WO2019157897A1 - 一种上行数据的发送方法、接收方法和装置 - Google Patents

一种上行数据的发送方法、接收方法和装置 Download PDF

Info

Publication number
WO2019157897A1
WO2019157897A1 PCT/CN2019/071822 CN2019071822W WO2019157897A1 WO 2019157897 A1 WO2019157897 A1 WO 2019157897A1 CN 2019071822 W CN2019071822 W CN 2019071822W WO 2019157897 A1 WO2019157897 A1 WO 2019157897A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
power control
terminal device
uplink data
information
Prior art date
Application number
PCT/CN2019/071822
Other languages
English (en)
French (fr)
Inventor
胡丹
官磊
李胜钰
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810302244.3A external-priority patent/CN110167173A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019157897A1 publication Critical patent/WO2019157897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, a receiving method, and an apparatus for transmitting uplink data.
  • enhanced mobile broadband Enhanced mobile broadband (eMBB), ultra reliable and low latency communications (URLLC)
  • massive machine type communications mMTC
  • Typical eMBB services include: ultra-high definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of transmitted data and high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and remote repair, remote surgery, etc.
  • the main features of these services are high reliability and low time. Delay, small amount of transmission and suddenness.
  • Typical mMTC services include smart grids and smart cities. The main features of these services are the large number of networked devices, the small amount of data transmitted, and the insensitivity of data transmission to delay. mMTC terminals need to meet the requirements of low cost and long standby.
  • the method of sharing the resources of the eMBB service data and the URLLC service data in the downlink transmission is: when the base station transmits the downlink eMBB service data, if the burst URLLC service data needs to be transmitted, the eMBB service data is stopped and the downlink URLLC service is transmitted. Data, after the URLLC service data transmission is completed, the eMBB service data is continuously transmitted.
  • the current solution only involves the transmission process of the URLLC service data in the downlink transmission, and the uplink transmission process for the URLLC service data is still under discussion.
  • the technical problem to be solved in the embodiments of the present application is to provide a method, a receiving method and a device for transmitting uplink data, which can improve the reliability of uplink data transmission.
  • the application provides a method for sending uplink data, including:
  • the terminal device detects indication information from the network device, where the indication information is used to indicate the first resource
  • the terminal device determines the second resource; when the terminal device detects the indication information, the terminal device determines the configuration parameter of the transmission power according to the positional relationship between the first resource and the second resource; wherein the configuration parameter includes the first power control parameter Or a second power control parameter; or the configuration parameter includes a first configuration parameter or a second configuration parameter, where the first configuration parameter and the second configuration parameter comprise any one or combination of the following information: a transmit power configuration
  • the parameter, the MCS modulation coding mode, the TBS transmission block size, and the resource allocation information the transmission power determined by the terminal device according to the configuration parameter; and the uplink data is sent on the second resource according to the transmission power.
  • the uplink data is the first uplink data.
  • the terminal device may determine the second resource after detecting the indication information, or may detect the indication. Before the information, the second resource is determined, which is not limited in this application.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the terminal device determines the power control parameter according to the positional relationship between the first resource and the second resource.
  • the first resource is used to send another uplink data, for example, the second uplink data.
  • the second uplink data may be pre-scheduled uplink data.
  • the second resource is used to send the first uplink data.
  • the first uplink data is unscheduled uplink data.
  • the second resource is a configured grant resource (also referred to as a grant free resource), and the uplink data sent on the second resource is unscheduled.
  • the second resource can be used to send the uplink URLLC service data.
  • the terminal device pre-stores or pre-configures the location information of the second resource.
  • the first resource is used to send the uplink non-URLLC service data with a large amount of traffic, for example, the first resource is used to send the uplink eMBB service data.
  • the terminal device determines a configuration parameter of the transmit power according to the positional relationship between the first resource and the second resource, where the configuration parameter of the transmit power is used to determine the transmit power of the second uplink data to be sent.
  • the terminal device detects the indication information from the network device, determines a configuration parameter of the transmit power according to the positional relationship between the first resource and the second resource, and adjusts the transmit power according to the transmit power configuration parameter, if A resource and a second resource overlap, increasing the power of the data transmitted on the second resource, and correspondingly reducing the interference caused by the data transmitted on the first resource.
  • the method further includes: if the terminal device does not detect the indication information from the network device, the configuration parameter of the transmit power is a default power control parameter.
  • the configuration parameter of the transmit power is a first power control parameter; or the configuration parameter of the transmit power is a parameter independent of the first power control parameter and the second power control parameter .
  • the determining, by the terminal device, the configuration parameter of the transmit power according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the configuration parameter of the transmit power is the first power control parameter
  • the terminal device determines that the configuration parameter of the transmit power is the second power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data sent by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the terminal equipment When the terminal equipment adopts the closed-loop mode to control the transmission power, the terminal equipment maintains two closed-loop power control processes: a closed-loop power control process when the uplink data is interfered with and a closed-loop power control process when the uplink data is not interfered.
  • the closed loop power control process is an independent process.
  • the closed-loop power control process index is 1 for the closed-loop power control process when the uplink data is interfered
  • the closed-loop power control process index is 2 for the closed-loop power control process when the uplink data is not interfered.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the indication information is further used to indicate at least one of a transmission power of the first resource, a transmission energy of the first resource, and a modulation and coding manner of the first resource.
  • the configuration parameter of the transmit power is the first power control parameter
  • the configuration parameter of the transmit power is the second power control parameter
  • the configuration parameter of the transmit power is the first power control parameter
  • the configuration parameter of the transmit power is the second power control parameter
  • the configuration parameter of the transmit power is the first power control parameter
  • the configuration parameter of the transmit power is the second power control parameter.
  • the application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the first resource, where the first resource overlaps with the second resource, and the network device receives the uplink data from the terminal device on the second resource.
  • the transmit power corresponding to the uplink data corresponds to one of the first power control parameter and the second power control parameter.
  • the transmit power is related to a location relationship between the first resource and the second resource.
  • the first resource is used to send the first uplink data that is scheduled, and the second resource is used to send the second uplink data that is not scheduled.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the second resource is a configured grant resource (also referred to as a grant free resource), that is, the terminal device is a configured grant UE or a grant free UE; the uplink data sent on the second resource is unscheduled, and the second resource can be used to send the uplink URLLC.
  • the service data, the terminal device is pre-stored or pre-configured as the location information of the second resource; the first resource is used to send the uplink URLLC data, for example, the second resource is used to send the eMBB service data.
  • the configuration parameter of the transmit power is used to determine the transmit power of the second uplink data to be transmitted.
  • the method further includes: the network device sending a configuration parameter to the terminal device, where the configuration parameter includes a first transmit power configuration parameter and a second transmit power configuration parameter; or the configuration parameter includes a modulation coding mode and a second modulation coding mode; or the configuration parameter includes a first transmission block size and a second transmission block size, and the network device sends configuration information of the first power control parameter and the second power control parameter to the terminal device.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving data transmitted by the terminal device;
  • the information group includes a closed loop power control index and a transmission power command word.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the second resource includes a pre-configured authorized configured grant resource.
  • the terminal device is a configured grant terminal device that is preconfigured with authorization.
  • the application provides a method for sending uplink data, including:
  • the terminal device detects indication information from the network device, where the indication information is used to indicate the first resource
  • the terminal device determines a second resource; when the terminal device detects the indication information, the terminal device determines a modulation and coding scheme (MCS) according to a positional relationship between the first resource and the second resource; wherein the modulation coding
  • MCS modulation and coding scheme
  • the mode includes a first MCS or a second MCS; the first MCS and the second MCS are independently configured. And transmitting uplink data on the second resource according to the modulation and coding manner.
  • the uplink data is the first uplink data.
  • the terminal device may determine the second resource after detecting the indication information, or may detect the indication. Before the information, the second resource is determined, which is not limited in this application.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the terminal device determines a modulation and coding manner according to a positional relationship between the first resource and the second resource.
  • the first resource is used to send another uplink data, for example, the second uplink data.
  • the second uplink data may be pre-scheduled uplink data.
  • the second resource is used to send the first uplink data.
  • the first uplink data is unscheduled uplink data.
  • the second resource is a configured grant resource (also referred to as a grant free resource), and the uplink data sent on the second resource is unscheduled.
  • the second resource can be used to send the uplink URLLC service data.
  • the terminal device pre-stores or pre-configures the location information of the second resource.
  • the first resource is used to send the uplink non-URLLC service data with a large amount of traffic, for example, the first resource is used to send the uplink eMBB service data.
  • the terminal device determines a modulation and coding mode according to the positional relationship between the first resource and the second resource, and determines, according to the modulation and coding mode, the second uplink data to be sent.
  • the terminal device detects the indication information from the network device, and determines a modulation and coding manner according to a positional relationship between the first resource and the second resource, and if the first resource and the second resource overlap, the modulation is adopted.
  • a modulation coding scheme with a small order and a low code rate reduces the interference caused by the data transmitted on the first resource accordingly.
  • the method further includes: if the terminal device does not detect the indication information from the network device, the modulation and coding mode is a default modulation and coding mode.
  • the default modulation coding mode is the first MCS; or the default modulation coding mode is independent of the first MCS and the second MCS.
  • the determining, by the terminal device, the modulation and coding manner according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the modulation coding mode is the first MCS;
  • the terminal device determines that the modulation and coding mode is the second MCS.
  • the first MCS and the second MCS include: a modulation mode and a code rate, wherein the modulation modes are mainly BPSK, QPSK, 16QAM, and 64QAM, and modulation orders are 1, 2, 4, and 6, respectively, and high-order modulation can provide Higher transmission bit rate, but more sensitive to interference noise and channel estimation error, easy to make mistakes; and low-order modulation each modulation symbol carries less data bits and can tolerate higher intensity interference.
  • bit rate for the same information bits, the lower the code rate, the more redundant bits, and the higher the tolerance to interference and noise.
  • the terminal can better tolerate interference from the first data overlapped by the resource, thereby improving the first uplink.
  • the reliability of data transmission if the terminal sends the first uplink data in a modulation coding manner with a lower modulation rate and a lower code rate on the second resource, the terminal can better tolerate interference from the first data overlapped by the resource, thereby improving the first uplink. The reliability of data transmission.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the first resource, where the first resource overlaps with the second resource, and the network device receives the uplink data from the terminal device on the second resource.
  • the uplink data corresponds to one of the first MCS and the second MCS.
  • the MCS is related to a location relationship between the first resource and the second resource.
  • the first resource is used to send the first uplink data that is scheduled, and the second resource is used to send the second uplink data that is not scheduled.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the second resource is a configured grant resource (also referred to as a grant free resource), that is, the terminal device is a configured grant UE or a grant free UE; the uplink data sent on the second resource is unscheduled, and the second resource can be used to send the uplink URLLC.
  • the service data, the terminal device is pre-stored or pre-configured as the location information of the second resource; the first resource is used to send the uplink URLLC data, for example, the second resource is used to send the eMBB service data.
  • the configuration parameter of the transmit power is used to determine the transmit power of the second uplink data to be transmitted.
  • the method further includes: the network device sending configuration information of the first MCS and the second MCS to the terminal device.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the second resource includes a pre-configured authorized configured grant resource.
  • the terminal device is a configured grant terminal device that is preconfigured with authorization.
  • the application provides a method for sending uplink data, including:
  • the terminal device detects indication information from the network device, where the indication information is used to indicate the first resource
  • the terminal device determines a second resource; when the terminal device detects the indication information, the terminal device determines a transmission block size (TBS) according to a positional relationship between the first resource and the second resource; wherein the transmission block size The first TBS or the second TBS is included; the uplink data is sent on the second resource according to the transport block size.
  • the uplink data is the first uplink data.
  • the terminal device may determine the second resource after detecting the indication information, or may detect the indication. Before the information, the second resource is determined, which is not limited in this application.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the terminal device determines the transport block size according to the location relationship between the first resource and the second resource.
  • the first resource is used to send another uplink data, for example, the second uplink data.
  • the second uplink data may be pre-scheduled uplink data.
  • the second resource is used to send the first uplink data.
  • the first uplink data is unscheduled uplink data.
  • the second resource is a configured grant resource (also referred to as a grant free resource), and the uplink data sent on the second resource is unscheduled.
  • the second resource can be used to send the uplink URLLC service data.
  • the terminal device pre-stores or pre-configures the location information of the second resource.
  • the first resource is used to send the uplink non-URLLC service data with a large amount of traffic, for example, the first resource is used to send the uplink eMBB service data.
  • the terminal device determines a transport block size according to a positional relationship between the first resource and the second resource, and transmits second uplink data according to the transport block size.
  • the terminal device detects the indication information from the network device, and determines a transport block size according to a location relationship between the first resource and the second resource, and if the first resource and the second resource overlap, A small transport block, under the premise that the resources used for data transmission are unchanged, the smaller the transport block, and the smaller the MCS, that is, the corresponding modulation order is smaller and/or the code rate is lower, correspondingly reduced from the first Interference caused by data sent on the resource.
  • the method further includes: if the terminal device does not detect the indication information from the network device, the transport block size is a default transport block size.
  • the default transport block size is a first TBS; or the default transport block size is independent of the first TBS and the second TBS.
  • the determining, by the terminal device, the transport block size according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the transport block size is the first TBS;
  • the terminal device determines that the transport block size is the second TBS.
  • the relationship between the transport block size and the modulation and coding scheme is: It can be understood that under the premise that the transmission occupied resource, that is, the N RE is unchanged, the smaller the TBS, the lower the modulation order and/or the smaller the code rate, the better the interference from the first data of the resource and the overlap thereof can be tolerated. Improve the reliability of the first uplink data transmission.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the first resource, where the first resource overlaps with the second resource, and the network device receives the uplink data from the terminal device on the second resource.
  • the uplink data corresponds to one of the first TBS and the second TBS.
  • the transport block size is related to a location relationship between the first resource and the second resource.
  • the first resource is used to send the first uplink data that is scheduled, and the second resource is used to send the second uplink data that is not scheduled.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the second resource is a configured grant resource (also referred to as a grant free resource), that is, the terminal device is a configured grant UE or a grant free UE; the uplink data sent on the second resource is unscheduled, and the second resource can be used to send the uplink URLLC.
  • the service data, the terminal device is pre-stored or pre-configured as the location information of the second resource; the first resource is used to send the uplink URLLC data, for example, the second resource is used to send the eMBB service data.
  • the configuration parameter of the transmit power is used to determine the transmit power of the second uplink data to be transmitted.
  • the method further includes: the network device sending configuration information of the first TBS and the second TBS to the terminal device.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the second resource includes a pre-configured authorized configured grant resource.
  • the terminal device is a configured grant terminal device that is preconfigured with authorization.
  • the application provides a method for sending uplink data, including:
  • the terminal device detects indication information from the network device, where the indication information is used to indicate the first resource
  • the terminal device determines the second resource; when the terminal device detects the indication information, the terminal device determines, according to the location relationship between the first resource and the second resource, whether to use the third resource to send uplink data, where the first resource and the second resource portion In the case of overlapping or overlapping, the terminal device transmits uplink data on the third resource. It is to be noted that, in this method, the terminal device may determine the second resource after detecting the indication information, or may detect the indication. Before the information, the second resource is determined, which is not limited in this application.
  • the indication information includes location information of the first resource, for example, the location information of the first resource includes at least one of frequency domain location information and time domain location information.
  • the terminal device determines whether to adopt the third resource transmission according to the location relationship between the first resource and the second resource.
  • the first resource is used to send another uplink data, for example, the second uplink data.
  • the second uplink data may be pre-scheduled uplink data.
  • the second resource is used to send the first uplink data.
  • the first uplink data is unscheduled uplink data.
  • the second resource is a configured grant resource (also referred to as a grant free resource), and the uplink data sent on the second resource is unscheduled.
  • the second resource can be used to send the uplink URLLC service data.
  • the terminal device pre-stores or pre-configures the location information of the second resource.
  • the first resource is used to send the uplink non-URLLC service data with a large amount of traffic, for example, the first resource is used to send the uplink eMBB service data.
  • the terminal device determines whether to use the third resource to send data according to the location relationship between the first resource and the second resource.
  • the terminal device detects the indication information from the network device, and determines, according to the location relationship between the first resource and the second resource, whether to send the uplink data by using the third resource, if the first resource and the second resource.
  • the third resource is used to transmit the uplink data.
  • the third resource is a resource block that does not overlap with the second resource in the time domain and the frequency domain, so the third resource and the first resource may also ensure that they do not overlap at all.
  • the uplink data is transmitted on the third resource, and the data sent on the first resource does not have any influence on the data originally transmitted on the second resource.
  • the number of resource blocks (RBs) of the third resource is greater than the second resource, and the more resources are occupied by the transmission, the smaller the corresponding MCS is, that is, the smaller the size of the transport block is.
  • the method further includes: when the terminal device does not detect the indication information from the network device, the first uplink data is transmitted by using a default second resource.
  • the determining, by the terminal device, whether to use the third resource to send data according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines to transmit data on the second resource
  • the terminal device determines to transmit data by using the third resource.
  • the relationship between the resources used to transmit data and the modulation and coding scheme is: It can be understood that under the premise that the transport block size TBS is unchanged, the smaller the resource N RE used for transmitting data, the lower the modulation order and/or the smaller the code rate, the better the first data from the resource overlapped with it. Interference, thereby improving the reliability of the first uplink data transmission.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the first resource, the first resource and the second resource overlap, and the network device receives the uplink data from the terminal device on the third resource.
  • the application provides a method for sending uplink data, including:
  • the terminal device detects the indication information from the network device, where the indication information is used to indicate a configuration parameter of the transmit power, where the configuration parameter of the transmit power includes a first power control parameter and a second power control parameter;
  • the terminal device When the terminal device detects the indication information, determining the transmission power according to the configuration parameter of the transmission power;
  • it also includes:
  • the terminal device sends the uplink data on the second resource according to the transmit power determined by the default power control parameter.
  • the default power control parameter is a parameter independent of the first power control parameter and the second power control parameter; or the default power control parameter is the first power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information the public control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the terminal device is a pre-configured authorized terminal device.
  • the application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate a configuration parameter of the transmit power;
  • the configuration parameter of the transmit power includes the first Power control parameters and second power control parameters;
  • the network device receives uplink data sent by the terminal device on the second resource, where the transmit power of the uplink data is determined by a configuration parameter of the transmit power.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process and a transmission power command word.
  • the indication information is carried in the downlink control information of the broadcast or multicast.
  • the application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate the first resource
  • the processing unit is further configured to determine a second resource
  • the processing unit is further configured to: when the indication information is detected, determine a configuration parameter of the transmit power according to a positional relationship between the first resource and the second resource, where the configuration parameter includes a first power control parameter or a second The power control parameter; or the configuration parameter includes a first configuration parameter or a second configuration parameter, where the first configuration parameter and the second configuration parameter include any one or combination of the following information: a transmit power configuration parameter, an MCS Modulation coding mode, TBS transmission block size and resource allocation information;
  • the processing unit is further configured to determine a transmit power according to the configuration parameter
  • a sending unit configured to send uplink data on the second resource according to the transmit power.
  • the configuration parameter of the transmission power is a default power control parameter.
  • the processing unit determines configuration parameters of the transmit power according to the location relationship between the first resource and the second resource, including:
  • determining a configuration parameter of the transmit power is the first power control parameter
  • the configuration parameter for determining the transmit power is the second power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the indication information is carried in downlink or broadcast downlink control information.
  • the indication information is also used to indicate:
  • the present application provides an apparatus for receiving uplink data, including:
  • a sending unit configured to send, to the terminal device, indication information, where the first resource and the second resource have an overlap; wherein the indication information is used to indicate the first resource;
  • a receiving unit configured to receive uplink data sent by the terminal device on the second resource.
  • the sending unit is further configured to: send configuration information of the first power control parameter and the second power control parameter to the terminal device.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the present application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from a network device, where the indication information is used to indicate a configuration parameter of a transmit power, where the configuration parameter of the transmit power includes a first power control parameter and a second power control parameter;
  • the processing unit is further configured to: when the indication information is detected, determine a transmit power according to a configuration parameter of the transmit power;
  • a sending unit configured to send uplink data to the network device on the second resource according to the transmit power.
  • the sending unit is further configured to:
  • the uplink power is sent on the second resource according to the transmit power determined by the default power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the indication information is carried in downlink or broadcast downlink control information.
  • the present application provides an apparatus for receiving uplink data, including:
  • a sending unit configured to send indication information to the terminal device, where the indication information is used to indicate a configuration parameter of the transmit power, and the configuration parameter of the transmit power, where there is an overlap between the first resource and the second resource
  • the first power control parameter and the second power control parameter are included;
  • a receiving unit configured to receive uplink data sent by the terminal device on the second resource, where the transmit power of the uplink data is determined by a configuration parameter of the transmit power.
  • the receiving unit is further configured to:
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the present application discloses an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate the first resource
  • the processing unit is further configured to determine a second resource
  • the processing unit is further configured to determine, according to a positional relationship between the first resource and the second resource, a modulation and coding mode, where the indication information is detected, where the modulation and coding mode includes a first modulation and coding Mode or second modulation coding mode;
  • a sending unit configured to send uplink data on the second resource according to the modulation and coding manner.
  • the modulation and coding mode is a default modulation and coding mode.
  • the processing unit is configured to determine a modulation and coding manner according to a positional relationship between the first resource and the second resource, including:
  • the first resource and the second resource do not overlap at all, and the modulation and coding mode is determined to be a first modulation and coding mode;
  • the first resource is partially overlapped or overlapped with the second resource, and the modulation and coding mode is determined to be a second modulation and coding mode.
  • the application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate the first resource
  • the processing unit is further configured to determine a second resource
  • the processing unit is further configured to determine, according to the location relationship between the first resource and the second resource, a transport block size, where the indication information is detected, where the transport block size includes a first transport block size or a second Transport block size;
  • a sending unit configured to send uplink data on the second resource according to the transport block size.
  • the transport block size is a default transport block size.
  • the processing unit is configured to determine a transport block size according to the location relationship between the first resource and the second resource, including:
  • the transport block size is a first transport block size if the first resource and the second resource do not overlap at all;
  • the transport block size is determined to be a second transport block size.
  • the application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate the first resource
  • a sending unit configured to: when the processing unit detects the indication information, and the first resource partially overlaps or completely overlaps with the second resource, sends uplink data on the third resource.
  • the sending unit is further configured to:
  • processing unit detects the indication information, and the first resource does not overlap with the second resource at all, sending uplink data on the second resource;
  • the processing unit does not detect the indication information from the network device, the uplink data is transmitted on the second resource.
  • the application provides a method for sending uplink data, including:
  • the terminal device detects the indication information from the network device, where the indication information is used to indicate a modulation and coding mode, where the modulation and coding mode includes a first modulation and coding mode and a second modulation and coding mode;
  • it also includes:
  • the terminal device sends the uplink data on the second resource according to a default modulation and coding manner.
  • the default modulation coding mode is a parameter independent of the first modulation coding mode and the second modulation coding mode; or the default modulation coding mode is the first modulation Encoding.
  • a nineteenth aspect of the present application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate a modulation and coding manner, where the modulation and coding manner includes a first modulation and coding manner and a second modulation and coding manner;
  • a sending unit configured to send uplink data to the network device on the second resource according to the modulation and coding manner.
  • the sending unit is further configured to:
  • the uplink data is sent on the second resource according to a default modulation and coding manner.
  • the twentieth aspect of the present application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate a modulation and coding mode;
  • the modulation and coding mode includes a modulation and coding mode and a second Modulation coding method;
  • the network device receives uplink data sent by the terminal device on a second resource.
  • it also includes:
  • the network device receives the uplink data that is sent by the terminal device on the second resource according to the first modulation and coding manner.
  • a twenty-first aspect of the present application provides an apparatus for receiving uplink data, including:
  • a sending unit configured to send indication information to the terminal device, where the indication information is used to indicate a modulation and coding mode, where the modulation coding mode includes the first modulation, where there is an overlap between the first resource and the second resource Encoding mode and second modulation coding mode;
  • a receiving unit configured to receive uplink data that is sent by the terminal device on the second resource according to the modulation and coding manner.
  • the receiving unit is further configured to:
  • a twenty-second aspect of the present application provides a method for sending uplink data, including:
  • the terminal device detects the indication information from the network device, where the indication information is used to indicate a transport block size, where the transport block size includes a first transport block size and a second transport block size;
  • it also includes:
  • the terminal device sends the uplink data on the second resource according to a default transport block size.
  • the default transport block size is a parameter independent of the first transport block size and the second transport block size; or the default transport block size is the first transmission Block size.
  • the twenty-third aspect of the present application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from a network device, where the indication information is used to indicate a transport block size, where the transport block size includes a first transport block size and a second transport block size;
  • a sending unit configured to send uplink data to the network device on the second resource according to the transport block size.
  • the sending unit is further configured to:
  • the uplink data is sent on the second resource according to a default transport block size.
  • a twenty-fourth aspect of the present application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate a transport block size;
  • the transport block size includes a transport block size and a second Transport block size;
  • the network device receives uplink data sent by the terminal device on a second resource.
  • it also includes:
  • the network device receives uplink data that is sent by the terminal device on the second resource according to the first transport block size.
  • the twenty-fifth aspect of the present application provides an apparatus for receiving uplink data, including:
  • a sending unit configured to send indication information to the terminal device, where the indication information is used to indicate a transport block size, where the first block is the first transmission Block size and second transport block size;
  • a receiving unit configured to receive uplink data that is sent by the terminal device on the second resource according to the transport block size.
  • the receiving unit is further configured to:
  • the uplink data that is sent by the terminal device on the second resource according to the first transport block size is received.
  • a twenty-sixth aspect of the present application provides a method for sending uplink data, including:
  • the terminal device detects the indication information from the network device, where the indication information is used to indicate the third resource;
  • the terminal device sends uplink data to the network device on the third resource.
  • it also includes:
  • the terminal device sends the uplink data on the second resource according to a default transport block size.
  • the default transport block size is a parameter independent of the first transport block size and the second transport block size; or the default transport block size is the first transmission Block size.
  • the twenty-seventh aspect of the present application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from a network device, where the indication information is used to indicate a third resource
  • a sending unit configured to send uplink data to the network device on the third resource if the first resource and the second resource overlap.
  • the sending unit is further configured to:
  • the uplink data is sent on the second resource according to a default transport block size.
  • a twenty-eighth aspect of the present application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the third resource;
  • the network device receives uplink data sent by the terminal device on a third resource.
  • it also includes:
  • the network device receives uplink data that is sent by the terminal device on the second resource according to the first transport block size.
  • a twenty-ninth aspect of the present invention provides an apparatus for receiving uplink data, including:
  • a sending unit configured to send indication information to the terminal device, where the indication information is used for the third resource, if there is an overlap between the first resource and the second resource;
  • a receiving unit configured to receive uplink data sent by the terminal device on the third resource.
  • the receiving unit is further configured to:
  • the uplink data that is sent by the terminal device on the second resource according to the first transport block size is received.
  • a still further aspect of the present application provides a method for sending uplink data, including:
  • the terminal device detects the indication information from the network device, where the indication information is used to indicate a configuration parameter, where the configuration parameter includes the first configuration parameter and the second configuration parameter;
  • the terminal device sends uplink data to the network device according to the resource configuration parameter.
  • the configuration parameter includes any one or combination of the following information: a modulation coding mode, a transport block size, and resource allocation information.
  • the configuration parameter includes a first modulation coding mode and a second modulation coding mode; or the configuration parameter includes a first transmission block size and a second transmission block size, or the configuration parameter includes first resource allocation information and second resource allocation information, and resources.
  • the allocation information represents the time domain location and/or frequency domain location of the resource.
  • it also includes:
  • the terminal device sends the uplink data according to a default configuration parameter.
  • the default configuration parameter is a parameter that is independent of the first configuration parameter and the second configuration parameter; or the default configuration parameter is the first configuration parameter.
  • a still further aspect of the present application provides an apparatus for transmitting uplink data, including:
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate a configuration parameter, where the configuration parameter includes a first configuration parameter and a second configuration parameter;
  • a sending unit configured to send uplink data to the network device according to the resource configuration parameter.
  • the configuration parameter includes any one or combination of the following information: a modulation coding mode, a transport block size, and resource allocation information.
  • the sending unit is further configured to:
  • the uplink data is sent according to a default configuration parameter.
  • the default configuration parameter is a parameter that is independent of the first configuration parameter and the second configuration parameter; or the default configuration parameter is the first configuration parameter.
  • a still further aspect of the present application provides a method for receiving uplink data, including:
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the third resource;
  • the network device receives uplink data sent by the terminal device on a third resource.
  • it also includes:
  • the network device receives uplink data that is sent by the terminal device on the second resource according to the first transport block size.
  • a still further aspect of the present application provides an apparatus for receiving uplink data, including:
  • a sending unit configured to send indication information to the terminal device, where the indication information is used for the third resource, if there is an overlap between the first resource and the second resource;
  • a receiving unit configured to receive uplink data sent by the terminal device on the third resource.
  • the receiving unit is further configured to:
  • the uplink data that is sent by the terminal device on the second resource according to the first transport block size is received.
  • a still further aspect of the present application provides an apparatus, including: a memory and a processor; wherein the memory stores a set of program codes, and the processor is configured to invoke program code stored in the memory, and execute each The method described in the aspects.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a network architecture diagram of a communication system according to an embodiment of the present application.
  • 2a is a schematic diagram of interaction of a method for transmitting uplink data according to an embodiment of the present application
  • 2b is a schematic diagram of a positional relationship between an eMBB resource and a configured grant resource according to an embodiment of the present application
  • FIG. 3 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 4 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 5 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of an apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is another schematic structural diagram of an apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 10 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 11 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 12 is another schematic diagram of interaction of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 13 is another interaction diagram of a method for transmitting uplink data according to an embodiment of the present application.
  • FIG. 14 is another schematic diagram of interaction of a method for transmitting uplink data according to an embodiment of the present application.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), global mobile Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA) 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), NR (New Radio, New Air interface) Communication system and the next three applications of the 5G mobile communication system, Enhanced Mobile Broad Band (eMBB), URLLC, and Massive Machine-Type Communications (mMTC).
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 System
  • the terminal device may be any form of communication device, including but not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone. (handset) and portable equipment, etc.
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device can be a mobile phone (or "Cellular" telephones, computers with wireless communication capabilities, etc., and the terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices or devices.
  • RAN Radio Access Network
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • the communication system 01 includes a network device 101 and a terminal device 102.
  • the network device 101 can also be connected to the core network.
  • Network device 101 may also be in communication with an Internet Protocol (IP) network 200, such as the Internet, a private IP network, or other data network.
  • IP Internet Protocol
  • the network device provides services for the terminal devices within the coverage.
  • network device 101 provides wireless access to one or more terminal devices within coverage of network device 101.
  • network devices can also communicate with each other.
  • Network device 101 may be a device for communicating with a terminal device.
  • a terminal device may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station (Evolved Node B, eNB) in an LTE system.
  • eNodeB evolved base station
  • the network device may also be a relay station, an access point, an in-vehicle device, or the like.
  • the network device may also be a terminal device functioning as a base station.
  • the terminal device may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (UE), mobile stations ( Mobile station, MS), etc.
  • the eMBB service data and the URLLC service data uplink transmission resource sharing are specifically divided into: the URLLC UE does not send an SR (scheduling request) to the base station before performing uplink transmission of the URLLC service data, or the base station does not receive the URLLC UE to send.
  • the SR does not schedule time-frequency resources for URLLC service data. Since the generation of URLLC service data is bursty and random, the base station cannot predict whether there is uplink transmission of URLLC service data and when uplink transmission of URLLC service data starts. Therefore, the base station configures a configured grant resource for the UE that may send the URLLC service data, and the configured grant resource is used to transmit the URLLC service data.
  • the method for preventing the uplink URLLC service data from being interfered is to ensure that only the URLLC service data is transmitted on the configured grant resource, and the base station does not schedule the eMBB service data to be transmitted on the configured grant resource. That is, if there is no uplink URLLC service data, the configured grant resource is kept idle. To improve the utilization of the configured grant resource, the base station schedules the eMBB service data to be transmitted on the configured grant resource, which is greatly reduced.
  • the overhead of the small system but also causes serious interference to the URLLC service data transmitted by the configured grant. How to ensure the reliability of the URLLC service data transmission in the case of reducing the overhead in the uplink transmission is an urgent problem to be solved. .
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • the network device determines that there is an overlap between the first resource and the second resource.
  • the first resource and the second resource are time-frequency resources for transmitting uplink data, for example, the first resource is used to send the first uplink data, and the second resource is used to send the second uplink data.
  • the first uplink data is pre-scheduled uplink data, and/or the second uplink data is unscheduled uplink data.
  • the second resource is a configured grant resource, and can be used to send URLLC service data.
  • the URLLC service data is unscheduled, that is, the network device does not need to request the network device to schedule resources before sending the URLLC service data; the first resource is used for A resource that transmits non-URLLC service data with a large amount of periodic traffic, for example, the uplink data sent on the first resource is eMBB service data.
  • the terminal device Before the non-URLLC service data (for example, the eMBB service data) is sent in the uplink, the terminal device sends a scheduling request to the network device, where the network device is configured to allocate the time-frequency resource for the non-URLLC service data, and the network device is a non-URLLC according to the scheduling request.
  • the service data is scheduled to be the first resource, and the network device is pre-stored or pre-configured as the location information of the first resource.
  • the network device can determine whether the first resource is scheduled to the second resource.
  • the network device can determine whether the first resource and the second resource collide or collide, and whether the first resource and the second resource partially overlap or overlap with each other. If the determination result is yes, S202 is performed.
  • the overlapping of the first resource and the second resource indicates that the first resource and the second resource overlap in both the time domain and the frequency domain.
  • the network device when the network device schedules the eMBB resource in the slot n, the scheduled eMBB resource does not collide or conflict with the configured grant resource, and the network device does not need to send the indication information to the terminal device.
  • the network device schedules the eMBB resource in the slot n+1, the scheduled eMBB resource and the configured grant resource collide or collide.
  • the eMBB resource and the configured grant resource partially overlap, and the network device needs to send the indication information to the terminal device; the network device is in the slot n.
  • the eMBB resource is scheduled in the +2, the eMBB resource and the configured grant resource collide or collide.
  • the eMBB resource and the configured grant resource overlap. The network device needs to send the indication information to the terminal device.
  • the network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device is a configured grant terminal (also referred to as a grant free UE or a grant free terminal), and may send URLLC service data.
  • the indication information is used to indicate the first resource, for example, the indication information includes location information of the first resource, and the location information of the first resource indicates a frequency domain location and a time domain location of the first resource, and the indication information may adopt a display or implicit method.
  • the signaling carrying the indication information may be broadcast signaling or multicast signaling, and the network device sends the indication information to a group of terminal devices by using broadcast signaling or multicast signaling.
  • the broadcast signaling or the multicast signaling may be a group common DCI (Downlink Control Information) or a terminal specific DCI (UE specific DCI).
  • the signaling carrying the indication information may also be a MAC-CE (Media Access Control-Control Element).
  • the DCI format may be DCI_format 2_2, and DCI_format 2_2 adds one field (DCI field).
  • the broadcast signaling or the multicast signaling may be a DCI in a new format.
  • the format of the DCI is named format 2_4, and the DCI carries the indication information.
  • the terminal device receives the indication information from the network device, and determines the location information of the first resource according to the indication information.
  • the group public DCI is used to send the indication information, which can improve the reliability of the indication information transmission, reduce the decoding time of the indication information by the terminal device, and reduce the processing delay.
  • the duration that the network device sends the downlink signaling to the terminal device after receiving and processing the downlink signaling, and then sending the uplink data according to the indication of the downlink signaling is defined as K2, where the value of K2 is a plurality of time slots ( Slot), for example, the value of K2 is any one of a set of values ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ , for example, the network device sends broadcast signaling carrying indication information in slot n.
  • the terminal device transmits uplink data in slot n+k according to the broadcast signaling.
  • the network device indicates that the first resource is scheduled to be on the second resource in the k+1 slots corresponding to slot n to slot n+k.
  • the network device should send the broadcast signaling in the slot n according to the periodic rule, and the k+1 slots corresponding to the slot n to the slot n+k have no conflict or collision between the first resource and the second resource, the network device It is not necessary to send broadcast signaling in slot n, because the broadcast signaling does not change the behavior of the terminal device, which causes waste of signaling resources and increases overhead, and n and k are integers greater than zero.
  • the terminal device determines, according to a positional relationship between the first resource and the second resource, a configuration parameter of the transmit power.
  • the configuration parameter of the transmit power is used to determine the transmit power of the terminal device.
  • the configuration parameter of the transmit power includes the first power control parameter or the second power control parameter, that is, the terminal device sends the uplink data by using the transmit power determined by the first power control parameter, or sends the uplink data by using the transmit power determined by the second power control parameter.
  • the configuration parameter of the transmit power is one of the first power control parameter and the second power control parameter. It should be noted that the transmit power determined by the second power control parameter is greater than the transmit power determined by the first power control parameter.
  • the determining, by the terminal device, the configuration parameter of the transmit power according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the configuration parameter of the transmit power is the first power control parameter
  • the power control parameter is a second power control parameter
  • the power control parameter is a second power control parameter
  • the power control parameter is a first power control parameter.
  • the preset value may be a network device configured to the terminal device, or may be a fixed value pre-stored by the terminal device.
  • the specific value is not limited in this embodiment.
  • the preset value may be 50%.
  • the eMBB resource and the configured grant resource do not overlap in the slot n, and the URLLC terminal determines the configuration parameter of the transmit power as the first power control parameter; the eMBB resource and the configured grant in the slot n+1
  • the resource partially overlaps, and the URLLC terminal determines the configuration parameter of the transmit power as the second power control parameter; in the time slot n+2, the eMBB resource and the configured grant resource completely overlap, and the URLLC terminal determines the configuration parameter of the transmit power as the second power control parameter.
  • the terminal device determines the configuration parameter of the transmit power according to the location relationship between the first resource and the second resource, and further includes: the transmission power of the first resource according to the first resource, the transmission energy of the first resource, and the first resource. At least one of the modulation coding modes determines a configuration parameter of the transmit power.
  • the configuration parameter of the transmit power determined by the terminal device is the first power control parameter
  • the configuration parameter of the transmit power determined by the terminal device is the second power control parameter if the first resource and the second resource are partially overlapped or overlapped, and the transmission power of the first resource is not less than the power threshold; or
  • the configuration parameter of the transmit power determined by the terminal device is the first power control parameter
  • the configuration parameter of the transmit power determined by the terminal device is the second power control parameter
  • the first resource and the second resource are partially overlapped or overlapped, and the modulation order of the first resource is greater than a preset value, and the configuration parameter of the transmit power determined by the terminal device is the first power control parameter; or
  • the first resource and the second resource are partially overlapped or overlapped, and the modulation order of the first resource is not greater than a preset value, and the configuration parameter of the transmit power determined by the terminal device is the second power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the power control identifier information indicates a path loss compensation factor ⁇ and/or a target signal to noise ratio P 0 of the network device receiving the data transmitted by the terminal device, and the path loss compensation factor and the target signal to noise ratio P 0 are open loop power control parameters.
  • the power control identification information may be an index j, and the terminal device determines a path loss compensation factor and/or a target signal to noise ratio according to the index j.
  • the terminal device can determine the transmit power according to the following formula:
  • P O_PUSCH, f, c(j) P O_UE_PUSCH, f, c(j) + P O_NOMINAL_PUSCH, f, c(j) .
  • P O_NOMINAL_PUSCH , f, c(j ) is the power value allocated to all UEs in the entire cell, and the value ranges from -126 to 24 dBm.
  • P O_UE_PUSCH,f,c(j) is a power fine-tuning value configured for a specific terminal device, and the value ranges from -8 to 7 dBm.
  • the value of the path loss compensation factor ⁇ may be any one of ⁇ 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ .
  • c is the serving cell
  • i is the transmission period of the PUSCH
  • j is the power control identification information
  • l is the power control adjustment state index
  • f is the carrier
  • q d is the reference signal resource used by the terminal device
  • P PUSCH, f, c is the PUSCH
  • the transmit power in the serving cell P CMAX, f, c is the maximum power that the terminal device allows to transmit on the carrier and the serving cell
  • PO_PUSCH, f, c are the target signal-to-noise ratios when the network device receives the data transmitted by the terminal device, Allocating bandwidth indication information for the PUSCH in the serving cell, ⁇ f,c is the path loss compensation factor, PL f,c is the path loss value, ⁇ TF,f,c is the modulation mode offset, ⁇ TF,f,c Used to control the power of information transmitted in the PUSCH, f f,c is the closed loop power control adjustment state.
  • the iK PUSCH is a subframe number for transmitting ⁇ PUSCH, f, c , and ⁇ is a subcarrier interval and a cyclic prefix number.
  • the Transmission Power Command Word (TPC Command Field) is used to indicate the cumulative power correction value (Accumulated) or the absolute power correction value (Absolute) of the transmission power.
  • TPC Command Field is used to indicate the cumulative power correction value (Accumulated) or the absolute power correction value (Absolute) of the transmission power.
  • the information group includes a closed loop power control process index and a transmission power command word, and different closed loop power control process indexes represent different processes.
  • the terminal device maintains two independent closed loop power control processes: a first process and a second process, the first process represents a closed loop power control process of the uninterrupted URLLC service data, and the second process represents a closed loop power control of the interfered URLLC service data. process.
  • the transmit power corresponding to the switched process is the cumulative power correction value
  • the transmission corresponding to the last process of the same type of the switched process The power is zeroed.
  • the transmit power corresponding to the current process is the result of the transmit power corresponding to the previous process plus the cumulative power correction value indicated by the transmit power command word.
  • the terminal device detects the indication information, meaning that the first resource is scheduled on the second resource, the terminal device cannot use the first process to perform power adjustment, and needs to enable the second process, the second process of transmitting.
  • the network device before the network device sends the indication information to the terminal device, the network device further includes: the network device sends the configuration parameter of the transmit power to the terminal device; the signaling of the configuration parameter that carries the transmit power includes but is not limited to the RRC signaling, the MAC-CE Or other forms of signaling.
  • the terminal device if the terminal device does not detect the indication information, indicating that the second resource does not collide or collide with the first resource, the terminal device is pre-stored or pre-configured as a default power control.
  • the parameter sends the uplink data on the second resource according to the transmit power determined by the default power control parameter.
  • the default power control parameter may be a parameter other than the first power control parameter and the second power control parameter, or may be the first power control parameter.
  • the default power control parameter determines a transmit power that is less than a transmit power determined by the second power control parameter.
  • the terminal device sends uplink data to the network device.
  • the terminal device is a configured grant UE, and the uplink data sent by the terminal device may be URLLC service data.
  • the terminal device determines the transmit power according to the configuration parameter of the transmit power of S203, and uses the transmit power to send the URLLC service data on the second resource, that is, the transmit power determined by the terminal device according to the first power control parameter.
  • the URLLC service data is sent on the second resource, or the terminal device sends the URLLC service data on the second resource according to the transmit power determined by the second power control parameter.
  • the transmit power determined by the terminal device according to the first power control parameter is smaller than the transmit power determined according to the second power control parameter.
  • the terminal device detects that the configured grant resource and other resources conflict or collide before sending the URLLC service data, and improves the transmission power of sending the URLLC service data on the configured grant resource, thereby improving the URLLC service.
  • the anti-interference ability of the data improves the reliability of sending URLLC service data.
  • FIG. 9 is a schematic flowchart of another method for transmitting uplink data according to an embodiment of the present application.
  • the method includes:
  • the network device determines that there is an overlap between the first resource and the second resource.
  • the network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device determines a modulation and coding manner according to a positional relationship between the first resource and the second resource.
  • the modulation and coding mode includes the first MCS or the second MCS, that is, the terminal device sends the uplink data by using the first MCS, or sends the uplink data by using the second MCS, that is, the modulation and coding mode is the first MCS and the One of the second MCSs. It should be noted that the modulation order and/or the code rate determined by the second MCS is smaller than the first MCS.
  • the determining, by the terminal device, the modulation and coding manner according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the modulation coding mode is the first MCS; or
  • the modulation and coding mode is a second MCS
  • the modulation and coding mode is a second MCS
  • the modulation and coding manner is the first MCS.
  • the preset value may be a network device configured to the terminal device, or may be a fixed value pre-stored by the terminal device.
  • the specific value is not limited in this embodiment.
  • the preset value may be 50%.
  • the eMBB resource and the configured grant resource do not overlap in the slot n, and the URLLC terminal determines that the modulation and coding mode is the first MCS; in the slot n+1, the eMBB resource and the configured grant resource partially overlap.
  • the URLLC terminal determines that the modulation coding mode is the second MCS; in the time slot n+2, the eMBB resource and the configured grant resource completely overlap, and the URLLC terminal determines that the modulation coding mode is the second MCS.
  • the terminal device determines the modulation and coding mode according to the positional relationship between the first resource and the second resource, and further includes: the terminal device according to at least one of a transmission power of the first resource and a transmission energy of the first resource. Determine the configuration parameters of the transmit power.
  • the modulation coding mode determined by the terminal device is the first MCS
  • the modulation coding mode determined by the terminal device is the second MCS;
  • the modulation coding mode determined by the terminal device is the first MCS
  • the modulation coding mode determined by the terminal device is the second MCS.
  • the MCS mainly includes a modulation method and a code rate.
  • the modulation modes include: BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, etc., commonly used are QPSK, 16QAM and 64QAM, and the corresponding modulation orders are 2, 4 and 6.
  • the modulation order refers to the number of data bits carried on one modulation symbol. For example: QPSK one modulation symbol carries 2 data bits. Low-order modulations such as QPSK and BPSK can tolerate higher-intensity interference. High-order modulation, such as 64QAM, 256QAM, etc., can provide better transmission bit rate, but is more sensitive to interference, noise and channel estimation errors, and is prone to errors.
  • the terminal device tends to select a modulation coding mode with a lower modulation order to send uplink data on the second resource.
  • the code rate is the number of bits transmitted per second. The higher the code rate, the faster the data is transmitted.
  • the ratio of the information bits to the coded bits is the code rate. The smaller the code rate, the more redundant the non-information bits in the coded bits, the better the fault tolerance of the transmission, and the stronger the resistance to interference. Therefore, when the first resource overlaps with the second resource, the UE tends to select a modulation coding mode with a lower code rate to send uplink data on the second resource.
  • the network device before the network device sends the indication information to the terminal device, the network device further includes: the network device sends the configuration parameter of the modulation and coding mode to the terminal device; and the signaling of the configuration parameter that carries the modulation and coding mode includes but is not limited to the RRC signaling and the MAC. - CE or other forms of signaling.
  • the terminal device if the terminal device does not detect the indication information, indicating that the second resource does not collide or collide with the first resource, the terminal device is pre-stored or pre-configured as a default modulation code.
  • the uplink data is sent on the second resource according to the default MCS.
  • the default modulation and coding mode may be a parameter other than the first MCS and the second MCS, or may be the first MCS.
  • the modulation order and/or code rate in the default modulation coding mode is less than the modulation order and/or code rate of the second MCS.
  • the terminal device sends uplink data to the network device on the second resource, where the network device receives uplink data from the terminal device.
  • the terminal device is a configured grant UE, and the uplink data sent by the terminal device may be URLLC service data.
  • the terminal device needs to send the URLLC service data
  • the terminal device sends the URLLC service data on the second resource according to the modulation and coding mode of S903, that is, the terminal device sends the URLLC service data on the second resource according to the first MCS, or the terminal device according to the second
  • the MCS sends the URLLC service data on the second resource.
  • the modulation order and/or code rate corresponding to the first MCS is smaller than the second MCS modulation order and/or the code rate.
  • the terminal device detects that the configured grant resource and other resources conflict or collide before the URLLC service data needs to be sent, and reduces the MCS that sends the URLLC service data on the configured grant resource, thereby improving the URLLC service.
  • the anti-interference ability of the data improves the reliability of sending URLLC service data.
  • FIG. 10 is a schematic flowchart of another method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • S1001 The network device determines that there is an overlap between the first resource and the second resource.
  • S1002 The network device sends indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device determines a transport block size according to a positional relationship between the first resource and the second resource.
  • the transport block size used for transmitting data includes a first TBS or a second TBS.
  • the transport block size is one of the first TBS and the second TBS. It should be noted that the second TBS is smaller than the first TBS.
  • determining, by the terminal device, the transport block size according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the transport block size is the first TBS;
  • the transport block size is a second TBS
  • the transport block size is a second TBS
  • the transport block size is the first TBS.
  • the preset value may be a network device configured to the terminal device, or may be a fixed value pre-stored by the terminal device.
  • the specific value is not limited in this embodiment.
  • the preset value may be 50%.
  • the URLLC terminal determines that the transport block size is the first TBS, and the eMBB resource and the configured grant resource partially overlap in the slot n+1.
  • the URLLC terminal determines that the transport block size is the second TBS; in the slot n+2, the eMBB resource and the configured grant resource completely overlap, and the URLLC terminal determines that the transport block size is the second TBS.
  • the terminal device determines the transport block size according to the location relationship between the first resource and the second resource, and further includes: at least one of the transmission power of the first resource and the transmission energy of the first resource, and the terminal device To determine the transport block size.
  • the transport block size determined by the terminal device is the first TBS
  • the transport block size determined by the terminal device is the second TBS.
  • the transport block size determined by the terminal device is the first TBS;
  • the transmission block size determined by the terminal device is the second TBS.
  • the network device before the network device sends the indication information to the terminal device, the network device further includes: the network device sends the configuration parameter of the transport block size to the terminal device; the signaling of the configuration parameter that carries the transport block size includes but is not limited to RRC signaling, MAC - CE or other forms of signaling.
  • the terminal device if the terminal device does not detect the indication information, indicating that the second resource does not collide or collide with the first resource, the terminal device is pre-stored or pre-configured as a default transport block.
  • the size, according to the default TBS, sends uplink data on the second resource.
  • the default TBS may be a parameter other than the first TBS and the second TBS, or may be the first TBS.
  • the default TBS is greater than the second TBS.
  • the terminal device sends uplink data to the network device.
  • the terminal device is a configured grant UE, and the uplink data sent by the terminal device may be URLLC service data.
  • the terminal device needs to send the URLLC service data
  • the terminal device sends the URLLC service data on the second resource according to the transport block size of S203, that is, the terminal device sends the URLLC service data on the second resource according to the first TBS, or the terminal device according to the second
  • the TBS sends the URLLC service data on the second resource.
  • the first TBS is greater than the second TBS.
  • the terminal device when the terminal device detects that the configured grant resource conflicts or collides with other resources before sending the URLLC service data, the terminal device reduces the size of the transport block used for sending the URLLC service data on the configured grant resource. Correspondingly, the MCS of the URLLC service is reduced, thereby improving the anti-interference capability of the URLLC service data, and improving the reliability of sending the URLLC service data.
  • FIG. 11 is a schematic flowchart of another method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • S1101 The network device determines that there is an overlap between the first resource and the second resource.
  • S1102 The network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device determines to use the third resource according to the location relationship between the first resource and the second resource.
  • the third resource is different from the second resource.
  • the third resource and the second resource have no overlapping resource blocks in the frequency domain, and there are no overlapping symbols in the time domain. Therefore, if the first resource collides with the second resource and the uplink data is sent by using the third resource instead of the second resource, it is likely that the third resource does not intersect with the second resource, so that the data sent on the third resource is completely un
  • the interference of data transmitted on a resource ensures the reliability of data transmission.
  • the number of resource blocks (RBs) or resource elements (REs, Resource Elements) of the third resource is greater than the second resource. Data with constant transmission block size is transmitted over a larger resource, which reduces the MCS (eg, modulation order and/or code rate) accordingly, thereby improving the anti-jamming capability of the transmission.
  • MCS modulation order and/or code rate
  • the terminal device determines to use the second resource to send data;
  • the terminal device sends data by using the second resource or the third resource;
  • the terminal device sends the data by using the third resource instead of the second resource;
  • the terminal device sends the uplink data by using the second resource.
  • the preset value may be a network device configured to the terminal device, or may be a fixed value pre-stored by the terminal device.
  • the specific value is not limited in this embodiment.
  • the preset value may be 50%.
  • the eMBB resource and the configured grant resource do not overlap in the slot n, and the URLLC terminal determines to use the second resource to transmit data; in the slot n+1, the eMBB resource and the configured grant resource partially overlap, and the URLLC The terminal determines to use the third resource to send data; in the time slot n+2, the eMBB resource and the configured grant resource completely overlap, and the URLLC terminal determines to use the third resource to send data.
  • the method further includes: determining, by the terminal device, the transport block size according to at least one of a transmission power of the first resource and a transmission energy of the first resource.
  • the terminal device determines to use the second resource to send data
  • the terminal device determines to use the third resource to send data
  • the terminal device determines to use the second resource to send data
  • the terminal device determines to use the third resource to transmit data.
  • the network device before the network device sends the indication information to the terminal device, the network device further includes: the network device sends the configuration parameter of the third resource to the terminal device; the signaling of the configuration parameter that carries the third resource includes but is not limited to the RRC signaling, the MAC - CE or other forms of signaling.
  • the terminal device does not detect the indication information, it indicates that the second resource does not collide or collide with the first resource, and the terminal device sends the data by using the second resource.
  • the second resource is smaller than the third resource.
  • S1104 The terminal device sends uplink data to the network device on the third resource, where the network device receives uplink data from the terminal device.
  • the terminal device is a configured grant UE, and the uplink data sent by the terminal device may be URLLC service data.
  • the terminal device determines whether to send the URLLC service data on the second resource or the third resource according to S203, where the third resource is greater than the second resource.
  • the terminal device when the terminal device detects that the configured grant resource conflicts or collides with other resources before sending the URLLC service data, changing the resource used for sending the URLLC service data on the configured grant resource can be correspondingly reduced.
  • the MCS of the URLLC service improves the anti-interference capability of the URLLC service data and improves the reliability of sending URLLC service data.
  • FIG. 3 is a schematic flowchart of another method for transmitting uplink data according to an embodiment of the present application.
  • the method includes:
  • the network device determines that there is an overlap between the first resource and the second resource.
  • the first resource is used to send the pre-scheduled first uplink data
  • the second resource is used to send the unscheduled second uplink data.
  • the network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device in this embodiment is a non-configured grant UE, for example, the terminal device is an eMBB terminal.
  • the indication information is used to indicate the first resource, for example, the indication information includes location information of the first resource, and the location information of the first resource indicates a frequency domain location of the first resource, where the indication information may represent the first resource in a display or stealth manner.
  • Location information The signaling of the bearer indication information includes, but is not limited to, at least one of DCI, MAC-CE, and UE specific.
  • the duration that the network device sends the downlink signaling to the terminal device after receiving and processing the downlink signaling, and then sending the uplink data according to the indication of the downlink signaling is defined as K2, where the value of K2 is a plurality of time slots ( Slots), for example:
  • the value of K2 is any one of a set of values ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ . If the network device sends the broadcast signaling carrying the indication information in the slot n, the terminal device sends the uplink data in the slot n+k according to the broadcast signaling.
  • the network device indicates that the first resource is scheduled to be on the second resource in the k+1 slots corresponding to slot n to slot n+k.
  • the network should send broadcast signaling in slot n according to the periodic rule, and no collision occurs between the first resource and the second resource in the k+1 slots corresponding to slot n to slot n+k, the network does not need to be in slot n. Broadcast signaling is sent because the broadcast signaling does not change the behavior of the terminal device, which causes waste of signaling resources and increases overhead, where n and k are integers greater than zero.
  • the duration of the terminal device receiving the broadcast signaling to the uplink data is N2, and the value of N2 is associated with the subcarrier spacing.
  • the terminal device determines, according to a location relationship between the first resource and the second resource, a configuration parameter of the transmit power.
  • the configuration parameter of the transmit power is used to determine the transmit power of the terminal device.
  • the configuration parameter of the transmit power includes the first power control parameter or the second power control parameter, that is, the terminal device uses the transmit power determined by the first power control parameter to perform uplink transmission, or uses the transmit power determined by the second power control parameter to perform uplink transmission.
  • the transmit power determined by the second power control parameter is greater than the transmit power determined by the first power control parameter.
  • the determining, by the terminal device, the configuration parameter of the transmit power according to the location relationship between the first resource and the second resource includes:
  • the terminal device determines that the configuration parameter of the transmit power is the first power control parameter
  • the terminal device determines that the configuration parameter of the transmit power is the second power control parameter.
  • the eMBB resource and the configured grant resource do not overlap in the slot n, and the eMBB terminal determines the configuration parameter of the transmit power as the second power control parameter; the eMBB resource and the configured grant in the slot n+1
  • the resource partially overlaps, and the configuration parameter of the eMBB terminal determines the transmit power is the first power control parameter; in the time slot n+2, the eMBB resource and the configured grant resource completely overlap, and the eMBB terminal determines the configuration parameter of the transmit power as the first power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • each of the first power control parameter and the second power control parameter may be referred to the description of S203 in FIG. 2a, and details are not described herein again.
  • the terminal device if the terminal device does not detect the indication information, indicating that the second resource does not collide or collide with the first resource, the terminal device is pre-stored or pre-configured as a default power control.
