WO2017198120A1 - 参考信号配置方法及装置 - Google Patents

参考信号配置方法及装置 Download PDF

Info

Publication number
WO2017198120A1
WO2017198120A1 PCT/CN2017/084188 CN2017084188W WO2017198120A1 WO 2017198120 A1 WO2017198120 A1 WO 2017198120A1 CN 2017084188 W CN2017084188 W CN 2017084188W WO 2017198120 A1 WO2017198120 A1 WO 2017198120A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
occupied
configurations
reference signals
time
Prior art date
Application number
PCT/CN2017/084188
Other languages
English (en)
French (fr)
Inventor
栗忠峰
吴宁
李新县
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017198120A1 publication Critical patent/WO2017198120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the embodiments of the present application relate to communications technologies, and in particular, to a reference signal configuration method and apparatus.
  • the URLLC service is a bursty packet service, and its Quality of Service (QoS) requirements are ultra-high reliability and short delay.
  • QoS Quality of Service
  • the URLLC service can only be used in non-RS resource elements occupied by other services, for example,
  • the resource element (Resource Element, RE) in the LTE system is transmitted on.
  • the above solution ensures the low latency of the URLLC service, the resources for data transmission in the URLLC service are reduced, resulting in an increase in the code rate of the URLLC service, thereby reducing the reliability of the URLLC service, or reducing the size of the URLLC service.
  • the transmission of part of the URLLC service does not guarantee its low latency characteristics.
  • the embodiment of the present invention provides a method and a device for configuring a reference signal, so as to ensure the resource for data transmission in the URLLC service and improve the reliability of the URLLC service, while ensuring the low latency of the URLLC service. Or, to avoid delaying the transmission of part of the URLLC service caused by reducing the size of the URLLC service, and ensuring the low delay characteristic of the delayed part of the URLLC service.
  • the embodiment of the present application provides a reference signal configuration method, including: dividing an RS into m configurations, where m is a positive integer; determining a location of resource elements occupied by the m configured reference signals; The resource elements occupied by the m configured reference signals are located in different time domain and/or frequency domain locations.
  • the embodiment of the present application divides the RSs of other services except the URLLC service into m configurations, and determines the resource elements occupied by the m configured reference signals when determining the positions of the resource elements occupied by the m configured reference signals. It is located in different time domain and/or frequency domain locations, so that RSs of other services are evenly distributed in different time domains and/or frequency domain locations, and the OFDM symbol that the URLLC service may preempt is reduced compared to the existing reference signal configuration method.
  • the number of resource elements occupied by the RS of other services ensures the resources used for data transmission in the URLLC service; in addition, the difference of the resource elements occupied by the RSs of other services in the time domain and/or the frequency domain position is also diluted.
  • all the resource elements in an RB are available from the perspective of the URLLC service.
  • the embodiment of the present application does not need to consider whether the URLLC service occupies resource elements occupied by RSs of other services, thereby simplifying the scheduling of the URLLC service. .
  • the resource occupied by the m configured reference signals The elements are located in different time domain and/or frequency domain locations, including: in any one of the m configurations, the resource blocks occupied by the reference signal are continuous or discontinuous in the frequency domain; and/or, when m is greater than At 1 o'clock, between the two configurations of the m configurations, the reference signals are located in the same time domain in the same Orthogonal Frequency Division Multiplexing (OFDM) symbol or partially located in different OFDM symbols or all located Different OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the OFDM symbols occupied by the reference signal are located in the same or different time units, where the time unit is a subframe or a time slot or a scheduling unit or a transmission time interval or the like.
  • the time domain or the frequency domain location of the resource element occupied by the reference signal is determined by a system predefined; or the time domain of the resource element occupied by the reference signal Or the frequency domain location is configured by signaling.
  • the location of the part or all resource elements occupied by the reference signal configured by the at least one of the m configurations is occupied by the bandwidth or the entire bandwidth of the reference signal part of the LTE system. Shifting or flipping or rotating the position of the resource element; or, when m is greater than 1, the location of the resource element occupied by the reference signal of one of the m configurations is the resource element occupied by the reference signal of another configuration Shifting or flipping or rotating the position; or, when m is greater than 1, the m configured reference signals are located in different time units, wherein at least two of the reference signals of the m configured reference signals are located The time unit corresponds to the same first control channel, where the first control channel is located in a time unit of a configured reference signal in the time domain of the at least two configured reference signals, and the at least two configurations are The reference signal is located at a different location in the time unit.
  • the shift may be any one of a time domain shift and a frequency domain shift
  • the reference signal is a CSIRS or a UE specific RS.
  • the executing entity of the method is a base station device.
  • the time-frequency resource information of the new reference signal configuration is exchanged between the base station devices.
