WO2015012032A1 - 基地局、端末装置及び無線通信システム - Google Patents

基地局、端末装置及び無線通信システム Download PDF

Info

Publication number
WO2015012032A1
WO2015012032A1 PCT/JP2014/066383 JP2014066383W WO2015012032A1 WO 2015012032 A1 WO2015012032 A1 WO 2015012032A1 JP 2014066383 W JP2014066383 W JP 2014066383W WO 2015012032 A1 WO2015012032 A1 WO 2015012032A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
crc
error detection
dci
base station
Prior art date
Application number
PCT/JP2014/066383
Other languages
English (en)
French (fr)
Inventor
真平 安川
チン ムー
リュー リュー
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US14/906,309 priority Critical patent/US9787435B2/en
Priority to EP14828883.0A priority patent/EP3026957B1/en
Publication of WO2015012032A1 publication Critical patent/WO2015012032A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a base station, a terminal device, and a wireless communication system.
  • Machine communication Machine communication in 3GPP (Third Generation Partnership Project) is called MTC (Machine Type Communication).
  • MTC Mobile Machine Type Communication
  • 3GPP Rel. 11 network optimization functions for MTC terminals have been studied.
  • 3GPP Rel. 12 the enhancement of coverage due to building entry loss is under consideration.
  • Coverage enhancement includes SCH (Shared Channel), PBCH (Physical Broadcast Channel), PRACH (Physical Random Access Channel), PDCCH (Physical Downlink Control Channel: Physical Downlink Control Channel). ) / EPDCCH (Enhanced PDCCH), PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), etc. Is needed to.
  • MTC terminals such as a gas meter, an electric meter, a temperature / humidity sensor, and the like that regularly transmit data, and another type that transmits data when a specific event occurs.
  • a gas meter such as a gas meter, an electric meter, a temperature / humidity sensor, and the like that regularly transmit data
  • another type that transmits data when a specific event occurs.
  • enhanced coverage is particularly important.
  • the same information can be repeatedly transmitted in the time domain.
  • PUCCH Physical Uplink Control Channel
  • ARQ Automatic Repeat Request
  • hybrid ARQ combined with error correction
  • PRACH PRACH
  • FIG. 1 shows an image diagram for explaining the outline of compact DCI.
  • the compact DCI includes a short CRC in the compact DCI in which each of the CRC lengths of one CRC (Cyclic Redundancy Check) of the error detection code added to the DCI and DCI is shortened. It becomes an added configuration.
  • the bit length of the compact DCI is shorter than that of the normal (normal DCI)
  • the DCI can be repeatedly transmitted to enhance the coverage.
  • a terminal device that enables generation of an error detection code in which predetermined identification information is masked and receives control information regardless of the type of information used for generating an error detection code added to the control information by the base station It is desirable to enhance the coverage of the physical downlink control channel.
  • a base station that transmits control information to which an error detection code masked with predetermined identification information is added to a terminal device, the error detection code is generated. Therefore, if the length of the first information masked by the predetermined identification information does not correspond to the length of the predetermined identification information, second information corresponding to the length of the predetermined identification information is generated.
  • a base station is provided that includes generating means and error detecting code generating means for generating an error detecting code in which the predetermined identification information is masked in the second information when the second information is generated. .
  • a terminal device that communicates with a base station, the receiving unit that receives control information to which an error detection code is added from the base station, and the control information Before receiving the error information, the base station indicates whether the length of the first information masked by the predetermined identification information to generate the error detection code is shorter than the predetermined identification information
  • a terminal device is provided that includes error detection means for performing error detection based on the type using the error detection code added to the received control information.
  • a radio communication system having a terminal device and a base station that transmits control information to which the error detection code masked with predetermined identification information is added to the terminal device, If the length of the first information masked by the predetermined identification information to generate the error detection code does not correspond to the length of the predetermined identification information, the base station Generation means for generating second information corresponding to a length; and error detection for generating an error detection code in which, when the second information is generated, the predetermined identification information is masked on the second information
  • a wireless communication system comprising: an error detection unit configured to perform error detection based on a type indicating whether or not a length of the first information is shorter than a length of the predetermined identification information. Provided by the system It is.
  • the embodiment of the present invention it is possible to generate an error detection code in which predetermined identification information is masked regardless of the type of information used for generating an error detection code added to the control information by the base station,
  • the coverage of the physical downlink control channel of the terminal device that receives the control information can be enhanced.
  • a normal DCI encoding processing procedure performed by the base station will be described with reference to FIG. Note that the DCI encoding processing procedure is also disclosed in Non-Patent Document 3, for example.
  • the base station first generates an initial CRC from the DCI using a predetermined generator polynomial. Then, the generated initial CRC generates a masked CRC masked by using an identifier RNTI (Radio Network Temporary Identifier) (S11). Note that masking is a process in which the initial CRC and RNTI are calculated as a modulo (mod) 2 operation or an exclusive OR (XOR) (also referred to as scrambling).
  • RNTI Radio Network Temporary Identifier
  • the RNTI to be masked is C-RNTI (Cell-RNTI) (also referred to as UE-ID) which is a unique identifier of the terminal device, P-RNTI (Paging-RNTI) for paging message, and system information SI-RNTI (System Information-RNTI) and RA-RNTI (Random Access-RNTI) for instructing a random access response which is a response to transmission of a random access preamble of a terminal device. Then, the masked CRC generated in the DCI is added (S12).
  • Cell-RNTI Cell-RNTI
  • P-RNTI Paging-RNTI
  • SI-RNTI System Information-RNTI
  • RA-RNTI Random Access-RNTI
  • step S11 in FIG. 2 in the conventional (normal DCI) example, as shown in FIG. A 16-bit initial CRC corresponding to the RNTI is generated. Then, an exclusive OR operation process and a mod2 operation process between the initial CRC and the RNTI are performed, and a 16-bit Masked CRC is generated.
  • an initial CRC with a short bit length that does not correspond to (match) 16-bit RNTI may be generated. Therefore, when the bit length of the initial CRC is shortened, there is a problem that the number of bits of the RNTI and the initial CRC do not match, and the arithmetic processing for generating the CRC (Masked CRC) cannot be performed.
  • the mobile communication network to which the terminal device is connected is an LTE-compliant network, but the network to which the present invention can be applied is not limited to this.
  • LTE in the embodiment of the present invention is 3GPP Rel. 8-Rel. 10 as well as 3GPP Rel. 11, Rel. 12 is also used to include a communication system corresponding to 12.
  • FIG. 4 is a schematic configuration diagram of the wireless communication system 1 according to the embodiment of the present invention.
  • the wireless communication system 1 includes a base station (eNB) 10 and terminal devices 20-1 and 20-2.
  • the terminal apparatuses 20-1 and 20-2 are MTC terminals (MTC-UE) 20.
  • Information collected from the MTC terminals 20-1 and 20-2 is transmitted from the eNB 10 to a server or the like (not shown) on the network. Also, control information from the server is transmitted from the base station 10 to the MTC terminals 20-1 and 20-2.
  • the MTC terminals 20 in FIG. 4 are only the MTC terminals 20-1 and 20-2, but a very large number of MTC terminals 20 are actually arranged.
  • the eNB 10 may be connected to a transmission network such as an optical fiber or a communicable power transmission line.
  • the terminal device in the embodiment of the present invention is not limited to the MTC terminal, and may be a mobile communication terminal (mobile station) such as a mobile phone, a smartphone, or a tablet.
  • a mobile communication terminal mobile station
  • mobile phone such as a mobile phone, a smartphone, or a tablet.
  • the base station 10 performs normal DCI (normal DCI) and compact DCI encoding processing (encoding) in which the bit length of the normal DCI is shortened, and transmits the encoded DCI to the MTC terminal 20 through the PDCCH. .
  • normal DCI normal DCI
  • compact DCI encoding processing encoding
  • the initial CRC generated based on the compact DCI using a predetermined generator polynomial is shortened from the bit length (16 bits) of the normal initial CRC, and the shortened initial CRC is also referred to as a shorted CRC.
  • the MTC terminal 20 receives DCI transmitted from the base station 10 through the PDCCH, and performs decoding processing (decoding) of the received DCI.
  • decoding processing decoding processing
  • 16-bit RNTI predetermined identification information
  • 16-bit initial CRC first information