  • the parameter sends the uplink data on the second resource according to the transmit power determined by the default power control parameter.
  • the default power control parameter may be a parameter other than the first power control parameter and the second power control parameter, or may be a second power control parameter.
  • the terminal device sends uplink data to the network device on the first resource according to the determined transmit power, where the network device receives uplink data from the terminal device.
  • the terminal device is an eMBB terminal, and therefore the uplink data sent by the terminal device is eMBB service data.
  • the terminal device determines the transmit power according to the configuration parameter of the transmit power of the S303, and uses the transmit power to send the eMBB service data on the first resource, that is, the transmit power determined by the terminal device according to the first power control parameter.
  • the eMBB service data is sent on the first resource, or the terminal device sends the eMBB service data on the first resource according to the transmit power determined by the second power control parameter.
  • the transmit power determined by the terminal device according to the first power control parameter is smaller than the transmit power determined according to the second power control parameter.
  • the terminal device detects that the configured grant resource and the resource scheduled for the non-URLLC service data collide or collide before the non-URLLC service data needs to be sent, and reduces the transmit power of sending the non-URLLC service data. It can reduce the interference to the URLLC service data sent on the configured resource and improve the reliability of sending the URLLC service data.
  • FIG. 4 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • the network device determines that there is an overlap between the first resource and the second resource.
  • the first resource is used to send the pre-scheduled first uplink data
  • the second resource is used to send the unscheduled second uplink data.
  • the network device sends indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device in this embodiment is a configured grant UE, and the terminal device may also be referred to as a URLLC terminal.
  • the indication information is used to indicate a configuration parameter of the transmit power, and the configuration parameter of the transmit power is used to determine the transmit power when the terminal device sends the URLLC service data.
  • the configuration parameter of the transmit power may be a first power control parameter or a second power control parameter.
  • the indication information is used to indicate a configuration parameter of the transmit power.
  • the network device sends the indication information to indicate a configuration parameter of the transmit power.
  • the transmit power is The configuration parameter is the first power control parameter, and the configuration parameter of the transmit power is the second power control parameter.
  • the signaling carrying the indication information may be broadcast signaling or multicast signaling, and the network device sends the indication information to a group of terminal devices by using broadcast signaling or multicast signaling.
  • the broadcast signaling or the multicast signaling may be a group common DCI (Downlink Control Information) or a terminal specific DCI (UE specific DCI).
  • the signaling carrying the indication information may also be a MAC-CE (Media Access Control-Control Element).
  • the format of the DCI may be DCI_format 2_2, and one field DCI field is added in DCI_format 2_2, and the DCI field field indicates indication information.
  • the broadcast signaling or the multicast signaling may be a DCI in a new format.
  • the format of the DCI is named format 2_4, and the DCI carries the indication information.
  • the embodiment of the present application uses the group public DCI to send indication information, which can improve the reliability of the indication information transmission, reduce the decoding time of the terminal device, and reduce the processing delay.
  • the indication information is 1 bit, and the value of the different bit is used to indicate the first power control parameter or the second power control parameter. For example, when the bit is “0”, the indication information indicates the first power control parameter. When the bit is "1”, the indication information indicates the second power control parameter.
  • the indication information is one sequence, and the first power control parameter is indicated when the sequence does not exist in the signaling, and the second power control parameter is indicated when the sequence exists in the signaling.
  • the terminal device determines the transmit power according to the transmit power configuration parameter.
  • the terminal device determines, according to the indication of the indication information, that the configuration parameter of the transmit power is the first power control parameter or the second power control parameter, and the terminal device determines the transmit power according to the configuration parameter of the power control.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process and a transmission power command word.
  • each of the first power control parameter and the second power control parameter may be referred to the description of S202 of FIG. 2a, and details are not described herein again.
  • the information group includes a closed loop power control process index and a transmission power command word
  • the terminal device maintains two independent closed loop power control processes: a first process and a second process
  • the first process indicates closed loop power control of the uninterrupted URLLC service data.
  • the second process represents the closed loop power control process of the interfered URLLC traffic data.
  • the transmit power corresponding to the switched process is the cumulative power correction value
  • the transmission corresponding to the last process of the same type of the switched process The power is zeroed.
  • the transmit power corresponding to the current process is the result of the transmit power corresponding to the previous process plus the cumulative power correction value indicated by the transmit power command word.
  • the terminal device if the terminal device does not detect the indication information, indicating that the second resource does not collide or collide with the first resource, the terminal device is pre-stored or pre-configured as a default power control.
  • the parameter sends the uplink data on the second resource according to the transmit power determined by the default power control parameter.
  • the default power control parameter may be a parameter other than the first power control parameter and the second power control parameter, or may be the first power control parameter.
  • the terminal device sends uplink data to the network device on the second resource according to the determined transmit power.
  • the terminal device is a configured grant UE, and therefore the uplink data sent by the terminal device is URLLC service data.
  • the terminal device determines the transmit power according to the configuration parameter of the transmit power of S403, and uses the transmit power to send the URLLC service data on the second resource, that is, the transmit power determined by the terminal device according to the first power control parameter.
  • the URLLC service data is sent on the second resource, or the terminal device sends the URLLC service data on the second resource according to the transmit power determined by the second power control parameter.
  • the transmit power determined by the terminal device according to the first power control parameter is smaller than the transmit power determined according to the second power control parameter.
  • the terminal device detects that the configured grant resource and other resources conflict or collide before sending the uplink data, and improves the transmit power of the uplink data sent on the configured grant resource, thereby improving the uplink data resistance. Interference ability, improve the reliability of sending uplink data.
  • FIG. 5 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • the network device determines that there is an overlap between the first resource and the second resource.
  • the first resource is used to send the pre-scheduled first uplink data
  • the second resource is used to send the unscheduled second uplink data.
  • the network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device in this embodiment is a non-configured grant UE, for example, the terminal device is an eMBB terminal.
  • the indication information is used to indicate a configuration parameter of the transmission power, and the configuration parameter of the transmission power is used to determine the transmission power when the terminal device sends the non-URLLC service data.
  • the configuration parameter of the transmit power may be a first power control parameter or a second power control parameter.
  • the transmit power determined by the first power control parameter is smaller than the transmit power determined by the second power control parameter.
  • the indication information indicates the first power control parameter.
  • the signaling of the bearer indication information may be a group common DCI (Downlink Control Information), or may be a terminal-specific DCI (UE specific DCI). .
  • the signaling carrying the indication information may also be a MAC-CE (Media Access Control-Control Element).
  • the terminal device determines the transmit power according to the configuration parameter of the transmit power.
  • the terminal device determines the transmit power according to the configuration parameter of the transmit power determined by S502.
  • the configuration parameter of the transmit power determined by the terminal device according to the indication information is the first power control parameter, because the first resource and the second resource collide.
  • the terminal device if the terminal device does not detect the indication information, indicating that the second resource does not collide or collide with the first resource, the terminal device is pre-stored or pre-configured as a default power control.
  • the parameter sends the uplink data on the second resource according to the transmit power determined by the default power control parameter.
  • the default power control parameter may be a parameter other than the first power control parameter and the second power control parameter, or may be a second power control parameter.
  • the default power control parameter determines a transmit power that is greater than a transmit power determined by the first power control parameter.
  • the terminal device sends uplink data on the first resource according to the determined transmit power.
  • the terminal device is an eMBB terminal, and therefore the uplink data sent by the terminal device is eMBB service data.
  • the terminal device determines the transmit power according to the configuration parameter of the transmit power of S503, and uses the transmit power to send the eMBB service data on the first resource, that is, the transmit power determined by the terminal device according to the first power control parameter.
  • the eMBB service data is sent on the first resource.
  • the transmit power determined by the terminal device according to the first power control parameter is smaller than the transmit power determined according to the second power control parameter.
  • the terminal device detects that the configured grant resource and the resource scheduled for the non-URLLC service data collide or collide before the non-URLLC service data needs to be sent, and reduces the transmit power of sending the non-URLLC service data. It can reduce the interference to the URLLC service data sent on the configured resource and improve the reliability of sending the URLLC service data.
  • FIG. 12 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • S1201 The network device determines that there is an overlap between the first resource and the second resource.
  • S1201 is the same as that of S401 in FIG. 4, and the specific process may refer to the description of S401, and details are not described herein again.
  • S1202 The network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device in this embodiment is a configured grant UE, and the terminal device may also be referred to as a URLLC terminal.
  • the indication information is used to indicate a modulation and coding mode, and the modulation and coding mode is used to determine an MCS when the terminal device sends the URLLC service data.
  • the modulation and coding method may be a first modulation coding method or a second modulation coding method.
  • the indication information is used to indicate a modulation and coding scheme.
  • the network device sends the indication information to indicate the modulation and coding mode.
  • the modulation and coding manner is It is a first modulation coding mode, otherwise the modulation coding mode is a second modulation coding mode.
  • the signaling carrying the indication information may be broadcast signaling or multicast signaling, and the network device sends the indication information to a group of terminal devices by using broadcast signaling or multicast signaling.
  • the broadcast signaling or the multicast signaling may be a group common DCI (Downlink Control Information) or a terminal specific DCI (UE specific DCI).
  • the signaling carrying the indication information may also be a MAC-CE (Media Access Control-Control Element).
  • the format of the DCI may be DCI_format 2_2, and one field DCI field is added in DCI_format 2_2, and the DCI field field indicates indication information.
  • the broadcast signaling or the multicast signaling may be a DCI in a new format.
  • the format of the DCI is named format 2_4, and the DCI carries the indication information.
  • the embodiment of the present application uses the group public DCI to send indication information, which can improve the reliability of the indication information transmission, reduce the decoding time of the terminal device, and reduce the processing delay.
  • the indication information is 1 bit, and the value of the different bit is used to indicate the first modulation coding mode or the second modulation coding mode. For example, when the bit is “0”, the indication information indicates the first modulation and coding mode. When the bit is "1”, the indication information indicates the second modulation coding mode.
  • the indication information is one sequence, and when the sequence does not exist in the signaling, the first modulation coding mode is indicated, and when the sequence exists in the signaling, the second modulation coding mode is indicated.
  • the terminal device sends uplink data to the network device on the second resource according to the determined modulation and coding manner.
  • the terminal device is a configured grant UE, and therefore the uplink data sent by the terminal device is URLLC service data.
  • the terminal device needs to send the URLLC service data
  • the terminal device sends the URLLC service data on the second resource by using the modulation and coding mode according to the modulation and coding mode determined in S1402, that is, the terminal device sends the second resource according to the first modulation and coding mode.
  • the URLLC service data, or the terminal device sends the URLLC service data on the second resource according to the second modulation and coding manner.
  • the modulation order and/or the code rate determined by the terminal device according to the first modulation and coding manner is smaller than the second power control parameter.
  • the terminal device when the terminal device detects that the configured grant resource conflicts or collides with other resources before transmitting the uplink data, the terminal device reduces the code rate and the modulation order of sending the uplink data on the configured grant resource, so as to improve.
  • the anti-interference ability of the uplink data improves the reliability of transmitting uplink data.
  • FIG. 13 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • S1301 The network device determines that there is an overlap between the first resource and the second resource.
  • S1301 is the same as that of S401 in FIG. 4, and the specific process may refer to the description of S401, and details are not described herein again.
  • S1302 The network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the terminal device in this embodiment is a configured grant UE, and the terminal device may also be referred to as a URLLC terminal.
  • the indication information is used to indicate the transmission size.
  • the transport block size can be either the first transport block size or the second transport block size.
  • the indication information is used to indicate a transport block size.
  • the transmission size is The first transport block size, otherwise the transport block size is the second transport block size.
  • the signaling carrying the indication information may be broadcast signaling or multicast signaling, and the network device sends the indication information to a group of terminal devices by using broadcast signaling or multicast signaling.
  • the broadcast signaling or the multicast signaling may be a group common DCI (Downlink Control Information) or a terminal specific DCI (UE specific DCI).
  • the signaling carrying the indication information may also be a MAC-CE (Media Access Control-Control Element).
  • the format of the DCI may be DCI_format 2_2, and one field DCI field is added in DCI_format 2_2, and the DCI field field indicates indication information.
  • the broadcast signaling or the multicast signaling may be a DCI in a new format.
  • the format of the DCI is named format 2_4, and the DCI carries the indication information.
  • the embodiment of the present application uses the group public DCI to send indication information, which can improve the reliability of the indication information transmission, reduce the decoding time of the terminal device, and reduce the processing delay.
  • the terminal device sends uplink data to the network device on the second resource according to the determined transmit power.
  • the terminal device is a configured grant UE, and therefore the uplink data sent by the terminal device is URLLC service data.
  • the terminal device needs to send the URLLC service data
  • the terminal device sends the URLLC service data on the second resource according to the transport block size of S1402, that is, the terminal device sends the URLLC service data on the second resource according to the first transport block size.
  • the terminal device sends the URLLC service data on the second resource according to the second transport block size.
  • the terminal device is greater than the second transport block size according to the number of REs or RBs included in the first transport block size.
  • the terminal device when the terminal device detects that the configured grant resource conflicts or collides with other resources before transmitting the uplink data, the terminal device reduces the transmission block size of sending the uplink data on the configured grant resource, thereby improving the uplink data.
  • the anti-interference ability improves the reliability of transmitting uplink data.
  • FIG. 14 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present disclosure.
  • the method includes:
  • S1401 The network device determines that there is an overlap between the first resource and the second resource.
  • S401 is the same as that of S401 in FIG. 4, and the specific process may refer to the description of S401, and details are not described herein again.
  • S1402 The network device sends the indication information to the terminal device, where the terminal device receives the indication information from the network device.
  • the indication information is used to indicate the third resource, for example, indicating a frequency domain location and a time domain location of the third resource, where the third resource is different from the second resource.
  • the third resource and the second resource have no overlapping resource blocks in the frequency domain, and there are no overlapping symbols in the time domain. Therefore, if the first resource collides with the second resource and the uplink data is sent by using the third resource instead of the second resource, it is likely that the third resource does not intersect with the second resource, so that the data sent on the third resource is completely un
  • the interference of data transmitted on a resource ensures the reliability of data transmission.
  • the number of resource blocks (RBs) or resource elements (REs, Resource Elements) of the third resource is greater than the second resource. Data with constant transmission block size is transmitted over a larger resource, which reduces the MCS (eg, modulation order and/or code rate) accordingly, thereby improving the anti-jamming capability of the transmission.
  • MCS modulation order and/or code rate
  • the terminal device determines to use the second resource to send data;
  • the terminal device sends data by using the second resource or the third resource;
  • the terminal device sends the data by using the third resource instead of the second resource;
  • the terminal device sends the uplink data by using the second resource.
  • the preset value may be a network device configured to the terminal device, or may be a fixed value pre-stored by the terminal device.
  • the specific value is not limited in this embodiment.
  • the preset value may be 50%.
  • the eMBB resource and the configured grant resource do not overlap in the slot n, and the URLLC terminal determines to use the second resource to transmit data; in the slot n+1, the eMBB resource and the configured grant resource partially overlap, and the URLLC The terminal determines to use the third resource to send data; in the time slot n+2, the eMBB resource and the configured grant resource completely overlap, and the URLLC terminal determines to use the third resource to send data.
  • the method further includes: determining, by the terminal device, the transport block size according to at least one of a transmission power of the first resource and a transmission energy of the first resource.
  • the terminal device determines to use the second resource to send data
  • the terminal device determines to use the third resource to send data
  • the terminal device determines to use the second resource to send data
  • the terminal device determines to use the third resource to transmit data.
  • the network device before the network device sends the indication information to the terminal device, the network device further includes: the network device sends the configuration parameter of the third resource to the terminal device; the signaling of the configuration parameter that carries the third resource includes but is not limited to the RRC signaling, the MAC - CE or other forms of signaling.
  • the terminal device does not detect the indication information, it indicates that the second resource does not collide or collide with the first resource, and the terminal device sends the data by using the second resource.
  • the second resource is smaller than the third resource.
  • the terminal device sends uplink data to the network device on the third resource, where the network device receives uplink data from the terminal device.
  • the terminal device is a configured grant UE, and the uplink data sent by the terminal device may be URLLC service data.
  • the terminal device determines whether to send the URLLC service data on the second resource or the third resource according to S203, where the third resource is greater than the second resource.
  • the terminal device when the terminal device detects that the configured grant resource conflicts or collides with other resources before sending the URLLC service data, changing the resource used for sending the URLLC service data on the configured grant resource can be correspondingly reduced.
  • the MCS of the URLLC service improves the anti-interference capability of the URLLC service data and improves the reliability of sending URLLC service data.
  • FIG. 6 provides an uplink data transmission apparatus (hereinafter referred to as apparatus 6) of the embodiment of the present application.
  • the device 6 includes a processing unit 601 and a sending unit 602.
  • the specific implementation process of the device 6 can be referred to the description of FIG. 2a.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate the first resource.
  • the processing unit 601 is further configured to determine the second resource.
  • the processing unit 601 is further configured to: when the indication information is detected, determine a configuration parameter of the transmit power according to a positional relationship between the first resource and the second resource; the configuration parameter includes a first power control parameter or a second power control parameter.
  • the configuration parameter includes a first configuration parameter or a second configuration parameter, and the first configuration parameter and the second configuration parameter include any one or combination of the following information: a transmit power configuration parameter, and an MCS modulation and coding mode. , TBS transport block size and resource allocation information
  • the processing unit 601 is further configured to determine a transmit power according to the configuration parameter.
  • the sending unit 602 is configured to send uplink data on the second resource according to the transmit power.
  • the configuration parameter of the transmit power is a default power control parameter.
  • the processing unit 601 determines configuration parameters of the transmit power according to the location relationship between the first resource and the second resource, including:
  • determining a configuration parameter of the transmit power is the first power control parameter
  • the configuration parameter for determining the transmit power is the second power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the indication information is carried in downlink control information of broadcast or multicast.
  • the indication information is further used to indicate:
  • FIG. 6 provides an uplink data transmission apparatus (hereinafter referred to as apparatus 6) of the embodiment of the present application.
  • the device 6 includes a processing unit 601 and a sending unit 602. The specific implementation process of the device 6 can be referred to the description of FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate a configuration parameter of the transmit power, where the configuration parameter of the transmit power includes a first power control parameter and a second power control parameter.
  • the processing unit 601 is further configured to: when the indication information is detected, determine a transmit power according to the configuration parameter of the transmit power.
  • the sending unit 602 is configured to send uplink data to the network device on the second resource according to the transmit power.
  • the sending unit 602 is further configured to:
  • the uplink power is sent on the second resource according to the transmit power determined by the default power control parameter.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • the indication information is carried in downlink control information of broadcast or multicast.
  • FIG. 6 provides an uplink data transmission apparatus (hereinafter referred to as apparatus 6) of the embodiment of the present application.
  • the device 6 includes a processing unit 601 and a sending unit 602. The specific implementation process of the device 6 can be referred to the description of FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate the first resource.
  • the processing unit 601 is further configured to determine the second resource.
  • the processing unit 601 is further configured to determine a modulation and coding mode according to a positional relationship between the first resource and the second resource, where the modulation and coding mode includes a first modulation and coding mode. Or the second modulation coding method.
  • the sending unit 602 is configured to send uplink data on the second resource according to the modulation and coding mode.
  • the modulation and coding mode is a default modulation and coding mode.
  • the processing unit 601 is configured to determine, according to the location relationship between the first resource and the second resource, a modulation and coding manner, including:
  • the first resource and the second resource do not overlap at all, and the modulation and coding mode is determined to be a first modulation and coding mode;
  • the first resource is partially overlapped or overlapped with the second resource, and the modulation and coding mode is determined to be a second modulation and coding mode.
  • FIG. 6 provides an uplink data transmission apparatus (hereinafter referred to as apparatus 6) of the embodiment of the present application.
  • the device 6 includes a processing unit 601 and a sending unit 602. The specific implementation process of the device 6 can be referred to the description of FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate the first resource.
  • the processing unit 601 is further configured to determine a second resource.
  • the processing unit 601 is further configured to determine, according to the location relationship between the first resource and the second resource, a transport block size, where the indication information is detected, where the transport block size includes a first transport block size or a second transmission. Block size.
  • the sending unit 602 is configured to send uplink data on the second resource according to the transport block size.
  • the transport block size is a default transport block size.
  • the processing unit 601 is configured to determine, according to the location relationship between the first resource and the second resource, a transport block size, including:
  • the transport block size is a first transport block size if the first resource and the second resource do not overlap at all;
  • the transport block size is determined to be a second transport block size.
  • FIG. 6 provides an uplink data transmission apparatus (hereinafter referred to as apparatus 6) of the embodiment of the present application.
  • the device 6 includes a processing unit 601 and a sending unit 602. The specific implementation process of the device 6 can be referred to the description of FIG.
  • FIG. 6 provides an uplink data transmission apparatus (hereinafter referred to as apparatus 6) of the embodiment of the present application.
  • the device 6 includes a processing unit 601 and a sending unit 602. The specific implementation process of the device 6 can be referred to the description of FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate the first resource.
  • the sending unit 602 is configured to: when the processing unit detects the indication information, and the first resource partially overlaps or completely overlaps with the second resource, sends the uplink data on the third resource.
  • the sending unit 602 is further configured to:
  • processing unit detects the indication information, and the first resource does not overlap with the second resource at all, sending uplink data on the second resource;
  • the processing unit does not detect the indication information from the network device, the uplink data is transmitted on the second resource.
  • the device 6 includes a processing unit 601 and a sending unit 602.
  • the specific implementation process of the device 6 can be referred to the description of FIG.
  • a processing unit configured to detect indication information from the network device, where the indication information is used to indicate a modulation and coding manner, where the modulation and coding manner includes a first modulation and coding manner and a second modulation and coding manner;
  • a sending unit configured to send uplink data to the network device on the second resource according to the modulation and coding manner.
  • the uplink data is sent on the second resource according to a default modulation and coding manner.
  • the device 6 includes a processing unit 601 and a sending unit 602.
  • the specific implementation process of the device 6 can be referred to the description of FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate a transport block size, where the transport block size includes a first transport block size and a second transport block size.
  • the sending unit 602 is configured to send uplink data to the network device on the second resource according to the transport block size.
  • the sending unit 602 is further configured to:
  • the uplink data is sent on the second resource according to a default transport block size.
  • the device 6 includes a processing unit 601 and a sending unit 602.
  • the specific implementation process of the device 6 can be referred to the description of FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate the third resource.
  • the sending unit 602 is configured to send uplink data to the network device on the third resource if the first resource and the second resource overlap.
  • the sending unit 602 is further configured to:
  • the uplink data is sent on the second resource according to a default transport block size.
  • the device 6 includes a processing unit 601 and a sending unit 602.
  • the specific implementation process of the device 6 can be referred to the description of FIG. 12 to FIG.
  • the processing unit 601 is configured to detect indication information from the network device, where the indication information is used to indicate a configuration parameter, where the configuration parameter includes a first configuration parameter and a second configuration parameter.
  • the sending unit 602 is configured to send uplink data to the network device according to the resource configuration parameter.
  • the configuration parameter includes any one or combination of the following information: a modulation coding mode, a transport block size, and resource allocation information.
  • the sending unit 602 is further configured to:
  • the uplink data is sent according to a default configuration parameter.
  • the default configuration parameter is a parameter that is independent of the first configuration parameter and the second configuration parameter; or the default configuration parameter is the first configuration parameter.
  • the device 6 may be a terminal device, and the device 6 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit for implementing related functions.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • MCU micro controller unit
  • PLD programmable logic device
  • FIG. 2a to FIG. 5 and FIG. 9 to FIG. 14 are based on the same concept, and the technical effects thereof are also the same.
  • the specific process can refer to FIG. 2a to FIG. 5 and FIG. 9 to FIG. Description of method embodiments, which are not described herein again.
  • FIG. 7 provides another uplink data transmission apparatus (hereinafter referred to as apparatus 7) provided by the embodiment of the present application.
  • the apparatus 7 includes a sending unit 701 and a receiving unit 702.
  • the implementation of the device 7 can be referred to the description of Figure 2a.
  • the sending unit 701 is configured to send the indication information to the terminal device if there is an overlap between the first resource and the second resource, where the indication information is used to indicate the first resource.
  • the receiving unit 702 is configured to receive uplink data that is sent by the terminal device on the second resource.
  • the sending unit 701 is further configured to: send, to the terminal device, configuration information of the first power control parameter and the second power control parameter; or a first modulation coding mode and a second modulation coding mode; or a first transmission block size and The second transport block size.
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • FIG. 7 provides another uplink data transmission apparatus (hereinafter referred to as apparatus 7) provided by the embodiment of the present application, where the apparatus 7 includes a sending unit 701 and a receiving unit 702.
  • apparatus 7 includes a sending unit 701 and a receiving unit 702.
  • the implementation process of the device 7 can be referred to the description of FIG.
  • the sending unit 701 is configured to send indication information to the terminal device, where the indication information is used to indicate a configuration parameter of the transmit power, where the first power resource and the second resource have an overlap, and the configuration of the transmit power
  • the parameters include a first power control parameter and a second power control parameter.
  • the receiving unit 702 is configured to receive uplink data that is sent by the terminal device on the second resource.
  • the sending unit 701 is further configured to: send configuration information of the first power control parameter and the second power control parameter to the terminal device.
  • the receiving unit is further configured to:
  • the first power control parameter and the second power control parameter include at least one of the following information:
  • Power control identification information where the power control identification information is used to indicate a path loss compensation factor and/or a target signal to noise ratio of the network device receiving the data transmitted by the terminal device;
  • the information group includes a closed loop power control process index and a transmission power command word.
  • FIG. 7 provides another uplink data transmission apparatus (hereinafter referred to as apparatus 7) provided by the embodiment of the present application, where the apparatus 7 includes a sending unit 701 and a receiving unit 702.
  • apparatus 7 includes a sending unit 701 and a receiving unit 702.
  • the implementation process of the device 7 can be referred to the description of FIG.
  • the sending unit 701 is configured to send the indication information to the terminal device, where the indication information is used to indicate the first resource, where the first resource and the second resource overlap;
  • the receiving unit 702 is configured to receive uplink data from the terminal device on the third resource.
  • the device 7 includes a sending unit 701 and a receiving unit 702.
  • the implementation process of the device 7 can refer to the description of FIG.
  • the sending unit 701 is configured to send, to the terminal device, indication information, where the first information and the second resource have an overlap, where the indication information is used to indicate a modulation and coding mode; Modulation coding mode and second modulation coding mode.
  • the receiving unit 702 is configured to receive uplink data that is sent by the terminal device on the second resource according to the modulation and coding mode.
  • the receiving unit 702 is further configured to:
  • the device 7 includes a sending unit 701 and a receiving unit 702, and the device 7 implementation process can refer to the description of FIG.
  • the sending unit 701 is configured to send, to the terminal device, indication information, where the first resource and the second resource have an overlap, where the indication information is used to indicate a transport block size, and the transport block size includes the first Transport block size and second transport block size.
  • the receiving unit 702 is configured to receive uplink data that is sent by the terminal device on the second resource according to the transport block size.
  • the receiving unit 702 is further configured to:
  • the uplink data that is sent by the terminal device on the second resource according to the first transport block size is received.
  • the device 7 includes a sending unit 701 and a receiving unit 702, and the device 7 implementation process may refer to the description of FIG.
  • the sending unit 701 is configured to send indication information to the terminal device, where the indication information is used for the third resource, if there is an overlap between the first resource and the second resource.
  • the receiving unit 702 is configured to receive uplink data sent by the terminal device on the third resource.
  • the receiving unit 702 is further configured to:
  • the uplink data that is sent by the terminal device on the second resource according to the first transport block size is received.
  • the device 7 may be a network device, and the device 7 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit for implementing related functions.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • MCU micro controller unit
  • PLD programmable logic device
  • FIG. 2a and FIG. 5 and FIG. 9 to FIG. 14 are based on the same concept, and the technical effects thereof are also the same.
  • the specific process can refer to FIG. 2a and FIG. 5, and FIG. 9 to FIG. Description of method embodiments, which are not described herein again.
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • the device 8 may be integrated into the foregoing network device or terminal device.
  • the device includes: a memory 802, a processor 801, and a transmitting device. And a receiver 803.
  • the memory 802 can be a separate physical unit, and can be connected to the processor 801, the transmitter 804, and the receiver 803 via a bus.
  • the memory 802, the processor 801, the transmitter 804, and the receiver 801 can also be integrated together, implemented by hardware, and the like.
  • the transmitter 804 and the receiver 803 may also be connected to an antenna, and the receiver 803 receives information transmitted by other devices through an antenna, and accordingly, the transmitter 604 transmits information to other devices through the antenna.
  • the memory 802 is configured to store a program for implementing the above method embodiments, or various modules of the device embodiment, and the processor 601 calls the program to perform the operations of the foregoing method embodiments.
  • the uplink data transmission apparatus may also include only the processor.
  • the memory for storing the program is located outside the configuration device of the beam, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the sending unit or the transmitter performs the steps of the foregoing method embodiments
  • the receiving unit or the receiver performs the steps received by the foregoing method embodiments, and other steps are performed by other modules or processors.
  • the transmitting module and the receiving module can form a transceiver module
  • the receiver and the transmitter can form a transceiver.
  • the embodiment of the present application further provides a computer storage medium, which is stored with a computer program, which is used to execute the uplink data sending method and the receiving method provided by the foregoing embodiments.
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the method and method for transmitting the uplink data provided by the foregoing embodiments.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行数据的发送方法、接收方法和装置。在本申请中,终端设备检测到来自网络设备的指示信息,用于指示第一资源,根据第一资源和第二资源之间的位置关系确定发射功率的配置参数,根据发射功率配置参数调整发射功率,如果第一资源和第二资源有重叠,增大第二资源上发送数据的功率,相应地减小来自第一资源上发送的数据造成的干扰。