  • the embodiment of the present application provides a reference signal configuration apparatus, including: a configuration module, configured to divide an RS into m configurations, where m is a positive integer; and a processing module, configured to determine the reference signals of the m configurations The location of the occupied resource element; wherein the resource elements occupied by the m configured reference signals are located in different time domain and/or frequency domain locations.
  • the implementation of the device can refer to the implementation of the method, and the repeated description is not repeated.
  • the device may be a base station device or integrated in a base station device.
  • the time-frequency resource information of the new RS configuration is exchanged between the base station devices.
  • an embodiment of the present application provides a reference signal configuration apparatus, including: a processor and a memory for storing executable instructions. Wherein the processor is operative to execute the executable instructions to perform the method of any of the first aspects.
  • an embodiment of the present application provides a non-transitory computer readable storage medium storing one or more programs.
  • the one or more programs include instructions that, when executed by the reference signal configuration device, cause the reference signal configuration device to perform the solution in the method design of the first aspect above, and the repetitive portions are not described again.
  • FIG. 1 is a schematic diagram of a network architecture of an LTE system provided by the present application.
  • Embodiment 1 of a reference signal configuration method according to the present application
  • FIG. 3 is a schematic diagram showing resource elements occupied by an RS of an eMBB service in an existing LTE system in two physical resource block (PRB) pairs;
  • 4a and 4b are schematic diagrams showing resource element allocations occupied by each RS configuration of an eMBB service in an embodiment of the present application
  • 5a and 5b are schematic diagrams showing resource element allocations occupied by each RS configuration of an eMBB service in another embodiment of the present application;
  • 6a and 6b are schematic diagrams showing resource element allocations occupied by each RS configuration of an eMBB service in still another embodiment of the present application;
  • FIG. 7 is a schematic diagram showing resource element allocation occupied by each RS configuration of an eMBB service in another embodiment of the present application.
  • FIG. 8 is a schematic diagram showing resource element allocation occupied by each RS configuration of an eMBB service in another embodiment of the present application.
  • FIG. 9 is a schematic diagram showing resource element allocation occupied by each RS configuration of an eMBB service in another embodiment of the present application.
  • Embodiment 10 is a schematic structural diagram of Embodiment 1 of a reference signal configuration apparatus according to the present application.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a reference signal configuration apparatus according to the present application.
  • the technical solution of the present application can be applied to various communication systems of a wireless cellular network, for example, a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, and a wideband code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Universal Mobile Telecommunications System Universal Mobile Communication System
  • the present invention is not limited to the Mobile Telecommunications System (UMTS), and the Wireless-Fidelity (WiFi) system and the World Interoperability for Microwave Access (WINMAX) system.
  • FIG. 1 is a schematic diagram of a network architecture of an LTE system provided by the present application. As shown in Figure 1, the main network entities of the LTE system function as follows:
  • Evolved universal terrestrial radio access network A network consisting of multiple evolved Node Bases (eNBs) to implement radio physical layer functions, resource scheduling, and radio resources. Management, wireless access control, and mobility management capabilities.
  • the eNB is connected to the Serving Gateway (SGW) through the user plane interface S1-U for transmitting user data.
  • SGW Serving Gateway
  • S1-U user plane interface
  • MME Mobility Management Entity
  • S1-AP protocol is used to implement functions such as radio access bearer control.
  • MME It is mainly responsible for encrypting the non-access stratum (NAS) signaling and NAS signaling of the UE, assigning temporary identity to the user equipment, and selecting core network elements such as SGW and PGW to provide roaming, tracking, and security. And so on, it corresponds to the control plane part of the current Servicing GPRS Support Node (SGSN) of the UMTS system.
  • NAS non-access stratum
  • PGW Packet Control Function
  • the SGW is mainly responsible for data transmission, forwarding, and route switching of the user equipment (User Equipment, UE), and is used as a local mobility anchor point when the UE switches between eNBs. For each user equipment, only one SGW is served at each time.
  • User Equipment User Equipment
  • PGW As an anchor point of a public data network (PDN) connection, it is responsible for the Internet Protocol (IP) address allocation of the UE, data packet filtering, rate control, and generation of charging information of the UE.
  • IP Internet Protocol
  • HSS Home Subscriber Server
  • the HSS is used to store subscription information of users.
  • PCRF Policy Control Rule Function
  • the non-3GPP network can be divided into a trusted non-3GPP network and an untrusted 3GPP network, wherein the trusted non-3GPP network accesses through the S2a interface with the P-GW; the non-trusted non-3GPP network passes the evolved packet data.
  • the S2b interface between the gateway (evolved PDN, ePDN) and the PGW is accessed.
  • the ePDN is responsible for forwarding or allocating the mobile local IP address of the UE, registering the local IP address of the UE, and binding the mobile IP address of the UE with the local IP address.
  • an important network element is an authentication, authorization, and accounting (Authentication, Authorization, Accounting, AAA) server, which implements an authentication and authorization operation on the user equipment through interaction with the HSS;
  • the PGW identification information used by each PDN connection established by the UE is registered in the HSS.
