WO2022151987A1 - 信号发送、接收方法及装置 - Google Patents

信号发送、接收方法及装置 Download PDF

Info

Publication number
WO2022151987A1
WO2022151987A1 PCT/CN2021/143078 CN2021143078W WO2022151987A1 WO 2022151987 A1 WO2022151987 A1 WO 2022151987A1 CN 2021143078 W CN2021143078 W CN 2021143078W WO 2022151987 A1 WO2022151987 A1 WO 2022151987A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
signal
modulation
spectral efficiency
modulation order
Prior art date
Application number
PCT/CN2021/143078
Other languages
English (en)
French (fr)
Inventor
宣一荻
谢信乾
杨育波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022151987A1 publication Critical patent/WO2022151987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present application relates to the field of communication technologies, and in particular, to methods and apparatuses for transmitting and receiving signals.
  • the fifth generation (5th generation, 5G) mobile communication system namely the New radio interface (NR) system, supports a variety of modulation coding schemes (MCS) ), each MCS includes modulation order, target code rate, and spectral efficiency.
  • MCS modulation coding schemes
  • the network device sends scheduling information of the terminal device, such as resource allocation information, MCS index, etc., through the physical downlink control channel (PDCCH) during initial scheduling.
  • the terminal device After receiving and recognizing that the current scheduling information is semi-persistent scheduling information, the terminal device stores the scheduling information, and then communicates based on the stored scheduling information in a period with a fixed interval.
  • the network device can also configure the overhead through the high-level parameter xOverHead to calculate the transport block (TB) size.
  • the MCS configured during initial scheduling has better performance for the overhead configured by the high-level parameter xOverHead.
  • the overhead may change dynamically over time, that is, the overhead of high-level parameter configuration may be different from the actual overhead.
  • the MCS configured during initial scheduling may not be the optimal MCS under the current actual overhead.
  • the present application provides a method and device for transmitting and receiving signals, which can transmit downlink signals in a better modulation and coding manner, thereby improving communication performance.
  • a method for determining a modulation and coding mode is provided.
  • the method can be executed by a terminal device or by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • a component of the terminal device such as a processor, a chip, or a chip system of the terminal device.
  • the implementation of this method is described as an example.
  • the method includes: the terminal device receives first indication information from a network device, the first indication information indicates a first index value, the first index value corresponds to the first modulation and coding scheme MCS and the second MCS, the first MCS and the second The MCS belongs to the first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate; the terminal device determines that the MCS corresponding to the first signal is the first MCS or the second MCS, and according to the The MCS corresponding to a signal receives the first signal.
  • the first index value indicated by the network device to the terminal device corresponds to two MCSs.
  • the terminal device can select a better MCS among the two MCSs to receive the first MCS according to actual transmission requirements. signal, so that the terminal device can use the better MCS to communicate and improve the communication performance.
  • the terminal device determining that the MCS corresponding to the first signal is the first MCS or the second MCS includes: the terminal device determining, according to the first overhead value, that the MCS corresponding to the first signal is the first MCS or the second MCS,
  • the first overhead value is the number of resource elements RE that are not used to carry the first signal in the time-frequency resource corresponding to the first signal.
  • the terminal device can select the first MCS or the second MCS according to the actual cost. Compared with the solution in which the terminal device can only use a fixed MCS in the prior art, the terminal device can flexibly select the optimal MCS. MCS, thereby improving communication performance.
  • the MCS corresponding to the first signal when the first overhead value is less than or equal to the first overhead threshold, the MCS corresponding to the first signal is the first MCS; when the first overhead value is greater than the first overhead threshold, the first MCS The MCS corresponding to the signal is the second MCS.
  • a method for determining a modulation and coding mode is provided.
  • the method can be executed by a network device or by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • a network device is used. The implementation of this method is described as an example.
  • the method includes: the network device sends first indication information to the terminal device, where the first indication information indicates a first index value, the first index value corresponds to the first modulation and coding mode MCS and the second MCS, and the first MCS and the second MCS belong to The first modulation and coding mode set, any MCS in the first modulation and coding mode set includes a modulation order and a target code rate; the network device sends the first signal according to the MCS corresponding to the first signal, and the MCS corresponding to the first signal is the first signal. MCS or second MCS.
  • the first index value indicated by the network device to the terminal device corresponds to two MCSs.
  • the network device can select a better MCS among the two MCSs to send the first MCS according to actual transmission requirements.
  • the corresponding terminal device can select the better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device use the better MCS to communicate and improve the communication performance.
  • the spectral efficiency of the first MCS is equal to the spectral efficiency of the second MCS. Based on this possible design, the present application provides different MCSs with equal spectral efficiency. That is, in the present application, the spectral efficiencies corresponding to different MCSs are equal.
  • the modulation order of the first MCS is 8, and the target code rate is 948/1024; the modulation order of the second MCS is 10, and the target code rate is 758.5 /1024; the spectral efficiency of the first MCS and the second MCS is 7.4063;
  • the modulation order of the first MCS is 8, and the target code rate is 916.5/1024; the modulation order of the second MCS is 10, and the target code rate is 733 /1024; the spectral efficiency of the first MCS and the second MCS is 7.1602.
  • the spectral efficiency of the first MCS is not equal to the spectral efficiency of the second MCS.
  • the modulation order of the first MCS is 8
  • the target coding rate is 916.5/1024, and the spectral efficiency is 7.4063
  • the modulation order of the second MCS is 10
  • the target code rate is 790/1024, and the spectral efficiency is 7.7149.
  • the present application provides a variety of MCSs, including MCSs with a modulation order of 10, that is, a modulation mode of 1024QAM, to improve the diversity of MCSs and provide more MCS options for 1024QAM scenarios.
  • a method for determining a modulation and coding mode is provided.
  • the method can be executed by a terminal device, and can also be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • a component of the terminal device such as a processor, a chip, or a chip system of the terminal device.
  • the implementation of this method is described as an example.
  • the method includes: the terminal device receives first indication information from a network device, the first indication information indicates a first modulation and coding scheme MCS, the first MCS belongs to a first modulation and coding scheme set, and any one of the first modulation and coding scheme set
  • the MCS includes a modulation order and a target code rate; the terminal device determines that the MCS corresponding to the first signal is the first MCS or the second MCS, and receives the first signal according to the MCS corresponding to the first signal.
  • the difference between the index value corresponding to the second MCS and the index value corresponding to the first MCS is the first value, or the spectral efficiency of the second MCS is equal to the spectral efficiency of the first MCS.
  • the network device indicates the first MCS to the terminal device, and in the subsequent downlink transmission, the terminal device can select a better MCS among the first MCS and the second MCS associated with the first MCS to receive the first signal, Therefore, the terminal device uses the better MCS to communicate, and the communication performance is improved.
  • the terminal device determining that the MCS corresponding to the first signal is the first MCS or the second MCS includes: the terminal device determining, according to the first overhead value, that the MCS corresponding to the first signal is the first MCS or the second MCS,
  • the first overhead value is the number of resource elements RE that are not used to carry the first signal in the time-frequency resource corresponding to the first signal.
  • the MCS corresponding to the first signal when the first overhead value is less than or equal to the first overhead threshold, the MCS corresponding to the first signal is the first MCS; when the first overhead value is greater than the first overhead threshold, the first MCS The MCS corresponding to the signal is the second MCS.
  • the terminal device may determine the first MCS according to the first indication information; or, may determine the first MCS and the second MCS according to the first indication information.
  • the terminal device determines the first MCS according to the first indication information, and if the second MCS is not determined, when the first overhead value is greater than the first overhead threshold, the terminal device determines the second MCS.
  • a method for determining a modulation and coding mode is provided.
  • the method can be executed by a network device or by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • a component of the network device such as a processor, a chip, or a chip system of the network device.
  • the implementation of this method is described as an example.
  • the method includes: a network device sends first indication information to a terminal device, where the first indication information indicates a first modulation and coding scheme MCS, the first MCS belongs to a first modulation and coding scheme set, and any MCS in the first modulation and coding scheme set includes The modulation order and the target code rate; the network device sends the first signal according to the MCS corresponding to the first signal, and the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the difference between the index value corresponding to the second MCS and the index value corresponding to the first MCS is the first value, or the spectral efficiency of the second MCS is equal to the spectral efficiency of the first MCS.
  • the network device indicates the first MCS to the terminal device, and in the subsequent downlink transmission, the network device can select a better MCS among the first MCS and the second MCS associated with the first MCS to send the first signal, The corresponding terminal device can select a better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device use the better MCS to communicate and improve the communication performance.
  • the spectral efficiency of the first MCS is equal to the spectral efficiency of the second MCS.
  • the modulation order of the first MCS is 8, and the target code rate is 948/1024; the modulation order of the second MCS is 10, and the target code rate is 758.5 /1024; the spectral efficiency of the first MCS and the second MCS is 7.4063;
  • the modulation order of the first MCS is 8, and the target code rate is 916.5/1024; the modulation order of the second MCS is 10, and the target code rate is 733 /1024; the spectral efficiency of the first MCS and the second MCS is 7.1602.
  • the spectral efficiency of the first MCS is not equal to the spectral efficiency of the second MCS.
  • the modulation order of the first MCS is 8
  • the target coding rate is 916.5/1024, and the spectral efficiency is 7.4063
  • the modulation order of the second MCS is 10
  • the target code rate is 790/1024, and the spectral efficiency is 7.7149.
  • a fifth aspect provides a method for determining a modulation and coding method.
  • the method can be executed by a terminal device or by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • a terminal device is used. The implementation of this method is described as an example.
  • the method includes: the terminal device receives first indication information and second indication information from a network device, where the first indication information indicates the first MCS and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS , the second indication information indicates the first difference, the first difference is the difference between the index value corresponding to the first MCS and the index value corresponding to the second MCS; the terminal device determines that the MCS corresponding to the first signal is the first MCS or the second MCS, and receive the first signal according to the MCS corresponding to the first signal.
  • the network device sends the first indication information and the second indication information to the terminal device, so that the terminal device can determine the first MCS and the second MCS according to the first indication information and the second indication information.
  • the terminal device can select a better MCS among the first MCS and the second MCS to receive the first signal, so that the terminal device uses the better MCS to communicate and improves the communication performance.
  • the terminal device determining that the MCS corresponding to the first signal is the first MCS or the second MCS includes: the terminal device determining, according to the first overhead value, that the MCS corresponding to the first signal is the first MCS or the second MCS,
  • the first overhead value is the number of resource elements RE that are not used to carry the first signal in the time-frequency resource corresponding to the first signal.
  • the MCS corresponding to the first signal when the first overhead value is less than or equal to the first overhead threshold, the MCS corresponding to the first signal is the first MCS; when the first overhead value is greater than the first overhead threshold, the first MCS The MCS corresponding to the signal is the second MCS.
  • the method when the first indication information indicates the first MCS and the second indication information indicates the second MCS, the method further includes: the terminal device determines the first MCS according to the first indication information, and according to the second indication information to determine the second MCS.
  • the method when the first indication information indicates the first MCS and the second indication information indicates the first difference, the method further includes: the terminal device determines the first MCS according to the first indication information, and determines the first MCS according to the second indication information.
  • the indication information determines the first difference.
  • the terminal device further determines the index value corresponding to the second MCS according to the index value corresponding to the first MCS and the first difference value, and then determines the second MCS according to the index value corresponding to the second MCS.
  • a method for determining a modulation and coding mode is provided.
  • the method can be executed by a network device or by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • a component of the network device such as a processor, a chip, or a chip system of the network device.
  • the implementation of this method is described as an example.
  • the method includes: the network device sends first indication information and second indication information to the terminal device, where the first indication information indicates the first MCS, and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS, The second indication information indicates the first difference, and the first difference is the difference between the index value corresponding to the first MCS and the index value corresponding to the second MCS; the network device sends the first signal according to the MCS corresponding to the first signal, The MCS corresponding to the first signal is the first MCS or the second MCS.
  • the network device sends the first indication information and the second indication information to the terminal device, so that the terminal device can determine the first MCS and the second MCS according to the first indication information and the second indication information.
  • the network device can select the better MCS among the first MCS and the second MCS to send the first signal, and the corresponding terminal device can select the better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device can receive the first signal.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fifth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above-mentioned device
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a processing module and a transceiver module.
  • the transceiver module also referred to as a transceiver unit, is used to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manners.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module may be used to implement the processing functions in any of the foregoing aspects and any possible implementation manners thereof.
  • the transceiver module includes a sending module and a receiving module, which are respectively used to implement the sending and receiving functions in any of the above aspects and any possible implementation manners.
  • the communication apparatus provided in the seventh aspect is used to execute any one of the above aspects or any possible implementation manner of any one aspect.
  • the communication apparatus provided in the seventh aspect is used to execute any one of the above aspects or any possible implementation manner of any one aspect.
  • a communication device comprising: a processor and a memory; the memory is used for storing computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fifth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above-mentioned device
  • a communication device comprising: a processor and a communication interface; the communication interface is used for communicating with modules other than the communication device; the processor is used for executing a computer program or instructions to enable the communication device A method as described in any of the preceding aspects is performed.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fifth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above-mentioned device
  • a communication device comprising: an interface circuit and a logic circuit, the interface circuit is used for acquiring input information and/or outputting output information; the logic circuit is used for executing any of the above-mentioned aspects or any possibility of any of the above-mentioned aspects. According to the method described in the implementation manner, the input information is processed and/or the output information is generated.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fifth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above-mentioned device
  • the communication device is the terminal device in the first aspect above, or a device including the above-mentioned terminal device, or a device included in the above-mentioned terminal device:
  • the input information may be: first indication information, where the first indication information indicates a first index value, and the first index value corresponds to the first MCS and the second MCS.
  • the processing according to the input information may be: determining the first MCS and the second MCS according to the first indication information.
  • the input information may be: a first signal.
  • the communication device is the network device in the second aspect, or a device including the network device, or a device included in the network device:
  • the output information may be: first indication information, where the first indication information indicates a first index value, and the first index value corresponds to the first MCS and the second MCS.
  • the output information may be: the first signal.
  • the communication device is the terminal device in the third aspect, or a device including the above-mentioned terminal device, or a device included in the above-mentioned terminal device:
  • the input information may be: first indication information, where the first indication information indicates the first MCS.
  • the processing according to the input information may be: determining the first MCS according to the first indication information, or determining the first MCS and the second MCS according to the first indication information.
  • the input information may be: a first signal.
  • the communication device is the network device in the fourth aspect above, or a device including the above network device, or a device included in the above network device:
  • the output information may be: first indication information, where the first indication information indicates the first MCS.
  • the output information may be: the first signal.
  • the communication device is the terminal device in the above-mentioned fifth aspect, or a device including the above-mentioned terminal device, or a device included in the above-mentioned terminal device:
  • the input information may be: first indication information and second indication information, the first indication information indicates the first MCS, and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS , and the second indication information indicates the first difference.
  • the processing according to the input information may be: determining the first MCS according to the first indication information, and determining the second MCS or the first difference according to the second indication information.
  • the input information may be: a first signal.
  • the communication device is the network device in the above sixth aspect, or a device including the above network device, or a device included in the above network device:
  • the output information may be: first indication information and second indication information, the first indication information indicates the first MCS, and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS , and the second indication information indicates the first difference.
  • the output information may be: the first signal.
  • a communication device comprising: at least one processor; the processor is configured to execute a computer program or instruction stored in a memory, so that the communication device executes the method described in any one of the above aspects.
  • the memory may be coupled to the processor, or it may be independent of the processor.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fifth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above-mentioned device
  • a twelfth aspect provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which, when executed on a communication device, enable the communication device to perform the method described in any of the above aspects.
  • a computer program product comprising instructions which, when run on a communication device, enable the communication device to perform the method of any of the preceding aspects.
  • a fourteenth aspect provides a communication apparatus (for example, the communication apparatus may be a chip or a chip system), the communication apparatus includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device includes memory for holding necessary program instructions and data.
  • the device when it is a system-on-a-chip, it may consist of a chip or may contain a chip and other discrete devices.
  • the above-mentioned sending action/function may be understood as output information
  • the above-mentioned receiving action/function may be understood as input information
  • the technical effect brought by any one of the seventh aspect to the fourteenth aspect of the design can refer to the first aspect or the second aspect or the third aspect or the fourth aspect or the fifth aspect or the sixth aspect.
  • the technical effect brought by the design method will not be repeated here.
  • a fifteenth aspect provides a communication system, where the communication system includes the network device described in the second aspect and the terminal device described in the first aspect; or, the communication system includes the network device described in the fourth aspect and the third The terminal device described in the aspect; or, the communication system includes the network device described in the fifth aspect and the terminal device described in the sixth aspect.
  • Fig. 1 is the schematic diagram of a kind of overhead quantity provided by this application.
  • FIG. 2 is a schematic structural diagram of a communication system provided by the application.
  • FIG. 3 is a schematic structural diagram of a network device and a terminal device provided by the present application.
  • FIG. 4 is a schematic flowchart of a signal sending and receiving method provided by the present application.
  • FIG. 5 is a schematic flowchart of another signal sending and receiving method provided by the present application.
  • FIG. 6 is a schematic flowchart of another signal sending and receiving method provided by the present application.
  • FIG. 7 is a schematic structural diagram of another terminal device provided by the present application.
  • FIG. 8 is a schematic structural diagram of another network device provided by this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by the present application.
  • Subcarrier In an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) system, a frequency domain resource is divided into several subresources, and each subresource in the frequency domain may be called a subcarrier. Subcarriers can also be considered as the smallest granularity of frequency domain resources.
  • OFDM orthogonal frequency division multiplexing
  • Subcarrier spacing In an OFDM system, the spacing value between the center positions or peak positions of two adjacent subcarriers in the frequency domain.
  • the subcarrier spacing of the Long Term Evolution (Long Term Evolution, LTE) system is 15 kilohertz (kilohertz, kHz)
  • the subcarrier spacing of the NR system is 15 kHz, 30 kHz, 60 kHz, 120 kHz, or 240 kHz, etc.
  • the subcarrier spacing can be configured by network equipment.
  • Resource blocks Physical resource blocks, and resource elements:
  • Resource block N consecutive subcarriers in the frequency domain can be called an RB.
  • one RB in LTE and NR systems includes 12 subcarriers.
  • the number of subcarriers included in one RB may also be other values.
  • Physical resource block (physical resource block, PRB): PRB can be understood as a physical frequency domain resource concept used in frequency domain resource allocation.
  • OFDM symbol The smallest unit of time in the time domain in an OFDM system.
  • Time slot In the NR system, a time slot includes 14 OFDM symbols. When the sub-carrier spacing is 15 kHz, the length of a time slot is 1 millisecond (millisecond, ms), and when the sub-carrier spacing is 30 kHz, the length of a time slot is 0.5 ms.
  • Subframe The time length of a subframe in the NR system is 1 ms.
  • Time-frequency resource unit 4.
  • the time-frequency resource unit is the smallest resource granularity in the OFDM system, which is one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • time-frequency resource unit may also be called a resource element (resource element, RE), and the two may be replaced with each other, which is not specifically limited in this application.