Description

一种上行数据的发送方法、接收方法和装置 技术领域
本公开涉及通信领域,尤其涉及一种上行数据的发送方法、接收方法和装置。
背景技术
为了应对未来爆炸性的移动数量流量增长,海量移动通信的设备连接,不断涌现各类新业务和应用场景,第五代移动通信以及未来的移动通信系统定义了三类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大和传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等,这些业务的主用特点是要求高可靠性、低时延、传输数量量小和突发性等。典型的mMTC业务有智能电网和智能城市等,这些业务的主要特点是联网设备数量巨大、传输数据量较小、数据传输对时延不敏感,mMTC终端需要满足低成本和长时间待机的需求。
在eMBB业务数据和URLLC业务数据在下行传输中资源共享的方式为:基站在传输下行的eMBB业务数据时,如果有突发的URLLC业务数据需要传输,则停止eMBB业务数据而传输下行的URLLC业务数据,URLLC业务数据传输完成后在继续传输eMBB业务数据,目前的方案只涉及下行传输中URLLC业务数据的传输过程,对于URLLC业务数据的上行传输过程还在讨论中。
发明内容
本申请实施例以期解决的技术问题在于,提供一种上行数据的发送方法、接收方法和装置,能提高上行数据传输的可靠性。
第一方面,本申请提供了一种上行数据的发送方法,包括:
终端设备检测来自网络设备的指示信息;其中,指示信息用于指示第一资源;
终端设备确定第二资源;当终端设备检测到指示信息时,终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数;其中,所述配置参数包括第一功率控制参数或第二功率控制参数;或所述配置参数包括第一配置参数或第二配置参数,所述第一配置参数和所述第二配置参数包括如下信息中的任意一种或组合:发射功率配置参数、MCS调制编码方式、TBS传输块大小和资源分配信息;终端设备根据配置参数确定的发射功率;根据发射功率在第二资源上发送上行数据。例如,所述上行数据是第一上行数据。值得说明的是,本申请对公开的方法的步骤并不限定先后顺序,例如上述方法中,终端设备可以在检测到所述指示信息后确定所述第二资源,也可以在检测到所述指示信息之前,确定所述第二资源,本申请对此不作限定。
其中,指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中的至少一种。终端设备根据第一资源和第二资源之间的位置关系确定功率控制参数。在一个实施例中,所述第一资源用于发送另一个上行数据,例如是第二上行数据。可选的,所述第二上行数据可以是预先调度的上行数据。所述第二资源用于发送所述第一上行数据。例如所述第一上行数据是免调度的上行数据。在一个实施例中,第二资源是configured grant资源(亦称为grant free资源),第二资源上发送的上行数据为免调度的,例如:第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置有第二资源的位置信息;第一资源用于发送周期性且业务量较大的上行的非URLLC业务数据,例如:第一资源用于发送上行的eMBB业务数据。终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数,发射功率的配置参数用于确定待发送的第二上行数据的发射功率。
在本申请的实施例中,终端设备检测到来自网络设备的指示信息,根据第一资源和第二资源之间的位置关系确定发射功率的配置参数,根据发射功率配置参数调整发射功率,如果第一资源和第二资源有重叠,增大第二资源上发送数据的功率,相应地减小来自第一资源上发送的数据造成的干扰。
在一种可能的设计中,还包括:终端设备未检测到来自网络设备的指示信息的情况下,所述发射功率的配置参数为默认的功率控制参数。
在一种可能的设计中,所述发射功率的配置参数为第一功率控制参数;或所述发射功率的配置参数为独立于所述第一功率控制参数和所述第二功率控制参数的参数。
在一种可能的设计中,所述终端设备根据第一资源和第二资源的位置关系确定发射功率的配置参数包括:
在第一资源与第二资源完全不重叠的情况下,终端设备确定发射功率的配置参数为第一功率控制参数;或
在第一资源与第二资源部分重叠或全部重叠的情况下,终端设备确定发射功率的配置参数为第二功率控制参数。
在一种可能的设计中,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收到终端设备发送的数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
其中,终端设备采用闭环方式进行发射功率的控制时,终端设备维护两个闭环功率控制进程:上行数据受干扰时的闭环功率控制进程和上行数据未受干扰时的闭环功率控制进程,上述两个闭环功率控制进程为独立的进程。例如:闭环功率控制进程索引为1是表示上行数据受干扰时的闭环功率控制进程,闭环功率控制进程索引为2时表示上行数据未受干扰时的闭环功率控制进程。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
在一种可能的设计中,指示信息还用于指示:第一资源的传输功率、第一资源的传输 能量、第一资源的调制编码方式中的至少一种。
在一种可能的设计中,在第一资源和第二资源之间存在重叠,且第一资源的传输功率小于功率阈值的情况下,发射功率的配置参数为第一功率控制参数;或
在第一资源和第二资源之间存在重叠,且第一资源的传输功率不小于预设阈值的情况下,发射功率的配置参数为第二功率控制参数;
在第一资源和第二资源之间存在重叠,且第一资源的传输能量小于能量阈值的情况下,发射功率的配置参数为第一功率控制参数;或
在第一资源和第二资源之间存在重叠,且第一资源的传输能量不小于能量阈值的情况下,发射功率的配置参数为第二功率控制参数;或
在第一资源和第二资源之间存在重叠,且第一资源的调制阶数大于预设值的情况下,发射功率的配置参数为第一功率控制参数;或
在第一资源和第二资源之间存在重叠,且第一资源的调制阶数不大于预设值的情况下,发射功率的配置参数为第二功率控制参数。
第二方面,本申请提供了一种上行数据的接收方法,包括:
网络设备向终端设备发送指示信息,所述指示信息用于指示第一资源,所述第一资源与第二资源存在重叠;网络设备在第二资源上从终端设备接收上行数据。
在一个可选的实施例中,所述上行数据对应的发射功率对应于第一功率控制参数和第二功率控制参数中的一个。可选的,所述发射功率与所述第一资源和所述第二资源的位置关系相关。
其中,第一资源用于发送预先调度的第一上行数据,第二资源用于发送免调度的第二上行数据。指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中至少一种。第二资源是configured grant资源(也成为grant free资源),即终端设备为configured grant UE或grant free UE;第二资源上发送的上行数据为免调度的,第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置为第二资源的位置信息;第一资源用于发送上行的URLLC数据,例如:第二资源用于发送eMBB业务数据。发射功率的配置参数用于确定待发送的第二上行数据的发射功率。
在一种可能的设计中,还包括:所述网络设备向所述终端设备发送配置参数,所述配置参数包括第一发射功率配置参数和第二发射功率配置参数;或所述配置参数包括第一调制编码方式和第二调制编码方式;或所述配置参数包括第一传输块大小和第二传输块大小网络设备向终端设备发送第一功率控制参数和第二功率控制参数的配置信息。
在一种可能的设计中,第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息;功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收终端设备发送的数据的目标信噪比;
信息组,信息组包括闭环功率控制索引和传输功率命令字。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
在一种可能的设计中,第二资源包括预配置授权configured grant资源。
在一种可能的设计中,终端设备为预配置授权的configured grant终端设备。
第三方面,本申请提供了一种上行数据的发送方法,包括:
终端设备检测来自网络设备的指示信息;其中,指示信息用于指示第一资源;
终端设备确定第二资源;当终端设备检测到指示信息时,终端设备根据第一资源和第二资源之间的位置关系确定调制编码方式(MCS,modulation and coding scheme);其中,所述调制编码方式包括第一MCS或第二MCS;第一MCS和第二MCS是独立配置的。根据所述调制编码方式在第二资源上发送上行数据。例如,所述上行数据是第一上行数据。值得说明的是,本申请对公开的方法的步骤并不限定先后顺序,例如上述方法中,终端设备可以在检测到所述指示信息后确定所述第二资源,也可以在检测到所述指示信息之前,确定所述第二资源,本申请对此不作限定。
其中,指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中的至少一种。终端设备根据第一资源和第二资源之间的位置关系确定调制编码方式。在一个实施例中,所述第一资源用于发送另一个上行数据,例如是第二上行数据。可选的,所述第二上行数据可以是预先调度的上行数据。所述第二资源用于发送所述第一上行数据。例如所述第一上行数据是免调度的上行数据。在一个实施例中,第二资源是configured grant资源(亦称为grant free资源),第二资源上发送的上行数据为免调度的,例如:第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置有第二资源的位置信息;第一资源用于发送周期性且业务量较大的上行的非URLLC业务数据,例如:第一资源用于发送上行的eMBB业务数据。终端设备根据第一资源和第二资源之间的位置关系确定调制编码方式,根据所述调制编码方式确定待发送的第二上行数据。
在本申请的实施例中,终端设备检测到来自网络设备的指示信息,根据第一资源和第二资源之间的位置关系确定调制编码方式,如果第一资源和第二资源有重叠,采用调制阶数较小且码率较低的调制编码方式,相应地减小来自第一资源上发送的数据造成的干扰。
在一种可能的设计中,还包括:终端设备未检测到来自网络设备的指示信息的情况下,所述调制编码方式为默认的调制编码方式。
在一种可能的设计中,所述默认的调制编码方式为第一MCS;或所述默认的调制编码方式独立于所述第一MCS和所述第二MCS。
在一种可能的设计中,所述终端设备根据第一资源和第二资源的位置关系确定调制编码方式包括:
在第一资源与第二资源完全不重叠的情况下,终端设备确定调制编码方式为第一MCS;或
在第一资源与第二资源部分重叠或全部重叠的情况下,终端设备确定调制编码方式为第二MCS。
所述第一MCS和所述第二MCS包括:调制方式和码率,其中调制方式主要有BPSK,QPSK,16QAM,64QAM,调制阶数分别为1、2、4、6,高阶调制能够提供更高的传输比特率,但是对干扰噪声和信道估计误差更敏感,容易出错;而低阶调制每个调制符号携带的数据比特较少,能容忍更高强度的干扰。从码率方面来讲,对于同样的信息比特,码率 越低则冗余比特越多,对干扰和噪声的容忍度更高。所以,终端在第二资源上以调制阶数较小码率较低的调制编码方式发送第一上行数据,则能够较好地容忍来自资源与其重叠的第一数据的干扰,从而提高第一上行数据传输的可靠性。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
第四方面,本申请提供了一种上行数据的接收方法,包括:
网络设备向终端设备发送指示信息,所述指示信息用于指示第一资源,所述第一资源与第二资源存在重叠;网络设备在第二资源上从终端设备接收上行数据。
在一个可选的实施例中,所述上行数据对应于第一MCS和第二MCS中的一个。可选的,所述MCS与所述第一资源和所述第二资源的位置关系相关。
其中,第一资源用于发送预先调度的第一上行数据,第二资源用于发送免调度的第二上行数据。指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中至少一种。第二资源是configured grant资源(也成为grant free资源),即终端设备为configured grant UE或grant free UE;第二资源上发送的上行数据为免调度的,第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置为第二资源的位置信息;第一资源用于发送上行的URLLC数据,例如:第二资源用于发送eMBB业务数据。发射功率的配置参数用于确定待发送的第二上行数据的发射功率。
在一种可能的设计中,还包括:网络设备向终端设备发送第一MCS和第二MCS的配置信息。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
在一种可能的设计中,第二资源包括预配置授权configured grant资源。
在一种可能的设计中,终端设备为预配置授权的configured grant终端设备。
第五方面,本申请提供了一种上行数据的发送方法,包括:
终端设备检测来自网络设备的指示信息;其中,指示信息用于指示第一资源;
终端设备确定第二资源;当终端设备检测到指示信息时,终端设备根据第一资源和第二资源之间的位置关系确定传输块大小(TBS,transmission block size);其中,所述传输块大小包括第一TBS或第二TBS;根据所述传输块大小在第二资源上发送上行数据。例如,所述上行数据是第一上行数据。值得说明的是,本申请对公开的方法的步骤并不限定先后顺序,例如上述方法中,终端设备可以在检测到所述指示信息后确定所述第二资源,也可以在检测到所述指示信息之前,确定所述第二资源,本申请对此不作限定。
其中,指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中的至少一种。终端设备根据第一资源和第二资源之间的位置关系确定传输块大小。在一个实施例中,所述第一资源用于发送另一个上行数据,例如是第二上行数据。可选的,所述第二上行数据可以是预先调度的上行数据。所述第二资源用于发送所述第一上行数据。例如所述第一上行数据是免调度的上行数据。在一个实施例中,第二资源是configured grant资源(亦称为grant free资源),第二资源上发送的上行数据为免调度的,例如:第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置有第二资源的位置信息;第一资源用于发送周期性且业务量较大的上行的非URLLC业务数据,例如:第一资源用于发送上行的eMBB业务数据。终端设备根据第一资源和第二资 源之间的位置关系确定传输块大小,根据所述传输块大小发送的第二上行数据。
在本申请的实施例中,终端设备检测到来自网络设备的指示信息,根据第一资源和第二资源之间的位置关系确定传输块大小,如果第一资源和第二资源有重叠,采用较小的传输块,在数据传输采用的资源不变的前提下,传输块越小,且MCS越小,即对应的调制阶数较小和/或码率较低,相应地减小来自第一资源上发送的数据造成的干扰。
在一种可能的设计中,还包括:终端设备未检测到来自网络设备的指示信息的情况下,所述传输块大小为默认的传输块大小。
在一种可能的设计中,所述默认的传输块大小为第一TBS;或所述默认的传输块大小独立于所述第一TBS和所述第二TBS。
在一种可能的设计中,所述终端设备根据第一资源和第二资源的位置关系确定传输块大小包括:
在第一资源与第二资源完全不重叠的情况下,终端设备确定传输块大小为第一TBS;或
在第一资源与第二资源部分重叠或全部重叠的情况下,终端设备确定传输块大小为第二TBS。
所述传输块大小和调制编码方式的关系为:
Figure PCTCN2019071822-appb-000001
可以理解为传输占用资源即N RE不变的前提下,TBS越小,调制阶数越低和/或码率越小,则能够较好地容忍来自资源与其重叠的第一数据的干扰,从而提高第一上行数据传输的可靠性。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
第六方面,本申请提供了一种上行数据的接收方法,包括:
网络设备向终端设备发送指示信息,所述指示信息用于指示第一资源,所述第一资源与第二资源存在重叠;网络设备在第二资源上从终端设备接收上行数据。
在一个可选的实施例中,所述上行数据对应于第一TBS和第二TBS中的一个。可选的,所述传输块大小与所述第一资源和所述第二资源的位置关系相关。
其中,第一资源用于发送预先调度的第一上行数据,第二资源用于发送免调度的第二上行数据。指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中至少一种。第二资源是configured grant资源(也成为grant free资源),即终端设备为configured grant UE或grant free UE;第二资源上发送的上行数据为免调度的,第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置为第二资源的位置信息;第一资源用于发送上行的URLLC数据,例如:第二资源用于发送eMBB业务数据。发射功率的配置参数用于确定待发送的第二上行数据的发射功率。
在一种可能的设计中,还包括:网络设备向终端设备发送第一TBS和第二TBS的配置信息。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
在一种可能的设计中,第二资源包括预配置授权configured grant资源。
在一种可能的设计中,终端设备为预配置授权的configured grant终端设备。
第七方面,本申请提供了一种上行数据的发送方法,包括:
终端设备检测来自网络设备的指示信息;其中,指示信息用于指示第一资源;
终端设备确定第二资源;当终端设备检测到指示信息时,终端设备根据第一资源和第二资源之间的位置关系确定是否采用第三资源发送上行数据,在第一资源和第二资源部分重叠或全部重叠的情况下,终端设备在第三资源上发送上行数据。值得说明的是,本申请对公开的方法的步骤并不限定先后顺序,例如上述方法中,终端设备可以在检测到所述指示信息后确定所述第二资源,也可以在检测到所述指示信息之前,确定所述第二资源,本申请对此不作限定。
其中,指示信息包括第一资源的位置信息,例如:第一资源的位置信息包括频域位置信息和时域位置信息中的至少一种。终端设备根据第一资源和第二资源之间的位置关系确定是否采用第三资源传输。在一个实施例中,所述第一资源用于发送另一个上行数据,例如是第二上行数据。可选的,所述第二上行数据可以是预先调度的上行数据。所述第二资源用于发送所述第一上行数据。例如所述第一上行数据是免调度的上行数据。在一个实施例中,第二资源是configured grant资源(亦称为grant free资源),第二资源上发送的上行数据为免调度的,例如:第二资源上可用于发送上行的URLLC业务数据,终端设备预存储或预配置有第二资源的位置信息;第一资源用于发送周期性且业务量较大的上行的非URLLC业务数据,例如:第一资源用于发送上行的eMBB业务数据。终端设备根据第一资源和第二资源之间的位置关系确定是否采用第三资源发送数据。
在本申请的实施例中,终端设备检测到来自网络设备的指示信息,根据第一资源和第二资源之间的位置关系确定是否采用第三资源发送上行数据,如果第一资源和第二资源有重叠,采用第三资源传输上行数据。一种可能的实施方式,第三资源为与第二资源在时域和频域上都完全不重叠的资源块,所以第三资源与第一资源也可以保证完全不重叠。上行数据在第三资源上传输,那么在第一资源上发送的数据就不会对原本在第二资源上发送的数据产生任何影响。另一种可能的实施方式,第三资源的资源块(RB,resource block)数量大于第二资源,在传输块大小不变的前提下,传输占用的资源越多,相应的MCS越小,即调制阶数越低和/或码率越小,从而提高第一上行数据传输的可靠性。
在一种可能的设计中,还包括:终端设备未检测到来自网络设备的指示信息的情况下,第一上行数据采用默认的第二资源传输。
在一种可能的设计中,所述终端设备根据第一资源和第二资源的位置关系确定是否采用第三资源发送数据包括:
在第一资源与第二资源完全不重叠的情况下,终端设备确定在第二资源上发送数据;或
在第一资源与第二资源部分重叠或全部重叠的情况下,终端设备确定采用第三资源发送数据。
传输数据所用的资源和调制编码方式的关系为:
Figure PCTCN2019071822-appb-000002
可以理解为传输块大小TBS不变的前提下,传输数据所用的资源N RE越小,调制阶数越低和/或码率越小, 则能够较好地容忍来自资源与其重叠的第一数据的干扰,从而提高第一上行数据传输的可靠性。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
第八方面,本申请提供了一种上行数据的接收方法,包括:
网络设备向终端设备发送指示信息,其中,指示信息用于指示第一资源,第一资源和第二资源存在重叠,网络设备在第三资源上接收来自终端设备的上行数据。、
第九方面,本申请提供了一种上行数据的发送方法,包括:
终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示发射功率的配置参数,所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
当所述终端设备检测到指示信息时,根据所述发射功率的配置参数确定发射功率;
根据所述发射功率在第二资源上向所述网络设备发送上行数据。
在一种可能的设计中,还包括:
在所述第二资源上发送上行数据之前未检测到所述指示信息的情况下,所述终端设备根据默认的功率控制参数确定的发射功率在第二资源上发送上行数据。
在一种可能的设计中,所述默认的功率控制参数为独立于所述第一功率控制参数和所述第二功率控制参数的参数;或所述默认的功率控制参数为所述第一功率控制参数。
在一种可能的设计中,第一功率控制参数和第二功率控制参数包括如下信息中的至少一项:
传输功率命令字;
功率控制标识信息,所述公开控制标识信息用于表示路径损耗补偿因子和/或网络设备接收终端设备发送数据的目标信噪比;
信息组,信息组包括闭环功率控制进程索引和传输功率命令字。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
在一种可能的设计中,终端设备为预配置授权的终端设备。
第十方面,本申请提供了一种上行数据的接收方法,包括:
在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示发射功率的配置参数;所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
所述网络设备接收所述终端设备在第二资源上发送的上行数据;其中,所述上行数据的发射功率由所述发射功率的配置参数确定。
在一种可能的设计中,第一功率控制参数和第二功率控制参数包括如下信息中的至少一项:
传输功率命令字;
功率控制标识信息;功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收终端设备发送数据的目标信噪比;
信息组,信息组包括闭环功率控制进程和传输功率命令字。
在一种可能的设计中,指示信息承载在广播或组播的下行控制信息中。
第十一方面,本申请提供了一种上行数据的发送装置,包括:
处理单元,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源;
所述处理单元,还用于确定第二资源;
所述处理单元,还用于当检测到指示信息时,根据所述第一资源和第二资源之间的位置关系确定发射功率的配置参数,所述配置参数包括第一功率控制参数或第二功率控制参数;或所述配置参数包括第一配置参数或第二配置参数,所述第一配置参数和所述第二配置参数包括如下信息中的任意一种或组合:发射功率配置参数、MCS调制编码方式、TBS传输块大小和资源分配信息;
所述处理单元,还用于根据所述配置参数确定发射功率;
发送单元,用于根据所述发射功率在所述第二资源上发送上行数据。
在一种可能的设计中,未检测到来自网络设备的指示信息的情况下,所述发射功率的配置参数为默认的功率控制参数。
在一种可能的设计中,所述处理单元根据所述第一资源和所述第二资源的位置关系确定发射功率的配置参数,包括:
在所述第一资源与所述第二资源完全不重叠的情况下,确定发射功率的配置参数为第一功率控制参数;或
所述第一资源与所述第二资源部分重叠或全部重叠的情况下,确定发射功率的配置参数为第二功率控制参数。
在一种可能的设计中,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
在一种可能的设计中,所述指示信息承载在广播或组播的下行控制信息中。
在一种可能的设计中,所述指示信息还用于指示:
所述第一资源的传输功率、所述第一资源的传输能量、所述第一资源的调制编码方式中至少一种。
第十二方面,本申请提供了一种上行数据的接收装置,包括:
发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息;其中,所述指示信息用于指示所述第一资源;
接收单元,用于接收所述终端设备在所述第二资源上发送的上行数据。
在一种可能的设计中,发送单元还用于:向终端设备发送第一功率控制参数和第二功率控制参数的配置信息。
在一种可能的设计中,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备 接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
第十三方面,本申请提供了一种上行数据的发送装置,包括:
处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示发射功率的配置参数,所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
所述处理单元,还用于当检测到所述指示信息时,根据所述发射功率的配置参数确定发射功率;
发送单元,用于根据所述发射功率在第二资源上向所述网络设备发送上行数据。
在一种可能的设计中,所述发送单元,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的功率控制参数确定的发射功率在所述第二资源上发送上行数据。
在一种可能的设计中,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
在一种可能的设计中,所述指示信息承载在广播或组播的下行控制信息中。
第十四方面,本申请提供了一种上行数据的接收装置,包括:
发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示发射功率的配置参数;所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
接收单元,用于接收所述终端设备在第二资源上发送的上行数据;其中,所述上行数据的发射功率由所述发射功率的配置参数确定。
在一种可能的设计中,所述接收单元还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一功率控制参数确定的发射功率在第二资源上发送的上行数据。
在一种可能的设计中,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
第十五方面,本申请公开了一种上行数据的发送装置,包括:
处理单元,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源;
所述处理单元,还用于确定第二资源;
在检测到所述指示信息的情况下,所述处理单元还用于根据所述第一资源和第二资源 之间的位置关系确定调制编码方式;其中,所述调制编码方式包括第一调制编码方式或第二调制编码方式;
发送单元,用于根据所述调制编码方式在所述第二资源上发送上行数据。
在一种可能的设计中,
在所述终端设备未检测到指示信息的情况下,所述调制编码方式为默认的调制编码方式。
在一种可能的设计中,所述处理单元用于根据所述第一资源和第二资源之间的位置关系确定调制编码方式,包括:
所述第一资源和所述第二资源完全不重叠,确定所述调制编码方式为第一调制编码方式;和/或
所述第一资源与所述第二资源部分重叠或全部重叠,确定所述调制编码方式为第二调制编码方式。
第十六方面,本申请提供了一种上行数据的发送装置,包括:
处理单元,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源;
所述处理单元,还用于确定第二资源;
在检测到指示信息的情况下,所述处理单元还用于根据所述第一资源和第二资源的位置关系确定传输块大小;其中,所述传输块大小包括第一传输块大小或第二传输块大小;
发送单元,用于根据所述传输块大小在所述第二资源上发送上行数据。
在一种可能的设计中,其特征在于,
在所述终端设备未检测到指示信息的情况下,所述传输块大小为默认的传输块大小。
在一种可能的设计中,所述处理单元用于根据所述第一资源和第二资源的位置关系确定传输块大小,包括:
在所述第一资源和所述第二资源完全不重叠的情况下,确定所述传输块大小为第一传输块大小;和/或
在所述第一资源和所述第二资源部分重叠或全部重叠的情况下,确定所述传输块大小为第二传输块大小。
第十七方面,本申请提供了一种上行数据的发送装置,包括:
处理单元,用于检测来自网络设备的指示信息,其中,所述指示信息用于指示第一资源;
发送单元,用于在所述处理单元检测到所述指示信息,且所述第一资源与第二资源部分重叠或全部重叠的情况下,在第三资源上发送上行数据。
在一种可能的设计中,所述发送单元还用于:
在所述处理单元检测到所述指示信息,且所述第一资源与第二资源完全不重叠的情况下,在所述第二资源上发送上行数据;或
在所述处理单元未检测到来自网络设备的指示信息的情况下,在所述第二资源上发送上行数据。
第十八方面,本申请提供了一种上行数据的发送方法,包括:
终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示调制编码方式,所述调制编码方式包括第一调制编码方式和第二调制编码方式;
根据所述调制编码方式在第二资源上向所述网络设备发送上行数据。
在一种可能的设计中,还包括:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,终端设备根据默认的调制编码方式在所述第二资源上发送上行数据。
在一种可能的设计中,所述默认的调制编码方式为独立于所述第一调制编码方式和所述第二调制编码方式的参数;或所述默认的调制编码方式为所述第一调制编码方式。
本申请第十九方面提供了一种上行数据的发送装置,包括:
处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示调制编码方式,所述调制编码方式包括第一调制编码方式和第二调制编码方式;
发送单元,用于根据所述调制编码方式在第二资源上向所述网络设备发送上行数据。
在一种可能的设计中,所述发送单元,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的调制编码方式在所述第二资源上发送上行数据。
本申请第二十方面提供了一种上行数据的接收方法,包括:
在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示调制编码方式;所述调制编码方式包括调制编码方式和第二调制编码方式;
所述网络设备接收所述终端设备在第二资源上发送的上行数据。
在一种可能的设计中,还包括:
在第一资源和第二资源之间不存在重叠的情况下,网络设备接收所述终端设备根据第一调制编码方式在第二资源上发送的上行数据。
本申请第二十一方面提供了一种上行数据的接收装置,包括:
发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示调制编码方式;所述调制编码方式包括第一调制编码方式和第二调制编码方式;
接收单元,用于接收所述终端设备根据所述调制编码方式在第二资源上发送的上行数据。
在一种可能的设计中,所述接收单元还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一调制编码方式在第二资源上发送的上行数据。
本申请第二十二方面提供了一种上行数据的发送方法,包括:
终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示传输块大小,所述传输块大小包括第一传输块大小和第二传输块大小;
根据所述传输块大小在第二资源上向所述网络设备发送上行数据。
在一种可能的设计中,还包括:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,终端设备 根据默认的传输块大小在所述第二资源上发送上行数据。
在一种可能的设计中,所述默认的传输块大小为独立于所述第一传输块大小和所述第二传输块大小的参数;或所述默认的传输块大小为所述第一传输块大小。
本申请第二十三方面提供了一种上行数据的发送装置,包括:
处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示传输块大小,所述传输块大小包括第一传输块大小和第二传输块大小;
发送单元,用于根据所述传输块大小在第二资源上向所述网络设备发送上行数据。
在一种可能的设计中,所述发送单元,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的传输块大小在所述第二资源上发送上行数据。
本申请第二十四方面提供了一种上行数据的接收方法,包括:
在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示传输块大小;所述传输块大小包括传输块大小和第二传输块大小;
所述网络设备接收所述终端设备在第二资源上发送的上行数据。
在一种可能的设计中,还包括:
在第一资源和第二资源之间不存在重叠的情况下,网络设备接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
本申请第二十五方面提供了一种上行数据的接收装置,包括:
发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示传输块大小;所述传输块大小包括第一传输块大小和第二传输块大小;
接收单元,用于接收所述终端设备根据所述传输块大小在第二资源上发送的上行数据。
在一种可能的设计中,所述接收单元还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
本申请第二十六方面提供了一种上行数据的发送方法,包括:
终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示第三资源;
在第一资源和第二资源重叠的情况下,所述终端设备在所述第三资源上向所述网络设备发送上行数据。
在一种可能的设计中,还包括:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,终端设备根据默认的传输块大小在所述第二资源上发送上行数据。
在一种可能的设计中,所述默认的传输块大小为独立于所述第一传输块大小和所述第二传输块大小的参数;或所述默认的传输块大小为所述第一传输块大小。
本申请第二十七方面提供一种上行数据的发送装置,包括:
处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示第三资源;
发送单元,用于在第一资源和第二资源重叠的情况下,在所述第三资源上向所述网络设备发送上行数据。
在一种可能的设计中,所述发送单元,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的传输块大小在所述第二资源上发送上行数据。
本申请第二十八方面提供了一种上行数据的接收方法,包括:
在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示第三资源;
所述网络设备接收所述终端设备在第三资源上发送的上行数据。
在一种可能的设计中,还包括:
在第一资源和第二资源之间不存在重叠的情况下,网络设备接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
本申请第二十九方面提供一种上行数据的接收装置,其特征在于,包括:
发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于第三资源;
接收单元,用于接收所述终端设备在所述第三资源上发送的上行数据。
在一种可能的设计中,所述接收单元还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
本申请又一方面提供了一种上行数据的发送方法,包括:
终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示配置参数,所述配置参数包括第一配置参数和第二配置参数;
所述终端设备根据所述资源配置参数向所述网络设备发送上行数据。
可选的,所述配置参数包括以下信息中的任意一种或组合:调制编码方式、传输块大小和资源分配信息。
其中,配置参数包括第一调制编码方式和第二调制编码方式;或配置参数包括第一传输块大小和第二传输块大小,或配置参数包括第一资源分配信息和第二资源分配信息,资源分配信息表示资源的时域位置和/或频域位置。
可选的,还包括:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,终端设备根据默认的配置参数发送上行数据。
可选的,所述默认的配置参数为独立于所述第一配置参数和所述第二配置参数的参数;或所述默认的配置参数为所述第一配置参数。
