WO2019011307A1 - 通信方法和设备 - Google Patents

通信方法和设备 Download PDF

Info

Publication number
WO2019011307A1
WO2019011307A1 PCT/CN2018/095535 CN2018095535W WO2019011307A1 WO 2019011307 A1 WO2019011307 A1 WO 2019011307A1 CN 2018095535 W CN2018095535 W CN 2018095535W WO 2019011307 A1 WO2019011307 A1 WO 2019011307A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
transmission
channel
data
control
Prior art date
Application number
PCT/CN2018/095535
Other languages
English (en)
French (fr)
Inventor
杨育波
张鹏
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019028136-3A priority Critical patent/BR112019028136A2/pt
Priority to EP18831937.0A priority patent/EP3627940B1/en
Publication of WO2019011307A1 publication Critical patent/WO2019011307A1/zh
Priority to US16/719,413 priority patent/US11444737B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and in particular, to a communication method and apparatus in a wireless communication system.
  • the international telecommunication union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), high reliable low latency communication (ultra reliable and low latency). Communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC high reliable low latency communication
  • mMTC massive machine type communications
  • Typical eMBB services include: ultra high definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of transmitted data and high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are ultra-reliable. Sex, low latency, less data transfer and burstiness.
  • Typical mMTC services include: smart grid distribution automation, smart city, etc. The main features are huge number of networked devices, small amount of transmitted data, and insensitive data transmission delay. These mMTC terminals need to meet low cost and very long standby. The demand for time.
  • URLLC service data requires extremely high reliability and delay. Under the premise of 99.999% reliability, the transmission delay is required to be within 1 ms. In order to improve the reliability of the URLLC service data, it is necessary to improve the reliability of the control channel corresponding to the data channel transmitting the URLLC service data.
  • the present application provides a communication method for improving the transmission reliability of a control channel by reducing the load size of a control channel.
  • a communication method including: determining, by a network device, a resource size of a transmission control channel, where the control channel carries a first parameter, where the first parameter is used to control transmission of data on a data channel, and a resource size of the control channel is transmitted.
  • the first mapping relationship is a predefined or the network device notifies the first mapping relationship to the terminal device by using the RRC message.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel or the control channel unit used by the transmission control channel. The product of the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the number of repeated transmissions of the control channel is the number of repeated transmissions of the control channel in the time domain, or the number of repeated transmissions of the control channel in the frequency domain.
  • a second aspect provides a communication method, including: determining, by a network device, a resource size of a transmission control channel, where the control channel carries a first parameter, where the first parameter is used to control transmission of data on the data channel, and the resource size of the control channel is transmitted.
  • the second mapping relationship is that the predefined or network device notifies the terminal device of the second mapping relationship by using the RRC message.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel or the control channel unit used for transmitting the control channel. The product of the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the number of repeated transmissions of the control channel is the number of repeated transmissions of the control channel in the time domain, or the number of repeated transmissions of the control channel in the frequency domain.
  • a third aspect provides a communication method, including: determining, by a network device, first control information, where the first control information is used to control transmission of data on a data channel; and the network device determines a resource size of the transmission control channel, where the control channel is used for Carrying the second control information; the network device determines the second control information according to the resource size and the first control information; and the network device sends the second control information on the control channel.
  • the resource size of the transmission control channel reflects the transmission quality of the data channel to some extent
  • the resource size of the transmission control channel can be reduced to reduce the number of bits used to indicate the first control information, that is, the second control information in the control channel is reduced.
  • the method for transmitting control information determines the second control information according to the resource size of the transmission control channel and the first control information, and can effectively reduce the number of bits of the second control information.
  • the transmission reliability of the control channel can be improved.
  • the transmission resources of the control channel can be reduced and the transmission efficiency can be improved.
  • the first control information includes a first modulation and coding scheme (MCS) index
  • the second control information includes first indication information
  • the first indication information is used to indicate The second MCS index
  • the network device determines the second MCS index according to the resource size of the foregoing transmission control channel and the first MCS index.
  • MCS modulation and coding scheme
  • the range of the value of the first MCS index is determined according to the resource size of the transmission control channel, where the second MCS index is an index of the first MCS index. Since the resource size of the transmission control channel may reflect the value range of the first MCS index, the number of bits required for the second MCS index may be smaller than the first modulation coding scheme index.
  • the network device determines, according to a resource size of the transmission control channel, a reference value of an MCS index, where the second MCS index is based on a reference value of the MCS index of the first MCS index. Offset. It can be understood that the number of bits used to indicate the offset of the first MCS index, that is, the second MCS index, may be smaller than the number of bits used to indicate the first MCS index value.
  • the first control information includes a number of time units of the data channel transmission
  • the second control information includes second indication information
  • the second indication information is used to indicate a time of the data channel transmission.
  • An index of the number of units the network device determining, according to the resource size of the control channel and the number of time units of the data channel transmission in the first control information, the number of time units of the data channel transmission in the second control information index.
  • the reference value of the number of time units of the data channel transmission is determined according to the resource size of the transmission control channel, and the number of time units of the data channel transmission in the second control information
  • the index is the offset of the number of time units of the data channel transmission based on the reference value.
  • determining, by the resource size of the transmission control channel, a range of the number of time units of the data channel transmission, and an index of the number of time units of the data channel transmission in the second control information An index within the range of the number of time units.
  • the first control information includes a repetition quantity of the data channel
  • the second control information includes third indication information
  • the third indication information is used to indicate an index of the number of repetitions of the data channel
  • the network The device determines an index of the number of repetitions of the data channel in the second control information according to the resource size of the transmission control channel and the number of repetitions of the data channel in the first control information.
  • the network device determines, according to the resource size of the transmission control channel, a reference value of the number of repetitions of the data channel, where the index of the number of repetitions of the data channel in the second control information is the data channel
  • the number of repetitions is an offset based on the reference value of the number of repetitions.
  • the network device determines, according to a resource size of the transmission control channel, a range of the number of repetitions of the data channel, where the index of the number of repetitions of the data channel in the second control information is a range of the repetition number The index inside.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel.
  • the number of repeated transmissions of the control channel may be the number of repeated transmissions in the time domain, the number of repeated transmissions in the frequency domain, or the number of repeated transmissions in the time-frequency domain.
  • the control channel unit belongs to at least one control resource set.
  • the second control information includes a field for indicating at least one of a second MCS index, an index of a number of time units of the data channel transmission, and a repetition quantity of the data channel. content.
  • a fourth aspect provides a communication method, including: receiving, by a terminal device, a control channel, and detecting a control channel, determining a resource size of the transmission control channel, where the control channel carries a first parameter, where the first parameter is used to control data in the data channel.
  • the uplink device determines the number of repeated transmissions of the data channel according to the first mapping relationship and the resource size of the transmission control channel, where the first mapping relationship is a mapping relationship between the resource size of the transmission control channel and the repeated transmission times of the data channel;
  • the terminal device receives the data channel according to the number of repeated transmissions of the data channel.
  • the first mapping relationship is predefined or the terminal device obtains by receiving a radio resource control message from the network device.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel or the control channel unit used for transmitting the control channel. The product of the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the number of repeated transmissions of the control channel is the number of repeated transmissions of the control channel in the time domain, or the number of repeated transmissions of the control channel in the frequency domain.
  • a fifth aspect provides a communication method, including: receiving, by a terminal device, a control channel, and detecting a control channel, determining a resource size of the transmission control channel, where the control channel carries a first parameter, where the first parameter is used to control data in the data channel.
  • the transmission is performed by the terminal device according to the second mapping relationship and the resource size of the transmission control channel, where the second mapping relationship is the resource size of the transmission control channel and the number of time units of the data channel transmission.
  • a mapping relationship between the terminals; the terminal device receives the data channel according to the number of time units transmitted by the data channel.
  • the second mapping relationship is predefined or the terminal device obtains by receiving a radio resource control message from the network device.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel or the control channel unit used for transmitting the control channel. The product of the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the number of repeated transmissions of the control channel is the number of repeated transmissions of the control channel in the time domain, or the number of repeated transmissions of the control channel in the frequency domain.
  • the sixth aspect provides a communication method, including: receiving, by a terminal device, a control channel, and detecting a control channel, determining a resource size of the transmission control channel, where the control channel is used to carry the second control information; and the terminal device passes the control channel. Obtaining the second control information, and determining first control information according to the second control information and a resource size of the transmission control channel, where the first control information is used to control transmission of data on the data channel.
  • the resource size of the transmission control channel reflects the transmission quality of the data channel to some extent
  • the resource size of the transmission control channel can be reduced to reduce the number of bits used to indicate the first control information, that is, the second control information in the control channel is reduced.
  • the method for transmitting control information determines the second control information according to the resource size of the transmission control channel and the first control information, and can effectively reduce the number of bits of the second control information.
  • the transmission reliability of the control channel can be improved.
  • the transmission resources of the control channel can be reduced and the transmission efficiency can be improved.
  • the first control information includes a first modulation and coding scheme (MCS) index
  • the second control information includes first indication information
  • the first indication information is used to indicate The second MCS index
  • the terminal device determines the first MCS index according to the resource size and the second MCS index.
  • MCS modulation and coding scheme
  • the range of the value of the first MCS index is determined according to the resource size of the transmission control channel, where the second MCS index is an index of the first MCS index. Since the resource size of the transmission control channel may reflect the value range of the first MCS index, the number of bits required for the second MCS index may be smaller than the first modulation coding scheme index.
  • the network device determines a reference value of the MCS index according to the resource size of the transmission control channel, where the second MCS index is based on the reference value of the MCS index of the first MCS index. Offset. It can be understood that the number of bits used to indicate the offset of the first MCS index, that is, the second MCS index, may be smaller than the number of bits used to indicate the first MCS index value.
  • the first control information includes a number of time units of the data channel transmission
  • the second control information includes second indication information
  • the second indication information is used to indicate a time of the data channel transmission.
  • An index of the number of units the terminal device determines, according to an index of a resource size of the control channel and a number of time units of the data channel transmission in the second control information, a time unit of the data channel transmission in the first control information number.
  • the reference value of the number of time units of the data channel transmission is determined according to the resource size of the transmission control channel, and the number of time units of the data channel transmission in the second control information
  • the index is an offset of the number of time units of the data channel transmission based on the reference value of the number of time units.
  • determining, by the resource size of the transmission control channel, a range of the number of time units of the data channel transmission, and an index of the number of time units of the data channel transmission in the second control information An index within the range of the number of time units.
  • the first control information includes a repetition quantity of the data channel
  • the second control information includes third indication information
  • the third indication information is used to indicate an index of the number of repetitions of the data channel
  • the terminal The device determines the number of repetitions of the data channel in the first control information according to an index of the resource size of the control channel and the number of repetitions of the data channel in the second control information.
  • the terminal device determines a reference value of the number of repetitions of the data channel according to the resource size of the transmission control channel, where the index of the number of repetitions of the data channel in the second control information is the data channel The number of repetitions is an offset based on the reference value.
  • the terminal device determines, according to the resource size of the transmission control channel, a range of the number of repetitions of the data channel, where the index of the number of repetitions of the data channel in the second control information is an index in the range. .
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the second control information includes a field for indicating at least one of a second MCS index, an index of a number of time units of the data channel transmission, and a repetition quantity of the data channel. content.
  • a communication device comprising a processing unit, a transmitting unit, to perform the method of the first aspect or any possible implementation of the first aspect, or to perform any of the second aspect or the second aspect A method in an implementation, or a method in any of the possible implementations of the third aspect or the third aspect.
  • a communication device comprising a processor, a memory and a transceiver to perform the method of the first aspect or any possible implementation of the first aspect, or to perform any of the second aspect or the second aspect A method in a possible implementation, or a method in any of the possible implementations of the third aspect or the third aspect.
  • a ninth aspect a communication device comprising a processing unit, a receiving unit, to perform the method in any of the possible implementations of the fourth aspect or the fourth aspect, or to perform any of the fifth or fifth aspect A method in an implementation, or a method in any of the possible implementations of the sixth or sixth aspect.
  • a tenth aspect a communication device comprising a processor, a memory and a transceiver to perform the method of any of the fourth or fourth aspects, or to perform the fifth or fifth aspect A method in a possible implementation, or a method in any of the possible implementations of the sixth or sixth aspect.
  • a computer readable storage medium is provided, the instructions being stored in the computer readable storage medium, when executed on a computer, causing the computer to perform any of the first aspect or the first aspect A method in an implementation, or a method in any of the possible implementations of the second or second aspect, or a method in any of the possible implementations of the third or third aspect.
  • a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the fourth or fourth aspects A method in an implementation, or a method in any of the possible implementations of the fifth or fifth aspect, or a method in any of the possible implementations of the sixth or sixth aspect.
  • a thirteenth aspect a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the method of the first aspect or any of the possible implementations of the first aspect, or perform the second aspect or The method of any of the possible implementations of the second aspect, or the method of any of the possible implementations of the third aspect or the third aspect.
  • a fourteenth aspect a computer program product comprising instructions for causing a computer to perform a method of any of the possible implementations of the fourth aspect or the fourth aspect, or to perform the fifth aspect or The method of any of the possible implementations of the fifth aspect, or the method of any of the sixth or sixth possible implementations.
  • a chip product of a network device is provided to perform the method of the first aspect or any possible implementation of the first aspect, or to perform the second aspect or any possible implementation of the second aspect Method, or method of any of the possible implementations of the third aspect or the third aspect.
  • a chip product of a terminal device is provided to perform the method in any of the possible implementations of the fourth aspect or the fourth aspect, or to perform the fifth aspect or any possible implementation manner of the fifth aspect Method, or method of any of the possible implementations of the sixth aspect or the sixth aspect.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of a control resource set provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a logical mapping relationship between a search space and a PDCCH candidate according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of discrete resource mapping of a CCE according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of centralized resource mapping of a CCE according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for transmitting control information according to an embodiment of the present application.
  • FIG. 6A is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device by means of a wireless connection, and the radio access network device is connected to the core network device by wireless or wired.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminal devices included in the mobile communication system.
  • the radio access network device is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a 5G mobile communication system, or a new radio (NR) communication system.
  • a radio access network device is referred to as a network device.
  • a network device refers to a radio access network device.
  • 5G and NR may be equivalent.
  • the terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Radio access network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or on-board; they can also be deployed on the water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the application scenarios of the radio access network device and the terminal device are not limited.
  • the embodiments of the present application can be applied to downlink signal transmission, and can also be applied to uplink signal transmission, and can also be applied to device to device (D2D) signal transmission.
  • the transmitting device is a radio access network device, and the corresponding receiving device is a terminal device.
  • the transmitting device is a terminal device, and the corresponding receiving device is a wireless access network device.
  • the transmitting device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • the radio access network device and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and Authorize the spectrum for communication.
  • the radio access network device and the terminal device and the terminal device and the terminal device can communicate through the spectrum below 6G, or can communicate through the spectrum of 6G or higher, and can simultaneously use the spectrum below 6G and the spectrum above 6G. Communicate.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device and the terminal device.
  • the following describes an example of a downlink transmission in which the device is a network device and the receiving device is a terminal device.
  • the method in the present application can also be applied to an uplink transmission in which the transmission device is a terminal device, the reception device is a network device, and a D2D transmission to which the transmission device is a terminal device, and the reception device is also a terminal device.
  • the network device can send data to the terminal device through the data channel.
  • the parameters may include a modulation and coding scheme (MCS), a transport block size (TBS), a redundancy version (RV), and a hybrid automatic repeat request (hybrid automatic repeat request).
  • MCS modulation and coding scheme
  • TBS transport block size
  • RV redundancy version
  • HARQ hybrid automatic repeat request
  • RA resource block assignment
  • PCI precoding information
  • PCI precoding indicator
  • These transmission parameters may be predefined by a protocol, or may be sent by the network device to the terminal device through signaling.
  • the signaling may include at least one of radio resource control (RRC) signaling, medium access control (MAC) layer signaling, and physical layer signaling, unless otherwise specified.
  • RRC radio resource control
  • MAC medium access control
  • the terminal device can receive the data of the data channel and demodulate and decode the received data.
  • the data channel may be a physical downlink shared channel (PDSCH), and the control parameters of the control data transmitted on the PDSCH are transmitted through a physical downlink control channel (PDCCH);
  • the data channel may be a physical uplink shared channel (PUSCH), and control parameters for controlling the data transmission on the PUSCH are transmitted from the network device to the terminal device through the PDCCH.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control channel is a PDCCH as an example