  • RE resource element
  • the channel state of the wireless link is affected by factors such as the distance between the network device and the terminal device and/or the environment. For example, the channel state may be different if the distance between the network device and the terminal device is different. When the distance between the network device and the terminal device is short and there are few obstructions, the channel quality between the two is better, and when the distance between the network device and the terminal device is far and there are many obstructions, the The channel quality is poor.
  • the NR system supports multiple modulation coding schemes (MCS).
  • MCS modulation coding schemes
  • Each MCS includes modulation order, target code rate, and spectral efficiency. Different MCSs are not exactly the same.
  • the target bit rate is usually expressed as a decimal or fraction greater than 0 and less than 1, such as 1/2, 2/3, etc.
  • the modulation method can be divided into quadrature phase shift keying (QPSK) modulation and quadrature amplitude modulation (QAM) from the technical dimension. Further, QAM modulation can be divided into 16QAM, 64QAM, 256QAM, etc. according to different modulation orders.
  • QPSK quadrature phase shift keying
  • QAM modulation can be divided into 16QAM, 64QAM, 256QAM, etc. according to different modulation orders.
  • the standardization of 1024QAM is being carried out. By increasing the modulation order, it provides higher transmission rates for cell center users or fixed wireless access users, thereby improving frequency efficiency.
  • the network device When the channel quality between the network device and the terminal device is good, the network device usually uses a relatively high-order modulation method, such as 64QAM or 256QAM to send downlink signals to the terminal device; or, the terminal device uses a relatively high-order modulation method to send the downlink signal to the network device Send upstream signals for higher spectral efficiency.
  • the network equipment When the channel quality between the network equipment and the terminal equipment is poor, the network equipment usually uses a relatively low-order modulation method, such as 16QAM or QPSK, to send downlink signals to the terminal equipment; or, the terminal equipment uses a relatively low-order modulation method to send downlink signals to the network equipment Send upstream signals to improve communication reliability.
  • the network device When the channel quality between the network device and the terminal device is good, the network device usually uses a relatively high target code rate to send downlink signals; or, the terminal device uses a relatively high target code rate to send uplink signals to the network device to keep the higher spectral efficiency.
  • the network device When the channel quality between the network device and the terminal device is poor, the network device usually uses a relatively low target code rate to send downlink signals to the terminal device; or, the terminal device uses a relatively low target code rate to send uplink signals to the network device. , to improve the reliability of communication.
  • the network device can indicate different MCS index values through different state values of an indication field, each MCS index value corresponds to an MSC, and the MSC includes the modulation order, target code rate, and spectral efficiency . That is, the network device may send an indication information to the terminal device, and the indication information may be an MCS index.
  • the terminal device After receiving the indication information, the terminal device can determine the modulation order and target code rate of the corresponding MCS according to the MCS index, and pass the transmission specified in the 3rd generation partnership project (3GPP) standard TS38.241.
  • the block (transport block, TB) size calculation formula determines the transport block size (Transport Block size, TBS), and then the downlink signal is received according to the MCS and TB size.
  • the TBS is related to the modulation order of the MCS indicated by the network device, the target code rate, the number of scheduled PRBs, and the overhead configured by the high-layer parameter xOverHead.
  • the modulation order of the MCS indicated by the network device, the target code rate, and the number of scheduled PRBs are constant, the smaller the overhead of high-layer parameter configuration, the larger the TBS.
  • the overhead here may refer to the number of specific REs in a PRB, and the specific REs are used to carry a channel state information reference signal (CSI-RS), a phase tracking reference signal (phase tracking reference signal, PT-RS) ), and REs specified in the 3GPP standard TS38.241 that cannot be used for the physical downlink shared channel (PDSCH).
  • CSI-RS channel state information reference signal
  • PT-RS phase tracking reference signal
  • PDSCH physical downlink shared channel
  • the terminal device determines the size of the transport block according to the modulation order of the MCS, the target code rate, the number of scheduled PRBs, and the overhead of the high-level parameter configuration indicated by the network device.
  • the actual overhead changes dynamically with time, there will be a configuration
  • the overhead of the network device does not match the actual overhead, resulting in a deviation between the actual code rate of the downlink signal sent by the network device and the previously indicated target code rate.
  • the network device before time slot 1, the network device sends the indication information to the terminal device indicating the modulation order and the target code rate, and the overhead of the high-level parameter configuration is 0 as an example.
  • the first two OFDM symbols are used to carry the physical downlink control channel (PDCCH)
  • the third OFDM symbol is used to carry the demodulation reference signal (DMRS)
  • the overhead is used to carry the non- Periodic CSI-RS.
  • the actual overhead of the network device during downlink transmission in time slot 1 is 0, and the actual overhead of the network device during downlink transmission in time slot 2 is 32.
  • the terminal device will be configured according to the configuration.
  • the cost of 0 determines TBS (take TBS equal to N1 as an example), but if the terminal device determines TBS according to the actual cost of 32 (take TBS equal to N2 as an example), then since the actual cost is greater than the configured cost, N1 is greater than N2, resulting in actual The equivalent code rate of transmission (N1+N CRC )/N RE is greater than the target code rate, and the target code rate is approximately (N2+N CRC )/N RE , where N CRC is the number of cyclic redundancy check bits, N RE is the number of REs actually used to carry the transport block.
  • the above-mentioned deviation between the actual code rate and the target code rate will cause the demodulation performance of adjacent MCSs with different modulation orders in the MCS entry to switch, that is, when the configuration overhead and actual overhead match (or are equal)
  • the demodulation performance of MCS1 is better than that of MCS2
  • the demodulation performance of MCS2 is better than that of MCS1 when the configuration overhead and actual overhead do not match (or are not equal).
  • the network device will send scheduling information, such as resource allocation information, MCS index value, etc., to the terminal device through the physical downlink control channel (PDCCH) during initial scheduling.
  • scheduling information such as resource allocation information, MCS index value, etc.
  • the terminal device After receiving and identifying the current scheduling information as semi-persistent scheduling information, the terminal device stores the scheduling information, and thereafter, communicates according to the stored scheduling information at regular intervals.
  • the MCS indicated by the network device during initial scheduling may not be the optimal MCS under the actual overhead, thereby affecting the communication performance.
  • the present application provides a signal transmission and reception method, which can transmit downlink signals in a better modulation and coding manner, thereby improving communication performance.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner to facilitate understanding.
  • the embodiments of the present application may be applicable to LTE systems and NR systems; and may also be applicable to other wireless communication systems, such as orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (Single carrier FDMA) , SC-FDMA), satellite communication system, non-terrestrial communication network (non-terrestrial network, NTN), Internet of things (internet of things, IoT) system, or future evolved communication system, etc., which are not specifically described in the embodiments of this application. limited.
  • OFDMA orthogonal frequency-division multiple access
  • Single carrier FDMA single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • satellite communication system such as orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (Single carrier FDMA) , SC-FDMA), satellite communication system, non-terrestrial communication network (non-terrestrial network, NTN), Internet of things (internet of things, IoT) system, or
  • the communication system 10 includes at least one network device 20 and one or more terminal devices 30 connected to the network device 20 .
  • different terminal devices 30 may communicate with each other.
  • the network device sends first indication information to the terminal device, where the first indication information indicates a first index value, and the first indication information indicates a first index value.
  • An index value corresponds to the first MCS and the second MCS, the first MCS and the second MCS belong to the first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate.
  • the terminal device receives the first indication information from the network device.
  • the network device and the terminal device determine that the MCS corresponding to the first signal is the first MCS or the second MCS, then the network device sends the first signal according to the MCS corresponding to the first signal, and the terminal device receives the first signal according to the MCS corresponding to the first signal. a signal.
  • the first index value indicated by the network device to the terminal device corresponds to two MCSs, and in the subsequent downlink transmission, the network device can select a better MCS among the two MCSs to send the first signal, and the corresponding terminal device can A better MCS is selected among the two MCSs to receive the first signal, so that the network device and the terminal device use the better MCS to communicate, and the communication performance is improved.
  • the network device sends first indication information to the terminal device, where the first indication information indicates the first MCS, and the The first MCS belongs to the first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate.
  • the terminal device receives the first indication information from the network device.
  • the network device and the terminal device may determine that the MCS corresponding to the first signal is the first MCS or the second MCS, after which the network device sends the first signal according to the MCS corresponding to the first signal, and the terminal device receives the MCS according to the first signal. first signal.
  • the difference between the index value corresponding to the second MCS and the index value corresponding to the first MCS is a first value, or the spectral efficiency of the second MCS is equal to the spectral efficiency of the first MCS.
  • the network device indicates the first MCS to the terminal device, and in the subsequent downlink transmission, the network device can select a better MCS among the first MCS and the second MCS associated with the first MCS to send the first signal, The corresponding terminal device can select a better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device use the better MCS to communicate and improve the communication performance.
  • the network device 20 involved in the present application is a device that accesses the terminal device 30 to the wireless network, which can be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a 5G network or a future evolved public land A base station in a mobile network (public land mobile network, PLMN), a broadband network gateway (BNG), an aggregation switch or a non-3GPP access device; or the network device 20 in the embodiment of the present application may also be a cloud wireless A wireless controller in an access network (cloud radio access network, CRAN); or a transmission and reception point (transmission and reception point, TRP), or a device including a TRP, etc., which are not specifically limited in this embodiment of the present application.
  • an evolved base station evolutional Node B, eNB or eNodeB
  • 5G network or a future evolved public land A base station in a mobile network public land mobile network, PLMN), a broadband network gateway (BNG), an aggregati
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, etc., which are not specifically limited in this embodiment of the present application .
  • the network device 20 in this embodiment of the present application may also refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be composed of a CU and a DU. of. Multiple DUs can share one CU. A DU can also be connected to multiple CUs. CU and DU can be understood as the division of network devices from the perspective of logical functions. The CU and the DU may be physically separated, or may be deployed together, which is not specifically limited in this embodiment of the present application. The CU and the DU can be connected through an interface, such as an F1 interface. CU and DU can be divided according to the protocol layer of the wireless network.
  • the function settings of the radio resource control (RRC) protocol layer, the service data adaptation protocol (SDAP) protocol layer and the packet data convergence protocol (PDCP) protocol layer In the CU, the functions of the radio link control (radio link control, RLC) protocol layer, the media access control (media access control, MAC) protocol layer, and the physical (physical, PHY) protocol layer are set in the DU.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • media access control media access control
  • PHY physical (physical, PHY) protocol layer
  • a CU or DU can be divided into functions with more protocol layers.
  • a CU or DU can also be divided into partial processing functions with a protocol layer.
  • some functions of the RLC layer and functions of the protocol layers above the RLC layer are placed in the CU, and the remaining functions of the RLC layer and the functions of the protocol layers below the RLC layer are placed in the DU.
  • the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to the delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set farther away.
  • a CU may be composed of a CU control plane (CU control plane, CU-CP) and a CU user plane (CU user plane, CU-UP).
  • Logical function perspective is divided.
  • the CU-CP and CU-UP can be divided according to the protocol layer of the wireless network. For example, the functions of the RRC protocol layer and the PDCP protocol layer corresponding to the signaling radio bearer (SRB) are set in the CU-CP, and the data The function of the PDCP protocol layer corresponding to the radio bearer (data radio bearer, DRB) is set in the CU-UP.
  • the functions of the SDAP protocol layer may also be set in the CU-UP.
  • the terminal device 30 involved in the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that can be used in the terminal.
  • the terminal may be a user equipment (user equipment, UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device in IoT, 5G network, or future evolved PLMN. , wireless communication equipment, terminal agent or terminal device, etc.
  • the access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc. Terminals can be mobile or stationary.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a wireless communication Functional handheld devices computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control), wireless terminal in self-driving,
  • the network device 20 and the terminal device 30 may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in this embodiment of the present application.
  • FIG. 3 it is a schematic structural diagram of a network device 20 and a terminal device 30 according to an embodiment of the present application.
  • the terminal device 30 includes at least one processor (in FIG. 3 , it is exemplified by including one processor 301 ) and at least one transceiver (in FIG. 3 , it is exemplified by including one transceiver 303 ) ). Further, the terminal device 30 may also include at least one memory (in FIG. 3 , it is exemplified that one memory 302 is included for illustration), at least one output device (in FIG. 3 , it is exemplified that one output device 304 is included for example) description) and at least one input device (in FIG. 3, one input device 305 is used as an example for description).
  • the processor 301, the memory 302 and the transceiver 303 are connected by a communication line.
  • the communication link may include a path to communicate information between the components described above.
  • the processor 301 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the programs of the present application. circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 302 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM), or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory 302 may exist independently and be connected to the processor 301 through a communication line.
  • the memory 302 may also be integrated with the processor 301 .
  • the memory 302 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute the computer-executed instructions stored in the memory 302, thereby implementing the methods described in the embodiments of the present application.
  • the processor 301 may also perform processing-related functions in the signal sending and receiving methods provided in this application, and the transceiver 303 is responsible for communicating with other devices or communication networks, which are not specifically limited in this embodiment of the application .
  • the computer-executed instructions involved in the present application may also be referred to as application program code or computer program code, which is not specifically limited in this embodiment of the present application.
  • Transceiver 303 may use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access networks (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) or the like.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • Input device 305 communicates with processor 301 and can accept user input in a variety of ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the network device 20 includes at least one processor (in FIG. 3 , it is exemplified by including one processor 201 ) and at least one transceiver (in FIG. 3 , it is exemplified by including one transceiver 203 ). Further, the network device 20 may also include at least one memory (in FIG. 3 , it is exemplified by including one memory 202 for illustration) and at least one network interface (in FIG. 3 , it is exemplified by including one network interface 204 for example) illustrate). The processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through a communication line.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in FIG. 3 ).
  • a link such as the S1 interface
  • a wired or wireless link such as the X2 interface
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 30 and the network device 20 .
  • the terminal device 30 and the network device 20 may include more or less components than shown, or some components may be combined, or some components may be split, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or various Variation of operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • the interaction between the network device and the terminal device may also be applicable to the interaction between the CU and the terminal device, or the interaction between the DU and the terminal device. It can be understood that the interaction mechanism between the network device and the terminal device in the various embodiments of the present application can be appropriately modified to apply to the interaction between the CU or DU and the terminal device.
  • a method for sending and receiving a signal includes the following steps:
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate a first index value, and the first index value corresponds to the first MCS and the second MCS.
  • the first MCS and the second MCS belong to a first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate, and may also include a spectral efficiency. That is to say, in the first modulation and coding mode set, the index value corresponding to the first MCS and the index value corresponding to the second MCS are the same.
  • spectral efficiency in this application can also be called “spectral efficiency”, and the two can be replaced with each other;
  • index value corresponding to MCS in this application can also be called “MCS index value” or “ MCS index” can be replaced with each other, which is not specifically limited in this application.
  • the first modulation and coding mode set may include multiple MCSs with modulation orders of 2, 4, 6, 8, and 10.
  • the modulation modes corresponding to modulation orders of 2, 4, 6, 8, and 10 are QPSK, 16QAM, 64QAM, 256QAM, and 1024QAM, respectively.
  • the first modulation and coding mode set may be represented by a table, for example, each row in the table is an MCS in the first modulation and coding mode set, the first column in the table is the index value corresponding to the MCS, and the second column is the index value corresponding to the MCS. is the modulation order of MCS, the third column is the target code rate of MCS, and the fourth column is the spectral efficiency of MCS.
  • the spectral efficiencies of the first MCS and the second MCS may or may not be equal. It should be noted that, regardless of whether the spectral efficiencies of the first MCS and the second MCS are equal, the modulation order of the first MCS and the modulation order of the second MCS are different. For example, the modulation order of the first MCS is greater than that of the second MCS. , or, the modulation order of the first MCS is smaller than the modulation order of the second MCS.
  • the spectral efficiencies of the first MCS and the second MCS are equal.
  • the first MCS and the second MCS may have the following situations:
  • the corresponding MCS index with spectral efficiency of 7.463 corresponds to two kinds of MCS, which are the first MCS with modulation order of 8 and target code rate of 948/1024, respectively, and a second MCS with a modulation order of 10 and a target code rate of 758.5/1024.
  • this application takes the modulation order of the first MCS as 8 and the modulation order of the second MCS as 10 as an example for description.
  • the modulation order of the first MCS may be other than 8.
  • the modulation order of the second MCS may be other than 10, for example, the modulation order of the first MCS is 6, and the modulation order of the second MCS is 8; or, the modulation order of the first MCS is 4, and the modulation order of the second MCS is 6.
  • the code rate of the first MCS and the code rate of the second MCS may also be other values, which are not specifically limited in this application.
  • the first harmonic coding mode set may also include N third MCSs with a modulation order of 10, where N is A positive integer greater than 1.
  • the first modulation and coding mode set further includes 6 MCSs with a modulation order of 10, and the target code rates corresponding to the 6 MCSs are 790/1024, 822/1024, 853/1024, 885/1024, 916/1026, 948/1024.
  • the target code rates of the 6 third MCSs with modulation order 10 included in the first modulation and coding mode set are: 790/1024, 822 /1024, 853/1024, 885/1024, 916/1026, 948/1024;
  • the spectral efficiencies of the 6 third MCSs with modulation order 10 are: 7.7149, 8.0235, 8.3321, 8.6407, 8.9493, and 9.2578, respectively.
  • the first modulation and coding mode set may be as shown in Table 1 below.
  • the first index value indicated by the first indication information is 20.
  • Table 1 only exemplarily shows the modulation order, target code rate, and spectral efficiency included in each MCS corresponding to the MCS index.
  • This application does not specifically limit the correspondence between the MCS index and the MCS, for example , the value of the MCS index from top to bottom in Table 1 can also be decremented, that is, the MCS index corresponding to the MCS in the first row is 31, the MCS index corresponding to the MCS in the second row is 30, and so on.
  • the MCS index corresponding to the MCS is 0.
  • the corresponding MCS index with a spectral efficiency of 7.1602 corresponds to two MCSs, which are the first MCS with a modulation order of 8 and a target code rate of 916.5/1024, respectively, and a second MCS with a modulation order of 10 and a target code rate of 733/1024.
  • the first modulation and coding scheme set further includes N third MCSs with a modulation order of 10, where N is A positive integer greater than 1.
  • the first modulation and coding mode set may further include 4 MCSs with a modulation order of 10, and the target code rates of the 4 MCSs with a modulation order of 10 may be 787/1024, 840.5/1024, and 894 respectively.
  • the first modulation and coding mode set may further include five MCSs with a modulation order of 10, and the target code rates of the five MCSs with a modulation order of 10 may be 776/1024, 819/1024, 862/1024, 905/1024, 948/1024; or, the first modulation and coding mode set may further include 6 MCSs with a modulation order of 10, and the 6 MCSs with a modulation order of 10
  • the target code rate may be 912/1024, 876/1024, 840/1024, 862/1024, 905/1024, 948/1024; MCS, the target code rates of the seven MCSs with modulation order 10 may be 733/1024, 790/1024, 822/1024, 853/1024, 885/1024, 916/1026, and 948/1024, respectively.