  • the trusted non-3GPP system or the non-trusted non-3GPP system can also be accessed through the S2c interface between the UE and the PGW.
  • the UE can also establish a binding with the PGW through the S2c interface.
  • the embodiment of the present application provides a reference signal configuration method and apparatus, to ensure the resources for data transmission in the URLLC service, while maintaining the low latency of the URLLC service, compared with the above prior art. Improve the reliability of the URLLC service, or avoid delaying the transmission of part of the URLLC service caused by reducing the size of the URLLC service, and ensure that the partial URLLC service is delayed.
  • the embodiment of the present application exemplifies the enhanced mobile broadband (eMBB) service as another service, but other services are not limited by the eMBB service.
  • eMBB enhanced mobile broadband
  • FIG. 2 is a flowchart of Embodiment 1 of a reference signal configuration method according to the present application.
  • the embodiment of the present application provides a reference signal configuration method, which may be performed by a reference signal configuration device.
  • the device may be implemented by software and/or hardware, and the device may exist independently or integrated in the base station device.
  • the reference signal configuration method includes:
  • the RS is divided into m configurations, where m is a positive integer.
  • the RS of the eMBB service on the full bandwidth is divided into m configurations.
  • m can be any positive integer.
  • n can be 1.
  • m is 1 to represent the RS of the eMBB service as a whole.
  • the number of RBs occupied by the RS for each of the above configurations is not zero. It can be understood by those skilled in the art that the number of RBs occupied by the RSs in each configuration of the eMBB service may be the same or different, and is not limited in the embodiment of the present application.
  • This step includes the following situations:
  • Case 1 determining the location of the resource elements occupied by the m configured reference signals, wherein all or part of the resource elements occupied by the m configured reference signals are located in different time domain locations and the same frequency domain location;
  • Case 2 determining the location of the resource elements occupied by the m configured reference signals, wherein all or part of the resource elements occupied by the m configured reference signals are located in different frequency domain locations and the same time domain location;
  • Case 3 determining the location of the resource elements occupied by the m configured reference signals, wherein all or part of the resource elements occupied by the m configured reference signals are located in different time domain locations and different frequency domain locations.
  • the resource element is the smallest granularity of the physical layer resource.
  • the resource element corresponds to one OFDM symbol; in the frequency domain, the resource element corresponds to one subcarrier.
  • the resource element occupied by the reference signal of the first configuration is located in the first OFDM symbol and the second OFDM symbol in the time domain
  • the resource element occupied by the reference signal of the second configuration is located in the fourth OFDM in the time domain. Symbol and 5th OFDM symbol, and so on.
  • the first OFDM symbol is located in part of the time domain
  • the second OFDM symbol is located in the other time domain, and so on.
  • the resource elements occupied by the m configured reference signals are located in the same or different subcarriers in the frequency domain.
  • the resource elements occupied by the reference signals of different configurations may be located in the same or different OFDM symbols in the time domain. Example.
  • the embodiment of the present application divides the RSs of other services except the URLLC service into m configurations, and determines the resource elements occupied by the m configured reference signals when determining the positions of the resource elements occupied by the m configured reference signals. It is located in different time domain and/or frequency domain locations, so that RSs of other services are evenly distributed in different time domains and/or frequency domain locations, and the OFDM symbol that the URLLC service may preempt is reduced compared to the existing reference signal configuration method.
  • the number of resource elements occupied by the RS of other services ensures the resources used for data transmission in the URLLC service; in addition, the difference of the resource elements occupied by the RSs of other services in the time domain and/or the frequency domain position is also diluted.
  • all the resource elements in an RB are available from the perspective of the URLLC service.
  • the embodiment of the present application does not need to consider whether the URLLC service occupies resource elements occupied by RSs of other services, thereby simplifying the scheduling of the URLLC service. .
  • the resource elements occupied by the reference signals of the m configurations are located in different time domain and/or frequency domain locations by using a specific implementation.
  • the location of part or all of the resource elements occupied by the reference signal configured by at least one of the m configurations is a shift of the location of the resource element occupied by the reference signal part bandwidth or the entire bandwidth of the LTE system or Flip or rotate.
  • the implementation is based on the RS part bandwidth or the entire bandwidth of the LTE system.
  • the part or all of the resource elements occupied by the RS configured by at least one of the m configurations herein refers to all or part of the resource elements occupied by the RS of the configured one, that is, resources occupied by one configured RS. All or part of the position of the element is obtained by shifting or flipping or rotating the position of the resource element occupied by the RS part bandwidth or the entire bandwidth of the LTE system.
  • the location of the resource element occupied by the RS part bandwidth or the entire bandwidth of the existing LTE system is up and down (frequency The domain) shift, and/or left and right (time domain) shift, and/or, flip or rotate, to obtain the resource element location distribution occupied by the RS of other services other than the URLLC service, such as the eMBB service.
