WO2020177735A1 - 传输块大小的确定方法及通信装置 - Google Patents

传输块大小的确定方法及通信装置 Download PDF

Info

Publication number
WO2020177735A1
WO2020177735A1 PCT/CN2020/077935 CN2020077935W WO2020177735A1 WO 2020177735 A1 WO2020177735 A1 WO 2020177735A1 CN 2020077935 W CN2020077935 W CN 2020077935W WO 2020177735 A1 WO2020177735 A1 WO 2020177735A1
Authority
WO
WIPO (PCT)
Prior art keywords
codeword
tbs
transmission block
transmission
codewords
Prior art date
Application number
PCT/CN2020/077935
Other languages
English (en)
French (fr)
Inventor
杭海存
葛士斌
王潇涵
纪刘榴
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910729222.XA external-priority patent/CN111669251B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20765532.5A priority Critical patent/EP3923494A4/en
Publication of WO2020177735A1 publication Critical patent/WO2020177735A1/zh
Priority to US17/468,269 priority patent/US20210410006A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0084Formats for payload data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for determining a transport block size (TBS).
  • TBS transport block size
  • the ultra-reliable and low latency communication (URLLC) service of the fifth-generation (5th-generation, 5G) system As an example, the reliability of the URLLC service is as high as 99.999%.
  • the communication system can adopt the mode of diversity transmission.
  • the existing protocol only considers the calculation of TBS in the space division multiplexing scenario, and has not considered how to determine the TBS in the diversity transmission scenario.
  • the present application provides a method and communication device for determining TBS, which are used to determine the TBS of a transmission block in a diversity transmission scenario.
  • a method for determining TBS including: a communication device determines the data block size of each codeword in n codewords, the n codewords correspond to the same transmission block, and n is an integer greater than 1; , The communication device determines the TBS of the transmission block according to the data block size of one or more of the n code words. Based on this technical solution, in the scenario of diversity transmission, the communication device can determine the TBS of the same transmission block corresponding to multiple codewords. In this way, if the communication device is a network device, the network device can implement diversity transmission of the transmission block according to the TBS of the transmission block. If the communication device is a terminal, the terminal can decode multiple codewords corresponding to the transmission block according to the TBS of the transmission block.
  • the communication device determines the data block size of each of the n codewords, including: determining each of the n codewords according to the control information corresponding to each codeword in the n codewords The data block size of the codeword.
  • the communication device determines the TBS of the transmission block according to the data block size of one or more of the n code words, including: taking the data block size of one of the n code words as The TBS of the transmission block; or, the smallest data block size among the data block sizes of n codewords is used as the TBS of the transmission block; or the largest data block size among the data block sizes of n codewords is used as the TBS of the transmission block ; Or, the average value of the data block sizes of n codewords is used as the TBS of the transmission block; or, the sum of the data block sizes of n codewords is used as the TBS of the transmission block.
  • control information of n codewords is carried in the same downlink control information (DCI).
  • DCI downlink control information
  • control information of n codewords is carried in different DCIs.
  • a method for determining TBS including: a communication device determines the first codeword according to the time-frequency resource of the first codeword and the modulation and coding scheme (MCS) of the first codeword The TBS of the corresponding transmission block; the TBS of the transmission block corresponding to the second codeword is determined according to the TBS of the transmission block corresponding to the first codeword; wherein the first codeword and the second codeword correspond to the same transmission block.
  • MCS modulation and coding scheme
  • the network device can realize the transmission of the second codeword. If the communication device is a terminal, the terminal can implement joint decoding of the first codeword and the second codeword according to the TBS of the transmission block.
  • the method further includes: the communication device determines the second codeword according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation mode of the second codeword The bit rate. Based on this design, when the code rate corresponding to the MCS index of the second codeword is a reserved value, the communication device can determine the code rate of the second codeword. In this way, if the communication device is a network device, the network device can implement the transmission of the second codeword according to the code rate of the second codeword. If the communication device is a terminal, the terminal can implement joint decoding of the first codeword and the second codeword according to the code rate of the second codeword.
  • the index of the MCS of the second codeword is 28, 29, 30, or 31.
  • a method for determining TBS including: a communication device determines the number of diversity corresponding to a transmission block, the number of diversity is used to indicate the number of transmission blocks that are transmitted by diversity; then, the communication device according to the number of diversity corresponding to the transmission block, Determine the TBS of the transport block. Based on this technical solution, in the scenario of diversity transmission, the communication device can determine a suitable TBS for the transmission block according to the number of diversity corresponding to the transmission block. In this way, if the communication device is a network device, the network device can implement diversity transmission of the transmission block according to the TBS of the transmission block. If the communication device is a terminal, the terminal can decode the transmission block according to the TBS of the transmission block.
  • the method further includes: the network device sends first indication information, where the first indication information is used to indicate the number of diversity corresponding to the transmission block. In this way, the terminal can learn the number of diversity corresponding to the transmission block according to the first indication information.
  • the method further includes: the terminal receives first indication information, where the first indication information is used to indicate the number of diversity corresponding to the transmission block. In this way, the terminal can learn the number of diversity corresponding to the transmission block according to the first indication information.
  • the communication device determines the TBS of the transmission block according to the number of diversity corresponding to the transmission block, including: determining the number of intermediate information bits of the transmission block according to the number of diversity corresponding to the transmission block; according to the number of intermediate information bits of the transmission block , Determine the TBS of the transport block.
  • N info represents the number of intermediate information bits of the transmission block
  • N RE is the number of resource elements (resource elements, RE) used to transmit data
  • R represents the code rate
  • Q m represents the modulation order
  • v represents the number of transmission layers.
  • m represents the number of diversity corresponding to the transmission block
  • N RE , Q m , v, m are positive integers
  • R is a positive number.
  • each transport layer of the v transport layers carries a redundancy version (RV) transport block.
  • RV redundancy version
  • a transmission block of RV includes systematic bits and corresponding RV information. System bits are useful data information.
  • m RV transmission blocks are mapped to a codeword, and the codeword is mapped to v transmission layers, and m is the number of diversity corresponding to the transmission block.
  • the method further includes: the network device sends second indication information to the terminal, where the second indication information is used to indicate the index of each of the m RVs. In this way, the terminal can learn the index of each RV in the m RVs through the second indication information.
  • the method further includes: the terminal receives second indication information, where the second indication information is used to indicate the index of each of the m RVs. In this way, the terminal can learn the index of each RV in the m RVs through the second indication information.
  • the method further includes: the network device sends third indication information to the terminal, where the third indication information is used to indicate the index of the first RV among the m RVs, and the m RVs The index complies with the preset rules. In this way, the terminal can learn the index of each RV in the m RVs through the third indication information. Moreover, since the third indication information only indicates the index of the first RV, the transmission overhead caused by the third indication information is relatively small.
  • the method further includes: the terminal receives third indication information, the third indication information is used to indicate the index of the first RV of the m RVs, and the index of the m RVs conforms to the preset Set rules. In this way, the terminal can learn the index of each RV in the m RVs through the third indication information. Moreover, since the third indication information only indicates the index of the first RV, the transmission overhead caused by the third indication information is relatively small.
  • each transport layer of the v transport layers corresponds to one configuration information
  • the configuration information corresponding to the transport layer is used to indicate the RV corresponding to the transport layer. index.
  • the configuration information corresponding to the transport layer is also used to indicate the resource allocation and MCS of the transport layer. It is understandable that, in a scenario where the number of diversity corresponding to a transport block is equal to the number of transport layers, the communication device can determine the index of the RV corresponding to each transport layer according to the configuration information corresponding to each transport layer.
  • a demodulation reference signal (DMRS) port there is a correspondence between a demodulation reference signal (DMRS) port and the RV.
  • DMRS demodulation reference signal
  • the corresponding relationship between the DMRS port and the RV is used to determine the index of the RV corresponding to each transport layer in the v transport layers.
  • the communication device can determine the DMRS port corresponding to the transport layer, and then determine the index of the RV corresponding to the transport layer.
  • a method for determining MCS includes: a terminal receives MCS indication information sent by a network device, where the MCS indication information is used to indicate the index of the MCS of the first codeword and the deviation value, and the deviation value is used to indicate The difference between the index of the MCS of the first codeword and the index of the MCS of the second codeword.
  • the terminal determines the MCS index of the first codeword and the MCS index of the second codeword according to the MCS indication information. Based on this technical solution, the terminal receives a piece of signaling (that is, MCS indication information), and can determine the MCS index of two codewords, which is beneficial to reduce signaling overhead.
  • the MCS indication information includes an index parameter, and the index parameter has a corresponding relationship with the index and deviation value of the MCS of the first codeword.
  • a method for determining TBS includes: a terminal receives a first DCI and a second DCI; wherein the first DCI is used to indicate control information of n first codewords, and n first codewords It is obtained by mapping from one transmission block; the second DCI is used to indicate the control information of n second codewords, and the n second codewords are obtained by mapping one transmission block; the terminal determines n according to the control information of n first codewords.
  • the terminal can determine the TBS used in the actual transmission of the transmission block to be transmitted by the diversity, so that the terminal can realize the comparison between n first codewords and n according to the TBS of the transmission block. Joint decoding of two second codewords.
  • the terminal determines the target TBS of the transmission block according to the first TBS and the second TBS of the transmission block, including: the terminal uses the first TBS as the target TBS; or, the terminal uses the second TBS as the target TBS; or , The terminal uses the average value between the first TBS and the second TBS as the target TBS; or, the terminal uses the minimum value between the first TBS and the second TBS as the target TBS; or, the terminal uses the first TBS and the second TBS The maximum value between is used as the target TBS.
  • a terminal including: a first processing module, configured to determine the data block size of each codeword in n codewords, where the n codewords correspond to the same transmission block, and n is greater than 1.
  • the second processing module is used to determine the TBS of the transmission block according to the data block size of one or more code words in the n code words.
  • the first processing module is specifically configured to determine the data block size corresponding to each codeword in the n codewords according to the control information corresponding to each codeword in the n codewords.
  • the second processing module is specifically configured to use the data block size of one codeword among the n codewords as the TBS of the transmission block; or, use the n codewords
  • the smallest data block size among the data block sizes is used as the TBS of the transmission block; or, the largest data block size among the data block sizes of the n codewords is used as the TBS of the transmission block; or, the The average value of the data block sizes of n codewords is used as the TBS of the transmission block; or, the sum of the data block sizes of the n codewords is used as the TBS of the transmission block.
  • control information of the n codewords is carried in the same DCI.
  • control information of the n codewords is carried in different DCIs.
  • a terminal including: a first processing module, configured to determine the transmission block corresponding to the first codeword according to the time-frequency resource of the first codeword and the MCS of the first codeword TBS; a second processing module for determining the TBS of the transmission block corresponding to the second codeword according to the TBS of the transmission block corresponding to the first codeword; wherein, the first codeword and the second codeword correspond to the same Transmission block.
  • the second processing module is further configured to perform according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation of the second codeword Way to determine the code rate of the second codeword.
  • the index of the MCS of the second codeword is 28, 29, 30, or 31.
  • a terminal including: a first processing module, configured to determine the number of diversity corresponding to a transmission block, where the number of diversity is used to indicate the number of copies of the transmission block to be transmitted through diversity; and a second processing module, According to the diversity number corresponding to the transmission block, the TBS of the transmission block is determined.
  • the terminal further includes: a communication module, configured to receive first indication information, where the first indication information is used to indicate the number of diversity corresponding to the transmission block.
  • the second processing module is specifically configured to determine the number of intermediate information bits of the transmission block according to the number of diversity corresponding to the transmission block; and determine the number of intermediate information bits of the transmission block according to the number of intermediate information bits of the transmission block.
  • the TBS of the transport block is specifically configured to determine the number of intermediate information bits of the transmission block according to the number of diversity corresponding to the transmission block; and determine the number of intermediate information bits of the transmission block according to the number of intermediate information bits of the transmission block.
  • N info N RE ⁇ R ⁇ Q m ⁇ v/m
  • N info represents the transmission The number of intermediate information bits of the block
  • N RE is the number of resource particles RE used to transmit data
  • R is the code rate
  • Q m is the modulation order
  • v the number of transmission layers
  • m is the number of diversity corresponding to the transmission block.
  • the N RE , Q m , v, m are positive integers
  • R is a positive number.
  • the terminal further includes: a communication module for receiving data carried by each of the v transport layers; each of the v transport layers carries a transport block of RV, where the transport layer The number is equal to the diversity number of the transport block.
  • a transmission block of RV includes systematic bits and corresponding RV information. System bits are useful data information.
  • the terminal further includes: a communication module for receiving data carried by each of the v transport layers, and the data carried by the v transport layers is obtained by mapping a codeword, and the codeword It is obtained by mapping the transmission blocks of m RVs, m is the number of diversity corresponding to the transmission blocks, and v and m are positive integers.
  • the terminal further includes: a communication module, configured to receive second indication information, where the second indication information is used to indicate the index of each of the m RVs.
  • the terminal further includes: a communication module, configured to receive third indication information, where the third indication information is used to indicate the index of the first RV in the m RVs, and the index of the m RVs Meet the preset rules.
  • the terminal further includes: a communication module for receiving configuration information corresponding to each of the v transport layers, and the configuration information corresponding to the transport layer is used to indicate the index of the RV corresponding to the transport layer , Wherein the number of transmission layers is equal to the diversity number of the transmission blocks.
  • the second processing module is configured to determine the corresponding relationship between each of the v transport layers according to the correspondence between the RV and the DMRS port, and the relationship between the transport layer and the DMRS port The index of the RV, where the number of the transmission layer is equal to the diversity number of the transmission block.
  • a terminal including: a communication module for receiving a first DCI and a second DCI; wherein the first DCI is used to indicate control information of n first codewords, and the n first codewords are One transport block is mapped; the second DCI is used to indicate the control information of n second codewords, and the n second codewords are mapped from one transport block.
  • the processing module is used to determine the data block size of each first code word in the n first code words according to the control information of the n first code words; determine the transmission block according to the data block size of the n first code words The first TBS; according to the control information of the n second code words, determine the data block size of each second code word in the n second code words; determine the transmission block according to the data block size of the n second code words According to the first TBS and the second TBS of the transmission block, determine the target TBS of the transmission block.
  • the processing module is specifically configured to use the first TBS as the target TBS; or, use the second TBS as the target TBS; or, use the average value between the first TBS and the second TBS as the target TBS; Alternatively, the minimum value between the first TBS and the second TBS is used as the target TBS; or, the maximum value between the first TBS and the second TBS is used as the target TBS.
  • a terminal including: a communication module for receiving MCS indication information sent by a network device, where the MCS indication information is used to indicate the index of the MCS of the first codeword and a deviation value, and the deviation value is used to indicate the first codeword.
  • the processing module is used to determine the MCS index of the first codeword and the MCS index of the second codeword according to the MCS indication information.
  • the MCS indication information includes an index parameter, and the index parameter has a corresponding relationship with the index and deviation value of the MCS of the first codeword.
  • a terminal including: a processor and a memory, the processor is configured to read instructions in the memory, and implement the method described in any one of the first to fifth aspects according to the instructions.
  • a computer-readable storage medium stores instructions that, when run on a terminal, enable the terminal to execute any of the above-mentioned aspects of the first to fifth aspects. The method described.
  • a computer program product containing instructions which when running on a terminal, enables the terminal to execute the method described in any one of the first aspect to the fifth aspect.
  • a chip in a fourteenth aspect, includes a processor, and the processor is configured to execute the method described in any one of the first to fifth aspects.
  • the chip further includes a transceiver pin, which is used to transmit the received code instruction to the processor, so that the processor is used to execute any one of the first aspect to the fifth aspect.
  • the code instruction may come from a memory inside the chip or a memory outside the chip.
  • the technical effects brought by any one of the design methods of the sixth aspect to the fourteenth aspect can refer to the beneficial effects of the corresponding method provided above and the technical effects brought about by the design method. Repeat.
  • a network device including: a first processing module, configured to determine the data block size of each codeword in n codewords, where the n codewords correspond to the same transmission block, and n is An integer greater than 1; the second processing module is configured to determine the TBS of the transmission block according to the data block size of one or more code words in the n code words.
  • the first processing module is specifically configured to determine the data block size corresponding to each codeword in the n codewords according to the control information corresponding to each codeword in the n codewords.
  • the second processing module is specifically configured to use the data block size of one codeword among the n codewords as the TBS of the transmission block; or, use the n codewords
  • the smallest data block size among the data block sizes is used as the TBS of the transmission block; or, the largest data block size among the data block sizes of the n codewords is used as the TBS of the transmission block; or, the The average value of the data block sizes of n codewords is used as the TBS of the transmission block; or, the sum of the data block sizes of the n codewords is used as the TBS of the transmission block.
  • control information of the n codewords is carried in the same DCI.
  • control information of the n codewords is carried in different DCIs.
  • a network device including: a first processing module, configured to determine the transmission corresponding to the first codeword according to the time-frequency resource of the first codeword and the MCS of the first codeword
  • the second processing module is used to determine the TBS of the transmission block corresponding to the second codeword according to the TBS of the transmission block corresponding to the first codeword; wherein, the first codeword and the second codeword Correspond to the same transmission block.
  • the second processing module is further configured to perform according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation of the second codeword Way to determine the code rate of the second codeword.
  • the index of the MCS of the second codeword is 28, 29, 30, or 31.
  • a network device including: a first processing module, configured to determine the number of diversity corresponding to a transmission block, where the number of diversity is used to indicate the number of copies of the transmission block to be transmitted by diversity; a second processing module , Used to determine the TBS of the transmission block according to the number of diversity corresponding to the transmission block.