  • the target code rates of the 4 third MCSs with modulation order 10 included in the first modulation and coding mode set are: 787/1024 and 840.5 respectively.
  • the spectral efficiencies of the four third MCSs with modulation order 10 are: 7.6846, 8.2090, 8.7334, and 9.2578, respectively.
  • the first modulation and coding mode set may be as shown in Table 2 below. Based on the first modulation and coding manner set shown in Table 2, the first index value indicated by the first indication information is 22.
  • the target code rates of the five third MCSs with modulation order of 10 included in the first modulation and coding mode set are: 776/1024, 819 /1024, 862/1024, 905/1024, 948/1024; the spectral efficiencies of the 5 third MCS with modulation order 10 are: 776/1024, 819/1024, 862/1024, 905/1024, 948 /1024.
  • the first modulation and coding mode set may be as shown in Table 3 below. Based on the first modulation and coding mode set shown in Table 3, the first index value indicated by the first indication information is 21.
  • the target code rates of the 6 third MCSs with modulation order of 10 included in the first modulation and coding mode set are: 912/1024, 876 /1024, 840/1024, 862/1024, 905/1024, 948/1024; the spectral efficiencies of the third MCS with the six modulation orders of 10 are: 7.5098, 7.8594, 8.2090, 8.5586, 8.9082, and 9.2578, respectively.
  • the first modulation and coding mode set may be as shown in Table 4 below. Based on the first modulation and coding mode set shown in Table 4, the first index value indicated by the first indication information is 20.
  • the target code rates of the 6 third MCSs with modulation order 10 included in the first modulation and coding mode set are: 733/1024, 790 /1024, 822/1024, 853/1024, 885/1024, 916/1026, 948/1024;
  • the spectral efficiencies of the 7 third MCS with modulation order 10 are: 7.4063, 7.7149, 8.0235, 8.3321, 8.6407 , 8.9493, 9.2578.
  • the first modulation and coding mode set may be as shown in Table 5 below. Based on the first modulation and coding manner set shown in Table 5, the first index value indicated by the first indication information is 19.
  • the spectral efficiencies of the first MCS and the second MCS are not equal.
  • the modulation order of the first MCS is 8
  • the target coding rate is 916.5/1024
  • the spectral efficiency is 7.4063
  • the modulation order of the second MCS is 10
  • the target coding rate is 790/1024
  • the spectral efficiency is 7.7149.
  • the modulation order is 8
  • the target coding rate is 916.5/1024
  • the first MCS with spectral efficiency of 7.4063 is 10
  • the target code rate is 790/1024
  • the second MCS with spectral efficiency of 7.7149 corresponds to the same index.
  • the first modulation and coding scheme set further includes M fourth MCSs with a modulation order of 10, where M is A positive integer greater than 1.
  • the first modulation and coding scheme set may further include five modulation and coding schemes with a modulation and coding scheme of 10, and the target coding rates of the five modulation and coding schemes with a modulation order of 10 may be 822/1024 and 853, respectively. /1024, 885/1024, 916/1026, 948/1024.
  • the target code rates of the 5 fourth MCSs with modulation order of 10 included in the first modulation and coding mode set are: 822/1024, 853 /1024, 885/1024, 916/1024, 948/1024; the spectral efficiencies of the five fourth MCSs with modulation order of 10 are: 8.0235, 8.3321, 8.6407, 8.9493, and 9.2578, respectively.
  • the first modulation and coding mode set may be as shown in Table 6 below. Based on the first modulation and coding mode set shown in Table 6, the first index value indicated by the first indication information is 21.
  • IMCS MCS Index
  • Qm Modulation order
  • Target bit rate [1024] spectral efficiency 0 2 120 0.2344 1 2 193 0.3770 2 2 449 0.8770 3 4 378 1.4766 4 490 1.9141 5 4 616 2.4063 6 6 466 2.7305 7 6 567 3.3223 8 6 616 3.6094 9 6 666 3.9023 10 6 719 4.2129 11 6 772 4.5234 12 6 822 4.8164
  • the first modulation and coding manner set provided by the present application has been introduced above. The following describes the manner in which the network device sends the first indication information.
  • the network device may send downlink control information (downlink control information, DCI) to the terminal device, where the DCI includes first indication information, or in other words, the first indication information is carried in the DCI; or, the network device may send the terminal device to The device sends radio resource control (RRC) signaling, where the RRC signaling includes first indication information, or in other words, the first indication information is carried in the RRC signaling; or, the network device may send media to the terminal device Access control-control element (media access control control element, MAC-CE), the MAC-CE includes first indication information, or in other words, the first indication information is carried in the MAC-CE.
  • RRC radio resource control
  • the first indication information may be sent to the terminal device when the network device performs initial scheduling in a semi-persistent scheduling scenario; alternatively, the first indication information may also be a non-semi-persistent scheduling (or dynamic scheduling) scenario
  • the network device sends the downlink signal to the terminal device, which is not specifically limited in this application.
  • the terminal device may determine the first MCS and the second MCS according to the first indication information, and store the first MCS and the second MCS for subsequent Used during downlink communication.
  • the network device determines that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the first signal is a downlink signal to be sent by the network device, or in other words, a downlink signal to be received by the terminal device.
  • the first signal involved in this application can also be understood as the first PDSCH, and the two can be replaced with each other, which is not specifically limited in this application.
  • the network device may determine that the MCS corresponding to the first signal is the first MCS or the second MCS according to the first overhead value.
  • the first overhead value is the number of resource elements RE not used to carry the first signal in the time-frequency resources corresponding to the first signal, or the first overhead value is divided by the first overhead value in the time-frequency resources corresponding to the first signal.
  • the number of REs other than the time-frequency resource, and the first time-frequency resource is the time-frequency resource used to carry the first signal. That is to say, the time-frequency resource corresponding to the first signal includes the first time-frequency resource and REs not used for carrying the first signal.
  • the time-frequency resource corresponding to the first signal may be a PRB, which includes a time-frequency resource used for carrying the first signal and an RE that is not used for carrying the first signal.
  • the REs in the time-frequency resources corresponding to the first signal that are not used to carry the first signal may be used to carry CSI.
  • the REs other than the first time-frequency resources in the time-frequency resources corresponding to the first signal may be used to carry CSI.
  • the network device determines, according to the first overhead value, that the MCS corresponding to the first signal is the first MCS or the second MCS. This includes: in the case that the first overhead value is less than or equal to the first overhead threshold, the network device determines that the MCS corresponding to the first signal is the first MCS; in the case that the first overhead value is greater than the first overhead threshold, the network device determines the first MCS The MCS corresponding to a signal is the second MCS.
  • the network device When the modulation order corresponding to the second MCS is smaller than the modulation order corresponding to the first MCS, the network device determining, according to the first overhead value, that the MCS corresponding to the first signal is the first MCS or the second MCS, which may include: in the first MCS When the overhead value is greater than the first overhead threshold, the network device determines that the MCS corresponding to the first signal is the first MCS; and when the first overhead value is less than or equal to the first overhead threshold, the network device determines the MCS corresponding to the first signal.
  • the MCS is the second MCS.
  • the network device may compare the number of REs that are not used to carry the first signal in the time-frequency resources corresponding to the first signal with the first overhead threshold, so as to determine the number of REs according to the comparison result.
  • the MCS corresponding to a signal is the first MCS or the second MCS.
  • the first overhead threshold may be predefined by a protocol, or may be independently determined by a network device, which is not specifically limited in this application.
  • step S401 is performed first, and then the step S402 is performed.
  • step S401 may be performed first, and then step S402 may be performed; or, step S402 may be performed first, and then step S401 may be performed; or, step S401 and step S402 may be performed simultaneously.
  • the terminal device determines that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the terminal device may use different manners to determine that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the terminal device may determine, according to the first overhead value, that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the MCS corresponding to the first signal in the case that the first overhead value is less than or equal to the first overhead threshold, the MCS corresponding to the first signal is the first MCS. MCS; when the first overhead value is greater than the first overhead threshold, the MCS corresponding to the first signal is the second MCS.
  • the MCS corresponding to the first signal in the case that the first overhead value is greater than the first overhead threshold, the MCS corresponding to the first signal is the first MCS; When the value is less than or equal to the first overhead threshold, the MCS corresponding to the first signal is the second MCS.
  • the network device when the first overhead threshold is determined by the network device, before step S403, the network device further sends second indication information to the terminal device, where the second indication information indicates the first overhead threshold.
  • the terminal device receives the second indication information from the network device, and determines the first overhead threshold according to the second indication information.
  • the network device sending the second indication information to the terminal device may include: the network device sending RRC signaling to the terminal device, where the RRC signaling includes the second indication information, or in other words, the second indication information is carried in the RRC signaling. order.
  • the terminal device may determine that the MCS corresponding to the first signal is the first MCS or the second MCS according to the radio network temporary identifier (RNTI) that scrambles the first indication information.
  • RNTI radio network temporary identifier
  • step S402 is performed first, and then step S401 is performed, in the case where the network device determines in step S402 that the MCS corresponding to the first signal is the first MCS, when sending the first indication information to the terminal device in step S401 , the first indication information can be scrambled by the first RNTI; when the network device determines in step S402 that the MCS corresponding to the first signal is the second MCS, when sending the first indication information to the terminal device in step S401, the network device can use The second RNTI scrambles the first indication information.
  • the terminal device when the terminal device receives the first indication information, if the first indication information is scrambled by the first RNTI, it determines that the MCS corresponding to the first signal is the first MCS; if the first indication information is scrambled by the second RNTI, it determines The MCS corresponding to the first signal is the second MCS.
  • the network device and the terminal device may pre-agreed that the first RNTI is associated with the first MCS, and the second RNTI is associated with the second MCS.
  • the terminal device may determine, according to the third indication information, that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the network device may send third indication information to the terminal device, where the third indication information indicates that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the terminal device may receive the third indication information from the network device, and determine, according to the third indication information, that the MCS corresponding to the first signal is the first MCS or the second MCS. For example, when the third indication information indicates that the MCS corresponding to the first signal is the first MCS, the terminal device determines that the MCS corresponding to the first signal is the first MCS, and when the third indication information indicates that the MCS corresponding to the first signal is the second MCS During MCS, the terminal device determines that the MCS corresponding to the first signal is the second MCS.
  • the third indication information and the first indication information may be carried in the same signaling, or may be carried in different signaling, which is not specifically limited in this application.
  • the third indication can be represented by a 1-bit field.
  • the value of this bit is 1, it indicates that the MCS corresponding to the first MCS is the first MCS, and when the value of this bit is 0, it indicates that the first MCS is the first MCS.
  • the MCS corresponding to the MCS is the second MCS; or, when the value of this bit is 0, it indicates that the MCS corresponding to the first MCS is the first MCS, and when the value of this bit is 1, it indicates that the MCS corresponding to the first MCS is the first MCS.
  • the network device sends the first signal according to the MCS corresponding to the first signal.
  • the terminal device receives the first signal according to the MCS corresponding to the first signal.
  • sending the first signal according to the MCS corresponding to the first signal by the network device may include: after the network device uses the MCS corresponding to the first signal to encode and modulate the first signal, sending the encoded and modulated first signal.
  • the terminal device receiving the first signal according to the MCS corresponding to the first signal may include: the terminal device using the MCS corresponding to the first signal to demodulate and decode the encoded and modulated first signal to obtain the first signal.
  • the terminal device first determines an MCS, and then receives the first signal according to the determined MCS. In addition, the terminal device may not perform step S403. In step S404, the terminal device may randomly select one of the first MCS or the second MCS to demodulate and decode the encoded and modulated first signal. If the sum decoding fails, then demodulate and decode the encoded and modulated first signal according to another MCS; if the demodulation and decoding succeed, perform subsequent service processing according to the first signal.
  • the first index value indicated by the network device to the terminal device corresponds to two MCSs, and in the subsequent downlink transmission, the network device can select a better MCS among the two MCSs to send the first signal, The corresponding terminal device can select the better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device use the better MCS to communicate and improve the communication performance.
  • the selection of MCS is realized by one index value corresponding to two MCSs.
  • the present application also provides another method, wherein one index value corresponds to one MCS, and another MCS is determined according to the one MCS. , the options for choosing between these two MCSs.
  • the method for sending and receiving signals includes the following steps:
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information indicates the first MCS, the first MCS belongs to the first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate.
  • one index value corresponds to one MCS, and different index values correspond to different MCSs.
  • the first modulation and coding mode set may have two forms:
  • the first modulation and coding scheme set does not include MCS with the same spectral efficiency, that is, the first modulation and coding scheme set here is different from the first modulation and coding scheme set in the scheme shown in FIG. 4 .
  • the first modulation and coding mode set may include multiple MCSs with the same spectral efficiency, and the multiple MCSs with the same spectral efficiency correspond to different index values.
  • the first modulation and coding mode set may include one or more MCSs with the same spectral efficiency as the first MCS, the index values corresponding to the one or more MCSs are different from each other, and the index corresponding to the first MCS is value is different.
  • the terminal device may determine the first MCS according to the first indication information. For example, when the first indication information is the index value corresponding to the first MCS, the terminal device may search for the index value corresponding to the first MCS in the first modulation and coding mode set, and use the modulation order and target code rate corresponding to the index value. , and the spectral efficiency is determined as the modulation order of the first MCS, the target code rate, and the spectral efficiency.
  • the first indication information may be sent to the terminal device when the network device performs initial scheduling in a semi-persistent scheduling scenario; or, the first indication information may also be a non-semi-persistent scheduling (or dynamic scheduling) scenario
  • the network device sends the downlink signal to the terminal device, which is not specifically limited in this application.
  • the terminal device may store the first MCS for subsequent use in the downlink communication process.
  • the network device determines that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the network device may determine that the MCS corresponding to the first signal is the first MCS or the second MCS according to the first overhead value, and reference may be made to the relevant description in the foregoing step S402, which will not be repeated here.
  • step S501 may be performed first, and then the step S502 may be performed.
  • step S501 may be performed first, and then step S502 may be performed; or, step S502 may be performed first, and then step S501 may be performed; or, step S501 and step S502 may be performed simultaneously.
  • the terminal device determines that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the terminal device may determine the MCS corresponding to the first signal according to the first overhead value. That is, the terminal device may first determine the first overhead value, and determine the MCS corresponding to the first signal as the first MCS or the second MCS according to the comparison result between the first overhead value and the first overhead threshold.
  • the terminal device may determine that the MCS corresponding to the first signal is the first MCS; and when the first overhead value is greater than the first overhead threshold, the terminal The device may determine that the MCS corresponding to the first signal is the second MCS.
  • the first MCS may be the MCS with the highest target code rate in the modulation and coding manners with a modulation order of 8 in the first modulation and coding set.
  • the first MCS may be the MCS with the highest target code rate among all modulation and coding modes corresponding to any modulation order in the first modulation and coding set.
  • the index value corresponding to the second MCS is the sum of the index value corresponding to the first MCS and the first value. That is, the difference obtained by subtracting the index value corresponding to the second MCS from the index value corresponding to the first MCS is the first value. That is, when the terminal device determines that the first overhead value is greater than the first overhead threshold, it can determine the index value corresponding to the second MCS according to the index value corresponding to the first MCS and the first value, and then determine the index value corresponding to the second MCS according to the index value. Second MCS.
  • the first value may be a preset value, or may be a value sent by the network device to the terminal device, or may be a value predetermined by a protocol, which is not specifically limited in this application.
  • the first value may be -1, or other values.
  • the first modulation and coding mode set includes multiple MCSs with the same spectral efficiency, and when the multiple MCSs with the same spectral efficiency correspond to different index values, the second MCS is the first MCS An MCS whose spectral efficiency is equal to the spectral efficiency of the first MCS in a modulation and coding mode set, that is, the spectral efficiency of the second MCS is equal to the spectral efficiency of the first MCS.
  • the modulation order of the second MCS is greater than the modulation order of the first MCS. That is, in the case that the terminal device determines that the first overhead value is greater than the first overhead threshold, the terminal device may determine the second MCS according to the first MCS.
  • the difference between the index value corresponding to the second MCS and the index value corresponding to the first MCS may be the first numerical value, or Other values are not specifically limited in this application.
  • the modulation order of the first MCS is 8, and the target code rate is 948/1024; the modulation order of the second MCS is 10, and the target code rate is 758.5/1024;
  • the spectral efficiency is 7.4063.
  • the modulation order of the first MCS is 8, and the target code rate is 916.5/1024; the modulation order of the second MCS is 10, and the target code rate is 733/1024; the spectral efficiency of the first MCS and the second MCS is 7.1602 .
  • the network device sends the first signal according to the MCS corresponding to the first signal.
  • the terminal device receives the first signal according to the MCS corresponding to the first signal.
  • the terminal device first determines an MCS, and then receives the first signal according to the determined MCS. In addition, the terminal device may not perform step S503. In step S504, the terminal device may randomly select one of the first MCS or the second MCS to demodulate and decode the encoded and modulated first signal. If the sum decoding fails, then demodulate and decode the coded and modulated first signal according to another MCS; if the demodulation and decoding succeed, perform subsequent service processing according to the first signal.
  • the network device indicates the first MCS to the terminal device, and in the subsequent downlink transmission, the network device can select a better MCS among the first MCS and the second MCS associated with the first MCS to send the first signal, The corresponding terminal device can select a better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device use the better MCS to communicate and improve the communication performance.
  • the present application also provides another method for sending and receiving signals.
  • the method for sending and receiving signals includes the following steps:
  • the network device sends the first indication information and the second indication information to the terminal device.
  • the terminal device receives the first indication information and the second indication information from the network device.
  • the first indication information indicates the first MCS
  • the second indication information indicates the second MCS.
  • the first indication information may be an index value corresponding to the first MCS
  • the second indication information may be an index value corresponding to the second MCS.
  • the first indication information indicates a first MCS
  • the second indication information indicates a first difference value, where the first difference value is between an index value corresponding to the first MCS and an index value corresponding to the second MCS difference value.
  • the first indication information may be an index value corresponding to the first MCS
  • the second indication information may be the first difference value.
  • the first MCS and the second MCS belong to a first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate.
  • any MCS in the first modulation and coding mode set includes a modulation order and a target code rate.
  • the first MCS may be the MCS with the highest target code rate in the modulation and coding modes with a modulation order of 8 in the first modulation and coding mode set.
  • the first MCS may be the modulation and coding scheme with the highest code rate among all the modulation and coding schemes corresponding to any modulation order in the first modulation and coding scheme set.
  • the first set of modulation and coding modes may also include N third MCSs or M fourth MCSs, which can be referred to the relevant description in the above step S401, which is not repeated here. Repeat.
  • the first indication information and the second indication information may be carried in the same signaling, or may be carried in different signaling, which is not specifically limited in this application.