  • the masked CRC is generated (step S11 in FIG. 2).
  • step S12 to S15 in FIG. 5 16-bit RNTI (predetermined identification information) and predetermined information (second information) corresponding to the RNTI are obtained.
  • a Masked CRC is generated by using this (S11a).
  • the subsequent processing steps S12 to S15 in FIG. 5 is the same as the processing in steps S12 to S15 shown in FIG.
  • FIG. 6 is a diagram illustrating a CRC (Masked CRC) generation method according to the first example.
  • the DCI and the initial CRC are set until the initial CRC becomes the bit length of the RNTI. repeat. That is, in the first example, predetermined information corresponding to the RNTI is generated by repeated Initial CRC.
  • DCI is repeated twice, corresponding to the repetition of Initial CRC.
  • Masked CRC (8 bits ⁇ 2) masked by using RNTI on predetermined information obtained by repeating Initial CRC twice is generated and added to DCI.
  • the processing after channel coding in step S13 in FIG. 5 is executed. That is, the process of generating predetermined information corresponding to RNTI is performed before channel coding is performed.
  • the initial CRC is 6 bits, for example, the initial CRC is repeated 2 ( ⁇ 16 / 6) times so as to correspond to the 16 bits of the RNTI, and the remaining 4 bits (remainder) are, for example, the first 4 bits of the initial CRC.
  • the remaining bit length is not limited to the above method, and for example, a value of “0” may be set (zero-padding) to match the bit length of RNTI.
  • the initial CRC is n bits and the RNTI is 16 bits
  • the initial CRC is repeated 16 / n times, and when there is a remainder, 16 (mod) from the head of the initial CRC n) Set the values up to the bit.
  • FIG. 7 is a diagram illustrating a method of generating a CRC (Masked CRC) according to the second example.
  • the bit length L of the DCI is 16 bits or less of the RNTI
  • the initial CRC is not generated, and the repeated DCI is set in an area where the initial CRC is set. That is, in the second example, when the bit length L of DCI is 16 bits or less of RNTI, predetermined information corresponding to RNTI is generated by repeated DCI.
  • DCI when DCI is L bits and RNTI is 16 bits, DCI repeated 16 / L times is set in the area of Initial CRC. If there is a remainder as a result of the above division, the remainder is rounded down to fit in 16 bits, or the missing value is filled with a value of “0”.
  • FIG. 8 is a diagram illustrating a CRC (Masked CRC) generation method according to the third example.
  • the predetermined information corresponding to the RNTI is generated by the initial CRC generated based on the DCI and a part of the DCI.
  • FIG. 9 is a diagram illustrating a CRC (Masked CRC) generation method according to the fourth example.
  • a 16-bit initial CRC is generated based on DCI (repeated) using predetermined generator polynomials with predetermined information corresponding to RNTI.
  • a 16-bit initial CRC is generated as a masking target with a 16-bit RNTI, for example, using a generator polynomial based on DCI repeated twice. Then, a Masked CRC (16 bits) masked by using RNTI on the 16-bit Initial CRC is generated and added to the DCI. Thereafter, the processing after channel coding in step S13 in FIG. 5 is executed.
  • a CRC (Masked CRC) to be added to DCI can be generated even in the case of a shorted CRC.
  • the CRC generation methods in the first to fourth examples can be applied to PDCCH / EPDCCH and PDCCH / EPDCCH in the common search space and UE specific search space.
  • the CRC generation methods of the first example and the second example in which DCI is repeated are desirable from the viewpoint of enhancing the PDCCH / EPDCCH coverage.
  • the base station 10 and the MTC terminal 20 in the wireless communication system 1 process normal DCI (normal CRC) and compact DCI (shortened CRC). Therefore, there are two methods for the base station 10 to switch between the normal CRC and the shorted CRC: a method of switching to Semi-static (semi-static) and a method of switching to Dynamic (dynamic).
  • the base station 10 sets any CRC type (CRC configured type) to the MTC terminal 20 by higher layer signaling (for example, RRC signaling). Notify whether to use.
  • the base station 10 performs DCI encoding processing according to CRC configured type (“normal” or “shortened”), and transmits the DCI to the MTC terminal 20 using PDCCH.
  • the MTC terminal 20 performs CRC check (error detection) by CRC based on the CRC configured type notified by the RRC signaling, and executes a DCI reception operation addressed to the terminal based on the CRC check result.
  • FIG. 10 is a functional block diagram showing a functional configuration example of the wireless communication system 1 in the fifth example.
  • the base station 10 includes a DCI encoding processing unit 11, a CRC configured type notification unit (RRC) 12, and a DCI transmission unit 13.
  • the DCI encoding processing unit 11 includes a CRC configured type determining unit 111 and a DCI / CRC repetition count determining unit 112.
  • the DCI encoding processing unit 11 executes CRC (Masked CRC) addition to DCI, channel coding, rate matching, modulation processing to PDCCH, and the like.
  • CRC Mask CRC
  • the CRC configured type determination unit 111 determines a CRC generation type based on the CRC configured type notified from the CRC configured type notification unit (RRC) 12 to the MTC terminal 20.
  • the DCI / CRC repetition count determination unit 112 calculates the DCI or CRC repetition count for generating predetermined information corresponding to the RNTI in the first to fourth embodiments described above. Determine and generate predetermined information.
  • the processing by the DCI / CRC repetition count determining unit 112 is not executed.
  • the DCI encoding processing unit 11 when the CRC configured type is “normal”, the DCI encoding processing unit 11 generates an initial CRC from the DCI using a predetermined generator polynomial.
  • the CRC configured type notifying unit (RRC) 12 notifies the MTC terminal 20 of the CRC configured type (“normal” or “shortened”) by RRC signaling that is higher layer signaling.
  • the CRC configured type notification unit (RRC) 12 notifies the CRC configured type determining unit 111 of the CRC configured type notified by RRC signaling.
  • the DCI transmission unit 13 transmits DCI to the MTC terminal 20 using PDCCH.
  • the MTC terminal 20 includes a DCI decoding processing unit 21, a CRC configured type notification receiving unit (RRC) 22, and a DCI receiving unit 23.
  • the DCI decoding processing unit 21 includes a CRC configured type determination unit 211, a DCI / CRC repetition count determination unit 212, a CRC check unit 213, and a DCI reception operation execution unit 214 for the own terminal.
  • the DCI decoding processing unit 21 performs a decoding process on the received DCI (PDCCH). Specifically, the DCI decoding processing unit 21 detects a PDCCH addressed to itself from a PDCCH candidate (candidate) for each subframe, and thus performs blind decoding (blind decoding) including CRC check processing for each PDCCH candidate. Try coding).
  • the CRC configured type determination unit 211 determines which type of CRC check to perform based on the CRC configured type notified from the base station 10 by RRC signaling.
  • the DCI / CRC repetition count determination unit 212 determines the DCI or Initial CRC repetition count that constitutes the predetermined information corresponding to the RNTI.
  • the CRC check unit 213 performs a CRC check process using the CRC added to the received DCI. Specifically, for example, when the CRC check of the PDCCH (DCI) demasked by the RNTI of the own terminal is OK (the CRC matches), the CRC check unit 213 uses the PDCCH including the DCI addressed to the own terminal. Judge that there is. Then, the CRC check unit 213 requests the DCI reception operation execution unit 214 for the own terminal to execute the DCI reception operation for the own terminal. On the other hand, when the CRC check is NG (CRC does not match), the CRC check unit 213 does not execute the DCI reception operation addressed to the own terminal.
  • the case where the CRC check is NG is a case where the PDCCH addressed to the terminal itself is decoded in error, the case where decoding of the PDCCH addressed to another MTC terminal 20 is attempted, or the like.
  • the own terminal-addressed DCI reception operation execution unit 214 executes the reception operation for the DCI for which the CRC check is OK, that is, the DCI addressed to the own terminal.
  • the CRC configured type notification receiving unit (RRC) 22 receives a CRC configured type (“normal” or “shortened”) notified by RRC signaling that is higher layer signaling.
  • the DCI receiving unit 23 receives DCI by PDCCH transmitted from the base station 10.
  • the base station 10 switches the type of CRC generated semi-statically, and the MTC terminal 20 performs a CRC check according to the type of CRC added to the received DCI, and based on the CRC check result An operation of receiving DCI addressed to the terminal itself can be performed.
  • the base station 10 notifies the MTC terminal 20 of a CRC type (CRC configured type) to be switched dynamically, that is, every predetermined time (subframe) by a physical layer (for example, PDCCH). Then, the base station 10 performs DCI encoding processing according to the dynamically configured CRC configured type (“normal” or “shortened”), and transmits the DCI to the MTC terminal 20 using the PDCCH.
  • the MTC terminal 20 performs a CRC check based on the CRC configured type notified by the PDCCH, and executes a DCI reception operation addressed to itself based on the CRC check result.
  • FIG. 11 is a functional block diagram showing a functional configuration example of the wireless communication system 1 in the sixth example.
  • the base station 10 includes a DCI encoding processing unit 11, a CRC configured type notification unit (PDCCH) 12a, and a DCI transmission unit 13.
  • the DCI encoding processing unit 11 includes a CRC configured type determining unit 111a and a DCI / CRC repetition count determining unit 112.