  • FIG. 3 shows a resource element distribution occupied by RSs of eMBB services in two PRB pairs in the existing LTE system.
  • an RS of an eMBB service has a resource element distribution in two PRB pairs as shown in any shape in the figure, for example, a channel state.
  • the Channel State Information Reference Signal has 10 types of resource elements occupied by the two PRB pairs, such as boxes including circles, squares, ellipses, diamonds, and dots; user equipment-specific
  • the reference signal (UE specific RS) has a distribution pattern of resource elements occupied by the two PRB pairs, such as a box including a left oblique line; a physical downlink control channel (Physical Downlink Control Channel, PDCCH) is in two PRB pairs.
  • the resource elements occupied by the resource element have a distribution indication, such as a box including a right slash;
  • the Common Reference Signal CRS has a distribution indication of the resource elements occupied by the two PRB pairs, such as including a square.
  • the remaining resource elements are used by the Physical Downlink Shared Channel (PDSCH) to carry the downlink shared signal from the transmission. Road data.
  • PDSCH Physical Downlink Shared Channel
  • the block including the circle in FIG. 3 is shifted up (frequency domain), and/or left and right (time domain) to obtain the resource element distribution occupied by one configured RS of the eMBB service.
  • the RSs of the eMBB service are different in the distribution of different OFDM symbols, and therefore, the number of available resource elements for data transmission on each OFDM symbol is different.
  • the location of the resource element occupied by the reference signal of one of the m configurations is the shift or flip of the location of the resource element occupied by the reference signal of another configuration. Or rotate.
  • the position of the resource element occupied by one of the configured RSs is shifted or flipped or rotated to obtain the location of the resource element occupied by the RS of another configuration.
  • the location of the resource element occupied by the RS of the one of the configurations may be the same as the location of the resource element occupied by the RS of the LTE system, or may be different.
  • the shift may be any one of a time domain shift and a frequency domain shift or a combination thereof.
  • rotation and flipping those skilled in the art can understand that if the time domain locations of the resource elements occupied by the RS are the same in the two configured RSs, and the frequency domain locations are different, then for the configuration concept, the RSs of the two configurations are The location of the resource element occupied by one of the configured RSs is the flip or rotation of the location of the resource element occupied by the other configured RS.
  • the flipping and rotating can be reversed or rotated by a predetermined axis, or flipped or rotated at a predetermined point, which is not limited in the embodiment of the present application.
  • the reference signals in the m configurations are located in different time units.
  • the time unit of the reference signal configured by at least two of the m configured reference signals corresponds to a time unit An identical first control channel, where the first control channel is located in a time unit of a configured reference signal in the time domain of the at least two configured reference signals, and the at least two configured reference signals are located Different locations of time units.
  • the resource blocks (RBs) occupied by the RSs are continuous or discontinuous in the frequency domain.
  • the RBs in the frequency domain are consecutive or non-contiguous.
  • the two RBs are consecutive in the frequency domain. If one of the two adjacent RBs does not distribute the RS, the two RBs are discontinuous in the frequency domain.
  • the resource elements occupied by the RS are located in the same or different OFDM symbols in the time domain.
  • the block including the circle of the sixth OFDM symbol from the left is shifted to the left by one OFDM symbol, and is located from the left. 5 OFDM symbols; the block including the circle of the 7th OFDM symbol from the left, after moving one OFDM symbol to the right, is located at the 8th OFDM symbol from the left, that is, the RS of the eMBB service in the same configuration
  • the occupied resource elements are located in different OFDM symbols in the time domain.
  • the block is located from the left. 6th OFDM symbol; a block including a circle of 7th OFDM symbol from the left, after moving one OFDM symbol to the left, is located at the 6th OFDM symbol from the left, that is, the eMBB service in the same configuration
  • the resource elements occupied by the RS are located in the same OFDM symbol in the time domain.
  • the same OFDM symbol or part of the RS in the time domain is located in different OFDM symbols or all located in different OFDM symbols.
  • the OFDM symbols occupied by the RS are located in the same or different time units, and the time unit is a subframe or a time slot or a scheduling unit or a transmission time interval. That is, the OFDM symbols occupied by the RS may be located in the same or different subframes; or the OFDM symbols occupied by the RS may be located in the same or different time slots; or the OFDM symbols occupied by the RS may be located in the same or different The scheduling unit; or, the OFDM symbols occupied by the RS may be located at the same or different transmission time intervals.
  • time domain or frequency domain location of the resource elements occupied by the foregoing RS may be configured in multiple manners: mode one, determined by the system predefined; mode two, configured by signaling, and the like.
  • the execution body of this embodiment may be a base station device.
  • the base station device may pre-configure the RS information of the eMBB service; or may receive the relevant signaling acquisition RS configuration sent by the control layer (for example, the high-level network element device, the control plane device, etc.) during the operation.