  • the network device further includes: a communication module, configured to send first indication information, where the first indication information is used to indicate the number of diversity corresponding to the transmission block.
  • the second processing module is specifically configured to determine the number of intermediate information bits of the transmission block according to the number of diversity corresponding to the transmission block; and determine the number of intermediate information bits of the transmission block according to the number of intermediate information bits of the transmission block.
  • the TBS of the transport block is specifically configured to determine the number of intermediate information bits of the transmission block according to the number of diversity corresponding to the transmission block; and determine the number of intermediate information bits of the transmission block according to the number of intermediate information bits of the transmission block.
  • N info N RE ⁇ R ⁇ Q m ⁇ v/m
  • N info represents the transmission The number of intermediate information bits of the block
  • N RE is the number of resource particles RE used to transmit data
  • R is the code rate
  • Q m is the modulation order
  • v the number of transmission layers
  • m is the number of diversity corresponding to the transmission block.
  • the N RE , Q m , v, m are positive integers
  • R is a positive number.
  • the second processing module is also used to carry one RV transport block in each of the v transport layers, or in other words, to transmit each of the v transport layers.
  • the layer carries a transport block of RV.
  • the diversity number of transport blocks is equal to the number of transport layers.
  • One RV transmission block includes systematic bits and corresponding RV information. System bits are useful data information.
  • the second processing module is further configured to map m transmission blocks of RV to a codeword; and, map the codeword to v transmission layers, where m is the transmission block The corresponding number of diversity.
  • the network device further includes: a communication module, configured to send second indication information, where the second indication information is used to indicate the index of each of the m RVs.
  • the network device further includes: a communication module, configured to send third indication information, where the third indication information is used to indicate the index of the first RV in the m RVs, and the index of the m RVs Meet the preset rules.
  • the network device further includes: a communication module for sending configuration information corresponding to each of the v transport layers, and the configuration information corresponding to the transport layer is used to indicate the index of the RV corresponding to the transport layer , Wherein the number of transmission layers is equal to the diversity number of the transmission blocks.
  • the second processing module is configured to determine the corresponding relationship between each of the v transport layers according to the correspondence between the RV and the DMRS port, and the relationship between the transport layer and the DMRS port The index of the RV, where the number of the transmission layer is equal to the diversity number of the transmission block.
  • a network device including: a processing module for generating MCS indication information, the MCS indication information is used to indicate the index of the MCS of the first codeword and the deviation value, and the deviation value is used to indicate the first code The difference between the index of the MCS of the word and the index of the MCS of the second codeword.
  • the communication module is used to send MCS indication information to the terminal.
  • the MCS indication information includes an index parameter, and the index parameter has a corresponding relationship with the index and deviation value of the MCS of the first codeword.
  • a network device including: a processor and a memory, the processor is configured to read instructions in the memory and implement the method described in any one of the first to fourth aspects according to the instructions .
  • a computer-readable storage medium stores instructions that, when run on a network device, enable the network device to execute any one of the first to fourth aspects above. The method described in the aspect.
  • a computer program product containing instructions which when run on a network device, enables the network device to execute the method described in any one of the first to fourth aspects.
  • a chip in a twenty-second aspect, includes a processor, and the processor is configured to execute the method described in any one of the first to fourth aspects.
  • the chip further includes a transceiver pin, which is used to transmit the received code instruction to the processor, so that the processor is used to execute any one of the first aspect to the fifth aspect.
  • the code instruction may come from a memory inside the chip or a memory outside the chip.
  • the technical effects brought by any of the fifteenth aspect to the twenty-second aspect can refer to the beneficial effects of the corresponding method provided above and the technical effects brought by the design method. Here No longer.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a terminal and an access network device provided by an embodiment of this application;
  • FIG. 3 is a flowchart of a method for determining TBS according to an embodiment of the application
  • FIG. 4 is a flowchart of another method for determining TBS according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a DCI provided by an embodiment of this application.
  • FIG. 6 is a flowchart of another method for determining TBS according to an embodiment of the application.
  • FIG. 7 is a flowchart of a method for determining MCS according to an embodiment of the application.
  • FIG. 8 is a flowchart of another method for determining TBS according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of a layer diversity provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another layer diversity provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • Transport block (TB), code word (CW)
  • the transport block is the basic unit of data exchange between the Media Access Control (MAC) sublayer and the physical layer processed by the physical layer. It can also be said that the transmission block is a data block including a MAC protocol data unit (Protocol Data Unit, PDU).
  • MAC Media Access Control
  • PDU Protocol Data Unit
  • the code word is determined by the transmission block after channel coding and rate matching. Codewords can be mapped to one or more transport layers. Specifically, the codeword is scrambling and modulated to determine the complex symbol; then, the complex symbol is mapped to one or more transmission layers according to the layer mapping matrix.
  • the redundancy version (RV) is used to determine the starting position of the output sequence of the transmission block after channel coding.
  • RV redundancy version
  • 4 redundancy versions are defined in the standard, namely RV0, RV1, RV2, and RV3.
  • RVx refers to the RV whose index is “x”, and x is an integer greater than or equal to 0 and less than or equal to 3.
  • Sham RV refers to "RVs with the same index”
  • different RV refers to "RVs with different indexes”.
  • a transmission block of an RV includes systematic bits and corresponding RV information. Among them, systematic bits are useful data information.
  • Diversity refers to obtaining diversity gain through redundant transmission of data in time, frequency, or space (for example, antenna) or various combinations of the above three dimensions, so as to improve transmission reliability.
  • diversity includes, but is not limited to: space-time transmit diversity (STTD), space-frequency transmit diversity (SFTD), orthogonal transmit diversity (OTD), space diversity, and time diversity , Frequency domain diversity, etc.
  • Modulation and coding scheme is used to indicate modulation and coding scheme. Specifically, each index value of the MCS corresponds to a modulation and coding strategy.
  • Table 1 (a) the standard defines the corresponding relationship between the MCS index, modulation order, code rate and spectral efficiency, see Table 1 (a) ⁇ Table 1 (c). It should be noted that in different MCS tables, the reserved MCS indexes are different. In Table 1(a), when the MCS index is 29, 30, or 31, the code rate and spectrum efficiency are reserved (reserved). In Table 1(b), when the MCS index is 28, 29, 30, or 31, the code rate and spectrum efficiency are reserved. In Table 1(c), when the MCS index is 29, 30, or 31, the code rate and spectral efficiency are reserved.
  • the terminal first determines the allocation of a physical resource block (physical resource block, PRB) shared channel (physical downlink shared channel, PDSCH) in the physical downlink RE N 'RE.
  • a physical resource block physical resource block, PRB
  • PRB physical resource block
  • PDSCH physical downlink shared channel
  • the terminal determines the total number of REs allocated for the PDSCH, N RE .
  • N RE min(156, N'RE ) ⁇ n PRB .
  • n PRB is the total number of PRBs allocated by the terminal.
  • the terminal determines the number of intermediate information bits (intermediate number of information bits).
  • N info N RE ⁇ R ⁇ Q m ⁇ v.
  • N info represents the number of intermediate information bits.
  • R represents the bit rate.
  • Q m represents the modulation order.
  • v represents the number of transport layers.
  • N info ⁇ 3824 perform the following step (3) to determine TBS. Otherwise, perform the following step (4) to determine TBS.
  • TBS is determined as follows:
  • the terminal first determines the number of quantized intermediate information bits N'info .
  • the terminal lookup table 2 is determined not smaller than N 'info and closest to N' info of TBS.
  • TBS is determined as follows:
  • the terminal first determines the number of quantized intermediate information bits N'info .
  • round represents a round function
  • instructions can include direct instructions and indirect instructions, as well as explicit instructions and implicit instructions.
  • the information indicated by a certain piece of information (the first indication information and the second indication information as described below) is referred to as information to be indicated.
  • the information to be indicated may be directly indicated, wherein the information to be indicated itself or the index of the information to be indicated, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated.
  • it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated by the agreement) of each information, thereby reducing the indication overhead to a certain extent.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems, for example, a new radio (NR) communication system using 5G communication technology, a future evolution system, or multiple communication convergence systems, and so on.
  • the technical solution provided by this application can be applied to a variety of application scenarios, such as machine to machine (M2M), macro and micro communications, enhanced mobile broadband (eMBB), uRLLC, and massive Internet of Things communications ( massive machine type communication, mMTC) and other scenarios.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC massive Internet of Things communications
  • mMTC massive machine type communication
  • These scenarios may include, but are not limited to: a communication scenario between a communication device and a communication device, a communication scenario between a network device and a network device, a communication scenario between a network device and a communication device, and so on.
  • the application in the communication scenario between the network device and the terminal is taken as an example.
  • Figure 1 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include one or more network devices (only two are shown in Figure 1) and one or more terminals (in Figure 1). Only one is shown). Among them, one terminal can communicate with multiple network devices at the same time; or, one terminal can communicate with one network device.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the application scenarios of the technical solutions provided in this application.
  • the network device may be a base station or a base station controller for wireless communication.
  • the base station may include various types of base stations, such as: micro base stations (also called small stations), macro base stations, relay stations, access points, etc., which are not specifically limited in the embodiment of the present application.
  • the base station may be a base station (BTS) in the global system for mobile communication (GSM), code division multiple access (CDMA), and broadband
  • BTS base station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • eNB or e-NodeB evolutional node B
  • LTE long term evolution
  • eNB Internet of Things
  • NB-IoT narrowband-internet of things
  • PLMN public land mobile network
  • the network equipment mentioned in this application usually includes a baseband unit (BBU), a remote radio unit (RRU), an antenna, and a feeder for connecting the RRU and the antenna.
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU is used for signal modulation.
  • RRU is used for radio frequency processing.
  • the antenna is responsible for the conversion between the guided wave on the cable and the space wave in the air.
  • the distributed base station greatly shortens the length of the feeder between the RRU and the antenna, which can reduce signal loss, and can also reduce the cost of the feeder.
  • RRU plus antenna is relatively small and can be installed anywhere, making network planning more flexible.
  • all the BBUs can be centralized and placed in the Central Office (CO).
  • CO Central Office
  • decentralized BBUs are centralized and turned into a BBU baseband pool, they can be managed and scheduled uniformly, and resource allocation is more flexible.
  • all physical base stations evolved into virtual base stations. All virtual base stations share the user's data transmission and reception, channel quality and other information in the BBU baseband pool, and cooperate with each other to realize joint scheduling.
  • the terminal is used to provide users with voice or data connectivity services, or to provide voice and data connectivity services.
  • the terminal may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent Or terminal devices, etc.
  • the terminal may be various handheld devices, vehicle-mounted devices, wearable devices, and computers with communication functions, which are not limited in the embodiment of the present application.
  • the handheld device may be a smart phone.
  • the vehicle-mounted device may be a vehicle-mounted navigation system.
  • the wearable device may be a smart bracelet or a virtual reality (VR) device.
  • the computer can be a personal digital assistant (PDA) computer, a tablet computer, and a laptop computer.
  • PDA personal digital assistant
  • Figure 2 is a schematic diagram of the hardware structure of a network device and a terminal provided by an embodiment of the application.
  • the terminal includes at least one processor 101 and at least one transceiver 103.
  • the terminal may further include an output device 104, an input device 105, and at least one memory 102.
  • the processor 101, the memory 102, and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer
  • the memory 102 may exist independently and is connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101.
  • the memory 102 is used to store application program codes for executing the solutions of the present application, and the processor 101 controls the execution.
  • the processor 101 is configured to execute the computer program code stored in the memory 102, so as to implement the method provided in the embodiment of the present application.
  • the transceiver 103 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 105 communicates with the processor 101 and can receive user input in a variety of ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device includes at least one processor 201, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
  • the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected by a bus.
  • the network interface 204 is used to connect to the core network device through a link (for example, an S1 interface), or to connect to a network interface of another network device through a wired or wireless link (for example, an X2 interface) (not shown in the figure), The embodiment of the application does not specifically limit this.
  • a link for example, an S1 interface
  • a wired or wireless link for example, an X2 interface
  • the terminal and the network device are collectively referred to as a communication device hereinafter.
  • a method for determining TBS includes the following steps:
  • the communication device determines the size of a data block corresponding to each codeword in n codewords, where the n codewords correspond to the same transmission block, and n is an integer greater than 1.
  • the communication device determines the data block size corresponding to each of the n codewords according to the control information corresponding to each of the n codewords.
  • the control information of the codeword is used to indicate the time-frequency resource, MCS, etc. corresponding to the codeword.
  • the terminal can obtain the control information corresponding to each of the n codewords from the network device.
  • control information of the n codewords may be carried in the same DCI or in different DCIs.
  • determining the data block size corresponding to each of the n codewords can refer to the method for determining TBS described above, and will not be repeated here.
  • the communication device determines the TBS of the transmission block according to the data block size of one or more codewords in the n codewords.
  • each codeword in the n codewords is obtained by mapping from one transmission block.
  • each codeword in the n codewords carries the same systematic bit.
  • systematic bits are useful data information.
  • step S102 can be implemented in any one of the following manner 1 to manner 4.
  • n codewords may correspond to different RVs of the transmission block; or, the n codewords may correspond to the same RV of the transmission block.
  • Manner 1 The communication device uses the data block size of one of the n codewords as the TBS of the transmission block.
  • the communication device may use the data block size of any one of the n codewords as the TBS of the transmission block.
  • the communication device may use the data block size of the codeword corresponding to the preset redundancy version among the n codewords as the TBS of the transmission block.
  • the data block size of the code word corresponding to RV0 among the n code words is used as the TBS of the transmission block.
  • Manner 2 The communication device uses the smallest data block size among the n data block sizes as the TBS of the transmission block. Among them, the size of the n data blocks corresponds to the n codewords one to one.
  • the n codewords are codeword #1, codeword #2, and codeword #3. If the data block size of codeword #1 is 224 bits, and the data block size of codeword #2 is 240 bits, The data block size of codeword #3 is 256 bits, and the communication device can determine that the TBS of the transport block is 224 bits.
  • Manner 3 The communication device uses the largest data block size among the n data block sizes as the TBS of the transmission block. Among them, the size of the n data blocks corresponds to the n codewords one to one.
  • the n codewords are codeword #1, codeword #2, and codeword #3. If the data block size of codeword #1 is 224 bits, and the data block size of codeword #2 is 240 bits, The data block size of codeword #3 is 256 bits, and the communication device can determine that the TBS of the transport block is 256 bits.
  • Manner 4 The communication device uses the average of the size of n data blocks as the TBS of the transmission block. Among them, the size of the n data blocks corresponds to the n codewords one to one.
  • the n codewords are codeword #1, codeword #2, and codeword #3. If the data block size of codeword #1 is 224 bits, and the data block size of codeword #2 is 240 bits, The data block size of codeword #3 is 256 bits, and the communication device can determine that the TBS of the transmission block is 240 bits.
  • step S102 can be implemented in the following manner five.
  • n codewords are obtained by mapping from one transport block, the n codewords correspond to the same RV of the transport block.
  • Manner 5 The communication device uses the sum of the size of n data blocks as the TBS of the transmission block, and there is a one-to-one correspondence between the n data blocks and the n codewords.
  • the n codewords are codeword #1, codeword #2, and codeword #3. If the data block size of codeword #1 is 224 bits, and the data block size of codeword #2 is 240 bits, The data block size of codeword #3 is 256 bits, and the communication device can determine that the TBS of the transport block is 720 bits.
  • n codewords may correspond to different time domain resources.
  • n codewords correspond to n time units, that is, each codeword corresponds to one time unit.
  • the time unit is a slot or mini-slot.
  • the n codewords may correspond to different frequency domain resources.
  • the frequency domain resources corresponding to the n codewords may be on the same time unit or on different time units.
  • the n codewords may correspond to different time-frequency resources.
  • the time-frequency resources corresponding to the n codewords may be on the same time unit or on different time units.
  • the terminal receives n first data; after that, the terminal splices the n first data in a certain order according to the TBS of the transmission block Decode and determine the second data.
  • the n pieces of first data correspond to the n codewords one-to-one, and the first data is generated by codeword mapping.
  • the second data is data carried by the transmission block.
  • the data decoded by the terminal also needs to be checked by a cyclic redundancy check (CRC) to ensure that the decoded data is the correct second data.
  • CRC cyclic redundancy check
  • the network device can determine the TBS of the same transmission block corresponding to multiple codewords, so as to realize the diversity transmission of the transmission block. If the communication device is a terminal, the terminal can determine the TBS of the same transport block corresponding to multiple codewords, so as to realize the decoding of multiple codewords corresponding to the transport block.
  • a method for determining TBS includes the following steps:
  • the terminal receives the first DCI and the second DCI.
  • the first DCI is used to indicate the control information of the n first codewords.
  • the n first codewords are obtained by mapping one transmission block, that is, each first codeword in the n first codewords carries a part of the transmission block.
  • the n first codewords correspond to the same RV of the transmission block.
  • the second DCI is used to indicate control information of n second codewords.
  • the n second codewords are obtained by mapping from one transmission block. That is, each of the n second codewords carries a part of the transport block.
  • the n second codewords correspond to the same RV of the transmission block.
  • the RV corresponding to the first codeword and the RV corresponding to the second codeword may be the same or different, which is not limited in the embodiment of the present application.
  • S202 The terminal separately determines the data block size of each first code word in the n first code words according to the control information of the n first code words.
  • the terminal determines the first TBS of the transmission block according to the data block size of the n first codewords.
  • the terminal uses the sum of the data block sizes of the n first codewords as the first TBS of the transmission block.
  • S204 The terminal separately determines the data block size of each second codeword in the n second codewords according to the control information of the n second codewords.
  • the terminal determines the second TBS of the transmission block according to the data block size of the n second codewords.
  • the terminal uses the sum of the data block sizes of the n second codewords as the second TBS of the transmission block.
  • steps S202-S203 may be executed first, and then steps S204-S205; or, steps S204-S205 may be executed first, and then steps S202-S203 may be executed; or, steps S202-S203 and steps S204-S205 may be executed simultaneously.
  • S206 The terminal determines the target TBS according to the first TBS and the second TBS of the transmission block.
  • the target TBS is the TBS used in the actual transmission of the transmission block. That is, the TBS used when the transport block maps n first codewords; and the TBS used when the transport block maps n second codewords.
