WO2022142935A1 - 数据传输方法、装置和设备 - Google Patents

数据传输方法、装置和设备 Download PDF

Info

Publication number
WO2022142935A1
WO2022142935A1 PCT/CN2021/133916 CN2021133916W WO2022142935A1 WO 2022142935 A1 WO2022142935 A1 WO 2022142935A1 CN 2021133916 W CN2021133916 W CN 2021133916W WO 2022142935 A1 WO2022142935 A1 WO 2022142935A1
Authority
WO
WIPO (PCT)
Prior art keywords
ros
reference signal
preamble
electronic device
feedback information
Prior art date
Application number
PCT/CN2021/133916
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2022142935A1 publication Critical patent/WO2022142935A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method, apparatus and device.
  • the present application provides a data transmission method, apparatus and device, which can improve the efficiency of electronic equipment accessing network side equipment during random access process.
  • an embodiment of the present application provides a data transmission method, including:
  • the first signaling includes: a mapping relationship between a reference signal and a random access channel opportunity RO;
  • mapping relationship between the reference signal and the RO is 1-to-n
  • preambles are sent on M ROs respectively, where the M ROs are the ROs associated with the first reference signal, and the first reference signal is determined based on beam detection.
  • the reference signal of , n is a natural number greater than 1, 2 ⁇ M ⁇ n, M is a natural number.
  • the preamble is sent on at least two ROs, thereby increasing the possibility that the network side device receives the preamble code, that is, the possibility that the electronic device is successfully connected to the network side device, and the randomness of the electronic device is improved. Access efficiency.
  • the reference signal is a synchronization signal block SSB, or a channel state information reference signal CSI-RS.
  • the sending of preambles on the M ROs respectively includes:
  • the preamble is sent on the M ROs in a beam scanning or beam repeating manner.
  • the sending of preambles on the M ROs respectively includes:
  • the preambles are respectively sent on the selected M ROs.
  • the sending of preambles on the M ROs respectively includes:
  • the selected preambles are respectively sent on the M ROs.
  • it also includes:
  • the first listening window is used to indicate the time period for monitoring downlink scheduling information; the downlink scheduling information is used to schedule and transmit the first feedback information the downlink transmission resources of the PID; the first feedback information is the feedback information for the preamble; the downlink scheduling information is monitored in the first listening window; or,
  • the first listening window is used to indicate the time period for monitoring the first feedback information; the first feedback information is for the preamble code feedback information; monitor the first feedback information in the first monitoring window.
  • the calculating the first listening window includes:
  • the first listening window is calculated according to time domain information of a designated RO among the M ROs and a preset first duration.
  • the calculating the first listening window includes:
  • the monitoring window corresponding to each RO is calculated respectively to obtain the first monitoring window.
  • it also includes:
  • the downlink scheduling information is received in the first listening window, use the RA-RNTI to check the downlink scheduling information;
  • the first feedback information is received on the downlink transmission resource indicated by the downlink scheduling information.
  • it also includes:
  • the downlink scheduling information is received in the first listening window, use the RA-RNTI corresponding to each RO in turn to check the downlink scheduling information;
  • the first feedback information is received on the downlink transmission resource indicated by the downlink scheduling information.
  • it also includes:
  • the transmit power used by each RO to re-send the preamble is greater than the transmit power of the RO's previous transmission. the transmit power of the preamble;
  • the preamble is retransmitted on each of the M ROs according to the calculated transmit power.
  • an embodiment of the present application provides a data transmission method, including:
  • the first signaling includes the mapping relationship between the reference signal and the RO; if the mapping relationship between the reference signal and the RO is 1 to n, the first signaling is used to indicate that the electronic device is in M Preambles are sent on the ROs respectively, the M ROs are ROs associated with the first reference signal, the first reference signal is a reference signal determined by the electronic device based on beam detection, n is a natural number greater than 1, 2 ⁇ M ⁇ n, M is a natural number.
  • the reference signal is SSB or CSI-RS.
  • it also includes:
  • the specified RO is an RO in the RO that receives the preamble
  • the downlink scheduling information is used to schedule downlink transmission resources for transmitting the first feedback information;
  • the first feedback information is the feedback information of the preamble;
  • it also includes:
  • the downlink scheduling information is used to schedule downlink transmission resources for transmitting the first feedback information;
  • the first feedback information is the feedback information of the preamble;
  • an embodiment of the present application provides a data transmission device, which includes:
  • a receiving unit configured to receive first signaling, where the first signaling includes: a mapping relationship between the reference signal and the RO;
  • a sending unit configured to send a preamble on M ROs respectively if the mapping relationship between the reference signal and the RO is 1 to n, where the M ROs are the ROs associated with the first reference signal, and the first reference signal is a reference signal determined based on beam detection, n is a natural number greater than 1, 2 ⁇ M ⁇ n, M is a natural number.
  • an embodiment of the present application provides a data transmission device, including:
  • a sending unit configured to send first signaling, where the first signaling includes the mapping relationship between the reference signal and the RO; if the mapping relationship between the reference signal and the RO is 1 to n, the first signaling is used for Instructing the electronic device to send preambles respectively on M ROs, where the M ROs are ROs associated with a first reference signal, the first reference signal is a reference signal determined by the electronic device based on beam detection, and n is greater than 1 is a natural number, 2 ⁇ M ⁇ n, where M is a natural number.
  • an electronic device including:
  • a transceiver configured to receive first signaling, where the first signaling includes: the mapping relationship between the reference signal and the RO; if the mapping relationship between the reference signal and the RO is 1 to n, the first signaling is sent on the M ROs respectively Preamble, the M ROs are ROs associated with the first reference signal, the first reference signal is a reference signal determined based on beam detection, n is a natural number greater than 1, 2 ⁇ M ⁇ n, M is a natural number.
  • an embodiment of the present application provides a network side device, including:
  • a transmitter configured to send first signaling, where the first signaling includes the mapping relationship between the reference signal and the RO; if the mapping relationship between the reference signal and the RO is 1 to n, the first signaling is used for Instructing the electronic device to send preambles respectively on M ROs, where the M ROs are ROs associated with a first reference signal, the first reference signal is a reference signal determined by the electronic device based on beam detection, and n is greater than 1 is a natural number, 2 ⁇ M ⁇ n, where M is a natural number.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it runs on a computer, causes the computer to execute any one of the first aspect or the second aspect method described in item.
  • the present application provides a computer program for executing the method of the first aspect when the computer program is executed by a computer.
  • the program in the eighth aspect may be stored in whole or in part on a storage medium packaged with the processor, and may also be stored in part or in part in a memory not packaged with the processor.
  • FIG. 1 is a schematic structural diagram of a system applicable to the application
  • FIG. 2 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 3 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 6 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 7 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 8 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 9 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 11 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 12 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 13 is a flowchart of another embodiment of the data transmission method of the present application.
  • FIG. 14 is a schematic structural diagram of an embodiment of a data transmission apparatus of the present application.
  • FIG. 15 is a schematic structural diagram of another embodiment of the data transmission apparatus of the present application.
  • FIG. 16 is a schematic structural diagram of still another embodiment of the data transmission apparatus of the present application.
  • the high-level signaling sent by the base station to the electronic equipment indicates the synchronization signal block (Synchronization Signal block, SSB) and the random access channel opportunity (RACH Occasion) for the electronic equipment.
  • SSB Synchronization Signal block
  • RACH Occasion random access channel opportunity
  • the mapping relationship can be one-to-many, one-to-one or many-to-one, if The mapping relationship is one-to-many, the electronic device selects one RO from multiple ROs, and sends a preamble (preamble) on this RO.
  • the above-mentioned SSB may also be called a synchronization signal/physical broadcast channel block (Synchronization Signal/Physical Broadcast Channel block, SS/PBCH block).
  • SS/PBCH block Synchronization Signal/Physical Broadcast Channel block
  • one RO resource corresponds to a set of time-frequency resources, which can be used to send a Physical Random Access Channel (Physical Random Access Channel, PRACH) or a preamble.
  • the present application proposes a data transmission method, apparatus and electronic device, which can improve the efficiency of the electronic device accessing the network side device during the random access process.
  • the wireless communication system to which this application is applicable may include, but is not limited to, a New Radio (New Radio, NR) system.
  • the electronic devices described in this application may include, but are not limited to, handheld devices, vehicle-mounted devices, wearable devices, etc. with wireless communication functions.
  • the network side device described in this application may be a base station. In different communication systems, the implementation type of the base station may be different, which is not limited in this application.
  • the network side device may be a next-generation base station (gNB).
  • gNB next-generation base station
  • FIG. 1 is an example of a system structure to which the data transmission method of the present application is applicable, including: an electronic device 110 and a network-side device 120 .
  • FIG. 2 is a flow chart of an embodiment of the data transmission method of the present application.
  • the execution subject of the method is the above-mentioned electronic device as an example.
  • the method may include:
  • Step 201 The electronic device receives the first signaling, where the first signaling includes: the mapping relationship between the reference signal and the RO.
  • the reference signal may be SSB or CSI-RS.
  • the first signaling may be high-level signaling sent by the network side device to the electronic device, such as a radio resource control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • Step 202 If the mapping relationship between the reference signal and the RO is 1 to n, the electronic device sends the preamble on the M ROs respectively, where n is a natural number greater than 1, 2 ⁇ M ⁇ n, and m is a natural number.
  • the M ROs in this step are ROs associated with the first reference signal, and the first reference signal is a reference signal obtained by the electronic device based on beam detection, and is generally a reference signal of an optimal beam obtained by beam detection.