  • the control layer for example, the high-level network element device, the control plane device, etc.
  • the RS mentioned in the embodiment of the present application is a CSIRS or a UE specific RS.
  • the two RSs are specifically described below.
  • one CSIRS is divided into an A configuration and a B configuration in the frequency domain.
  • the resource element occupied by the CSIRS configured by at least one of the two configured CSIRSs and any one of the communication standards LTE Rel10 to Rel13
  • the CSIRS part of the bandwidth or the entire bandwidth occupies the same resource element, or the time domain shift, or frequency domain shift, or time of the resource element occupied by the CSIRS part of the LTE Rel10 to Rel13
  • the CSIRSs of the respective configurations are all located in different OFDM symbols or partially located on different OFDM symbols, and the sum of the bandwidths corresponding to the CSIRSs of the respective configurations is less than or equal to the system bandwidth, and the RBs of the CSIRSs of the respective configurations may be continuous or discontinuous in the frequency domain. of.
  • the resource elements occupied by the CSIRS configured by the A are the same as the resource elements occupied by the CSIRS part of the LTE system or the bandwidth of the entire bandwidth, and the resource elements occupied by the CSIRS configured by the B and the CSIRS part of the bandwidth of the LTE system are used.
  • the resource elements occupied by the entire bandwidth are the same, and the CSIRSs configured in the A configuration and the B configuration are all located in different OFDM symbols.
  • the resource element occupied by the CSIRS configured by the A is the frequency domain shift of the resource element occupied by the CSIRS part bandwidth or the entire bandwidth of the LTE system
  • the resource element occupied by the C-configured CSIRS is the LTE system.
  • the CSIRS part of the bandwidth or the bandwidth of the resource elements occupied by the time domain shift, the C configuration of the A configuration and the B configuration are all located in different OFDM symbols.
  • the resource element occupied by the CSIRS configured by the A is the resource element occupied by the CSIRS part bandwidth or the entire bandwidth of the LTE system, and the time of the resource element occupied by the CSIRS part bandwidth or the entire bandwidth of the LTE system.
  • the domain shift combination; the resource element occupied by the B-configured CSIRS is a resource element occupied by a CSIRS part bandwidth or the entire bandwidth of the LTE system, and a frequency domain shift of a resource element occupied by a CSIRS part bandwidth or the entire bandwidth of the LTE system.
  • the CSIRSs of the A configuration and the B configuration are all located in different OFDM symbols.
  • one UE specific RS is divided into two configurations of A configuration and B configuration in the frequency domain.
  • the resource elements occupied by the UE specific RSs of the respective configurations are the same as the resource elements occupied by the UE Specific RS part of the LTE Rel10 to Rel13, or the UE Specific RS of any of the LTE Rel10 to Rel13 versions.
  • Time-frequency shift, or frequency-domain shift, or combination of time-domain shift and frequency-domain shift of resource elements occupied by part or all of the bandwidth, or UE Specific RS part of any version of LTE Rel10 to Rel13 The combination of the resource element occupied by the bandwidth or the entire bandwidth and the resource element time domain shift and/or frequency domain shift occupied by the UE Specific RS part bandwidth or the entire bandwidth of any version of LTE Rel10 to Rel13.
  • the resource elements occupied by the UE Specific RS are all located in different OFDM symbols or partially located in different OFDM symbols in the time domain, and the sum of the bandwidths corresponding to the respective configurations is less than or equal to the system bandwidth, and each configured UE Specific RS is located.
  • the RB may be continuous or non-contiguous in the frequency domain.
  • the resource elements occupied by the UE Specific RS configured in the A are the same as the resource elements occupied by the UE Specific RS part of the LTE system, and the resources occupied by the UE specific RS configured by the B.
  • the element is the time-domain shift of the resource element occupied by the UE Specific RS part of the bandwidth or the entire bandwidth of the LTE system, and the A specific configuration and the UE-specific RS configured by the B are all located in different OFDM symbols;
  • the resource element occupied by the UE Specific RS part of the LTE system is the same as the resource element occupied by the UE Specific RS part of the LTE system.
  • the resource element occupied by the UE Specific RS of the B is the resource occupied by the UE Specific RS part of the LTE system or the bandwidth occupied by the entire bandwidth.
  • the element time domain shift, the A configuration and the B specific UE specific RS part are located in different OFDM symbols.
  • the OFDM symbols occupied by the RSs of different configurations are located in different time units.
  • the embodiment of the present application provides a specific embodiment of a dynamic UE specific RS configuration.
  • each subframe has its own UE specific RS, and the OFDM symbol position occupied by the UE specific RS is close to the start position of the subframe;
  • the UE specific RS is configured as A
  • the UE specific RS in subframe 2 and subframe 3 is configured as B.