  • the terminal uses the first TBS as the target TBS; or, the terminal uses the second TBS as the target TBS; or, the terminal uses the average value between the first TBS and the second TBS as the target TBS; or, the terminal uses the first TBS as the target TBS;
  • the minimum value between TBS and the second TBS is used as the target TBS; or, the terminal uses the maximum value between the first TBS and the second TBS as the target TBS.
  • DCI#1 is used to indicate the control information of codeword #1 and codeword #2
  • DCI#2 is used to indicate the control information of codeword #3 and codeword #4.
  • the data block size of codeword #1 is 160 bits
  • the data block size of codeword #2 is 168 bits
  • the data block size of codeword #3 is 176 bits
  • the data block size of codeword #4 is 160 bits.
  • the TBS of the transport block corresponding to codeword #1 and codeword #2 is 328 bits
  • the TBS of the transport block corresponding to codeword #3 and codeword #4 is 336 bits.
  • the terminal can determine that the TBS of the transmission block corresponding to codeword #1 and codeword #2 in actual transmission is 332 bits, and codeword #3 The TBS of the transmission block corresponding to codeword #4 in actual transmission is 332 bits.
  • the terminal can determine the TBS used in the actual transmission of the transmission block to be transmitted by diversity, so that the terminal can realize the first transfer of n according to the TBS of the transmission block. Joint decoding of codewords and n second codewords.
  • a method for determining TBS includes the following steps:
  • the communication device determines the TBS of the transport block corresponding to the first codeword according to the time-frequency resource of the first codeword and the MCS of the first codeword.
  • the method for determining the TBS of the first codeword can refer to the prior art, which will not be repeated here.
  • the communication device determines the TBS of the transport block corresponding to the second codeword according to the TBS of the transport block corresponding to the first codeword.
  • the second codeword and the first codeword correspond to the same transmission block. Therefore, the TBS of the transport block corresponding to the first codeword is equal to the TBS of the transport block corresponding to the second codeword.
  • the network device may send diversity indication information to the terminal, where the diversity indication information is used to instruct the network device to send the transmission block in a codeword diversity manner.
  • the terminal can determine the TBS of the transport block corresponding to the second codeword according to the above steps S301-S302.
  • step S303 is further included.
  • the communication device determines the code of the second codeword according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation mode of the second codeword. rate.
  • the communication device is a terminal, when the code rate corresponding to the index of the MCS of the second codeword is a reserved value, and the terminal receives the diversity indication information, the terminal transmits according to the second codeword.
  • the TBS of the block, the time-frequency resource corresponding to the second codeword, and the modulation mode of the second codeword determine the code rate of the second codeword.
  • the terminal determines the value of the second codeword according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation mode of the second codeword. Bit rate.
  • the technical solution shown in FIG. 6 is applicable to a scenario where a transport block is transmitted in a codeword diversity manner.
  • the code rate corresponding to the MCS index indicated by the control information of one codeword is not an unreserved value, and the code rate corresponding to the MCS index indicated by the control information of the other codeword is a reserved value.
  • the protocol stipulates that the first codeword and the second codeword use the same modulation mode. If the communication device is a terminal, when the terminal receives the diversity indication information, the terminal first determines the first codeword according to the modulation mode of the first codeword. For the modulation mode of the two codewords, the terminal determines the second codeword according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation mode of the second codeword. The bit rate of the codeword.
  • the communication device can determine the code rate of the second codeword through related information (for example, MCS, time-frequency resource) of the first codeword.
  • related information for example, MCS, time-frequency resource
  • the communication device is a network device
  • the network device can realize the transmission of the second code word according to the code rate of the second code word.
  • the terminal can implement joint decoding of the first codeword and the second codeword according to the code rate of the second codeword.
  • S303 there is another implementation manner of S303, that is, the communication device according to the TBS of the transport block corresponding to the second codeword, the time-frequency resource corresponding to the second codeword, and the first codeword To determine the code rate of the second codeword.
  • the protocol stipulates that the first codeword and the second codeword use the same modulation method. If the communication device is a terminal, when the terminal receives the diversity indication information, the terminal uses the transmission block corresponding to the second codeword.
  • the TBS of the second codeword, the time-frequency resource corresponding to the second codeword, and the modulation mode of the first codeword determine the code rate of the second codeword.
  • the network device sends the MCS index of each of the two codewords to the terminal.
  • the signaling overhead is relatively large.
  • an MCS determination method is provided in an embodiment of the present application. As shown in Figure 7, the method includes the following steps:
  • S401 The network device sends MCS indication information to the terminal.
  • the MCS indication information is used to indicate the index and deviation value of the MCS of the first codeword.
  • the deviation value is the difference between the index of the MCS of the first codeword and the index of the MCS of the second codeword. That is, the deviation value is equal to the index of the MCS of the first codeword minus the index of the MCS of the second codeword; or, the deviation value is equal to the index of the MCS of the second codeword minus the MCS of the second codeword index of.
  • the MCS indication information may directly indicate the index and deviation value of the MCS of the first codeword.
  • the MCS indication information includes the index of the MCS of the first codeword and the deviation value.
  • the MCS indication information may indirectly indicate the index and deviation value of the MCS of the first codeword.
  • the MCS indication information includes index parameters. There is a correspondence between the index parameter and the MCS index and deviation value of the first codeword. Exemplarily, the correspondence relationship between the index parameter and the MCS index and deviation value of the first codeword can refer to Table 3.
  • Index parameter The index of the MCS of the first codeword Deviation 0 1 3 1 3 4 ... ... ...
  • the corresponding relationship between the index parameter and the MCS index and deviation value of the first codeword may be defined in the standard, or may be negotiated and determined between the network device and the terminal, and the embodiment of the application is not limited to this.
  • the terminal determines the index of the MCS of the first codeword and the index of the MCS of the second codeword according to the MCS indication information.
  • the terminal determines the index of the MCS of the first codeword according to the index of the MCS of the first codeword indicated by the MCS indication information; and, the terminal determines the index of the MCS of the first codeword indicated by the MCS indication information.
  • the index, and the deviation value determine the index of the MCS of the second codeword.
  • the terminal can determine that the index of the MCS of the first codeword is 3, and the index of the MCS of the second codeword is 1.
  • the network device sends one MCS indication information to the terminal, so that the terminal can learn the MCS of two codewords, which reduces the signaling overhead.
  • the technical solution shown in FIG. 7 can be used in a codeword diversity scenario.
  • the channel conditions of the transmission links corresponding to the two codewords are similar, so the MCS of the two codewords are also similar.
  • Adopting the technical solution shown in Figure 7 is beneficial to reducing signaling overhead.
  • a method for determining TBS includes the following steps:
  • the communication device determines the number of diversity corresponding to the transmission block.
  • the diversity number is used to indicate the number of transmission blocks that are transmitted in diversity. It can be understood that the value of the diversity number is a positive integer. Exemplarily, when the number of diversity is 1, it means that the number of transmission blocks is 1; when the number of diversity is 2, it means that the number of transmission blocks is 2; and so on, when the number of diversity is When n, it means that the number of transmission blocks is n.
  • the diversity number of transmission blocks may be predefined, or configured in advance, or determined by the communication device itself.
  • the following uses the communication device as a network device or terminal for illustration.
  • the network device can determine the number of diversity corresponding to the transmission block by considering factors such as the channel quality of the terminal and the network environment; or, the network device can determine the diversity corresponding to the transmission block according to high-level signaling number.
  • high-level signaling refers to signaling of the high-level protocol layer.
  • the terminal receives the first instruction information sent by the network device, and determines the corresponding number of transmission blocks according to the first instruction information.
  • the first indication information is used to indicate the number of diversity corresponding to the transmission block.
  • the first indication information may indicate the number of diversity corresponding to the transmission block in an explicit manner.
  • the first indication information may include a specific value of the diversity number.
  • the first indication information may indicate the number of diversity corresponding to the transmission block in an implicit manner.
  • the first indication information includes diversity parameters.
  • the diversity parameter is 0, it means that the transmission block is not sent in the manner of diversity transmission, so the number of diversity is 1.
  • the diversity parameter is 1, it means that each transport layer carries a piece of data of the transport block, so the number of diversity is equal to the number of transport layers.
  • the diversity parameter is n, n is an integer greater than or equal to 2, and the number of diversity is n.
  • the first indication information may indicate that the number of diversity corresponding to the transport block is equal to the number of transport layers. In this way, the communication device can determine the number of diversity corresponding to the transmission block according to the number of transmission layers.
  • the network device may send a notification message to the terminal, so that the terminal knows whether the network device sends the transmission block in a diversity transmission mode.
  • the notification message can be carried in RRC signaling, MAC-CE signaling or DCI.
  • the communication device determines the TBS of the transmission block according to the diversity number corresponding to the transmission block.
  • the communication device determines the number of intermediate information bits of the transmission block according to the number of diversity corresponding to the transmission block; then, the communication device determines the TBS of the transmission block according to the number of intermediate information bits of the transmission block.
  • the number of intermediate information bits of the transmission block can be determined according to the following formula (1):
  • N info N RE ⁇ R ⁇ Q m ⁇ v/m (1)
  • N info represents the number of intermediate information bits of the transmission block
  • N RE is the number of REs used to transmit data
  • R represents the code rate
  • Q m represents the modulation order
  • v represents the number of transmission layers
  • m represents the corresponding transmission block The number of diversity.
  • the N RE , Q m , v, m are positive integers, and R is a positive number.
  • the formula (1) can be replaced with the following formula (2).
  • formula (1) can be replaced with the following formula (3).
  • Means round down Indicates rounding up.
  • the transport blocks of m RVs are mapped to one codeword, and the codeword is mapped to v transport layers.
  • m RVs may be the same RV, for example, m RVs may all be RV0. Or, the m RVs may be different RVs.
  • transport layer #0 and transport layer #1 carry a piece of data of the transport block; transport layer #1 and transport layer #2 A piece of data that carries the transport block.
  • transport layer #0 carries the first 2/3 of the transport block using the first RV
  • transport layer #1 carries the last 1/3 of the transport block using the first RV and the transport block using the second RV.
  • the first 1/3, transport layer #2 carries the last 2/3 of the transport block using the second RV.
  • transport layer #0 and transport layer #1 carry a piece of data of the transport block; transport layer #2 and transport layer #3 A piece of data that carries the transport block.
  • transport layer #0 bears the first 1/2 of the transport block of the first RV
  • transport layer #1 bears the last 1/2 of the transport block of the first RV
  • transport layer #2 bears the second half of the transport block.
  • transport layer #3 carries the last 1/2 of the transport block using the second RV
  • the transport blocks carried by each transport layer are determined according to the mapping relationship between the codeword and the transport layer. It can be understood that the mapping relationship between the codeword and the transport layer is pre-configured or defined in the standard.
  • Table 4 shows a mapping relationship between a codeword and a transmission layer.
  • the number of diversity corresponding to the transport block is equal to the number of transport layers.
  • x (0) (i) represents the i-th complex symbol of the first transport layer, and so on, x (n) (i) represents the i-th complex symbol of the n-th transport layer.
  • a (0) (i) represents the i-th complex symbol corresponding to the transport block using the first RV, and so on, a (n) (i) represents the i-th symbol corresponding to the transport block using the nth RV Plural symbols. among them, That is, i is greater than or equal to 0 and less than or equal The integer.
  • M symb represents the number of complex symbols corresponding to one RV transport block.
  • each transport layer carries one RV transport block.
  • the terminal may determine the index of each RV in the m RVs in the following manner.
  • the terminal receives second indication information sent by the network device, where the second indication information is used to indicate the index of each of the m RVs.
  • the terminal receives the third indication information sent by the network device, where the third indication information is used to indicate the index of the first RV among the m RVs.
  • the indexes of the m RVs comply with a preset rule.
  • the preset rule may be defined in the standard, or may be pre-configured.
  • the indexes of the m RVs complying with the preset rule include the following situations:
  • the preset cycle sequence is: RV0 ⁇ RV2 ⁇ RV3 ⁇ RV1. That is, the first RV is RV0, the second RV is RV2, the third RV is RV3, the fourth RV is RV1, the fifth RV is RV0, and so on, the 4n+1th RV is RV0 , The 4n+2th RV is RV2, the 4n+3th RV is RV3, the 4n+4th RV is RV1, and n is an integer greater than or equal to 0.
  • the preset sequence is RV0 ⁇ RV1 ⁇ RV3 ⁇ RV0 ⁇ RV2 ⁇ .
  • each transport layer in the v transport layers corresponds to a piece of configuration information, and the configuration information is used to indicate the index of the RV corresponding to the transport layer.
  • the network device may send the configuration information corresponding to each of the v transport layers to the terminal, so that the terminal can determine each transport layer according to the configuration information corresponding to each of the v transport layers.
  • the index of the RV corresponding to a transport layer.
  • the configuration information corresponding to the transport layer is also used to indicate resource allocation and MCS corresponding to the transport layer.
  • the configuration information corresponding to the transport layer is carried in RRC signaling, MAC-CE signaling, or DCI.
  • DMRS port There is a corresponding relationship between the DMRS port and the RV. It should be noted that because DMRS ports can be used to identify the transport layer, when the number of diversity corresponding to the transport block is equal to the number of transport layers, the correspondence between the DMRS port and the RV can be used to determine each transport layer in v transport layers The index of the corresponding RV.
  • the corresponding relationship between the DMRS port and the RV is pre-configured to the terminal by the network device, or is defined in the standard.
  • Table 5 shows the correspondence between the DMRS port and the RV.
  • the DMRS port coded as 0 corresponds to RV0
  • the DMRS port coded as 1 corresponds to RV3.
  • the transmission layer corresponding to the DMRS port coded as 0 corresponds to RV0
  • the transmission layer corresponding to the DMRS port coded as 1 corresponds to RV3.
  • the communication device can determine a suitable TBS for the transmission block according to the number of diversity corresponding to the transmission block. In this way, if the communication device is a network device, the network device can implement diversity transmission of the transmission block according to the TBS of the transmission block. If the communication device is a terminal, the terminal can decode the transmission block according to the TBS of the transmission block.
  • each network element such as a network device and a terminal
  • each network element includes a corresponding hardware structure or software module for performing each function, or a combination of both.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function:
  • FIG. 11 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the terminal includes: a first processing module 301 and a second processing module 302.
  • the terminal further includes: a communication module 303.
  • the first processing module 301 is used to support the terminal to perform step S101 in FIG. 3, steps S202 and S204 in FIG. 4, step S301 in FIG. 6, step S501 in FIG. 8, or to support the technology described herein Other processes of the program.
  • the second processing module 302 is used to support the terminal to perform step S102 in FIG. 3, steps S203, S205 and S206 in FIG. 4, steps S302 and S303 in FIG. 6, step S402 in FIG. 7, and step S502 in FIG. , Or other processes used to support the technical solutions described in this article.
  • the communication module 303 is used to support the terminal to perform step S201 in FIG. 4, step S401 in FIG. 7, or other processes used to support the technical solutions described herein.
  • the first processing module 301 and the second processing module 302 may be integrated into one processing module, and the processing module may be used to implement the steps performed by the first processing module 301 and the second processing module 302.
  • the processing module is used to support the terminal to perform steps S101 and S102 in Figure 3, steps S202-S206 in Figure 4, steps S301-S303 in Figure 6, step S402 in Figure 7, and step S501 in Figure 8 And S502, or other processes used to support the technical solutions described herein.
  • the communication module 303 in FIG. 11 may be implemented by the transceiver 103 in FIG. 2, and the first processing module 301 and the second processing module 302 in FIG. 11 may be implemented by the transceiver 103 in FIG.
  • the embodiment of the present application does not impose any limitation on this.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer instructions are stored; when the computer-readable storage medium runs on the terminal shown in FIG. 2, the terminal is caused to execute The method shown in Figure 3, Figure 4, Figure 6, Figure 7 or Figure 8.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)).
  • the embodiment of the present application also provides a computer program product containing computer instructions. When it runs on the terminal shown in FIG. 2, the terminal can execute the operations shown in FIG. 3, FIG. 4, FIG. 6, FIG. 7 or FIG. 8. Methods.
  • the terminals, computer storage media, and computer program products provided in the above embodiments of the present application are all used to execute the methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding beneficial effects of the methods provided above. This will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device includes a first processing module 401 and a second processing module 402.
  • the network device further includes a communication module 403.
  • the first processing module 401 is used to support the network device to perform step S101 in FIG. 3, step S301 in FIG. 6, step S501 in FIG. 8, or other processes used to support the technical solutions described herein.
  • the second processing module 302 is used to support the network device to perform step S102 in FIG. 3, steps S302 and S303 in FIG. 6, step S502 in FIG. 8, or other processes used to support the technical solutions described herein.
  • the communication module 403 is used to support the network device to perform step S201 in FIG. 4, step S401 in FIG. 7, or to support other processes of the technical solution described herein.
  • the first processing module 401 and the second processing module 402 may be integrated into one processing module, and the processing module may be used to implement the steps performed by the first processing module 401 and the second processing module 402.
  • the processing module is used to support the network device to execute steps S101 and S102 in Figure 3, steps S301-S303 in Figure 6, steps S501 and S502 in Figure 8, or other processes used to support the technical solutions described herein .
  • the communication module 403 in FIG. 12 may be implemented by the transceiver 203 in FIG. 2, and the first processing module 401 and the second processing module 402 in FIG. 2 is implemented by the processor 201, which is not limited in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer instructions are stored; when the computer-readable storage medium runs on the network device shown in FIG. 2, the network The device executes the method shown in Figure 3, Figure 4, Figure 6, Figure 7, or Figure 8.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid-state hard disk).
  • the embodiment of the present application also provides a computer program product containing computer instructions. When it runs on the network device shown in FIG. 2, the network device can execute the steps shown in FIG. 3, FIG. 4, FIG. 6, FIG. 7 or FIG. 8. Show method.
  • the network devices, computer storage media, and computer program products provided in the above embodiments of the present application are all used to execute the methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding beneficial effects of the methods provided above. I will not repeat them here.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • the chip shown in FIG. 13 may be a general-purpose processor or a dedicated processor.
  • the chip includes a processor 501.
  • the processor 501 is configured to support the communication device to execute the technical solutions shown in FIG. 3, FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • the chip also includes a transceiver pin 502.
  • the transceiver pin 502 is used to receive the control of the processor 501 and is used to support the communication device to execute the technology shown in FIG. 3, FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • Programs shown in FIG. 3, FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • the chip shown in FIG. 13 may further include: a storage medium 503.
  • the chip shown in Figure 13 can be implemented using the following circuits or devices: one or more field programmable gate arrays (FPGA), programmable logic devices (PLD) , Controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic devices
  • Controllers state machines
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.