  • the DCI encoding processing unit 11, the DCI / CRC repetition count determining unit 112, and the DCI transmitting unit 13 are the same as the functions of the base station 10 of the fifth example shown in FIG. Description is omitted.
  • the CRC configured type determining unit 111a dynamically switches the type of CRC to be generated (every predetermined time).
  • the CRC configured type determination unit 111a generates predetermined information corresponding to the RNTI in the first to fourth examples described above in the DCI / CRC repetition count determination unit 112 when the CRC configured type is “shortened”. Requests execution of determination processing of the number of repetitions of DCI or CRC.
  • the CRC configured type is “normal”, the processing by the DCI / CRC repetition count determining unit 112 is not executed, and the normal DCI code including processing for generating a normal CRC by the DCI encoding processing unit 11 is not executed. Processing is executed.
  • the CRC configured type determining unit 111a notifies the CRC configured type notifying unit (PDCCH) 12a of the type of the CRC to be dynamically switched.
  • PDCCH CRC configured type notifying unit
  • the CRC configured type notification unit (PDCCH) 12 a notifies the CRC configured type (“normal” or “shortened”) to the MTC terminal 20 through the PDCCH that is a physical layer.
  • the MTC terminal 20 includes a DCI decoding processing unit 21, a CRC configured type notification receiving unit (PDCCH) 22a, and a DCI receiving unit 23.
  • the DCI decoding processing unit 21 includes a CRC configured type determination unit 211, a DCI / CRC repetition count determination unit 212, a CRC check unit 213, and a DCI reception operation execution unit 214 for the own terminal.
  • the functions other than the CRC configured type notification accepting unit (PDCCH) 22a are the same as the functions of the MTC terminal 20 of the fifth example shown in FIG. 10, and the description thereof is omitted.
  • the CRC configured type notification receiving unit (PDCCH) 22a receives a CRC configured type (“normal” or “shortened”) notified by the PDCCH that is a physical layer.
  • step S110 the MTC terminal 20 receives a CRC configured type transmitted from the base station 10 by RRC signaling or PDCCH.
  • the CRC configured type notification reception unit (RRC) 22 or the CRC configured type notification reception unit (PDCCH) 22a that has received the CRC configured type notifies the CRC configured unit 211 of the received CRC configured type.
  • step S120 the DCI receiving unit 23 receives the DCI transmitted from the base station 10 through the PDCCH.
  • the DCI receiving unit 23 notifies the received DCI to the DCI decoding processing unit 21.
  • step S130 the CRC configured type determination unit 211 determines the CRC type based on the received CRC configured type.
  • the CRC configured type is “normal”, the process of step S140 is executed.
  • the CRC configured type is “shortened”, the process of step S150 is executed.
  • step S140 the CRC check unit 213 performs a CRC check using the CRC configured type “normal”.
  • step S150 the DCI / CRC repetition count determination unit 212 determines the DCI or CRC (Initial CRC) repetition count that constitutes the predetermined information corresponding to the RNTI.
  • step S160 since the CRC configured type is “shortened”, the CRC check unit 213 performs a CRC check using the CRC configured type “shortened”.
  • step S170 the result of the CRC check in step S140 or S160 (whether or not the CRCs match) is determined.
  • step S180 the DCI reception operation execution unit 214 for the own terminal performs a reception operation on the DCI for the own terminal. Execute.
  • step S170 the reception operation for the DCI addressed to the own terminal is not executed, and the processing for the DCI ends. .
  • the MTC terminal 20 can execute a CRC check according to the CRC type regardless of the type of CRC, and can perform a DCI reception operation addressed to the terminal based on the CRC check result.
  • the base station 10 dynamically switches the CRC configured type (“normal” or “shortened”), and generates a CRC corresponding to the CRC type.
  • the process of notifying the CRC configured type by the PDCCH performed by the base station 10 in the sixth example is not executed. Therefore, the MTC terminal 20 in the seventh example performs a CRC check for all CRC types, and if the CRC check for any of the CRC types is OK, the DCI reception operation for the own terminal is performed. Execute.
  • FIG. 13 is a functional block diagram showing a functional configuration example of the wireless communication system 1 in the seventh example.
  • the base station 10 and the MTC terminal 20 of the seventh example are respectively configured to have a CRC configured type notification unit (PDCCH) 12 a included in the base station 10 of the sixth example and a CRC configured type included in the MTC terminal 20.
  • the functional configuration is the same as that of the sixth example except that the notification receiving unit (PDCCH) 22a is not provided. Therefore, description of each function is omitted.
  • the MTC terminal 20 in the seventh example is not notified of the CRC type from the base station 10 in advance, the MTC terminal 20 executes a processing procedure as shown in FIG.
  • step S210 the DCI receiving unit 23 of the MTC terminal 20 receives the DCI transmitted from the base station 10 through the PDCCH.
  • the DCI receiving unit 23 notifies the received DCI to the DCI decoding processing unit 21.
  • step S220 the CRC configured type determination unit 211 causes the CRC check unit 213 to perform a CRC check using the CRC configured type “normal”.
  • step S230 the result of the CRC check in step S220 is determined.
  • step S240 the DCI receiving operation execution unit for own terminal 214 performs the receiving operation for the DCI addressed to the own terminal. Execute.
  • step S250 processing corresponding to CRC configured type “shortened” is executed.
  • the DCI / CRC repetition number determination unit 212 determines the number of repetitions of DCI or CRC (Initial CRC) constituting predetermined information corresponding to RNTI.
  • step S260 the CRC check unit 213 performs a CRC check using a CRC configured type “shortened”.
  • step S270 the result of the CRC check in step S260 is determined.
  • step S240 the own terminal-addressed DCI reception operation execution unit 214 performs the reception operation for the DCI addressed to the own terminal. Execute.
  • step S270 if the CRC does not match as a result of the CRC check (the CRC check is NG) (NO in step S270), the reception operation for the DCI addressed to the own terminal is not executed, and the processing for the DCI ends. .
  • the MTC terminal 20 can perform a CRC check for each CRC type, and execute a DCI reception operation addressed to itself based on the CRC check result.
  • the base station 10 supports RNTI even when the initial CRC does not correspond to the predetermined identification information (RNTI) (bit length does not match).
  • the predetermined information to be generated can be generated, and the CRC subjected to the masking by the RNTI can be generated.
  • the MTC terminal 20 receives the DCI with the CRC added from the base station 10, the MTC terminal 20 performs the CRC check regardless of the CRC type, and the DCI addressed to itself based on the CRC check result Can perform the receiving operation. Further, the base station 10 can perform a CRC generation process semi-statically or dynamically.
  • the present invention is applicable not only to the MTC terminal but also to a mobile station.
  • the CRC is described as an example of the error detection code.
  • the error detection code is not limited to the CRC, and the present invention can be applied.
  • the bit length of RNTI which is an example of the predetermined identification information, is 16 bits based on regulations.
  • the bit length of RNTI is not limited to 16 bits, and this bit length may be any bit length. The invention can be applied.
  • the base station, the terminal device, and the radio communication system that enable generation of an error detection code masked with predetermined identification information and enhance the coverage of the physical downlink control channel have been described by the embodiments.
  • the present invention is not limited to the above embodiments, and various modifications and improvements can be made within the scope of the present invention.
  • specific numerical examples will be described to facilitate understanding of the invention. However, unless otherwise specified, these numerical values are merely examples, and any appropriate value may be used.
  • an apparatus according to an embodiment of the present invention has been described using a functional block diagram, but such an apparatus may be realized by hardware, software, or a combination thereof.
  • the classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, or the items described in one item may be used in different items. It may be applied to the matters described in (if not inconsistent).
  • Base station 11 DCI encoding process part 111, 111a CRC configured type determination part 112 DCI / CRC repetition frequency determination part 12 CRC configured type notification part (RRC) 12a CRC configured type notification unit (PDCCH) 13 DCI transmitter 20 MTC terminal (terminal device) 21 DCI encoding processing unit 211 CRC configured type determination unit 212 DCI / CRC repetition count determination unit 213 CRC check unit 214 DCI reception operation execution unit for own terminal 22 CRC configured type notification reception unit (RRC) 22a CRC configured type notification accepting unit (PDCCH) 23 DCI receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 無線通信システムにおいて、所定の識別情報がマスキングされた誤り検出符号が付加された制御情報を端末装置に送信する基地局であって、前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さに対応しない場合、前記所定の識別情報の長さに対応する第2の情報を生成する生成手段と、前記第2の情報が生成された場合、該第2の情報に前記所定の識別情報がマスキングされた誤り検出符号を生成する誤り検出符号生成手段とを有する基地局。