本申请又一方面提供了一种上行数据的发送装置,包括:
处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示配置参数,所述配置参数包括第一配置参数和第二配置参数;
发送单元,用于根据所述资源配置参数向所述网络设备发送上行数据。
可选的,所述配置参数包括以下信息中的任意一种或组合:调制编码方式、传输块大 小和资源分配信息。
可选的,所述发送单元还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的配置参数发送上行数据。
可选的,所述默认的配置参数为独立于所述第一配置参数和所述第二配置参数的参数;或所述默认的配置参数为所述第一配置参数。
本申请又一方面提供了一种上行数据的接收方法,包括:
在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示第三资源;
所述网络设备接收所述终端设备在第三资源上发送的上行数据。
可选的,还包括:
在第一资源和第二资源之间不存在重叠的情况下,网络设备接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
本申请又一方面提供了一种上行数据的接收装置,包括:
发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于第三资源;
接收单元,用于接收所述终端设备在所述第三资源上发送的上行数据。
可选的,所述接收单元还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
本申请又一方面提供了一种装置,该装置包括:存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行各方面所述的方法。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的网络架构图;
图2a是本申请实施例提供的一种上行数据的传输方法的交互示意图;
图2b是本申请实施例提供的eMBB资源和configured grant资源之间的位置关系示意图;
图3是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图4是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图5是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图6是本申请实施例提供的一种装置的结构示意图;
图7是本申请实施例提供的一种装置的另一结构示意图;
图8是本申请实施例提供的一种装置的另一结构示意图;
图9是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图10是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图11是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图12是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图13是本申请实施例提供的一种上行数据的传输方法的另一交互示意图;
图14是本申请实施例提供的一种上行数据的传输方法的另一交互示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、NR(New Radio,新空口)通信系统以及下一代5G移动通信系统的三大应用场景增强型移动宽带(Enhanced Mobile Broad Band,eMBB)、URLLC以及大规模机器通信(Massive Machine-Type Communications,mMTC)。
在本申请实施例中,终端设备(terminal device)可以是任意形式的通信装置,包括但不限于移动台(MS,Mobile Station)、移动终端设备(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该终端设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置或设备。
图1为本申请提供的一种通信系统架构示意图。
如图1所示,通信系统01包括网设备101和终端设备102。当通信系统01包括核心网时,该网络设备101还可以与核心网相连。网络设备101还可以与互联网协议(Internet Protocol,IP)网络200进行通信,例如,因特网(internet),私有的IP网,或其它数据网等。网络设备为覆盖范围内的终端设备提供服务。例如,参见图1所示,网络设备101为网络设备101覆盖范围内的一个或多个终端设备提供无线接入。另外,网络设备之间还可以可以互相通信。
网络设备101可以是用于与终端设备进行通信的设备。例如,可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolved Node B,eNB或eNodeB) 或未来5G网络中的网络侧设备等。或者该网络设备还可以是中继站、接入点、车载设备等。在终端设备对终端设备(Device to Device,D2D)通信系统中,该网络设备还可以是担任基站功能的终端设备。终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS)等。
在eMBB业务数据和URLLC业务数据上行传输资源共享中,具体分为:URLLC UE在进行URLLC业务数据的上行传输之前,不向基站发送SR(scheduling request,调度请求),或者基站没有接收URLLC UE发送的SR,则基站不会为URLLC业务数据调度时频资源。由于URLLC业务数据的产生具有突发性和随机性,基站无法预知是否有URLLC业务数据的上行传输,以及URLLC业务数据的上行传输何时开始。因此基站会为一组可能发送URLLC业务数据的UE配置configured grant资源,该configured grant资源用于传输URLLC业务数据。防止上行的URLLC业务数据受到干扰的方法是保证configured grant资源上只传输URLLC业务数据,基站不调度eMBB业务数据在configured grant资源上传输。也就是说,如果当前没有上行的URLLC业务数据,则保持这部分的configured grant资源闲置,为了提高configured grant资源的利用率,基站会将eMBB业务数据调度在configured grant资源上传输,这样会大大减小系统的开销,但同时也会对configured grant传输的URLLC业务数据造成严重的干扰,如何在上行传输中如何在减小系统开销的情况下保证URLLC业务数据传输的可靠性是目前亟待解决的问题。
参见图2a,为本申请实施例提供的一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S201、网络设备确定第一资源和第二资源之间存在重叠。
具体的,第一资源和第二资源是用于发送上行数据的时频资源,例如第一资源用于发送第一上行数据,第二资源用于发送第二上行数据。在一个可选的实施例中,所述第一上行数据是预先调度的上行数据,和/或,所述第二上行数据是免调度的上行数据。在一个实施例中,第二资源为configured grant资源,可以用于发送URLLC业务数据,URLLC业务数据是免调度的,即发送URLLC业务数据之前不需要请求网络设备调度资源;第一资源是用于发送周期性业务量较大的非URLLC业务数据的资源,例如:第一资源上发送的上行数据为eMBB业务数据。
在非URLLC业务数据(例如:eMBB业务数据)进行上行发送之前,终端设备向网络设备发送调度请求,用于请求网络设备为该非URLLC业务数据分配时频资源,网络设备根据调度请求为非URLLC业务数据调度第一资源,网络设备预存储或预配置为第一资源的位置信息,网络设备在为非URLLC业务数据调度第一资源时,网络设备能够确定第一资源是否被调度到第二资源上,即网络设备能够确定第一资源与第二资源是否发生冲突或碰撞,第一资源和第二资源之间是否部分重叠或全部重叠,如果判断结果为是,执行S202。其中,第一资源和第二资源重叠表示第一资源和第二资源在时域上和频域上均存在重叠。
示例性的,参见图2b所示,网络设备在slot n内调度eMBB资源时,调度的eMBB资源没有和configured grant资源发生碰撞或冲突,网络设备不需要向终端设备发送指示信息。 网络设备在slot n+1内调度eMBB资源时,调度的eMBB资源和configured grant资源发生碰撞或冲突,eMBB资源和configured grant资源部分重叠,网络设备需要向终端设备发送指示信息;网络设备在slot n+2内调度eMBB资源时,调度的eMBB资源和configured grant资源发生碰撞或冲突,eMBB资源和configured grant资源全部重叠,网络设备需要向终端设备发送指示信息。
S202、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
在一个可选的实施例中,终端设备为configured grant终端(亦称为grant free UE或grant free终端),可发送URLLC业务数据。指示信息用于指示第一资源,例如:指示信息包括第一资源的位置信息,第一资源的位置信息表示第一资源的频域位置和时域位置,指示信息可以采用显示或隐式的方法来表示第一资源的位置信息。其中,承载指示信息的信令可以是广播信令或组播信令,网络设备通过广播信令或组播信令将指示信息发送给一组终端设备。可选的,广播信令或组播信令可以为组公共DCI(Downlink Control Information,下行控制信息),也可以为终端专用DCI(UE specific DCI)。承载指示信息的信令也可以为MAC-CE(Media Access Control-Control Element,介质访问控制-控制元素)。其中,DCI的格式可以为DCI_format 2_2,DCI_format 2_2新增1个字段(DCI field)。可选的,广播信令或组播信令可以是一个新格式的DCI,例如:该DCI的格式命名为format 2_4,该DCI中携带指示信息。终端设备接收来自网络设备的指示信息,根据指示信息确定第一资源的位置信息。本申请实施例采用组公共DCI来发送指示信息,能提高指示信息发送的可靠性,以及减少终端设备对指示信息的解码时间,降低处理时延。
可选的,网络设备发送下行信令到终端设备接收并处理该下行信令之后按照该下行信令的指示发送上行数据的时长(duration)定义为K2,K2的取值为若干个时隙(slot),例如:K2的取值是一组值{0、1、2、3、4、5、6、7}中的任意一个,例如:网络设备在slot n发送携带指示信息的广播信令,终端设备根据此广播信令在slot n+k发送上行数据。网络设备指示的是slot n到slot n+k对应的k+1个slot中有第一资源调度在第二资源上。但是如果按照周期规律网络设备应该在slot n发送广播信令,而在slot n至slot n+k对应的k+1个slot都没有第一资源和第二资源冲突或碰撞的情况,则网络设备不需要在slot n发送广播信令,因为该广播信令不会改变终端设备的行为,会造成信令资源浪费造成增大开销,n和k为大于0的整数。可选的,终端设备接收广播信令到发送上行数据的时长为N2,N2的取值与子载波间隔关联,例如:子载波间隔为15KHz时,N2=10symbols;子载波间隔为30KHz时,N2=12symbols;子载波间隔为60KHz时,N2=23symbols;子载波间隔为120KHz时,N2=36symbols。
S203、终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数。
具体的,发射功率的配置参数用于确定终端设备的发射功率。发射功率的配置参数包括第一功率控制参数或第二功率控制参数,即终端设备会使用第一功率控制参数确定的发射功率发送上行数据,或使用第二功率控制参数确定的发射功率发送上行数据。还例如,所述发射功率的配置参数是所述第一功率控制参数和所述第二功率控制参数中的一个功率控制参数。需要说明的是,第二功率控制参数确定的发射功率大于第一功率控制参数确定的发射功率。
可选的,终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数包括:
在第一资源和第二资源完全不重叠的情况下,终端设备确定发射功率的配置参数为第一功率控制参数;或
在所述第二资源和所述第一资源发生重叠的情况下,所述功率控制参数为第二功率控制参数;或
在重叠资源和所述第二资源之间的比例值大于预设值的情况下,所述功率控制参数为第二功率控制参数;或
在重叠资源和所述第二资源之间的比例值不大于预设值的情况下,所述功率控制参数为第一功率控制参数。
其中,所述预设值可以是网络设备配置给终端设备的,也可以是终端设备预存储的固定值,具体值本实施例不作限制,例如:预设值可以为50%。
举例说明:参见图2b所示,在时隙n内eMBB资源和configured grant资源不重叠,URLLC终端确定发射功率的配置参数为第一功率控制参数;在时隙n+1内eMBB资源和configured grant资源部分重叠,URLLC终端确定发射功率的配置参数为第二功率控制参数;在时隙n+2内eMBB资源和configured grant资源完全重叠,URLLC终端确定发射功率的配置参数为第二功率控制参数。
进一步可选的,终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数,还包括:终端设备根据第一资源的传输功率、第一资源的传输能量和第一资源的调制编码方式中的至少一种来确定发射功率的配置参数。
例如:第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率小于功率阈值的情况下,终端设备确定的发射功率的配置参数为第一功率控制参数;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率不小于功率阈值的情况下,终端设备确定的发射功率的配置参数为第二功率控制参数;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量小于能量阈值的情况下,终端设备确定的发射功率的配置参数为第一功率控制参数;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量不小于能量阈值的情况下,终端设备确定的发射功率的配置参数为第二功率控制参数;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的调制阶数大于预设值,终端设备确定的发射功率的配置参数为第一功率控制参数;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的调制阶数不大于预设值,终端设备确定的发射功率的配置参数为第二功率控制参数。
可选的,第一功率控制参数和第二功率控制参数包括如下信息中的至少一项:
传输功率命令字;
功率控制标识信息;功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收终端设备发送数据的目标信噪比;
信息组,信息组包括闭环功率控制进程索引和传输功率命令字。
其中,功率控制标识信息表示路径损耗补偿因子α和/或网络设备接收终端设备发送数 据的目标信噪比P 0,路径损耗补偿因子和目标信噪比P 0是开环功率控制参数。功率控制标识信息可以是一个索引j,终端设备根据索引j确定路径损耗补偿因子和/或目标信噪比。终端设备可根据如下公式确定发射功率:
Figure PCTCN2019071822-appb-000003
其中,P 0对应公式中的P O_PUSCH,f,c(j),P O_PUSCH,f,c(j)=P O_UE_PUSCH,f,c(j)+P O_NOMINAL_PUSCH,f,c(j).P O_NOMINAL_PUSCH,f,c(j)为配置给整个小区全部UE的功率值,取值范围为-126~24dBm。P O_UE_PUSCH,f,c(j)为配置给特定终端设备的功率微调值,取值范围为-8~7dBm。路径损耗补偿因子α的取值可以为{0、0.4、0.5、0.6、0.7、0.8、0.9、1}中的任意一个。
c为服务小区,i为PUSCH的传输周期,j为功率控制标识信息,l为功率控制调整状态指数,f为载波,q d为终端设备利用的参考信号资源,P PUSCH,f,c为PUSCH在服务小区中的发射功率,P CMAX,f,c为终端设备允许在载波和服务小区上发射的最大功率,PO_PUSCH,f,c为网络设备接收终端设备发送数据时的目标信噪比,
Figure PCTCN2019071822-appb-000004
为PUSCH在服务小区中资源分配带宽指示信息,α f,c为路径损耗补偿因子,PL f,c为路径损耗值,△ TF,f,c为调制方式偏移量,△ TF,f,c用于控制信息在PUSCH中传输时的功率,f f,c为闭环功率控制调整状态。其中,f f,c(i,l)=f f,c(i-1,l)+δ PUSCH,f,c(i-K PUSCH,l),δ PUSCH,f,c为累计功率修正值,或者f f,c(i,l)=δ PUSCH,f,c(i-K PUSCH,l),δ PUSCH,f,c为绝对功率修正值。i-K PUSCH为发送δ PUSCH,f,c的子帧编号,μ为子载波间隔和循环前缀编号。
其中,传输功率命令字(TPC Command Field)用于指示发射功率的累计功率修正值(Accumulated)或绝对功率修正值(Absolute),例如参见表1所示的对应关系:
TPC Command Field Accumulated δ PUSCH,c[dB] Absolute δ PUSCH,c[dB]
0 -1 -4
1 0 -1
2 1 1
3 3 4
表1
其中,信息组包括闭环功率控制进程索引和传输功率命令字,不同的闭环功率控制进程索引表示不同的进程。终端设备维护两个独立的闭环功率控制进程:第一进程和第二进程,第一进程表示未干扰的URLLC业务数据的闭环功率控制进程,第二进程表示受干扰的URLLC业务数据的闭环功率控制进程。在第一进程切换到第二进程或第二进程切换到第一进程情况下,切换后的进程对应的发射功率为累计功率修正值,与切换后的进程相同类型的上次的进程对应的发射功率归零。在当前的进程和上一个进程的类型相同的情况下, 当前的进程对应的发射功率为上一个进程对应的发射功率加上传输功率命令字指示的累计功率修正值的结果。
示例性的,在终端设备没有检测到指示信息时,终端设备启动第一进程,此时终端设备确定发射功率的公式为f f,c(i,l)=f f,c(i-1,l)+δ PUSCH,f,c(i-K PUSCH,l),l=1每个累计功率修正值δ PUSCH,f,c(i-K PUSCH,l)加在前面一个第一进程的发射功率f(i-1,l)上,得到当前的发射功率f(i,l)。然后,在终端设备检测到指示信息的情况下,意味着第一资源被调度在第二资源上,那么终端设备不能利用第一进程来做功率调整,需要启用第二进程,第二进程的发射功率的公式为f f,c(i,l)=f f,c(i-1,l)+δ PUSCH,f,c(i-K PUSCH,l),l=2,累计功率修正值不能加在f f,c(i,1)上,相应的第一个值f f,c(0,2)=0,一直到第一资源上的上行数据发送完毕,第二资源不再与其他资源发生冲突或碰撞,此时转换为第一进程,利用改变为第二进程之前的最后一个f(i,1)来调整发射功率:
f f,c(i,l)=f f,c(i-1,l)+δ PUSCH,f,c(i-K PUSCH,l),l=1。如果UE没有检测到TPC命令字,则δ PUSCH,f,c(i-K PUSCH,l)=0 dB f f,c(i,l)=f f,c(i-1,l)。
可选的,网络设备在向终端设备发送指示信息之前,还包括:网络设备向终端设备发送发射功率的配置参数;承载发射功率的配置参数的信令包括但不限于RRC信令、MAC-CE或其他形式的信令。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备预存储或预配置为默认的功率控制参数,根据默认的功率控制参数确定的发射功率在第二资源上发送上行数据。其中,默认的功率控制参数可以是独立于第一功率控制参数和第二功率控制参数之外的参数,也可以是第一功率控制参数。默认的功率控制参数确定的发射功率小于第二功率控制参数确定的发射功率。
S204、终端设备向网络设备发送上行数据。
具体的,终端设备为configured grant UE,终端设备发送的上行数据可以为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S203的发射功率的配置参数确定发射功率,使用该发射功率在第二资源上发送URLLC业务数据,即终端设备根据第一功率控制参数确定的发射功率在第二资源上发送URLLC业务数据,或者终端设备根据第二功率控制参数确定的发射功率在第二资源上发送URLLC业务数据。其中,终端设备根据第一功率控制参数确定的发射功率小于根据第二功率控制参数确定的发射功率。
根据图2a的描述,终端设备在需要发送URLLC业务数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,提高在configured grant资源上发送URLLC业务数据的发射功率,这样提高URLLC业务数据的抗干扰能力,提高发送URLLC业务数据的可靠性。
参见图9,本申请实施例提供的另一种上行数据的传输方法流程示意图,在本申请实施例中,所述方法包括:
S901、网络设备确定第一资源和第二资源之间存在重叠。
其中,S901的具体过程可参考S201的描述,此处不再赘述。
S902、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
其中,S902的具体过程可参考S202的描述,此处不再赘述。
S903、终端设备根据第一资源和第二资源之间的位置关系确定调制编码方式。
具体的,调制编码方式包括第一MCS或第二MCS,即终端设备会使用第一MCS发送上行数据,或使用第二MCS发送上行数据,即所述调制编码方式是所述第一MCS和所述第二MCS中的一个。需要说明的是,第二MCS确定的调制阶数和/或码率小于第一MCS。
可选的,终端设备根据第一资源和第二资源之间的位置关系确定调制编码方式包括:
在第一资源和第二资源完全不重叠的情况下,终端设备确定调制编码方式为第一MCS;或
在所述第二资源和所述第一资源发生重叠的情况下,所述调制编码方式为第二MCS;或
在重叠资源和所述第二资源之间的比例值大于预设值的情况下,所述调制编码方式为第二MCS;或
在重叠资源和所述第二资源之间的比例值不大于预设值的情况下,所述调制编码方式为第一MCS。
其中,所述预设值可以是网络设备配置给终端设备的,也可以是终端设备预存储的固定值,具体值本实施例不作限制,例如:预设值可以为50%。
举例说明:参见图2b所示,在时隙n内eMBB资源和configured grant资源不重叠,URLLC终端确定调制编码方式为第一MCS;在时隙n+1内eMBB资源和configured grant资源部分重叠,URLLC终端确定调制编码方式为第二MCS;在时隙n+2内eMBB资源和configured grant资源完全重叠,URLLC终端确定调制编码方式为第二MCS。
进一步可选的,终端设备根据第一资源和第二资源之间的位置关系确定调制编码方式,还包括:终端设备根据第一资源的传输功率、第一资源的传输能量中的至少一种来确定发射功率的配置参数。
例如:第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率小于功率阈值的情况下,终端设备确定的调制编码方式为第一MCS;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率不小于功率阈值的情况下,终端设备确定的调制编码方式为第二MCS;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量小于能量阈值的情况下,终端设备确定的调制编码方式为第一MCS;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量不小于能量阈值的情况下,终端设备确定的调制编码方式为第二MCS。
MCS主要包括调制方式和码率。其中调制方式包括:BPSK、QPSK、16QAM、64QAM、256QAM、1024QAM等,常用的为QPSK、16QAM和64QAM,对应的调制阶数分别为2、4和6。调制阶数是指一个调制符号上携带数据比特的数量。例如:QPSK一个调制符号携带2个数据比特。低阶调制,如QPSK和BPSK能够容忍更高强度的干扰。而高阶调制,如64QAM,256QAM等,固然能够提供更好的传输比特率,但是对干扰、噪声和信道估计误差的敏感性较高,易于出错。所以当第一资源与第二资源重叠时,终端设备倾向于选择调制阶数较低的调制编码方式在第二资源上发送上行数据。码率是指每秒传送的比特数, 码率越高数据传输越快。信息比特与编码比特的比值为码率,码率越小则说明编码比特中非信息比特的冗余越多,传输的容错性越好,对干扰的抗性越强。所以当第一资源与第二资源重叠时,UE倾向于选择码率较低的调制编码方式在第二资源上发送上行数据。
可选的,网络设备在向终端设备发送指示信息之前,还包括:网络设备向终端设备发送调制编码方式的配置参数;承载调制编码方式的配置参数的信令包括但不限于RRC信令、MAC-CE或其他形式的信令。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备预存储或预配置为默认的调制编码方式,根据默认的MCS在第二资源上发送上行数据。其中,默认的调制编码方式可以是独立于第一MCS和第二MCS之外的参数,也可以是第一MCS。默认的调制编码方式中的调制阶数和/或码率小于第二MCS的调制阶数和/或码率。
S904、终端设备在第二资源上向网络设备发送上行数据,网络设备接收来自终端设备的上行数据。
具体的,终端设备为configured grant UE,终端设备发送的上行数据可以为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S903的调制编码方式在第二资源上发送URLLC业务数据,即终端设备根据第一MCS在第二资源上发送URLLC业务数据,或者终端设备根据第二MCS在第二资源上发送URLLC业务数据。其中,第一MCS对应的调制阶数和/或码率小于第二MCS调制阶数和/或码率。
根据图9的描述,终端设备在需要发送URLLC业务数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,减小在configured grant资源上发送URLLC业务数据的MCS,这样提高URLLC业务数据的抗干扰能力,提高发送URLLC业务数据的可靠性。
参见图10,为本申请实施例提供的另一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S1001、网络设备确定第一资源和第二资源之间存在重叠。
其中,S1001的具体过程可参考S201的描述,此处不再赘述。
S1002、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
S1002的具体过程可参考S202的描述,此处不再赘述。
S1003、终端设备根据第一资源和第二资源之间的位置关系确定传输块大小。
具体的,发送数据采用的传输块大小包括第一TBS或第二TBS。还例如,所述传输块大小是所述第一TBS和所述第二TBS中的一个。需要说明的是,第二TBS小于第一TBS。
可选的,终端设备根据第一资源和第二资源之间的位置关系确定传输块大小包括:
在第一资源和第二资源完全不重叠的情况下,终端设备确定传输块大小为第一TBS;或
在所述第二资源和所述第一资源发生重叠的情况下,所述传输块大小为第二TBS;或
在重叠资源和所述第二资源之间的比例值大于预设值的情况下,所述传输块大小为第二TBS;或
在重叠资源和所述第二资源之间的比例值不大于预设值的情况下,所述传输块大小为第一TBS。
其中,所述预设值可以是网络设备配置给终端设备的,也可以是终端设备预存储的固定值,具体值本实施例不作限制,例如:预设值可以为50%。
举例说明:参见图2b所示,在时隙n内eMBB资源和configured grant资源不重叠,URLLC终端确定传输块大小为第一TBS;在时隙n+1内eMBB资源和configured grant资源部分重叠,URLLC终端确定传输块大小为第二TBS;在时隙n+2内eMBB资源和configured grant资源完全重叠,URLLC终端确定传输块大小为第二TBS。
进一步可选的,终端设备根据第一资源和第二资源之间的位置关系确定传输块大小,还包括:终端设备根据第一资源的传输功率、第一资源的传输能量和中的至少一种来确定传输块大小。
例如:第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率小于功率阈值的情况下,终端设备确定的传输块大小为第一TBS;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率不小于功率阈值的情况下,终端设备确定的传输块大小为第二TBS;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量小于能量阈值的情况下,终端设备确定的传输块大小为第一TBS;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量不小于能量阈值的情况下,终端设备确定的传输块大小为第二TBS。
可选的,网络设备在向终端设备发送指示信息之前,还包括:网络设备向终端设备发送传输块大小的配置参数;承载传输块大小的配置参数的信令包括但不限于RRC信令、MAC-CE或其他形式的信令。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备预存储或预配置为默认的传输块大小,根据默认的TBS在第二资源上发送上行数据。其中,默认的TBS可以是独立于第一TBS和第二TBS之外的参数,也可以是第一TBS。默认的TBS大于第二TBS。
S1004、终端设备向网络设备发送上行数据。
具体的,终端设备为configured grant UE,终端设备发送的上行数据可以为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S203的传输块大小在第二资源上发送URLLC业务数据,即终端设备根据第一TBS在第二资源上发送URLLC业务数据,或者终端设备根据第二TBS在第二资源上发送URLLC业务数据。其中,第一TBS大于第二TBS。
根据图10的描述,终端设备在需要发送URLLC业务数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,减小在configured grant资源上发送URLLC业务数据采用的传输块大小,能够相应地降低URLLC业务的MCS,从而提高URLLC业务数据的抗干扰能力,提高发送URLLC业务数据的可靠性。
参见图11,为本申请实施例提供的另一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S1101、网络设备确定第一资源和第二资源之间存在重叠。
其中,S1101的具体过程可参考S201的描述,此处不再赘述。
S1102、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
其中,S1102的具体过程可参考S202的描述,此处不再赘述。
S1103、终端设备根据第一资源和第二资源之间的位置关系确定使用第三资源。
具体的,所述第三资源不同于第二资源。可选的,所述第三资源与第二资源在频域上没有重叠的资源块,且在时域上没有重叠的符号。因此若第一资源与第二资源碰撞,上行数据采用第三资源而不是第二资源发送,则很有可能第三资源与第二资源没有交集,从而第三资源上发送的数据完全不受第一资源上发送的数据的干扰,保证了数据传输的可靠性。可选的,第三资源的资源块(RB,Resource Block)数或者资源元素(RE,Resource Element)大于第二资源。传输块大小不变的数据在较大的资源上传输,会相应地减小MCS(例如:调制阶数和/或码率),从而提高传输的抗干扰能力。
可选的,在第一资源和第二资源完全不重叠的情况下,终端设备确定采用第二资源发送数据;或
在所述第二资源和所述第一资源发生重叠的情况下,终端设备采用第二资源或第三资源发送数据;或
在重叠资源和所述第二资源之间的比例值大于预设值的情况下,终端设备采用第三资源而不是第二资源发送数据;或
在重叠资源和所述第二资源之间的比例值不大于预设值的情况下,终端设备采用第二资源发送上行数据。
其中,所述预设值可以是网络设备配置给终端设备的,也可以是终端设备预存储的固定值,具体值本实施例不作限制,例如:预设值可以为50%。
举例说明:参见图2b所示,在时隙n内eMBB资源和configured grant资源不重叠,URLLC终端确定采用第二资源发送数据;在时隙n+1内eMBB资源和configured grant资源部分重叠,URLLC终端确定采用第三资源发送数据;在时隙n+2内eMBB资源和configured grant资源完全重叠,URLLC终端确定采用第三资源发送数据。
进一步可选的,所述方法还包括:终端设备根据第一资源的传输功率、第一资源的传输能量中的至少一种来确定传输块大小。
例如:第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率小于功率阈值的情况下,终端设备确定采用第二资源发送数据;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率不小于功率阈值的情况下,终端设备确定采用第三资源发送数据;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量小于能量阈值的情况下,终端设备确定采用第二资源发送数据;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量不小于能量阈值的情况下,终端设备确定采用第三资源发送数据。
可选的,网络设备在向终端设备发送指示信息之前,还包括:网络设备向终端设备发送第三资源的配置参数;承载第三资源的配置参数的信令包括但不限于RRC信令、MAC-CE或其他形式的信令。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备采用第二资源发送数据。第二资源小于第三资源。
S1104、终端设备在第三资源上向网络设备发送上行数据,网络设备接收来自终端设备的上行数据。
具体的,终端设备为configured grant UE,终端设备发送的上行数据可以为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S203确定在第二资源还是在第三资源上发送URLLC业务数据,其中,第三资源大于第二资源。
根据图11的描述,终端设备在需要发送URLLC业务数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,改变在configured grant资源上发送URLLC业务数据采用的资源,能够相应地降低URLLC业务的MCS,从而提高URLLC业务数据的抗干扰能力,提高发送URLLC业务数据的可靠性。
参见图3,为本申请实施例提供的一种上行数据的传输方法的另一流程示意图,在本申请实施例中,所述方法包括:
S301、网络设备确定第一资源和第二资源之间存在重叠。
具体的,S301的具体过程和图2a中的S201相同,具体过程可参照图2a中S201的描述,此处不再赘述。第一资源用于发送预先调度的第一上行数据,第二资源用于发送免调度的第二上行数据。
S302、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
具体的,本实施例中的终端设备为非configured grant UE,例如:终端设备为eMBB终端。指示信息用于指示第一资源,例如:指示信息包括第一资源的位置信息,第一资源的位置信息表示第一资源的频域位置,指示信息可以采用显示或隐身的方式来表示第一资源的位置信息。其中,承载指示信息的信令包括但不限于DCI、MAC-CE、UE specific中的至少一种。
可选的,网络设备发送下行信令到终端设备接收并处理该下行信令之后按照该下行信令的指示发送上行数据的时长(duration)定义为K2,K2的取值为若干个时隙(slots),例如:K2的取值是一组值{0、1、2、3、4、5、6、7}中的任意一个。若网络设备在slot n发送携带指示信息的广播信令,终端设备根据此广播信令在slot n+k发送上行数据。网络设备指示的是slot n到slot n+k对应的k+1个slot中有第一资源调度在第二资源上。但是如果按照周期规律网络应该在slot n发送广播信令,而在slot n至slot n+k对应的k+1个slot都没有第一资源和第二资源碰撞发生,则网络不需要在slot n发送广播信令,因为该广播信令不会改变终端设备的行为,会造成信令资源浪费从而增大开销,其中n和k为大于0的整数。协议中定义终端设备接收广播信令到发送上行数据的时长为N2,N2的取值与子载波间隔关联,例如:子载波间隔为15KHz时,N2=10 symbols;子载波间隔为30KH组时, N2=12 symbols;子载波间隔为60KHz时,N2=23 symbols;子载波间隔为120KHz时,N2=36 symbols。
S303、终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数。