Abstract

本申请提供传输块的TBS的确定方法及通信装置,该方法包括:通信装置确定n个中每个码字对应的数据块大小,n个码字对应于同一个传输块,n为大于1的整数;之后,通信装置根据n个码字中一个或多个码字的数据块大小,确定传输块的TBS。这样一来,在分集传输的场景下,通信装置能够确定合适的传输块的TBS,以便于实现对传输块的传输或者译码。

Description

传输块大小的确定方法及通信装置
相关申请的交叉引用
本申请要求在2019年08月8日提交中国专利局、申请号为201910729222.X、申请名称为“传输块大小的确定方法及通信装置”的中国专利申请的优先权,其要求在2019年03月05日提交中国专利局、申请号为201910165162.3、申请名称为“传输块大小的确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及传输块大小(transport block size,TBS)的确定方法及装置。
背景技术
随着移动通信技术的快速发展,通信系统对于可靠性有着更高的要求。以第五代(5th-generation,5G)系统的超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)业务为例,URLLC业务要求的可靠性高达99.999%。为了提高业务的可靠性,通信系统可以采用分集传输的模式。现有的协议仅仅考虑了空分复用场景下TBS的计算,尚未考虑到分集传输的场景下如何确定TBS。
发明内容
本申请提供一种TBS的确定方法及通信装置,用于在分集传输的场景下确定传输块的TBS。
第一方面,提供一种TBS的确定方法,包括:通信装置确定n个码字中每个码字的数据块大小,n个码字对应于同一个传输块,n为大于1的整数;之后,通信装置根据n个码字中的一个或多个码字的数据块大小,确定传输块的TBS。基于该技术方案,在分集传输的场景下,通信装置能够确定多个码字对应的同一个传输块的TBS。这样一来,若通信装置为网络设备,网络设备可以根据该传输块的TBS,实现对该传输块的分集传输。若通信装置为终端,终端可以根据该传输块的TBS,实现对该传输块对应的多个码字的译码。
一种可能的设计中,通信装置确定n个码字中每个码字的数据块大小,包括:根据n个码字中每个码字对应的控制信息,分别确定n个码字中每个码字的数据块大小。
一种可能的设计中,通信装置根据n个码字中的一个或多个码字的数据块大小,确定传输块的TBS,包括:以n个码字中的一个码字的数据块大小作为传输块的TBS;或者,以n个码字的数据块大小中最小的数据块大小作为传输块的TBS;或者,以n个码字的数据块大小中最大的数据块大小作为传输块的TBS;或者,以n个码字的数据块大小的平均值作为传输块的TBS;或者,以n个码字的数据块大小之和作为传输块的TBS。
一种可能的设计中,n个码字的控制信息承载在同一下行控制信息(downlink Control Information,DCI)中。
一种可能的设计中,n个码字的控制信息承载在不同的DCI中。
第二方面,提供一种TBS的确定方法,包括:通信装置根据第一码字的时频资源、以及 第一码字的调制与编码策略(modulation and coding scheme,MCS),确定第一码字对应的传输块的TBS;根据第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS;其中,第一码字和第二码字对应同一传输块。基于该技术方案,在第一码字和第二码字对应同一个传输块的场景下,也即传输块被分集传输的场景下,通信装置可以通过第一码字所对应的传输块的TBS,确定第二码字对应的传输块的TBS。这样一来,若通信装置为网络设备,网络设备可以实现对第二码字的传输。若通信装置为终端,终端可以根据该传输块的TBS,实现对第一码字和第二码字的联合译码。
一种可能的设中,该方法还包括:通信装置根据第二码字对应的传输块的TBS、第二码字对应的时频资源、以及第二码字的调制方式,确定第二码字的码率。基于该设计,在第二码字的MCS索引对应的码率是预留值时,通信装置可以确定第二码字的码率。这样一来,若通信装置为网络设备,网络设备可以根据该第二码字的码率,实现对第二码字的传输。若通信装置为终端,终端可以根据该第二码字的码率,实现对第一码字和第二码字的联合译码。
一种可能的设计中,第二码字的MCS的索引为28、29、30或者31。
第三方面,提供一种TBS的确定方法,包括:通信装置确定传输块对应的分集数目,分集数目用于指示传输块被分集传输的份数;之后,通信装置根据传输块对应的分集数目,确定传输块的TBS。基于该技术方案,在分集传输的场景下,通信装置能够根据传输块对应的分集数目,为传输块确定合适的TBS。这样一来,若通信装置为网络设备,网络设备可以根据传输块的TBS,实现对传输块的分集传输。若通信装置为终端,终端可以根据传输块的TBS,实现对传输块的译码。
一种可能的设计中,若通信装置为网络设备,该方法还包括:网络设备发送第一指示信息,第一指示信息用于指示传输块对应的分集数目。这样一来,终端根据第一指示信息,可以获知传输块对应的分集数目。
一种可能的设计中,若通信装置为终端,该方法还包括:终端接收第一指示信息,第一指示信息用于指示传输块对应的分集数目。这样一来,终端根据第一指示信息,可以获知传输块对应的分集数目。
一种可能的设计中,通信装置根据传输块对应的分集数目,确定传输块的TBS,包括:根据传输块对应的分集数目,确定传输块的中间信息比特数;根据传输块的中间信息比特数,确定传输块的TBS。
一种可能的设计中,传输块的中间信息比特数根据以下公式确定:N info=N RE·R·Q m·v/m。其中,N info表示传输块的中间信息比特数,N RE用于传输数据的资源粒子(resource element,RE)的数目,R表示码率,Q m表示调制阶数,v表示传输层的数目,m表示传输块对应的分集数目,N RE、Q m、v、m为正整数,R为正数。
一种可能的设计中,若传输块的分集数目等于传输层的数目,则v个传输层中每一个传输层承载一个冗余版本(redundancy version,RV)的传输块。其中,一个RV的传输块包括系统比特和对应的RV信息。系统比特是有用的数据信息。
一种可能的设计中,m个RV的传输块映射到一个码字,该码字映射到v个传输层,m为传输块对应的分集数目。
一种可能的设计中,若通信装置为网络设备,该方法还包括:网络设备向终端发送第二指示信息,第二指示信息用于指示m个RV中每一个RV的索引。这样一来,终端通过第二指示信息,可以获知m个RV中每一个RV的索引。
一种可能的设计中,若通信装置为终端,该方法还包括:终端接收第二指示信息,第二 指示信息用于指示m个RV中每一个RV的索引。这样一来,终端通过第二指示信息,可以获知m个RV中每一个RV的索引。
一种可能的设计中,若通信装置为网络设备,该方法还包括:网络设备向终端发送第三指示信息,第三指示信息用于指示m个RV中第一个RV的索引,m个RV的索引符合预设规则。这样一来,终端通过第三指示信息,可以获知m个RV中每一个RV的索引。并且,由于第三指示信息仅指示第一个RV的索引,因此第三指示信息所带来的传输开销较小。
一种可能的设计中,若通信装置为终端,该方法还包括:终端接收第三指示信息,第三指示信息用于指示m个RV中第一个RV的索引,m个RV的索引符合预设规则。这样一来,终端通过第三指示信息,可以获知m个RV中每一个RV的索引。并且,由于第三指示信息仅指示第一个RV的索引,因此第三指示信息所带来的传输开销较小。
一种可能的设计中,当传输块对应的分集数目等于传输层的数目时,v个传输层中每一个传输层对应一个配置信息,传输层对应的配置信息用于指示传输层对应的RV的索引。另外,传输层对应的配置信息还用于指示传输层的资源分配以及MCS。可以理解的是,在传输块对应的分集数目等于传输层的数目的场景下,通信装置可以根据每一个传输层对应的配置信息,确定该传输层对应的RV的索引。
一种可能的设计中,解调参考信号(demodulation reference signal,DMRS)端口与RV之间存在对应关系。当传输块对应的分集数目等于传输层的数目时,DMRS端口与RV之间的对应关系用于确定v个传输层中每一个传输层对应的RV的索引。这样一来,在传输块对应的分集数目等于传输层的数目的场景下,通信装置可以确定传输层对应的DMRS端口,进而确定传输层对应的RV的索引。
第四方面,提供一种确定MCS的方法,该方法包括:终端接收网络设备发送的MCS指示信息,MCS指示信息用于指示第一码字的MCS的索引以及偏差值,该偏差值用于指示第一码字的MCS的索引与第二码字的MCS的索引之间的差值。终端根据MCS指示信息,确定第一码字的MCS的索引,以及第二码字的MCS的索引。基于该技术方案,终端接收到一条信令(也即MCS指示信息),可以确定两个码字的MCS的索引,有利于减少信令开销。
一种可能的设计中,MCS指示信息包括索引参数,该索引参数与第一码字的MCS的索引、偏差值存在对应关系。
第五方面,提供一种确定TBS的方法,该方法包括:终端接收第一DCI和第二DCI;其中,第一DCI用于指示n个第一码字的控制信息,n个第一码字由一个传输块映射得到;第二DCI用于指示n个第二码字的控制信息,n个第二码字由一个传输块映射得到;终端根据n个第一码字的控制信息,确定n个第一码字中每个第一码字的数据块大小;终端根据n个第一码字的数据块大小,确定传输块的第一TBS;终端根据n个第二码字的控制信息,确定n个第二码字中每个第二码字的数据块大小;终端根据n个第二码字的数据块大小,确定传输块的第二TBS;终端根据传输块的第一TBS和第二TBS,确定传输块的目标TBS。基于该技术方案,在分集传输的场景下,终端能够确定被分集传输的传输块在实际传输中所采用的TBS,从而终端能够根据该传输块的TBS,实现对n个第一码字和n个第二码字的联合译码。
一种可能的设计中,终端根据传输块的第一TBS和第二TBS,确定传输块的目标TBS,包括:终端以第一TBS作为目标TBS;或者,终端以第二TBS作为目标TBS;或者,终端以第一TBS和第二TBS之间的平均值作为目标TBS;或者,终端以第一TBS和第二TBS之间的最小值作为目标TBS;或者,终端以第一TBS和第二TBS之间的最大值作为目标TBS。
第六方面,提供一种终端,包括:第一处理模块,用于确定n个码字中每个码字的数据 块大小,所述n个码字对应于同一个传输块,n为大于1的整数;第二处理模块,用于根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的TBS。
一种可能的设计中,所述第一处理模块,具体用于根据n个码字中每个码字对应的控制信息,分别确定n个码字中每个码字对应的数据块大小。
一种可能的设计中,所述第二处理模块,具体用于以所述n个码字中的一个码字的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最小的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最大的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小的平均值作为所述传输块的TBS;或者,以所述n个码字的数据块大小之和作为所述传输块的TBS。
一种可能的设计中,所述n个码字的控制信息承载在同一DCI中。
一种可能的设计中,所述n个码字的控制信息承载在不同的DCI中。
第七方面,提供一种终端,包括:第一处理模块,用于根据第一码字的时频资源、以及所述第一码字的MCS,确定所述第一码字对应的传输块的TBS;第二处理模块,用于根据所述第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS;其中,所述第一码字和第二码字对应同一传输块。
一种可能的设计中,第二处理模块,还用于根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
一种可能的设计中,所述第二码字的MCS的索引为28、29、30或者31。
第八方面,提供一种终端,包括:第一处理模块,用于确定传输块对应的分集数目,所述分集数目用于指示所述传输块被分集传输的份数;第二处理模块,用于根据所述传输块对应的分集数目,确定所述传输块的TBS。
一种可能的设计中,该终端还包括:通信模块,用于接收第一指示信息,所述第一指示信息用于指示传输块对应的分集数目。
一种可能的设计中,第二处理模块,具体用于根据所述传输块对应的分集数目,确定所述传输块的中间信息比特数;根据所述传输块的中间信息比特数,确定所述传输块的TBS。
一种可能的设计中,第二处理模块,具体用于根据N info=N RE·R·Q m·v/m,确定所述传输块的中间信息比特数;其中,N info表示所述传输块的中间信息比特数,N RE用于传输数据的资源粒子RE的数目,R表示码率,Q m表示调制阶数,v表示传输层的数目,m表示所述传输块对应的分集数目,所述N RE、Q m、v、m为正整数,R为正数。
一种可能的设计中,该终端还包括:通信模块,用于接收v个传输层中每一个传输层承载的数据;v个传输层中每一个传输层承载一个RV的传输块,其中传输层的数目等于传输块的分集数目。其中,一个RV的传输块包括系统比特和对应的RV信息。系统比特是有用的数据信息。
一种可能的设计中,该终端还包括:通信模块,用于接收v个传输层中每一个传输层承载的数据,v个传输层所承载的数据由一个码字映射得到,所述码字由m个RV的传输块映射得到,m为所述传输块对应的分集数目,v、m为正整数。
一种可能的设计中,该终端还包括:通信模块,用于接收第二指示信息,所述第二指示信息用于指示m个RV中每一个RV的索引。
一种可能的设计中,该终端还包括:通信模块,用于接收第三指示信息,所述第三指示信息用于指示m个RV中第一个RV的索引,所述m个RV的索引符合预设规则。
一种可能的设计中,该终端还包括:通信模块,用于接收v个传输层中每一个传输层对应 的配置信息,所述传输层对应的配置信息用于指示传输层对应的RV的索引,其中所述传输层的数目等于所述传输块的分集数目。
一种可能的设计中,所述第二处理模块,用于根据RV与DMRS端口之间的对应关系,以及传输层与DMRS端口之间的关系,确定v个传输层中每一个传输层对应的RV的索引,其中所述传输层的数目等于所述传输块的分集数目。
第九方面,提供一种终端,包括:通信模块,用于接收第一DCI和第二DCI;其中,第一DCI用于指示n个第一码字的控制信息,n个第一码字由一个传输块映射得到;第二DCI用于指示n个第二码字的控制信息,n个第二码字由一个传输块映射得到。处理模块,用于根据n个第一码字的控制信息,确定n个第一码字中每个第一码字的数据块大小;根据n个第一码字的数据块大小,确定传输块的第一TBS;根据n个第二码字的控制信息,确定n个第二码字中每个第二码字的数据块大小;根据n个第二码字的数据块大小,确定传输块的第二TBS;根据传输块的第一TBS和第二TBS,确定传输块的目标TBS。
一种可能的设计中,处理模块,具体用于以第一TBS作为目标TBS;或者,以第二TBS作为目标TBS;或者,以第一TBS和第二TBS之间的平均值作为目标TBS;或者,以第一TBS和第二TBS之间的最小值作为目标TBS;或者,以第一TBS和第二TBS之间的最大值作为目标TBS。
第十方面,提供一种终端,包括:通信模块,用于接收网络设备发送的MCS指示信息,MCS指示信息用于指示第一码字的MCS的索引以及偏差值,该偏差值用于指示第一码字的MCS的索引与第二码字的MCS的索引之间的差值。处理模块,用于根据MCS指示信息,确定第一码字的MCS的索引,以及第二码字的MCS的索引。
一种可能的设计中,MCS指示信息包括索引参数,该索引参数与第一码字的MCS的索引、偏差值存在对应关系。
第十一方面,提供一种终端,包括:处理器和存储器,处理器用于读取存储器中的指令,并根据所述指令实现上述第一方面至第五方面中任一方面所述的方法。
第十二方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在终端上运行时,使得终端可以执行上述第一方面至第五方面中任一方面所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,当其在终端上运行时,使得终端可以执行第一方面至第五方面中任一方面所述的方法。
第十四方面,提供一种芯片,该芯片包括处理器,处理器用于执行上述第一方面至第五方面中任一方面所述的方法。一种可能的设计中,该芯片还包括收发管脚,收发管脚用于将接收的代码指令传输至处理器,以使得处理器用于执行上述第一方面至第五方面中任一方面所述的方法。可选的,该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。
其中,第六方面至第十四方面中任一种设计方式所带来的技术效果可参见上文所提供的对应的方法中的有益效果同设计方式所带来的技术效果,此处不再赘述。
第十五方面,提供一种网络设备,包括:第一处理模块,用于确定n个码字中每个码字的数据块大小,所述n个码字对应于同一个传输块,n为大于1的整数;第二处理模块,用于根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的TBS。
一种可能的设计中,所述第一处理模块,具体用于根据n个码字中每个码字对应的控制信息,分别确定n个码字中每个码字对应的数据块大小。
一种可能的设计中,所述第二处理模块,具体用于以所述n个码字中的一个码字的数据 块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最小的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最大的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小的平均值作为所述传输块的TBS;或者,以所述n个码字的数据块大小之和作为所述传输块的TBS。
一种可能的设计中,所述n个码字的控制信息承载在同一DCI中。
一种可能的设计中,所述n个码字的控制信息承载在不同的DCI中。
第十六方面,提供一种网络设备,包括:第一处理模块,用于根据第一码字的时频资源、以及所述第一码字的MCS,确定所述第一码字对应的传输块的TBS;第二处理模块,用于根据所述第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS;其中,所述第一码字和第二码字对应同一传输块。
一种可能的设计中,第二处理模块,还用于根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
一种可能的设计中,所述第二码字的MCS的索引为28、29、30或者31。
第十七方面,提供一种网络设备,包括:第一处理模块,用于确定传输块对应的分集数目,所述分集数目用于指示所述传输块被分集传输的份数;第二处理模块,用于根据所述传输块对应的分集数目,确定所述传输块的TBS。
一种可能的设计中,该网络设备还包括:通信模块,用于发送第一指示信息,所述第一指示信息用于指示传输块对应的分集数目。
一种可能的设计中,第二处理模块,具体用于根据所述传输块对应的分集数目,确定所述传输块的中间信息比特数;根据所述传输块的中间信息比特数,确定所述传输块的TBS。
一种可能的设计中,第二处理模块,具体用于根据N info=N RE·R·Q m·v/m,确定所述传输块的中间信息比特数;其中,N info表示所述传输块的中间信息比特数,N RE用于传输数据的资源粒子RE的数目,R表示码率,Q m表示调制阶数,v表示传输层的数目,m表示所述传输块对应的分集数目,所述N RE、Q m、v、m为正整数,R为正数。
一种可能的设计中,所述第二处理模块,还用于将一个RV的传输块承载在v个传输层中的每个传输层中,或者说,以v个传输层中的每个传输层承载一个RV的传输块。其中,传输块的分集数目等于传输层的数目。一个RV的传输块包括系统比特和对应的RV信息。系统比特是有用的数据信息。
一种可能的设计中,所述第二处理模块,还用于将m个RV的传输块映射到一个码字;以及,将所述码字映射到v个传输层,m为所述传输块对应的分集数目。
一种可能的设计中,网络设备还包括:通信模块,用于发送第二指示信息,所述第二指示信息用于指示m个RV中每一个RV的索引。
一种可能的设计中,网络设备还包括:通信模块,用于发送第三指示信息,所述第三指示信息用于指示m个RV中第一个RV的索引,所述m个RV的索引符合预设规则。
一种可能的设计中,网络设备还包括:通信模块,用于发送v个传输层中每一个传输层对应的配置信息,所述传输层对应的配置信息用于指示传输层对应的RV的索引,其中所述传输层的数目等于所述传输块的分集数目。
一种可能的设计中,所述第二处理模块,用于根据RV与DMRS端口之间的对应关系,以及传输层与DMRS端口之间的关系,确定v个传输层中每一个传输层对应的RV的索引,其中所述传输层的数目等于所述传输块的分集数目。