  • the signaling carrying the first indication information or the second indication information may be DCI, or RRC signaling, or MAC CE, and reference may be made to the relevant description in the foregoing step S401, which will not be repeated here.
  • the first indication information and the second indication information may be sent to the terminal device when the network device performs initial scheduling in a semi-persistent scheduling scenario; or, the first indication information may also be in a non-semi-persistent scheduling scenario. , which is sent by the network device to the terminal device before sending the downlink signal, which is not specifically limited in this application.
  • the terminal device may determine the first MCS according to the first indication information, and determine the first MCS according to the second indication information. information to determine the second MCS.
  • the terminal device may determine the first MCS according to the first indication information, and determine the first difference value according to the second indication information; or, the terminal device may determine according to the first indication information The first MCS, and after determining the first difference value according to the second indication information, determine the index value corresponding to the second MCS according to the first difference value and the index value corresponding to the first MCS, and determine the index value corresponding to the second MCS according to the index value corresponding to the second MCS.
  • the terminal device may determine the first MCS according to the first indication information, and determine the first difference value according to the second indication information; or, the terminal device may determine according to the first indication information The first MCS, and after determining the first difference value according to the second indication information, determine the index value corresponding to the second MCS according to the first difference value and the index value corresponding to the first MCS, and determine the index value corresponding to the second MCS according to the index value corresponding to the second MCS.
  • the network device determines that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the network device may determine that the MCS corresponding to the first signal is the first MCS or the second MCS according to the first overhead value, and reference may be made to the relevant description in the foregoing step S402, which will not be repeated here.
  • step S601 may be performed first, and then the step S602 may be performed.
  • step S601 may be performed first, and then step S602; or, step S602 may be performed first, and then step S601; or, step S601 and step S602 may be performed simultaneously.
  • the terminal device determines that the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the terminal device may determine that the MCS corresponding to the first signal is the first MCS or the second MCS in different ways, and reference may be made to the relevant description in the foregoing step S403, which will not be repeated here.
  • the second indication information indicates the first difference
  • the terminal device determines the first MCS and the first difference according to the first indication information and the second indication information, if the terminal device determines the first difference.
  • the MCS corresponding to the signal is the second MCS.
  • the terminal device may also determine the index value corresponding to the second MCS according to the index value corresponding to the first MCS and the first difference, and determine the index value corresponding to the second MCS. Second MCS.
  • the network device sends the first signal according to the MCS corresponding to the first signal.
  • the terminal device receives the first signal according to the MCS corresponding to the first signal.
  • the terminal device first determines an MCS, and then receives the first signal according to the determined MCS. In addition, the terminal device may not perform step S603. In step S604, the terminal device may randomly select one of the first MCS or the second MCS to demodulate and decode the encoded and modulated first signal. If the sum decoding fails, then demodulate and decode the coded and modulated first signal according to another MCS; if the demodulation and decoding succeed, perform subsequent service processing according to the first signal.
  • the network device sends the first indication information and the second indication information to the terminal device, so that the terminal device can determine the first MCS and the second MCS according to the first indication information and the second indication information.
  • the network device can select the better MCS among the first MCS and the second MCS to send the first signal, and the corresponding terminal device can select the better MCS among the two MCSs to receive the first signal, so that the network device and the terminal device can receive the first signal.
  • the action of the network device can be performed by the processor 201 in the network device 20 shown in FIG. 3 calling the application code stored in the memory 202 to instruct the network device to execute;
  • the actions of the terminal device may be executed by the processor 301 in the terminal device 30 shown in FIG. 3 calling the application code stored in the memory 302 to instruct the terminal device to execute.
  • the example does not impose any restrictions on this.
  • the methods and/or steps implemented by the terminal device may also be implemented by components (such as chips or circuits) that can be used for the terminal device; the methods and/or steps implemented by the network device , can also be implemented by components (eg chips or circuits) available for the network device.
  • the solution provided by the present application has been introduced above mainly from the perspective of interaction between various devices.
  • the present application also provides a communication device, which is used to implement the above-mentioned various methods.
  • the communication apparatus may be the terminal device in the foregoing method embodiments, or an apparatus including the foregoing terminal device, or a component usable in the terminal device.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device may be divided into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 7 shows a schematic structural diagram of a terminal device 70 .
  • the terminal device 70 includes a processing module 701 and a transceiver module 702 .
  • the terminal device 70 may further include a storage module (not shown in FIG. 7 ) for storing program instructions and data.
  • the transceiving module 702 which may also be referred to as a transceiving unit, is used to implement sending and/or receiving functions.
  • the transceiver module 702 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 702 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the terminal device in the above method embodiments, and/or to support the techniques described herein
  • the processing module 701 can be used to perform the steps of the processing class (eg, determination, acquisition, etc.) performed by the terminal device in the above method embodiments, and/or other processes used to support the technology described herein.
  • the transceiver module 702 is configured to receive first indication information from a network device, the first indication information indicates a first index value, the first index value corresponds to the first modulation and coding scheme MCS and the second MCS, and the first MCS and the second MCS belong to The first modulation and coding mode set, any MCS in the first modulation and coding mode set includes a modulation order and a target code rate; a processing module 701 is used to determine that the MCS corresponding to the first signal is the first MCS or the second MCS; The module 702 is further configured to receive the first signal according to the MCS corresponding to the first signal.
  • a transceiver module 702 configured to receive first indication information from a network device, where the first indication information indicates a first modulation and coding scheme MCS, the first MCS belongs to a first modulation and coding scheme set, and any MCS in the first modulation and coding scheme set Including modulation order and target code rate; processing module 701, for determining that the MCS corresponding to the first signal is the first MCS or the second MCS, the difference between the index value corresponding to the second MCS and the index value corresponding to the first MCS The value is the first value, or, the spectral efficiency of the second MCS is equal to the spectral efficiency of the first MCS; the transceiver module 702 is configured to receive the first signal according to the MCS corresponding to the first signal.
  • a transceiver module 702 configured to receive first indication information and second indication information from a network device, where the first indication information indicates the first MCS, and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS , the second indication information indicates a first difference, and the first difference is the difference between the index value corresponding to the first MCS and the index value corresponding to the second MCS; the processing module 701 is used to determine the MCS corresponding to the first signal is the first MCS or the second MCS; the transceiver module 702 is further configured to receive the first signal according to the MCS corresponding to the first signal.
  • the processing module configured to determine that the MCS corresponding to the first signal is the first MCS or the second MCS, includes: the processing module, is used to determine that the MCS corresponding to the first signal is the first MCS or the second MCS according to a first overhead value, where the first overhead value is not used in the time-frequency resources corresponding to the first signal is the number of resource elements REs carrying the first signal.
  • the terminal device 70 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other functions that may provide the above-described functions device.
  • ASIC application-specific integrated circuit
  • the terminal device 70 may take the form of the terminal device 30 shown in FIG. 3 .
  • the function/implementation process of the processing module 701 in FIG. 7 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302, and the transceiver module in FIG. 7
  • the function/implementation process of 702 may be implemented by the transceiver 303 in the terminal device 30 shown in FIG. 3 .
  • the function/implementation process of the transceiver module 702 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the processing module 701
  • the function/implementation process may be realized by a processor (or processing circuit) of a chip or system on a chip.
  • the terminal device 70 provided in this embodiment can perform the above-mentioned methods for sending and receiving signals, the technical effects that can be obtained by the terminal device 70 may refer to the above-mentioned method embodiments, which will not be repeated here.
  • FIG. 8 shows a schematic structural diagram of a network device 80 .
  • the network device 80 includes a processing module 801 and a transceiver module 802 .
  • the network device 80 may also include a storage module (not shown in FIG. 8 ) for storing program instructions and data.
  • the transceiving module 802 which may also be referred to as a transceiving unit, is used to implement sending and/or receiving functions.
  • the transceiver module 802 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 802 may include a receiving module and a sending module, respectively configured to perform the steps of receiving and sending performed by the network device in the above method embodiments, and/or to support the techniques described herein
  • the processing module 801 can be used to perform the steps of the processing class (eg, determination, acquisition, etc.) performed by the network device in the above method embodiments, and/or other processes used to support the technology described herein.
  • the processing module 801 is used to generate the first indication information; the transceiver module 802 is used to send the first indication information to the terminal device, the first indication information indicates the first index value, and the first index value corresponds to the first modulation and coding scheme MCS and the first index value.
  • Two MCSs, the first MCS and the second MCS belong to the first modulation and coding mode set, and any MCS in the first modulation and coding mode set includes a modulation order and a target code rate;
  • the transceiver module 802 is further configured to correspond to the first signal according to the The MCS of the first signal sends the first signal, and the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the processing module 801 is used to generate first indication information; the transceiver module 802 is used to send the first indication information to the terminal device, where the first indication information indicates the first modulation and coding scheme MCS, and the first MCS belongs to the first modulation and coding scheme set, Any MCS in the first modulation and coding mode set includes a modulation order and a target code rate; the transceiver module 802 is further configured to send the first signal according to the MCS corresponding to the first signal, and the MCS corresponding to the first signal is the first MCS or For the second MCS, the difference between the index value corresponding to the second MCS and the index value corresponding to the first MCS is the first value, or the spectral efficiency of the second MCS is equal to the spectral efficiency of the first MCS.
  • the processing module 801 is used to generate the first indication information; the transceiver module 802 is used to send the first indication information and the second indication information to the terminal device, the first indication information indicates the first MCS, and the second indication information indicates the second MCS Or, the first indication information indicates the first MCS, the second indication information indicates the first difference, and the first difference is the difference between the index value corresponding to the first MCS and the index value corresponding to the second MCS; transceiver module 802, further configured to send the first signal according to the MCS corresponding to the first signal, where the MCS corresponding to the first signal is the first MCS or the second MCS.
  • the network device 80 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other functions that may provide the above-described functions device.
  • ASIC application-specific integrated circuit
  • the network device 80 may take the form of the network device 20 shown in FIG. 3 .
  • the function/implementation process of the processing module 801 in FIG. 8 can be implemented by the processor 201 in the network device 20 shown in FIG. 3 calling the computer execution instructions stored in the memory 202, and the transceiver module in FIG. 8
  • the function/implementation process of 802 may be implemented by the transceiver 203 in the network device 20 shown in FIG. 3 .
  • the function/implementation process of the transceiver module 802 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the processing module 801
  • the function/implementation process may be realized by a processor (or processing circuit) of a chip or system on a chip.
  • the network device 80 provided in this embodiment can perform the above-mentioned methods for sending and receiving signals, the technical effects that can be obtained by the network device 80 may refer to the above-mentioned method embodiments, which will not be repeated here.
  • the terminal equipment or network equipment described in the embodiments of the present application may also be implemented by using the following: one or more field programmable gate arrays (FPGA), programmable logic A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic A programmable logic device
  • state machine gate logic
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus includes a processor, configured to implement the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication apparatus to execute the method in any of the above method embodiments.
  • the memory may also not be in the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly obtained from memory read, or possibly through other devices) and transferred to the processor.
  • the interface circuit is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly obtained from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, where the communication interface is used to communicate with modules other than the communication device.
  • the communication device may be a chip or a chip system, and when the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the embodiments of the present application also provide a communication device (for example, the communication device may be a chip or a chip system), the communication device includes an interface circuit and a logic circuit, the interface circuit is used to obtain input information and /or outputting output information; the logic circuit is configured to execute the method in any of the above method embodiments, and process and/or generate output information according to the input information.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes an interface circuit and a logic circuit, the interface circuit is used to obtain input information and /or outputting output information; the logic circuit is configured to execute the method in any of the above method embodiments, and process and/or generate output information according to the input information.
  • the input information may be: first indication information, where the first indication information indicates a first index value, and the first index value corresponds to the first MCS and the second MCS.
  • the processing according to the input information may be: determining the first MCS and the second MCS according to the first indication information.
  • the input information may be: first indication information, where the first indication information indicates the first MCS.
  • the processing according to the input information may be: determining the first MCS according to the first indication information, or determining the first MCS and the second MCS according to the first indication information.
  • the input information may be: first indication information and second indication information, the first indication information indicates the first MCS, and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS MCS, the second indication information indicates the first difference.
  • the processing according to the input information may be: determining the first MCS according to the first indication information, and determining the second MCS or the first difference according to the second indication information.
  • the input information may also be: the first signal.
  • the output information may be: first indication information, where the first indication information indicates a first index value, and the first index value corresponds to the first MCS and the second MCS.
  • the output information may be: first indication information, where the first indication information indicates the first MCS.
  • the output information may be: first indication information and second indication information, the first indication information indicates the first MCS, and the second indication information indicates the second MCS; or, the first indication information indicates the first MCS MCS, the second indication information indicates the first difference.
  • the output information may also be: the first signal.
  • the communication device provided in this embodiment can execute the methods in the foregoing method embodiments, so the technical effects that can be obtained may refer to the foregoing method embodiments, which will not be repeated here.
  • the terminal device or the network device described in the embodiments of the present application may be implemented by a general bus architecture.
  • FIG. 9 is a schematic structural diagram of a communication apparatus 900 provided by an embodiment of the present application, where the communication apparatus 900 includes a processor 901 and a transceiver 902 .
  • the communication apparatus 900 may be a terminal device, or a chip therein.
  • FIG. 9 shows only the main components of the communication device 900 .
  • the communication device may further include a memory 903, and an input and output device (not shown in the figure).
  • the processor 901 is mainly used for processing communication protocols and communication data, controlling the entire communication device, executing software programs, and processing data of the software programs.
  • the memory 903 is mainly used to store software programs and data.
  • the transceiver 902 may include a radio frequency circuit and an antenna, and the radio frequency circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 901, the transceiver 902, and the memory 903 may be connected through a communication bus.
  • the processor 901 can read the software program in the memory 903, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 901 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 901.