  • the electronic device sends the preamble on the M ROs respectively, which can increase the probability that the network side device receives the preamble, thereby improving the random access efficiency. Accordingly, in order to further improve the random access efficiency, M is preferably equal to n, that is, the electronic device is equal to n.
  • the device transmits the preamble on the n ROs respectively.
  • the preamble may be carried by PRACH.
  • the reference signal is SSB as an example.
  • the mapping relationship between the SSB and the RO indicated by the network side device to the electronic device may be: 1-to-many, 1-to-1, or many-to-1.
  • the device on the network side can configure N SSBs to associate with one RO through high-layer signaling. If the value of N is less than 1, it means that one SSB is associated with multiple ROs. For example, the value of N can generally be 1/8, 1/4, or 1/2, indicating that one SSB is associated with 8 ROs, 4 ROs, or 2 ROs.
  • N can be 1, indicating that 1 SSB is associated with 1 RO, or the value of N can be greater than 1, such as 2, 4, 8, 16, etc., indicating 2, 4, 8, or 16 SSBs are associated with 1 RO, and how the electronic device handles when the value of N is greater than or equal to 1 is not limited in this embodiment of the present application.
  • the above example can also be applied to the case where the reference signal is CSI-RS, that is, the SSB in the above example is replaced with CSI-RS, and the example is still applicable.
  • the preamble when the preamble is sent on each of the M ROs, the preamble may be sent on the M ROs in a beam sweeping (beam sweeping) manner, or a beam repetition (beam repetition) manner.
  • beam scanning refers to that the spatial domain filter parameters of PRACH sent by different ROs are different
  • beam repetition refers to the same spatial domain filter parameters of PRACH sent by different ROs.
  • the network-side device can configure the electronic device to use beam scanning or beam repetition to send the preamble through high-level signaling; or, the electronic device can preset whether to use beam scanning or beam repetition to carry out the preamble. code to send.
  • the electronic device only sends the preamble on one of the ROs.
  • the network side device fails to receive the preamble on the RO, the electronic device needs to retransmit the preamble, resulting in low random access efficiency of the electronic device; and in the data transmission method of the present application, the preamble is sent on at least 2 ROs, Therefore, the probability of the network side device receiving the preamble is increased, the possibility of successful access of the electronic device is increased, that is, the random access efficiency of the electronic device is improved.
  • step 202 can be implemented through the following steps 301 to 303:
  • Step 301 If the mapping relationship between the reference signal and the RO is 1 to n, the electronic device obtains the RO corresponding to the first type according to the preset correspondence between the electronic device type and the RO; the first type is the type of the electronic device.
  • RO lists corresponding to different types of electronic devices may be preset in the network-side device and the electronic device, respectively.
  • Type division of electronic devices is not limited in this embodiment of the present application.
  • the types of electronic devices used in the data transmission method of the present application can be divided into: enhanced electronic devices and ordinary devices, such as enhanced electronic devices
  • the device may be an electronic device capable of executing the data transmission method of the present application, and the ordinary device is an electronic device that does not execute the data transmission method of the present application.
  • the enhanced electronic device and the network side device may be preset respectively: the enhanced electronic device corresponds to , and the RO list corresponding to common devices.
  • the enhanced electronic device may refer to an electronic device with coverage enhancement capability introduced in the 3rd Generation Partnership Project (3GPP) version 17 (release 17).
  • 3GPP 3rd Generation Partnership Project
  • Step 302 The electronic device selects M ROs corresponding to the first type among the ROs corresponding to the first reference signal.
  • the electronic device may select M ROs corresponding to the first type from the ROs associated with the first reference signal to obtain M ROs in this step.
  • Step 303 The electronic device sends preambles on the selected M ROs respectively.
  • RO lists corresponding to different electronic device types are preset in the network side device and the electronic device, and the electronic device selects M ROs from the RO list corresponding to its own type to send the preamble, so that the network
  • the side device can determine the type of the electronic device according to the RO in which it receives the preamble of the electronic device, so that the electronic device can indicate its type to the network side device.
  • the above-mentioned steps 301 to 303 may also be used as separate embodiments, and in this case, the value of M in step 303 may be a natural number. That is to say, the method can not only be used to realize the distinction of electronic device types in the scenario of sending preambles on multiple ROs, but also can be used to realize the distinction of electronic device types in the scenario of sending preambles on a single RO.
  • step 202 can be implemented through the following steps 401 to 403:
  • Step 401 The electronic device obtains the preamble corresponding to the first type according to the preset correspondence between the electronic device type and the preamble.
  • RO lists corresponding to different types of electronic devices may be preset in the network-side device and the electronic device, respectively.
  • Type division of electronic devices is not limited in this embodiment of the present application.
  • Step 402 The electronic device selects a preamble from the preambles corresponding to the first type.
  • the electronic device may randomly select a preamble from the preambles corresponding to the first type.
  • Step 403 Send the selected preambles on the M ROs respectively.
  • step 202 for the selection of the M ROs, reference may be made to the corresponding description in step 202, which is not repeated here.
  • preamble lists corresponding to different electronic device types are preset in the network side device and the electronic device, and the electronic device selects the preamble code from the preamble list corresponding to its own type and sends it to the network side device, thereby
  • the network-side device can determine the type of the electronic device according to the received preamble, so that the electronic device can indicate its own type to the network-side device.
  • step 403 may be replaced by: sending the selected preamble on the RO determined by the electronic device.
  • the number of ROs determined by the electronic device in this step may be one or more, which is not limited in this application.
  • the method can not only be used to distinguish the types of electronic devices in the scenario of sending preambles on multiple ROs, but also can be used to distinguish the types of electronic devices in the scenario of sending preambles on a single RO.
  • the type of electronic device can be indicated by carrying information displayed in the PUSCH of Message.A;
  • the PUSCH opportunity (PUSCH Occasion, PO) resource is implicitly indicated.
  • This implementation can be combined with other embodiments of the present application to indicate the type of the electronic device to the network-side device, or can be used as a separate embodiment to be used in scenarios where electronic device type indication is required.
  • steps 501 to 502 may be further included:
  • Step 501 The electronic device calculates a first listening window according to the time domain information of at least one RO among the M ROs, where the first listening window is used to indicate a time period for monitoring the first feedback information.
  • the first feedback information is the feedback information of the network side device for the received preamble.
  • the downlink transmission resource for transmitting the above-mentioned first feedback information may be scheduled by the network side device through the downlink scheduling information.
  • the downlink scheduling information may be downlink control information (Downlink Control Information, DCI) or PDCCH.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Information
  • the first feedback information may be a random access response (Random Access Response, RAR) message or a scheduled physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • RAR Random Access Response
  • PDSCH Physical Downlink Shared Channel
  • one RO among the M ROs may be pre-specified as the reference RO, and the first listening window is calculated according to the time domain information of the reference RO and the first duration.
  • the reference RO may be the RO with the smallest RO index number among the M ROs, or the RO with the largest RO index number among the M ROs, or the earliest RO in the time domain among the M ROs, or the M ROs.
  • the electronic device may add 1 to the transmission time of the last symbol of the reference RO, or the transmission time of the last symbol, or the time slot where the last symbol is located, or the time slot where the last symbol is located.
  • the first duration is preset as the duration, and the first monitoring window is calculated.
  • the first duration may be configured by the network side device through high-layer signaling such as RRC signaling.
  • the electronic device may calculate the monitoring window corresponding to each RO according to the time domain information of each RO in the M ROs and the preset second duration, to obtain the first monitoring window. Specifically, for each RO in the M ROs, the electronic device may add 1 to the transmission time of the last symbol of the RO, or the transmission time of the last symbol, or the time slot where the last symbol is located, or the time when the last symbol is located The slot plus 1 is used as the start time, and the preset second duration is used as the duration to calculate the listening window corresponding to the RO. Then, the listening windows of M ROs constitute the above-mentioned first listening window.
  • the second duration corresponding to each RO may be configured by the network side device through high-layer signaling such as RRC signaling, and the size of the second duration corresponding to each RO may be the same or different, which is not limited in this application.
  • Step 502 The electronic device monitors the first feedback information in the first monitoring window to determine whether the first feedback information is successfully received.
  • the method shown in FIG. 5 further solves the problem of how the electronic device determines the listening window of the first feedback information when the electronic device sends preambles on multiple ROs in the methods shown in FIGS. 2 to 4 .
  • steps 501 to 502 can also be used as separate embodiments to solve the problem of how the electronic device determines the listening window of the first feedback information when the electronic device sends preambles on multiple ROs.
  • the process of sending the first feedback information by the network side device may include: the network side device sends downlink scheduling information to the electronic device on the PDCCH to schedule downlink transmission resources on the PDSCH to transmit the feedback information, and the cyclic redundancy of the downlink control information on the PDCCH is cyclic redundancy.
  • the cyclic redundancy check (CRC) can be scrambled by random access-radio network temporary identity (RA-RNTI); feedback information is sent on the downlink transmission resources indicated by the downlink scheduling information.
  • the electronic device can first monitor the downlink scheduling information, and after receiving the downlink scheduling information, use the corresponding RA-RNTI to descramble and verify the downlink scheduling information.
  • the first feedback information is received on the transmission resource. Based on this, referring to FIG. 6 , step 502 in FIG. 5 can be implemented through the following steps 601 to 603:
  • Step 601 The electronic device monitors the downlink scheduling information in the first monitoring window. If the downlink scheduling information is received, step 602 is executed. If the downlink scheduling information is not received, the first feedback information fails to be received.
