基站激活控制和波束赋形的长期联合优化方法
US20230104916A1 (en) * 2020-02-13 2023-04-06 Ntt Docomo, Inc. Terminal
WO2022025536A1 (en) * 2020-07-31 2022-02-03 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012032A1 (ja) * 2013-07-22 2015-01-29 株式会社Nttドコモ 基地局、端末装置及び無線通信システム
WO2015194014A1 (ja) * 2014-06-19 2015-12-23 富士通株式会社 無線通信システム、無線通信方法、無線機器、及び、無線基地局

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123641A1 (zh) * 2012-02-21 2013-08-29 华为技术有限公司 紧急呼叫接入方法和系统、基站及终端
WO2013127453A1 (en) * 2012-02-29 2013-09-06 Fujitsu Limited Control channels for wireless communication
US9357460B2 (en) * 2013-03-22 2016-05-31 Sharp Kabushiki Kaisha Systems and methods for establishing multiple radio connections
US9923690B2 (en) * 2013-08-06 2018-03-20 Texas Instruments Incorporated Dynamic signaling of the downlink and uplink subframe allocation for a TDD wireless communication system
JP6785664B2 (ja) * 2015-01-28 2020-11-18 シャープ株式会社 端末装置、基地局装置および方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012032A1 (ja) * 2013-07-22 2015-01-29 株式会社Nttドコモ 基地局、端末装置及び無線通信システム
WO2015194014A1 (ja) * 2014-06-19 2015-12-23 富士通株式会社 無線通信システム、無線通信方法、無線機器、及び、無線基地局

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOKIA NETWORKS: "Alternative view on RNTI space extension", 3GPP TSG-RAN WG2#91BIS R2-154101, 4 October 2015 (2015-10-04), Malmö, Sweden, XP051004709 *
NTT DOCOMO: "RNTI Handling in (E)PDCCH Coverage Enhancement", 3GPP TSG-RAN WG1#74 R1-133453, 10 August 2013 (2013-08-10), pages 1 - 7, XP050716561 *
PANASONIC: "D2D grant design in mode 1 resource allocation", 3GPP TSG-RAN WG1#77 R1-142189, 18 May 2014 (2014-05-18), Seoul, Korea, pages 1 - 3, XP050787785 *
See also references of EP3413616A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005506A (ko) * 2019-04-30 2022-01-13 지티이 코포레이션 연장된 식별자들을 사용한 무선 통신 방식들
KR102665587B1 (ko) * 2019-04-30 2024-05-10 지티이 코포레이션 연장된 식별자들을 사용한 무선 통신 방식들

Also Published As

Publication number Publication date
US20190014562A1 (en) 2019-01-10
EP3413616A4 (en) 2019-08-07
EP3413616A1 (en) 2018-12-12
JPWO2017135453A1 (ja) 2018-11-29
JP6810063B2 (ja) 2021-01-06
EP3413616B1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP6810063B2 (ja) ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法
US10660151B2 (en) Radio terminal, base station, and method therefor
US20140171061A1 (en) Network access delay for eab-configured ues and/or group-based addressed ues
CN114071677B (zh) 一种指示信息的传输方法和装置
WO2015142425A1 (en) Scheduling of device-to-device communications
EP3154302A1 (en) Resource preemption method, station and computer storage medium
EP4156839A1 (en) Channel listening type indication method and apparatus
JPWO2018203397A1 (ja) 端末、無線通信方法及び基地局
CN106211329A (zh) 下行信息的发送方法及装置
US20180302929A1 (en) User equipment and random access method
CN108886823B (zh) 用于灵活的用户设备标识的系统和方法
US11611982B2 (en) Multi-subframe scheduling method, device and terminal
CN111543009B (zh) 一种扩频通信方法、用户设备和基站
US20190037534A1 (en) User equipment and reception method
JP7027456B2 (ja) ワイヤレス通信システムのための送信時間間隔バンドリング
US11672022B2 (en) Channel access method, access point and station
US20210219297A1 (en) Communication Method And Communications Apparatus
CN113169815A (zh) 用于基于nr的未许可操作的信道占用时间指示
CN110278061B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN108029105B (zh) 无线资源分配的方法和装置
JP2020537845A (ja) Spsのアクティブ特定方法及びユーザ機器
WO2021013141A1 (zh) 协作传输方法、装置及设备
WO2017119468A1 (ja) ユーザ装置及び信号受信方法
CN110771236B (zh) 网络装置、用户装置及无线通信方法
US20230042274A1 (en) Enhancements for Reduced Capability New Radio Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565670

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747604

Country of ref document: EP

Effective date: 20180904