  • the processor 901 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,尤其涉及一种信号发送、接收方法及装置,能够以较优的调制编码方式传输下行信号,从而提高通信性能。该方法中,网络设备向终端设备发送指示第一索引值的第一指示信息,该第一索引值对应第一MCS和第二MCS,该第一MCS和第二MCS属于第一调制编码方式集合,该第一调制编码方式集合中的任一MCS包括调制阶数和目标码率。终端设备收到第一指示信息后,可以确定第一信号对应的MCS为第一MCS或第二MCS,之后,网络设备根据第一信号对应的MCS发送第一信号,终端设备根据第一信号对应的MCS接收第一信号。

Description

信号发送、接收方法及装置
本申请要求于2021年01月15日提交国家知识产权局、申请号为202110057889.7、申请名称为“信号发送、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信号发送、接收方法及装置。
背景技术
为了满足通信系统中不同终端设备的通信质量,第五代(5th generation,5G)移动通信系统,即新空口(New radio interface,NR)系统中,支持多种调制编码方式(modulation coding scheme,MCS),每个MCS包括调制阶数、目标码率、以及频谱效率。
在半静态调度场景中,网络设备在初始调度时,通过物理下行控制信道(physical downlink control channel,PDCCH)发送终端设备的调度信息,例如资源分配信息、MCS索引等。终端设备接收并识别到当前调度信息是半静态调度信息后,储存该调度信息,之后,在间隔固定的周期内基于储存的调度信息进行通信。此外,网络设备还可以通过高层参数xOverHead配置开销,用于计算传输块(transport block,TB)大小,初始调度时配置的MCS对于高层参数xOverHead配置的开销而言的性能较优。
然而,实际应用中,开销可能随时间动态变化,即会存在高层参数配置的开销和实际开销不同的情况,该情况下,初始调度时配置的MCS可能不是当前实际开销下较优的MCS。
发明内容
本申请提供一种信号发送、接收方法及装置,能够以较优的调制编码方式传输下行信号,从而提高通信性能。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种调制编码方式的确定方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,本申请以终端设备执行该方法为例进行说明。该方法包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示第一索引值,该第一索引值对应第一调制编码方式MCS和第二MCS,第一MCS和第二MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;终端设备确定第一信号对应的MCS为第一MCS或第二MCS,并根据第一信号对应的MCS接收第一信号。
基于该方案,网络设备向终端设备指示的第一索引值对应两个MCS,在后续的下行传输中,终端设备可以根据实际的传输需求,在这两个MCS中选择较优的MCS接收第一信号,从而使得终端设备使用较优的MCS进行通信,提高通信性能。
在一些可能的设计中,终端设备确定第一信号对应的MCS为第一MCS或者第二MCS,包括:终端设备根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,其中,第一开销值为第一信号对应的时频资源中不用于承载第一信号的资源元素RE的个数。
基于该可能的设计,终端设备可以根据实际开销选择第一MCS或第二MCS,相比于现有技术中终端设备只能采用一种固定的MCS的方案,可以使得终端设备灵活选择较优的MCS,从而提高通信性能。
在一些可能的设计中,在第一开销值小于或等于第一开销阈值的情况下,第一信号对应的MCS为第一MCS;在第一开销值大于第一开销阈值的情况下,第一信号对应的MCS为第二MCS。
第二方面,提供一种调制编码方式的确定方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,本申请以网络设备执行该方法为例进行说明。该方法包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示第一索引值,第一索引值对应第一调制编码方式MCS和第二MCS,第一MCS和第二MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;网络设备根据第一信号对应的MCS发送第一信号,第一信号对应的MCS为第一MCS或第二MCS。
基于该方案,网络设备向终端设备指示的第一索引值对应两个MCS,在后续的下行传输中,网络设备可以根据实际的传输需求,在这两个MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
结合上述第一方面或第二方面,在一些可能的设计中,第一MCS的谱效率与第二MCS的谱效率相等。基于该可能的设计,本申请提供谱效率相等的不同MCS。也即本申请中,存在不同的MCS对应的谱效率相等。
结合上述第一方面或第二方面,在一些可能的设计中,第一MCS的调制阶数为8,目标码率为948/1024;第二MCS的调制阶数为10,目标码率为758.5/1024;第一MCS和第二MCS的谱效率为7.4063;
结合上述第一方面或第二方面,在一些可能的设计中,第一MCS的调制阶数为8,目标码率为916.5/1024;第二MCS的调制阶数为10,目标码率为733/1024;第一MCS和第二MCS的谱效率为7.1602。
结合上述第一方面或第二方面,在一些可能的设计中,第一MCS的谱效率与第二MCS的谱效率不相等。
结合上述第一方面或第二方面,在一些可能的设计中,第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
基于上述可能的设计,本申请提供多种MCS,其中包括调制阶数为10,即调制方式为1024QAM的MCS,提高MCS的多样性,为1024QAM场景提供更多的MCS选择。
第三方面,提供一种调制编码方式的确定方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,本申请以终端设备执行该方法为例进行说明。该方法包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示第一调制编码方式MCS,第一MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;终端设备确定第一信号对应的MCS为第一MCS或者第二MCS,并根据第一信号对应的MCS接收第一信号。其中,第二MCS对应的索引值和第一MCS对应的索引值之间的差值为第一数值,或者,第二MCS的谱效率与第一MCS的谱效率相等。
基于该方案,网络设备向终端设备指示第一MCS,在后续的下行传输中,终端设备可以在第一MCS以及与第一MCS有关联的第二MCS中选择较优的MCS接收第一信号,从而使得终端设备使用较优的MCS进行通信,提高通信性能。
在一些可能的设计中,终端设备确定第一信号对应的MCS为第一MCS或者第二MCS,包括:终端设备根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,其中,第一开销值为第一信号对应的时频资源中不用于承载第一信号的资源元素RE的个数。
在一些可能的设计中,在第一开销值小于或等于第一开销阈值的情况下,第一信号对应的MCS为第一MCS;在第一开销值大于第一开销阈值的情况下,第一信号对应的MCS为第二MCS。
在一些可能的设计中,终端设备接收来自网络设备的第一指示信息后,可以根据第一指示信息确定第一MCS;或者,可以根据第一指示信息确定第一MCS和第二MCS。
在一些可能的设计中,终端设备根据第一指示信息确定第一MCS,未确定第二MCS的情况下,在第一开销值大于第一开销阈值时,终端设备确定第二MCS。
第四方面,提供一种调制编码方式的确定方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,本申请以网络设备执行该方法为例进行说明。该方法包括:网络设备向终端设备发送第一指示信息,第一指示信息指示第一调制编码方式MCS,第一MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;网络设备根据第一信号对应的MCS发送第一信号,第一信号对应的MCS为第一MCS或第二MCS。其中,第二MCS对应的索引值和第一MCS对应的索引值之间的差值为第一数值,或者,第二MCS的谱效率与第一MCS的谱效率相等。
基于该方案,网络设备向终端设备指示第一MCS,在后续的下行传输中,网络设备可以在第一MCS以及与第一MCS有关联的第二MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
结合上述第三方面或第四方面,在一些可能的设计中,第一MCS的谱效率与第二MCS的谱效率相等。
结合上述第三方面或第四方面,在一些可能的设计中,第一MCS的调制阶数为8,目标码率为948/1024;第二MCS的调制阶数为10,目标码率为758.5/1024;第一MCS和第二MCS的谱效率为7.4063;
结合上述第三方面或第四方面,在一些可能的设计中,第一MCS的调制阶数为8,目标码率为916.5/1024;第二MCS的调制阶数为10,目标码率为733/1024;第一MCS和第二MCS的谱效率为7.1602。
结合上述第三方面或第四方面,在一些可能的设计中,第一MCS的谱效率与第二MCS的谱效率不相等。
结合上述第三方面或第四方面,在一些可能的设计中,第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
第五方面,提供一种调制编码方式的确定方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,本申请以终端设备执行该方法为例进行说明。该方法包括:终端设备接收来自网络设备的第一指示信息和第二指示信息,该第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值,第一差值为第一MCS对应的索引值与第二MCS对应的索引值之间的差值;终端设备确定第一信号对应的MCS为第一MCS或第二MCS,并 根据第一信号对应的MCS接收第一信号。
基于该方案,网络设备向终端设备发送第一指示信息和第二指示信息,使得终端设备能够根据第一指示信息和第二指示信息确定第一MCS和第二MCS,在后续的下行传输中,终端设备可以在第一MCS和第二MCS中选择较优的MCS接收第一信号,从而使得终端设备使用较优的MCS进行通信,提高通信性能。
在一些可能的设计中,终端设备确定第一信号对应的MCS为第一MCS或者第二MCS,包括:终端设备根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,其中,第一开销值为第一信号对应的时频资源中不用于承载第一信号的资源元素RE的个数。
在一些可能的设计中,在第一开销值小于或等于第一开销阈值的情况下,第一信号对应的MCS为第一MCS;在第一开销值大于第一开销阈值的情况下,第一信号对应的MCS为第二MCS。
在一些可能的设计中,第一指示信息指示第一MCS,第二指示信息指示第二MCS的情况下,该方法还包括:终端设备根据第一指示信息确定第一MCS,以及根据第二指示信息确定第二MCS。
在一些可能的设计中,第一指示信息指示第一MCS,第二指示信息指示第一差值的情况下,该方法还包括:终端设备根据第一指示信息确定第一MCS,以及根据第二指示信息确定第一差值。进一步的,终端设备还根据第一MCS对应的索引值和第一差值,确定第二MCS对应的索引值,进而根据第二MCS对应的索引值确定第二MCS。
第六方面,提供一种调制编码方式的确定方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,本申请以网络设备执行该方法为例进行说明。该方法包括:网络设备向终端设备发送第一指示信息和第二指示信息,该第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值,第一差值为第一MCS对应的索引值与第二MCS对应的索引值之间的差值;网络设备根据第一信号对应的MCS发送第一信号,第一信号对应的MCS为第一MCS或第二MCS。
基于该方案,网络设备向终端设备发送第一指示信息和第二指示信息,使得终端设备能够根据第一指示信息和第二指示信息确定第一MCS和第二MCS,在后续的下行传输中,网络设备可以在第一MCS以及第二MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
第七方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第三方面或第五方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面或第六方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块和收发模块。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。
在一些可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
其中,第七方面提供的通信装置用于执行上述任一方面或任一方面任意可能的实现方式,具体细节可参见上述任一方面或任一方面任意可能的实现方式,此处不再赘述。
第八方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面或第五方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面或第六方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第九方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面或第五方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面或第六方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第十方面,提供一种通信装置,包括:接口电路和逻辑电路,该接口电路,用于获取输入信息和/或输出输出信息;该逻辑电路用于执行上述任一方面或任一方面任意可能的实现方式所述的方法,根据输入信息进行处理和/或生成输出信息。该通信装置可以为上述第一方面或第三方面或第五方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面或第六方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
该通信装置为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置时:
在一些可能的设计中,输入信息可以为:第一指示信息,该第一指示信息指示第一索引值,该第一索引值对应第一MCS和第二MCS。相应的,根据输入信息进行处理,可以为:根据第一指示信息确定第一MCS和第二MCS。
在一些可能的设计中,输入信息可以为:第一信号。
该通信装置为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置时:
在一些可能的设计中,输出信息可以为:第一指示信息,该第一指示信息指示第一索引值,该第一索引值对应第一MCS和第二MCS。
在一些可能的设计中,输出信息可以为:第一信号。
该通信装置为上述第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置时:
在一些可能的设计中,输入信息可以为:第一指示信息,第一指示信息指示第一MCS。相应的,根据输入信息进行处理,可以为:根据第一指示信息确定第一MCS,或者,根据第一指示信息确定第一MCS和第二MCS。
在一些可能的设计中,输入信息可以为:第一信号。
该通信装置为上述第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置时:
在一些可能的设计中,输出信息可以为:第一指示信息,第一指示信息指示第一MCS。
在一些可能的设计中,输出信息可以为:第一信号。
该通信装置为上述第五方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置时:
在一些可能的设计中,输入信息可以为:第一指示信息和第二指示信息,第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值。相应的,根据输入信息进行处理,可以为:根据第一指示信息确定第一MCS,以及,根据第二指示信息确定第二MCS,或第一差值。
在一些可能的设计中,输入信息可以为:第一信号。
该通信装置为上述第六方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置时:
在一些可能的设计中,输出信息可以为:第一指示信息和第二指示信息,第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值。
在一些可能的设计中,输出信息可以为:第一信号。
第十一方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面或第三方面或第五方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面或第六方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行上述任一方面所述的方法。
第十四方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第五方面至第十二方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出信息,上述的接收动作/功能可以理解为输入信息。
其中,第七方面至第十四方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或第四方面或第五方面或第六方面中不同设计方式所带来的技术效果,在此不再赘述。
第十五方面,提供一种通信系统,该通信系统包括第二方面所述的网络设备和第一方面所述的终端设备;或者,该通信系统包括第四方面所述的网络设备和第三方面所述的终端设备;或者,该通信系统包括第五方面所述的网络设备和第六方面所述的终端设备。
附图说明
图1为本申请提供的一种开销数量的示意图;
图2为本申请提供的一种通信系统的结构示意图;
图3为本申请提供的一种网络设备和终端设备的结构示意图;
图4为本申请提供的一种信号发送、接收方法的流程示意图;
图5为本申请提供的另一种信号发送、接收方法的流程示意图;
图6为本申请提供的又一种信号发送、接收方法的流程示意图;
图7为本申请提供的另一种终端设备的结构示意图;
图8为本申请提供的另一种网络设备的结构示意图;
图9为本申请提供的一种通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、子载波、子载波间隔:
子载波:正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中将频域资源划分为若干个子资源,该频域上的每个子资源可以称为子载波。子载波也可以认为是频域资源的最小粒度。
子载波间隔:OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。示例性的,长期演进(Long Term Evolution,LTE)系统的子载波间隔为15千赫兹(kilohertz,kHz),NR系统的子载波间隔为15kHz、30kHz、60kHz、120kHz、或240kHz等。
NR系统中子载波间隔可通过网络设备配置,例如子载波间隔配置μ=0对应的子载波间隔为15kHz,子载波间隔配置μ=1对应的子载波间隔为30kHz,子载波间隔配置μ=2对应的子载波间隔为60kHz,子载波间隔配置μ=3对应的子载波间隔为120kHz,子载波间隔配置μ=4对应的子载波间隔为240kHz等。
2、资源块、物理资源块、资源元素:
资源块(resource block,RB):频域上连续的N个子载波可以称为一个RB。例如,LTE和NR系统中的一个RB包括12个子载波。随着通信系统的演进,一个RB包括的子载波的数量也可以是其他值。
物理资源块(physical resource block,PRB):PRB可以理解为频域资源分配时采用的物理上的频域资源概念。
3、OFDM符号、时隙、子帧:
OFDM符号:OFDM系统中时域上的最小时间单元。
时隙:NR系统中一个时隙包括14个OFDM符号,子载波间隔为15kHz时,一个时隙的长度为1毫秒(millisecond,ms),子载波间隔为30kHz时,一个时隙的长度为0.5ms。
子帧:NR系统中一个子帧的时间长度为1ms。
4、时频资源单元:
时频资源单元是OFDM系统中最小的资源粒度,时域上为一个OFDM符号,频域上为一个子载波。
此外,时频资源单元也可以称为资源元素(resource element,RE),二者可以相互替换,本申请对此不做具体限定。
在无线通信系统中,网络设备和终端设备通过无线链路通信。无线链路的信道状态受网络设备和终端设备之间的距离和/或环境等因素的影响,例如,网络设备和终端设备之间的距离不同,信道状态可能不同。当网络设备与终端设备之间距离较近且遮挡物较少时,二者之间的信道质量较好,而当网络设备与终端设备之间距离较远且遮挡物较多时,二者之间的信 道质量较差。
为了满足系统中不同终端设备的通信质量,NR系统支持多种调制编码方式(modulation coding scheme,MCS),每个MCS包括调制阶数、目标码率、以及频谱效率,不同MCS不完全相同。目标码率通常表示为大于0且小于1的小数或分数,例如1/2、2/3等。
在一定的目标码率下,调制阶数越大,系统的频谱效率越高。调制方式从技术维度可以分为正交相移键控(quadrature phase shift keying,QPSK)调制和正交幅度调制(quadrature amplitude modulation,QAM)。进一步的,QAM调制可以按照调制阶数的不同分为16QAM、64QAM、256QAM等。此外,NR系统中,为了进一步提高系统中心用户的速率,正在进行1024QAM标准化的工作,通过提高调制阶数,为小区中心用户或固定无线接入用户提供更高的传输速率,从而提高频率效率。
网络设备与终端设备之间的信道质量较好时,网络设备通常采用相对高阶的调制方式,例如64QAM或256QAM向终端设备发送下行信号;或者,终端设备采用相对高阶的调制方式向网络设备发送上行信号,以获得更高的频谱效率。网络设备与终端设备之间的信道质量较差时,网络设备通常采用相对低阶的调制方式,例如16QAM或QPSK向终端设备发送下行信号;或者,终端设备采用相对低阶的调制方式向网络设备发送上行信号,以提高通信的可靠性。
在一定的调制阶数下,目标码率越低表示编码时增加的冗余比特越多,通信的可靠性越高,但频谱效率越低。
网络设备与终端设备之间的信道质量较好时,网络设备通常采用相对较高的目标码率发送下行信号;或者,终端设备采用相对较高的目标码率向网络设备发送上行信号,以保持较高的频谱效率。网络设备与终端设备之间的信道质量较差时,网络设备通常采用相对较低的目标码率向终端设备发送下行信号;或者,终端设备采用相对较低的目标码率向网络设备发送上行信号,以提高通信的可靠性。
在网络设备与终端设备通信时,网络设备可以通过一个指示字段的不同状态值表示不同的MCS索引值,每个MCS索引值对应一个MSC,该MSC包括调制阶数、目标码率、以及频谱效率。也就是说,网络设备可以向终端设备发送一个指示信息,该指示信息可以为一个MCS索引。
需要说明的是,本申请涉及的“编号”、“索引”、“标识”可以相互替换,在此统一说明,下述实施例不再赘述。
终端设备收到该指示信息后,可以根据MCS索引确定对应的MCS的调制阶数和目标码率,并通过第三代合作伙伴计划(3rd generation partnership project,3GPP)标准TS38.241中规定的传输块(transport block,TB)大小计算公式确定传输块大小(Transport Block size,TBS),之后,根据该MCS和TB大小接收下行信号。
具体的,TBS与网络设备指示的MCS的调制阶数、目标码率、调度的PRB的数量、以及高层参数xOverHead配置的开销有关。示例性的,在网络设备指示的MCS的调制阶数、目标码率、调度的PRB的数量一定时,高层参数配置的开销越小,TBS越大。
此处的开销可以指一个PRB内特定RE的数量,该特定RE用于承载信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、以及3GPP标准TS38.241中规定的不能用于物理下行共享信道(physical downlink shared channel,PDSCH)的RE。
上述方案中,终端设备根据网络设备指示的MCS的调制阶数、目标码率、调度的PRB 的数量、以及高层参数配置的开销确定传输块大小,在实际开销随时间动态变化时,会存在配置的开销和实际开销不匹配的情况,从而导致网络设备发送下行信号的实际码率与之前指示的目标码率存在偏差。
示例性的,如图1所示,以时隙1之前网络设备向终端设备发送指示信息指示了调制阶数、目标码率,且高层参数配置的开销为0为例,在时隙1和时隙2中,前两个OFDM符号用于承载物理下行控制信道(physical downlink control channel,PDCCH),第三个OFDM符号用于承载解调参考信号(demodulation reference signal,DMRS),开销用于承载非周期CSI-RS。参见图1,在时隙1中网络设备进行下行传输时的实际开销为0,在时隙2中网络设备进行下行传输时的实际开销为32,对于时隙2的传输,终端设备会根据配置的开销0确定TBS(以TBS等于N1为例),然而若终端设备根据实际开销32确定TBS(以TBS等于N2为例),那么由于实际开销大于配置的开销,因此N1大于N2,从而导致实际传输的等效码率(N1+N CRC)/N RE大于目标码率,目标码率近似于(N2+N CRC)/N RE,其中,N CRC为循环冗余校验比特的数量,N RE为实际用于承载传输块的RE的数量。