  • the electronic device monitors the downlink scheduling information in the first monitoring window, only each of the M ROs If the listening window corresponding to the RO fails to receive the downlink scheduling information, it will be considered that the reception of the downlink scheduling information fails; or, if the electronic device monitors the first feedback information such as RAR in the first listening window, only each RO in the M ROs corresponds to Only if the monitoring window of the device fails to receive the first feedback information successfully, it will be considered that the reception of the first feedback information has failed.
  • Step 602 The electronic device uses the RA-RNTI to descramble and verify the received downlink scheduling information. If the verification is successful, step 603 is performed. If the verification is unsuccessful, the first feedback information fails to be received.
  • the electronic device may calculate the RA-RNTI between steps 202 to 602 .
  • the specified RO may be preset, for example, the specified RO may be the first RO, or the last RO, or other RO among the M ROs, and the network-side device and the electronic device may calculate the specified RO respectively.
  • the network side device uses the RA-RNTI to perform CRC scrambling for the downlink scheduling information, and correspondingly, the electronic device uses the RA-RNTI to descramble and verify the downlink scheduling information.
  • the network side device may also select any RO among the multiple ROs for repeated preamble transmission, and calculate the RA-RNTI corresponding to the RO; the network side device may use the RA-RNTI pair
  • the CRC of the downlink scheduling information is scrambled; on the electronic device side, the electronic device calculates the RA-RNTI corresponding to each RO in the M ROs, and sequentially uses the RA-RNTI corresponding to each RO to schedule the downlink received on the PDCCH.
  • the information is descrambled and verified until a certain RA-RNTI is used to descramble the downlink scheduling information and the verification succeeds, or each RA-RNTI is used to descramble the downlink scheduling information and the verification fails.
  • the RA-RNTI corresponding to each RO can be calculated using the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • s_id is the index of the first OFDM symbol of the RO (0 ⁇ s_id ⁇ 14)
  • t_id is the index of the first time slot of the RO in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is the RO in the frequency domain
  • ul_carrier_id is the uplink (UL) carrier used for preamble transmission (0 means normal uplink carrier, 1 means supplementary uplink (SUL) carrier).
  • Step 603 The electronic device receives the first feedback information on the downlink transmission resource indicated by the downlink scheduling information in the first time window. If the first feedback information is received in the first time window, the first feedback information is received successfully. If If the first feedback information is not received in the first time window, the reception of the first feedback information fails.
  • the electronic device specifically performs processing after receiving the first feedback information successfully or unsuccessfully, which is not limited in this embodiment of the present application.
  • the method shown in FIG. 6 further provides a possible implementation manner of step 502 in the method shown in FIG. 5 , and also provides a method for scrambled, descrambled and verified downlink scheduling information.
  • the method for scrambling, descrambling and verifying the downlink scheduling information described in the above step 602 can also be implemented as a separate embodiment to solve the problem of sending preambles on multiple ROs.
  • the problem of scrambling, descrambling and checking of preamble-related downlink scheduling information can also be implemented as a separate embodiment to solve the problem of sending preambles on multiple ROs.
  • the first monitoring window is used to monitor whether the first feedback information is successfully received.
  • the first monitoring window can be used to monitor whether the The downlink scheduling information is successfully received, at this time:
  • the first feedback information can be directly replaced with downlink scheduling information
  • step 603 does not need to be limited to receiving the first feedback information in the first listening window.
  • step 603 can be modified as: the electronic device receives the first feedback information on the downlink transmission resource indicated by the downlink scheduling information. Feedback information, if the first feedback information is received, the first feedback information is successfully received, and if the first feedback information is not received, the first feedback information fails to be received.
  • step 701 in the case of failure to receive the first feedback information in FIG. 6, the following step 701 may be performed, specifically:
  • Step 701 the electronic device calculates the transmit power used by the M ROs to retransmit the preamble, and sends the preamble on the M ROs according to the calculated transmit power, and returns to step 501 .
  • the transmit power of each RO calculated by the electronic device in this step is greater than the transmit power of the preamble sent by the RO last time, that is, the transmit power of the preamble sent by the RO in step 202 .
  • the transmit power corresponding to each RO in the M ROs may be the same or different, which is not limited in this application. In order to improve the efficiency of calculating the transmit power by the electronic device, the transmit powers corresponding to the M ROs may be the same.
  • the electronic device may adjust the power of the next preamble transmission on the M ROs. Specifically, the transmission power of the preambles of the M ROs may be increased by one power level until the maximum allowable transmission power is reached. Wherein, the power difference between the power levels may be implemented by means of pre-definition in the electronic device or configuration of the network-side device.
  • the method shown in FIG. 7 further solves the problem of transmitting power configuration when retransmitting the preamble on multiple ROs.
  • step 701 can be used as a separate embodiment to be applied to the scenario where the electronic device sends preambles on multiple ROs to perform random access, and the random access fails, and solves the problem that the electronic device in this scenario has multiple ROs.
  • FIG. 8 is a flowchart of another embodiment of the data transmission method of the present application. As shown in FIG. 8 , the method may include:
  • Step 801 The network side device sends the first signaling, and the first signaling includes the mapping relationship between the reference signal and the RO; if the mapping relationship between the reference signal and the RO is 1 to n, the first signaling is used to indicate that the electronic device is in M. Preambles are sent on the ROs respectively, the M ROs are ROs associated with the first reference signal, the first reference signal is a reference signal determined by the electronic device based on beam detection, n is a natural number greater than 1, 2 ⁇ M ⁇ n, M is a natural number.
  • step 801 the following steps may be further included:
  • Step 901 the network side device receives the preamble sent by the electronic device on the RO;
  • Step 902 the network side device calculates the RA-RNTI corresponding to the specified RO; the specified RO is one of the ROs that have received the preamble;
  • Step 903 The network side device uses the RA-RNTI to scramble the downlink scheduling information, and the downlink scheduling information is used to schedule downlink transmission resources for transmitting the first feedback information;
  • the scrambling in this step may be CRC scrambling.
  • Step 904 The network side device sends the downlink scheduling information to the electronic device, and transmits the first feedback information on the downlink transmission resource indicated by the downlink scheduling information.
  • step 801 the following steps may be further included:
  • Step 1001 the network side device receives the preamble sent by the electronic device on the RO;
  • Step 1002 the network side device selects an RO from the ROs that receive the preamble, and calculates the RA-RNTI corresponding to the RO;
  • Step 1003 The network side device uses the RA-RNTI to scramble the downlink scheduling information, and the downlink scheduling information is used to schedule downlink transmission resources for transmitting the first feedback information;
  • the scrambling in this step may be CRC scrambling.
  • Step 1004 The network side device sends the downlink scheduling information to the electronic device, and transmits the first feedback information on the downlink transmission resource indicated by the downlink scheduling information.
  • the network-side device can cooperate with the electronic device to improve the efficiency of the electronic device accessing the network-side device.
  • FIG. 11 shows a more specific example of the above-mentioned embodiment. Taking the reference signal as SSB and the electronic device successfully receiving the feedback information as an example, as shown in FIG. 11 , the method may include:
  • Step 1101 The base station sends first signaling, where the first signaling carries the mapping relationship between the SSB and the RO.
  • Step 1102 The electronic device receives the first signaling. If the mapping relationship between SSB and RO carried in the first signaling is 1 to n, the electronic device sends preambles on the M ROs respectively, and performs steps 1103 and 1104 respectively. .
  • Step 1103 The electronic device calculates the first monitoring window, and monitors the downlink scheduling information in the first monitoring window; the electronic device calculates the verification information.
  • Step 1104 The base station receives the preamble on the RO, calculates the RA-RNTI, uses the RA-RNTI to perform CRC scramble on the downlink scheduling information, and sends the downlink scheduling information to the electronic device.
  • Step 1105 The electronic device receives the downlink scheduling information in the first listening window, and uses the RA-RNTI calculated in step 1103 to descramble and verify the downlink scheduling information. If the verification is passed, the downlink scheduling information indicates The first feedback message is received on the downlink transmission resource of .
  • step 1105 is replaced by step 1201 : the electronic device receives the downlink scheduling information in the first listening window.
  • For scheduling information use the RA-RNTI calculated in step 1103 to descramble and verify the downlink scheduling information. If the verification fails, the electronic device increases the transmit power of the RO and retransmits the preamble on the M ROs.
  • the electronic device does not receive the downlink scheduling information as an example.
  • steps 1104 to 1105 are replaced by 1301 : the electronic device does not receive the downlink scheduling information in the first listening window. information, the electronic device increases the transmit power of the RO, and re-sends the preamble on the M ROs.
  • FIG. 14 is a structural diagram of an embodiment of the data transmission apparatus of the present application.
  • the apparatus can be applied to electronic equipment.
  • the apparatus 140 may include:
  • the receiving unit 141 is configured to receive the first signaling, where the first signaling includes: the mapping relationship between the reference signal and the RO;
  • the sending unit 142 is configured to send preambles respectively on M ROs if the mapping relationship between the reference signal and the RO is 1 to n, where the M ROs are the ROs associated with the first reference signal, and the first reference
  • the signal is a reference signal determined based on beam detection, n is a natural number greater than 1, 2 ⁇ M ⁇ n, and M is a natural number.
  • the reference signal is SSB or CSI-RS.
  • the sending unit 142 may be specifically configured to: send the preamble in the manner of beam scanning or beam repetition on the M ROs.