第十八方面,提供一种网络设备,包括:处理模块,用于生成MCS指示信息,MCS指 示信息用于指示第一码字的MCS的索引以及偏差值,该偏差值用于指示第一码字的MCS的索引与第二码字的MCS的索引之间的差值。通信模块,用于向终端发送MCS指示信息。
一种可能的设计中,MCS指示信息包括索引参数,该索引参数与第一码字的MCS的索引、偏差值存在对应关系。
第十九方面,提供一种网络设备,包括:处理器和存储器,处理器用于读取存储器中的指令,并根据所述指令实现上述第一方面至第四方面中任一方面所述的方法。
第二十方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在网络设备上运行时,使得网络设备可以执行上述第一方面至第四方面中任一方面所述的方法。
第二十一方面,提供一种包含指令的计算机程序产品,当其在网络设备上运行时,使得网络设备可以执行第一方面至第四方面中任一方面所述的方法。
第二十二方面,提供一种芯片,该芯片包括处理器,处理器用于执行上述第一方面至第四方面中任一方面所述的方法。一种可能的设计中,该芯片还包括收发管脚,收发管脚用于将接收的代码指令传输至处理器,以使得处理器用于执行上述第一方面至第五方面中任一方面所述的方法。可选的,该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。
其中,第十五方面至第二十二方面中任一种设计方式所带来的技术效果可参见上文所提供的对应的方法中的有益效果同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种终端和接入网设备的结构示意图;
图3为本申请实施例提供的一种TBS的确定方法的流程图;
图4为本申请实施例提供的另一种TBS的确定方法的流程图;
图5为本申请实施例提供的一种DCI的示意图;
图6为本申请实施例提供的另一种TBS的确定方法的流程图;
图7为本申请实施例提供的一种MCS的确定方法的流程图;
图8为本申请实施例提供的另一种TBS的确定方法的流程图;
图9为本申请实施例提供的一种层分集的示意图;
图10为本申请实施例提供的另一种层分集的示意图;
图11为本申请实施例提供的一种终端的结构示意图;
图12为本申请实施例提供的一种网络设备的结构示意图;
图13为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,以下对本申请所涉及的术语进行简单介绍。
1、传输块(transport block,TB)、码字(code word,CW)
传输块是供物理层处理的媒体访问控制(Media Access Control,MAC)子层和物理层之间数据交换的基本单元。也可以说,传输块为包含MAC协议数据单元(Protocol Data Unit,PDU)的一个数据块。
码字由传输块经过信道编码和速率匹配后确定。码字可以映射到一个或多个传输层。具 体的,码字进行扰码(scrambling)和调制(modulation),以确定复数符号;之后,复数符号根据层映射矩阵映射到一个或多个传输层。
2、RV
冗余版本(redundancy version,RV)用于确定传输块在经过信道编码之后输出序列的起始位置。当前,标准中定义了4个冗余版本,分别是RV0、RV1、RV2、以及RV3。本申请实施例的描述中,“RVx”是指索引为“x”的RV,x为大于等于0小于等于3的整数。“相同RV”是指“索引相同的RV”,“不同RV”是指“索引不同的RV”。
在本申请实施例中,一个RV的传输块包括系统比特和对应的RV信息。其中,系统比特是有用的数据信息。
3、分集
分集是指通过在时间、频率或者空间(例如天线)或者上述三个维度的各种组合上对数据进行冗余传输来获得分集增益,以提高传输可靠性。目前,分集包括但不限于:空时分集(space-time transmit diversity,STTD)、空频分集(space-frequency transmit diversity,SFTD)、正交分集(orthogonal transmit diversity,OTD)、空间分集、时间分集、频域分集等。
4、MCS
调制和编码方法(modulation and coding scheme,MCS)用于指示调制方式、编码方式。具体的,MCS的每一个索引值对应一种调制编码策略。
当前,标准中定义了MCS的索引、调制阶数、码率与频谱效率之间的对应关系,参见表1(a)~表1(c)。需要说明的是,在不同的MCS表格中,预留的MCS的索引是不同的。在表1(a)中,MCS的索引为29、30或者31时,码率和频谱效率是预留(reserved)的。表1(b)中当MCS的索引为28、29、30或者31时,码率和频谱效率是reserved的。表1(c)中当MCS的索引为29、30或者31时,码率和频谱效率是reserved的。
表1(a)
Figure PCTCN2020077935-appb-000001
Figure PCTCN2020077935-appb-000002
表1(b)
Figure PCTCN2020077935-appb-000003
表1(c)
Figure PCTCN2020077935-appb-000004
为了清楚说明本申请的技术方案,下面先简单介绍现有的TBS计算流程。
(1)终端先确定物理资源块(physical resource block,PRB)内为物理下行共享信道(physical downlink shared channel,PDSCH)分配的RE的数量N′ RE
其中,
Figure PCTCN2020077935-appb-000005
是RB中子载波的数目。
Figure PCTCN2020077935-appb-000006
是时隙内为PDSCH分配的符号的数目。
Figure PCTCN2020077935-appb-000007
是预定持续时间内每个RB中用于DMRS的RE的数目。
Figure PCTCN2020077935-appb-000008
是由物理下行共享信道-服务小区配置(PDSCH-ServingCellConfig)中的参数xOverhead配置的开销。需要说明的是,如果未配置PDSCH-ServingCellConfig中的参数xOverhead,则
Figure PCTCN2020077935-appb-000009
假设为0。
之后,终端再确定为PDSCH分配的RE的总数N RE
其中,N RE=min(156,N′ RE)·n PRB。n PRB是终端分配到的PRB总数。
(2)终端确定中间信息比特数(intermediate number of information bits)。
其中,N info=N RE·R·Q m·v。N info表示中间信息比特数。R表示码率。Q m表示调制阶数。v表示传输层的数目。
如果N info≤3824,则执行下述步骤(3)来确定TBS。否则,执行下述步骤(4)来确定TBS。
(3)当N info≤3824,TBS的确定方式如下:
终端先确定量化的中间信息比特数N′ info
其中,
Figure PCTCN2020077935-appb-000010
之后,终端查找表2,确定不小于N′ info且最接近N′ info的TBS。
表2
Index TBS Index TBS Index TBS Index TBS
1 24 31 336 61 1288 91 3624
2 32 32 352 62 1320 92 3752
3 40 33 368 63 1352 93 3824
4 48 34 384 64 1416    
5 56 35 408 65 1480    
6 64 36 432 66 1544    
7 72 37 456 67 1608    
8 80 38 480 68 1672    
9 88 39 504 69 1736    
10 96 40 528 70 1800    
11 104 41 552 71 1864    
12 112 42 576 72 1928    
13 120 43 608 73 2024    
14 128 44 640 74 2088    
15 136 45 672 75 2152    
16 144 46 704 76 2216    
17 152 47 736 77 2280    
18 160 48 768 78 2408    
19 168 49 808 79 2472    
20 176 50 848 80 2536    
21 184 51 888 81 2600    
22 192 52 928 82 2664    
23 208 53 984 83 2728    
24 224 54 1032 84 2792    
25 240 55 1064 85 2856    
26 256 56 1128 86 2976    
27 272 57 1160 87 3104    
28 288 58 1192 88 3240    
29 304 59 1224 89 3368    
30 320 60 1256 90 3496    
(4)当N info>3824,TBS的确定方式如下:
终端先确定量化的中间信息比特数N′ info
其中,
Figure PCTCN2020077935-appb-000011
round表示圆函数。
如果
Figure PCTCN2020077935-appb-000012
Figure PCTCN2020077935-appb-000013
其中,
Figure PCTCN2020077935-appb-000014
如果
Figure PCTCN2020077935-appb-000015
且N′ info>8424,则
Figure PCTCN2020077935-appb-000016
其中,
Figure PCTCN2020077935-appb-000017
如果
Figure PCTCN2020077935-appb-000018
且N′ info≤8424,则
Figure PCTCN2020077935-appb-000019
以上内容是对TBS的计算流程的简单介绍。TBS的计算流程的具体细节可参考第三代合作伙伴计划(3rd generation partnership project,3GPP)技术标准(technical specification,TS)38.214的相关描述。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一指示信息、第二指示信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,采用5G通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动带宽(enhanced mobile broadband,eMBB)、uRLLC以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:通信设备与通信设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与通信设备之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
图1给出了本申请提供的技术方案所适用的一种通信系统示意图,通信系统可以包括一个或多个网络设备(图1仅示出了两个)以及一个或多个终端(图1中仅示出一个)。其中,一个终端可以同时与多个网络设备进行通信;或者,一个终端与一个网络设备进行通信。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),长期演进(long term evolution,LTE)中的演进型基站(evolutional node  B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。
本申请所说的网络设备,例如基站,通常包括基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、天线、以及用于连接RRU和天线的馈线。其中,BBU用于负责信号调制。RRU用于负责射频处理。天线用于负责线缆上导行波和空气中空间波之间的转换。一方面,分布式基站大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。另一方面,RRU加天线比较小,可以随地安装,让网络规划更加灵活。除了RRU拉远之外,还可以把BBU全部都集中起来放置在中心机房(Central Office,CO),通过这种集中化的方式,可以极大减少基站机房数量,减少配套设备,特别是空调的能耗,可以减少大量的碳(CO 2)排放。此外,分散的BBU集中起来变成BBU基带池之后,可以统一管理和调度,资源调配更加灵活。这种模式下,所有的实体基站演变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息,相互协作,使得联合调度得以实现。
终端用于向用户提供语音或数据连通性服务,或者提供语音和数据连通性服务。所述终端可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。可选的,所述终端可以为各种具有通信功能的手持设备、车载设备、可穿戴设备、计算机,本申请实施例对此不作任何限定。例如,手持设备可以是智能手机。车载设备可以是车载导航系统。可穿戴设备可以是智能手环或者虚拟现实(virtual reality,VR)设备。计算机可以是个人数字助理(personal digital assistant,PDA)电脑、平板型电脑以及膝上型电脑(laptop computer)。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例提供的网络设备和终端的硬件结构示意图。
终端包括至少一个处理器101和至少一个收发器103。可选的,终端还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结 构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端中处理器101、存储器102和收发器103的描述,在此不再赘述。
需要说明的是,为了便于描述,下文中将终端和网络设备统一称为通信装置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
实施例一、
如图3所示,为本申请实施例提供的一种TBS的确定方法,该方法包括以下步骤:
S101、通信装置确定n个码字中每个码字对应的数据块大小,所述n个码字对应同一个传输块,n为大于1的整数。
作为一种实现方式,通信装置根据n个码字中每个码字对应的控制信息,确定n个码字中每个码字对应的数据块大小。其中,码字的控制信息用于指示码字对应的时频资源、MCS等。
可以理解的是,若通信装置为终端,则终端可以从网络设备获取n个码字中每个码字对应的控制信息。
在本申请实施例中,n个码字的控制信息可以承载在同一个DCI中,也可以承载在不同DCI中。
需要说明的是,“确定n个码字中每个码字对应的数据块大小”的具体实现方式可以参考前文所述的确定TBS的方法,在此不再赘述。
S102、通信装置根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的TBS。
作为一种实现方式,n个码字中的每个码字由一个传输块映射得到,这样一来,n个码字中每一个码字承载相同的系统比特。需要说明的是,系统比特是有用的数据信息。在这种情况下,步骤S102可以采用以下方式一至方式四中的任意一种来实现。
需要说明的是,n个码字可以对应传输块的不同RV;或者,n个码字可以对应传输块的同一RV。
方式一、通信装置以n个码字中的一个码字的数据块大小作为传输块的TBS。
示例性的,通信装置可以以n个码字中任意一个码字的数据块大小作为传输块的TBS。
示例性的,通信装置可以以n个码字中预设冗余版本所对应的码字的数据块大小作为传输块的TBS。例如,以n个码字中RV0所对应的码字的数据块大小作为传输块的TBS。
方式二、通信装置以n个数据块大小中最小的数据块大小作为传输块的TBS。其中,n个数据块大小与n个码字一一对应。
举例来说,n个码字分别为码字#1、码字#2、码字#3,若码字#1的数据块大小为224比特,码字#2的数据块大小为240比特,码字#3的数据块大小为256比特,则通信装置能够确定传输块的TBS为224比特。
方式三、通信装置以n个数据块大小中最大的数据块大小作为传输块的TBS。其中,n个数据块大小与n个码字一一对应。
举例来说,n个码字分别为码字#1、码字#2、码字#3,若码字#1的数据块大小为224比特,码字#2的数据块大小为240比特,码字#3的数据块大小为256比特,则通信装置能够确定传输块的TBS为256比特。
方式四、通信装置以n个数据块大小的平均值作为传输块的TBS。其中,n个数据块大小与n个码字一一对应。
举例来说,n个码字分别为码字#1、码字#2、码字#3,若码字#1的数据块大小为224比特,码字#2的数据块大小为240比特,码字#3的数据块大小为256比特,则通信装置能够确定传输块的TBS为240比特。
以上方式一至方式四仅是确定传输块的TBS的方法的示例,本申请实施例不限于此。
作为另一种实现方式,若n个码字由一个传输块映射得到,也即n个码字中每一个码字承载一个传输块的一部分,则步骤S102可以采用以下方式五来实现。
可以理解的是,当n个码字由一个传输块映射得到时,n个码字对应传输块的同一RV。
方式五、通信装置以n个数据块大小之和作为传输块的TBS,n个数据块与n个码字之间一一对应。
举例来说,n个码字分别为码字#1、码字#2、码字#3,若码字#1的数据块大小为224比特,码字#2的数据块大小为240比特,码字#3的数据块大小为256比特,则通信装置能够确定传输块的TBS为720比特。
可选的,n个码字可以对应不同的时域资源。例如,n个码字对应n个时间单元,也即每一个码字对应一个时间单元。所述时间单元为时隙(slot)或者微型时隙(mini-slot)。
可选的,n个码字可以对应不同的频域资源。其中,n个码字对应的频域资源可以在同一时间单元上,或者在不同时间单元上。
可选的,n个码字可以对应不同的时频资源。其中,n个码字对应的时频资源可以在同一个时间单元上,也可以在不同的时间单元上。
需要说明的是,在一个RV的传输块映射为n个码字的场景下,终端接收n个第一数据;之后,终端根据传输块的TBS,将n个第一数据按一定的顺序拼接后译码,确定第二数据。其中,n个第一数据与n个码字一一对应,所述第一数据由码字映射生成。所述第二数据为传输块所承载的数据。其中,终端译码出来的数据还需进行循环冗余校验码(cyclic redundancy check,CRC)校验,以保证译码出来的数据是正确的第二数据。
基于该技术方案,若通信装置为网络设备,则网络设备可以确定多个码字对应的同一个传输块的TBS,以便于实现对该传输块的分集传输。若通信装置为终端,则终端可以确定多 个码字对应的同一个传输块的TBS,以便于实现对该传输块对应的多个码字的译码。
实施例二、
如图4所示,为本申请实施例提供的一种TBS的确定方法,该方法包括以下步骤:
S201、终端接收第一DCI和第二DCI。
其中,第一DCI用于指示n个第一码字的控制信息。n个第一码字由一个传输块映射得到,也就是说,n个第一码字中的每个第一码字承载所述传输块的一部分。所述n个第一码字对应传输块的同一RV。
第二DCI用于指示n个第二码字的控制信息。n个第二码字根据由一个传输块映射得到。也就是说,n个第二码字中的每个第二码字承载所述传输块的一部分。所述n个第二码字对应传输块的同一RV。
可以理解的是,第一码字对应的RV和第二码字对应的RV可以是相同的,也可以是不相同的,本申请实施例对此不作限定。
S202、终端根据n个第一码字的控制信息,分别确定n个第一码字中每个第一码字的数据块大小。
S203、终端根据n个第一码字的数据块大小,确定传输块的第一TBS。
作为一种实现方式,终端以n个第一码字的数据块大小之和作为传输块的第一TBS。
S204、终端根据n个第二码字的控制信息,分别确定n个第二码字中每个第二码字的数据块大小。
S205、终端根据n个第二码字的数据块大小,确定传输块的第二TBS。
作为一种实现方式,终端以n个第二码字的数据块大小之和作为传输块的第二TBS。
需要说明的是,本申请实施例不限定步骤S202-S203与步骤S204-S205之间的执行顺序。也即,可以先执行步骤S202-S203,再执行步骤S204-S205;或者,先执行步骤S204-S205,再执行步骤S202-S203;又或者,同时执行步骤S202-S203和步骤S204-S205。