上述实际码率与目标码率存在偏差的情况,会导致MCS表项中调制阶数不同的相邻MCS的解调性能发生切换,也就是说,在配置开销和实际开销匹配(或相等)的情况下,MCS1的解调性能优于MCS2的解调性能,在配置开销和实际开销不匹配(或不相等)的情况下,MCS2的解调性能优于MCS1的解调性能。
在半静态调度场景中,网络设备在初始调度时会通过物理下行控制信道(physical downlink control channel,PDCCH)向终端设备发送调度信息,例如资源分配信息、MCS索引值等。终端设备接收并识别当前调度信息为半静态调度信息后,存储该调度信息,之后,每间隔固定的周期按照存储的调度信息进行通信。若在半静态调度场景中使用上述方法,在开销随时间动态变化的情况下,网络设备初始调度时指示的MCS可能不是实际开销下最优的MCS,从而影响通信性能。
基于此,本申请提供一种信号发送和接收方法,该方法能够以较优的调制编码方式传输下行信号,从而提高通信性能。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于LTE系统、NR系统;也可以适用于其他无线通信系统,例如 正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、卫星通信系统、非陆地通信网络(non-terrestrial network,NTN)、物联网(internet of things,IoT)系统、或未来演进的通信系统等,本申请实施例对此不作具体限定。其中,上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。此外,术语“系统”可以和“网络”相互替换。
如图2所示,为本申请实施例提供的一种通信系统10。该通信系统10包括至少一个网络设备20,以及与该网络设备20连接的一个或多个终端设备30。可选的,不同的终端设备30之间可以相互通信。
以图2所示的网络设备20与任一终端设备30进行交互为例,本申请实施例中,网络设备向终端设备发送第一指示信息,该第一指示信息指示第一索引值,该第一索引值对应第一MCS和第二MCS,该第一MCS和第二MCS属于第一调制编码方式集合,该第一调制编码方式集合中的任一MCS包括调制阶数和目标码率。相应的,终端设备接收来自网络设备的第一指示信息。此外,网络设备和终端设备确定第一信号对应的MCS为第一MCS或第二MCS,之后,网络设备根据第一信号对应的MCS发送第一信号,终端设备根据第一信号对应的MCS接收第一信号。
基于该方案,网络设备向终端设备指示的第一索引值对应两个MCS,在后续下行传输中,网络设备可以在这两个MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
或者,以图2所示的网络设备20与任一终端设备30进行交互为例,本申请实施例中,网络设备向终端设备发送第一指示信息,该第一指示信息指示第一MCS,该第一MCS属于第一调制编码方式集合,该第一调制编码方式集合中的任一MCS包括调制阶数和目标码率。相应的,终端设备接收来自网络设备的第一指示信息。此外,网络设备和终端设备可以确定第一信号对应的MCS为第一MCS或第二MCS,之后,网络设备根据第一信号对应的MCS发送第一信号,终端设备根据第一信号对应的MCS接收第一信号。其中,该第二MCS对应的索引值和该第一MCS对应的索引值之间的差值为第一数值,或者,该第二MCS的谱效率与该第一MCS的谱效率相等。
基于该方案,网络设备向终端设备指示第一MCS,在后续的下行传输中,网络设备可以在第一MCS以及与第一MCS有关联的第二MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
本申请提供的具体方案将在后续实施例中详细说明,在此不予赘述。
本申请涉及的网络设备20,是一种将终端设备30接入到无线网络的设备,可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非3GPP接入设备;或者本申请实施例中的网络设备20还可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者传输接收节点(transmission and reception point,TRP),或者包括TRP的设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
一种可能的方式中,本申请实施例中的网络设备20也可以是指集中单元(central unit, CU)或者分布式单元(distributed unit,DU),或者,网络设备也可以是CU和DU组成的。多个DU可以共用一个CU。一个DU也可以连接多个CU。CU和DU可以理解为是对网络设备从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如,无线资源控制(radio resource control,RRC)协议层、业务数据适配协议栈(service data adaptation protocol,SDAP)协议层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)协议层的功能设置在CU中,而无线链路控制(radio link control,RLC)协议层,媒体接入控制(media access control,MAC)协议层,物理(physical,PHY)协议层等的功能设置在DU中。
可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。
例如,可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
在一些实施例中,CU可以由CU控制面(CU control plane,CU-CP)和CU用户面(CU user plane,CU-UP)组成,CU-CP和CU-UP可以理解为是对CU从逻辑功能的角度进行划分。其中,CU-CP和CU-UP可以根据无线网络的协议层划分,例如,RRC协议层和信令无线承载(signal radio bearer,SRB)对应的PDCP协议层的功能设置在CU-CP中,数据无线承载(data radio bearer,DRB)对应的PDCP协议层的功能设置在CU-UP中。此外,SDAP协议层的功能也可能设置在CU-UP中。
本申请涉及的终端设备30,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是IoT、5G网络、或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
在一些实施例中,网络设备20与终端设备30也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
如图3所示,为本申请实施例提供的网络设备20和终端设备30的结构示意图。
其中,终端设备30包括至少一个处理器(图3中示例性的以包括一个处理器301为例进 行说明)和至少一个收发器(图3中示例性的以包括一个收发器303为例进行说明)。进一步的,终端设备30还可以包括至少一个存储器(图3中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图3中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图3中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的方法。
或者,本申请中,也可以是处理器301执行本申请提供的信号发送、接收方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请涉及的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器(图3中示例性的以包括一个处理器201为例进行说明)和至少一个收发器(图3中示例性的以包括一个收发器203为例进行说明)。进一步的,网络设备20还可以包括至少一个存储器(图3中示例性的以包括一个存储器202为例进行说明)和至少一个网络接口(图3中示例性的以包括一个网络接口204为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口) 与其它网络设备的网络接口进行连接(图3中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备30中处理器301、存储器302和收发器303的描述,在此不再赘述。
可以理解的是,图3所示的结构并不构成对终端设备30和网络设备20的具体限定。比如,在本申请另一些实施例中,终端设备30和网络设备20可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合附图,以图2所示的网络设备20与终端设备30进行交互为例,对本申请实施例提供的调制编码方式的确定方法进行展开说明。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
可以理解的,在本申请的各个实施例中,网络设备与终端设备之间的交互,也可以适用到CU与终端设备之间的交互,或者DU与终端设备之间的交互。可以理解的,本申请的各个实施例中网络设备与终端设备交互机制可以进行适当的变形,以适用CU或者DU与终端设备之间的交互。
需要说明的是,本申请下述实施例中各个设备或功能之间的信息名字或信息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
参见图4,为本申请实施例提供的一种信号发送、接收方法,该信号发送、接收方法包括如下步骤:
S401、网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
其中,该第一指示信息用于指示第一索引值,该第一索引值对应第一MCS和第二MCS。进一步的,该第一MCS和第二MCS属于第一调制编码方式集合,该第一调制编码方式集合中的任一MCS包括调制阶数和目标码率,还可以包括谱效率。也就是说,在第一调制编码方式集合中,第一MCS对应的索引值和第二MCS对应的索引值相同。
需要说明的是,本申请中的“谱效率”也可以称为“频谱效率”,二者可以相互替换;本申请中的“MCS对应的索引值”也可以称为“MCS索引值”或“MCS索引”,可以相互替换,本申请对此不做具体限定。
在一些实施例中,第一调制编码方式集合可以包括调制阶数可以为2、4、6、8、10的多种MCS。其中,调制阶数为2、4、6、8、10对应的调制方式分别为QPSK、16QAM、64QAM、256QAM、1024QAM。
可选的,第一调制编码方式集合可以通过表格表示,例如,表格中的每一行为第一调制编码方式集合中的一个MCS,表格中的第一列为MCS对应的索引值,第二列为MCS的调制阶数,第三列为MCS的目标码率,第四列为MCS的谱效率。
在本申请的不同实现方式中,第一MCS和第二MCS的谱效率可以相等,也可以不相等。需要说明的是,无论第一MCS和第二MCS的谱效率是否相等,第一MCS的调制阶数和第二MCS的调制阶数不相同,例如,第一MCS的调制阶数大于第二MCS的调制阶数,或者,第一MCS的调制阶数小于第二MCS的调制阶数。
在一种实现方式中,第一MCS和第二MCS的谱效率相等。该实现方式下,第一MCS和 第二MCS可能存在如下几种情况:
情况一、第一MCS的调制阶数为8,目标码率为948/1024;第二MCS的调制阶数为10,目标码率为758.5/1024;第一MCS和第二MCS的谱效率为7.4063。
也就是说,第一调制编码方式集合对应的表格中,对应的频谱效率为7.463的MCS索引,对应两种MCS,分别为调制阶数为8且目标码率为948/1024的第一MCS,以及调制阶数为10且目标码率为758.5/1024的第二MCS。
需要说明的是,本申请以第一MCS的调制阶数为8,第二MCS的调制阶数为10为例进行说明,在实际应用中,第一MCS的调制阶数可以为8之外的其他值,第二MCS的调制阶数可以为10之外的其他值,例如,第一MCS的调制阶数为6,第二MCS的调制阶数为8;或者,第一MCS的调制阶数为4,第二MCS的调制阶数为6。相应的,第一MCS的码率和第二MCS的码率也可以为其他值,本申请对此不做具体限定。
可选的,该情况一下,第一调制编码方式集合中除第一MCS和第二MCS外,改第一调和在编码方式集合还可以包括N个调制阶数为10的第三MCS,N为大于1的正整数。
可选的,第一调制编码方式集合还包括6个调制阶数为10的MCS,所述6个MCS对应的目标码率分别为790/1024、822/1024、853/1024、885/1024、916/1026、948/1024。
示例性的,以第一调制阶数为10,N等于6为例,第一调制编码方式集合包括的6个调制阶数为10的第三MCS的目标码率分别为:790/1024、822/1024、853/1024、885/1024、916/1026、948/1024;该6个调制阶数为10的第三MCS的谱效率分别为:7.7149、8.0235、8.3321、8.6407、8.9493、9.2578。
若以表格表示第一调制编码方式集合,该第一调制编码方式集合可以如下表1所示。
表1
MCS索引(I MCS) 调制阶数(Qm) 目标码率[/1024] 谱效率
0 2 120 0.2344
1 2 193 0.3770
2 2 449 0.8770
3 4 378 1.4766
4 4 490 1.9141
5 4 616 2.4063
6 6 466 2.7305
7 6 567 3.3223
8 6 666 3.9023
9 6 719 4.2129
10 6 772 4.5234
11 6 822 4.8164
12 6 873 5.1152
13 8 682.5 5.3320
14 8 711 5.5547
15 8 754 5.8906
16 8 797 6.2266
17 8 841 6.5703
18 8 885 6.9141
19 8 916.5 7.1602
20 8/10 948/758.5 7.4063
21 10 790 7.7149
22 10 822 8.0235
23 10 853 8.3321
24 10 885 8.6407
25 10 916 8.9493
26 10 948 9.2578
27 2 预留(reserved)  
28 4 预留(reserved)  
29 6 预留(reserved)  
30 8 预留(reserved)  
31 10 预留(reserved)  
示例性的,基于上述表1所示的第一调制编码方式集合,第一指示信息指示的第一索引值为20。
需要说明的是,表1仅是示例性的示出MCS索引对应的各个MCS包括的调制阶数、目标码率、和谱效率,本申请对MCS索引与MCS的对应关系不做具体限定,例如,表1中从上到下MCS索引的值也可以是递减的,即第一行的MCS对应的MCS索引为31,第二行的MCS对应的MCS索引为30,以此类推,最后一行的MCS对应的MCS索引为0。
本申请下述实施例示出表格中,也仅是示例性的示出MCS索引对应的各个MCS包括的调制阶数、目标码率、和谱效率,本申请不限定MCS索引与MCS的对应关系,在此统一说明,下述实施例不再赘述。
情况二、第一MCS的调制阶数为8,目标码率为916.5/1024;第二MCS的调制阶数为10,目标码率为733/1024;第一MCS和所述第二MCS的谱效率为7.1602。
也就是说,第一调制编码方式集合对应的表格中,对应的频谱效率为7.1602的MCS索引,对应两种MCS,分别为调制阶数为8且目标码率为916.5/1024的第一MCS,以及调制阶数为10且目标码率为733/1024的第二MCS。
可选的,该情况二下,第一调制编码方式集合中除第一MCS和第二MCS外,该第一调制编码方式集合中还包括N个调制阶数为10的第三MCS,N为大于1的正整数。
可选的,该第一调制编码方式集合还可以包括4个调制阶数为10的MCS,该4个调制阶数为10的MCS的目标码率可以分别为787/1024、840.5/1024、894/1024、948/1024;或,该第一调制编码方式集合还可以包括5个调制阶数为10的MCS,该5个调制阶数为10的MCS的目标码率可以分别为776/1024、819/1024、862/1024、905/1024、948/1024;或,该第一调制编码方式集合还可以包括6个调制阶数为10的MCS,所述6个调制阶数为10的MCS的目标码率可以分别为912/1024、876/1024、840/1024、862/1024、905/1024、948/1024;或,述第一调制编码方式集合还可以包括7个调制阶数为10的MCS,所述7个调制阶数为10的MCS的目标码率可以分别为733/1024、790/1024、822/1024、853/1024、885/1024、916/1026、948/1024。
示例性的,以第一调制阶数为10,N等于4为例,第一调制编码方式集合包括的4个调制阶数为10的第三MCS的目标码率分别为:787/1024、840.5/1024、894/1024、948/1024;该4个调制阶数为10的第三MCS的谱效率分别为:7.6846、8.2090、8.7334、9.2578。
若以表格表示第一调制编码方式集合,该第一调制编码方式集合可以如下表2所示。基于表2所示的第一调制编码方式集合,第一指示信息指示的第一索引值为22。
表2
MCS索引(IMCS) 调制阶数(Qm) 目标码率[/1024] 谱效率
0 2 120 0.2344
1 2 193 0.3770
2 2 449 0.8770
3 4 378 1.4766
4 4 490 1.9141
5 4 616 2.4063
6 4 658 2.5703
7 6 466 2.7305
8 6 517 3.0293
9 6 567 3.3223
10 6 616 3.6094
11 6 666 3.9023
12 6 719 4.2129
13 6 772 4.5234
14 6 822 4.8164
15 6 873 5.1152
16 8 682.5 5.3320
17 8 711 5.5547
18 8 754 5.8906
19 8 797 6.2266
20 8 841 6.5703
21 8 885 6.9141
22 8/10 916.5/733 7.1602
23 10 787 7.6846
24 10 840.5 8.2090
25 10 894 8.7334
26 10 948 9.2578
27 2 预留(reserved)  
28 4 预留(reserved)  
29 6 预留(reserved)  
30 8 预留(reserved)  
31 10 预留(reserved)  
示例性的,以第一调制阶数为10,N等于5为例,第一调制编码方式集合包括的5个调制阶数为10的第三MCS的目标码率分别为:776/1024、819/1024、862/1024、905/1024、948/1024;该5个调制阶数为10的第三MCS的谱效率分别为:776/1024、819/1024、862/1024、905/1024、948/1024。
若以表格表示第一调制编码方式集合,该第一调制编码方式集合可以如下表3所示。基于表3所示的第一调制编码方式集合,第一指示信息指示的第一索引值为21。
表3
MCS索引(IMCS) 调制阶数(Qm) 目标码率[/1024] 谱效率
0 2 120 0.2344
1 2 193 0.3770
2 2 449 0.8770
3 4 378 1.4766
4 4 490 1.9141
5 4 616 2.4063
6 6 466 2.7305
7 6 517 3.0293
8 6 567 3.3223
9 6 616 3.6094
10 6 666 3.9023
11 6 719 4.2129
12 6 772 4.5234
13 6 822 4.8164
14 6 873 5.1152
15 8 682.5 5.3320
16 8 711 5.5547
17 8 754 5.8906
18 8 797 6.2266
19 8 841 6.5703
20 8 885 6.9141
21 8/10 916.5/733 7.1602
22 10 776 7.5808
23 10 819 8.0001
24 10 862 8.4193
25 10 905 8.8386
26 10 948 9.2578
27 2 预留(reserved)  
28 4 预留(reserved)  
29 6 预留(reserved)  
30 8 预留(reserved)  
31 10 预留(reserved)  
示例性的,以第一调制阶数为10,N等于6为例,第一调制编码方式集合包括的6个调制阶数为10的第三MCS的目标码率分别为:912/1024、876/1024、840/1024、862/1024、905/1024、948/1024;该6个调制阶数为10的第三MCS的谱效率分别为:7.5098、7.8594、8.2090、8.5586、8.9082、9.2578。
若以表格表示第一调制编码方式集合,该第一调制编码方式集合可以如下表4所示。基于表4所示的第一调制编码方式集合,第一指示信息指示的第一索引值为20。
表4
MCS索引(IMCS) 调制阶数(Qm) 目标码率[/1024] 谱效率
0 2 120 0.2344
1 2 193 0.3770
2 2 449 0.8770
3 4 378 1.4766
4 4 490 1.9141
5 4 616 2.4063
6 6 466 2.7305
7 6 567 3.3223
8 6 616 2.4063
9 6 666 3.9023
10 6 719 4.2129
11 6 772 4.5234
12 6 822 4.8164
13 6 873 5.1152
14 8 682.5 5.3320
15 8 711 5.5547
16 8 754 5.8906
17 8 797 6.2266
18 8 841 6.5703
29 8 885 6.9141
20 8/10 916.5/733 7.1602
21 10 912 7.5098
22 10 876 7.8594
23 10 840 8.2090
24 10 862 8.5586
25 10 905 8.9082
26 10 948 9.2578
27 2 预留(reserved)  
28 4 预留(reserved)  
29 6 预留(reserved)  
30 8 预留(reserved)  
31 10 预留(reserved)  
示例性的,以第一调制阶数为10,N等于7为例,第一调制编码方式集合包括的6个调制阶数为10的第三MCS的目标码率分别为:733/1024、790/1024、822/1024、853/1024、885/1024、916/1026、948/1024;该7个调制阶数为10的第三MCS的谱效率分别为:7.4063、7.7149、8.0235、8.3321、8.6407、8.9493、9.2578。
若以表格表示第一调制编码方式集合,该第一调制编码方式集合可以如下表5所示。基于表5所示的第一调制编码方式集合,第一指示信息指示的第一索引值为19。
表5
MCS索引(IMCS) 调制阶数(Qm) 目标码率[/1024] 谱效率
0 2 120 0.2344
1 2 193 0.3770
2 2 449 0.8770
3 4 378 1.4766
4 4 490 1.9141
5 4 616 2.4063
6 6 466 2.7305
7 6 567 3.3223
8 6 666 3.9023
9 6 719 4.2129
10 6 772 4.5234
11 6 822 4.8164
12 6 873 5.1152
13 8 682.5 5.3320
14 8 711 5.5547
15 8 754 5.8906
16 8 797 6.2266
17 8 841 6.5703
18 8 885 6.9141
19 8/10 916.5/733 7.1602
20 10 758.5 7.4063
21 10 790 7.7149
22 10 822 8.0235
23 10 853 8.3321
24 10 885 8.6407
25 10 916 8.9493
26 10 948 9.2578
27 2 预留(reserved)  
28 4 预留(reserved)  
29 6 预留(reserved)  
30 8 预留(reserved)  
31 10 预留(reserved)  
在另一种实现方式中,第一MCS和第二MCS的谱效率不相等。示例性的,第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
也就是说,第一调制编码方式集合中,调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063的第一MCS,与调制阶数为10,目标码率为790/1024,谱效率为7.7149的第二MCS对应相同的索引。
可选的,该实现方式下,第一调制编码方式集合中除第一MCS和第二MCS外,该第一调制编码方式集合中还包括M个调制阶数为10的第四MCS,M为大于1的正整数。
可选的,该第一调制编码方式集合还可以包括5个调制编码方式为10的调制编码方式,该5个调制阶数为10的调制编码方式的目标编码速率可以分别为822/1024、853/1024、885/1024、916/1026、948/1024。
示例性的,以第一调制阶数为10,M等于5为例,第一调制编码方式集合包括的5个调制阶数为10的第四MCS的目标码率分别为:822/1024、853/1024、885/1024、916/1024、948/1024;该5个调制阶数为10的第四MCS的谱效率分别为:8.0235、8.3321、8.6407、8.9493、9.2578。
若以表格表示第一调制编码方式集合,该第一调制编码方式集合可以如下表6所示。基于表6所示的第一调制编码方式集合,第一指示信息指示的第一索引值为21。
表6
MCS索引(IMCS) 调制阶数(Qm) 目标码率[/1024] 谱效率
0 2 120 0.2344
1 2 193 0.3770
2 2 449 0.8770
3 4 378 1.4766
4 4 490 1.9141
5 4 616 2.4063
6 6 466 2.7305
7 6 567 3.3223
8 6 616 3.6094
9 6 666 3.9023
10 6 719 4.2129
11 6 772 4.5234
12 6 822 4.8164
13 6 873 5.1152
14 8 682.5 5.3320
15 8 711 5.5547
16 8 754 5.8906
17 8 797 6.2266
18 8 841 6.5703
19 8 885 6.9141