具体的,发射功率的配置参数用于确定终端设备的发射功率。发射功率的配置参数包括第一功率控制参数或第二功率控制参数,即终端设备会使用第一功率控制参数确定的发射功率进行上行发送,或使用第二功率控制参数确定的发射功率进行上行发送。需要说明的是,第二功率控制参数确定的发射功率大于第一功率控制参数确定的发射功率。
可选的,终端设备根据第一资源和第二资源之间的位置关系确定发射功率的配置参数包括:
在第一资源和第二资源部分重叠或完全重叠的情况下,终端设备确定发射功率的配置参数为第一功率控制参数;或
在第一资源和第二资源完全不重叠的情况下,终端设备确定发射功率的配置参数为第二功率控制参数。
举例说明:参见图2b所示,在时隙n内eMBB资源和configured grant资源不重叠,eMBB终端确定发射功率的配置参数为第二功率控制参数;在时隙n+1内eMBB资源和configured grant资源部分重叠,eMBB终端确定发射功率的配置参数为第一功率控制参数;在时隙n+2内eMBB资源和configured grant资源完全重叠,eMBB终端确定发射功率的配置参数为第一功率控制参数。
可选的,第一功率控制参数和第二功率控制参数包括如下信息中的至少一项:
传输功率命令字;
功率控制标识信息;功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收终端设备发送数据的目标信噪比;
信息组,信息组包括闭环功率控制进程索引和传输功率命令字。
其中,第一功率控制参数和第二功率控制参数中各个参数的解释说明可参照图2a中S203的描述,此处不再赘述。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备预存储或预配置为默认的功率控制参数,根据默认的功率控制参数确定的发射功率在第二资源上发送上行数据。其中,默认的功率控制参数可以是独立于第一功率控制参数和第二功率控制参数之外的参数,也可以是第二功率控制参数。
S304、终端设备根据确定的发射功率在第一资源上向网络设备发送上行数据,网络设备接收来自终端设备的上行数据。
例如:终端设备为eMBB终端,因此终端设备发送的上行数据为eMBB业务数据。终端设备需要发送eMBB业务数据时,终端设备根据S303的发射功率的配置参数确定发射功率,使用该发射功率在第一资源上发送eMBB业务数据,即终端设备根据第一功率控制参数确定的发射功率在第一资源上发送eMBB业务数据,或者终端设备根据第二功率控制参数确定的发射功率在第一资源上发送eMBB业务数据。其中,终端设备根据第一功率控制参数确定的发射功率小于根据第二功率控制参数确定的发射功率。
根据图3的描述,终端设备在需要发送非URLLC业务数据之前,检测到configured grant资源和调度给非URLLC业务数据的资源发生冲突或碰撞的情况下,降低发送非URLLC业务数据的发射功率,这样能降低对在configured资源上发送的URLLC业务数据的干扰,提高发送URLLC业务数据的可靠性。
参见图4,为本申请实施例提供的一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S401、网络设备确定第一资源和第二资源之间存在重叠。
具体的,S401的具体过程和图2a中的S201相同,具体过程可参照S201的描述,此处不再赘述。第一资源用于发送预先调度的第一上行数据,第二资源用于发送免调度的第二上行数据。
S402、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
具体的,本实施例中的终端设备为configured grant UE,终端设备也可以称为URLLC终端。指示信息用于指示发射功率的配置参数,发射功率的配置参数用于确定终端设备发送URLLC业务数据时的发射功率。发射功率的配置参数可以为第一功率控制参数,也可以是第二功率控制参数。在本实施例中,指示信息用于指示所述发射功率的配置参数。当预先调度的数据传输资源与configured grant UE发送数据的资源重叠时,网络设备会发送所述指示信息,用于指示发射功率的配置参数。如果预先调度数据的传输资源与configured grant UE发送数据的资源重叠部分较小,或者预先调度数据的功率或能量或MCS较小,对configured grant UE传输的数据影响较小,则所述发射功率的配置参数为第一功率控制参数,反否则所述发射功率的配置参数为第二功率控制参数。其中,承载指示信息的信令可以是广播信令或组播信令,网络设备通过广播信令或组播信令将指示信息发送给一组终端设备。可选的,广播信令或组播信令可以为组公共DCI(Downlink Control Information,下行控制信息),也可以为终端专用DCI(UE specific DCI)。承载指示信息的信令也可以为MAC-CE(Media Access Control-Control Element,介质访问控制-控制元素)。其中,DCI的格式可以为DCI_format 2_2,在DCI_format 2_2新增1个字段DCI field,DCI field字段表示指示信息。可选的,广播信令或组播信令可以是一个新格式的DCI,例如:该DCI的格式命名为format 2_4,该DCI中携带指示信息。本申请实施例采用组公共DCI来发送指示信息,能提高指示信息发送的可靠性,以及减少终端设备的解码时间,降低处理时延。
可选的,指示信息为1个比特位,不同比特位的值用来表示第一功率控制参数或第二功率控制参数,例如:比特位为“0”时,指示信息指示第一功率控制参数,比特位为“1”时,指示信息指示第二功率控制参数。
可选的,指示信息为1个序列,信令中不存在该序列时表示指示第一功率控制参数,信令中存在该序列时表示指示第二功率控制参数。
S403、终端设备根据发射功率配置参数确定发射功率。
具体的,终端设备根据指示信息的指示确定发射功率的配置参数为第一功率控制参数或第二功率控制参数,终端设备根据所述功率控制的配置参数确定发射功率。
可选的,第一功率控制参数和第二功率控制参数包括如下信息中的至少一项:
传输功率命令字;
功率控制标识信息,功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收终端设备发送数据的目标信噪比;
信息组,信息组包括闭环功率控制进程和传输功率命令字。
其中,第一功率控制参数和第二功率控制参数中各个参数的解释说明可参照图2a的S202的描述,此处不再赘述。
其中,信息组包括闭环功率控制进程索引和传输功率命令字,终端设备维护两个独立的闭环功率控制进程:第一进程和第二进程,第一进程表示未干扰的URLLC业务数据的闭环功率控制进程,第二进程表示受干扰的URLLC业务数据的闭环功率控制进程。在第一进程切换到第二进程或第二进程切换到第一进程情况下,切换后的进程对应的发射功率为累计功率修正值,与切换后的进程相同类型的上次的进程对应的发射功率归零。在当前的进程和上一个进程的类型相同的情况下,当前的进程对应的发射功率为上一个进程对应的发射功率加上传输功率命令字指示的累计功率修正值的结果。
终端设备对第一进程和第二进程的维护过程可参照图2a中S202的描述,此处不再赘述。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备预存储或预配置为默认的功率控制参数,根据默认的功率控制参数确定的发射功率在第二资源上发送上行数据。其中,默认的功率控制参数可以是独立于第一功率控制参数和第二功率控制参数之外的参数,也可以是第一功率控制参数。
S404、终端设备根据确定的发射功率在第二资源上向网络设备发送上行数据。
具体的,终端设备为configured grant UE,因此终端设备发送的上行数据为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S403的发射功率的配置参数确定发射功率,使用该发射功率在第二资源上发送URLLC业务数据,即终端设备根据第一功率控制参数确定的发射功率在第二资源上发送URLLC业务数据,或者终端设备根据第二功率控制参数确定的发射功率在第二资源上发送URLLC业务数据。其中,终端设备根据第一功率控制参数确定的发射功率小于根据第二功率控制参数确定的发射功率。
根据图4的描述,终端设备在需要发送上行数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,提高在configured grant资源上发送上行数据的发射功率,这样提高上行数据的抗干扰能力,提高发送上行数据的可靠性。
参见图5,为本申请实施例提供的一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S501、网络设备确定第一资源和第二资源之间存在重叠。
具体的,S501的具体过程和图2a中S201的过程相同,具体可参照图2a中S201的描述,此处不再赘述。第一资源用于发送预先调度的第一上行数据,第二资源用于发送免调度的第二上行数据。
S502、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
具体的,本实施例中的终端设备为非configured grant UE,例如:终端设备为eMBB终端。指示信息用于指示发射功率的配置参数,发射功率的配置参数用于确定终端设备发送非URLLC业务数据时的发射功率。发射功率的配置参数可以为第一功率控制参数,也可以是第二功率控制参数。其中,第一功率控制参数确定的发射功率小于第二功率控制参数确定的发射功率。本实施例中,指示信息指示第一功率控制参数,可选的,承载指示信息的信令可以为组公共DCI(Downlink Control Information,下行控制信息),也可以为终端专用DCI(UE specific DCI)。承载指示信息的信令也可以为MAC-CE(Media Access Control-Control Element,介质访问控制-控制元素)。
S503、终端设备根据发射功率的配置参数确定发射功率。
具体的,终端设备根据S502确定的发射功率的配置参数确定发射功率。在本实施例中,由于第一资源和第二资源发生碰撞,终端设备根据指示信息确定的发射功率的配置参数为第一功率控制参数。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备预存储或预配置为默认的功率控制参数,根据默认的功率控制参数确定的发射功率在第二资源上发送上行数据。其中,默认的功率控制参数可以是独立于第一功率控制参数和第二功率控制参数之外的参数,也可以是第二功率控制参数。默认的功率控制参数确定的发射功率大于第一功率控制参数确定的发射功率。
S504、终端设备根据确定的发射功率在第一资源上发送上行数据。
例如:终端设备为eMBB终端,因此终端设备发送的上行数据为eMBB业务数据。终端设备需要发送eMBB业务数据时,终端设备根据S503的发射功率的配置参数确定发射功率,使用该发射功率在第一资源上发送eMBB业务数据,即终端设备根据第一功率控制参数确定的发射功率在第一资源上发送eMBB业务数据。其中,终端设备根据第一功率控制参数确定的发射功率小于根据第二功率控制参数确定的发射功率。
根据图5的描述,终端设备在需要发送非URLLC业务数据之前,检测到configured grant资源和调度给非URLLC业务数据的资源发生冲突或碰撞的情况下,降低发送非URLLC业务数据的发射功率,这样能降低对在configured资源上发送的URLLC业务数据的干扰,提高发送URLLC业务数据的可靠性。
参见图12,为本申请实施例提供的一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S1201、网络设备确定第一资源和第二资源之间存在重叠。
具体的,S1201的具体过程和图4中的S401相同,具体过程可参照S401的描述,此处不再赘述。
S1202、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
具体的,本实施例中的终端设备为configured grant UE,终端设备也可以称为URLLC终端。指示信息用于指示调制编码方式,调制编码方式用于确定终端设备发送URLLC业务数据时的MCS。调制编码方式可以为第一调制编码方式,也可以是第二调制编码方式。 在本实施例中,指示信息用于指示调制编码方式。当预先调度的数据传输资源与configured grant UE发送数据的资源重叠时,网络设备会发送所述指示信息,用于指示调制编码方式。如果预先调度数据的传输资源与configured grant UE发送数据的资源重叠部分较小,或者预先调度数据的功率或能量或MCS较小,对configured grant UE传输的数据影响较小,则所述调制编码方式为第一调制编码方式,否则所述调制编码方式为第二调制编码方式。其中,承载指示信息的信令可以是广播信令或组播信令,网络设备通过广播信令或组播信令将指示信息发送给一组终端设备。可选的,广播信令或组播信令可以为组公共DCI(Downlink Control Information,下行控制信息),也可以为终端专用DCI(UE specific DCI)。承载指示信息的信令也可以为MAC-CE(Media Access Control-Control Element,介质访问控制-控制元素)。其中,DCI的格式可以为DCI_format 2_2,在DCI_format 2_2新增1个字段DCI field,DCI field字段表示指示信息。可选的,广播信令或组播信令可以是一个新格式的DCI,例如:该DCI的格式命名为format 2_4,该DCI中携带指示信息。本申请实施例采用组公共DCI来发送指示信息,能提高指示信息发送的可靠性,以及减少终端设备的解码时间,降低处理时延。
可选的,指示信息为1个比特位,不同比特位的值用来表示第一调制编码方式或第二调制编码方式,例如:比特位为“0”时,指示信息指示第一调制编码方式,比特位为“1”时,指示信息指示第二调制编码方式。
可选的,指示信息为1个序列,信令中不存在该序列时表示指示第一调制编码方式,信令中存在该序列时表示指示第二调制编码方式。
S1203、终端设备根据确定的调制编码方式在第二资源上向网络设备发送上行数据。
具体的,终端设备为configured grant UE,因此终端设备发送的上行数据为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S1402中确定的调制编码方式,使用该调制编码方式在第二资源上发送URLLC业务数据,即终端设备根据第一调制编码方式在第二资源上发送URLLC业务数据,或者终端设备根据第二调制编码方式在第二资源上发送URLLC业务数据。其中,终端设备根据第一调制编码方式确定的调制阶数和/或码率小于根据第二功率控制参数。
根据图12的描述,终端设备在需要发送上行数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,降低在configured grant资源上发送上行数据的码率和调制阶数,这样提高上行数据的抗干扰能力,提高发送上行数据的可靠性。
参见图13,为本申请实施例提供的一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S1301、网络设备确定第一资源和第二资源之间存在重叠。
具体的,S1301的具体过程和图4中的S401相同,具体过程可参照S401的描述,此处不再赘述。
S1302、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
具体的,本实施例中的终端设备为configured grant UE,终端设备也可以称为URLLC终端。指示信息用于指示传输大小。传输块大小可以为第一传输块大小,也可以是第二传 输块大小。在本实施例中,指示信息用于指示传输块大小。当预先调度的数据传输资源与configured grant UE发送数据的资源重叠时,网络设备会发送所述指示信息。如果预先调度数据的传输资源与configured grant UE发送数据的资源重叠部分较小,或者预先调度数据的功率或能量或MCS较小,对configured grant UE传输的数据影响较小,则所述传输大小为第一传输块大小,否则所述传输块大小为第二传输块大小。其中,承载指示信息的信令可以是广播信令或组播信令,网络设备通过广播信令或组播信令将指示信息发送给一组终端设备。可选的,广播信令或组播信令可以为组公共DCI(Downlink Control Information,下行控制信息),也可以为终端专用DCI(UE specific DCI)。承载指示信息的信令也可以为MAC-CE(Media Access Control-Control Element,介质访问控制-控制元素)。其中,DCI的格式可以为DCI_format 2_2,在DCI_format 2_2新增1个字段DCI field,DCI field字段表示指示信息。可选的,广播信令或组播信令可以是一个新格式的DCI,例如:该DCI的格式命名为format 2_4,该DCI中携带指示信息。本申请实施例采用组公共DCI来发送指示信息,能提高指示信息发送的可靠性,以及减少终端设备的解码时间,降低处理时延。
S1303、终端设备根据确定的发射功率在第二资源上向网络设备发送上行数据。
具体的,终端设备为configured grant UE,因此终端设备发送的上行数据为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S1402的传输块大小,使用该传输大小在第二资源上发送URLLC业务数据,即终端设备根据第一传输块大小在第二资源上发送URLLC业务数据,或者终端设备根据第二传输块大小在第二资源上发送URLLC业务数据。其中,终端设备根据第一传输块大小中包括的RE或RB的数量大于根据第二传输块大小。
根据图13的描述,终端设备在需要发送上行数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,减小在configured grant资源上发送上行数据的传输块大小,这样提高上行数据的抗干扰能力,提高发送上行数据的可靠性。
参见图14,为本申请实施例提供的一种上行数据的传输方法的流程示意图,在本申请实施例中,所述方法包括:
S1401、网络设备确定第一资源和第二资源之间存在重叠。
具体的,S401的具体过程和图4中的S401相同,具体过程可参照S401的描述,此处不再赘述。
S1402、网络设备向终端设备发送指示信息,终端设备接收来自网络设备的指示信息。
具体的,指示信息用于指示第三资源,例如:指示第三资源的频域位置和时域位置,所述第三资源不同于第二资源。可选的,所述第三资源与第二资源在频域上没有重叠的资源块,且在时域上没有重叠的符号。因此若第一资源与第二资源碰撞,上行数据采用第三资源而不是第二资源发送,则很有可能第三资源与第二资源没有交集,从而第三资源上发送的数据完全不受第一资源上发送的数据的干扰,保证了数据传输的可靠性。可选的,第三资源的资源块(RB,Resource Block)数或者资源元素(RE,Resource Element)大于第二资源。传输块大小不变的数据在较大的资源上传输,会相应地减小MCS(例如:调制阶数和/或码率),从而提高传输的抗干扰能力。
可选的,在第一资源和第二资源完全不重叠的情况下,终端设备确定采用第二资源发送数据;或
在所述第二资源和所述第一资源发生重叠的情况下,终端设备采用第二资源或第三资源发送数据;或
在重叠资源和所述第二资源之间的比例值大于预设值的情况下,终端设备采用第三资源而不是第二资源发送数据;或
在重叠资源和所述第二资源之间的比例值不大于预设值的情况下,终端设备采用第二资源发送上行数据。
其中,所述预设值可以是网络设备配置给终端设备的,也可以是终端设备预存储的固定值,具体值本实施例不作限制,例如:预设值可以为50%。
举例说明:参见图2b所示,在时隙n内eMBB资源和configured grant资源不重叠,URLLC终端确定采用第二资源发送数据;在时隙n+1内eMBB资源和configured grant资源部分重叠,URLLC终端确定采用第三资源发送数据;在时隙n+2内eMBB资源和configured grant资源完全重叠,URLLC终端确定采用第三资源发送数据。
进一步可选的,所述方法还包括:终端设备根据第一资源的传输功率、第一资源的传输能量中的至少一种来确定传输块大小。
例如:第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率小于功率阈值的情况下,终端设备确定采用第二资源发送数据;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输功率不小于功率阈值的情况下,终端设备确定采用第三资源发送数据;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量小于能量阈值的情况下,终端设备确定采用第二资源发送数据;或
第一资源和第二资源之间部分重叠或全部重叠,且第一资源的传输能量不小于能量阈值的情况下,终端设备确定采用第三资源发送数据。
可选的,网络设备在向终端设备发送指示信息之前,还包括:网络设备向终端设备发送第三资源的配置参数;承载第三资源的配置参数的信令包括但不限于RRC信令、MAC-CE或其他形式的信令。
在本申请的另一种可能的实施方式中,终端设备未检测到指示信息的情况下,表明第二资源没有和第一资源发生碰撞或冲突,终端设备采用第二资源发送数据。第二资源小于第三资源。
S1403、终端设备在第三资源上向网络设备发送上行数据,网络设备接收来自终端设备的上行数据。
具体的,终端设备为configured grant UE,终端设备发送的上行数据可以为URLLC业务数据。终端设备需要发送URLLC业务数据时,终端设备根据S203确定在第二资源还是在第三资源上发送URLLC业务数据,其中,第三资源大于第二资源。
根据图14的描述,终端设备在需要发送URLLC业务数据之前,检测到configured grant资源和其他资源发生冲突或碰撞的情况下,改变在configured grant资源上发送URLLC业务数据采用的资源,能够相应地降低URLLC业务的MCS,从而提高URLLC业务数据的 抗干扰能力,提高发送URLLC业务数据的可靠性。
上述图2a至图5,以及图9至图11详细阐述了本申请实施例的一种上行数据的传输方法。
在一种可能的实施方式中,图6提供了本申请实施例的一种上行数据的传输装置(以下简称装置6)。装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图2a的描述。
处理单元601,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源。
处理单元601,还用于确定第二资源。
处理单元601,还用于当检测到指示信息时,根据所述第一资源和第二资源之间的位置关系确定发射功率的配置参数;所述配置参数包括第一功率控制参数或第二功率控制参数。其中,所述配置参数包括第一配置参数或第二配置参数,所述第一配置参数和所述第二配置参数包括如下信息中的任意一种或组合:发射功率配置参数、MCS调制编码方式、TBS传输块大小和资源分配信息
处理单元601,还用于根据所述配置参数确定发射功率。
发送单元602,用于根据所述发射功率在所述第二资源上发送上行数据。
可选的,未检测到来自网络设备的指示信息的情况下,所述发射功率的配置参数为默认的功率控制参数。
可选的,处理单元601根据所述第一资源和所述第二资源的位置关系确定发射功率的配置参数,包括:
在所述第一资源与所述第二资源完全不重叠的情况下,确定发射功率的配置参数为第一功率控制参数;或
所述第一资源与所述第二资源部分重叠或全部重叠的情况下,确定发射功率的配置参数为第二功率控制参数。
可选的,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
可选的,所述指示信息承载在广播或组播的下行控制信息中。
可选的,所述指示信息还用于指示:
所述第一资源的传输功率、所述第一资源的传输能量、所述第一资源的调制编码方式中至少一种。
在另一种可能的实施方式中,图6提供了本申请实施例的一种上行数据的传输装置(以下简称装置6)。装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图4的描述。
处理单元601,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示 发射功率的配置参数,所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数。
处理单元601,还用于当检测到所述指示信息时,根据所述发射功率的配置参数确定发射功率。
发送单元602,用于根据所述发射功率在第二资源上向所述网络设备发送上行数据。
可选的,发送单元602,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的功率控制参数确定的发射功率在所述第二资源上发送上行数据。
可选的,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
可选的,所述指示信息承载在广播或组播的下行控制信息中。
在另一种可能的实施方式中,图6提供了本申请实施例的一种上行数据的传输装置(以下简称装置6)。装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图9的描述。
处理单元601,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源。
处理单元601,还用于确定第二资源。
在检测到所述指示信息的情况下,处理单元601还用于根据所述第一资源和第二资源之间的位置关系确定调制编码方式;其中,所述调制编码方式包括第一调制编码方式或第二调制编码方式.
发送单元602,用于根据所述调制编码方式在所述第二资源上发送上行数据。
可选的,在所述终端设备未检测到指示信息的情况下,所述调制编码方式为默认的调制编码方式。
可选的,处理单元601用于根据所述第一资源和第二资源之间的位置关系确定调制编码方式,包括:
所述第一资源和所述第二资源完全不重叠,确定所述调制编码方式为第一调制编码方式;和/或
所述第一资源与所述第二资源部分重叠或全部重叠,确定所述调制编码方式为第二调制编码方式。
在另一种可能的实施方式中,图6提供了本申请实施例的一种上行数据的传输装置(以下简称装置6)。装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图10的描述。
处理单元601,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源。
所述处理单元601,还用于确定第二资源。
在检测到指示信息的情况下,处理单元601还用于根据所述第一资源和第二资源的位置关系确定传输块大小;其中,所述传输块大小包括第一传输块大小或第二传输块大小。
发送单元602,用于根据所述传输块大小在所述第二资源上发送上行数据。
可选的,在所述终端设备未检测到指示信息的情况下,所述传输块大小为默认的传输块大小。
可选的,处理单元601用于根据所述第一资源和第二资源的位置关系确定传输块大小,包括:
在所述第一资源和所述第二资源完全不重叠的情况下,确定所述传输块大小为第一传输块大小;和/或
在所述第一资源和所述第二资源部分重叠或全部重叠的情况下,确定所述传输块大小为第二传输块大小。
在另一种可能的实施方式中,图6提供了本申请实施例的一种上行数据的传输装置(以下简称装置6)。装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图10的描述。
在另一种可能的实施方式中,图6提供了本申请实施例的一种上行数据的传输装置(以下简称装置6)。装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图11的描述。
处理单元601,用于检测来自网络设备的指示信息,其中,所述指示信息用于指示第一资源。
发送单元602,用于在所述处理单元检测到所述指示信息,且所述第一资源与第二资源部分重叠或全部重叠的情况下,在第三资源上发送上行数据。
可选的,发送单元602还用于:
在所述处理单元检测到所述指示信息,且所述第一资源与第二资源完全不重叠的情况下,在所述第二资源上发送上行数据;或
在所述处理单元未检测到来自网络设备的指示信息的情况下,在所述第二资源上发送上行数据。
在一种可能的实施方式中,装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图12的描述。
处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示调制编码方式,所述调制编码方式包括第一调制编码方式和第二调制编码方式;
发送单元,用于根据所述调制编码方式在第二资源上向所述网络设备发送上行数据。
可选的,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的调制编码方式在所述第二资源上发送上行数据。
在一种可能的实施方式中,装置6包括处理单元601和发送单元602,装置6的具体实施过程可参照图13的描述。
处理单元601,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示传输块大小,所述传输块大小包括第一传输块大小和第二传输块大小。
发送单元602,用于根据所述传输块大小在第二资源上向所述网络设备发送上行数据。
可选的,所述发送单元602,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的传输块大小在所述第二资源上发送上行数据。
在一种可能的实施方式中,装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图14的描述。
处理单元601,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示第三资源。
发送单元602,用于在第一资源和第二资源重叠的情况下,在所述第三资源上向所述网络设备发送上行数据。
可选的,所述发送单元602,还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的传输块大小在所述第二资源上发送上行数据。
在一种可能的实施方式中,装置6包括处理单元601和发送单元602,装置6的具体实现过程可参照图12至图14的描述。
处理单元601,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示配置参数,所述配置参数包括第一配置参数和第二配置参数.
发送单元602,用于根据所述资源配置参数向所述网络设备发送上行数据。
可选的,所述配置参数包括以下信息中的任意一种或组合:调制编码方式、传输块大小和资源分配信息。
可选的,所述发送单元602还用于:
在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的配置参数发送上行数据。
可选的,所述默认的配置参数为独立于所述第一配置参数和所述第二配置参数的参数;或所述默认的配置参数为所述第一配置参数。
所述装置6可以为终端设备,所述装置6也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例和图2a至图5,以及图9至图14的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图2a至图5,以及图9至图14的方法实施例的描述,此处不再赘述。
在一种可能的实施方式中,图7提供了本申请实施例提供的另一种上行数据的传输装置(以下简称装置7),装置7包括发送单元701和接收单元702。装置7的实现过程可参照图2a的描述。
发送单元701,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送 指示信息;其中,所述指示信息用于指示所述第一资源。
接收单元702,用于接收所述终端设备在所述第二资源上发送的上行数据。
可选的,发送单元701还用于:向终端设备发送第一功率控制参数和第二功率控制参数的配置信息;或第一调制编码方式和第二调制编码方式;或第一传输块大小和第二传输块大小。
可选的,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
在另一种可能的实施方式中,图7提供了本申请实施例提供的另一种上行数据的传输装置(以下简称装置7),装置7包括发送单元701和接收单元702。装置7的实现过程可参照图4的描述。
发送单元701,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示发射功率的配置参数;所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数。
接收单元702,用于接收所述终端设备在第二资源上发送的上行数据。
在一种可能的设计中,发送单元701还用于:向终端设备发送第一功率控制参数和第二功率控制参数的配置信息。
可选的,所述接收单元还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一功率控制参数确定的发射功率在第二资源上发送的上行数据。
可选的,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
传输功率命令字;
功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
在另一种可能的实施方式中,图7提供了本申请实施例提供的另一种上行数据的传输装置(以下简称装置7),装置7包括发送单元701和接收单元702。装置7的实现过程可参照图11的描述。
发送单元701,用于向终端设备发送指示信息;其中,所述指示信息用于指示第一资源,所述第一资源和第二资源存在重叠;
接收单元702,用于在第三资源上接收来自终端设备的上行数据。
在另一种可能的实施方式中,装置7包括发送单元701和接收单元702,装置7的实现过程可参照图12的描述。
发送单元701,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示调制编码方式;所述调制编码方式包括第一调制编码方式和第二调制编码方式.
接收单元702,用于接收所述终端设备根据所述调制编码方式在第二资源上发送的上行数据。
可选的,接收单元702还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一调制编码方式在第二资源上发送的上行数据。
在另一种可能的实施方式中,装置7包括发送单元701和接收单元702,装置7实现过程可参照图13的描述。
发送单元701,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示传输块大小;所述传输块大小包括第一传输块大小和第二传输块大小。
接收单元702,用于接收所述终端设备根据所述传输块大小在第二资源上发送的上行数据。
可选的,接收单元702还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
在另一种可能的实施方式中,在另一种可能的实施方式中,装置7包括发送单元701和接收单元702,装置7实现过程可参照图14的描述。
发送单元701,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于第三资源。
接收单元702,用于接收所述终端设备在所述第三资源上发送的上行数据。
可选的,接收单元702还用于:
在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一传输块大小在第二资源上发送的上行数据。
所述装置7可以为网络设备,所述装置7也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例和图2a和图5,以及图9至图14的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图2a和图5,以及图9至图14的方法实施例的描述,此处不再赘述。
图8为本申请实施例提供的一种装置结构示意图,以下简称装置8,装置8可以集成于前述网络设备或终端设备,如图8所示,该装置包括:存储器802、处理器801、发射器804以及接收器803。
存储器802可以是独立的物理单元,与处理器801、发射器804以及接收器803可以通过总线连接。存储器802、处理器801、发射器804以及接收器801也可以集成在一起,通过硬件实现等。
发射器804和接收器803还可以与天线连接,接收器803通过天线接收其他设备发送的信息,相应地,发射器604通过天线向其他设备发送信息。
存储器802用于存储实现以上方法实施例,或者装置实施例各个模块的程序,处理器601调用该程序,执行以上方法实施例的操作。
可选地,当上述实施例的上行数据的传输方法中的部分或全部通过软件实现时,上行数据的传输装置也可以只包括处理器。用于存储程序的存储器位于波束的配置装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
上述实施例中,发送单元或发射器执行上述各个方法实施例发送的步骤,接收单元或接收器执行上述各个方法实施例接收的步骤,其它步骤由其他模块或处理器执行。发送模块和接收模块可以组成收发模块,接收器和发射器可以组成收发器。
本申请实施例还提供了一种计算机存储介质,存储有计算机程序,该计算机程序用于执行上述实施例提供的上行数据的发送方法和接收方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的上行数据的发送方法和接收方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式 工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (47)