  • the sending unit 142 may be specifically configured to: acquire the RO corresponding to the first type according to the preset correspondence between the electronic device type and the RO; the RO associated with the first reference signal M ROs corresponding to the first type are selected from among the M ROs; the preambles are respectively sent on the M selected ROs.
  • the sending unit 142 may be specifically configured to: obtain the preamble corresponding to the first type according to the preset correspondence between the electronic device type and the preamble; obtain the preamble corresponding to the first type; Preambles are selected from the preambles; the selected preambles are respectively sent on the M ROs.
  • the apparatus 140 may further include:
  • the calculation unit 151 is configured to calculate a first listening window according to the time domain information of at least one RO in the M ROs, where the first listening window is used to indicate a time period for monitoring downlink scheduling information; the downlink scheduling information is used for scheduling downlink transmission resources for transmitting first feedback information; the first feedback information is feedback information for the preamble;
  • the receiving unit 141 may also be configured to: monitor the downlink scheduling information in the first listening window;
  • the apparatus 140 may further include:
  • the calculation unit 151 is configured to calculate a first listening window according to the time domain information of at least one RO in the M ROs; the first listening window is used to indicate a time period for monitoring the first feedback information; the first feedback information is the feedback information for the preamble;
  • the receiving unit 141 may also be configured to: monitor the first feedback information in the first monitor window.
  • the calculating unit 151 may be specifically configured to: calculate the first listening window according to the time domain information of a specified RO among the M ROs and a preset first duration.
  • the calculation unit 151 may be specifically configured to: calculate the listening window corresponding to each RO according to the time domain information of each RO in the M ROs and the preset second duration, respectively, to obtain the first listening window.
  • the calculation unit 151 may be further configured to: calculate the RA-RNTI corresponding to the specified RO among the M ROs; if the downlink scheduling information is received in the first listening window, use The RA-RNTI verifies the downlink scheduling information;
  • the receiving unit 141 may also be configured to: if the verification succeeds, receive the first feedback information on the downlink transmission resource indicated by the downlink scheduling information.
  • the calculating unit 151 may be further configured to: calculate the RA-RNTI corresponding to each RO in the M ROs; if the downlink scheduling information is received in the first listening window, using the RA-RNTI corresponding to each RO in turn to check the downlink scheduling information;
  • the receiving unit 141 may also be configured to: if the verification succeeds, receive the first feedback information on the downlink transmission resource indicated by the downlink scheduling information.
  • the sending unit 142 may also be configured to: if the first feedback information is not successfully received in the first listening window, calculate the transmit power used by each RO to resend the preamble ; the calculated transmit power of each RO is greater than the transmit power of the previous RO that sent the preamble; re-send the preamble on each RO of the M ROs according to the calculated transmit power.
  • FIG. 16 is a structural diagram of another embodiment of the data transmission apparatus of the present application. As shown in FIG. 16 , the apparatus 160 may include:
  • the sending unit 161 is configured to send the first signaling, where the first signaling includes the mapping relationship between the reference signal and the RO; if the mapping relationship between the reference signal and the RO is 1 to n, the first signaling uses the mapping relationship between the reference signal and the RO.
  • the M ROs are the ROs associated with the first reference signal
  • the first reference signal is the reference signal determined by the electronic device based on beam detection
  • n is greater than 1 is a natural number, 2 ⁇ M ⁇ n
  • M is a natural number.
  • the reference signal is SSB or CSI-RS.
  • the apparatus may further include:
  • a receiving unit configured to receive a preamble sent by the electronic device on the RO
  • a calculation unit configured to calculate the RA-RNTI corresponding to the specified RO;
  • the specified RO is an RO in the ROs that receive the preamble;
  • the RA-RNTI is used to scramble the downlink scheduling information;
  • the downlink scheduling The information is used to schedule downlink transmission resources for transmitting the first feedback information;
  • the first feedback information is the feedback information of the preamble;
  • the sending unit 161 may also be configured to: send the downlink scheduling information to the electronic device.
  • the apparatus may further include:
  • a receiving unit configured to receive a preamble sent by the electronic device on the RO
  • a calculation unit configured to select an RO from the ROs that receive the preamble, and calculate the RA-RNTI corresponding to the RO; use the RA-RNTI to scramble the downlink scheduling information; the downlink scheduling information is used for scheduling downlink transmission resources for transmitting the first feedback information; the first feedback information is the feedback information of the preamble;
  • the sending unit 161 may also be configured to: send the downlink scheduling information to the electronic device.
  • FIGS. 14 to 16 can be used to implement the technical solutions of the method embodiments shown in FIGS. 2 to 13 of the present application, and the implementation principles and technical effects may further refer to the relevant descriptions in the method embodiments.