Description

基地局、端末装置及び無線通信システム
 本発明は、基地局、端末装置及び無線通信システムに関する。
 人間の操作を介さずに端末間の自律的な通信を実現するマシン通信(Machine-to-Machine Communication)の開発が進められている。3GPP(Third Generation Partnership Project)におけるマシン通信は、MTC(Machine Type Communication:マシンタイプ通信)と呼ばれている。3GPP Rel.11では、MTC端末向けのネットワーク最適化機能が検討されてきた。3GPP Rel.12では、建物侵入損失に伴うカバレッジの強化が検討されている。
 カバレッジの強化は、SCH(Shared Channel:共有チャネル)、PBCH(Physical Broadcast Channel:物理報知チャネル)、PRACH(Physical Random Access Channel:物理ランダムアクセスチャネル)、PDCCH(Physical Downlink Control Channel:物理下りリンク制御チャネル)/EPDCCH(Enhanced PDCCH)、PDSCH(Physical Downlink Shared Channel:物理下りリンク共有チャネル)、PUSCH(Physical Uplink Shared Channel:物理上りリンク共有チャネル)、PUCCH(Physical Uplink Control Channel:物理上りリンク制御チャネル)等に必要とされる。
 MTC端末の種類は多様であり、ガスメータや電気メータ、温度・湿度センサ等のように定期的にデータを送信するものもあれば、特定のイベントが発生したときにデータを送信するものもある。MTC端末の種類や置かれた位置、環境にかかわらず、どの端末も迅速に無線リンクを確立できるようにするためには、カバレッジの強化が特に重要である。
 カバレッジを強化するために、同じ情報を時間領域で繰り返し送信することが考えられる。例えば、PUCCHでは、送信側でデータフレームを送信した後、所定時間が経過してもACKを受信できない場合に、同じデータフレームを既定回数になるまで繰り返し送信するARQ(Automatic Repeat Request:自動再送要求)や、誤り訂正と組み合わせたハイブリッドARQが採用されている(例えば、非特許文献1参照)。また、PRACHで長い系列のプリアンブルフォーマットを送信することが提案されている(例えば、非特許文献2参照)。ランダムアクセス手順の一部にハイブリッドARQを適用することも知られている。
 また、PDCCHのカバレッジ強化のためには、複数のサブフレームにおいて同じ情報を繰返し送信することが必要である。
 そこで、PDCCHを介して送信されるDCI(Downlink Control Information:下り制御情報)のビット長を短くしたcompact DCIの技術が開示されている(例えば、特許文献1参照)。compact DCIの概要を説明するためのイメージ図を図1に示す。図1に示すように、compact DCIは、DCI及びDCIに付加される誤り検出符号の一つのCRC(Cyclic Redundancy Check:巡回冗長検査)のビット長のそれぞれが短縮される、compact DCIにshortened CRCが付加された構成となる。このように、compact DCIのビット長は従来(normal DCI)に比べ短いため、繰返しDCIを送信し、カバレッジを強化できる。
国際公開第2013/074722号
3GPP TS36.213, 10.1.4 HARQ-ACK Repetition 3GPP TS36.211, 5.7 Physical random access channel 3GPP TS36.212, 5.3.3 Downlink control information
 基地局が制御情報に付加される誤り検出符号の生成に用いられる情報の種別によらず、所定の識別情報がマスキングされた誤り検出符号の生成することを可能とし、制御情報を受信する端末装置の物理下り制御チャネルのカバレッジを強化することが望ましい。
 本発明の一態様によれば、無線通信システムにおいて、所定の識別情報がマスキングされた誤り検出符号が付加された制御情報を端末装置に送信する基地局であって、前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さに対応しない場合、前記所定の識別情報の長さに対応する第2の情報を生成する生成手段と、前記第2の情報が生成された場合、該第2の情報に前記所定の識別情報がマスキングされた誤り検出符号を生成する誤り検出符号生成手段とを有する基地局が提供される。
 本発明の別の態様によれば、無線通信システムにおいて、基地局と通信する端末装置であって、前記基地局からの誤り検出符号が付加された制御情報を受信する受信手段と、前記制御情報を受信する前に、前記基地局が前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さより短いか否かを示す種別が前記基地局から通知された場合、受信した前記制御情報に付加された前記誤り検出符号を用いて、前記種別に基づく誤り検出を行う誤り検出手段とを有する端末装置が提供される。
 本発明の別の態様によれば、端末装置と、所定の識別情報がマスキングされた誤り検出符号が付加された制御情報を前記端末装置に送信する基地局とを有する無線通信システムであって、前記基地局は、前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さに対応しない場合、前記所定の識別情報の長さに対応する第2の情報を生成する生成手段と、前記第2の情報が生成された場合、該第2の情報に前記所定の識別情報がマスキングされた誤り検出符号を生成する誤り検出符号生成手段とを有し、前記端末装置は、前記第1の情報の長さが前記所定の識別情報の長さより短いか否かを示す種別に基づく誤り検出を行う誤り検出手段を有する無線通信システムが提供される。
 本発明の実施形態によれば、基地局が制御情報に付加される誤り検出符号の生成に用いられる情報の種別によらず、所定の識別情報がマスキングされた誤り検出符号の生成を可能とし、制御情報を受信する端末装置の物理下り制御チャネルのカバレッジを強化できる。
compact DCIの概要を説明するためのイメージ図である。 通常のDCIの符号化の処理手順を示すフローチャート図である。 従来(normal DCI)及びcompact DCIのCRCの演算方法を説明するための図である。 本発明の実施形態における無線通信システムの概略構成図である。 本発明の実施形態におけるcompact DCIの符号化の処理手順を示すフローチャート図である。 第1の例におけるCRCの生成方法を示す図である。 第2の例におけるCRCの生成方法を示す図である。 第3の例におけるCRCの生成方法を示す図である。 第4の例におけるCRCの生成方法を示す図である。 第5の例における無線通信システムの機能構成例を示す機能ブロック図である。 第6の例における無線通信システムの機能構成例を示す機能ブロック図である。 第5、第6の例におけるMTC端末の処理手順の一例を示すフローチャート図である。 第7の例における無線通信システムの機能構成例を示す機能ブロック図である。 第7の例におけるMTC端末の処理手順の一例を示すフローチャート図である。
 基地局が行う通常のDCIの符号化の処理手順について図2を用いて説明する。なお、DCIの符号化の処理手順は、例えば非特許文献3にも開示されている。
 図2に示すように、まず基地局は、予め決められた生成多項式を用いてDCIからInitial CRCを生成する。そして、生成されたInitial CRCは、識別子であるRNTI(Radio Network Temporary Identifier)を用いてマスキングされたMasked CRCを生成する(S11)。なお、マスキングは、Initial CRCとRNTIとがmodulo(mod)2演算や排他的論理和(XOR)(スクランブリングともいう。)演算される処理である。また、マスキングされるRNTIは、端末装置の固有識別子であるC-RNTI(Cell-RNTI)(UE-IDともいう。)、ページングメッセージのためのP-RNTI(Paging-RNTI)、システム情報のためのSI-RNTI(System Information-RNTI)及び端末装置のランダムアクセスプリアンブルの送信に対する応答であるランダムアクセス応答を指示するためのRA-RNTI(Random Access-RNTI)等がある。そして、DCIに生成したMasked CRCが付加される(S12)。Masked CRCが付加されたDCIに対するチャネルコーディング(Channel Coding)処理(S13)後、データの反復や間引きによるデータサイズの調整のためのレートマッチング(Rate Matching)処理(S14)が施されたデータはPDCCHとして変調され(S15)、端末装置に送信される。
 ここで、上述したMasked CRCの生成処理(図2のステップS11)において、従来(normal DCI)の例では、図3(a)に示すように、16ビットで構成されることが規定されているRNTIに対応する16ビットのInitial CRCが生成される。そして、Initial CRCとRNTIとの排他的論理和の演算処理及びmod2演算処理が行われ、16ビットのMasked CRCが生成される。
 一方、compact DCIの例では、図3(b)に示すように、16ビットのRNTIに対応(一致)しないような短いビット長のInitial CRCが生成される場合がある。したがって、Initial CRCのビット長が短縮される場合、RNTIとInitial CRCとのビット数が不一致となり、CRC(Masked CRC)を生成するための演算処理を行うことができないといった問題がある。
 上記先行技術文献において、compact DCI(shortened CRC)の符号化処理におけるMasked CRCの生成に関する記述は無い。したがって、上記問題を解決できず、compact DCIを用いたカバレッジ強化を実現できない。
 以下、図面を参照して本発明の実施形態(以下、実施形態という。)を説明する。なお、以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られるわけではない。
 本発明の実施形態において端末装置が接続する移動通信網はLTEに準拠したネットワークであるが、本発明を適用できるネットワークはこれに限定されるわけではない。なお、本発明の実施形態での「LTE」は、3GPP Rel.8~Rel.10に対応する通信方式のみならず、3GPP Rel.11、Rel.12に対応する通信方式も含む意味で使用する。
 また、本発明の実施形態において、PDCCHとEPDCCHとを含めてPDCCHと記述する。
[システム構成]
 図4は、本発明の実施形態における無線通信システム1の概略構成図である。
 無線通信システム1は、基地局(eNB)10と、端末装置20-1及び20-2を含む。端末装置20-1及び20-2は、MTC端末(MTC-UE)20である。MTC端末20-1、20-2から収集された情報は、eNB10からネットワーク上の図示しないサーバ等に伝送される。また、サーバからの制御情報は、基地局10からMTC端末20-1、20-2に送信される。
 図4におけるMTC端末20は、MTC端末20-1と20-2とのみであるが、実際は非常に多数のMTC端末20が配置されている。eNB10は光ファイバなどの伝送網あるいは通信可能な送電線に接続されていてもよい。
 なお、本発明の実施形態における端末装置は、MTC端末に限らず、例えば携帯電話機やスマートフォン、タブレット等の移動通信端末(移動局)であってもよい。
 基地局10は、通常のDCI(normal DCI)及びnormal DCIのビット長を短縮させたcompact DCIの符号化処理(エンコーディング)を行い、符号化処理を行ったDCIをPDCCHによりMTC端末20に送信する。なお、本発明の実施形態において、normal DCI及びcompact DCIのそれぞれを区別しない場合、単にDCIという。また、予め定められた生成多項式を用いてcompact DCIに基づき生成されるInitial CRCは、通常のInitial CRCのビット長(16ビット)よりも短縮され、短縮されたInitial CRCをshortened CRCともいう。
 MTC端末20は、基地局10からPDCCHにより送信されたDCIを受信し、受信したDCIの復号化処理(デコーディング)を行う。
[DCIの符号化処理]
 基地局10が行うnormal DCIの符号化処理の手順(図2参照)において、16ビットのRNTI(所定の識別情報)と16ビットのInitial CRC(第1の情報)とがマスキング処理(排他的論理和の演算)され、Masked CRCが生成される(図2のステップS11)。