  1. 一种发送上行数据的方法,其特征在于,包括:
    终端设备检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源;
    所述终端设备确定第二资源;
    在所述终端设备检测到所述指示信息的情况下,所述终端设备根据所述第一资源和第二资源之间的位置关系确定发射功率的配置参数;其中,所述配置参数包括第一功率控制参数或第二功率控制参数;或所述配置参数包括第一配置参数或第二配置参数,所述第一配置参数和所述第二配置参数包括如下信息中的任意一种或组合:发射功率配置参数、MCS调制编码方式、TBS传输块大小和资源分配信息;
    所述终端设备根据所述配置参数确定发射功率;
    根据所述发射功率在所述第二资源上发送上行数据。
  2. 根据权利要求1所述方法,其特征在于,
    在所述终端设备未检测到指示信息的情况下,所述发射功率的配置参数为默认的功率控制参数。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一资源和第二资源的位置关系确定发射功率的配置参数,包括:
    所述第一资源与所述第二资源完全不重叠,所述终端设备确定发射功率的配置参数为第一功率控制参数;和/或
    所述第一资源与所述第二资源部分重叠或全部重叠,所述终端设备确定发射功率的配置参数为第二功率控制参数。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,
    所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  5. 一种发送上行数据的装置,其特征在于,包括:
    处理单元,用于检测来自网络设备的指示信息;其中,所述指示信息用于指示第一资源;
    所述处理单元还用于确定第二资源;在检测到所述指示信息的情况下,所述处理单元用于根据所述第一资源和第二资源之间的位置关系确定发射功率的配置参数;所述配置参数包括第一功率控制参数或第二功率控制参数;或者,所述配置参数包括第一配置参数或第二配置参数,所述第一配置参数和所述第二配置参数包括如下信息中的任意一种或组合: 发射功率配置参数、MCS调制编码方式、TBS传输块大小和资源分配信息;所述配置参数包括第一功率控制参数或第二功率控制参数;
    所述处理单元,还用于根据所述配置参数确定发射功率;
    发送单元,用于根据所述发射功率在所述第二资源上发送上行数据。
  6. 根据权利要求5所述装置,其特征在于,
    在未检测到来自网络设备的指示信息的情况下,所述处理单元确定所述发射功率的配置参数为默认的功率控制参数。
  7. 如权利要求5或6所述的装置,其特征在于,所述处理单元根据所述第一资源和所述第二资源的位置关系确定发射功率的配置参数,包括:
    在所述第一资源与所述第二资源完全不重叠的情况下,确定发射功率的配置参数为第一功率控制参数;和/或
    所述第一资源与所述第二资源部分重叠或全部重叠的情况下,确定发射功率的配置参数为第二功率控制参数。
  8. 如权利要求5-7任意一项所述的装置,其特征在于,
    所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  9. 根据权利要求5至8任意一项所述的装置,其特征在于,
    所述指示信息承载在广播或组播的下行控制信息中。
  10. 如权利要求5至9任意一项所述的装置,其特征在于,所述指示信息还用于指示:
    所述第一资源的传输功率、所述第一资源的传输能量、所述第一资源的调制编码方式中至少一种。
  11. 一种接收上行数据的方法,其特征在于,包括:
    网络设备向终端设备发送指示信息,所述指示信息用于指示第一资源,其中,所述第一资源和第二资源存在重叠;
    所述网络设备在所述第二资源上从终端设备接收上行数据。
  12. 如权利要求11所述方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息包括第一功率控制参数和第二功率控制参数;或所述配置信息包括第一调制编码方式和第二调制编码方式;或所述 配置信息包括第一传输块大小和第二传输块大小;或所述配置参数包括第一资源分配信息和第二资源分配信息。
  13. 如权利要求12所述的方法,其特征在于,
    所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  14. 一种上行数据的接收装置,其特征在于,包括:
    发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息;其中,所述指示信息用于指示所述第一资源;
    接收单元,用于接收所述终端设备在所述第二资源上发送的上行数据。
  15. 如权利要求14所述的装置,其特征在于,所述发送单元还用于:
    在所述发送单元向所述终端设备发送所述指示信息之前,向所述终端设备发送配置信息,所述配置信息包括第一功率控制参数和第二功率控制参数。
  16. 如权利要求15所述的装置,其特征在于,
    所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  17. 一种上行数据的发送方法,其特征在于,包括:
    终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示发射功率的配置参数,所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
    根据所述发射功率配置参数确定发射功率;
    根据所述发射功率在第二资源上向所述网络设备发送上行数据。
  18. 如权利要求17所述的方法,其特征在于,还包括:
    在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,终端设备根据默认的功率控制参数确定所述发射功率,并根据所述发射功率在所述第二资源上发送上行数据。
  19. 如权利要求18所述的方法,其特征在于,所述默认的功率控制参数为独立于所述 第一功率控制参数和所述第二功率控制参数的参数;或所述默认的功率控制参数为所述第一功率控制参数。
  20. 根据权利要求17-19中任意一项所述方法,其特征在于,
    所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  21. 根据权利要求17至20中任意一项所述方法,其特征在于,
    所述指示信息承载于广播下行控制信息中,或所述指示信息承载于组播的下行控制信息中。
  22. 一种上行数据的发送装置,其特征在于,包括:
    处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示发射功率的配置参数,所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
    所述处理单元,根据所述发射功率的配置参数确定发射功率;
    发送单元,用于根据所述发射功率在第二资源上向所述网络设备发送上行数据。
  23. 如权利要求22所述的装置,其特征在于,所述发送单元,还用于:
    在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的功率控制参数确定的发射功率在所述第二资源上发送上行数据。
  24. 根据权利要求21-23中任意一项所述的装置,其特征在于,
    所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  25. 根据权利要求21至24中任意一项所述装置,其特征在于,
    所述指示信息承载在广播或组播的下行控制信息中。
  26. 一种上行数据的接收方法,其特征在于,包括:
    在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示发射功率的配置参数;所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
    所述网络设备接收所述终端设备在第二资源上发送的上行数据。
  27. 如权利要求26所述的方法,其特征在于,还包括:
    在第一资源和第二资源之间不存在重叠的情况下,网络设备接收所述终端设备根据第一功率控制参数确定的发射功率在第二资源上发送的上行数据。
  28. 如权利要求26或27所述的方法,其特征在于,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  29. 一种上行数据的接收装置,其特征在于,包括:
    发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示发射功率的配置参数;所述发射功率的配置参数包括第一功率控制参数和第二功率控制参数;
    接收单元,用于接收所述终端设备在第二资源上发送的上行数据;其中,所述上行数据的发射功率由所述发射功率的配置参数确定。
  30. 如权利要求29所述的装置,其特征在于,所述接收单元还用于:
    在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一功率控制参数确定的发射功率在第二资源上发送的上行数据。
  31. 如权利要求29或30所述的装置,其特征在于,所述第一功率控制参数和第二功率控制参数包括如下信息中至少一项:
    传输功率命令字;
    功率控制标识信息,所述功率控制标识信息用于表示路径损耗补偿因子和/或网络设备接收所述终端设备发送数据的目标信噪比;和
    信息组,所述信息组包括闭环功率控制进程索引和传输功率命令字。
  32. 一种上行数据的发送方法,其特征在于,包括:
    终端设备检测到来自网络设备的指示信息;其中,所述指示信息用于指示配置信息,所述配置信息包括第一配置信息和第二配置信息;
    所述终端设备根据所述资源配置信息向所述网络设备发送上行数据。
  33. 如权利要求32所述的方法,其特征在于,所述配置信息包括以下信息中的任意一种或组合:调制编码方式、传输块大小和资源分配信息。
  34. 如权利要求32或33所述的方法,其特征在于,还包括:
    在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,终端设备根据默认的配置信息发送上行数据。
  35. 如权利要求34所述的方法,其特征在于,所述默认的配置信息为独立于所述第一配置信息和所述第二配置信息的参数;或所述默认的配置信息为所述第一配置信息。
  36. 一种上行数据的发送装置,其特征在于,包括:
    处理单元,用于检测到来自网络设备的指示信息;其中,所述指示信息用于指示配置参数,所述配置参数包括第一配置参数和第二配置参数;
    发送单元,用于根据所述资源配置参数向所述网络设备发送上行数据。
  37. 如权利要求36所述的装置,其特征在于,所述配置参数包括以下信息中的任意一种或组合:调制编码方式、传输块大小和资源分配信息。
  38. 如权利要求36或37所述的装置,其特征在于,所述发送单元还用于:
    在所述第二资源上发送所述上行数据之前未检测到所述指示信息的情况下,根据默认的配置参数发送上行数据。
  39. 如权利要求38所述的装置,其特征在于,所述默认的配置参数为独立于所述第一配置参数和所述第二配置参数的参数;或所述默认的配置参数为所述第一配置参数。
  40. 一种上行数据的接收方法,其特征在于,包括:
    在第一资源和第二资源之间存在重叠的情况下,网络设备向终端设备发送指示信息,其中,所述指示信息用于指示配置参数;所述配置参数包括第一配置参数和第二配置参数
    所述网络设备接收所述终端设备根据配置参数发送的上行数据。
  41. 如权利要求40所述的方法,其特征在于,还包括:
    在第一资源和第二资源之间不存在重叠的情况下,网络设备接收所述终端设备根据第一第一配置参数发送的上行数据。
  42. 一种上行数据的接收装置,其特征在于,包括:
    发送单元,用于在第一资源和第二资源之间存在重叠的情况下,向终端设备发送指示信息,其中,所述指示信息用于指示配置参数;
    接收单元,用于接收所述终端设备根据第二配置参数发送的上行数据。
  43. 如权利要求42所述的装置,其特征在于,所述接收单元还用于:
    在第一资源和第二资源之间不存在重叠的情况下,接收所述终端设备根据第一配置参数发送的上行数据。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至4、11至13、17至21、26至28、32至35、40和41中任意一项所述的方法。
  45. 一种计算机程序产品,其特征在于,所述计算机程序产品包含指令,当其在计算机上运行时,使得计算机执行如权利要求1至4、11至13、17至21、26至28、32至35、40和41中任意一项所述的方法。
  46. 一种通信装置,其特征在于,包括与存储器耦合的处理器,所述处理器用于执行所述存储器中存储的指令,以支持所述通信装置执行如权利要求1至4、11至13、17至21、26至28、32至35、40和41中任意一项所述的方法。
  47. 一种通信系统,其特征在于,包括终端设备与网络设备,其中,所述终端设备用于执行如权利要求1至4、或17至21、或32至35中任意一项所述的方法,所述网络设备用于执行如权利要求11至13、或26至28、或40-41中任意一项所述的方法。
PCT/CN2019/071822 2018-02-14 2019-01-15 一种上行数据的发送方法、接收方法和装置 WO2019157897A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810152095.7 2018-02-14
CN201810152095 2018-02-14
CN201810302244.3 2018-04-04
CN201810302244.3A CN110167173A (zh) 2018-02-14 2018-04-04 一种上行数据的发送方法、接收方法和装置