  • each module of the apparatus shown in FIG. 14 to FIG. 16 is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in hardware.
  • the first receiving module may be a separately established processing element, or may be integrated into a certain chip of the electronic device.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • the above-mentioned data transmission device may be a chip or a chip module, or the above-mentioned data transmission device may be a part of a chip or a chip module.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit; hereinafter referred to as: ASIC), or, one or more microprocessors Digital Singnal Processor (hereinafter referred to as: DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array; hereinafter referred to as: FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (System-On-a-Chip; hereinafter referred to as: SOC).
  • the present application provides an electronic device, including: a processor and a transceiver; the processor and the transceiver cooperate to implement the methods provided by the embodiments shown in FIG. 2 to FIG. 13 of the present application.
  • the present application provides a network side device, including: a processor and a transceiver; the processor and the transceiver cooperate to implement the methods provided by the embodiments shown in FIG. 2 to FIG. 13 of the present application.
  • the present application also provides an electronic device, the device includes a storage medium and a central processing unit, the storage medium may be a non-volatile storage medium, and a computer-executable program is stored in the storage medium, and the central processing unit is connected to the central processing unit.
  • the non-volatile storage medium is connected, and the computer-executable program is executed to implement the method provided by the embodiments shown in FIG. 2 to FIG. 13 of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it runs on a computer, causes the computer to execute the programs provided by the embodiments shown in FIG. 2 to FIG. 13 of the present application. method.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes a computer program that, when running on a computer, enables the computer to execute the methods provided by the embodiments shown in FIGS. 2 to 13 of the present application.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can indicate the existence of A alone, the existence of A and B at the same time, and the existence of B alone. where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, and c may represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c may be single, or Can be multiple.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (Read-Only Memory; hereinafter referred to as: ROM), Random Access Memory (Random Access Memory; hereinafter referred to as: RAM), magnetic disk or optical disk and other various A medium on which program code can be stored.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or optical disk and other various A medium on which program code can be stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、装置和设备,方法包括:接收第一信令,所述第一信令中包括:参考信号与RO的映射关系;如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。本申请能够在随机接入过程中提高电子设备接入网络侧设备的效率。

Description

数据传输方法、装置和设备 技术领域
本申请涉及通信领域,特别涉及一种数据传输方法、装置和设备。
背景技术
目前,在随机接入过程中存在电子设备接入网络侧设备效率低的问题。
发明内容
本申请提供了一种数据传输方法、装置和设备,能够在随机接入过程中提高电子设备接入网络侧设备的效率。
第一方面,本申请实施例提供一种数据传输方法,包括:
接收第一信令,所述第一信令中包括:参考信号与随机接入信道机会RO的映射关系;
如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
该方法中,在至少2个RO上发送前导码,从而提高了网络侧设备接收到前导码的可能性,也即提高了电子设备接入网络侧设备成功的可能性,提高了电子设备的随机接入效率。
在一种可能的实现方式中,所述参考信号是同步信号块SSB、或者信道状态信息参考信号CSI-RS。
在一种可能的实现方式中,所述在M个RO上分别发送前导码,包括:
在所述M个RO上以波束扫描或者波束重复的方式发送所述前导码。
在一种可能的实现方式中,所述在M个RO上分别发送前导码,包括:
根据预设的电子设备类型与RO之间的对应关系,获取第一类型对应的RO;
在所述第一参考信号关联的RO中选择M个所述第一类型对应的RO;
在选择的所述M个RO上分别发送所述前导码。
在一种可能的实现方式中,所述在M个RO上分别发送前导码,包括:
根据预设的电子设备类型与前导码之间的对应关系,获取第一类型对应的前导码;
从所述第一类型对应的前导码中选择前导码;
在所述M个RO上分别发送选择的所述前导码。
在一种可能的实现方式中,还包括:
根据所述M个RO中至少一个RO的时域信息计算第一监听窗;所述第一监听窗用于指示监听下行调度信息的时间段;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;所述第一反馈信息是针对于所述前导码的反馈信息;在所述第一监听窗中监听所述下行调度信息;或者,
根据所述M个RO中至少一个RO的时域信息计算第一监听窗;所述第一监听窗用于指示监听第一反馈信息的时间段;所述第一反馈信息是针对于所述前导码的反馈信息;在所述第一监听窗中监听所述第一反馈信息。
在一种可能的实现方式中,所述计算第一监听窗,包括:
根据所述M个RO中一个指定RO的时域信息、以及预设第一时长,计算所述第一监听窗。
在一种可能的实现方式中,所述计算第一监听窗,包括:
根据所述M个RO中每个RO的时域信息、以及预设第二时长,分别计算每个RO对应的监听窗,得到所述第一监听窗。
在一种可能的实现方式中,还包括:
计算所述M个RO中指定RO对应的随机接入无线网络临时识别RA-RNTI;
如果在所述第一监听窗中接收到所述下行调度信息,使用所述RA-RNTI对所述下行调度信息进行校验;
如果校验成功,在所述下行调度信息指示的下行传输资源上接收第一反馈信息。
在一种可能的实现方式中,还包括:
计算所述M个RO中每个RO对应的RA-RNTI;
如果在所述第一监听窗中接收到所述下行调度信息,依次使用每个RO对应的RA-RNTI对所述下行调度信息进行校验;
如果校验成功,在所述下行调度信息指示的下行传输资源上接收第一反馈信息。
在一种可能的实现方式中,还包括:
如果在所述第一监听窗中未成功接收到第一反馈信息,计算每个RO重新发送所述前导码所使用的发射功率;计算得到的每个RO的发射功率大于该RO前一次发送所述前导码的发射功率;
在所述M个RO的每个RO上按照计算得到的发射功率重新发送所述前导码。
第二方面,本申请实施例提供一种数据传输方法,包括:
发送第一信令,所述第一信令中包括参考信号与RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
在一种可能的实现方式中,所述参考信号是SSB、或者CSI-RS。
在一种可能的实现方式中,还包括:
接收到所述电子设备在RO上发送的前导码;
计算指定RO对应的RA-RNTI;所述指定RO是接收到所述前导码的RO中的一个RO;
使用所述RA-RNTI对下行调度信息进行加扰;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;第一反馈信息是所述前导码的反馈信息;
将所述下行调度信息发送给所述电子设备。
在一种可能的实现方式中,还包括:
接收到所述电子设备在RO上发送的前导码;
从接收到所述前导码的RO中选择一个RO,计算该RO对应的RA-RNTI;
使用所述RA-RNTI对下行调度信息进行加扰;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;第一反馈信息是所述前导码的反馈信息;
将所述下行调度信息发送给所述电子设备。
第三方面,本申请实施例提供一种数据传输装置,其包括:
接收单元,用于接收第一信令,所述第一信令中包括:参考信号与RO的映射关系;
发送单元,用于如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
第四方面,本申请实施例提供一种数据传输装置,包括:
发送单元,用于发送第一信令,所述第一信令中包括参考信号与RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
第五方面,本申请实施例提供一种电子设备,包括:
收发器,用于接收第一信令,所述第一信令中包括:参考信号与RO的映射关系;如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
第六方面,本申请实施例提供一种网络侧设备,包括:
发送器,用于发送第一信令,所述第一信令中包括参考信号与RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行第一方面或者第二方面任一项所述的方法。
第八方面,本申请提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行第一方面所述的方法。
在一种可能的设计中,第八方面中的程序可以全部或者部分存储在与处理器封装 在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请适用系统结构示意图;
图2为本申请数据传输方法又一个实施例的流程图;
图3为本申请数据传输方法又一个实施例的流程图;