S206、终端根据传输块的第一TBS和第二TBS,确定目标TBS。
其中,目标TBS是传输块在实际传输中所采用的TBS。也即,传输块在映射出n个第一码字时所采用的TBS;以及,传输块在映射出n个第二码字时所采用的TBS。
示例性的,终端以第一TBS作为目标TBS;或者,终端以第二TBS作为目标TBS;或者,终端以第一TBS和第二TBS之间的平均值作为目标TBS;或者,终端以第一TBS和第二TBS之间的最小值作为目标TBS;或者,终端以第一TBS和第二TBS之间的最大值作为目标TBS。
结合图5进行举例说明,DCI#1用于指示码字#1的控制信息和码字#2的控制信息,DCI#2用于指示码字#3的控制信息和码字#4的控制信息。假设码字#1的数据块大小为160比特,码字#2的数据块大小168比特,码字#3的数据块大小为176比特,码字#4的数据块大小为160比特。这样一来,可以确定码字#1和码字#2所对应的传输块的TBS为328比特,码字#3和码字#4所对应的传输块的TBS为336比特。若以第一TBS和第二TBS之间的平均值作为目标TBS,则终端能够确定码字#1和码字#2所对应的传输块在实际传输中的TBS为332比特,码字#3和码字#4所对应的传输块在实际传输中的TBS为332比特。
基于图4所示的技术方案,在分集传输的场景下,终端能够确定被分集传输的传输块在实际传输中所采用的TBS,从而终端能够根据该传输块的TBS,实现对n个第一码字和n个第二码字的联合译码。
实施例三、
如图6所示,为本申请实施例提供的一种TBS的确定方法,该方法包括以下步骤:
S301、通信装置根据第一码字的时频资源、以及第一码字的MCS,确定第一码字对应的传输块的TBS。
其中,第一码字的TBS的确定方法可参考现有技术,在此不再赘述。
S302、通信装置根据第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS。
其中,第二码字和第一码字对应同一个传输块。因此,第一码字对应的传输块的TBS等于第二码字对应的传输块的TBS。
在本申请实施例中,网络设备可以向终端发送分集指示信息,该分集指示信息用于指示网络设备以码字分集的方式发送传输块。这样一来,终端可以根据上述步骤S301-S302确定第二码字对应的传输块的TBS。
可选的,在步骤S302之后,还包括步骤S303。
S303、通信装置根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。作为一种实现方式,若通信装置为终端,当第二码字的MCS的索引对应的码率是预留值,以及终端接收到分集指示信息时,终端根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
作为另一种实现方式,若通信装置为终端,当第二码字的MCS的索引对应的码率是预留值,以及新数据指示(new date indicator,NDI)用于指示该码字是新传数据时,终端根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
需要说明的是,结合表1(a)或表1(c),当第二码字的MCS的索引为29、30或31,第二码字的MCS的索引对应的码率是预留值。结合表1(b),当第二码字对应的MCS的索引为28、29、30或31,第二码字的MCS的索引对应的码率是预留值。
可以理解的是,图6所示的技术方案适用于以码字分集的方式发送传输块的场景下。其中,一个码字的控制信息所指示的MCS的索引对应的码率不是非预留值,另一个码字的控制信息所指示的MCS的索引对应的码率是预留值。
作为一种实现方式,协议规定第一码字与第二码字采用相同的调制方式,若通信装置为终端,当终端接收到分集指示信息时,终端首先根据第一码字的调制方式确定第二码字的调制方式,终端根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
基于图6所示的技术方案,通信装置可以通过第一码字的相关信息(例如MCS、时频资源),确定第二码字的码率。这样一来,若通信装置为网络设备,网络设备可以根据第二码字的码率,实现对第二码字的传输。若通信装置为终端,终端可以根据第二码字的码率,实现对第一码字和第二码字的联合译码。例如,所述S303还有另一种实现方式,即:通信装置根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第一码字的调制方式,确定所述第二码字的码率。作为一种实现方式,协议规定第一码字与第二码字采用相同的调制方式,若通信装置为终端,当终端接收到分集指示信息时,终端根据所述第二码字对应的传输块的TBS、所述第二码字对应的时频资源、以及所述第一码字的调制方式,确定所述第二码字的码率。
实施例四、
当前,在需要传输两个码字时,网络设备会将两个码字中每一个码字的MCS的索引发送给终端。这样一来,信令开销较大。
为了解决该技术问题,本申请实施例提供的一种MCS的确定方法。如图7所示,该方法包括以下步骤:
S401、网络设备向终端发送MCS指示信息。
其中,MCS指示信息用于指示第一码字的MCS的索引以及偏差值。
在本申请实施例中,所述偏差值为第一码字的MCS的索引与第二码字的MCS的索引之间的差值。也即,所述偏差值等于第一码字的MCS的索引减去第二码字的MCS的索引;或者,所述偏差值等于第二码字的MCS的索引减去第二码字的MCS的索引。
可选的,MCS指示信息可以直接指示第一码字的MCS的索引以及偏差值。例如,MCS指示信息包括第一码字的MCS的索引以及偏差值。
可选的,MCS指示信息可以间接指示第一码字的MCS的索引以及偏差值。例如,MCS指示信息包括索引参数。索引参数与第一码字的MCS的索引、偏差值之间存在对应关系。示例性的,索引参数与第一码字的MCS的索引、偏差值之间的对应关系可以参考表3。
表3
索引参数 第一码字的MCS的索引 偏差值
0 1 3
1 3 4
…… …… ……
可以理解的是,索引参数与第一码字的MCS的索引、偏差值之间的对应关系可以是标准中定义的,也可以是网络设备与终端之间协商确定的,本申请实施例不限于此。
S402、终端根据MCS指示信息,确定第一码字的MCS的索引以及第二码字的MCS的索引。
作为一种实现方式,终端根据MCS指示信息所指示的第一码字的MCS的索引,确定第一码字的MCS的索引;以及,终端根据MCS指示信息所指示的第一码字的MCS的索引,以及偏差值,确定第二码字的MCS的索引。
举例来说,假设偏差值等于第一码字的MCS的索引减去第二码字的MCS的索引,MCS指示信息所指示的第一码字的MCS的索引为3,偏差值为2,则终端能够确定第一码字的MCS的索引为3,第二码字的MCS的索引为1。
基于图7所示的方法,网络设备通过向终端发送一个MCS指示信息,可以使得终端获知两个码字的MCS,减少了信令开销。
可以理解的是,图7所示的技术方案可用于码字分集的场景下。在码字分集的场景下,两个码字对应的发送链路的信道状况是相似的,因此两个码字的MCS也是相近的。采用图7所示的技术方案,有利于减少信令开销。
实施例五、
如图8所示,为本申请实施例提供的一种TBS的确定方法,该方法包括以下步骤:
S501、通信装置确定传输块对应的分集数目。
其中,分集数目用于指示传输块被分集传输的份数。可以理解的是,分集数目的取值为正整数。示例性的,当分集数目为1时,说明传输块被分集传输的份数为1;当分集数目为2时,说明传输块被分集传输的份数为2;以此类推,当分集数目为n时,说明传输块被分集传输的份数为n。
需要说明的是,当传输块被分集传输的份数为1时,说明网络设备未采用分集传输的方式发送该传输块。
在本申请实施例中,传输块的分集数目可以是预先定义的,或者是预先配置的,或者是通信装置自身确定的。下面以通信装置为网络设备或者终端进行举例说明。
(1)以通信装置为网络设备为例,网络设备可以考虑终端的信道质量、网络环境等因素,确定传输块对应的分集数目;或者,网络设备可以根据高层信令,确定传输块对应的分集数目。其中,高层信令是指高层协议层的信令。
(2)以通信装置为终端为例,终端接收网络设备发送的第一指示信息,并根据该第一指示信息,确定传输块对应的数目。其中,第一指示信息用于指示传输块对应的分集数目。
第一指示信息可以以显式的方式指示传输块对应的分集数目。例如,第一指示信息可以包括分集数目的具体取值。
或者,第一指示信息可以以隐式的方式指示传输块对应的分集数目。例如,第一指示信息包括分集参数。当分集参数为0时,说明传输块不以分集传输的方式发送,因此分集数目为1。当分集参数为1时,说明每一个传输层均承载传输块的一份数据,因此分集数目等于传输层的数目。当分集参数为n时,n为大于等于2的整数,此时分集数目为n。又例如,第一指示信息可以指示传输块对应的分集数目等于传输层的数目。这样一来,通信装置可以根据传输层的数目,确定传输块对应的分集数目。
另外,网络设备可以向终端发送通知消息,以使得终端获知网络设备是否以分集传输的方式发送传输块。该通知消息可以承载于RRC信令、MAC-CE信令或者DCI中。
S502、通信装置根据传输块对应的分集数目,确定传输块的TBS。
作为一种实现方式,通信装置根据传输块对应的分集数目,确定传输块的中间信息比特数;之后,通信装置根据传输块的中间信息比特数,确定传输块的TBS。
其中,传输块的中间信息比特数可以按照以下公式(1)确定:
N info=N RE·R·Q m·v/m   (1)
其中,N info表示传输块的中间信息比特数,N RE用于传输数据的RE的数目,R表示码率,Q m表示调制阶数,v表示传输层的数目,m表示所述传输块对应的分集数目。所述N RE、Q m、v、m为正整数,R为正数。
公式(1)可以替换为以下公式(2)。
Figure PCTCN2020077935-appb-000020
或者,公式(1)可以替换为以下公式(3).
Figure PCTCN2020077935-appb-000021
其中,
Figure PCTCN2020077935-appb-000022
表示向下取整,
Figure PCTCN2020077935-appb-000023
表示向上取整。
在本申请实施例中,m个RV的传输块映射为一个码字,该码字映射到v个传输层。
其中,m个RV可以是相同的RV,例如m个RV均可以是RV0。或者,m个RV可以是不相同的RV。
结合图9进行举例说明,假设传输层的数目为3,传输块的分集数目为2,则传输层#0、传输层#1承载传输块的一份数据;传输层#1和传输层#2承载传输块的一份数据。具体的,传输层#0承载采用第一个RV的传输块的前2/3,传输层#1承载采用第一个RV的传输块的后1/3以及采用第二个RV的传输块的前1/3,传输层#2承载采用第二个RV的传输块的后2/3。
结合图10进行举例说明,假设传输层的数目为4,传输块的分集数目为2,则传输层#0、传输层#1承载传输块的一份数据;传输层#2和传输层#3承载传输块的一份数据。具体的, 传输层#0承载采用第一个RV的传输块的前1/2,传输层#1承载采用第一个RV的传输块的后1/2,传输层#2承载采用第二个RV的传输块的前1/2,传输层#3承载采用第二个RV的传输块的后1/2
在本申请实施例中,各个传输层所承载的传输块是根据码字与传输层之间的映射关系来确定的。可以理解的是,码字与传输层之间的映射关系是预先配置的,或者是标准中定义的。
示例性的,表4示出一种码字与传输层之间的映射关系。在表4中,传输块对应的分集数目等于传输层的数目。在表4中,x (0)(i)表示第一个传输层的第i个复数符号,以此类推,x (n)(i)表示第n个传输层的第i个复数符号。a (0)(i)表示采用第一个RV的传输块所对应的第i个复数符号,以此类推,a (n)(i)表示采用第n个RV的传输块所对应的第i个复数符号。其中,
Figure PCTCN2020077935-appb-000024
也即i为大于等于0小于等于
Figure PCTCN2020077935-appb-000025
的整数。
Figure PCTCN2020077935-appb-000026
表示一个传输层所承载的复数符号的数目。M symb表示一个RV的传输块所对应的复数符号的数目。
从表4可以获知,若所述传输块的分集数目等于传输层的数目,则每一个传输层承载一个RV的传输块。
表4
Figure PCTCN2020077935-appb-000027
在本申请实施例中,终端可以根据以下方式确定m个RV中每一个RV的索引。
(1)终端接收网络设备发送的第二指示信息,该第二指示信息用于指示m个RV中的每一个RV的索引。
(2)终端接收网络设备发送的第三指示信息,该第三指示信息用于指示m个RV中第一个RV的索引。所述m个RV的索引符合预设规则。所述预设规则可以是标准中定义的,也可以是预先配置的。
其中,所述m个RV的索引符合预设规则包括以下情形:
情形一、所述m个RV的索引符合预设循环顺序。
例如,预设循环顺序为:RV0→RV2→RV3→RV1。也就是说,第一个RV为RV0,第二RV为RV2,第三个RV为RV3,第四个RV为RV1,第五个RV为RV0,以此类推,第4n+1个RV为RV0,第4n+2个RV为RV2,第4n+3个RV为RV3,第4n+4个RV为RV1,n为大于等于0的整数。
情形二、所述m个RV的索引符合预设序列。
例如预设序列为RV0→RV1→RV3→RV0→RV2→……。可以理解的是,在此仅示出预设序列的一部分。
(3)若传输块对应的分集数目等于传输层的数目,所述v个传输层中每一个传输层对应 一个配置信息,所述配置信息用于指示传输层对应的RV的索引。
在本申请实施例中,网络设备可将所述v个传输层中每一个传输层对应的配置信息发送给终端,以使得终端根据v个传输层中每一个传输层对应的配置信息,确定每一个传输层对应的RV的索引。
可选的,所述传输层对应的配置信息还用于指示传输层对应的资源分配以及MCS。
可选的,传输层对应的配置信息承载于RRC信令、MAC-CE信令或者DCI中。
(4)DMRS端口与RV之间存在对应关系。需要说明的是,由于DMRS端口可用于标识传输层,因此当传输块对应的分集数目等于传输层的数目时,DMRS端口与RV之间的对应关系可用于确定v个传输层中每一个传输层对应的RV的索引。
需要说明的是,DMRS端口与RV之间的对应关系是网络设备预先配置给终端的,或者是标准中定义的。
示例性的,表5示出DMRS端口与RV之间的对应关系。结合表5进行举例说明,在索引值为2的情况下,编码为0的DMRS端口对应RV0,编码为1的DMRS端口对应RV3。这样一来,编码为0的DMRS端口所对应的传输层对应RV0,编码为1的DMRS端口所对应的传输层对应RV3。
表5
索引值 DMRS端口 RV
0 0 0
1 1 0
2 0,1 0,3
3 0 0
4 1 0
5 2 0
6 3 0
7 0,1 0,3
8 2,3 0,3
9 0-2 0,2,3
10 0-3 0,2,3,1
11 0,2 1
12 0 0
13 1 0
14 2 0
15 3 0
16 4 0
17 5 0
18 6 0
19 7 0
20 0,1 0,3
21 2,3 0,3
22 4,5 0,3
23 6,7 0,3
24 0,4 0,3
25 2,6 0,3
26 0,1,4 0,2,3
27 2,3,6 0,2,3
28 0,1,4,5 0,2,3,1
29 2,3,6,7 0,2,3,1
30 0,2,4,6 0,2,3,1
31 reserved reserved
基于图8所示的技术方案,在分集传输的场景下,通信装置能够根据传输块对应的分集数目,为传输块确定合适的TBS。这样一来,若通信装置为网络设备,网络设备可以根据传输块的TBS,实现对传输块的分集传输。若通信装置为终端,终端可以根据传输块的TBS,实现对传输块的译码。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构或软件模块,或两者结合。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图11为本申请实施例提供的一种终端的结构示意图。如图11所示,终端包括:第一处理模块301和第二处理模块302。可选的,终端还包括:通信模块303。其中,第一处理模块301用于支持终端执行图3中的步骤S101,图4中的步骤S202和S204,图6中的步骤S301,图8中的步骤S501,或者用于支持本文描述的技术方案的其他过程。第二处理模块302用于支持终端执行图3中的步骤S102,图4中的步骤S203、S205和S206,图6中的步骤S302和S303,图7中的步骤S402,图8中的步骤S502,或者用于支持本文描述的技术方案的其他过程。通信模块303用于支持终端执行图4中的步骤S201,图7中的步骤S401,或者用于支持本文描述的技术方案的其他过程。
在本申请实施例中,第一处理模块301和第二处理模块302可以集成为一个处理模块,该处理模块可以用于实现第一处理模块301和第二处理模块302所执行的步骤。例如,该处理模块用于支持终端执行图3中的步骤S101和S102,图4中的步骤S202-S206,图6中的步骤S301-S303,图7中的步骤S402,图8中的步骤S501和S502,或者用于支持本文描述的技术方案的其他过程。
作为一个示例,结合图2所示的终端,图11中的通信模块303可以由图2中的收发器 103来实现,图11中的第一处理模块301和第二处理模块302可以由图2中的处理器101来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图2所示的终端上运行时,使得该终端执行如图3、图4、图6、图7或图8所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图2所示的终端上运行时,使得终端可以执行图3、图4、图6、图7或图8所示的方法。
上述本申请实施例提供的终端、计算机存储介质以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图12为本申请实施例提供的一种网络设备的结构示意图。如图12所示,网络设备包括第一处理模块401和第二处理模块402。可选的,网络设备还包括通信模块403。其中,第一处理模块401用于支持网络设备执行图3中的步骤S101,图6中的步骤S301,图8中的步骤S501,或者用于支持本文描述的技术方案的其他过程。第二处理模块302用于支持网络设备执行图3中的步骤S102,图6中的步骤S302和S303,图8中的步骤S502,或者用于支持本文描述的技术方案的其他过程。通信模块403用于支持网络设备执行图4中的步骤S201,图7中的步骤S401,或者用于支持本文描述的技术方案的其他过程。
在本申请实施例中,第一处理模块401和第二处理模块402可以集成为一个处理模块,该处理模块可以用于实现第一处理模块401和第二处理模块402所执行的步骤。例如,该处理模块用于支持网络设备执行图3中的步骤S101和S102,图6中的步骤S301-S303,图8中的步骤S501和S502,或者用于支持本文描述的技术方案的其他过程。
作为一个示例,结合图2所示的网络设备,图12中的通信模块403可以由图2中的收发器203来实现,图12中的第一处理模块401和第二处理模块402可以由图2中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图2所示的网络设备上运行时,使得该网络设备执行如图3、图4、图6、图7或图8所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘)等。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在图2所示的网络设 备上运行时,使得网络设备可以执行图3、图4、图6、图7或图8所示的方法。
上述本申请实施例提供的网络设备、计算机存储介质以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图13为本申请实施例提供的一种芯片的结构示意图。图13所示的芯片可以为通用处理器,也可以为专用处理器。该芯片包括处理器501。其中,处理器501用于支持通信装置执行图3、图4、图6、图7或图8所示的技术方案。
可选的,该芯片还包括收发管脚502,收发管脚502用于接受处理器501的控制,用于支持通信装置执行图3、图4、图6、图7或图8所示的技术方案
可选的,图13所示的芯片还可以包括:存储介质503。
需要说明的是,图13所示的芯片可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
尽管在此结合各实施例对本申请进行了描述,然而,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
需要说明的是,在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (51)