  • data channel is described by taking a PDSCH as an example.
  • control channel and the PDCCH may be equivalent, but the specific names of the control channel and the data channel are not limited in this application.
  • PDCCH carries downlink control information (DCI)
  • the scheduling information and other control information are carried on the PDCCH, and the information carried on the PDCCH may be collectively referred to as DCI.
  • the above transmission parameters may be part of the DCI.
  • the DCI payloads in different scenarios may be different in size, which may result in different DCI formats, and the resource size used to transmit the PDCCH may be different.
  • the load size of the DCI for scheduling uplink data transmission and scheduling downlink data transmission may be different, and the load size of DCI for scheduling single stream downlink data transmission and scheduling multi-stream downlink data transmission may also be different.
  • the aggregation level refers to the number of control channel elements (CCEs) used to carry one PDCCH.
  • CCE is the basic unit of the physical resources of the control channel.
  • a CCE is composed of multiple resource element groups (REGs): in a long term evolution (LTE) communication system, 9 REGs form a CCE; in an NR system, 6 REGs form a CCE.
  • An REG is composed of a plurality of resource elements (REs): in an LTE system, four REs form one REG; in an NR system, one resource block (RB) in one OFDM symbol constitutes one REG.
  • the RE consists of one subcarrier within one OFDM symbol and is the smallest physical time-frequency resource in the LTE system and the NR system.
  • the symbols and the time domain symbols are equivalently interchangeable.
  • An OFDM symbol is an example of a time domain symbol, but a time domain symbol is not limited to an OFDM symbol.
  • aggregation levels 16 and 32 may also be used.
  • the network side determines the aggregation level of the PDCCH according to factors such as the size of the DCI payload and the quality of the radio channel.
  • the larger the DCI load the larger the aggregation level of the corresponding PDCCH.
  • the possible format of the PDCCH is as shown in Table 1.
  • PDCCH format Number of CCEs Number of REG Number of information bits in the PDCCH 0 1 9 72 1 2 18 144 2 4 36 288 3 8 72 576
  • the number of CCEs per PDCCH is changed and there is no signaling, so the terminal device has to perform blind check on all possible aggregation levels of PDCCH candidates.
  • the system can pre-define the aggregation level set. For example, a set of aggregation levels ⁇ 1, 2, 4, 8 ⁇ may be defined, that is, a network device may use one, two, four, or eight CCEs to transmit a PDCCH.
  • the terminal equipment needs to separately aggregate levels.
  • a blind check is performed on the PDCCHs 1, 2, 4, and 8 to confirm whether there is a PDCCH addressed to itself.
  • the system defines a series of possible locations of PDCCHs in the control resource region for each aggregation level. These locations are called PDCCH candidates.
  • the PDCCH candidate set that the terminal needs to monitor is called the search space.
  • the PDCCH candidate set corresponding to a certain aggregation level is called the search space under the aggregation level.
  • FIG. 2 exemplarily shows a control resource set (CORESET) related to the present application.
  • a CORESET is a time-frequency resource in the control region.
  • One CORESET corresponds to a group of user equipment (UE), for example, CORESET 1 corresponds to UE1, UE2, UE3 and UE4, and CORESET2 corresponds to UE4, UE5, UE6 and UE7.
  • the PDCCHs of UE1, UE2, UE3, and UE4 may be transmitted on CORESET 1
  • the PDCCHs of UE4, UE5, UE6, and UE7 may be transmitted on CORESET2.
  • Each user has a search space on a CORESET whose resources are less than or equal to the resources of the CORESET.
  • a user can correspond to multiple CORESETs, and the numerology on these CORESETs can be the same or different.
  • the numerology here includes subcarrier spacing and cyclic prefix (CP) length.
  • FIG. 3 exemplarily shows a logical mapping relationship between search space and PDCCH candidate.
  • one UE has multiple search spaces of different aggregation levels.
  • U2 in Figure 3 also has 4 search spaces of different aggregation levels.
  • UE2's search space may overlap with UE1's search space, such as aggregation level 8 and aggregation level 2; UE2's search space and UE1
  • the search space may also have no overlapping parts, such as aggregation level 4 and aggregation level 1.
  • FIG. 3 also exemplarily shows a logical mapping relationship between PDCCH candidate and CCE.
  • the system serially numbers the CCEs in the control area.
  • the CCE number is a logical number used to uniquely determine the physical resource location of the CCE.
  • the numbers of the CCEs constituting the PDCCH candidate are continuous and do not mean that the CCEs constituting the PDCCH candidate are contiguous in physical resources.
  • CCE1, CCE2, CCE3, and CCE4 are respectively composed of six REGs that are discrete in the frequency domain.
  • This resource mapping manner in which a plurality of discrete REGs form a CCE is called discrete resource mapping or distributed.
  • Resource mapping For distributed resource mapping, the physical resources carrying one PDCCH are relatively dispersed in the frequency domain, so that the frequency diversity gain can be utilized to improve the robustness and transmission efficiency of the PDCCH transmission.
  • CCE1, CCE2, CCE3, and CCE4 are respectively composed of six REGs in a frequency domain.
  • This method of resource mapping in which a plurality of consecutive REGs form a CCE is called a localized resource mapping.
  • the physical resources carrying one PDCCH are concentrated in the frequency domain, and the network device selects the frequency resource with better channel quality to carry the PDCCH through scheduling, so that the frequency selectivity of the wireless channel can be utilized to improve the transmission efficiency of the PDCCH. And transmission reliability.
  • the time unit may be one of a time domain symbol, a mini-slot, a time slot, a subframe or a frame.
  • resource concepts involved in the present application may refer to existing definitions (such as the existing provisions in the LTE standard and the NR communication system), but are not limited to the existing definitions.
  • the definitions of these resource concepts in future communication standards may differ and do not affect the implementation of this application.
  • the network device notifies the terminal device of the modulation order and the TBS information by the MCS index value in the MCS field in the DCI.
  • the MCS field in DCI format 0 can be used to indicate the modulation order in the PUSCH and the TBS
  • the MCS field in DCI format 1A can be used to indicate the modulation order in the PDSCH and the TBS.
  • Table 2 shows the relationship between a possible MCS index value and the modulation order and TBS in the LTE system.
  • the modulation order value of 2 indicates that the modulation mode is quadrature phase shift keying (QPSK), and the value of 4 indicates 16 quadrature amplitude modulation (QAM).
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • a value of 6 indicates 64QAM.
  • the TBS index combined with the allocated resource size determines the size of the transport block.
  • the MCS field herein can be used to indicate that the PDSCH channel can also be used to indicate the PUSCH channel.
  • the network device indicates the number of repetitions of the PDSCH or PUSCH by a repetition number field.
  • a repetition number field For example, one possible indication method is to indicate the repetition times 1, 4, 8, 16, 32, 64, 128, and 192 by a repetition number field of 3 bits in length.
  • the number of repetitions of a data channel or a control channel can also be understood as the number of repeated transmissions of a data channel or a control channel.
  • the above indication method for indicating the MCS/TBS and the number of repetitions has certain information redundancy, which increases the transmission overhead of the PDCCH, and reduces the transmission reliability of the PDCCH when the transmission resources are constant.
  • the transmission reliability requirements of the PDCCH and the PDSCH are the same.
  • the transmission code rate of the PDCCH reflects the code rate required for PDSCH transmission to some extent.
  • the code rate here refers to the number of information bits before channel coding divided by the number of bits that physical resources can carry.
  • the modulation mode of the PDCCH is fixed to QPSK.
  • the code rate of the PDCCH is determined by the number of CCEs transmitting the PDCCH.
  • the code rate of the PDSCH is determined by the TBS, the modulation method, and the number of repetitions.
  • the number of CCEs transmitting the PDCCH may reflect the TBS, the modulation scheme, and the number of repetitions of the PDSCH to a certain extent, so that the number of bits used to indicate the TBS, the modulation scheme, and the number of repetitions can be reduced by using the aggregation level information of the PDCCH.
  • the transmission reliability of the PDCCH can be improved on the premise that the transmission resource of the PDCCH is constant. On the premise that the transmission reliability is constant, the transmission resource of the PDCCH can be reduced, and the transmission efficiency is improved.
  • the present application provides a method for transmitting control information, which uses the aggregation level information of the PDCCH to reduce the payload size of the PDCCH, thereby effectively improving the transmission reliability of the PDCCH under the premise of a certain transmission resource.
  • the network device determines first control information, where the first control information is used to control transmission of data on the data channel.
  • the network device can schedule the data to be transmitted at intervals of, for example, every millisecond (millisecond, ms) or 0.1 ms, thereby determining the scheduling result: which terminal device is allocated resources, how large data blocks are transmitted, and which modulation is used.
  • the mode is transmitted, which HARQ process is used for transmission, which rate matching parameter is used, the duration of data transmission, and the number of times data is repeatedly transmitted.
  • the first control information includes transmission parameters for controlling data transmission on the PDSCH. After the terminal device obtains the transmission parameters, the terminal device can receive data on the PDSCH and perform data on the received data. Demodulation and decoding. For the uplink data transmission, the first control information includes a transmission parameter for controlling the transmission of the data on the PUSCH. After the terminal device obtains the parameters, the data can be transmitted through the PUSCH, and the network device can receive the PUSCH according to the parameters. Data, and demodulate and decode the received data.
  • the first control information may include at least one of a first MCS index, a number of time units of data channel transmission, a number of repetitions of the data channel, a modulation order, a transport block size, and a code rate of the data channel.
  • the first MCS index may be used to indicate the modulation order of the PDSCH and the TBS transmitted on the PDSCH.
  • the number of repetitions of the data channel may be the frequency domain repetition number or the time domain repetition number, or may be the sum of the time domain and the frequency domain repetition number.
  • the network device determines a resource size of the transmission control channel, where the control channel is used to carry the second control information.
  • the control channel may be a PDCCH
  • the resource size of the transmission control channel may be the number of CCEs that transmit the PDCCH.
  • the network device needs to determine how many CCEs are used to transmit the PDCCH.
  • the resource size herein may also be understood as an aggregation level, that is, the number of CCEs transmitting the PDCCH; when one PDCCH passes through two or more CORESETs.
  • the resource size of the transmission control channel can be understood as the sum of the aggregation levels on each CORESET, that is, the total number of CCEs transmitting the PDCCH.
  • the resource size of the transmission control channel may also be the number of repeated transmissions of the control channel; or may be a value obtained by mathematically processing the number of CCEs transmitting the control channel and the number of repeated transmissions of the control channel, for example, transmission.
  • the resource size of the control channel is equal to the product of the number of CCEs transmitting the control channel and the number of repeated transmissions of the control channel. When the number of CCEs transmitting the control channel is 4, and the number of repeated transmissions of the control channel is 2, Then, the resource size of the transmission control channel is 8.
  • the number of repeated transmissions of the control channel may be the number of repeated transmissions in the time domain, the number of repeated transmissions in the frequency domain, or the number of repeated transmissions in the time-frequency domain.
  • the network device may determine the resource size of the transmission control channel according to at least one of a payload size of the control channel and a quality of the radio channel.
  • the resource size of the transmission control channel is equal to the number of CCEs transmitting the PDCCH as an example.
  • the network device determines second control information according to a resource size of the transmission control channel and first control information.
  • the number of CCEs transmitting the PDCCH may also reflect the TBS, the modulation mode, and the number of repetitions of the PDSCH to a certain extent, so that the bits for indicating the TBS, the modulation mode, and the repetition number may be reduced by using the aggregation level information of the PDCCH. number.
  • the MCS index in the first control information uses 5 bits to indicate the modulation order and TBS.
  • the number of CCEs transmitting the PDCCH also reflects the range of channel quality, it can also indirectly reflect the modulation order of the PDSCH and the range of the TBS.
  • the larger the number of CCEs transmitting the PDCCH the worse the channel quality at this time, the smaller the TBS that the PDSCH can transmit, and the lower the modulation order that can be used.
  • the larger the number of transmission time units required the larger the number of repetitions required for the PDSCH. Therefore, with the number of CCEs transmitting the PDCCH, a smaller number of bits can be used to indicate the modulation order of the PDSCH and the TBS.
  • the PDCCH carries the second control information, where the second control information may include the first indication information, where the first indication information is used to indicate the second MCS index.
  • the first indication information may directly indicate the second MCS index by using the first field, where the first field is only used to indicate the second MCS index, and the first indication information may also be used to indicate the second MCS index by using the second field.
  • the two fields are jointly encoded by the second MCS index and other information.
  • the present application does not limit how to specifically indicate the second MCS index.
  • the second MCS index is determined according to the number of CCEs transmitting the PDCCH and the first MCS index. There are at least two methods for determining the second MCS index according to the number of CCEs that transmit the PDCCH and the first MCS index:
  • the reference value of one MCS index is determined according to the number of CCEs transmitting the PDCCH, and the second MCS index is an offset of the first MCS index based on the reference value of the MCS index.
  • the reference value of the MCS index is 15. In this case, if the value of the second MCS index is 2, the corresponding first MCS index is 17 .
  • the terminal device may determine the modulation order of the PDSCH and the TBS according to the first MCS index value.
  • the determination of the reference value of the MCS index is related to the load size of the DCI in the PDCCH.
  • the reference values of different MCS indexes can be set by using the same number of CCEs to transmit PDCCHs with different payload sizes. For example, if a 4-bit CCE is used to transmit a 200-bit PDCCH, the reference value of the MCS index may be set to 15; and using 4 CCEs to transmit a 400-bit PDCCH, the reference value of the MCS index may be set to 20. Because if the transmission quality of 400 bits using 4 CCEs is the same as the transmission quality of 200 bits using 4 CCEs, it means that the channel quality of a scenario using 4 CCEs for transmitting 400 bits is better than that of a scenario using 4 CCEs for transmitting 200 bits.
  • the reference value of the MCS index of the scene using 4 CCEs for transmitting 400 bits can be set larger.
  • the reference value of the MCS index corresponding to the number of different CCEs may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. It can be understood that Table 3 is only a schematic diagram of the mapping relationship between the resource size of the transmission control channel and the MCS index, and is not limited to the embodiment of the present application.
  • the range of the value of the first MCS index is determined according to the number of CCEs that transmit the PDCCH, and the second MCS index is an index of the first MCS index. Since the number of CCEs can reflect the value range of the first MCS index, the number of bits required for the second MCS index is smaller than the first MCS index.
  • Table 4 illustrates a method of renumbering the first MCS index to obtain a second MCS index. The correspondence between the second MCS index and the first MCS index may be predefined by a protocol, or notified to the terminal device by the network device by using signaling.
  • Table 4 is only a schematic diagram of the mapping relationship between the resource size of the transmission control channel, the first MCS index, and the second MCS index, and is not limited to the embodiment of the present application.
  • the mapping relationship may be in the form of a table in a specific implementation, or may be implemented by a branch selection or a judgment statement such as if else or switch case in a similar programming language C language.
  • the mapping relationship is implemented in the form of a table, the present application does not limit the order of the columns in the table: as shown in Table 4, the first column is the resource size of the transmission control channel, and the second column is the first MCS index. The third column is the second MCS index.
  • the first column may be the resource size of the transmission control channel, the second column is the second MCS index, and the third column is the first MCS index.
  • mapping the first MCS index to the second MCS index may cause the number of bits in the PDCCH for indicating the MCS index to be effectively reduced, for example, from 5 bits to 3 bits or even 2 bits.
  • the second control information may include second indication information, the second indication information being used to indicate an index of the number of time units of the data channel transmission.
  • the second indication information may directly indicate, by using the third field, an index of the number of time units of the data channel transmission, where the third field is only used to indicate an index of the number of time units of the data channel transmission; the second indication information may also be
  • the fourth field indicates an index of the number of time units of the data channel transmission, and the fourth field is jointly encoded by the index of the number of time units transmitted by the data channel and other information.
  • the method for specifying how to index the number of time units of data channel transmission is not limited in this application.
  • the network device determines an index of the number of time units of the data channel transmission in the second control information according to the number of CCEs transmitting the PDCCH and the number of time units of the data channel transmission in the first control information. Similar to the method for determining the second MCS index, the method for determining the index information of the number of time units of the data channel transmission in the second control information is at least the following two types:
  • the reference value of the number of time units of the data channel transmission is determined according to the number of CCEs transmitting the PDCCH, and the index of the number of time units of the data channel transmission in the second control information is the time of the data channel transmission.
  • the number of units is the offset based on the reference value of the number of units of the time.
  • Table 5 when the number of CCEs transmitting the PDCCH is equal to 4, the reference value of the number of time units for data channel transmission is 4, and at this time, if the time unit of the data channel transmission in the first control information If the number is 6, the index of the number of time units of the data channel transmission in the corresponding second control information is 2. It can be understood that Table 5 is only a schematic diagram of the mapping relationship between the resource size of the transmission control channel and the reference value of the number of time units of the data channel transmission, and is not limited to the embodiment of the present application.
  • the range of the number of time units of the data channel transmission is determined according to the number of CCEs transmitting the PDCCH, and the index of the number of time units of the data channel transmission in the second control information is an index within the range.
  • Table 6 illustrates a method of obtaining an index of the number of time units of data channel transmission.
  • the correspondence between the number of time units of the data channel transmission and the index may be predefined by a protocol, or notified to the terminal device by the network device by using signaling. It can be understood that Table 6 is only a schematic diagram of the mapping relationship between the resource size of the transmission control channel, the number of time units of the data channel transmission, and the index of the number of time units of the data channel transmission. The definition of the embodiment of the present application.
  • the above process of mapping the number of time units of the data channel transmission to the index of the number of time units of the data channel transmission can effectively reduce the number of bits of the number of time units in the PDCCH for indicating the data channel transmission, For example, from bits to 2 bits.
  • the second control information may include third indication information, and the third indication information is used to indicate an index of the number of repetitions of the data channel.
  • the third indication information may directly indicate an index of the number of repetitions of the data channel by using the fifth field, where the fifth field is only used to indicate an index of the number of repetitions of the data channel; and the third indication information may also indicate the data by using the sixth field.
  • An index of the number of repetitions of the channel obtained by jointly encoding the index of the number of repetitions of the data channel with other information.
  • the method of the present application does not limit how to specifically indicate the index of the number of repetitions of the data channel.
  • the network device determines index information of the number of repetitions of the data channel in the second control information according to the number of CCEs transmitting the PDCCH and the number of repetitions of the data channel in the first control information. Similar to the above method for determining the second MCS index, there are at least two methods for specifically determining the index information of the number of repetitions of the data channel in the second control information:
  • the first type determines a reference value of the number of repetitions of the data channel according to the number of CCEs that transmit the PDCCH, and the index of the number of repetitions of the data channel in the second control information is that the number of repetitions of the data channel is based on the reference value.
  • An offset As shown in Table 7, when the number of CCEs transmitting the PDCCH is equal to 4, the reference value of the number of repetitions of the data channel is 4, and if the number of repetitions of the data channel in the first control information is 6, the corresponding The index of the number of repetitions of the data channel in the second control information is 2. It can be understood that Table 7 is only a schematic diagram of the mapping relationship between the resource size of the transmission control channel and the reference value of the number of repetitions of the data channel, and is not limited to the embodiment of the present application.
  • Resource size of the transmission control channel Reference value of the number of repetitions of the data channel 1 1 2 2 4 4 8 8 16 16 32 32
  • the range of the number of repetitions of the data channel is determined according to the number of CCEs transmitting the PDCCH, and the index of the number of repetitions of the data channel in the second control information is an index within the range.