图4为本申请数据传输方法又一个实施例的流程图;
图5为本申请数据传输方法另一个实施例的流程图;
图6为本申请数据传输方法又一个实施例的流程图;
图7为本申请数据传输方法又一个实施例的流程图;
图8为本申请数据传输方法又一个实施例的流程图;
图9为本申请数据传输方法又一个实施例的流程图;
图10为本申请数据传输方法又一个实施例的流程图;
图11为本申请数据传输方法又一个实施例的流程图;
图12为本申请数据传输方法又一个实施例的流程图;
图13为本申请数据传输方法又一个实施例的流程图;
图14为本申请数据传输装置一个实施例的结构示意图;
图15为本申请数据传输装置又一个实施例的结构示意图;
图16为本申请数据传输装置又一个实施例的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
以网络侧设备是基站为例,电子设备随机接入基站时,基站向电子设备发送的高层信令中为电子设备指示同步信号块(Synchronization Signal block,SSB)与随机接入信道机会(RACH Occasion,RO)之间的映射关系或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)与RO之间的映射关系,映射关系可以是一对多、一对一或者多对一,如果映射关系是一对多,电子设备从多个RO中选择一个RO,在该RO上发送前导码(preamble),但是,如果前导码发送失败,电子设备需要提高发射功率重新在该RO上发送前导码,直到接入成功。电子设备接入基站的效率低。上述SSB也可以称为同步信号/物理广播信道块(Synchronization Signal/Physical Broadcast Channel block,SS/PBCH block)。具体来说,1个RO资源对应着一组时频资源,其可以用于发送物理随机接入信道(Physical Random Access Chanel,PRACH)或前导码。
为此,本申请提出一种数据传输方法、装置和电子设备,能够在随机接入过程中提高电子设备接入网络侧设备的效率。
本申请可以适用的无线通信系统可以包括但不限于:新无线(New Radio,NR)系统。本申请所述的电子设备可以包括但不限于:具有无线通信功能的手持设备、车载设备、可穿戴设备等。本申请所述的网络侧设备可以是基站,在不同通信系统中,基站的实现类型可能具有差别,本申请不作限定,例如在NR通信系统中,网络侧设备可以为下一代基站(gNB)。
图1是本申请数据传输方法适用的系统结构举例,包括:电子设备110和网络侧设备120。
图2是本申请数据传输方法一个实施例的流程图,在该实施例中以该方法的执行主体是上述电子设备为例。如图2所示,该方法可以包括:
步骤201:电子设备接收第一信令,所述第一信令中包括:参考信号与RO的映射关系。
其中,参考信号可以是SSB、或者CSI-RS。
其中,第一信令可以是网络侧设备向电子设备发送的高层信令,例如无线资源控制(Radio Resource Control,RRC)消息。
步骤202:如果参考信号与RO的映射关系为1对n,电子设备在M个RO上分别发送前导码,n是大于1的自然数,2≤M≤n,m是自然数。
其中,本步骤中的M个RO是第一参考信号关联的RO,第一参考信号是电子设备基于波束检测得到的参考信号,一般是波束检测得到的最佳波束的参考信号。
电子设备在M个RO上分别发送前导码可以增加网络侧设备接收到前导码的概率,从而提高随机接入效率,据此,为了进一步提高随机接入效率,M优选为等于n,也即电子设备在n个RO上分别发送前导码。
本步骤中,前导码可以由PRACH承载。
以参考信号是SSB为例。网络侧设备向电子设备指示的SSB与RO的映射关系可以是:1对多,1对1,或者多对1。网络侧设备可以通过高层信令配置N个SSB关联一个RO。如果N值小于1,表示1个SSB关联多个RO,例如N取值一般可以是1/8、1/4、或者1/2,分别表示1个SSB关联8个RO、4个RO、或者2个RO。
需要说明的是,N值可以为1,表示1个SSB关联1个RO,或者,N值可以大于1,例如2、4、8、16等,分别表示2个、4个、8个、或者16个SSB关联1个RO,对于N值大于等于1的情况下电子设备如何处理,本申请实施例不作限定。
以上举例也可以适用于参考信号是CSI-RS的情况,也即将上述举例中的SSB替换为CSI-RS,该举例依然适用。
本步骤中,在M个RO中每个RO上发送前导码时,可以在M个RO上通过波束扫描(beam sweeping)的方式,或者,波束重复(beam repetition)的方式发送。其中,波束扫描指的是不同RO发送的PRACH的空间域滤波(spatial domain filter)参数不一样;波束重复指的是不同RO发送的PRACH的空间域滤波(spatial domain filter)参数一样。作为一个例子,网络侧设备可以通过高层信令配置电子设备具体采用波束 扫描还是波束重复的方式来进行前导码发送;或者,电子设备中可以预先设置是采用波束扫描还是波束重复的方式来进行前导码发送。
本步骤中电子设备如何选择前导码,本申请不作限定。
现有技术中,如果网络侧设备向电子设备指示的参考信号与RO之间的映射关系为1对多,也即1个参考信号关联多个RO,电子设备仅在其中一个RO上发送前导码,如果网络侧设备在RO上接收前导码失败,电子设备需要重传前导码,从而导致电子设备随机接入效率低;而在本申请数据传输方法中,在至少2个RO上发送前导码,从而提高了网络侧设备接收到前导码的概率,提高了电子设备接入成功的可能性,也即提高了电子设备的随机接入效率。
在一种可能的实现方式中,如果电子设备具有不同的类型,为了使得网络侧设备能够区别电子设备的类型,参见图3所示,步骤202可以通过以下的步骤301~步骤303实现:
步骤301:如果参考信号与RO的映射关系为1对n,电子设备根据预设的电子设备类型与RO之间的对应关系,获取第一类型对应的RO;第一类型是电子设备的类型。
其中,可以在网络侧设备和电子设备中分别预设不同电子设备类型对应的RO列表。
电子设备的类型划分本申请实施例不作限定。在一种可能的实现方式中,为了使得网络侧设备能够兼容现有技术的电子设备,本申请数据传输方法的电子设备的类型可以分为:增强型电子设备、以及普通设备,例如增强型电子设备可以是能够执行本申请数据传输方法的电子设备,而普通设备是不执行本申请数据传输方法的电子设备,则,增强型电子设备和网络侧设备中可以分别预设:增强型电子设备对应的RO列表,以及普通设备对应的RO列表。在另一种可能的实现方式中,增强型电子设备可以指的是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本17(release 17)中引入的具有覆盖增强能力的电子设备,普通设备则是不支持该覆盖增强能力的电子设备。
步骤302:电子设备在第一参考信号对应的RO中选择M个第一类型对应的RO。
可选地,电子设备可以从第一参考信号关联的RO中选择M个第一类型对应的RO,得到本步骤中的M个RO。
步骤303:电子设备在选择的M个RO上分别发送前导码。
图3所示的方法中,在网络侧设备和电子设备中预设不同电子设备类型对应的RO列表,电子设备从自身的类型对应的RO列表中选择M个RO进行前导码的发送,从而网络侧设备可以根据自身接收到该电子设备前导码的RO确定电子设备的类别,实现了电子设备向网络侧设备指示自身的类型。
需要说明的是,上述的步骤301~步骤303也可以作为单独的实施例,此时,步骤303中的M取值可以是自然数。也即是说,该方法不仅可以用于在多个RO上发送前导码的场景下实现电子设备类型的区分,还可以用于在单个RO上发送前导码的场 景下实现电子设备类型的区分。
在另一种可能的实现方式中,通过电子设备通过发送的前导码来向网络侧设备指示自身的类型,参加图4,步骤202可以通过以下的步骤401~步骤403实现:
步骤401:电子设备根据预设的电子设备类型与前导码之间的对应关系,获取第一类型对应的前导码。
其中,可以在网络侧设备和电子设备中分别预设不同电子设备类型对应的RO列表。
电子设备的类型划分本申请实施例不作限定。电子设备的类型的举例可以参考步骤301中的举例,这里不赘述。
步骤402:电子设备从第一类型对应的前导码中选择前导码。
在一种可能的实现方式中,电子设备可以从第一类型对应的前导码中随机选择前导码。
步骤403:在M个RO上分别发送选择的前导码。
本步骤中,M个RO的选择可以参考步骤202中的对应说明,这里不赘述。
图4所示的方法中,在网络侧设备和电子设备中预设不同电子设备类型对应的前导码列表,电子设备从自身的类型对应的前导码列表中选择前导码发送至网络侧设备,从而网络侧设备可以根据接收到的前导码确定电子设备的类型,实现了电子设备向网络侧设备指示自身的类型。
需要说明的是,上述的步骤401~步骤403也可以作为单独的实施例,此时,步骤403可以被替换为:在电子设备确定的RO上发送选择的前导码。该步骤中电子设备确定的RO可以是一个或者多个,本申请不作限定。此时,该方法不仅可以用于在多个RO上发送前导码的场景下实现电子设备类型的区分,还可以用于在单个RO上发送前导码的场景下实现电子设备类型的区分。
在又一种可能的实现方式中,对于2步随机接入信道(Random Access Channel,RACH)流程,可以通过在Message.A的PUSCH中显示的携带信息来进行指示电子设备的类型;或者通过不同的PUSCH机会(PUSCH Occasion,PO)资源来隐式的指示。该实现方式既可以与本申请其他实施例结合,用以向网络侧设备指示电子设备的类型,也可以作为单独的实施例,用以在需要进行电子设备类型指示的场景下使用。
参见图5所示,上述图2~图4所示实施例的步骤202之后,还可以进一步包括以下的步骤501~步骤502:
步骤501:电子设备根据M个RO中至少一个RO的时域信息计算第一监听窗,第一监听窗用于指示监听第一反馈信息的时间段。
第一反馈信息是网络侧设备针对于接收到的前导码的反馈信息。
传输上述第一反馈信息的下行传输资源可以由网络侧设备通过下行调度信息调度。
可选地,下行调度信息可以是下行控制信息(Downlink Control Information,DCI)或者是PDCCH。
可选地,第一反馈信息可以是随机接入响应(Random Access Response,RAR)消息或者调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
在一种可能的实现方式中,可以预先规定M个RO中一个RO作为参考RO,根据该参考RO的时域信息、以及第一时长计算第一监听窗。可选地,所述参考RO可以是M个RO中RO索引号最小的RO,或者是M个RO中RO索引号最大的RO,或者是M个RO中时域上最早的RO,或者是M个RO中时域上最晚的RO,或者是M个RO中频域上频点最高的RO,或者是M个RO中频域上频点最低的RO。具体的,电子设备可以将参考RO的最后一个符号的发射时间、或者最后一个符号的发射时间加1、或者最后一个符号所在时隙、或者最后一个符号所在时隙加1作为起始时间,将预设第一时长作为时长,计算第一监听窗。其中,第一时长可以由网络侧设备通过高层信令例如RRC信令配置。
在另一种可能的实现方式中,电子设备可以根据M个RO中每个RO的时域信息、以及预设第二时长,分别计算每个RO对应的监听窗,得到第一监听窗。具体的,对于M个RO中每个RO,电子设备可以将该RO的最后一个符号的发射时间、或者最后一个符号的发射时间加1、或者最后一个符号所在时隙、或者最后一个符号所在时隙加1作为起始时间,将预设第二时长作为时长,计算该RO对应的监听窗,则,M个RO的监听窗构成上述第一监听窗。其中,每个RO对应的第二时长可以由网络侧设备通过高层信令例如RRC信令配置,每个RO对应的第二时长的大小可以相同或者不同,本申请不作限定。
步骤502:电子设备在第一监听窗中监听第一反馈信息,确定是否成功接收到第一反馈信息。
图5所示的方法,进一步解决了图2~图4所示的方法中电子设备在多个RO上发送前导码的情况下,电子设备如何确定第一反馈信息的监听窗的问题。
需要说明的是,上述步骤501~步骤502也可以作为单独的实施例,用以解决电子设备在多个RO上发送前导码的情况下,电子设备如何确定第一反馈信息的监听窗的问题。
网络侧设备发送第一反馈信息的过程可以包括:网络侧设备在PDCCH上向电子设备发送下行调度信息,以调度PDSCH上的下行传输资源传输反馈信息,该PDCCH上的下行控制信息的循环冗余检查(cyclic redundancy check,CRC)可以由随机接入无线网络临时识别(random access-radio network temporary identity,RA-RNTI)加扰;在下行调度信息指示的下行传输资源上发送反馈信息。相应的,电子设备可以先监听下行调度信息,接收到下行调度信息后,使用对应的RA-RNTI对下行调度信息进行解加扰并进行校验,如果校验成功,在下行调度信息指示的下行传输资源上接收第一反馈信息。基于此,参见图6,图5中的步骤502可以通过以下步骤601~步骤603实现:
步骤601:电子设备在第一监听窗中监听下行调度信息,如果接收到下行调度信息,执行步骤602,如果未接收到下行调度信息,则第一反馈信息接收失败。
需要说明的是,对于步骤501中由M个RO中每个RO对应的监听窗构成第一监听窗的情况,如果电子设备在第一监听窗中监听下行调度信息,只有M个RO中每个RO对应的监听窗都没有成功接收下行调度信息,才会认为接收下行调度信息失败;或者,如果电子设备在第一监听窗中监听第一反馈信息例如RAR,只有M个RO中每个RO对应的监听窗都没有成功接收第一反馈信息,才会认为接收第一反馈信息失败。
步骤602:电子设备使用RA-RNTI对接收到的下行调度信息进行解加扰并进行校验,如果校验成功,执行步骤603,如果校验不成功,则第一反馈信息接收失败。
电子设备可以在步骤202~步骤602之间计算RA-RNTI。
在一种可能的实现方式中:可以预设指定RO,例如指定RO可以是M个RO中的第一个RO、或者最后一个RO、或者其他RO,网络侧设备和电子设备可以分别计算指定RO对应的RA-RNTI,网络侧设备使用该RA-RNTI进行下行调度信息的CRC加扰,相应的,电子设备使用该RA-RNTI对下行调度信息进行解加扰并进行校验。