 一方、本発明の実施形態におけるcompact DCIの符号化処理では、図5に示されるように、16ビットのRNTI(所定の識別情報)とRNTIに対応する所定の情報(第2の情報)とを用いてMasked CRCが生成される(S11a)。なお、以降の処理(図5のステップS12~S15)は、図2に示したステップS12~S15の処理と同じである。
 以下、compact DCIの符号化処理において、Initial CRCのビット長がRNTIのビット長に対応しない場合(Intial CRCのビット長がRNTIのビット長未満の場合)のMasked CRCの生成方法を、第1~第4の例により説明する。また、以下の説明において、Masked CRCを、単にCRCともいう。
〔第1の例〕
 図6は、第1の例によるCRC(Masked CRC)の生成方法を示す図である。第1の例では、compact DCIに基づき生成されるInitial CRCのビット長がRNTIのビット長未満である場合、すなわちshortened CRCの場合、Initial CRCがRNTIのビット長になるまでDCIとInitial CRCとを繰り返す。すなわち、第1の例においては、RNTIに対応する所定の情報を、繰り返されたInitial CRCにより生成する。
 図6に示すように、Initial CRCが例えば8ビットの場合、RNTIの16ビットに対応するように、Initial CRCを2(=16/8)回繰り返す。また、Initial CRCの繰返しに対応させ、DCIも2回繰り返す。このように、DCIを繰り返すことで、PDCCHのカバレッジを強化できる。そして、Initial CRCを2回繰り返した所定の情報にRNTIを用いてマスキングしたMasked CRC(8ビット×2)が生成され、DCIに付加される。以降、図5のステップS13のチャネルコーディング以降の処理が実行される。すなわち、RNTIに対応する所定の情報の生成処理は、チャネルコーディングが行われる前に実行される。
 なお、Initial CRCが例えば6ビットの場合、RNTIの16ビットに対応するように、Initial CRCを2(≒16/6)回繰り返し、残り(除算した余り)の4ビットを例えばInitial CRCの先頭4ビット目までの値を設定する。なお、余りのビット長には、上記方法に限らず、例えば「0」の値を設定(zero-padding)してRNTIのビット長に合わせるようにしてもよい。
 したがって、RNTIに対応させる所定の情報を生成するため、Initial CRCがnビット、RNTIが16ビットである場合、Initial CRCを16/n回繰返し、剰余がある場合、Initial CRCの先頭から16(mod n)ビット目までの値を設定する。
 なお、DCIとInitial CRCとの繰返し回数は、それぞれ独立に決定することができる。また、DCIとInitial CRCとの繰返し回数は、1回(繰り返さない)とすることもできる。
〔第2の例〕
 図7は、第2の例によるCRC(Masked CRC)の生成方法を示す図である。第2の例では、DCIのビット長LがRNTIの16ビット以下である場合、Initial CRCを生成せず、Initial CRCが設定される領域に、繰り返されたDCIを設定する。すなわち、第2の例では、DCIのビット長LがRNTIの16ビット以下である場合、RNTIに対応させる所定の情報を繰り返されたDCIにより生成する。
 図7に示すように、DCIがLビット(L≦16ビット)の場合、RNTIの16ビットに対応するように、DCIが16/L回繰り返された情報が生成され、Initial CRCの領域に設定される。そして、DCIが16/L回繰り返された所定の情報にRNTIを用いてマスキングしたMasked CRCが生成され、DCIに付加される。また、図7に示すように、DCIを複数回(例えば2回)繰り返すことで、PDCCHのカバレッジを強化できる。以降、図5のステップS13のチャネルコーディング以降の処理が実行される。
 なお、16/L回繰り返したDCIが、16ビットより長くなる場合、16ビットより長いビット長を切り捨て、16ビット未満となる場合、16ビットとなるように、例えば「0」の値を用いたパティングを行う。
 したがって、RNTIに対応させる所定の情報を生成するため、DCIがLビット、RNTIが16ビットである場合、16/L回繰り返されたDCIをInitial CRCの領域に設定する。上記の除算の結果、剰余がある場合、16ビットに合うように切り捨てたり、不足している値を「0」の値で埋めたりする。
 なお、DCIとInitial CRCの領域に設定されるDCIとの繰返し回数は、それぞれ独立に決定することができる。また、DCIとInitial CRCの領域に設定されるDCIとの繰返し回数は、1回(繰り返さない)であってもよい。
〔第3の例〕
 図8は、第3の例によるCRC(Masked CRC)の生成方法を示す図である。第3の例では、RNTIに対応する所定の情報を、DCIに基づき生成されるInitial CRCとDCIの一部とにより生成する。
 図8に示すように、Initial CRCが例えば8ビットの場合、16ビットのRNTIとのマスキングの対象として、Initial CRC(8ビット)とDCIの一部(8ビット)とを組み合わせた情報(16ビット)が使用される。そして、Initial CRCとDCIの一部と組み合わせた情報にRNTIを用いてマスキングしたMasked DCI(8ビット)とMasked CRC(8ビット)とが生成され、DCIに付加される。すなわち、第3の例では、DCIの一部がマスキングされる(Masked DCIに置換される)。以降、図5のステップS13のチャネルコーディング以降の処理が実行される。
〔第4の例〕
 図9は、第4の例によるCRC(Masked CRC)の生成方法を示す図である。第4の例では、RNTIに対応する所定の情報を、予め定められた生成多項式を用いて(繰り返された)DCIに基づき16ビットのInitial CRCを生成する。
 図9に示すように、16ビットのRNTIとのマスキングの対象として、例えば2回繰り返されたDCIに基づき生成多項式を用いて16ビットのInitial CRCが生成される。そして、16ビットのInitial CRCにRNTIを用いてマスキングしたMasked CRC(16ビット)が生成され、DCIに付加される。以降、図5のステップS13のチャネルコーディング以降の処理が実行される。
 上述した第1~第4の例により、shortened CRCの場合であっても、DCIに付加するCRC(Masked CRC)を生成することができる。また、第1~第4の例におけるCRCの生成方法は、PDCCH/EPDCCHと、共通サーチスペース及びUE特定サーチスペースにおけるPDCCH/EPDCCHとに適用できる。
 なお、第1~第4の例のうち、PDCCH/EPDCCHのカバレッジ強化の観点から、DCIが繰り返される第1の例及び第2の例のCRC生成方法が望ましい。
 本発明の実施形態における無線通信システム1における基地局10及びMTC端末20は、normal DCI(normal CRC)とcompact DCI(shortened CRC)とを処理する。そこで、基地局10がnormal CRCとshortened CRCとを切り替える方法は、Semi-static(準静的)に切り替える方法とDynamic(動的)に切り替える方法とがある。
 以下、normal CRCとshortened CRCとの切替え方法に応じて、準静的に切替えを行う動作を第5の例とし、動的に切替えを行う動作の2パタンを第6の例、第7の例として説明する。
〔第5の例〕
 準静的にnormal CRCとshortened CRCとを切り替える第5の例では、基地局10がMTC端末20に対してハイヤレイヤシグナリング(例えば、RRCシグナリング)により、いずれのCRCの種別(CRC configured type)を使用するか通知する。基地局10は、CRC configured type(「normal」又は「shortened」)に応じたDCIの符号化処理を実行し、PDCCHによりDCIをMTC端末20に送信する。MTC端末20は、RRCシグナリングにより通知されたCRC configured typeに基づくCRCによるCRCチェック(誤り検出)を行い、CRCチェックの結果に基づき自端末宛のDCIの受信動作を実行する。
 図10は、第5の例における無線通信システム1の機能構成例を示す機能ブロック図である。
 <基地局>
 基地局10は、DCI符号化処理部11、CRC configured type通知部(RRC)12及びDCI送信部13を有する。DCI符号化処理部11には、CRC configured type決定部111及びDCI/CRC繰返し回数決定部112が含まれる。
 DCI符号化処理部11は、DCIへのCRC(Masked CRC)の付加、チャネルコーディング、レートマッチング、PDCCHへの変調処理等を実行する。
 CRC configured type決定部111は、CRC configured type通知部(RRC)12がMTC端末20に通知したCRC configured typeに基づき、CRCの生成方法を決定する。
 DCI/CRC繰返し回数決定部112は、CRC configured typeが「shortened」の場合、上述した第1~第4の実施形態におけるRNTIに対応する所定の情報を生成するためのDCI又はCRCの繰返し回数を決定し、所定の情報を生成する。CRC configured typeが「normal」の場合、DCI/CRC繰返し回数決定部112による処理は実行されない。
 なお、CRC configured typeが「normal」の場合、DCI符号化処理部11は、予め定められた生成多項式を用いてDCIからInitial CRCを生成する。
 CRC configured type通知部(RRC)12は、ハイヤレイヤシグナリングであるRRCシグナリングにより、CRC configured type(「normal」又は「shortened」)を、MTC端末20に通知する。また、CRC configured type通知部(RRC)12は、RRCシグナリングにより通知したCRC configured typeを、CRC configured type決定部111に通知する。
 DCI送信部13は、PDCCHによりDCIをMTC端末20に送信する。
 <MTC端末>
 MTC端末20は、DCI復号化処理部21、CRC configured type通知受付部(RRC)22及びDCI受信部23を有する。DCI復号化処理部21には、CRC configured type判定部211、DCI/CRC繰返し回数判定部212、CRCチェック部213及び自端末宛DCI受信動作実行部214が含まれる。
 DCI復号化処理部21は、受信したDCI(PDCCH)の復号化処理を行う。具体的には、DCI復号化処理部21は、サブフレーム毎のPDCCH候補(candidate)から自端末宛のPDCCHを検出するため、PDCCH候補のそれぞれに対してCRCチェック処理を含むブラインド復号(ブラインドデコーディング)を試行する。
 CRC configured type判定部211は、RRCシグナリングにより、基地局10から通知されたCRC configured typeに基づき、いずれの種別のCRCチェックを行うかについて判定する。
 DCI/CRC繰返し回数判定部212は、RNTIに対応する所定の情報を構成するDCI又はInitial CRCの繰返し回数を判定する。
 CRCチェック部213は、受信したDCIに付加されているCRCを用いてCRCチェック処理を行う。具体的には、例えばCRCチェック部213は、自端末のRNTIによりデマスキングされたPDCCH(DCI)のCRCチェックがOKであった(CRCが一致した)場合、自端末宛のDCIを含むPDCCHであると判断する。そして、CRCチェック部213は、自端末宛DCI受信動作実行部214に対して、自端末宛のDCIの受信動作の実行を要求する。一方、CRCチェック部213は、CRCチェックがNGであった(CRCが一致しなかった)場合、自端末宛のDCIの受信動作を実行しない。なお、CRCチェックがNGであった場合とは、自端末宛のPDCCHが誤って復号された場合及び他のMTC端末20宛のPDCCHの復号を試みた場合等である。
 自端末宛DCI受信動作実行部214は、CRCチェックがOKであったDCI、すなわち自端末宛のDCIに対する受信動作を実行する。
 CRC configured type通知受付部(RRC)22は、ハイヤレイヤシグナリングであるRRCシグナリングにより通知されたCRC configured type(「normal」又は「shortened」)を受け付ける。
 DCI受信部23は、基地局10から送信されたPDCCHによるDCIを受信する。
 上記機能構成により基地局10は、準静的に生成するCRCの種別を切り替え、MTC端末20は、受信したDCIに付加されたCRCの種別に応じたCRCチェックを行い、CRCチェックの結果に基づき自端末宛のDCIの受信動作を行うことができる。