  • Table 8 illustrates a method of obtaining an index of the number of repetitions of a data channel. The correspondence between the number of repetitions of the data channel and the index may be predefined by a protocol, or notified to the terminal device by the network device by using signaling. It can be understood that Table 8 is only a schematic diagram of the mapping relationship between the resource size of the transmission control channel, the number of repetitions of the data channel, and the index of the number of repetitions of the data channel, and is not limited to the embodiment of the present application.
  • the above-described process of mapping the number of repetitions of the data channel to the index of the number of repetitions of the data channel can effectively reduce the number of bits in the PDCCH for indicating the number of repetitions of the data channel, for example, from 3 bits to 2 bits.
  • the second control information includes information indicating the second MCS index, index information indicating the number of time units of the data channel transmission, and index information indicating the number of repetitions of the data channel may be independent fields. That is, the second control information includes a second MCS index value field, an index value field of the number of time units of the data channel transmission, and a repetition number index field of the data channel. At this time, it can also be understood that the second control information includes the second.
  • the second control information may also include a field for indicating at least two items of the second MCS index, the number of time units of the data channel transmission, and the number of repetitions of the data channel, for example, the second MCS may be used.
  • the index, the index of the number of time units of the data channel transmission, and at least two of the number of repetitions of the data channel are jointly coded or jointly mapped.
  • the second control information may also include index information of the modulation order, index information of the transport block size, and index information of the code rate of the data channel.
  • the network device determines, according to the number of CCEs that transmit the PDCCH, the modulation order in the first control information, the transport block size, and the code rate of the data channel, the index information of the modulation order in the second control information, and the index information of the transport block size. Index information of the code rate of the data channel. Similar to the method of determining the information of the second MCS index, the details are not described herein.
  • the network device may further determine the second control information according to the resource mapping manner of the CCE, that is, determine the second control information according to the resource size of the transmission control channel, the resource mapping manner of the CCE, and the first control information.
  • the resource mapping manner of the CCE herein includes a discrete resource mapping manner as shown in FIG. 4 and a centralized resource mapping manner as shown in FIG. 5.
  • two sets of independent mapping relationships as shown in Tables 3 to 8 can be defined for the discrete resource mapping mode and the centralized resource mapping mode, so that the network device and the terminal device can be based on the resource size of the transmission control channel.
  • the resource mapping manner of the CCE and the first control information determine the second control information.
  • the resource mapping mode of the CCE may be a protocol pre-defined, or the network device may notify the terminal device by signaling.
  • the network device sends a control channel, where the control channel carries the second control information.
  • the second control information is sent to the terminal device through the control channel.
  • the network device encodes and modulates the data according to the first control information, and then transmits the coded modulated data to the terminal device through the data channel.
  • the terminal device receives the control channel and detects the control channel, and determines a resource size of the transmission control channel.
  • the terminal device receives the control channel, performs blind detection on the PDCCH in a search space on different aggregation levels, and determines whether there is a PDCCH sent to itself, and determines a resource size for transmitting the PDCCH.
  • the aggregation level supported by the terminal device is configured by the network device to the terminal device by protocol agreement or by signaling.
  • the terminal device After the terminal device blindly detects the PDCCH in the search space, the terminal device demodulates and decodes the PDCCH, acquires second control information, and determines the first control information according to the second control information and the resource size.
  • the terminal device may use the resource size of the transmission control channel, the resource mapping manner of the CCE, and The second control information determines the first control information.
  • the terminal device specifically determines the first control information, which can be directly obtained by referring to step S630, which is specifically described as follows.
  • the terminal device may determine the first MCS index according to the resource size of the transmission control channel and the second MCS index.
  • the second MCS index may be an offset of the first MCS index based on the MCS index reference value, and the reference value of the MCS index is determined according to the resource size of the transmission control channel.
  • Table 3 shows the mapping relationship between the reference value of one possible MCS index and the resource size of the transmission control channel.
  • the second MCS index may also be an index of the first MCS index.
  • Table 4 shows the mapping relationship between the resource size of the possible transmission control channel, the first MCS index, and the second MCS index.
  • the terminal device may determine, according to the resource size of the transmission control channel and the index of the number of time units of the data channel transmission. The number of time units transmitted by the data channel.
  • the index of the number of time units of the data channel transmission may be an offset of the number of time units of the data channel transmission based on the reference value of the number of time units, and the reference value of the number of time units is according to the transmission control channel.
  • the size of the resource is determined. Table 5 is a mapping relationship between a resource size of a possible transmission control channel and a reference value of the number of time units of data channel transmission. After obtaining the resource size of the transmission control channel, the terminal device determines the number of time units of the data channel transmission according to the mapping relationship between the resource size of the transmission control channel and the reference value of the number of time units of the data channel transmission. The reference value can then determine the number of time units of the data channel transmission based on the reference value of the number of time units of the data channel transmission and the index of the number of time units of the data channel transmission.
  • the index of the number of time units of the data channel transmission may also have a mapping relationship as shown in Table 6 between the resource size of the transmission control channel and the number of time units of the data channel transmission.
  • the terminal device After obtaining the resource size of the transmission control channel, the terminal device performs a mapping relationship between the resource size of the transmission control channel, the number of time units of the data channel transmission, and the index of the number of time units of the data channel transmission. And the resource size of the transmission control channel and the number index of the time unit of the data channel transmission can determine the number of time units of the data channel transmission.
  • the terminal device may determine the number of repetitions of the data channel according to the resource size of the transmission control channel and the repetition number index of the data channel.
  • the repetition number index of the data channel may be an offset of the number of repetitions of the data channel based on the reference value of the number of repetitions, and the reference value of the number of repetitions is determined according to the resource size of the transmission control channel.
  • Table 7 shows the mapping relationship between the resource size of a possible transmission control channel and the reference value of the number of repetitions.
  • the index of the number of repetitions of the data channel may also have a mapping relationship as shown in Table 8 between the resource size of the transmission control channel and the number of repetitions of the data channel.
  • the terminal device maps the relationship between the resource size of the transmission control channel, the number of repetitions of the data channel, and the number of repetitions of the data channel, and the resource size of the transmission control channel.
  • the index of the number of repetitions of the data channel can determine the number of repetitions of the data channel.
  • the terminal device may demodulate and decode the data on the data channel according to the first control information.
  • the present application further provides a communication method for implicitly indicating the number of time units of data channel transmission and the number of repeated transmissions of data channels by the size of resources of the transmission control channel.
  • the number of repeated transmissions of the data channel and the number of repetitions of the data channel can be interchangeably equivalent.
  • the network device determines a resource size of the transmission control channel, the control channel carries a first parameter, and the first parameter is used to control transmission of data on the data channel.
  • the first parameter may include information such as MCS and TBS.
  • the size of the resource of the transmission control channel reflects the quality of the radio channel to some extent
  • the number of time units of the data channel transmission and the number of repeated transmissions of the data channel also reflect the quality of the radio channel to some extent.
  • a possible solution is to establish a first mapping relationship between the size of the resource of the transmission control channel and the number of repeated transmissions of the data channel, and establish a second between the size of the resource of the transmission control channel and the number of time units of the data channel transmission.
  • the mapping relationship, the first mapping relationship and/or the second mapping relationship may be predefined or semi-statically configured to the terminal device by using RRC signaling, so that the number of bits of the first parameter may be reduced.
  • Resource size of the transmission control channel Number of time units transmitted by the data channel 1 1 2 2 4 4 8 8 16 16 32 32
  • the network device sends a control channel and a data channel. Specifically, the network device transmits the control channel according to the determined resource size of the transmission control channel, and transmits the data channel according to the determined time unit of the data channel transmission and/or the repeated transmission times of the data channel.
  • S6A-3 The terminal device receives the control channel and detects the control channel, and determines the resource size of the transmission control channel. A more specific description can be referred to S650.
  • the terminal device determines a number of time units for data channel transmission according to a mapping relationship between a resource size of the transmission control channel and a number of time units of the data channel transmission, and a resource size of the transmission control channel; and/or ,
  • the terminal device determines the number of repeated transmissions of the data channel according to the mapping relationship between the resource size of the transmission control channel and the number of repeated transmissions of the data channel, and the resource size of the transmission control channel.
  • the number of time units of the data channel transmission and/or the number of repeated transmissions of the data channel need not be indicated to the terminal device through the first parameter in the control channel, thereby effectively reducing the payload size of the control channel. Improve the transmission efficiency and reliability of the control channel.
  • the communication method provided by the embodiment of the present application is introduced from the perspective of the interaction between the network device as the transmitting device, the terminal device as the receiving device, and the sending device and the receiving device.
  • various devices such as a transmitting device and a receiving device, etc., in order to implement the above functions, include hardware structures and/or software modules corresponding to the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and method steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the communication device implements the functions of the network device as the transmitting device in the foregoing method embodiments of FIG. 6 and FIG. 6A, and thus can also achieve the beneficial effects of the foregoing method embodiments.
  • the communication device may be the radio access network device 120 as shown in FIG.
  • the communication device 700 includes a processing unit 710 and a transmitting unit 720.
  • the processing unit 710 is configured to determine first control information, where the first control information is used to control transmission of data on the data channel.
  • the processing unit 710 is further configured to determine a resource size of the transmission control channel, where the control channel is used to carry the second control information.
  • the processing unit 710 is further configured to determine second control information according to the resource size and the first control information;
  • the sending unit 720 is configured to send the second control information on the control channel.
  • the processing unit 710 is further configured to: according to the resource size of the transmission control channel and the first modulation and coding scheme index
  • the second modulation coding scheme index is determined.
  • the second modulation and coding scheme index may be an index of the first modulation and coding scheme index.
  • the processing unit 710 is further configured to: according to the resource size And determining, by the number of time units of the data channel transmission in the first control information, index information of the number of time units of the data channel transmission in the second control information.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the processing unit 710 is configured to determine a resource size of the transmission control channel, where the control channel carries a first parameter, and the first parameter is used to control transmission of data on the data channel. There is a first mapping relationship between the resource size of the transmission control channel and the number of repeated transmissions of the data channel; and/or there is a second mapping relationship between the resource size of the transmission control channel and the number of time units of the data channel transmission.
  • the transmitting unit 720 is configured to send a control channel and a data channel.
  • the first mapping relationship is predefined, or the sending unit 720 is further configured to notify the terminal device of the first mapping relationship by using the RRC message.
  • the second mapping relationship is predefined, or the sending unit 720 is further configured to notify the terminal device of the first mapping relationship by using the RRC message.
  • the resource size of the transmission control channel is the product of the number of control channel elements used for the transmission control channel or the number of repeated transmissions of the control channel or the number of control channel elements used for transmitting the control channel and the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the number of repeated transmissions of the control channel is the number of repeated transmissions of the control channel in the time domain, or the number of repeated transmissions of the control channel in the frequency domain.
  • communication device 800 includes a processor 810, a transceiver 820, and a memory 830, wherein memory 830 can be used to store code executed by processor 810.
  • the various components in communication device 800 communicate with one another via internal connection paths, such as by control and/or data signals over the bus.
  • the processor 810 is configured to perform the functions of the processing unit 710
  • the transceiver 820 is configured to perform the functions of the transmitting unit 720.
  • processing unit 710 the processor 810, the transmitting unit 720, and the transceiver 820 may be directly obtained by referring to the method embodiments shown in FIG. 6 and FIG. 6A above.
  • the information sending function in the foregoing method embodiment is completed by the sending unit 720 or the transceiver 820, and the remaining data processing functions are all completed by the processing unit 710 or the processor 810, and no further details are provided herein.
  • FIG. 9 and 10 are schematic structural diagrams of two other possible communication devices according to an embodiment of the present application.
  • the communication device implements the functions of the terminal device as the receiving device in the method embodiment shown in FIG. 6 and FIG. 6A described above, and thus the advantageous effects of the above method embodiments can also be achieved.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1.
  • the communication device 900 includes a receiving unit 910 and a processing unit 920.
  • the receiving unit 910 is configured to receive a control channel, where the control channel is configured to carry second control information;
  • the processing unit 920 is configured to detect the control channel, determine a resource size for transmitting the control channel,
  • the processing unit 920 is further configured to acquire the second control information by using the control channel, and determine the first control information according to the second control information and the resource size, where the first control information is used to control data. Transmission on the data channel.
  • the processing unit 920 is further configured to: according to the resource size of the transmission control channel and the second modulation and coding scheme index A first modulation coding scheme index is determined.
  • the second modulation and coding scheme index may be an index of the first modulation and coding scheme index.
  • the processing unit 920 is further configured to: according to the resource size and location The index information of the number of time units of the data channel transmission in the second control information determines the number of time units of the data channel transmission in the first control information.
  • the resource size of the transmission control channel is the number of control channel units used for transmitting the control channel or the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the receiving unit 910 is configured to receive a control channel, where the control channel carries a first parameter, where the first parameter is used to control transmission of data on the data channel.
  • the processing unit 920 is configured to detect a control channel and determine a resource size of the transmission control channel.
  • the processing unit 920 is further configured to determine, according to the first mapping relationship and the resource size of the transmission control channel, the number of repeated transmissions of the data channel, where the first mapping relationship is a mapping relationship between a resource size of the transmission control channel and a repeated transmission number of the data channel; and / or,
  • the processing unit 920 is further configured to determine, according to the second mapping relationship and the resource size of the transmission control channel, the number of time units of the data channel transmission, where the second mapping relationship is a resource size of the transmission control channel and a number of time units of the data channel transmission. The mapping relationship between them.
  • the receiving unit 910 is further configured to receive the data channel according to the number of repeated transmissions of the data channel and/or the number of time units of the data channel transmission.
  • the first mapping relationship is predefined, or the receiving unit 910 is further configured to acquire the first mapping relationship by receiving a radio resource control message from the network device.
  • the second mapping relationship is predefined, or the receiving unit 910 is further configured to obtain the first mapping relationship by receiving a radio resource control message from the network device.
  • the resource size of the transmission control channel is the product of the number of control channel elements used for the transmission control channel or the number of repeated transmissions of the control channel or the number of control channel elements used for transmitting the control channel and the number of repeated transmissions of the control channel.
  • the control channel unit belongs to at least one control resource set.
  • the number of repeated transmissions of the control channel is the number of repeated transmissions of the control channel in the time domain, or the number of repeated transmissions of the control channel in the frequency domain.
  • the communication device 1000 includes a processor 1020, a transceiver 1010, and a memory 1030, wherein the memory 1030 can be used to store code executed by the processor 1020.
  • the various components in the communication device 1000 communicate with one another via internal connection paths, such as by control and/or data signals over the bus.
  • the processor 1020 is configured to perform the functions of the processing unit 920
  • the transceiver 1010 is configured to perform the functions of the receiving unit 910.
  • receiving unit 910 the transceiver 1010, the processing unit 920, and the processor 1020 described above can be directly obtained by referring to the method embodiments shown in FIG. 6 and FIG. 6A above.
  • the information receiving function in the foregoing method embodiment is completed by the receiving unit 910 or the transceiver 1010, and the remaining data processing functions are all completed by the processing unit 920 or the processor 1020, and are not described herein.
  • Figures 8 and 10 only show one design of the communication device.
  • the communication device can include any number of receivers and processors, and all communication devices that can implement embodiments of the present application are within the scope of the present application.
  • FIGS. 7 to 10 are obtained by referring to the partial method embodiments shown in FIG. 6 and FIG. 6A above. It is to be understood that, with reference to other method embodiments of the present application and the device embodiments shown in FIG. 7 to FIG. 10, device embodiments corresponding to other method embodiments of the present application may be obtained, and are not described herein.
  • the network device chip implements the functions of the network device in the foregoing method embodiment.
  • the network device chip sends the second control information to other modules in the network device, such as a radio frequency module or an antenna.
  • the second control information is sent to the terminal device via other modules of the network device.
  • the terminal device chip When the embodiment of the present application is applied to a terminal device chip, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives the second control information from other modules (such as a radio frequency module or an antenna) in the terminal device, where the second control information is sent by the network device to the terminal device.
  • the method and apparatus in the embodiments of the present application are applicable to the transmission of control information of a URLLC service, but this is also a limitation of the scope of application of the present application.
  • the method and apparatus in the embodiments of the present application are also applicable to the transmission of control information of the mMTC service and the eMBB service.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and may be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • a general purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (Programmable ROM). , PROM), Erasable PROM (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Register, Hard Disk, Mobile Hard Disk, CD-ROM, or well known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a transmitting device or a receiving device. Of course, the processor and the storage medium can also exist as discrete components in the transmitting device or the receiving device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)) or the like.
  • plural refers to two or more.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character “/” in this article generally indicates that the contextual object is an “or” relationship; in the formula, the character “/” indicates that the contextual object is a "divide” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种通信方法和装置,该方法包括:通过传输控制信道的资源的大小隐式指示数据信道传输的时间单元的个数和数据信道的重复发送次数。通过采用本申请的方法,数据信道传输的时间单元的个数和/或数据信道的重复发送次数不需要通过控制信道来指示给终端设备,因此有效地降低了控制信道的净荷大小,提升了控制信道的传输效率和可靠性。