在另一种可能的实现方式中,网络侧设备也可以选择进行前导码重复传输的多个RO中的任一RO,计算该RO对应的RA-RNTI;网络侧设备可以使用该RA-RNTI对下行调度信息的CRC进行加扰;而在电子设备侧,电子设备计算M个RO中每个RO对应的RA-RNTI,依次使用每个RO对应的RA-RNTI对在PDCCH上接收到的下行调度信息进行解加扰并进行校验,直到使用某一个RA-RNTI对下行调度信息解加扰并校验成功,或者使用每个RA-RNTI均对下行调度信息解加扰并校验不成功。
每个RO对应的RA-RNTI可以使用如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中,s_id是RO的第一个OFDM符号的索引(0≤s_id<14),t_id是系统帧中RO的第一个时隙的索引(0≤t_id<80),f_id是RO在频域中的索引(0≤f_id<8),ul_carrier_id是用于前导码传输的上行链路(UL)载波(0表示正常上行链路载波,1表示补充的上行链路(SUL)载波)。
步骤603:电子设备在第一时间窗中在下行调度信息指示的下行传输资源上接收第一反馈信息,如果在第一时间窗中接收到第一反馈信息,则第一反馈信息接收成功,如果在第一时间窗中未接收到第一反馈信息,则第一反馈信息接收失败。
本实施例中电子设备在第一反馈信息接收成功或者失败之后具体作何处理,本申请实施例不作限定。
图6所示的方法,进一步提供了图5所示的方法中步骤502的一种可能的实现方式,并且提供了一种对下行调度信息进行加扰、解加扰以及校验的方法。
需要说明的是,上述步骤602中说明的对下行调度信息进行加扰、解加扰以及校验的方法也可以作为单独的实施例实现,解决在多个RO上发送前导码的场景下,对前导码相关的下行调度信息的加扰、解加扰以及校验的问题。
区别于上述图5和图6所示的方法中,第一监听窗用于监听是否成功接收到第一反馈信息,在本申请的另一个实施例中,上述第一监听窗可以用于监听是否成功接收到下行调度信息,此时:
图5所示的方法中可以直接将第一反馈信息替换为下行调度信息;
图6所示的方法中,步骤603中无需限定在第一监听窗接收到第一反馈信息,具体的,可以将步骤603修改为:电子设备在下行调度信息指示的下行传输资源上接收第一反馈信息,如果接收到第一反馈信息,则第一反馈信息接收成功,如果未接收到第一反馈信息,则第一反馈信息接收失败。
参见图7,在本申请提供的另一个实施例中,图6中在第一反馈信息接收失败的情况下,可以执行以下的步骤701,具体的:
步骤701:电子设备计算上述M个RO重新发送前导码所使用的发射功率,根据计算得到的发射功率在M个RO上分别发送前导码,返回步骤501。
其中,本步骤中电子设备计算得到的每个RO的发射功率大于该RO前一次发送前导码的发射功率,也即步骤202中该RO发送前导码的发射功率。M个RO中每个RO对应的发射功率可以相同,也可以不相同,本申请不作限定。为了提高电子设备计算发射功率的效率,M个RO对应的发射功率可以相同。
每次步骤602中第一反馈信息接收失败,电子设备都可以对下一次M个RO上的前导码的传输的功率进行调整。具体的,可以将M个RO的前导码的传输功率向上提高一个功率等级,直到达到允许的最大发射功率。其中,功率等级之间的功率差值可以通过电子设备中预先定义或者网络侧设备配置的方式实现。
图7所示的方法,进一步解决了在多个RO上重传前导码时的发射功率配置问题。
需要说明的是,上述步骤701可以作为单独的实施例,应用于电子设备在多个RO上发送前导码以进行随机接入、且随机接入失败的场景下,解决该场景下电子设备在多个RO上重传前导码时的发射功率配置问题。
图8是本申请数据传输方法又一个实施例的流程图,如图8所示,该方法可以包括:
步骤801:网络侧设备发送第一信令,第一信令中包括参考信号与RO的映射关系;如果参考信号与RO的映射关系为1对n,第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
在一种可能的实现方式中,参见图9所示,步骤801之后还可以包括以下步骤:
步骤901:网络侧设备接收到电子设备在RO上发送的前导码;
步骤902:网络侧设备计算指定RO对应的RA-RNTI;指定RO是接收到前导码的RO中的一个RO;
步骤903:网络侧设备使用RA-RNTI对下行调度信息进行加扰,下行调度信息用于调度传输第一反馈信息的下行传输资源;
本步骤中的加扰可以是CRC加扰。
步骤904:网络侧设备将下行调度信息发送给电子设备,在下行调度信息指示的 下行传输资源上传输第一反馈信息。
在另一种可能的实现方式中,参见图10所示,步骤801之后还可以包括以下步骤:
步骤1001:网络侧设备接收到电子设备在RO上发送的前导码;
步骤1002:网络侧设备从接收到前导码的RO中选择一个RO,计算该RO对应的RA-RNTI;
步骤1003:网络侧设备使用RA-RNTI对下行调度信息进行加扰,下行调度信息用于调度传输第一反馈信息的下行传输资源;
本步骤中的加扰可以是CRC加扰。
步骤1004:网络侧设备将下行调度信息发送给电子设备,在下行调度信息指示的下行传输资源上传输第一反馈信息。
图8~图10所示的方法,网络侧设备可以与电子设备配合,提高电子设备接入网络侧设备的效率。
图11给出了上述实施例的一种更为具体的实例,以参考信号是SSB,电子设备成功接收到反馈信息为例,如图11所示,该方法可以包括:
步骤1101:基站发送第一信令,第一信令中携带SSB与RO的映射关系。
步骤1102:电子设备接收到第一信令,如果第一信令中携带的SSB与RO的映射关系为1对n,电子设备在M个RO上分别发送前导码,分别执行步骤1103和步骤1104。
步骤1103:电子设备计算第一监听窗,在第一监听窗中监听下行调度信息;电子设备计算校验信息。
步骤1104:基站在RO上接收到前导码,计算RA-RNTI,使用RA-RNTI对下行调度信息进行CRC加扰,将下行调度信息发送给电子设备。
步骤1105:电子设备在第一监听窗中接收到该下行调度信息,使用步骤1103中计算得到的RA-RNTI对下行调度信息进行解加扰和校验,如果校验通过,在下行调度信息指示的下行传输资源上接收第一反馈消息。
区别于图11,在图12所示的实例中以电子设备未对下行调度信息校验成功为例,此时,步骤1105被替换为步骤1201:电子设备在第一监听窗中接收到该下行调度信息,使用步骤1103中计算得到的RA-RNTI对下行调度信息进行解加扰和校验,如果校验失败,电子设备增加RO的发射功率,重新在M个RO上发送前导码。
区别于图11,在图13所示的示例中以电子设备未接收到下行调度信息为例,此时,步骤1104~1105被替换为1301:电子设备在第一监听窗中未接收到下行调度信息,电子设备增加RO的发射功率,重新在M个RO上发送前导码。
可以理解的是,上述实施例中的部分或全部步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
图14为本申请数据传输装置一个实施例的结构图,该装置可以适用于电子设备,如图14所示,该装置140可以包括:
接收单元141,用于接收第一信令,所述第一信令中包括:参考信号与RO的映射关系;
发送单元142,用于如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
在一种可能的实现方式中,所述参考信号是SSB、或者CSI-RS。
在一种可能的实现方式中,发送单元142具体可以用于:在所述M个RO上以波束扫描或者波束重复的方式发送所述前导码。
在一种可能的实现方式中,发送单元142具体可以用于:根据预设的电子设备类型与RO之间的对应关系,获取第一类型对应的RO;在所述第一参考信号关联的RO中选择M个所述第一类型对应的RO;在选择的所述M个RO上分别发送所述前导码。
在一种可能的实现方式中,发送单元142具体可以用于:根据预设的电子设备类型与前导码之间的对应关系,获取第一类型对应的前导码;从所述第一类型对应的前导码中选择前导码;在所述M个RO上分别发送选择的所述前导码。
在一种可能的实现方式中,参见图15所示,该装置140还可以包括:
计算单元151,用于根据所述M个RO中至少一个RO的时域信息计算第一监听窗,所述第一监听窗用于指示监听下行调度信息的时间段;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;所述第一反馈信息是针对于所述前导码的反馈信息;
接收单元141还可以用于:在所述第一监听窗中监听所述下行调度信息;
或者,该装置140还可以包括:
计算单元151,用于根据所述M个RO中至少一个RO的时域信息计算第一监听窗;所述第一监听窗用于指示监听第一反馈信息的时间段;所述第一反馈信息是针对于所述前导码的反馈信息;
接收单元141还可以用于:在所述第一监听窗中监听所述第一反馈信息。
在一种可能的实现方式中,计算单元151具体可以用于:根据所述M个RO中一个指定RO的时域信息、以及预设第一时长,计算所述第一监听窗。
在一种可能的实现方式中,计算单元151具体可以用于:根据所述M个RO中每个RO的时域信息、以及预设第二时长,分别计算每个RO对应的监听窗,得到所述第一监听窗。
在一种可能的实现方式中,计算单元151还可以用于:计算所述M个RO中指定RO对应的RA-RNTI;如果在所述第一监听窗中接收到所述下行调度信息,使用所述RA-RNTI对所述下行调度信息进行校验;
接收单元141还可以用于:如果校验成功,在所述下行调度信息指示的下行传输资源上接收第一反馈信息。
在一种可能的实现方式中,计算单元151还可以用于:计算所述M个RO中每个 RO对应的RA-RNTI;如果在所述第一监听窗中接收到所述下行调度信息,依次使用每个RO对应的RA-RNTI对所述下行调度信息进行校验;
接收单元141还可以用于:如果校验成功,在所述下行调度信息指示的下行传输资源上接收第一反馈信息。
在一种可能的实现方式中,发送单元142还可以用于:如果在所述第一监听窗中未成功接收到第一反馈信息,计算每个RO重新发送所述前导码所使用的发射功率;计算得到的每个RO的发射功率大于该RO前一次发送所述前导码的发射功率;在所述M个RO的每个RO上按照计算得到的发射功率重新发送所述前导码。
图16是本申请数据传输装置另一个实施例的结构图,如图16所示,该装置160可以包括:
发送单元161,用于发送第一信令,所述第一信令中包括参考信号与RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
在一种可能的实现方式中,所述参考信号是SSB、或者CSI-RS。
在一种可能的实现方式中,该装置还可以包括:
接收单元,用于接收到所述电子设备在RO上发送的前导码;
计算单元,用于计算指定RO对应的RA-RNTI;所述指定RO是接收到所述前导码的RO中的一个RO;使用所述RA-RNTI对下行调度信息进行加扰;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;第一反馈信息是所述前导码的反馈信息;
发送单元161还可以用于:将所述下行调度信息发送给所述电子设备。
在另一种可能的实现方式中,该装置还可以包括:
接收单元,用于接收到所述电子设备在RO上发送的前导码;
计算单元,用于从接收到所述前导码的RO中选择一个RO,计算该RO对应的RA-RNTI;使用所述RA-RNTI对下行调度信息进行加扰;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;第一反馈信息是所述前导码的反馈信息;
发送单元161还可以用于:将所述下行调度信息发送给所述电子设备。
图14~图16所示实施例提供的装置可用于执行本申请图2~图13所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
应理解以上图14~图16所示的装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,第一接收模块可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。例如,上述数据传输装置可以是芯片或者芯片模组,或者,上述数据 传输装置可以是芯片或者芯片模组的一部分。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit;以下简称:ASIC),或,一个或多个微处理器(Digital Singnal Processor;以下简称:DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array;以下简称:FPGA)等。再如,这些模块可以集成在一起,以片上系统(System-On-a-Chip;以下简称:SOC)的形式实现。
本申请提供一种电子设备,包括:处理器和收发器;所述处理器和收发器配合实现本申请图2~图13所示实施例提供的方法。
本申请提供一种网络侧设备,包括:处理器和收发器;所述处理器和收发器配合实现本申请图2~图13所示实施例提供的方法。
本申请还提供一种电子设备,所述设备包括存储介质和中央处理器,所述存储介质可以是非易失性存储介质,所述存储介质中存储有计算机可执行程序,所述中央处理器与所述非易失性存储介质连接,并执行所述计算机可执行程序以实现本申请图2~图13所示实施例提供的方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请图2~图13所示实施例提供的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请图2~图13所示实施例提供的方法。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory;以下简称:ROM)、随机存取存储器(Random Access Memory;以下简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种数据传输方法,其特征在于,包括:
    接收第一信令,所述第一信令中包括:参考信号与随机接入信道机会RO的映射关系;