〔第6の例〕
 第6の例では、基地局10が動的、すなわち所定の時間(サブフレーム)毎に切り替えるCRCの種別(CRC configured type)を物理レイヤ(例えば、PDCCH)によりMTC端末20に通知する。そして、基地局10は、動的に切り替えたCRC configured type(「normal」又は「shortened」)に応じたDCIの符号化処理を実行し、MTC端末20に、PDCCHによりDCIを送信する。MTC端末20は、PDCCHにより通知されたCRC configured typeに基づくCRCチェックを行い、CRCチェックの結果に基づき自端末宛のDCIの受信動作を実行する。
 図11は、第6の例における無線通信システム1の機能構成例を示す機能ブロック図である。
 <基地局>
 基地局10は、DCI符号化処理部11、CRC configured type通知部(PDCCH)12a及びDCI送信部13を有する。DCI符号化処理部11には、CRC configured type決定部111a及びDCI/CRC繰返し回数決定部112が含まれる。上記機能のうち、DCI符号化処理部11、DCI/CRC繰返し回数決定部112及びDCI送信部13は、図10に示した第5の例の基地局10が有する機能と同じであり、これらの説明は省略する。
 CRC configured type決定部111aは、動的(所定の時間毎)に、生成するCRCの種別を切り替える。CRC configured type決定部111aは、CRC configured typeが「shortened」の場合、DCI/CRC繰返し回数決定部112に、上述した第1~第4の例におけるRNTIに対応する所定の情報を生成するためのDCI又はCRCの繰返し回数の決定処理の実行を要求する。一方、CRC configured typeが「normal」の場合、DCI/CRC繰返し回数決定部112による処理は実行されず、DCI符号化処理部11により、normal CRCを生成するための処理を含む、normal DCIの符号化処理が実行される。また、CRC configured type決定部111aは、動的に切り替わるCRCの種別を、CRC configured type通知部(PDCCH)12aに通知する。
 CRC configured type通知部(PDCCH)12aは、物理レイヤであるPDCCHにより、CRC configured type(「normal」又は「shortened」)を、MTC端末20に通知する。
 <MTC端末>
 MTC端末20は、DCI復号化処理部21、CRC configured type通知受付部(PDCCH)22a及びDCI受信部23を有する。DCI復号化処理部21には、CRC configured type判定部211、DCI/CRC繰返し回数判定部212、CRCチェック部213及び自端末宛DCI受信動作実行部214が含まれる。なお、上記のうちCRC configured type通知受付部(PDCCH)22a以外の機能は、図10に示した第5の例のMTC端末20が有する機能と同じであり、これらの説明は省略する。
 CRC configured type通知受付部(PDCCH)22aは、物理レイヤであるPDCCHにより通知されたCRC configured type(「normal」又は「shortened」)を受け付ける。
 ここで、第5の例及び第6の例におけるMTC端末20の処理手順を、図12に示すフローチャート図を用いて説明する。
 図12に示すように、ステップS110において、MTC端末20は、基地局10からRRCシグナリング又はPDCCHにより送信されたCRC configured typeを受信する。CRC configured typeを受信したCRC configured type通知受付部(RRC)22又はCRC configured type通知受付部(PDCCH)22aは、受信したCRC configured typeをCRC configured type判定部211に通知する。
 ステップS120において、DCI受信部23は、基地局10からPDCCHにより送信されたDCIを受信する。DCI受信部23は、受信したDCIをDCI復号化処理部21に通知する。
 ステップS130において、CRC configured type判定部211は、受信したCRC configured typeに基づき、CRCの種別を判定する。ここで、CRC configured typeが「normal」の場合、ステップS140の処理が実行され、CRC configured typeが「shortened」の場合、ステップS150の処理が実行される。
 CRC configured typeが「normal」である場合、ステップS140において、CRCチェック部213は、CRC configured type「normal」によるCRCチェックを行う。
 CRC configured typeが「shortened」である場合、ステップS150において、DCI/CRC繰返し回数判定部212は、RNTIに対応する所定の情報を構成するDCI又はCRC(Initial CRC)の繰返し回数を判定する。
 ステップS160において、CRC configured typeが「shortened」であるため、CRCチェック部213は、CRC configured type「shortened」によるCRCチェックを行う。
 ステップS170において、上記ステップS140又はS160でのCRCチェックの結果(CRCが一致したか否か)が判定される。
 CRCチェックの結果、CRCが一致した(CRCチェックがOKであった)場合(ステップS170においてYES)、ステップS180において、自端末宛DCI受信動作実行部214は、自端末宛のDCIに対する受信動作を実行する。
 一方、CRCチェックの結果、CRCが一致しなかった(CRCチェックがNGであった)場合(ステップS170においてNO)、自端末宛のDCIに対する受信動作は実行せず、当該DCIに対する処理は終了する。
 上述した処理手順により、MTC端末20は、CRCがいずれの種別であっても、CRCの種別に応じたCRCチェックを実行し、CRCチェックの結果に基づき自端末宛のDCIの受信動作を実行できる。
〔第7の例〕
 第7の例では、第6の例の場合と同様に、基地局10が動的にCRC configured type(「normal」又は「shortened」)を切り替え、CRCの種別に応じたCRCを生成する。但し、第7の例では、第6の例において基地局10が行うPDCCHによるCRC configured typeの通知の処理が実行されない。そのため、第7の例におけるMTC端末20は、全てのCRCの種別に対するCRCチェックを実行し、いずれかのCRCの種別でのCRCチェックがOKであった場合、自端末宛のDCIの受信動作を実行する。
 図13は、第7の例における無線通信システム1の機能構成例を示す機能ブロック図である。図13に示すように、第7の例の基地局10及びMTC端末20が、それぞれ第6の例の基地局10が有するCRC configured type通知部(PDCCH)12a及びMTC端末20が有するCRC configured type通知受付部(PDCCH)22aを備えない点を除き、第6の例の機能構成と同じである。そのため、各機能の説明は省略する。
 なお、第7の例におけるMTC端末20は、予めCRCの種別が基地局10から通知されないため、MTC端末20は、図14に示すような処理手順を実行する。
 図14に示すように、ステップS210において、MTC端末20のDCI受信部23は、基地局10からPDCCHにより送信されたDCIを受信する。DCI受信部23は、受信したDCIをDCI復号化処理部21に通知する。
 ステップS220において、CRC configured type判定部211は、CRCチェック部213に、CRC configured type「normal」によるCRCチェックを実行させる。
 ステップS230において、上記ステップS220のCRCチェックの結果が判定される。
 CRCチェックの結果、CRCが一致した(CRCチェックがOKであった)場合(ステップS230においてYES)、ステップS240において、自端末宛DCI受信動作実行部214は、自端末宛のDCIに対する受信動作を実行する。
 一方、CRCチェックの結果、CRCが一致しなかった(CRCチェックがNGであった)場合(ステップS230においてNO)、ステップS250において、CRC configured type「shortened」に対応する処理が実行される。DCI/CRC繰返し回数判定部212は、RNTIに対応する所定の情報を構成するDCI又はCRC(Initial CRC)の繰返し回数を判定する。
 ステップS260において、CRCチェック部213は、CRC configured type「shortened」によるCRCチェックを行う。
 ステップS270において、上記ステップS260のCRCチェックの結果が判定される。
 CRCチェックの結果、CRCが一致した(CRCチェックがOKであった)場合(ステップS270においてYES)、ステップS240において、自端末宛DCI受信動作実行部214は、自端末宛のDCIに対する受信動作を実行する。
 一方、CRCチェックの結果、CRCが一致しなかった(CRCチェックがNGであった)場合(ステップS270においてNO)、自端末宛のDCIに対する受信動作は実行せず、当該DCIに対する処理は終了する。
 上述した処理手順により、MTC端末20は、CRCがいずれの種別であっても、CRCの種別のそれぞれのCRCチェックを行い、CRCチェックの結果に基づき自端末宛のDCIの受信動作を実行できる。
 以上、本発明の実施形態の無線通信システム1によれば、基地局10が、Initial CRCが所定の識別情報(RNTI)に対応しない(ビット長が合わない)場合であっても、RNTIに対応する所定の情報を生成し、RNTIによるマスキングが行われたCRCを生成できる。そして、MTC端末20は、基地局10から送信されたCRCが付加されたDCIを受信した場合、CRCの種別がいずれであってもCRCチェックを行い、CRCチェックの結果に基づく自端末宛のDCIの受信動作を実行できる。また、基地局10は、準静的又は動的にCRCの生成処理を行うことができる。
 このように、compact DCIにおけるRNTIによりマスキングされたCRCの付加を可能とする。そして、compact DCIにより、DCI(制御情報)を繰り返すことで、下り物理制御チャネル(PDCCH/EPDCCH)のカバレッジを強化できる。
 なお、上述した例では、端末装置の一例としてMTC端末に基づき説明したが、MTC端末に限らず移動局であっても本発明を適用できる。
 なお、上述した例では、誤り検出符号の一例としてCRCを挙げて説明したが、誤り検出符号はCRCに限らず本発明を適用できる。
 なお、上述した例では、所定の識別情報の一例であるRNTIのビット長は、規定に基づく16ビットとしたが、RNTIのビット長は16ビットに限らず、任意のビット長であっても本発明を適用できる。
 以上、所定の識別情報がマスキングされた誤り検出符号の生成することを可能とし、物理下り制御チャネルのカバレッジを強化する基地局、端末装置及び無線通信システムを実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。説明の便宜上、発明の理解を促すため具体的な数値例を用いて説明されるが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてよい。説明の便宜上、本発明の実施例に係る装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウエアで、ソフトウエアで又はそれらの組み合わせで実現されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
 本国際特許出願は2013年7月22日に出願した日本国特許出願第2013-151897号に基づきその優先権を主張するものであり、日本国特許出願第2013-151897号の全内容を本願に援用する。
 1 無線通信システム
10 基地局
11 DCI符号化処理部
111、111a CRC configured type決定部
112 DCI/CRC繰返し回数決定部
12 CRC configured type通知部(RRC)
12a CRC configured type通知部(PDCCH)
13 DCI送信部
20 MTC端末(端末装置)
21 DCI符号化処理部
211 CRC configured type判定部
212 DCI/CRC繰返し回数判定部
213 CRCチェック部
214 自端末宛DCI受信動作実行部
22 CRC configured type通知受付部(RRC)
22a CRC configured type通知受付部(PDCCH)
23 DCI受信部