  1. 一种传输块大小TBS的确定方法,其特征在于,包括:
    确定n个码字中每个码字的数据块大小,所述n个码字对应于同一个传输块,n为大于1的整数;
    根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的TBS。
  2. 根据权利要求1所述的TBS的确定方法,其特征在于,所述确定n个码字中每个码字的数据块大小,包括:
    根据所述n个码字中每个码字对应的控制信息,分别确定所述n个码字中每个码字的数据块大小。
  3. 根据权利要求1或2所述的TBS的确定方法,其特征在于,所述根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的TBS,包括:
    以所述n个码字中的一个码字的数据块大小作为所述传输块的TBS;或者,
    以所述n个码字的数据块大小中最小的数据块大小作为所述传输块的TBS;或者,
    以所述n个码字的数据块大小中最大的数据块大小作为所述传输块的TBS;或者,
    以所述n个码字的数据块大小的平均值作为所述传输块的TBS;或者,
    以所述n个码字的数据块大小之和作为所述传输块的TBS。
  4. 一种传输块大小TBS的确定方法,其特征在于,所述方法包括:
    根据第一码字的时频资源、以及所述第一码字的调制与编码策略MCS,确定所述第一码字对应的传输块的TBS;
    根据所述第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS;其中,所述第一码字和第二码字对应同一传输块。
  5. 根据权利要求4所述的TBS的确定方法,其特征在于,所述方法还包括:
    根据所述第二码字对应的传输块的TBS、所述第二码字的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
  6. 根据权利要求4或5所述的TBS的确定方法,其特征在于,所述第二码字的MCS的索引为28、29、30或者31。
  7. 根据权利要求4所述的TBS的确定方法,其特征在于,所述方法还包括:
    根据所述第一码字的MCS或时频资源,确定所述第二码字的码率。
  8. 根据权利要求7所述的TBS的确定方法,其特征在于,所述根据所述第一码字的MCS或时频资源,确定所述第二码字的码率,包括:
    根据所述第二码字对应的传输块的TBS、所述第二码字的时频资源、以及所述第一码字的调制方式,确定所述第二码字的码率,其中,所述第一码字的调制方式与所述第二码字的调制方式相同。
  9. 如权利要求5所述的TBS的确定方法,其特征在于,所述第二码字的调制方式与所述第一码字的调制方式相同。
  10. 一种传输块大小TBS的确定方法,其特征在于,所述方法包括:
    确定传输块对应的分集数目,所述分集数目用于指示所述传输块被分集传输的份数;
    根据所述传输块对应的分集数目,确定所述传输块的TBS。
  11. 根据权利要求10所述的TBS的确定方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示传输块对应的分集数目。
  12. 根据权利要求10或11所述的TBS的确定方法,其特征在于,所述根据所述传输块 对应的分集数目,确定传输块的TBS,包括:
    根据所述传输块对应的分集数目,确定所述传输块的中间信息比特数;
    根据所述传输块的中间信息比特数,确定所述传输块的TBS。
  13. 根据权利要求12所述的TBS的确定方法,其特征在于,所述传输块的中间信息比特数根据以下公式确定:
    N info=N RE·R·Q m·v/m
    其中,N info表示所述传输块的中间信息比特数,N RE用于传输数据的资源粒子RE的数目,R表示码率,Q m表示调制阶数,v表示传输层的数目,m表示所述传输块对应的分集数目,所述N RE、Q m、v、m为正整数,R为正数。
  14. 根据权利要求10至13任一项所述的TBS的确定方法,其特征在于,若所述传输块的分集数目等于传输层的数目,则所述v个传输层中每一个传输层承载一个冗余版本RV的传输块。
  15. 根据权利要求10至14任一项所述的TBS的确定方法,其特征在于,m个冗余版本RV的传输块映射到一个码字,所述码字映射到v个传输层,m为所述传输块对应的分集数目,v、m为正整数。
  16. 根据权利要求15所述的确定TBS的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示m个RV中每一个RV的索引。
  17. 根据权利要求15所述的确定TBS的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示m个RV中第一个RV的索引,所述m个RV的索引符合预设规则。
  18. 根据权利要求15所述的确定TBS的方法,其特征在于,当传输块对应的分集数目等于传输层的数目时,所述v个传输层中每一个传输层对应一个配置信息,所述配置信息用于指示传输层对应的RV的索引。
  19. 根据权利要求15所述的确定TBS的方法,其特征在于,所述RV与解调参考信号DMRS端口之间存在对应关系;当传输块对应的分集数目等于传输层的数目时,RV与DMRS端口之间的对应关系用于确定v个传输层中每一个传输层对应的RV的索引。
  20. 一种终端,其特征在于,包括:
    第一处理模块,用于确定n个码字中每个码字的数据块大小,所述n个码字对应于同一个传输块,n为大于1的整数;
    第二处理模块,用于根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的传输块大小TBS。
  21. 根据权利要求20所述的终端,其特征在于,
    所述第一处理模块,具体用于根据所述n个码字中每个码字对应的控制信息,分别确定所述n个码字中每个码字的数据块大小。
  22. 根据权利要求21或21所述的终端,其特征在于,
    所述第二处理模块,具体用于以所述n个码字中的一个码字的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最小的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最大的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小的平均值作为所述传输块的TBS;或者,以所述n个码字的数据块大小之和作为所述传输块的TBS。
  23. 一种终端,其特征在于,包括:
    第一处理模块,用于根据第一码字的时频资源、以及所述第一码字的调制与编码策略MCS,确定所述第一码字对应的传输块的传输块大小TBS;
    第二处理模块,用于根据所述第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS;其中,所述第一码字和第二码字对应同一传输块。
  24. 根据权利要求23所述的终端,其特征在于,
    所述第二处理模块,还用于根据所述第二码字对应的传输块的TBS、所述第二码字的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
  25. 根据权利要求24或24所述的终端,其特在于,所述第二码字的MCS的索引为28、29、30或者31。
  26. 根据权利要求24所述的终端,其特征在于,所述第二处理模块还用于:根据所述第一码字的MCS或时频资源,确定所述第二码字的码率。
  27. 根据权利要求26所述的终端,其特征在于,所述第二处理模块,具体用于根据所述第二码字对应的传输块的TBS、所述第二码字的时频资源、以及所述第一码字的调制方式,确定所述第二码字的码率,其中,所述第一码字的调制方式与所述第二码字的调制方式相同。
  28. 如权利要求25所述的终端,其特征在于,所述第二码字的调制方式与所述第一码字的调制方式相同。
  29. 一种终端,其特征在于,包括:
    第一处理模块,用于确定传输块对应的分集数目,所述分集数目用于指示所述传输块被分集传输的份数;
    第二处理模块,用于根据所述传输块对应的分集数目,确定所述传输块的传输块大小TBS。
  30. 根据权利要求29所述的终端,其特征在于,所述终端还包括:
    通信模块,用于接收第一指示信息,所述第一指示信息用于指示传输块对应的分集数目。
  31. 根据权利要求29或30所述的终端,其特征在于,
    所述第二处理模块,具体用于根据所述传输块对应的分集数目,确定所述传输块的中间信息比特数;根据所述传输块的中间信息比特数,确定所述传输块的TBS。
  32. 根据权利要求31所述的终端,其特征在于,
    所述第二处理模块,具体用于根据N info=N RE·R·Q m·v/m,确定所述传输块的中间信息比特数;其中,N info表示所述传输块的中间信息比特数,N RE用于传输数据的资源粒子RE的数目,R表示码率,Q m表示调制阶数,v表示传输层的数目,m表示所述传输块对应的分集数目,所述N RE、Q m、v、m为正整数,R为正数。
  33. 根据权利要求29至32任一项所述的终端,其特征在于,所述终端还包括:
    通信模块,用于接收v个传输层中每一个传输层承载的数据;v个传输层中每一个传输层承载一个冗余版本RV的传输块,其中所述传输层的数目等于所述传输块的分集数目。
  34. 根据权利要求29至33任一项所述的终端,其特征在于,所述终端还包括:
    通信模块,用于接收v个传输层中每一个传输层承载的数据,v个传输层所承载的数据由一个码字映射得到,所述码字由m个冗余版本RV的传输块映射得到,m为所述传输块对应的分集数目,v、m为正整数。
  35. 根据权利要求34所述的终端,其特征在于,所述终端还包括:
    通信模块,用于接收第二指示信息,所述第二指示信息用于指示m个RV中每一个RV的索引。
  36. 根据权利要求34所述的终端,其特征在于,所述终端还包括:
    通信模块,用于接收第三指示信息,所述第三指示信息用于指示m个RV中第一个RV的索引,所述m个RV的索引符合预设规则。
  37. 根据权利要求34所述的终端,其特征在于,所述终端还包括:
    通信模块,用于接收v个传输层中每一个传输层对应的配置信息,所述传输层对应的配置信息用于指示传输层对应的RV的索引,其中所述传输层的数目等于所述传输块的分集数目。
  38. 根据权利要求34所述的终端,其特征在于,
    所述第二处理模块,用于根据RV与解调参考信号DMRS端口之间的对应关系,以及传输层与DMRS端口之间的关系,确定v个传输层中每一个传输层对应的RV的索引,其中所述传输层的数目等于所述传输块的分集数目。
  39. 一种网络设备,其特征在于,包括:
    第一处理模块,用于确定n个码字中每个码字的数据块大小,所述n个码字对应于同一个传输块,n为大于1的整数;
    第二处理模块,用于根据所述n个码字中的一个或多个码字的数据块大小,确定所述传输块的TBS。
  40. 根据权利要求39所述的网络设备,其特征在于,
    所述第二处理模块,具体用于以所述n个码字中的一个码字的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最小的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小中最大的数据块大小作为所述传输块的TBS;或者,以所述n个码字的数据块大小的平均值作为所述传输块的TBS;或者,以所述n个码字的数据块大小之和作为所述传输块的TBS。
  41. 一种网络设备,其特征在于,包括:
    第一处理模块,用于根据第一码字的时频资源、以及所述第一码字的调制与编码策略MCS,确定所述第一码字对应的传输块的传输块大小TBS;
    第二处理模块,用于根据所述第一码字对应的传输块的TBS,确定第二码字对应的传输块的TBS;其中,所述第一码字和第二码字对应同一传输块。
  42. 根据权利要求41的网络设备,其特征在于,
    所述第二处理模块,还用于根据所述第二码字对应的传输块的TBS、所述第二码字的时频资源、以及所述第二码字的调制方式,确定所述第二码字的码率。
  43. 根据权利要求41所述的网络设备,其特征在于,所述第二处理模块用于:根据所述第一码字的MCS或时频资源,确定所述第二码字的码率。
  44. 根据权利要求43所述的网络设备,其特征在于,所述第二处理模块具体用于根据所述第二码字对应的传输块的TBS、所述第二码字的时频资源、以及所述第一码字的调制方式,确定所述第二码字的码率,其中,所述第一码字的调制方式与所述第二码字的调制方式相同。
  45. 如权利要求42所述的网络设备,其特征在于,所述第二码字的调制方式与所述第一码字的调制方式相同。
  46. 一种网络设备,其特征在于,包括:
    第一处理模块,用于确定传输块对应的分集数目,所述分集数目用于指示所述传输块被分集传输的份数;
    第二处理模块,用于根据所述传输块对应的分集数目,确定所述传输块的传输块大小TBS。
  47. 根据权利要求46所述的网络设备,其特征在于,
    所述第二处理模块,还用于将一个冗余版本RV的传输块承载在v个传输层中的每个传输 层中,其中所述传输块的分集数目等于传输层的数目。
  48. 根据权利要求46或47所述的网络设备,其特征在于,
    所述第二处理模块,还用于将m个冗余版本RV的传输块映射到一个码字;以及,将所述码字映射到v个传输层,m为所述传输块对应的分集数目,v、m为正整数。
  49. 一种芯片,其特征在于,所述芯片包括至少一个处理器和通信接口,所述处理器与所述通信接口连接,所述处理器执行权利要求1至19任一项所述的传输块大小TBS的确定方法。
  50. 一种芯片,其特征在于,所述芯片包括至少一个处理器、存储器和通信接口,所述处理器、存储器与所述通信接口连接,所述存储器中存储有计算机程序,所述处理器读取并运行所述计算机程序,以执行权利要求1至19任一项所述的传输块大小TBS的确定方法。
  51. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有计算机程序,当计算机程序在计算机上运行时,使得计算机执行前述权利要求1至19中任一项所述的方法。
PCT/CN2020/077935 2019-03-05 2020-03-05 传输块大小的确定方法及通信装置 WO2020177735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20765532.5A EP3923494A4 (en) 2019-03-05 2020-03-05 TRANSPORT BLOCK SIZING METHOD AND COMMUNICATION APPARATUS
US17/468,269 US20210410006A1 (en) 2019-03-05 2021-09-07 Method for determining transport block size and communications apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910165162.3 2019-03-05
CN201910165162 2019-03-05
CN201910729222.XA CN111669251B (zh) 2019-03-05 2019-08-08 传输块大小的确定方法及通信装置
CN201910729222.X 2019-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/468,269 Continuation US20210410006A1 (en) 2019-03-05 2021-09-07 Method for determining transport block size and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020177735A1 true WO2020177735A1 (zh) 2020-09-10