    如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
  2. 根据权利要求1所述的方法,其特征在于,所述参考信号是同步信号块SSB、或者信道状态信息参考信号CSI-RS。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在M个RO上分别发送前导码,包括:
    在所述M个RO上以波束扫描或者波束重复的方式发送所述前导码。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述在M个RO上分别发送前导码,包括:
    根据预设的电子设备类型与RO之间的对应关系,获取第一类型对应的RO;
    在所述第一参考信号关联的RO中选择M个所述第一类型对应的RO;
    在选择的所述M个RO上分别发送所述前导码。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述在M个RO上分别发送前导码,包括:
    根据预设的电子设备类型与前导码之间的对应关系,获取第一类型对应的前导码;
    从所述第一类型对应的前导码中选择前导码;
    在所述M个RO上分别发送选择的所述前导码。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,还包括:
    根据所述M个RO中至少一个RO的时域信息计算第一监听窗;所述第一监听窗用于指示监听下行调度信息的时间段;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;所述第一反馈信息是针对于所述前导码的反馈信息;在所述第一监听窗中监听所述下行调度信息;或者,
    根据所述M个RO中至少一个RO的时域信息计算第一监听窗;所述第一监听窗用于指示监听第一反馈信息的时间段;所述第一反馈信息是针对于所述前导码的反馈信息;在所述第一监听窗中监听所述第一反馈信息。
  7. 根据权利要求6所述的方法,其特征在于,所述计算第一监听窗,包括:
    根据所述M个RO中一个指定RO的时域信息、以及预设第一时长,计算所述第一监听窗。
  8. 根据权利要求6所述的方法,其特征在于,所述计算第一监听窗,包括:
    根据所述M个RO中每个RO的时域信息、以及预设第二时长,分别计算每个RO对应的监听窗,得到所述第一监听窗。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,还包括:
    计算所述M个RO中指定RO对应的随机接入无线网络临时识别RA-RNTI;
    如果在所述第一监听窗中接收到所述下行调度信息,使用所述RA-RNTI对所述下行调度信息进行校验;
    如果校验成功,在所述下行调度信息指示的下行传输资源上接收第一反馈信息。
  10. 根据权利要求6至8任一项所述的方法,其特征在于,还包括:
    计算所述M个RO中每个RO对应的RA-RNTI;
    如果在所述第一监听窗中接收到所述下行调度信息,依次使用每个RO对应的RA-RNTI对所述下行调度信息进行校验;
    如果校验成功,在所述下行调度信息指示的下行传输资源上接收第一反馈信息。
  11. 根据权利要求6至10任一项所述的方法,其特征在于,还包括:
    如果在所述第一监听窗中未成功接收到第一反馈信息,计算每个RO重新发送所述前导码所使用的发射功率;计算得到的每个RO的发射功率大于该RO前一次发送所述前导码的发射功率;
    在所述M个RO的每个RO上按照计算得到的发射功率重新发送所述前导码。
  12. 一种数据传输方法,其特征在于,包括:
    发送第一信令,所述第一信令中包括参考信号与随机接入信道机会RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
  13. 根据权利要求12所述的方法,其特征在于,所述参考信号是同步信号块SSB、或者信道状态信息参考信号CSI-RS。
  14. 根据权利要求12或13所述的方法,其特征在于,还包括:
    接收到所述电子设备在RO上发送的前导码;
    计算指定RO对应的随机接入无线网络临时识别RA-RNTI;所述指定RO是接收到所述前导码的RO中的一个RO;
    使用所述RA-RNTI对下行调度信息进行加扰;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;第一反馈信息是所述前导码的反馈信息;
    将所述下行调度信息发送给所述电子设备。
  15. 根据权利要求12或13所述的方法,其特征在于,还包括:
    接收到所述电子设备在RO上发送的前导码;
    从接收到所述前导码的RO中选择一个RO,计算该RO对应的RA-RNTI;
    使用所述RA-RNTI对下行调度信息进行加扰;所述下行调度信息用于调度传输第一反馈信息的下行传输资源;第一反馈信息是所述前导码的反馈信息;
    将所述下行调度信息发送给所述电子设备。
  16. 一种数据传输装置,其特征在于,包括:
    接收单元,用于接收第一信令,所述第一信令中包括:参考信号与随机接入信道机会RO的映射关系;
    发送单元,用于如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
  17. 一种数据传输装置,其特征在于,包括:
    发送单元,用于发送第一信令,所述第一信令中包括参考信号与随机接入信道机会RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
  18. 一种电子设备,其特征在于,包括:
    收发器,用于接收第一信令,所述第一信令中包括:参考信号与随机接入信道机会RO的映射关系;如果所述参考信号与RO的映射关系为1对n,在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
  19. 一种网络侧设备,其特征在于,包括:
    发送器,用于发送第一信令,所述第一信令中包括参考信号与随机接入信道机会RO的映射关系;如果所述参考信号与RO的映射关系为1对n,所述第一信令用于指示电子设备在M个RO上分别发送前导码,所述M个RO是第一参考信号关联的RO,所述第一参考信号是所述电子设备基于波束检测确定的参考信号,n是大于1的自然数,2≤M≤n,M是自然数。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行权利要求1至15任一项所述的方法。
PCT/CN2021/133916 2020-12-31 2021-11-29 数据传输方法、装置和设备 WO2022142935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011627675.0A CN114698139A (zh) 2020-12-31 2020-12-31 数据传输方法、装置和设备
CN202011627675.0 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142935A1 true WO2022142935A1 (zh) 2022-07-07

Family

ID=82133584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133916 WO2022142935A1 (zh) 2020-12-31 2021-11-29 数据传输方法、装置和设备

Country Status (2)

Country Link
CN (1) CN114698139A (zh)
WO (1) WO2022142935A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
CN108024361A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 确定方法、接入、发送、处理方法及装置、基站及终端
CN110636634A (zh) * 2018-06-21 2019-12-31 维沃移动通信有限公司 一种随机接入方法及相关设备
CN111132326A (zh) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 随机接入方法、终端设备及计算机存储介质
US20200344810A1 (en) * 2018-01-11 2020-10-29 Samsung Electronics Co., Ltd. Methods and apparatuses for determining and configuring a time-frequency resource, in the random access process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
CN108024361A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 确定方法、接入、发送、处理方法及装置、基站及终端
US20200344810A1 (en) * 2018-01-11 2020-10-29 Samsung Electronics Co., Ltd. Methods and apparatuses for determining and configuring a time-frequency resource, in the random access process
CN110636634A (zh) * 2018-06-21 2019-12-31 维沃移动通信有限公司 一种随机接入方法及相关设备
CN111132326A (zh) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 随机接入方法、终端设备及计算机存储介质

Also Published As

Publication number Publication date
CN114698139A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP7313347B2 (ja) 通信方法および装置
US10405355B2 (en) LTE RACH procedure enhancement
EP2869654B1 (en) Method of handling random access in wireless communication system
US10517032B2 (en) Terminal device, base station device, communication method, and integrated circuit
KR20200036797A (ko) 무선통신 시스템에서 랜덤 액세스 방법 및 장치
US20180070403A1 (en) Terminal device, base station device, communication method, and integrated circuit
WO2017024912A1 (zh) 一种随机接入方法、设备和系统
EP2930984A1 (en) Method for obtaining synchronization for device-to-device communication outside of coverage area in a wireless communication system and apparatus for same
CN109756302B (zh) 用于传输源标识的系统和方法
EP3051915A1 (en) Radio communication terminal, radio base station and radio communication method
CN110167185B (zh) 随机接入过程中传输数据的方法和装置
TW201804746A (zh) 反饋ack/nack信息的方法、終端設備和網絡側設備
US11122631B2 (en) Link recovery in wireless communications
EP3589050A1 (en) Method and apparatus for receiving and sending downlink control information
US11405891B2 (en) Data transmission method and apparatus, terminal, and base station
WO2013107036A1 (en) Handling random access failure
CN113169835A (zh) 一种数据传输方法及装置
US20220132476A1 (en) Terminal and transmission method
EP3780854B1 (en) Random access method and apparatus
CN111050412A (zh) 一种随机接入方法及其装置
CN111565093B (zh) 信息传输方法、终端设备及网络设备
US11937310B2 (en) Handling timing conflicts involving random access procedure messages
WO2022142935A1 (zh) 数据传输方法、装置和设备
JP7371223B2 (ja) SCellビーム障害回復の完了
US20220174748A1 (en) Accessing a communication channel by multiple user devices at the same time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913676

Country of ref document: EP

Kind code of ref document: A1