Description

通信方法和设备
本申请要求于2107年07月14日提交中国专利局、申请号为201710575692.6、发明名称为“通信方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无线通信领域,尤其涉及无线通信系统中的通信方法和设备。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
不同业务对移动通信系统的需求不同,URLLC业务数据对可靠性和时延都要求极高,在达到99.999%的可靠性的前提下,传输时延要求在1ms以内。为了提高URLLC业务数据的可靠性,需要提高传输URLLC业务数据的数据信道所对应的控制信道的可靠性。
发明内容
本申请提供了一种通信方法,通过降低控制信道的载荷大小,从而提升控制信道的传输可靠性。
第一方面,提供了一种通信方法,包括:网络设备确定传输控制信道的资源大小,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输,传输控制信道的资源大小与数据信道的重复发送次数之间存在第一映射关系;网络设备发送控制信道和数据信道。通过采用本方法,数据信道的重复发送次数不需要通过控制信道来指示给终端设备,因此有效地降低了控制信道的净荷大小,提升了控制信道的传输效率和可靠性。
在第一方面的一种可能的实现方式中,第一映射关系为预定义或网络设备通过无线资源控制消息将第一映射关系通知给终端设备。
在第一方面的一种可能的实现方式中,传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数或传输控制信道所使用的控制 信道单元的个数与控制信道的重复发送次数的乘积。
在第一方面的一种可能的实现方式中,当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
在第一方面的一种可能的实现方式中,控制信道的重复发送次数为控制信道在时域上的重复发送次数,或为控制信道在频域上的重复发送次数。
第二方面,提供了一种通信方法,包括:网络设备确定传输控制信道的资源大小,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输,传输控制信道的资源大小与数据信道传输的时间单元的个数之间存在第二映射关系;网络设备发送控制信道和数据信道。通过采用本方法,数据信道传输的时间单元的个数不需要通过控制信道来指示给终端设备,因此有效地降低了控制信道的净荷大小,提升了控制信道的传输效率和可靠性。
在第二方面的一种可能的实现方式中,第二映射关系为预定义或网络设备通过无线资源控制消息将第二映射关系通知给终端设备。
在第二方面的一种可能的实现方式中,传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数或传输控制信道所使用的控制信道单元的个数与控制信道的重复发送次数的乘积。
在第二方面的一种可能的实现方式中,当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
在第二方面的一种可能的实现方式中,控制信道的重复发送次数为控制信道在时域上的重复发送次数,或为控制信道在频域上的重复发送次数。
第三方面,提供了一种通信方法,包括:网络设备确定第一控制信息,第一控制信息用于控制数据在数据信道上的传输;网络设备确定传输控制信道的资源大小,控制信道用于承载第二控制信息;网络设备根据上述资源大小和第一控制信息确定第二控制信息;网络设备在控制信道上发送第二控制信息。
由于传输控制信道的资源大小在一定程度上反映了数据信道的传输质量,进而可以利用传输控制信道的资源大小降低用于指示第一控制信息的比特数,即降低控制信道中的第二控制信息的比特数。该控制信息的传输方法,根据传输控制信道的资源大小和第一控制信息确定第二控制信息,能够有效地减小第二控制信息的比特数。在控制信道的传输资源一定的前提下,可以提升控制信道的传输可靠性。在传输可靠性一定的前提下,可以降低控制信道的传输资源,提升传输效率。
在第三方面的一种可能的实现方式中,第一控制信息包括第一调制编码方案(modulation and coding scheme,MCS)索引,第二控制信息包括第一指示信息,第一指示信息用于指示第二MCS索引,网络设备根据上述传输控制信道的资源大小和第一MCS索引确定第二MCS索引。
在第三方面的一种可能的实现方式中,根据传输控制信道的资源大小确定第一MCS索引取值的范围,第二MCS索引为第一MCS索引的索引。由于传输控制信道的资源大小可以反映第一MCS索引的取值范围,因此第二MCS索引所需要的比特数可以小于第一调制编码方案索引。
在第三方面的一种可能的实现方式中,网络设备根据传输控制信道的资源大小确定 一个MCS索引的参考值,第二MCS索引是第一MCS索引在该MCS索引的参考值的基础上的偏移量。可以理解的是,用于指示第一MCS索引的偏移量即第二MCS索引的比特数会小于用于指示第一MCS索引值的比特数。
在第三方面的一种可能的实现方式中,第一控制信息包括数据信道传输的时间单元的个数,第二控制信息包括第二指示信息,第二指示信息用于指示数据信道传输的时间单元的个数的索引,网络设备根据传输该控制信道的资源大小和第一控制信息中的数据信道传输的时间单元的个数确定第二控制信息中的数据信道传输的时间单元的个数的索引。
在第三方面的一种可能的实现方式中,根据传输控制信道的资源大小确定数据信道传输的时间单元的个数的参考值,第二控制信息中的数据信道传输的时间单元的个数的索引是该数据信道传输的时间单元的个数在该参考值的基础上的偏移量。
在第三方面的一种可能的实现方式中,根据传输控制信道的资源大小确定数据信道传输的时间单元的个数的范围,第二控制信息中的数据信道传输的时间单元的个数的索引为该时间单元的个数的范围内的索引。
在第三方面的一种可能的实现方式中,第一控制信息包括数据信道的重复次数,第二控制信息包括第三指示信息,第三指示信息用于指示数据信道的重复次数的索引,网络设备根据传输该控制信道的资源大小和第一控制信息中的数据信道的重复次数确定第二控制信息中的数据信道的重复次数的索引。
在第三方面的一种可能的实现方式中,网络设备根据传输控制信道的资源大小确定数据信道的重复次数的参考值,第二控制信息中的数据信道的重复次数的索引是该数据信道的重复次数在该重复次数的参考值的基础上的一个偏移量。
在第三方面的一种可能的实现方式中,网络设备根据传输控制信道的资源大小确定数据信道的重复次数的范围,第二控制信息中的数据信道的重复次数的索引为该重复次数的范围内的索引。
在第一方面的一种可能的实现方式中,传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数。控制信道的重复发送次数可以是在时域上的重复发送次数,也可以是在频域上的重复发送次数,也可以是在时频域上的重复发送次数。
在第三方面的一种可能的实现方式中,当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
在第三方面的一种可能的实现方式中,第二控制信息包括一个字段用于指示第二MCS索引、数据信道传输的时间单元的个数的索引、数据信道的重复次数中的至少一项内容。
第四方面,提供了一种通信方法,包括:终端设备接收控制信道并对控制信道进行检测,确定传输控制信道的资源大小,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输;终端设备根据第一映射关系和传输控制信道的资源大小确定数据信道的重复发送次数,第一映射关系为传输控制信道的资源大小与数据信道的重复发送次数之间的映射关系;终端设备根据数据信道的重复发送次数接收所述数据信道。通过采用本方法,数据信道的重复发送次数不需要通过控制信道来指示给终端设备,因此有 效地降低了控制信道的净荷大小,提升了控制信道的传输效率和可靠性。
在第四方面的一种可能的实现方式中,所述第一映射关系为预定义或终端设备通过接收来自网络设备的无线资源控制消息获取。
在第四方面的一种可能的实现方式中,传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数或传输控制信道所使用的控制信道单元的个数与控制信道的重复发送次数的乘积。
在第四方面的一种可能的实现方式中,当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
在第四方面的一种可能的实现方式中,控制信道的重复发送次数为控制信道在时域上的重复发送次数,或为控制信道在频域上的重复发送次数。
第五方面,提供了一种通信方法,包括:终端设备接收控制信道并对控制信道进行检测,确定传输控制信道的资源大小,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输;终端设备根据第二映射关系和传输控制信道的资源大小确定数据信道传输的时间单元的个数,第二映射关系为传输控制信道的资源大小与数据信道传输的时间单元的个数之间的映射关系;终端设备根据数据信道传输的时间单元的个数接收所述数据信道。通过采用本方法,数据信道传输的时间单元的个数不需要通过控制信道来指示给终端设备,因此有效地降低了控制信道的净荷大小,提升了控制信道的传输效率和可靠性。
在第五方面的一种可能的实现方式中,所述第二映射关系为预定义或终端设备通过接收来自网络设备的无线资源控制消息获取。
在第五方面的一种可能的实现方式中,传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数或传输控制信道所使用的控制信道单元的个数与控制信道的重复发送次数的乘积。
在第五方面的一种可能的实现方式中,当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
在第五方面的一种可能的实现方式中,控制信道的重复发送次数为控制信道在时域上的重复发送次数,或为控制信道在频域上的重复发送次数。
第六方面,提供了一种通信方法,包括:终端设备接收控制信道并对控制信道进行检测,确定传输控制信道的资源大小,该控制信道用于承载第二控制信息;终端设备通过该控制信道获取所述第二控制信息,并根据第二控制信息和传输控制信道的资源大小确定第一控制信息,第一控制信息用于控制数据在数据信道上的传输。
由于传输控制信道的资源大小在一定程度上反映了数据信道的传输质量,进而可以利用传输控制信道的资源大小降低用于指示第一控制信息的比特数,即降低控制信道中的第二控制信息的比特数。该控制信息的传输方法,根据传输控制信道的资源大小和第一控制信息确定第二控制信息,能够有效地减小第二控制信息的比特数。在控制信道的传输资源一定的前提下,可以提升控制信道的传输可靠性。在传输可靠性一定的前提下,可以降低控制信道的传输资源,提升传输效率。
在第六方面的一种可能的实现方式中,第一控制信息包括第一调制编码方案(modulation and coding scheme,MCS)索引,第二控制信息包括第一指示信息,第一 指示信息用于指示第二MCS索引,终端设备根据上述资源大小和第二MCS索引确定第一MCS索引。
在第六方面的一种可能的实现方式中,根据传输控制信道的资源大小确定第一MCS索引取值的范围,第二MCS索引为第一MCS索引的索引。由于传输控制信道的资源大小可以反映第一MCS索引的取值范围,因此第二MCS索引所需要的比特数可以小于第一调制编码方案索引。
在第六方面的一种可能的实现方式中,网络设备根据传输控制信道的资源大小确定一个MCS索引的参考值,第二MCS索引是第一MCS索引在该MCS索引的参考值的基础上的偏移量。可以理解的是,用于指示第一MCS索引的偏移量即第二MCS索引的比特数会小于用于指示第一MCS索引值的比特数。
在第六方面的一种可能的实现方式中,第一控制信息包括数据信道传输的时间单元的个数,第二控制信息包括第二指示信息,第二指示信息用于指示数据信道传输的时间单元的个数的索引,终端设备根据传输该控制信道的资源大小和第二控制信息中的数据信道传输的时间单元的个数的索引确定第一控制信息中的数据信道传输的时间单元的个数。
在第六方面的一种可能的实现方式中,根据传输控制信道的资源大小确定数据信道传输的时间单元的个数的参考值,第二控制信息中的数据信道传输的时间单元的个数的索引是该数据信道传输的时间单元的个数在该时间单元的个数的参考值的基础上的偏移量。
在第六方面的一种可能的实现方式中,根据传输控制信道的资源大小确定数据信道传输的时间单元的个数的范围,第二控制信息中的数据信道传输的时间单元的个数的索引为该时间单元的个数的范围内的索引。
在第六方面的一种可能的实现方式中,第一控制信息包括数据信道的重复次数,第二控制信息包括第三指示信息,第三指示信息用于指示数据信道的重复次数的索引,终端设备根据传输该控制信道的资源大小和第二控制信息中的数据信道的重复次数的索引确定第一控制信息中的数据信道的重复次数。
在第六方面的一种可能的实现方式中,终端设备根据传输控制信道的资源大小确定数据信道的重复次数的参考值,第二控制信息中的数据信道的重复次数的索引是该数据信道的重复次数在该参考值的基础上的一个偏移量。
在第六方面的一种可能的实现方式中,终端设备根据传输控制信道的资源大小确定数据信道的重复次数的范围,第二控制信息中的数据信道的重复次数的索引为该范围内的索引。
在第六方面的一种可能的实现方式中,传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数。
在第六方面的一种可能的实现方式中,当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
在第六方面的一种可能的实现方式中,第二控制信息包括一个字段用于指示第二MCS索引、数据信道传输的时间单元的个数的索引、数据信道的重复次数中的至少一项内容。
第七方面,提供了一种通信装置,包括处理单元、发送单元,以执行第一方面或第一方面的任意可能的实现方式中的方法,或执行第二方面或第二方面的任意可能的实现方式中的方法,或执行第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,包括处理器、存储器和收发器,以执行第一方面或第一方面的任意可能的实现方式中的方法,或执行第二方面或第二方面的任意可能的实现方式中的方法,或执行第三方面或第三方面的任意可能的实现方式中的方法。
第九方面,提供了一种通信装置,包括处理单元、接收单元,以执行第四方面或第四方面的任意可能的实现方式中的方法,或执行第五方面或第五方面的任意可能的实现方式中的方法,或执行第六方面或第六方面的任意可能的实现方式中的方法。
第十方面,提供了一种通信装置,包括处理器、存储器和收发器,以执行第四方面或第四方面的任意可能的实现方式中的方法,或执行第五方面或第五方面的任意可能的实现方式中的方法,或执行第六方面或第六方面的任意可能的实现方式中的方法。
第十一方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法,或执行第二方面或第二方面的任意可能的实现方式中的方法,或执行第三方面或第三方面的任意可能的实现方式中的方法。
第十二方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第四方面或第四方面的任意可能的实现方式中的方法,或执行第五方面或第五方面的任意可能的实现方式中的方法,或执行第六方面或第六方面的任意可能的实现方式中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法,或执行第二方面或第二方面的任意可能的实现方式中的方法,或执行第三方面或第三方面的任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第四方面或第四方面的任意可能的实现方式中的方法,或执行第五方面或第五方面的任意可能的实现方式中的方法,或执行第六方面或第六方面的任意可能的实现方式中的方法。
第十五方面,提供了一种网络设备的芯片产品,以执行第一方面或第一方面的任意可能的实现方式中的方法,或执行第二方面或第二方面的任意可能的实现方式中的方法,或执行第三方面或第三方面的任意可能的实现方式中的方法。
第十六方面,提供了一种终端设备的芯片产品,以执行第四方面或第四方面的任意可能的实现方式中的方法,或执行第五方面或第五方面的任意可能的实现方式中的方法,或执行第六方面或第六方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请的实施例提供的控制资源集合的示意图;
图3为本申请的实施例提供的search space和PDCCH candidate在逻辑上的映射关系示意图;