20 8 916.5 7.1602
21 8/10 948/790 7.4063/7.7149
22 10 822 8.0235
23 10 853 8.3321
24 10 885 8.6407
25 10 916 8.9493
26 10 948 9.2578
27 2 预留(reserved)  
28 4 预留(reserved)  
29 6 预留(reserved)  
30 8 预留(reserved)  
31 10 预留(reserved)  
以上对本申请提供的第一调制编码方式集合进行了介绍。下面,对网络设备发送第一指示信息的方式进行介绍。
可选的,网络设备可以向终端设备发送下行控制信息(downlink control information,DCI),该DCI中包括第一指示信息,或者说,第一指示信息承载于DCI中;或者,网络设备可以向终端设备发送无线资源控制(radio resource control,RRC)信令,该RRC信令中包括第一指示信息,或者说,第一指示信息承载于RRC信令中;或者,网络设备可以向终端设备发送媒体接入控制-控制元素(media access control control element,MAC-CE),该MAC-CE中包括第一指示信息,或者说,第一指示信息承载于MAC-CE中。
可选的,该第一指示信息可以是在半静态调度场景下,网络设备进行初始调度时向终端设备发送的;或者,该第一指示信息也可以是非半静态调度(或者称动态调度)场景下,网络设备在发送下行信号之前向终端设备发送的,本申请对此不做具体限定。
可选的,在半静态调度场景下,终端设备收到第一指示信息后,可以根据第一指示信息确定第一MCS和第二MCS,并存储该第一MCS和第二MCS,以便后续在下行通信过程中使用。
S402、网络设备确定第一信号对应的MCS为第一MCS或第二MCS。
其中,第一信号为网络设备待发送的下行信号,或者说,为终端设备待接收的下行信号。本申请涉及的第一信号也可以理解为第一PDSCH,二者可以相互替换,本申请对此不做具体限定。
可选的,网络设备可以根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS。
其中,第一开销值为第一信号对应的时频资源中不用于承载第一信号的资源元素RE的 个数,或者说,第一开销值为第一信号对应的时频资源中除第一时频资源外的RE的个数,第一时频资源为用于承载第一信号的时频资源。也就是说,第一信号对应的时频资源包括第一时频资源和不用于承载第一信号的RE。示例性的,第一信号对应的时频资源可以为PRB,其包括用于承载第一信号的时频资源和不用于承载第一信号的RE。
可选的,第一信号对应的时频资源中不用于承载第一信号的RE,或者说,第一信号对应的时频资源中除第一时频资源外的RE,可以是用于承载CSI-RS的RE、用于承载零功率CSI-RS的RE、用于承载PT-RS的RE、以及3GPP标准TS38.214中规定的不能用于PDSCH的RE。
可选的,在第二MCS对应的调制阶数大于第一MCS对应的调制阶数的情况下,网络设备根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,可以包括:在第一开销值小于或等于第一开销阈值的情况下,网络设备确定第一信号对应的MCS为第一MCS;在第一开销值大于第一开销阈值的情况下,网络设备确定第一信号对应的MCS为第二MCS。
在第二MCS对应的调制阶数小于第一MCS对应的调制阶数的情况下,网络设备根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,可以包括:在第一开销值大于第一开销阈值的情况下,网络设备确定第一信号对应的MCS为第一MCS;在第一开销值小于或等于第一开销阈值的情况下,网络设备确定第一信号对应的MCS为第二MCS。
也就是说,网络设备在发送第一信号之前,可以将第一信号对应的时频资源中不用于承载第一信号的RE的个数,与第一开销阈值进行比较,从而根据比较结果确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,该第一开销阈值可以是协议预定义的,或者,可以是网络设备自主确定的,本申请对此不做具体限定。
需要说明的是,本申请对步骤S401和步骤S402的执行顺序不做限定。示例性的,在半静态调度场景下,先执行上述步骤S401,再执行步骤S402。在非半静态调度场景下,可以先执行步骤S401,再执行步骤S402;或者,可以先执行步骤S402,再执行步骤S401;或者,可以同时执行步骤S401和步骤S402。
S403、终端设备确定第一信号对应的MCS为第一MCS或第二MCS。
在本申请的不同实现方式中,终端设备可以采用不同的方式确定第一信号对应的MCS为第一MCS或第二MCS。
在一种实现方式中,终端设备可以根据第一开销值确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,第二MCS对应的调制阶数大于第一MCS对应的调制阶数的场景中,在第一开销值小于或等于第一开销阈值的情况下,第一信号对应的MCS为第一MCS;在第一开销值大于第一开销阈值的情况下,第一信号对应的MCS为第二MCS。
第二MCS对应的调制阶数小于第一MCS对应的调制阶数的场景中,在第一开销值大于第一开销阈值的情况下,第一信号对应的MCS为第一MCS;在第一开销值小于或等于第一开销阈值的情况下,第一信号对应的MCS为第二MCS。
可选的,第一开销阈值由网络设备确定时,在该步骤S403之前,网络设备还向终端设备发送第二指示信息,该第二指示信息指示第一开销阈值。相应的,终端设备接收来自网络设备的第二指示信息,并根据第二指示信息确定第一开销阈值。
可选的,网络设备向终端设备发送第二指示信息,可以包括:网络设备向终端设备发送RRC信令,该RRC信令中包括第二指示信息,或者说,第二指示信息承载于RRC信令中。
在另一种实现方式中,终端设备可以根据加扰第一指示信息的无线网络临时标识(radio network temporary identifier,RNTI)确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,若先执行步骤S402,再执行步骤S401,那么网络设备在步骤S402中确定第一信号对应的MCS为第一MCS的情况下,在步骤S401中向终端设备发送第一指示信息时,可以通过第一RNTI加扰第一指示信息;网络设备在步骤S402中确定第一信号对应的MCS为第二MCS的情况下,在步骤S401中向终端设备发送第一指示信息时,可以通过第二RNTI加扰第一指示信息。
基于此,终端设备在接收第一指示信息时,若第一指示信息由第一RNTI加扰,确定第一信号对应的MCS为第一MCS;若第一指示信息由第二RNTI加扰,确定第一信号对应的MCS为第二MCS。
需要说明的是,在该实现方式中,网络设备和终端设备可以预先约定第一RNTI与第一MCS关联,第二RNTI与第二MCS关联。
在又一种实现方式中,终端设备可以根据第三指示信息确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,在该步骤S403之前,网络设备可以向终端设备发送第三指示信息,该第三指示信息指示第一信号对应的MCS为第一MCS或第二MCS。相应的,终端设备可以接收来自网络设备的第三指示信息,并根据第三指示信息确定第一信号对应的MCS为第一MCS或第二MCS。例如,在第三指示信息指示第一信号对应的MCS为第一MCS时,终端设备确定第一信号对应的MCS为第一MCS,在在第三指示信息指示第一信号对应的MCS为第二MCS时,终端设备确定第一信号对应的MCS为第二MCS。
可选的,该第三指示信息和第一指示信息可以承载于同一个信令中,也可以承载于不同信令中,本申请对此不做具体限定。
可选的,该第三指示可以通过1比特的字段来表示,该比特的取值为1时,指示第一MCS对应的MCS为第一MCS,该比特的取值为0时,指示第一MCS对应的MCS为第二MCS;或者,该比特的取值为0时,指示第一MCS对应的MCS为第一MCS,该比特的取值为1时,指示第一MCS对应的MCS为第二MCS。
S404、网络设备根据第一信号对应的MCS发送第一信号。相应的,终端设备根据第一信号对应的MCS接收第一信号。
可选的,网络设备根据第一信号对应的MCS发送第一信号,可以包括:网络设备使用第一信号对应的MCS对第一信号进行编码调制后,发送编码调制后的第一信号。终端设备根据第一信号对应的MCS接收第一信号,可以包括:终端设备使用第一信号对应的MCS对编码调制后的第一信号进行解调译码,得到第一信号。
上述步骤S403和步骤S404所述的方法,对于终端设备来说,终端设备先确定一个MCS,之后根据确定的该MCS接收第一信号。此外,终端设备也可以不执行步骤S403,在步骤S404中,终端设备可以先随机选取第一MCS或第二MCS中的一个对编码调制后的第一信号进行解调和译码,若解调和译码失败,再根据另一个MCS对编码调制后的第一信号进行解调和译码;若解调和译码成功,根据第一信号进行后续业务处理。
基于图4所示的方案,网络设备向终端设备指示的第一索引值对应两个MCS,在后续的下行传输中,网络设备可以在这两个MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
图4所示的方案中,通过一个索引值对应两个MCS来实现MCS的选择,此外,本申请还提供另一种方法,通过一个索引值对应一个MCS,根据该一个MCS确定出另一个MCS,在这两个MCS中进行选择的方案。
如图5所示,为本申请提供的另一种信号发送、接收方法,该信号发送、接收方法包括如下步骤:
S501、网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
其中,第一指示信息指示第一MCS,该第一MCS属于第一调制编码方式集合,该第一调制编码方式集合中的任一MCS包括调制阶数和目标码率。在第一调制编码方式集合中,一个索引值对应一个MCS,不同索引值对应不同的MCS。
可选的,在图5所示的方法中,第一调制编码方式集合可能有两种形式:
一种可能的形式中,第一调制编码方式集合中,不包括谱效率相同的MCS,即此处的第一调制编码方式集合与图4所示方案的第一调制编码方式集合不同。
另一种可能的形式中,第一调制编码方式集合中可以包括谱效率相同的多个MCS,该谱效率相同的多个MCS对应不同的索引值。示例性的,第一调制编码方式集合中可以包括与第一MCS的谱效率相同的一个或多个MCS,该一个或多个MCS对应的索引值互不相同,且与第一MCS对应的索引值不同。
可选的,终端设备收到第一指示信息后,可以根据第一指示信息确定第一MCS。例如,第一指示信息为第一MCS对应的索引值时,终端设备可以在第一调制编码方式集合中查找第一MCS对应的索引值,并将该索引值对应的调制阶数、目标码率、以及谱效率确定为第一MCS的调制阶数、目标码率、以及谱效率。
可选的,网络设备向终端设备发送第一指示信息的方式可参考上述步骤S401中的相关说明,在此不再赘述。
可选的,该第一指示信息可以是在半静态调度场景下,网络设备进行初始调度时向终端设备发送的;或者,该第一指示信息也可以是非半静态调度(或者称动态调度)场景下,网络设备在发送下行信号之前向终端设备发送的,本申请对此不做具体限定。
可选的,在半静态调度场景下,终端设备在根据第一指示信息确定第一MCS后,可以存储该第一MCS,以便后续在下行通信过程中使用。
S502、网络设备确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,网络设备可以通过第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,可参考上述步骤S402中的相关说明,在此不再赘述。
需要说明的是,本申请对步骤S501和步骤S502的执行顺序不做限定。示例性的,在半静态调度场景下,可以先执行上述步骤S501,再执行步骤S502。在非半静态调度场景下,可以先执行步骤S501,再执行步骤S502;或者,可以先执行步骤S502,再执行步骤S501;或者,可以同时执行步骤S501和步骤S502。
S503、终端设备确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,终端设备可以根据第一开销值确定第一信号对应的MCS。也就是说,终端设备可以先确定第一开销值,根据第一开销值和第一开销阈值的比较结果,确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,在第一开销值小于或等于第一开销阈值的情况下,终端设备可以确定第一信号对应的MCS为第一MCS;在第一开销值大于第一开销阈值的情况下,终端设备可以确定第 一信号对应的MCS为第二MCS。
可选的,第一MCS可以为第一调制编码集合内调制阶数为8的调制编码方式中目标码率最高的MCS。或者,第一MCS可以为第一调制编码集合中任一调制阶数对应的所有调制编码方式中目标码率最高的MCS。
在一种可能的实现方式中,该第二MCS对应的索引值为第一MCS对应的索引值与第一数值之和。也就是说,第二MCS对应的索引值减去第一MCS对应的索引值得到的差值为第一数值。即终端设备在确定第一开销值大于第一开销阈值的情况下,可以根据第一MCS对应的索引值与第一数值确定第二MCS对应的索引值,进而根据第二MCS对应的索引值确定第二MCS。
可选的,第一数值可以是预设值,或者,可以是网络设备向终端设备发送的一个值,或者,可以是协议预先规定的值,本申请对此不做具体限定。示例性的,第一数值可以为-1,或者为其他数值。
在另一种可能的实现方式中,在第一调制编码方式集合中包括谱效率相同的多个MCS,该谱效率相同的多个MCS对应不同的索引值的情况下,该第二MCS为第一调制编码方式集合中谱效率与第一MCS的谱效率相等的MCS,即第二MCS的谱效率等于第一MCS的谱效率。其中,第二MCS的调制阶数大于第一MCS的调制阶数。也就是说,终端设备在确定第一开销值大于第一开销阈值的情况下,可以根据第一MCS确定第二MCS。
可选的,在第二MCS的谱效率等于第一MCS的谱效率的情况下,第二MCS对应的索引值和第一MCS对应的索引值之间的差值可以为第一数值,也可以为其他数值,本申请对此不做具体限定。
可选的,第一MCS的调制阶数为8,目标码率为948/1024;第二MCS的调制阶数为10,目标码率为758.5/1024;第一MCS和所述第二MCS的谱效率为7.4063。或者,第一MCS的调制阶数为8,目标码率为916.5/1024;第二MCS的调制阶数为10,目标码率为733/1024;第一MCS和第二MCS的谱效率为7.1602。
S504、网络设备根据第一信号对应的MCS发送第一信号。相应的,终端设备根据第一信号对应的MCS接收第一信号。
可选的,网络设备和终端设备的动作描述可参考上述步骤S404中的相关说明,在此不再赘述。
类似于图4所示的方案,上述步骤S503和步骤S504所述的方法,对于终端设备来说,终端设备先确定一个MCS,之后根据确定的该MCS接收第一信号。此外,终端设备也可以不执行步骤S503,在步骤S504中,终端设备可以先随机选取第一MCS或第二MCS中的一个对编码调制后的第一信号进行解调和译码,若解调和译码失败,再根据另一个MCS对编码调制后的第一信号进行解调和译码;若解调和译码成功,根据第一信号进行后续业务处理。
基于该方案,网络设备向终端设备指示第一MCS,在后续的下行传输中,网络设备可以在第一MCS以及与第一MCS有关联的第二MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
除图4和图5所示的方法外,本申请还提供另一种信号发送、接收方法,如图6所示,该信号发送、接收方法包括如下步骤:
S601、网络设备向终端设备发送第一指示信息和第二指示信息。相应的,终端设备接收来自网络设备的第一指示信息和第二指示信息。
在一种实现方式中,第一指示信息指示第一MCS,第二指示信息指示第二MCS。示例性的,第一指示信息可以为第一MCS对应的索引值,第二指示信息可以为第二MCS对应的索引值。
在另一种实现方式中,第一指示信息指示第一MCS,第二指示信息指示第一差值,该第一差值为第一MCS对应的索引值与第二MCS对应的索引值之间的差值。示例性的,第一指示信息可以为第一MCS对应的索引值,第二指示信息可以为第一差值。
其中,第一MCS和第二MCS属于第一调制编码方式集合,该第一调制编码方式集合中的任一MCS包括调制阶数和目标码率。第一调制编码方式集合的详细说明可参考步骤S401中的相关描述,在此不再赘述。
可选的,第一MCS可以为第一调制编码方式集合内调制阶数为8的调制编码方式中目标码率最高的MCS。或者,第一MCS可以为第一调制编码方式集合中任一调制阶数对应的所有调制编码方式中码率最高的调制编码方式。
可选的,第一调制编码方式集合除包括第一MCS和第二MCS外,还可以包括N个第三MCS或M个第四MCS,可以参考上述步骤S401中的相关说明,在此不再赘述。
可选的,该第一指示信息和第二指示信息可以承载于同一个信令中,也可以承载于不同信令中,本申请对此不做具体限定。
可选的,承载第一指示信息或第二指示信息的信令可以为DCI、或RRC信令、或MAC CE,可参考上述步骤S401中的相关描述,在此不再赘述。
可选的,该第一指示信息和第二指示信息可以是在半静态调度场景下,网络设备进行初始调度时向终端设备发送的;或者,该第一指示信息也可以是非半静态调度场景下,网络设备在发送下行信号之前向终端设备发送的,本申请对此不作具体限定。
可选的,终端设备收到第一指示信息和第二指示信息后,在第二指示信息指示第二MCS的情况下,终端设备可以根据第一指示信息确定第一MCS,以及根据第二指示信息确定第二MCS。在第二指示信息指示第一差值的情况下,终端设备可以根据第一指示信息确定第一MCS,以及根据第二指示信息确定第一差值;或者,终端设备可以根据第一指示信息确定第一MCS,以及根据第二指示信息确定第一差值后,根据第一差值和第一MCS对应的索引值确定第二MCS对应的索引值,并根据第二MCS对应的索引值确定第二MCS。
S602、网络设备确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,网络设备可以通过第一开销值确定第一信号对应的MCS为第一MCS或第二MCS,可参考上述步骤S402中的相关说明,在此不再赘述。
需要说明的是,本申请对步骤S601和步骤S602的执行顺序不做限定。示例性的,在半静态调度场景下,可以先执行上述步骤S601,再执行步骤S602。在非半静态调度场景下,可以先执行步骤S601,再执行步骤S602;或者,可以先执行步骤S602,再执行步骤S601;或者,可以同时执行步骤S601和步骤S602。
S603、终端设备确定第一信号对应的MCS为第一MCS或第二MCS。
可选的,终端设备可以通过不同方式确定第一信号对应的MCS为第一MCS或第二MCS,可参考上述步骤S403中的相关说明,在此不再赘述。
可选的,在步骤S601中,第二指示信息指示第一差值,终端设备根据第一指示信息和第二指示信息确定第一MCS和第一差值的情况下,若终端设备确定第一信号对应的MCS为第二MCS,在步骤S603中,终端设备还可以根据第一MCS对应的索引值和第一差值确定第二MCS对应的索引值,并根据第二MCS对应的索引值确定第二MCS。
S604、网络设备根据第一信号对应的MCS发送第一信号。相应的,终端设备根据第一信号对应的MCS接收第一信号。
可选的,网络设备和终端设备的动作描述可参考上述步骤S404中的相关说明,在此不再赘述。
类似于图4所示的方案,上述步骤S603和步骤S604所述的方法,对于终端设备来说,终端设备先确定一个MCS,之后根据确定的该MCS接收第一信号。此外,终端设备也可以不执行步骤S603,在步骤S604中,终端设备可以先随机选取第一MCS或第二MCS中的一个对编码调制后的第一信号进行解调和译码,若解调和译码失败,再根据另一个MCS对编码调制后的第一信号进行解调和译码;若解调和译码成功,根据第一信号进行后续业务处理。
基于该方案,网络设备向终端设备发送第一指示信息和第二指示信息,使得终端设备能够根据第一指示信息和第二指示信息确定第一MCS和第二MCS,在后续的下行传输中,网络设备可以在第一MCS以及第二MCS中选择较优的MCS发送第一信号,相应的终端设备可以在这两个MCS中选择较优的MCS接收第一信号,从而使得网络设备和终端设备使用较优的MCS进行通信,提高通信性能。
其中,上述图4至图6所示的实施例中,网络设备的动作可以由图3所示的网络设备20中的处理器201调用存储器202中存储的应用程序代码以指令该网络设备执行;上述图4至图6所示的实施例中,终端设备的动作可以由图3所示的终端设备30中的处理器301调用存储器302中存储的应用程序代码以指令该终端设备执行,本实施例对此不作任何限制。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于该终端设备的部件(例如芯片或者电路)实现;由网络设备实现的方法和/或步骤,也可以由可用于该网络设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以通信装置为上述方法实施例中的终端设备为例,图7示出了一种终端设备70的结构示意图。该终端设备70包括处理模块701和收发模块702。
在一些实施例中,该终端设备70还可以包括存储模块(图7中未示出),用于存储程序 指令和数据。
在一些实施例中,收发模块702,也可以称为收发单元用以实现发送和/或接收功能。该收发模块702可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块702,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块701,可以用于执行上述方法实施例中由终端设备执行的处理类(例如确定、获取等)的步骤,和/或用于支持本文所描述的技术的其它过程。
在一种实施场景下:
收发模块702,用于接收来自网络设备的第一指示信息,第一指示信息指示第一索引值,第一索引值对应第一调制编码方式MCS和第二MCS,第一MCS和第二MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;处理模块701,用于确定第一信号对应的MCS为第一MCS或第二MCS;收发模块702,还用于根据第一信号对应的MCS接收第一信号。
在另一种实施场景下:
收发模块702,用于接收来自网络设备的第一指示信息,第一指示信息指示第一调制编码方式MCS,第一MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;处理模块701,用于确定第一信号对应的MCS为第一MCS或者第二MCS,第二MCS对应的索引值和第一MCS对应的索引值之间的差值为第一数值,或者,第二MCS的谱效率与第一MCS的谱效率相等;收发模块702,用于根据第一信号对应的MCS接收第一信号。
在又一种实施场景下:
收发模块702,用于接收来自网络设备的第一指示信息和第二指示信息,该第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值,第一差值为第一MCS对应的索引值与第二MCS对应的索引值之间的差值;处理模块701,用于确定第一信号对应的MCS为第一MCS或第二MCS;收发模块702,还用于根据第一信号对应的MCS接收第一信号。
在上述三种实施场景下,作为一种可能的实现方式,所述处理模块,用于确定第一信号对应的MCS为所述第一MCS或者所述第二MCS,包括:所述处理模块,用于根据第一开销值确定所述第一信号对应的MCS为所述第一MCS或所述第二MCS,其中,所述第一开销值为所述第一信号对应的时频资源中不用于承载所述第一信号的资源元素RE的个数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该终端设备70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该终端设备70可以采用图3所示的终端设备30的形式。
作为一种示例,图7中的处理模块701的功能/实现过程可以通过图3所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图7中的收发模块702的功能/实现过程可以通过图3所示的终端设备30中的收发器303来实现。
在一些实施例中,当图7中的终端设备70是芯片或芯片系统时,收发模块702的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块701的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的终端设备70可执行上述信号发送、接收方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
以通信装置为上述方法实施例中的网络设备为例,图8示出了一种网络设备80的结构示意图。该网络设备80包括处理模块801和收发模块802。
在一些实施例中,该网络设备80还可以包括存储模块(图8中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块802,也可以称为收发单元用以实现发送和/或接收功能。该收发模块802可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块802,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块801,可以用于执行上述方法实施例中由网络设备执行的处理类(例如确定、获取等)的步骤,和/或用于支持本文所描述的技术的其它过程。
在一种实施场景下:
处理模块801,用于生成第一指示信息;收发模块802,用于向终端设备发送第一指示信息,第一指示信息指示第一索引值,第一索引值对应第一调制编码方式MCS和第二MCS,第一MCS和第二MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;收发模块802,还用于根据第一信号对应的MCS发送第一信号,第一信号对应的MCS为第一MCS或第二MCS。
在另一种实施场景下:
处理模块801,用于生成第一指示信息;收发模块802,用于向终端设备发送第一指示信息,第一指示信息指示第一调制编码方式MCS,第一MCS属于第一调制编码方式集合,第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;收发模块802,还用于根据第一信号对应的MCS发送第一信号,第一信号对应的MCS为第一MCS或者第二MCS,第二MCS对应的索引值和第一MCS对应的索引值之间的差值为第一数值,或者,第二MCS的谱效率与第一MCS的谱效率相等。
在又一种实施场景下:
处理模块801,用于生成第一指示信息;收发模块802,用于向终端设备发送第一指示信息和第二指示信息,该第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值,第一差值为第一MCS对应的索引值与第二MCS对应的索引值之间的差值;收发模块802,还用于根据第一信号对应的MCS发送第一信号,第一信号对应的MCS为第一MCS或第二MCS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该网络设备80以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该网络设备80可以采用图 3所示的网络设备20的形式。
作为一种示例,图8中的处理模块801的功能/实现过程可以通过图3所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现,图8中的收发模块802的功能/实现过程可以通过图3所示的网络设备20中的收发器203来实现。
在一些实施例中,当图8中的网络设备80是芯片或芯片系统时,收发模块802的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块801的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的网络设备80可执行上述信号发送、接收方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的终端设备或网络设备,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在一些实施例中,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括接口电路和逻辑电路,该接口电路用于获取输入信息和/或输出输出信息;该逻辑电路,用于执行上述任一方法实施例中的方法,根据输入信息进行处理和/或生成输出信息。
当该通信装置用于实现上述方法实施例中的终端设备的功能时:
在一种实施场景下:
作为一种可能的实现方式,输入信息可以为:第一指示信息,该第一指示信息指示第一索引值,该第一索引值对应第一MCS和第二MCS。相应的,根据输入信息进行处理,可以为:根据第一指示信息确定第一MCS和第二MCS。
在另一种实施场景下:
作为一种可能的实现方式,输入信息可以为:第一指示信息,第一指示信息指示第一MCS。相应的,根据输入信息进行处理,可以为:根据第一指示信息确定第一MCS,或者,根据第一指示信息确定第一MCS和第二MCS。
在又一种实施场景下:
作为一种可能的实现方式,输入信息可以为:第一指示信息和第二指示信息,第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第 二指示信息指示第一差值。相应的,根据输入信息进行处理,可以为:根据第一指示信息确定第一MCS,以及,根据第二指示信息确定第二MCS,或第一差值。
在上述三种实施场景下,作为一种可能的实现方式,输入信息还可以为:第一信号。
当该通信装置用于实现上述方法实施例中的网络设备的功能时:
在一种实施场景下:
作为一种可能的实现方式,输出信息可以为:第一指示信息,该第一指示信息指示第一索引值,该第一索引值对应第一MCS和第二MCS。
在另一种实施场景下:
作为一种可能的实现方式,输出信息可以为:第一指示信息,第一指示信息指示第一MCS。
在又一种实施场景下:
作为一种可能的实现方式,输出信息可以为:第一指示信息和第二指示信息,第一指示信息指示第一MCS,第二指示信息指示第二MCS;或者,第一指示信息指示第一MCS,第二指示信息指示第一差值。
在上述三种实施场景下,作为一种可能的实现方式,输出信息还可以为:第一信号。
其中,本实施例提供的通信装置可执行上述方法实施例中的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的终端设备或网络设备,可以由一般性的总线体系结构来实现。
为了便于说明,参见图9,图9是本申请实施例提供的通信装置900的结构示意图,该通信装置900包括处理器901和收发器902。该通信装置900可以为终端设备,或其中的芯片。图9仅示出了通信装置900的主要部件。除处理器901和收发器902之外,所述通信装置还可以进一步包括存储器903、以及输入输出装置(图未示意)。
其中,处理器901主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器903主要用于存储软件程序和数据。收发器902可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
其中,处理器901、收发器902、以及存储器903可以通过通信总线连接。
当通信装置开机后,处理器901可以读取存储器903中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器901对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器901,处理器901将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从 一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种信号接收方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一指示信息,所述第一指示信息指示第一索引值,所述第一索引值对应第一调制编码方式MCS和第二MCS,所述第一MCS和所述第二MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述终端设备确定第一信号对应的MCS为所述第一MCS或所述第二MCS;
    所述终端设备根据所述第一信号对应的MCS接收所述第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  4. 根据权利要求1所述的方法,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率不相等。
  5. 根据权利要求1或4所述的方法,其特征在于,所述第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;所述第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述终端设备确定第一信号对应的MCS为所述第一MCS或者所述第二MCS,包括:
    所述终端设备根据第一开销值确定所述第一信号对应的MCS为所述第一MCS或所述第二MCS,其中,所述第一开销值为所述第一信号对应的时频资源中不用于承载所述第一信号的资源元素RE的个数。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一开销值小于或等于第一开销阈值的情况下,所述第一信号对应的MCS为所述第一MCS;
    在所述第一开销值大于第一开销阈值的情况下,所述第一信号对应的MCS为所述第二MCS。
  8. 一种信号接收方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一指示信息,所述第一指示信息指示第一调制编码方式MCS,所述第一MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述终端设备确定第一信号对应的MCS为所述第一MCS或者第二MCS,所述第二MCS对应的索引值和所述第一MCS对应的索引值之间的差值为第一数值,或者,所述第二MCS的谱效率与所述第一MCS的谱效率相等;
    所述终端设备根据所述第一信号对应的MCS接收所述第一信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS 和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述终端设备确定第一信号对应的MCS为所述第一MCS或者所述第二MCS,包括:
    所述终端设备根据第一开销值确定所述第一信号对应的MCS为所述第一MCS或所述第二MCS,其中,所述第一开销值为所述第一信号对应的时频资源中不用于承载所述第一信号的资源元素RE的个数。
  12. 根据权利要求11所述的方法,其特征在于,在所述第一开销值小于或等于第一开销阈值的情况下,所述第一信号对应的MCS为所述第一MCS;
    在所述第一开销值大于第一开销阈值的情况下,所述第一信号对应的MCS为所述第二MCS。
  13. 一种信号发送方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息指示第一索引值,所述第一索引值对应第一调制编码方式MCS和第二MCS,所述第一MCS和所述第二MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述网络设备根据第一信号对应的MCS发送所述第一信号,所述第一信号对应的MCS为所述第一MCS或所述第二MCS。
  14. 根据权利要求13所述的方法,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  16. 根据权利要求13所述的方法,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率不相等。
  17. 根据权利要求13或16所述的方法,其特征在于,所述第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;所述第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
  18. 一种信号发送方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息指示第一调制编码方式MCS,所述第一MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述网络设备根据第一信号对应的MCS发送所述第一信号,所述第一信号对应的MCS为所述第一MCS或者第二MCS,所述第二MCS对应的索引值和所述第一MCS对应的索引值之间的差值为第一数值,或者,所述第二MCS的谱效率与所述第一MCS的谱效率相等。
  19. 根据权利要求18所述的方法,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一 MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  21. 一种通信装置,其特征在于,所述通信装置备包括:处理模块和收发模块;
    所述收发模块,用于接收来自网络设备的第一指示信息,所述第一指示信息指示第一索引值,所述第一索引值对应第一调制编码方式MCS和第二MCS,所述第一MCS和所述第二MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述处理模块,用于确定第一信号对应的MCS为所述第一MCS或所述第二MCS;
    所述收发模块,还用于根据所述第一信号对应的MCS接收所述第一信号。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  24. 根据权利要求21所述的通信装置,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率不相等。
  25. 根据权利要求21或24所述的通信装置,其特征在于,所述第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;所述第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
  26. 根据权利要求21-25任一项所述的通信装置,其特征在于,所述处理模块,用于确定第一信号对应的MCS为所述第一MCS或者所述第二MCS,包括:
    所述处理模块,用于根据第一开销值确定所述第一信号对应的MCS为所述第一MCS或所述第二MCS,其中,所述第一开销值为所述第一信号对应的时频资源中不用于承载所述第一信号的资源元素RE的个数。
  27. 根据权利要求26所述的通信装置,其特征在于,在所述第一开销值小于或等于第一开销阈值的情况下,所述第一信号对应的MCS为所述第一MCS;
    在所述第一开销值大于第一开销阈值的情况下,所述第一信号对应的MCS为所述第二MCS。
  28. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自网络设备的第一指示信息,所述第一指示信息指示第一调制编码方式MCS,所述第一MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述处理模块,用于确定第一信号对应的MCS为所述第一MCS或者第二MCS,所述第二MCS对应的索引值和所述第一MCS对应的索引值之间的差值为第一数值,或者,所述第二MCS的谱效率与所述第一MCS的谱效率相等;
    所述收发模块,用于根据所述第一信号对应的MCS接收所述第一信号。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  30. 根据权利要求28或29所述的通信装置,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  31. 根据权利要求28-30任一项所述的通信装置,其特征在于,所述处理模块,用于确定第一信号对应的MCS为所述第一MCS或者所述第二MCS,包括:
    所述处理模块,用于根据第一开销值确定所述第一信号对应的MCS为所述第一MCS或所述第二MCS,其中,所述第一开销值为所述第一信号对应的时频资源中不用于承载所述第一信号的资源元素RE的个数。
  32. 根据权利要求31所述的通信装置,其特征在于,在所述第一开销值小于或等于第一开销阈值的情况下,所述第一信号对应的MCS为所述第一MCS;
    在所述第一开销值大于第一开销阈值的情况下,所述第一信号对应的MCS为所述第二MCS。
  33. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于生成第一指示信息;
    所述收发模块,用于向终端设备发送所述第一指示信息,所述第一指示信息指示第一索引值,所述第一索引值对应第一调制编码方式MCS和第二MCS,所述第一MCS和所述第二MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    所述收发模块,还用于根据所述第一信号对应的MCS发送所述第一信号,所述第一信号对应的MCS为所述第一MCS或所述第二MCS。
  34. 根据权利要求33所述的通信装置备,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  35. 根据权利要求33或34所述的通信装置,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  36. 根据权利要求33所述的通信装置,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率不相等。
  37. 根据权利要求33或36所述的通信装置,其特征在于,所述第一MCS的调制阶数为8,目标编码速率为916.5/1024,谱效率为7.4063;所述第二MCS的调制阶数为10,目标码率为790/1024,谱效率为7.7149。
  38. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于生成第一指示信息;
    所述收发模块,用于向终端设备发送所述第一指示信息,所述第一指示信息指示第一调制编码方式MCS,所述第一MCS属于第一调制编码方式集合,所述第一调制编码方式集合中的任一MCS包括调制阶数和目标码率;
    收发模块,还用于根据所述第一信号对应的MCS发送所述第一信号,所述第一信号对应的MCS为所述第一MCS或者第二MCS,所述第二MCS对应的索引值和所述第一MCS对 应的索引值之间的差值为第一数值,或者,所述第二MCS的谱效率与所述第一MCS的谱效率相等。
  39. 根据权利要求38所述的通信装置,其特征在于,所述第一MCS的谱效率与所述第二MCS的谱效率相等。
  40. 根据权利要求38或39所述的通信装置,其特征在于,所述第一MCS的调制阶数为8,目标码率为948/1024;所述第二MCS的调制阶数为10,目标码率为758.5/1024;所述第一MCS和所述第二MCS的谱效率为7.4063;
    或者,所述第一MCS的调制阶数为8,目标码率为916.5/1024;所述第二MCS的调制阶数为10,目标码率为733/1024;所述第一MCS和所述第二MCS的谱效率为7.1602。
  41. 一种通信装置,其特征在于,所述通信装置包括:处理器和通信接口;
    所述通信接口,用于与所述通信装置之外的模块通信;
    所述处理器用于执行计算机执行指令,以使所述通信装置执行如权利要求1-12中任一项所述的方法,或者,以使所述通信装置执行如权利要求13-20中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置执行如权利要求1-12中任一项所述的方法,或者,以使所述通信装置执行如权利要求13-20中任一项所述的方法。
  43. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于执行存储器中存储的计算机执行指令,以使所述通信装置执行如权利要求1-12中任一项所述的方法,或者,以使所述通信装置执行如权利要求13-20中任一项所述的方法。
  44. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,以使如权利要求1-12中任一项所述的方法被执行,或者,以使如权利要求13-20中任一项所述的方法被执行。
  45. 一种计算机程序,其特征在于,当所述计算机程序在通信装置上运行时,以使如权利要求1-12中任一项所述的方法被执行,或者,以使如权利要求13-20中任一项所述的方法被执行。
  46. 一种通信系统,其特征在于,所述通信系统包括如权利要求21-32任一项所述的通信装置,以及如权利要求33-40任一项所述的通信装置。
PCT/CN2021/143078 2021-01-15 2021-12-30 信号发送、接收方法及装置 WO2022151987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110057889.7 2021-01-15
CN202110057889.7A CN114765482B (zh) 2021-01-15 2021-01-15 信号发送、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2022151987A1 true WO2022151987A1 (zh) 2022-07-21

Family

ID=82365225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143078 WO2022151987A1 (zh) 2021-01-15 2021-12-30 信号发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN114765482B (zh)
WO (1) WO2022151987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116800384A (zh) * 2023-08-24 2023-09-22 荣耀终端有限公司 设备测试方法、测试设备及芯片系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225207B (zh) * 2022-08-05 2024-04-12 广东明创软件科技有限公司 数据传输方法及相关装置
WO2024055180A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 数据传输的方法以及通信装置
CN118119021A (zh) * 2022-11-30 2024-05-31 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
CN109392022A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN109600200A (zh) * 2017-09-30 2019-04-09 维沃移动通信有限公司 一种传输方法、移动通信终端及网络侧设备
CN110677371A (zh) * 2017-10-11 2020-01-10 华为技术有限公司 一种通信方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031985B2 (en) * 2017-09-21 2021-06-08 Qualcomm Incorporated Channel state information computation using a control resource assumption
CN109803426B (zh) * 2017-11-17 2023-04-07 华为技术有限公司 传输数据的方法和装置
CN113225829B (zh) * 2018-04-04 2024-04-12 华为技术有限公司 一种发送、接收上行控制信息的方法及装置
CN111435859B (zh) * 2019-01-11 2021-09-21 华为技术有限公司 发送、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
CN109392022A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN109600200A (zh) * 2017-09-30 2019-04-09 维沃移动通信有限公司 一种传输方法、移动通信终端及网络侧设备
CN110677371A (zh) * 2017-10-11 2020-01-10 华为技术有限公司 一种通信方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116800384A (zh) * 2023-08-24 2023-09-22 荣耀终端有限公司 设备测试方法、测试设备及芯片系统
CN116800384B (zh) * 2023-08-24 2023-11-21 荣耀终端有限公司 设备测试方法、测试设备及芯片系统

Also Published As

Publication number Publication date
CN114765482A (zh) 2022-07-19
CN114765482B (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
RU2743667C1 (ru) Способ передачи сигнализации о назначении ресурсов частотной области
WO2022151987A1 (zh) 信号发送、接收方法及装置
US10264564B2 (en) System and method for resource allocation for massive carrier aggregation
JP2018506898A (ja) 無線ローカルエリアネットワークにおいて半直交多元接続を使用するためのシステムおよび方法
WO2014015829A1 (zh) 一种传输mcs指示信息的方法及装置
JP2019502338A (ja) エアインタフェース能力交換のシステムおよび方法
TW201517674A (zh) 控制通道配置方法與控制通道搜尋方法及其通信裝置
EP3847777B1 (en) Apparatus for signaling of control messages for fronthaul interface
JP2024073619A (ja) 端末、通信方法及び集積回路
WO2018028154A1 (zh) 数据分割方法、装置及终端
KR20230128536A (ko) 다중 안테나 패널을 통한 수신이 가능한 ue를 스케줄링하기위한 방법 및 장치
EP4208974B1 (en) Resource block-level index modulation
JP2024109710A (ja) 端末装置、通信方法及び集積回路
US20240040573A1 (en) Information transmission method, apparatus, and system
CN117546573A (zh) 用于多播和单播通信的下行链路控制信令
JP2024511533A (ja) 通信方法及び通信装置
CN111669251B (zh) 传输块大小的确定方法及通信装置
CN112423313B (zh) 传输块大小确定方法及装置
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2024098310A1 (en) Independent mapping of common and private transport blocks for rate splitting
US20240284462A1 (en) Indications for uplink resources via uplink control information
WO2020177735A1 (zh) 传输块大小的确定方法及通信装置
US20240267923A1 (en) Partial uplink transmission for multiple uplink transport blocks
US20240276483A1 (en) Enhanced uplink configured grant
WO2022056879A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919174

Country of ref document: EP

Kind code of ref document: A1