Claims (10)

  1.   無線通信システムにおいて、所定の識別情報がマスキングされた誤り検出符号が付加された制御情報を端末装置に送信する基地局であって、
     前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さに対応しない場合、前記所定の識別情報の長さに対応する第2の情報を生成する生成手段と、
     前記第2の情報が生成された場合、該第2の情報に前記所定の識別情報がマスキングされた誤り検出符号を生成する誤り検出符号生成手段とを有する基地局。
  2.  前記生成手段は、
     前記所定の識別情報の長さになるまで前記第1の情報が繰り返された、前記第2の情報を生成する請求項1記載の基地局。
  3.  前記生成手段は、
     前記所定の識別情報の長さになるまで前記制御情報が繰り返された、前記第2の情報を生成する請求項1記載の基地局。
  4.  前記制御情報が送信される前に、前記第1の情報の長さが前記所定の識別情報の長さより短いか否かを示す種別を、ハイヤレイヤシグナリングにより前記端末装置に通知する通知手段を有し、
     前記誤り検出符号生成手段は、前記通知手段により通知された前記種別に応じて、前記第1の情報に前記所定の識別情報がマスキングされた誤り検出符号又は前記第2の情報に前記所定の識別情報がマスキングされた誤り検出符号を生成する請求項1に記載の基地局。
  5.  前記誤り検出符号生成手段は、所定の時間毎に、前記第1の情報に前記所定の識別情報がマスキングされた誤り検出符号と、前記第2の情報に前記所定の識別情報がマスキングされた誤り検出符号とを切り替えて生成する請求項1に記載の基地局。
  6.  前記所定の時間毎に、第1の情報の長さが前記所定の識別情報の長さより短いか否かを示す種別を、物理下りリンク制御チャネルにより前記端末装置に通知する通知手段を有する請求項5記載の基地局。
  7.  前記第2の情報に前記所定の識別情報がマスキングされた誤り検出符号が付加された、繰り返された前記制御情報を、前記端末装置に送信する送信手段を有する請求項1記載の基地局。
  8.  無線通信システムにおいて、基地局と通信する端末装置であって、
     前記基地局からの誤り検出符号が付加された制御情報を受信する受信手段と、
     前記制御情報を受信する前に、前記基地局が前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さより短いか否かを示す種別が前記基地局から通知された場合、受信した前記制御情報に付加された前記誤り検出符号を用いて、前記種別に基づく誤り検出を行う誤り検出手段とを有する端末装置。
  9.  前記誤り検出手段は、前記制御情報を受信する前に、前記種別が通知されなかった場合、前記種別のそれぞれに対応する誤り検出を行う請求項8記載の端末装置。
  10.  端末装置と、所定の識別情報がマスキングされた誤り検出符号が付加された制御情報を前記端末装置に送信する基地局とを有する無線通信システムであって、
     前記基地局は、
     前記誤り検出符号を生成するために前記所定の識別情報によりマスキングされる第1の情報の長さが前記所定の識別情報の長さに対応しない場合、前記所定の識別情報の長さに対応する第2の情報を生成する生成手段と、
     前記第2の情報が生成された場合、該第2の情報に前記所定の識別情報がマスキングされた誤り検出符号を生成する誤り検出符号生成手段とを有し、
     前記端末装置は、
     前記第1の情報の長さが前記所定の識別情報の長さより短いか否かを示す種別に基づく誤り検出を行う誤り検出手段を有する無線通信システム。
PCT/JP2014/066383 2013-07-22 2014-06-20 基地局、端末装置及び無線通信システム WO2015012032A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/906,309 US9787435B2 (en) 2013-07-22 2014-06-20 Base station, terminal device and radio communication system
EP14828883.0A EP3026957B1 (en) 2013-07-22 2014-06-20 Base station, terminal device, and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013151897A JP6271895B2 (ja) 2013-07-22 2013-07-22 基地局及び無線通信システム
JP2013-151897 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015012032A1 true WO2015012032A1 (ja) 2015-01-29