  • the OFDM symbols occupied by each configured UE specific RS are located in different subframes, and the reference signals of each configured UE specific RS configuration are different in the subframe, and each resource block occupied by the UE specific RS is configured. Continuous or discontinuous in the frequency domain.
  • the resource element represented by the blank box is a Physical Uplink Shared Channel (PUSCH) or a PDSCH.
  • PUSCH Physical Uplink Shared Channel
  • the time-frequency resource information of the new RS configuration is exchanged between the base station devices, that is, the time-frequency resource information that the different base station devices can exchange with the new RS configuration, so as to avoid reference signal interference between adjacent cells.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a reference signal configuration apparatus according to the present application.
  • the reference signal configuration device 90 includes a configuration module 91 and a processing module 92.
  • the configuration module 91 is configured to divide the RS into m configurations, where m is a positive integer.
  • the processing module 92 is configured to determine a location of a resource element occupied by the m configured reference signals, where the resource elements occupied by the m configured reference signals are located in different time domain and/or frequency domain locations.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the resource elements occupied by the m configured reference signals are located in different time domain and/or frequency domain locations, including: in any one of the m configurations, the RS occupies RB is continuous or discontinuous in the frequency domain; and/or, when m is greater than 1, the reference signal is located in the same OFDM symbol or part of different OFDM in the time domain between the two configurations of the m configurations
  • the symbols are all located in different OFDM symbols.
  • the OFDM symbols occupied by the RS are located in the same or different time units, and the time unit is a subframe or a time slot or a scheduling unit or a transmission time interval.
  • the time domain or the frequency domain location of the resource element occupied by the RS is determined by the system; or the time domain or the frequency domain location of the resource element occupied by the RS is configured by using signaling.
  • the location of part or all of the resource elements occupied by the reference signal configured by at least one of the m configurations is a shift or flip of the location of the resource element occupied by the reference signal part bandwidth or the entire bandwidth of the LTE system. Or rotating; or, when m is greater than 1, the position of the resource element occupied by the reference signal of one of the m configurations is a shift or flip of the position of the resource element occupied by another configured reference signal or Rotating; or, when m is greater than 1, the m-configured reference signals are located in different time units, wherein at least two of the m configured reference signals are in a time unit corresponding to the same first control channel The first control channel is located in a front of the at least two configured reference signals in the time domain The configured reference signal is in a time unit, and the at least two configured reference signals are located at different locations of the time unit.