图4为本申请的实施例提供的CCE的离散资源映射示意图;
图5为本申请的实施例提供的CCE的集中式资源映射示意图;
图6为本申请的实施例提供的一种控制信息的传输方法示意图;
图6A为本申请的实施例提供的一种通信方法示意图;
图7为本申请的实施例提供的一种通信装置的结构示意图;
图8为本申请的实施例提供的另一种通信装置的结构示意图;
图9为本申请的实施例提供的另一种通信装置的结构示意图;
图10为本申请的实施例提供的另一种通信装置的结构示意图。
具体实施方式
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(new radio,NR)通信系统中的基站、未来移动通信系统中的基站、WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,5G和NR可以等同。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终 端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
下面以发送该设备是网络设备、接收设备是终端设备的下行传输为例进行描述。但本申请中的方法也可以应用到发送设备是终端设备、接收设备是网络设备的上行传输,以及应用到发送设备是终端设备、接收设备也是终端设备的D2D传输。
为了便于理解本申请,下面先介绍本申请涉及的一些基本概念。
(一)控制信道和数据信道
网络设备可以通过数据信道给终端设备发送数据,为了让终端设备可以正确接收数据信道上的数据,网络设备和终端设备之间需要就数据在数据信道上进行传输的一些传输参数达成一致的理解。例如,这些参数可以包括调制编码方案(modulation and coding scheme,MCS)、传输块大小(transport block size,TBS)、冗余版本(redundancy version,RV)、混合自动重传请求(hybrid automatic repeat request,HARQ)进程号、资源块分配(resource block assignment,RA)、预编码信息(precoding information,PCI)或预编码指示(precoding indicator,PCI)等信息。这些传输参数可以是通过协议预定义,也可以是通过信令由网络设备发送给终端设备。在本申请中,如无特殊说明,信令可以包括无线资源控制(radio resource control,RRC)信令、媒体接入控制(medium access control,MAC)层信令和物理层信令中的至少一种。
这些传输参数用于控制数据在数据信道上的传输,当终端设备获得了这些传输参数后,就可以接收数据信道的数据、并对接收到的数据进行解调和译码。例如,对于下行数据传输,数据信道可以为物理下行共享信道(physical downlink shared channel,PDSCH),控制数据在PDSCH上传输的控制参数通过物理下行控制信道(physical downlink control channel,PDCCH)进行传输;对于上行数据传输,数据信道可以为物理上行共享信道(physical uplink shared channel,PUSCH),控制数据在PUSCH上传输的控制参数通过PDCCH从网络设备传输给终端设备。
在本申请中,以控制信道是PDCCH为例、数据信道以PDSCH为例进行描述,在描述上控制信道与PDCCH可以等同,但本申请对控制信道和数据信道的具体名称不作限定。
(二)PDCCH承载下行控制信息(downlink control information,DCI)
PDCCH上承载调度分配信息以及其它控制信息,PDCCH上承载的信息可以统称为DCI。上述传输参数可能为DCI中的一部分。不同场景下的DCI载荷的大小可能不同,从而导致DCI格式有可能不同,进而用于传输PDCCH的资源大小可能不同。例如,调度上行数据传输与调度下行数据传输的DCI的载荷大小可能不同,调度单流下行数据传输以及调度多流下行数据传输的DCI的载荷大小也可能不同。
(三)PDCCH的聚合等级(aggregation level,AL)
聚合等级是指用于承载一个PDCCH的控制信道单元(control channel element,CCE)的个数。其中,CCE是控制信道物理资源的基本单位。一个CCE由多个资源单元组(resource element group,REG)组成:在长期演进(long term evolution,LTE)通信系统中,9个REG组成一个CCE;在NR系统中,6个REG组成一个CCE。一个REG由多个资源单元(resource element,RE)组成:在LTE系统中,4个RE组成一个REG;在NR系统中,一个OFDM符号内的一个资源块(resource block,RB)组成一个REG。RE由一个OFDM符号内的一个子载波组成,是LTE系统和NR系统中的最小的物理时频资源。在本申请中,如无特殊说明,符号和时域符号之间是等同可以互换的。OFDM符号是时域符号的一种举例,但时域符号并不限定为OFDM符号。
在LTE系统中,常用的聚合等级有1,2,4和8。在NR系统中,还可能会用到聚合等级16和32。
网络侧根据DCI载荷的大小以及无线信道质量等因素,确定PDCCH的聚合等级。DCI载荷越大,对应的PDCCH的聚合等级就越大。无线信道质量越差,为了保证PDCCH的传输质量,所需要的PDCCH的聚合等级也就越大。
以LTE系统为例,PDCCH可能的格式如表1所示。
表1
PDCCH格式 CCE的个数 REG的个数 PDCCH中的信息比特数
0 1 9 72
1 2 18 144
2 4 36 288
3 8 72 576
(四)控制信道搜索空间(search space)
对于终端设备来说,每一个PDCCH的CCE的个数是变化的而且没有信令通知,所以终端设备不得不对所有可能的聚合等级的PDCCH candidate进行盲检。为了减少盲检次数,降低终端盲检的复杂度,系统可以预先定义聚合等级集合。例如,可以定义一个聚合等级集合{1,2,4,8},也就是说网络设备可能采用1个、2个、4个或8个CCE发送PDCCH,对应地,终端设备需要分别对聚合等级为1、2、4和8的PDCCH进行盲检,以确认是否有发给自己的PDCCH。
为了进一步减少盲检次数,降低终端盲检的复杂度,系统针对每一个聚合等级在控制资源区域内定义了一系列的PDCCH可能出现的位置,这些位置称之为候选PDCCH(PDCCH candidate)。终端需要监测的PDCCH candidates集合称之为搜索空间(search space)。某一个聚合等级对应的PDCCH candidate集合称之为该聚合等级下的搜索空间。
(五)控制资源集合(CORESET)
图2示例性的示出了本申请涉及的控制资源集合(CORESET)。如图2所示,一个CORESET是控制区域内的一块时频资源。一个CORESET对应一组用户设备(user equipment,UE),例如CORESET 1对应UE1,UE2,UE3和UE4,而CORESET2对应UE4,UE5,UE6和UE7。在CORESET 1上可以发送UE1、UE2、UE3和UE4的PDCCH,在CORESET2上可以发送UE4、UE5、UE6和UE7的PDCCH。每个用户在一个CORESET上有一个search space,该search space的资源小于等于CORESET的资源。一个用户可以对应多个 CORESET,这些CORESET上的numerology可以相同也可以不同。这里的numerology包括子载波间隔和循环前缀(cyclic prefix,CP)长度。
图3示例性的示出了search space和PDCCH candidate在逻辑上的映射关系。如图3所示,一个UE有多个不同聚合等级的search space。以图3中的UE1为例,UE1有4个不同聚合等级的search space,其中,聚合等级为8(AL=8)的search space包括2个聚合等级为8(AL=8)的PDCCH candidate,聚合等级为4(AL=4)的search space包括2个聚合等级为4(AL=4)的PDCCH candidate,聚合等级为2(AL=2)的search space包括6个聚合等级为2(AL=2)的PDCCH candidate,聚合等级为1(AL=1)的search space包括6个聚合等级为1(AL=1)的PDCCH candidate。图3中的U2也有4个不同聚合等级的search space,对于相同的聚合等级,UE2的search space与UE1的search space可能有重叠部分,如聚合等级8和聚合等级2;UE2的search space与UE1的search space也可能没有重叠部分,如聚合等级4和聚合等级1。
图3也示例性的示出了PDCCH candidate和CCE在逻辑上的映射关系。系统对控制区域内的CCE进行了统一的编号。CCE的编号是逻辑编号,用于唯一确定CCE的物理资源位置。构成PDCCH candidate的CCE的编号是连续的并不代表构成PDCCH candidate的CCE在物理资源上是连续的。
图4和图5分别示出了频域离散的REG映射到同一个CCE和频域连续的REG映射到同一个CCE。
如图4所示,CCE1、CCE2、CCE3和CCE4分别由频域离散的6个REG组成,这种由离散的多个REG组成一个CCE的资源映射方式称为离散资源映射或分布式(distributed)资源映射。对于分布式资源映射,承载一个PDCCH的物理资源在频域上比较分散,从而能够利用频率分集增益来提高PDCCH传输的鲁棒性以及传输效率。
如图5所示,CCE1、CCE2、CCE3和CCE4分别由频域连续的6个REG组成,这种由连续的多个REG组成一个CCE的资源映射方式称为集中式(localized)资源映射。对于集中式资源映射,承载一个PDCCH的物理资源在频域上比较集中,网络设备通过调度,选择信道质量较好的频率资源承载PDCCH,从而可以利用无线信道的频率选择性来提升PDCCH的传输效率和传输可靠性。
本申请中,时间单元可以是时域符号、微时隙(mini-slot)、时隙、子帧或帧中的一种。
需要说明的,本申请涉及的资源概念,如REG、CCE、PDCCH candidate、search space等,可以参考现有定义(如LTE标准、NR通信系统中的已有规定),但是不限于现有定义,未来通信标准中关于这些资源概念的定义可能不同,不影响本申请的实施。
(六)LTE系统中的MCS/TBS指示
在LTE系统中,网络设备通过DCI中的MCS字段中的MCS索引值将调制阶数和TBS信息通知给终端设备。DCI格式0中的MCS字段可以用于指示PUSCH中的调制阶数以及TBS,DCI格式1A中的MCS字段可以用于指示PDSCH中的调制阶数以及TBS。
表2给出了LTE系统中一种可能的MCS索引值与调制阶数和TBS之间的关系。如表2所示,调制阶数取值为2表示调制方式为正交相移键控(quadrature phase shift keying,QPSK),取值为4表示16正交幅度调制(quadrature amplitude modulation, QAM),取值为6表示64QAM。TBS索引与分配的资源大小相结合可以确定传输块的大小。
表2
Figure PCTCN2018095535-appb-000001
这里的MCS字段可以用于指示PDSCH信道也可以用于指示PUSCH信道。
(七)LTE系统中的重复次数指示
网络设备通过重复次数(repetition number)字段来指示PDSCH或PUSCH的重复次数。例如,一种可能的指示方法是,通过长度为3比特的重复次数字段来指示重复次数1、4、8、16、32、64、128和192。在本申请中,数据信道或控制信道的重复次数也可以理解为数据信道或控制信道的重复发送次数。
以上用于指示MCS/TBS和重复次数的指示方法存在一定的信息冗余,增加了PDCCH的传输开销,在传输资源一定的情况下,降低了PDCCH的传输可靠性。
对于URLLC业务来说,PDCCH和PDSCH的传输可靠性需求相同。PDCCH的传输码率在一定程度上反映了PDSCH传输所需要的码率。这里的码率是指信道编码之前的信息比特数除以物理资源所能承载的比特数。通常PDCCH的调制方式固定为QPSK,在PDCCH格式确定的前提下,PDCCH的码率由传输PDCCH的CCE的个数决定。PDSCH的码率由TBS、调制方式和重复次数决定。因此,传输PDCCH的CCE的个数在一定程度上也可以反映PDSCH的TBS、调制方式和重复次数,从而可以利用PDCCH的聚合等级信息降低用于指示TBS、调制方式和重复次数的比特数。在PDCCH的传输资源一定的前提下,可以提升PDCCH的传输可靠性。在传输可靠性一定的前提下,可以降低PDCCH的传输资源,提升传输效率。
如图6所示,本申请提供了一种控制信息的传输方法,该方法利用PDCCH的聚合等级信息,降低PDCCH的载荷大小,从而在传输资源一定的前提下可以有效提高PDCCH的传输可靠性。
S610,网络设备确定第一控制信息,该第一控制信息用于控制数据在数据信道上的传输。
网络设备可以每隔一段时间,例如,每隔1毫秒(millisecond,ms)或0.1ms对待传数据进行调度,从而确定调度结果:给哪个终端设备分配资源、传输多大的数据块、以哪种调制方式进行传输、使用哪个HARQ进程进行传输、采用哪个速率匹配参数、数据传输的持续时间、数据被重复传输的次数。
以下行数据传输为例,第一控制信息包括用于控制数据在PDSCH上进行传输的传输参数,当终端设备获得了这些传输参数后,就可以接收PDSCH上的数据、并对接收到的数据进行解调和译码。对于上行数据传输,第一控制信息包括用于控制数据在PUSCH上进行传输的传输参数,当终端设备获得了这些参数后,就可以通过PUSCH进行数据传输,网络设备按照这些参数就可以接收PUSCH上的数据,并对接收到的数据进行解调和译码。
第一控制信息可以包括第一MCS索引、数据信道传输的时间单元的个数、数据信道的重复次数、调制阶数、传输块大小、数据信道的码率中的至少一个。其中,第一MCS索引可以用于指示PDSCH的调制阶数和在PDSCH上传输的TBS,具体的指示方式可以参考表2。这里数据信道的重复次数可以是频域重复次数也可以是时域重复次数,还可以是时域和频域的重复次数的总和。
S620,网络设备确定传输控制信道的资源大小,该控制信道用于承载第二控制信息。
具体地,控制信道可以是PDCCH,传输控制信道的资源大小可以是传输PDCCH的CCE的个数。对于PDCCH传输,网络设备需要确定采用多少个CCE来传输PDCCH。对于一个PDCCH通过一个CORESET上的控制资源来进行传输的场景,这里的资源大小也可以理解为聚合等级,即传输PDCCH的CCE的个数;当一个PDCCH通过两个及两个以上的CORESET上的控制资源来进行传输时,传输控制信道的资源大小可以理解为各个CORESET上的聚合等级之和,即传输PDCCH的CCE的总个数。
传输控制信道的资源大小也可以是该控制信道的重复发送次数;也可以是对传输该 控制信道的CCE的个数与该控制信道的重复发送次数进行数学处理后得到的一个值,例如,传输控制信道的资源大小等于传输该控制信道的CCE的个数与该控制信道的重复发送次数的乘积,当传输该控制信道的CCE的个数为4,该控制信道的重复发送次数为2时,则传输控制信道的资源大小为8。控制信道的重复发送次数可以是在时域上的重复发送次数,也可以是在频域上的重复发送次数,也可以是在时频域上的重复发送次数。
网络设备可以根据控制信道的净荷大小和无线信道质量中的至少一个因素确定传输控制信道的资源大小。
本申请中以传输控制信道的资源大小等于传输PDCCH的CCE的个数为例进行描述。
S630,网络设备根据传输控制信道的资源大小和第一控制信息确定第二控制信息。
如前所述,传输PDCCH的CCE的个数在一定程度上也可以反映PDSCH的TBS、调制方式和重复次数,从而可以利用PDCCH的聚合等级信息降低用于指示TBS、调制方式和重复次数的比特数。
如表2所示,第一控制信息中的MCS索引使用5比特来指示调制阶数和TBS。考虑到传输PDCCH的CCE的个数也体现了信道质量的范围,也可以间接反映PDSCH的调制阶数和TBS的范围。在PDCCH的编码前比特数确定的前提下,传输PDCCH的CCE的个数越大,说明此时的信道质量越差,PDSCH所能传输的TBS越小、所能使用的调制阶数越低、所需要的传输时间单元的个数越大、PDSCH所需要的重复次数越大。因此,利用传输PDCCH的CCE的个数信息,可以使用更少的比特数来指示PDSCH的调制阶数和TBS。