Family

ID=52393085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066383 WO2015012032A1 (ja) 2013-07-22 2014-06-20 基地局、端末装置及び無線通信システム

Country Status (4)

Country Link
US (1) US9787435B2 (ja)
EP (1) EP3026957B1 (ja)
JP (1) JP6271895B2 (ja)
WO (1) WO2015012032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050587A1 (en) * 2015-09-25 2017-03-30 Sony Corporation Reduction of crc field in compact dci message on m-pdcch for low cost mtc devices
WO2017135453A1 (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9918344B2 (en) * 2015-04-09 2018-03-13 Intel IP Corporation Random access procedure for enhanced coverage support
CN107580797B (zh) * 2015-05-10 2020-12-22 Lg 电子株式会社 无线通信系统中适配用于上行链路传输的重复等级的方法和装置
CN108631923B (zh) 2017-03-24 2020-11-17 华为技术有限公司 传输信息的方法、网络设备和终端设备
CN108933641B (zh) 2017-05-22 2022-10-11 中兴通讯股份有限公司 数据发送、处理方法及装置,网络侧设备和终端
EP3679668B1 (en) * 2017-09-29 2022-04-06 Huawei Technologies Co., Ltd. Devices and methods for encoding downlink control information in a communication network
CN115295195A (zh) 2022-08-15 2022-11-04 清华大学 高温气冷堆抽吸装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503567A (ja) * 2009-08-26 2013-01-31 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリア操作のためのフィードバック情報を報告するための方法および装置
WO2013074722A1 (en) 2011-11-16 2013-05-23 Qualcomm Incorporated Downlink control information for low cost devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8458559B2 (en) * 2009-01-09 2013-06-04 Nec Corporation Method and apparatus for encoding and decoding
US20100215011A1 (en) * 2009-02-26 2010-08-26 Interdigital Patent Holdings, Inc. Method and apparatus for switching a resource assignment mode for a plurality of component carriers
KR101832759B1 (ko) * 2010-04-20 2018-02-27 엘지전자 주식회사 경쟁기반의 상향링크 채널을 통한 상향링크 신호 전송 방법
GB2488532B (en) * 2011-02-18 2013-06-05 Sca Ipla Holdings Inc Communication units and methods for control change notification in broadcast communication
WO2013069956A1 (ko) * 2011-11-11 2013-05-16 엘지전자 주식회사 무선통신시스템에서 제어정보 획득 및 수신 방법 및 장치
AU2013228185B2 (en) * 2012-03-05 2016-11-03 Samsung Electronics Co., Ltd. HARQ-ACK signal transmission in response to detection of control channel type in case of multiple control channel types

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503567A (ja) * 2009-08-26 2013-01-31 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリア操作のためのフィードバック情報を報告するための方法および装置
WO2013074722A1 (en) 2011-11-16 2013-05-23 Qualcomm Incorporated Downlink control information for low cost devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "RNTI Handling in (E)PDCCH Coverage Enhancement", 3GPP TSG-RAN WG1#74 RL-133453, 10 August 2013 (2013-08-10), XP050716561, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_74/Docs/R1-133453.zip> [retrieved on 20140901] *
NTT DOCOMO: "RNTI Handling in (E)PDCCH Coverage Enhancement", 3GPP TSG-RAN WG1#74B RL-134494, 28 September 2013 (2013-09-28), XP050717596, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_74b/Docs/R1-134494.zip> [retrieved on 20140901] *
See also references of EP3026957A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050587A1 (en) * 2015-09-25 2017-03-30 Sony Corporation Reduction of crc field in compact dci message on m-pdcch for low cost mtc devices
CN108029130A (zh) * 2015-09-25 2018-05-11 索尼公司 低成本mtc装置在m-pdcch上的简洁dci消息中的crc字段的减小
US10484982B2 (en) 2015-09-25 2019-11-19 Sony Corporation Reduction of CRC field in compact DCI message on M-PDCCH for low cost MTC devices
EP3726915A1 (en) * 2015-09-25 2020-10-21 Sony Corporation Reduction of crc field in compact dci message on m-pdcch for low cost mtc devices
CN108029130B (zh) * 2015-09-25 2021-12-14 索尼公司 低成本mtc装置在m-pdcch上的简洁dci中的crc字段的减小的方法
WO2017135453A1 (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ装置、基地局、チャネル識別方法、及び識別子送信方法
EP3413616A4 (en) * 2016-02-04 2019-08-07 Ntt Docomo, Inc. USER DEVICE, BASE STATION, CHANNEL IDENTIFICATION METHOD, AND CHANNEL IDENTIFICATION METHOD

Also Published As

Publication number Publication date
JP6271895B2 (ja) 2018-01-31
US20160173231A1 (en) 2016-06-16
EP3026957A1 (en) 2016-06-01
US9787435B2 (en) 2017-10-10
JP2015023509A (ja) 2015-02-02
EP3026957A4 (en) 2016-07-13
EP3026957B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6271895B2 (ja) 基地局及び無線通信システム
KR102623199B1 (ko) 저비용 사용자 장비들을 위한 하향링크 제어 채널들의 전송
AU2014261888B2 (en) System and method for transmission source identification
US20200266922A1 (en) SEMI-BLIND DETECTION OF URLLC IN PUNCTURED eMBB
KR102117572B1 (ko) 물리적 다운링크 제어 채널 송신 방법 및 장치
US8514745B2 (en) Method of indicating number of antennas in network broadcast system
WO2018126378A1 (en) Wireless communication with polar codes using a mask sequence for frozen bits
US11057180B2 (en) Feedback information sending method, feedback information receiving method, access network device, and terminal
CA3060016A1 (en) Early termination of successive cancellation list decoding
EP3304786A1 (en) Apparatus and method for handling the configuration of bundle sizes in communications involving the transmission and/or reception of more than one bundle in a transmission and/or reception attempt
EP3576327B1 (en) Information transmission method, network device, and terminal device
KR101893160B1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 디스커버리 신호의 검출 방법 및 이를 위한 장치
CN109417785B (zh) 传输数据的方法、网络设备、终端设备和计算机可读介质
CN113039806B (zh) 用于可靠地接收控制消息的发送装置和接收装置
EP4346137A1 (en) Indication of pucch repetitions via dci crc scrambling for wireless networks
WO2022142935A1 (zh) 数据传输方法、装置和设备
US10291375B2 (en) Methods and nodes for communication of a message over a radio link
CN115699635A (zh) 用于映射pusch重复的方法及设备
WO2020170085A1 (en) Dynamic hybrid automatic repeat request combining in two-step random access channel msgb retransmission
CN117295109A (zh) 信息传输方法、装置、基站、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906309

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014828883

Country of ref document: EP