Publications (1)

Publication Number Publication Date
WO2019157897A1 true WO2019157897A1 (zh) 2019-08-22

Family

ID=67619110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071822 WO2019157897A1 (zh) 2018-02-14 2019-01-15 一种上行数据的发送方法、接收方法和装置

Country Status (1)

Country Link
WO (1) WO2019157897A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905431A (zh) * 2020-06-22 2022-01-07 华为技术有限公司 功率控制方法及装置
EP4213555A4 (en) * 2020-09-18 2023-12-06 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198120A1 (zh) * 2016-05-18 2017-11-23 华为技术有限公司 参考信号配置方法及装置
CN107623951A (zh) * 2016-07-13 2018-01-23 三星电子株式会社 在无线蜂窝通信系统中允许不同服务共存的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198120A1 (zh) * 2016-05-18 2017-11-23 华为技术有限公司 参考信号配置方法及装置
CN107623951A (zh) * 2016-07-13 2018-01-23 三星电子株式会社 在无线蜂窝通信系统中允许不同服务共存的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "R1-1705525 On eMBB/URLLC Multiplexing for uplink", 3GPP TSG RAN WG1 MEETING #88BIS, 7 April 2017 (2017-04-07), XP051243654 *
LG ELECTRONICS: "R1-1702489 Discussion on multiplexing of eMBB and URLLC for uplink", 3GPP TSG RAN WG1 MEETING #88, 17 February 2017 (2017-02-17), XP051209643 *
SONY: "R1-1708257 On eMBB/URLLC multiplexing for Uplink", 3GPP TSG RAN WG1 MEETING #89, 19 May 2017 (2017-05-19), XP051262334 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905431A (zh) * 2020-06-22 2022-01-07 华为技术有限公司 功率控制方法及装置
CN113905431B (zh) * 2020-06-22 2023-11-03 华为技术有限公司 功率控制方法及装置
EP4213555A4 (en) * 2020-09-18 2023-12-06 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Similar Documents

Publication Publication Date Title
CN109152052B (zh) 确定传输块大小的方法及装置
WO2019129012A1 (zh) 控制信息的传输方法
EP3179787B1 (en) Terminal device and method for transmit power control
US20190261247A1 (en) Data transmission method and apparatus, system, terminal, and access network device
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
US20210314981A1 (en) Communication system
JP7074848B2 (ja) 複数のベースグラフを用いたtbs判定
CN107872890B (zh) 一种无线通信系统中调度传输的方法及设备
WO2018228579A1 (zh) 确定传输块大小的方法及装置
JP2022528625A (ja) 信号送受信方法、装置及びシステム
US12063654B2 (en) Uplink control information transmission method and device
EP4007384A1 (en) Uplink transmission method and apparatus, resource indication method and apparatus, serving node, and medium
WO2018137188A1 (zh) 一种用于覆盖增强的资源配置方法及装置
CN111757487A (zh) 一种通信方法及设备
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2019157897A1 (zh) 一种上行数据的发送方法、接收方法和装置
US20230188286A1 (en) User equipments, base stations and methods for multi-beam srs transmission
WO2021036763A1 (zh) 监测周期的调整方法及装置
CN111436108B (zh) 一种功率控制的方法以及功率控制的装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2021025693A1 (en) Methods and apparatuses for data demodulation reference signal (dmrs)-only transmission on configured grant resources
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN114747260B (zh) 上行发射功率控制方法及装置
WO2022083856A9 (en) Base station-controlled adjustment to radio transmitter requirement for user device
US12101783B2 (en) Communications device, infrastructure equipment and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753608

Country of ref document: EP

Kind code of ref document: A1