具体地,PDCCH承载第二控制信息,第二控制信息可以包括第一指示信息,第一指示信息用于指示第二MCS索引。第一指示信息可以通过第一字段来直接指示第二MCS索引,该第一字段只用于指示第二MCS索引;第一指示信息也可以是通过第二字段来指示第二MCS索引,该第二字段通过第二MCS索引与其它信息联合编码得到。本申请对具体如何指示第二MCS索引的方法不做限定。该第二MCS索引是根据传输PDCCH的CCE的个数和第一MCS索引确定的。根据传输PDCCH的CCE的个数和第一MCS索引确定第二MCS索引的方法至少有以下两种:
第一种,根据传输PDCCH的CCE的个数确定一个MCS索引的参考值,第二MCS索引是第一MCS索引在该MCS索引的参考值的基础上的偏移量。如表3所示,当传输PDCCH的CCE的个数等于4时,MCS索引的参考值为15,此时,如果第二MCS索引取值为2,则对应的第一MCS索引取值为17。终端设备可以根据第一MCS索引值确定PDSCH的调制阶数和TBS。具体实现时,MCS索引的参考值的确定与PDCCH中的DCI的载荷大小有关。使用相同的CCE的个数传输载荷大小不同的PDCCH,可以设置不同的MCS索引的参考值。例如,使用4个CCE传输200比特的PDCCH,MCS索引的参考值可以设置为15;而使用4个CCE传输400比特的PDCCH,MCS索引的参考值则可以设置为20。因为如果使用4个CCE传输400比特与使用4个CCE传输200比特的传输质量相同,则说明使用4个CCE传输400比特的场景的信道质量比使用4个CCE传输200比特的场景的信道质量要好,因此使用4个CCE传输400比特的场景的MCS索引的参考值可以设置得更大一些。不同的CCE的个数对应的MCS索引的参考值可以由协议预定义,也可以通过信令由网络设备通知终端设备。可以理解的是,表3只是传输控制信道的资源大小与MCS索引之间的映射关系的一个示意,并不作为对本申请实施例的限定。
表3
传输控制信道的资源大小 MCS索引的参考值
1 25
2 20
4 15
8 10
16 5
32 0
第二种,根据传输PDCCH的CCE的个数确定第一MCS索引取值的范围,第二MCS索引为该第一MCS索引的索引。由于CCE的个数可以反映第一MCS索引的取值范围,因此第二MCS索引所需要的比特数要小于第一MCS索引。表4示意了对第一MCS索引重新编号得到第二MCS索引的方法。其中,第二MCS索引与第一MCS索引之间的对应关系可以通过协议预定义,或者通过信令由网络设备通知给终端设备。可以理解的是,表4只是传输控制信道的资源大小、第一MCS索引和第二MCS索引三者之间的映射关系的一个示意,并不作为对本申请实施例的限定。在本申请中,映射关系在具体实现时可以是表格的形式,也可以是通过类似编程语言C语言中的if else或switch case等分支选择或判断语句来实现。当映射关系以表格的形式实现时,本申请不对表格中的各列的先后顺序进行限定:如表4所示,第一列是传输控制信道的资源大小、第二列是第一MCS索引、第三列是第二MCS索引,实际实现时也可以是第一列是传输控制信道的资源大小、第二列是第二MCS索引、第三列是第一MCS索引
表4
Figure PCTCN2018095535-appb-000002
上述将第一MCS索引映射到第二MCS索引的过程,可以使得PDCCH中用于指示MCS索引的比特数有效地减少,例如,从5比特减少到3比特甚至2比特。
第二控制信息可以包括第二指示信息,第二指示信息用于指示数据信道传输的时间单元个数的索引。第二指示信息可以通过第三字段来直接指示数据信道传输的时间单元个数的索引,该第三字段只用于指示数据信道传输的时间单元个数的索引;第二指示信息也可以是通过第四字段来指示数据信道传输的时间单元个数的索引,该第四字段通过数据信道传输的时间单元个数的索引与其它信息联合编码得到。本申请对具体如何指示数据信道传输的时间单元个数的索引的方法不做限定。网络设备根据传输PDCCH的CCE的个数和第一控制信息中的数据信道传输的时间单元的个数确定第二控制信息中的数据信道传输的时间单元的个数的索引。与上述确定第二MCS索引的方法类似,具体确定第二控制信息中的数据信道传输的时间单元的个数的索引信息的方法至少有以下两种:
第一种,根据传输PDCCH的CCE的个数确定数据信道传输的时间单元的个数的参考值,第二控制信息中的数据信道传输的时间单元的个数的索引是该数据信道传输的时间单元的个数在该时间单元个数的参考值的基础上的偏移量。如表5所示,当传输PDCCH的CCE的个数等于4时,数据信道传输的时间单元的个数的参考值为4,此时,如果第一控制信息中的数据信道传输的时间单元的个数为6,则对应的第二控制信息中的数据信道传输的时间单元的个数的索引为2。可以理解的是,表5只是传输控制信道的资源大小与数据信道传输的时间单元的个数的参考值之间的映射关系的一个示意,并不作为对本申请实施例的限定。
表5
Figure PCTCN2018095535-appb-000003
第二种,根据传输PDCCH的CCE的个数确定数据信道传输的时间单元的个数的范围,第二控制信息中的数据信道传输的时间单元的个数的索引为该范围内的索引。表6示意了一种得到数据信道传输的时间单元的个数的索引的方法。其中,数据信道传输的时间单元的个数与索引的对应关系可以通过协议预定义,或者通过信令由网络设备通知给终端设备。可以理解的是,表6只是传输控制信道的资源大小、数据信道传输的时间单元的个数和数据信道传输的时间单元的个数的索引三者之间的映射关系的一个示意,并不作为对本申请实施例的限定。
表6
Figure PCTCN2018095535-appb-000004
上述将数据信道传输的时间单元的个数映射到数据信道传输的时间单元的个数的索引的过程,可以使得PDCCH中用于指示数据信道传输的时间单元的个数的比特数有效地减少,例如,从比特减少到2比特。
第二控制信息可以包括第三指示信息,第三指示信息用于指示数据信道的重复次数的索引。第三指示信息可以通过第五字段来直接指示数据信道的重复次数的索引,该第五字段只用于指示数据信道的重复次数的索引;第三指示信息也可以是通过第六字段来指示数据信道的重复次数的索引,该第六字段通过数据信道的重复次数的索引与其它信息联合编码得到。本申请对具体如何指示数据信道的重复次数的索引的方法不做限定。网络设备根据传输PDCCH的CCE的个数和第一控制信息中的数据信道的重复次数确定第二控制信息中的数据信道的重复次数的索引信息。与上述确定第二MCS索引的方法类似,具体确定第二控制信息中的数据信道的重复次数的索引信息的方法至少有以下两种:
第一种,根据传输PDCCH的CCE的个数确定一个数据信道的重复次数的参考值,第二控制信息中的数据信道的重复次数的索引是该数据信道的重复次数在该参考值的基础上的一个偏移量。如表7所示,当传输PDCCH的CCE的个数等于4时,数据信道的重复次数的参考值为4,此时,如果第一控制信息中的数据信道的重复次数为6,则对应的第二控制信息中的数据信道的重复次数的索引为2。可以理解的是,表7只是传输控制信道的资源大小与数据信道的重复次数的参考值之间的映射关系的一个示意,并不作为对本申请实施例的限定。
表7
传输控制信道的资源大小 数据信道的重复次数的参考值
1 1
2 2
4 4
8 8
16 16
32 32
第二种,根据传输PDCCH的CCE的个数确定数据信道的重复次数的范围,第二控制信息中的数据信道的重复次数的索引为该范围内的索引。表8示意了一种得到数据信道的重复次数的索引的方法。其中,数据信道的重复次数与索引的对应关系可以通过协议预定义,或者通过信令由网络设备通知给终端设备。可以理解的是,表8只是传输控制信道的资源大小、数据信道的重复次数和数据信道的重复次数的索引三者之间的映射关系的一个示意,并不作为对本申请实施例的限定。
表8
Figure PCTCN2018095535-appb-000005
上述将数据信道的重复次数映射到数据信道的重复次数的索引的过程,可以使得PDCCH中用于指示数据信道的重复次数的比特数有效地减少,例如,从3比特减少到2比特。
第二控制信息包括的用于指示第二MCS索引的信息、用于指示数据信道传输的时间单元的个数的索引信息、用于指示数据信道的重复次数的索引信息可以是独立存在的字段,即第二控制信息中包括第二MCS索引值字段、数据信道传输的时间单元的个数的索引值字段、数据信道的重复次数索引字段,此时,也可以理解为第二控制信息包括第二MCS索引、数据信道传输的时间单元的个数的索引、数据信道的重复次数。第二控制信息也可以包括一个字段同时用于指示第二MCS索引、数据信道传输的时间单元的个数的索引、数据信道的重复次数索引中的至少两项内容,例如,可以对第二MCS索引、数据信道传输的时间单元的个数的索引、数据信道的重复次数索引中的至少两项进行联合编码或联合映射。
可以理解的是,第二控制信息也可以包括调制阶数的索引信息、传输块大小的索引信息、数据信道的码率的索引信息。网络设备根据传输PDCCH的CCE的个数和第一控制信息中的调制阶数、传输块大小、数据信道的码率确定第二控制信息中的调制阶数的索引信息、传输块大小的索引信息、数据信道的码率的索引信息。与上述确定第二MCS索引的信息的方法类似,在此不加赘述。
可选地,网络设备还可以根据CCE的资源映射方式确定第二控制信息,也就是根据传输控制信道的资源大小、CCE的资源映射方式和第一控制信息确定第二控制信息。这里的CCE的资源映射方式包括如图4所示的离散资源映射方式和如图5所示的集中式资源映射方式。具体实现时,可以分别为离散资源映射方式和集中式资源映射方式定义两套独立的如表3至表8所示的映射关系,从而使得网络设备和终端设备可以根据传输控制信道的资源大小、CCE的资源映射方式和第一控制信息确定第二控制信息。CCE的资源映射方式可以是协议预定义,也可以是网络设备通过信令通知给终端设备。
S640,网络设备发送控制信道,该控制信道承载第二控制信息。
网络设备对第二控制信息进行编码和调制后,通过控制信道将第二控制信息发送给终端设备。
网络设备根据第一控制信息,对数据进行编码和调制,然后通过数据信道将编码调制后的数据发送给终端设备。
S650,终端设备接收控制信道并对控制信道进行检测,确定传输控制信道的资源大小。
具体地,终端设备接收控制信道,在不同聚合级别上的搜索空间内对PDCCH进行盲检,从而确定是否有发给自己的PDCCH,确定传输PDCCH的资源大小。终端设备支持的聚合级别由协议约定或通过信令由网络设备配置给终端设备。
S660,终端设备在搜索空间内盲检到PDCCH之后,对PDCCH进行解调译码,获取第二控制信息,并根据第二控制信息和资源大小确定第一控制信息。
可选地,当网络设备是根据传输控制信道的资源大小、CCE的资源映射方式和第一控制信息确定第二控制信息时,终端设备可以根据传输控制信道的资源大小、CCE的资源映射方式和第二控制信息确定第一控制信息。
终端设备具体如何确定出第一控制信息,可以参考步骤S630直接得到,具体描述如下。
当第一控制信息包括第一MCS索引、第二控制信息包括第一指示信息时,终端设备可以根据传输控制信道的资源大小和第二MCS索引确定第一MCS索引。
第二MCS索引可以是第一MCS索引在MCS索引参考值的基础上的偏移量,该MCS索引的参考值是根据传输控制信道的资源大小确定的。表3为一种可能的MCS索引的参考值与传输控制信道的资源大小之间的映射关系。终端设备在获得了传输控制信道的资源大小之后,根据MCS索引的参考值与传输控制信道的资源大小之间的映射关系确定出MCS索引的参考值,然后基于该MCS索引的参考值和第二MCS索引可以确定出第一MCS 索引。
第二MCS索引也可以是第一MCS索引的索引。表4为一种可能的传输控制信道的资源大小、第一MCS索引和第二MCS索引三者之间的映射关系。终端设备在获得了传输控制信道的资源大小之后,根据传输控制信道的资源大小、第一MCS索引和第二MCS索引三者之间的映射关系,以及传输控制信道的资源大小和第二MCS索引可以确定出第一MCS索引。
当第一控制信息包括数据信道传输的时间单元的个数、第二控制信息包括第二指示信息时,终端设备可以根据传输控制信道的资源大小和数据信道传输的时间单元的个数的索引确定数据信道传输的时间单元的个数。
数据信道传输的时间单元的个数的索引可以是数据信道传输的时间单元的个数在时间单元个数的参考值基础上的偏移量,该时间单元个数的参考值是根据传输控制信道的资源大小确定的。表5为一种可能的传输控制信道的资源大小与数据信道传输的时间单元的个数的参考值之间的映射关系。终端设备在获得了传输控制信道的资源大小之后,根据传输控制信道的资源大小与数据信道传输的时间单元的个数的参考值之间的映射关系确定出数据信道传输的时间单元的个数的参考值,然后基于该数据信道传输的时间单元的个数的参考值和数据信道传输的时间单元的个数的索引可以确定出数据信道传输的时间单元的个数。
数据信道传输的时间单元的个数的索引也可以与传输控制信道的资源大小、数据信道传输的时间单元的个数之间有如表6所示的映射关系。终端设备在获得了传输控制信道的资源大小之后,根据传输控制信道的资源大小、数据信道传输的时间单元的个数和数据信道传输的时间单元的个数的索引三者之间的映射关系,以及传输控制信道的资源大小和数据信道传输的时间单元的个数索引可以确定出数据信道传输的时间单元的个数。
当第一控制信息包括数据信道的重复次数、第二控制信息包括第三指示信息时,终端设备可以根据传输控制信道的资源大小和数据信道的重复次数索引确定数据信道的重复次数。
数据信道的重复次数索引可以是数据信道的重复次数在重复次数的参考值基础上的偏移量,该重复次数的参考值是根据传输控制信道的资源大小确定的。表7为一种可能的传输控制信道的资源大小与重复次数的参考值之间的映射关系。终端设备在获得了传输控制信道的资源大小之后,根据传输控制信道的资源大小与重复次数的参考值之间的映射关系确定出重复次数的参考值,然后基于该重复次数的参考值和数据信道的重复次数索引可以确定出数据信道的重复次数。
数据信道的重复次数的索引也可以与传输控制信道的资源大小、数据信道的重复次数之间有如表8所示的映射关系。终端设备在获得了传输控制信道的资源大小之后,根据传输控制信道的资源大小、数据信道的重复次数和数据信道的重复次数的索引三者之间的映射关系,以及传输控制信道的资源大小和数据信道的重复次数的索引可以确定出数据信道的重复次数。
终端设备获得第一控制信息后,可以根据第一控制信息对数据信道上的数据进行解调和译码。
以上实施例中,数据信道传输的时间单元的个数和数据信道的重复发送次数的信息是通过第二控制信息显示地发送给终端设备的。如图6A所示,本申请还提供一种通信方法,通过传输控制信道的资源的大小隐式指示数据信道传输的时间单元的个数和数据信道的重复发送次数。在本申请中,数据信道的重复发送次数与数据信道的重复次数可以等同互换。
S6A-1,网络设备确定传输控制信道的资源大小,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输。第一参数可以包括MCS和TBS等信息。关于控制信道和数据信道的更详细的描述可以参见前述基本概念介绍中控制信道和数据信道的相关描述。关于传输控制信道的资源大小以及如何确定传输控制信道的资源大小,可以参考步骤S620。
由于传输控制信道的资源的大小在一定程度上反映了无线信道质量,而数据信道传输的时间单元的个数和数据信道的重复发送次数也都在一定程度上反映了无线信道质量,因此一种可能的方案是在传输控制信道的资源的大小和数据信道的重复发送次数之间建立第一映射关系、在传输控制信道的资源的大小和数据信道传输的时间单元的个数之间建立第二映射关系,该第一映射关系和/或第二映射关系可以预定义或者是通过RRC信令半静态配置给终端设备,从而可以减少第一参数的比特数。
可选地,传输控制信道的资源的大小与数据信道的重复发送次数之间存在第一映射关系,如表9所示。
表9
传输控制信道的资源大小 数据信道的重复发送次数
1 1
2 2
4 4
8 8
16 16
32 32
可选地,传输控制信道的资源的大小与数据信道传输的时间单元的个数之间存在第二映射关系,如表10所示。
表10
传输控制信道的资源大小 数据信道传输的时间单元的个数
1 1
2 2
4 4
8 8
16 16
32 32
可以理解的是,上述表9和表10中的具体取值只是第一映射关系和第二映射关系的示意,并不作为对本申请实施例的限定。
S6A-2,网络设备发送控制信道和数据信道。具体地,网络设备按照确定的传输控 制信道的资源大小发送控制信道,按照确定的数据信道传输的时间单元和/或数据信道的重复发送次数发送数据信道。
S6A-3,终端设备接收控制信道并对控制信道进行检测,确定传输控制信道的资源大小。更具体的描述可以参考S650。
S6A-4,终端设备根据传输控制信道的资源大小与数据信道传输的时间单元的个数之间的映射关系,以及传输控制信道的资源大小确定数据信道传输的时间单元的个数;和/或,