  • the above shift may be any one of a time domain shift and a frequency domain shift or a combination thereof.
  • the above RS may be a CSIRS or a UE specific RS.
  • the reference signal configuration device 90 can be specifically a base station device or integrated in the base station device.
  • the time-frequency resource information of the new RS configuration is exchanged between the base station devices.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a reference signal configuration apparatus according to the present application.
  • the reference signal configuration apparatus 100 includes a processor 110 and a memory 120 for storing executable instructions.
  • the processor 110 is configured to execute executable instructions to perform the method of any of the above.
  • the disclosed apparatus and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or module is only a logical function division.
  • there may be another division manner for example, multiple units or modules may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种参考信号配置方法及装置。本申请参考信号配置方法,包括:将RS分为m个配置,m为正整数;确定该m个配置的参考信号所占用资源元素的位置,其中,该m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置,从而降低URLLC业务可能抢占的OFDM符号上的其它业务的RS所占用的资源元素个数,保证URLLC业务中用于数据传输的资源;还淡化了其它业务的RS所占用的资源元素在时域和/或频域位置上的差异性,简化了URLLC业务的调度。

Description

参考信号配置方法及装置 技术领域
本申请实施例涉及通信技术,尤其涉及一种参考信号配置方法及装置。
背景技术
随着通信技术的发展,其所提供的服务也越来越多样化,例如,超高可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务和增强的移动宽带(Enhance Mobile Broadband,eMBB)业务等。其中,URLLC业务为突发性小包业务,其服务质量(Quality of Service,QoS)需求为超高可靠性和短时延性。
当URLLC业务所在的符号上存在例如eMBB业务等其它业务的参考信号(Reference Signal,RS)时,为了保证其它业务的解调性能,URLLC业务只能在其它业务所占用的非RS资源元素,例如,LTE系统中的资源元素(Resource Element,RE),上进行传输。
上述方案虽然保证了URLLC业务的低时延,但减少了URLLC业务中用于数据传输的资源,导致URLLC业务的码率提高,进而降低了URLLC业务的可靠性,或者降低了URLLC业务大小推迟了部分URLLC业务的传输从而不能保证其低延时的特性。
发明内容
本申请实施例提供一种参考信号配置方法及装置,以在保证URLLC业务的低时延的同时,相对上述现有技术,保证URLLC业务中用于数据传输的资源,提高URLLC业务的可靠性,或者,避免因降低URLLC业务大小所导致的推迟部分URLLC业务的传输,保证该推迟部分URLLC业务的低延时特性。
第一方面,本申请实施例提供一种参考信号配置方法,包括:将RS分为m个配置,m为正整数;确定所述m个配置的参考信号所占用资源元素的位置;其中,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置。
本申请实施例通过对除URLLC业务之外的其它业务的RS分为m个配置,并在确定m个配置的参考信号所占用资源元素的位置时,使m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置,从而使得其它业务的RS在不同时域和/或频域位置均匀分布,相比现有参考信号配置方法,降低了URLLC业务可能抢占的OFDM符号上的其它业务的RS所占用的资源元素个数,保证URLLC业务中用于数据传输的资源;另外,还淡化了其它业务的RS所占用的资源元素在时域和/或频域位置上的差异性,从URLLC业务的角度来看,一个RB中的所有资源元素都是可用的,本申请实施例无需考虑URLLC业务是否会占用其它业务的RS所占用的资源元素,从而简化了URLLC业务的调度。
在第一方面的第一种可能的实现方式中,所述m个配置的参考信号所占用资源 元素位于不同的时域和/或频域位置,包括:在所述m个配置的任一个配置中,参考信号所占用的资源块在频域上连续或非连续;和/或,当m大于1时,在所述m个配置的两个配置之间,参考信号在时域上位于相同的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或部分位于不同的OFDM符号或全部位于不同的OFDM符号。
在第一方面的第二种可能的实现方式中,参考信号所占用的OFDM符号位于相同或不同的时间单元,该时间单元为子帧或时隙或调度单元或传输时间间隔等。
在第一方面的第三种可能的实现方式中,所述参考信号所占用的资源元素的时域或频域位置由系统预定义确定;或者,所述参考信号所占用的资源元素的时域或频域位置通过信令进行配置。
在第一方面的第四种可能的实现方式中,所述m个配置中至少一个配置的参考信号所占用的部分或全部资源元素的位置为LTE系统的参考信号部分带宽或全部带宽所占用的资源元素的位置的移位或翻转或旋转;或者,当m大于1时,所述m个配置中一个配置的参考信号所占用的资源元素的位置为另一个配置的参考信号所占用的资源元素的位置的移位或翻转或旋转;或者,当m大于1时,所述m个配置的参考信号位于不同时间单元,其中,所述m个配置的参考信号中至少两个配置的参考信号所在时间单元对应相同的第一控制信道,该第一控制信道位于所述至少两个配置的参考信号中在时域上靠前的一个配置的参考信号所在时间单元,且所述至少两个配置的参考信号位于时间单元的不同位置。其中,所述移位可以为时域移位和频域移位中任一个或其组合。
在第一方面的第五种可能的实现方式中,所述参考信号为CSIRS或UE specific RS。
在第一方面的第六种可能的实现方式中,所述方法的执行主体为基站设备。基站设备间交互新的参考信号配置的时频资源信息。