Family

ID=72337663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077935 WO2020177735A1 (zh) 2019-03-05 2020-03-05 传输块大小的确定方法及通信装置

Country Status (3)

Country Link
US (1) US20210410006A1 (zh)
EP (1) EP3923494A4 (zh)
WO (1) WO2020177735A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100115358A1 (en) * 2008-11-03 2010-05-06 Kotecha Jayesh H Method for Efficient Control Signaling of Two Codeword to One Codeword Transmission
CN107306453A (zh) * 2016-04-25 2017-10-31 华为技术有限公司 一种生成传输块的方法和装置
CN107645370A (zh) * 2016-07-20 2018-01-30 华为技术有限公司 资源映射方法和装置
CN109392100A (zh) * 2017-08-04 2019-02-26 电信科学技术研究院 一种确定传输块大小的方法、装置及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4075704A1 (en) * 2016-05-11 2022-10-19 IDAC Holdings, Inc. Physical (phy) layer solutions to support use of mixed numerologies in the same channel
EP3466177A4 (en) * 2016-05-26 2020-01-29 Nokia Technologies Oy ADAPTATION OF CODE WORD FOR NON-ORTHOGONAL CODED ACCESS
US10523386B2 (en) * 2016-06-24 2019-12-31 Lg Electronics Inc. Method of processing data block in wireless communication system and apparatus therefor
EP3282612A1 (en) * 2016-08-11 2018-02-14 Panasonic Intellectual Property Corporation of America Codeword disabling in multi-subframe grants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100115358A1 (en) * 2008-11-03 2010-05-06 Kotecha Jayesh H Method for Efficient Control Signaling of Two Codeword to One Codeword Transmission
CN107306453A (zh) * 2016-04-25 2017-10-31 华为技术有限公司 一种生成传输块的方法和装置
CN107645370A (zh) * 2016-07-20 2018-01-30 华为技术有限公司 资源映射方法和装置
CN109392100A (zh) * 2017-08-04 2019-02-26 电信科学技术研究院 一种确定传输块大小的方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923494A4 *

Also Published As

Publication number Publication date
EP3923494A4 (en) 2022-03-16
US20210410006A1 (en) 2021-12-30
EP3923494A1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2019096060A1 (zh) 上行控制信息传输方法和设备
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
WO2019011307A1 (zh) 通信方法和设备
WO2018228579A1 (zh) 确定传输块大小的方法及装置
WO2020216340A1 (zh) 侧行链路控制信息的发送方法及设备
WO2022151987A1 (zh) 信号发送、接收方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
CN115104277B (zh) 用于无线通信中的多分量载波物理下行链路共享信道调度的方法和装置
CN114244473A (zh) 可靠性传输方法及相关产品
CN111669251B (zh) 传输块大小的确定方法及通信装置
WO2020177735A1 (zh) 传输块大小的确定方法及通信装置
US20240014986A1 (en) Resource Block-Level Index Modulation
WO2022116458A1 (zh) 一种tbs确定方法
WO2021147214A1 (zh) 通信方法和通信装置
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2021032167A1 (zh) 传输块大小确定方法及装置
US20230231667A1 (en) Communication method and apparatus
US20240014968A1 (en) Data transmission method and apparatus
US11968682B2 (en) Uplink dynamic grant-free transmission method and apparatus
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2022151380A1 (zh) 传输pucch的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020765532

Country of ref document: EP

Effective date: 20210907