终端设备根据传输控制信道的资源大小与数据信道的重复发送次数之间的映射关系,以及传输控制信道的资源大小确定数据信道的重复发送次数。
通过采用上述方法,数据信道传输的时间单元的个数和/或数据信道的重复发送次数不需要通过控制信道中的第一参数来指示给终端设备,因此有效地降低了控制信道的净荷大小,提升了控制信道的传输效率和可靠性。
可以理解的是,上述图6A所示的方法实施例和图6A所示的方法实施例中的相关术语可以通用,相关方法实施例根据其内在的逻辑关系也可以相互结合形成新的方法实施例。
上述本申请提供的实施例中,分别从作为发送设备的网络设备、作为接收设备的终端设备以及发送设备和接收设备之间交互的角度对本申请实施例提供的通信方法进行了介绍。可以理解的是,各个设备,例如发送设备和接收设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图7和图8为本申请的实施例提供的两种可能的通信装置的结构示意图。该通信装置实现上述图6和图6A方法实施例中作为发送设备的网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的无线接入网设备120。
如图7所示,通信装置700包括处理单元710和发送单元720。
对应图6所示的方法实施例,有如下的装置实施例。
处理单元710用于确定第一控制信息,第一控制信息用于控制数据在数据信道上的传输。处理单元710还用于确定传输控制信道的资源大小,控制信道用于承载第二控制信息。处理单元710还用于根据上述资源大小和第一控制信息确定第二控制信息;
发送单元720用于在上述控制信道上发送第二控制信息。
当第一控制信息包括第一调制编码方案索引、第二控制信息包括第二调制编码方案索引的信息时,所述处理单元710还用于根据传输控制信道的资源大小和第一调制编码方案索引确定所述第二调制编码方案索引。其中,第二调制编码方案索引可以为第一调制编码方案索引的索引。
当第一控制信息包括所述数据信道传输的时间单元的个数、第二控制信息包括所述 数据信道传输的时间单元的个数的索引信息时,处理单元710还用于根据所述资源大小和所述第一控制信息中的所述数据信道传输的时间单元的个数确定所述第二控制信息中的所述数据信道传输的时间单元的个数的索引信息。
传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数。
当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
对应图6A所示的方法实施例,有如下的装置实施例。
处理单元710用于确定传输控制信道的资源大小,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输。传输控制信道的资源大小与数据信道的重复发送次数之间存在第一映射关系;和/或,传输控制信道的资源大小与数据信道传输的时间单元的个数之间存在第二映射关系。
发送单元720用于发送控制信道和数据信道。
第一映射关系为预定义,或发送单元720还用于通过无线资源控制消息将第一映射关系通知给终端设备。
第二映射关系为预定义,或发送单元720还用于通过无线资源控制消息将第一映射关系通知给终端设备。
传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数或传输控制信道所使用的控制信道单元的个数与控制信道的重复发送次数的乘积。
当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
控制信道的重复发送次数为控制信道在时域上的重复发送次数,或为控制信道在频域上的重复发送次数。
如图8所示,通信装置800包括处理器810,收发器820和存储器830,其中,存储器830可以用于存储处理器810执行的代码。通信装置800中的各个组件之间通过内部连接通路互相通信,如通过总线传递控制和/或数据信号。处理器810用于执行处理单元710的功能,收发器820用于执行发送单元720的功能。
有关上述处理单元710、处理器810和发送单元720、收发器820的其它功能描述可以参考上述图6和图6A所示的方法实施例直接得到。上述方法实施例中的信息发送功能由发送单元720或收发器820完成,其余的数据处理功能均由处理单元710或处理器810完成,在此不加赘述。
图9和图10为本申请的实施例的另外两种可能的通信装置的结构示意图。该通信装置实现上述图6和图6A所示的方法实施例中作为接收设备的终端设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140。
如图9所示,通信装置900包括接收单元910和处理单元920。
对应图6所示的方法实施例,有如下装置实施例。
接收单元910用于接收控制信道,所述控制信道用于承载第二控制信息;
处理单元920用于对所述控制信道进行检测,确定传输所述控制信道的资源大小,
处理单元920还用于通过所述控制信道获取所述第二控制信息,并根据所述第二控制信息和所述资源大小确定所述第一控制信息,所述第一控制信息用于控制数据在数据信道上的传输。
当第一控制信息包括第一调制编码方案索引、第二控制信息包括第二调制编码方案索引的信息时,所述处理单元920还用于根据传输控制信道的资源大小和第二调制编码方案索引确定第一调制编码方案索引。其中,第二调制编码方案索引可以为第一调制编码方案索引的索引。
当第一控制信息包括所述数据信道传输的时间单元的个数、第二控制信息包括数据信道传输的时间单元的个数的索引信息时,处理单元920还用于根据所述资源大小和所述第二控制信息中的所述数据信道传输的时间单元的个数的索引信息确定所述第一控制信息中的所述数据信道传输的时间单元的个数。
传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数。
当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
对应图6A所示的方法实施例,有如下的装置实施例。
接收单元910用于接收控制信道,控制信道承载第一参数,第一参数用于控制数据在数据信道上的传输。
处理单元920用于对控制信道进行检测,确定传输控制信道的资源大小。
处理单元920还用于根据第一映射关系和传输控制信道的资源大小确定数据信道的重复发送次数,第一映射关系为传输控制信道的资源大小与数据信道的重复发送次数之间的映射关系;和/或,
处理单元920还用于根据第二映射关系和传输控制信道的资源大小确定数据信道传输的时间单元的个数,第二映射关系为传输控制信道的资源大小与数据信道传输的时间单元的个数之间的映射关系。
接收单元910还用于根据数据信道的重复发送次数和/或数据信道传输的时间单元的个数接收所述数据信道。
第一映射关系为预定义,或接收单元910还用于通过接收来自网络设备的无线资源控制消息获取第一映射关系。
第二映射关系为预定义,或接收单元910还用于通过接收来自网络设备的无线资源控制消息获取第一映射关系。
传输控制信道的资源大小为传输控制信道所使用的控制信道单元的个数或控制信道的重复发送次数或传输控制信道所使用的控制信道单元的个数与控制信道的重复发送次数的乘积。
当传输控制信道所使用的控制信道单元的个数大于一时,控制信道单元属于至少一个控制资源集合。
控制信道的重复发送次数为控制信道在时域上的重复发送次数,或为控制信道在频域上的重复发送次数。
如图10所示,通信装置1000包括处理器1020,收发器1010和存储器1030,其中,存储器1030可以用于存储处理器1020执行的代码。通信装置1000中的各个组件之间通过内部连接通路互相通信,如通过总线传递控制和/或数据信号。处理器1020用于执行处理单元920的功能,收发器1010用于执行接收单元910的功能。
有关上述接收单元910、收发器1010和处理单元920、处理器1020的其它功能描述可以参考上述图6和图6A所示的方法实施例直接得到。上述方法实施例中的信息接收功能由接收单元910或收发器1010完成,其余的数据处理功能均由处理单元920或处理器1020完成,在此不加赘述。
可以理解的是,图8和图10仅仅示出了该通信装置的一种设计。在实际应用中,该通信装置可以包括任意数量的接收器和处理器,而所有可以实现本申请的实施例的通信装置都在本申请的保护范围之内。
上述图7至图10所示的装置实施例,是参考上述图6和图6A所示的部分方法实施例得到的。可以理解的是,参考本申请的其它方法实施例以及上述图7至图10所示的装置实施例,可以相应得到本申请的其它方法实施例对应的装置实施例,在此不加赘述。
可以理解的是,当本申请的实施例应用于网络设备芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送上述第二控制信息。该第二控制信息经由网络设备的其它模块发送给终端设备。
当本申请的实施例应用于终端设备芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收上述第二控制信息,该第二控制信息是网络设备发送给终端设备的。
本申请的实施例中方法和装置适用于URLLC业务的控制信息的传输,但这并作为本申请的应用范围的限定。本申请的实施例中的方法和装置也可以适用于mMTC业务和eMBB业务的控制信息的传输。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质 写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于发送设备或接收设备中。当然,处理器和存储介质也可以作为分立组件存在于发送设备或接收设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不作为对本申请的限定。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (20)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备接收控制信道并对所述控制信道进行检测,确定传输所述控制信道的资源大小,所述控制信道承载第一参数,所述第一参数用于控制数据在数据信道上的传输;
    所述终端设备根据第一映射关系和所述传输控制信道的资源大小确定数据信道的重复发送次数,所述第一映射关系为所述传输控制信道的资源大小与所述数据信道的重复发送次数之间的映射关系;
    所述终端设备根据所述数据信道的重复发送次数接收所述数据信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一映射关系为预定义或所述终端设备通过接收来自网络设备的无线资源控制消息获取。
  3. 根据权利要求1或2所述的方法,其特征在于,所述传输控制信道的资源大小为传输所述控制信道所使用的控制信道单元的个数或所述控制信道的重复发送次数或传输所述控制信道所使用的控制信道单元的个数与所述控制信道的重复发送次数的乘积。
  4. 根据权利要求3所述的方法,特征在于,当传输所述控制信道所使用的控制信道单元的个数大于一时,所述控制信道单元属于至少一个控制资源集合。
  5. 根据权利要求3或4所述的方法,其特征在于,所述控制信道的重复发送次数为所述控制信道在时域上的重复发送次数,或为所述控制信道在频域上的重复发送次数。
  6. 一种通信方法,其特征在于,所述方法包括:
    网络设备确定传输控制信道的资源大小,所述控制信道承载第一参数,所述第一参数用于控制数据在数据信道上的传输,所述传输控制信道的资源大小与所述数据信道的重复发送次数之间存在第一映射关系;
    所述网络设备发送所述控制信道和所述数据信道。
  7. 根据权利要求6所述的方法,其特征在于,所述第一映射关系为预定义或所述网络设备通过无线资源控制消息将第一映射关系通知给终端设备。
  8. 根据权利要求6或7所述的方法,其特征在于,所述传输控制信道的资源大小为传输所述控制信道所使用的控制信道单元的个数或所述控制信道的重复发送次数或传输所述控制信道所使用的控制信道单元的个数与所述控制信道的重复发送次数的乘积。
  9. 根据权利要求8所述的方法,特征在于,当传输所述控制信道所使用的控制信道单元的个数大于一时,所述控制信道单元属于至少一个控制资源集合。
  10. 根据权利要求8或9所述的方法,其特征在于,所述控制信道的重复发送次数为所述控制信道在时域上的重复发送次数,或为所述控制信道在频域上的重复发送次数。
  11. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收控制信道,所述控制信道承载第一参数,所述第一参数用于控制数据在数据信道上的传输;
    处理单元,用于对所述控制信道进行检测,确定传输所述控制信道的资源大小;
    所述处理单元还用于根据第一映射关系和所述传输控制信道的资源大小确定数据信道的重复发送次数,所述第一映射关系为所述传输控制信道的资源大小与所述数据信道的重复发送次数之间的映射关系;
    所述接收单元还用于根据所述数据信道的重复发送次数接收所述数据信道。
  12. 根据权利要求11所述的装置,其特征在于,所述第一映射关系为预定义,或所述接收单元还用于通过接收来自网络设备的无线资源控制消息获取所述第一映射关系。
  13. 根据权利要求11或12所述的装置,其特征在于,所述传输控制信道的资源大小为传输所述控制信道所使用的控制信道单元的个数或所述控制信道的重复发送次数或传输所述控制信道所使用的控制信道单元的个数与所述控制信道的重复发送次数的乘积。
  14. 根据权利要求13所述的装置,特征在于,当传输所述控制信道所使用的控制信道单元的个数大于一时,所述控制信道单元属于至少一个控制资源集合。
  15. 根据权利要求13或14所述的装置,其特征在于,所述控制信道的重复发送次数为所述控制信道在时域上的重复发送次数,或为所述控制信道在频域上的重复发送次数。
  16. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于确定传输控制信道的资源大小,所述控制信道承载第一参数,所述第一参数用于控制数据在数据信道上的传输,所述传输控制信道的资源大小与所述数据信道的重复发送次数之间存在第一映射关系;
    发送单元,用于发送所述控制信道和所述数据信道。
  17. 根据权利要求16所述的装置,其特征在于,所述第一映射关系为预定义,或所述发送单元还用于通过无线资源控制消息将所述第一映射关系通知给终端设备。
  18. 根据权利要求16或17所述的装置,其特征在于,所述传输控制信道的资源大小为传输所述控制信道所使用的控制信道单元的个数或所述控制信道的重复发送次数或传输所述控制信道所使用的控制信道单元的个数与所述控制信道的重复发送次数的乘积。
  19. 根据权利要求18所述的装置,特征在于,当传输所述控制信道所使用的控制信道单元的个数大于一时,所述控制信道单元属于至少一个控制资源集合。
  20. 根据权利要求18或19所述的装置,其特征在于,所述控制信道的重复发送次数为所述控制信道在时域上的重复发送次数,或为所述控制信道在频域上的重复发送次数。
PCT/CN2018/095535 2017-07-14 2018-07-13 通信方法和设备 WO2019011307A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019028136-3A BR112019028136A2 (pt) 2017-07-14 2018-07-13 método e dispositivo de comunicação
EP18831937.0A EP3627940B1 (en) 2017-07-14 2018-07-13 Communication method and device
US16/719,413 US11444737B2 (en) 2017-07-14 2019-12-18 Communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710575692.6A CN109257820B (zh) 2017-07-14 2017-07-14 通信方法和设备
CN201710575692.6 2017-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/719,413 Continuation US11444737B2 (en) 2017-07-14 2019-12-18 Communication method and device

Publications (1)

Publication Number Publication Date
WO2019011307A1 true WO2019011307A1 (zh) 2019-01-17

Family

ID=65001932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095535 WO2019011307A1 (zh) 2017-07-14 2018-07-13 通信方法和设备

Country Status (5)

Country Link
US (1) US11444737B2 (zh)
EP (1) EP3627940B1 (zh)
CN (1) CN109257820B (zh)
BR (1) BR112019028136A2 (zh)
WO (1) WO2019011307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196119A1 (zh) * 2020-04-02 2021-10-07 华为技术有限公司 数据传输的方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075609A (ja) * 2017-10-12 2019-05-16 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11425702B2 (en) * 2018-08-06 2022-08-23 Qualcomm Incorporated Repetition configuration determination
US10892858B2 (en) * 2018-09-28 2021-01-12 At&T Intellectual Property I, L.P. Chain broadcasting in vehicle-to-everything (V2X) communications
WO2020164140A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 通信方法和装置
CN111601382B (zh) * 2019-02-20 2022-12-13 华为技术有限公司 一种数据传输方法及通信装置
CN111867066B (zh) * 2019-04-30 2023-04-07 大唐移动通信设备有限公司 一种信息指示和确定指示信息的方法及设备
CN111866920B (zh) * 2019-04-30 2022-03-29 中国信息通信研究院 一种物理上行共享信道发送方法和设备
US11888674B2 (en) * 2020-02-14 2024-01-30 Qualcomm Incorporated 16-quadrature amplitude modulation (16-QAM) downlink configuration
US10972958B1 (en) 2020-03-05 2021-04-06 At&T Intellectual Property I, L.P. Location-based route management for vehicle-to-everything relay communications
CN113660648B (zh) * 2021-08-13 2024-04-05 Oppo广东移动通信有限公司 多媒体数据的传输方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500259A (zh) * 2008-01-30 2009-08-05 大唐移动通信设备有限公司 在高速共享数据信道上重传数据的方法、系统及装置
CN104518843A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 公有消息发送、接收方法、装置及系统
CN106717030A (zh) * 2014-09-26 2017-05-24 阿尔卡特朗讯 用于防止消息冲突的方法和装置
WO2017119467A1 (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ ユーザ装置、基地局、信号受信方法及び信号送信方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084238B2 (en) * 2011-09-12 2015-07-14 Blackberry Limited Searching space and operation for enhanced PDCCH in LTE systems
WO2013180405A1 (ko) * 2012-05-29 2013-12-05 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
EP3220569A1 (en) * 2012-08-02 2017-09-20 Fujitsu Limited Control channels for wireless communication
US9635644B2 (en) * 2012-08-10 2017-04-25 Qualcomm Incorporated Downlink coverage enhancements
CN103929266B (zh) * 2013-01-15 2019-08-09 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端
US9420576B2 (en) * 2013-04-23 2016-08-16 Qualcomm Incorporated PDSCH transmission schemes with compact downlink control information (DCI) format in new carrier type (NCT) in LTE
EP3026831B1 (en) * 2013-07-26 2019-11-13 LG Electronics Inc. Method for transmitting signal for mtc and apparatus for same
WO2015046830A1 (ko) * 2013-09-30 2015-04-02 주식회사 케이티 하향링크 데이터 채널을 송수신하는 방법 및 그 장치
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
US9973303B2 (en) * 2013-12-20 2018-05-15 Samsung Electronics Co., Ltd. Determining timing for transmission or reception of signaling in a coverage enhanced operating mode
EP3079317B1 (en) * 2013-12-27 2019-12-11 Huawei Technologies Co., Ltd. Broadcast control bandwidth allocation and data transceiving method and apparatus
US9955465B2 (en) * 2014-10-03 2018-04-24 Intel IP Corporation Downlink control information (DCI) design for LTE devices
US10111066B2 (en) * 2015-01-28 2018-10-23 Hfi Innovation Inc. Methods to support measurements for user equipment
WO2016119232A1 (en) * 2015-01-30 2016-08-04 Mediatek Singapore Pte. Ltd. Methods for determination of repetition number of physical data channel
EP3051728A1 (en) * 2015-01-30 2016-08-03 Alcatel Lucent Method for providing a repetition rate
US20180198650A1 (en) * 2017-01-06 2018-07-12 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US11006425B2 (en) * 2017-02-03 2021-05-11 Apple Inc. Mechanisms to handle DL (downlink) control and data channels with different numerologies in NR (new radio)
KR102373791B1 (ko) * 2017-05-04 2022-03-14 삼성전자주식회사 통신 시스템에서 제어 정보 탐색 및 데이터 정보 전송을 위한 방법 및 장치
US12114340B2 (en) * 2020-05-29 2024-10-08 Qualcomm Incorporated Apparatus and method for monitoring for a control signal in a resource block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500259A (zh) * 2008-01-30 2009-08-05 大唐移动通信设备有限公司 在高速共享数据信道上重传数据的方法、系统及装置
CN104518843A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 公有消息发送、接收方法、装置及系统
CN106717030A (zh) * 2014-09-26 2017-05-24 阿尔卡特朗讯 用于防止消息冲突的方法和装置
WO2017119467A1 (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ ユーザ装置、基地局、信号受信方法及び信号送信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cellular System Support for Ultra-Low Complexity and Low Throughput Internet of Things (CIoT) (Release 13", 3 GPP; TECHNICAL SPECIFICATION GROUP GSM/EDGE RADIO ACCESS NETWORK, vol. GERAN WG1, 18 December 2015 (2015-12-18), pages 1 - 495, XP051047128 *
See also references of EP3627940A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196119A1 (zh) * 2020-04-02 2021-10-07 华为技术有限公司 数据传输的方法和装置

Also Published As

Publication number Publication date
CN109257820B (zh) 2021-12-03
US11444737B2 (en) 2022-09-13
US20200145165A1 (en) 2020-05-07
EP3627940B1 (en) 2022-02-23
EP3627940A1 (en) 2020-03-25
BR112019028136A2 (pt) 2020-07-28
EP3627940A4 (en) 2020-05-20
CN109257820A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
US11444737B2 (en) Communication method and device
AU2022224872B2 (en) Method and apparatus for partial retransmission in wireless cellular communication system
CN109600836B (zh) 信息传输方法和装置
CN113796142B (zh) 在无线通信系统中发送和接收旁路控制信息的方法和装置
US11870566B2 (en) Method and device for transmitting and receiving control information in wireless cellular communication system
EP2947806B1 (en) Data transmission/reception method and apparatus of low-cost terminal in mobile communication system
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
US11039430B2 (en) Method and device for setting control and data channel transmission time in wireless communication system
US20210250159A1 (en) Resource configuration method and apparatus
US11337188B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
CN111989963A (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
US11864188B2 (en) Method and apparatus for scheduling and transmitting data in wireless cellular communication system
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
CN113517946A (zh) 一种通信方法及装置
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN111669251B (zh) 传输块大小的确定方法及通信装置
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
US20210410006A1 (en) Method for determining transport block size and communications apparatus
WO2023284647A1 (zh) 信息传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831937

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019028136

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018831937

Country of ref document: EP

Effective date: 20191220

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019028136

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191227