第二方面,本申请实施例提供一种参考信号配置装置,包括:配置模块,用于将RS分为m个配置,m为正整数;处理模块,用于确定所述m个配置的参考信号所占用资源元素的位置;其中,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置。
基于同一发明构思,由于该装置解决问题的原理与第一方面的方法设计中的方案对应,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
可选地,该装置可以为基站设备或集成在基站设备之中。基站设备间交互新的RS配置的时频资源信息。
第三方面,本申请实施例提供一种参考信号配置装置,包括:处理器和用于存储可执行指令的存储器。其中,该处理器用于执行可执行指令,以执行如第一方面中任一项所述的方法。
第四方面,本申请实施例提供一种存储一个或多个程序的非易失性计算机可读存储介质。所述一个或多个程序包括指令,所述指令当被参考信号配置装置执行时使所述参考信号配置装置执行上述第一方面的方法设计中的方案,重复之处不再赘述。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的LTE系统的网络架构示意图;
图2为本申请参考信号配置方法实施例一的流程图;
图3示出现有LTE系统中eMBB业务的RS在2个物理资源块(Physical Resource Block,PRB)对中所占用的资源元素分布示意图;
图4a和图4b示出本申请一实施例中eMBB业务的每个RS配置所占用的资源元素分布示意图;
图5a和图5b示出本申请另一实施例中eMBB业务的每个RS配置所占用的资源元素分布示意图;
图6a和图6b示出本申请再一实施例中eMBB业务的每个RS配置所占用的资源元素分布示意图;
图7示出本申请又一实施例中eMBB业务的每个RS配置所占用的资源元素分布示意图;
图8示出本申请又一实施例中eMBB业务的每个RS配置所占用的资源元素分布示意图;
图9示出本申请又一实施例中eMBB业务的每个RS配置所占用的资源元素分布示意图;
图10为本申请参考信号配置装置实施例一的结构示意图;
图11为本申请参考信号配置装置实施例二的结构示意图。
具体实施方式
本申请的技术方案,可以应用于无线蜂窝网络的各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统及其演进系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),以及无线保真(Wireless-Fidelity,WiFi)系统和全球微波接入互操作性(World Interoperability for Microwave Access,WINMAX)系统等,本申请并不限定。
本申请实施例可以应用于以下场景:URLLC业务和其它业务共存,例如URLLC业务和eMBB业务共存。图1为本申请提供的LTE系统的网络架构示意图。如图1所示,LTE系统的主要网络实体功能如下:
演进的通用陆基无线接入网(Evolved universal terrestrial radio access network,E-UTRAN):由多个演进型基站(evolved Node Base,eNB)组成的网络,实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。eNB通过用户面接口S1-U与服务网关(Serving Gateway,SGW)相连,用于传送用户数据; 通过控制面接口S1-MME与移动性管理实体(Mobility Management Entity,MME)相连,采用S1-AP协议实现无线接入承载控制等功能。
MME:主要负责与UE非接入层(Non-Access Stratum,NAS)信令和NAS信令加密,为用户设备分配临时身份标识,选择SGW和PGW等核心网网元,提供漫游、跟踪、安全等功能,它对应于当前UMTS系统内部服务GPRS支持节点(Serving GPRS Support Node,SGSN)的控制平面部分。
SGW:主要负责用户设备(User Equipment,UE)的数据传输、转发以及路由切换等,并作为UE在eNB之间切换时的本地移动性锚定点。对于每一个用户设备,每个时刻仅有一个SGW为之服务。
PGW:作为公用数据网(Public Data Network,PDN)连接的锚定点,负责UE的因特网协议(Internet Protocol,IP)地址分配,UE的数据报文过滤、速率控制、生成计费信息等。
归属签约用户服务器(Home Subscriber Server,HSS):HSS用于存储用户的签约信息。
策略控制规则制定实体(Policy Control Rule Function,PCRF):提供策略和计费控制规则。
通常可以将非3GPP网络分为可信非3GPP网络和非可信3GPP网络,其中可信非3GPP网络通过与P-GW之间的S2a接口接入;非可信非3GPP网络通过演进的分组数据网关(evolved PDN,ePDN)与PGW之间的S2b接口接入。其中ePDN负责转发或分配UE的移动本地IP地址,注册UE的本地IP地址,并将UE的移动IP地址和本地IP地址进行绑定。从非3GPP网络接入的时候,还有一个重要网元是鉴权,授权和计费(Authentication、Authorization、Accounting,AAA)服务器,通过与HSS的交互实现对用户设备的鉴权授权操作;将UE建立的每个PDN连接所用的PGW标识信息注册到HSS中。
当然,当前非3GPP网络接入3GPP系统核心网时,不论可信非3GPP系统还是非可信非3GPP系统,也都可以通过UE与PGW之间的S2c接口接入。同时,在3GPP系统接入的时候,UE也可通过S2c接口与PGW建立绑定。
当URLLC业务和其它业务共存时,可能出现URLLC业务所在的符号和其它业务的RS所占用符号部分或者全部冲突的现象。为了解决这个技术问题,本申请实施例提供了一种参考信号配置方法及装置,以在保证URLLC业务的低时延的同时,相对上述现有技术,保证URLLC业务中用于数据传输的资源,提高URLLC业务的可靠性,或者,避免因降低URLLC业务大小所导致的推迟部分URLLC业务的传输,保证该推迟部分URLLC业务低延时的特性。本申请实施例以增强的移动宽带(Enhance Mobile Broadband,eMBB)业务作为其它业务进行示例说明,但其它业务不以eMBB业务为限制。
图2为本申请参考信号配置方法实施例一的流程图。本申请实施例提供一种参考信号配置方法,该方法可以由参考信号配置装置执行,该装置可以通过软件和/或硬件的方式实现,该装置可以独立存在或集成于基站设备中。如图2所示,该参考信号配置方法包括:
S201、将RS分为m个配置,m为正整数。
例如,对全带宽上的eMBB业务的RS分为m个配置。其中,m可为任意正整数。
特殊地,m可以为1。该情况下,m为1表示将eMBB业务的RS作为一个整体。
对于上述每个配置的RS占用的RB个数不为0。本领域技术人员可以理解,在eMBB业务的每个配置的RS所占用的RB个数可以相同,也可以不同,本申请实施例不对其进行限制。
S202、确定m个配置的参考信号所占用资源元素的位置,其中,m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置。
该步骤包括以下几种情况:
情况一、确定m个配置的参考信号所占用资源元素的位置,其中,m个配置的参考信号所占用资源元素全部或部分位于不同的时域位置、相同的频域位置;
情况二、确定m个配置的参考信号所占用资源元素的位置,其中,m个配置的参考信号所占用资源元素全部或部分位于不同的频域位置、相同的时域位置;
情况三、确定m个配置的参考信号所占用资源元素的位置,其中,m个配置的参考信号所占用资源元素全部或部分位于不同的时域位置、不同的频域位置。
其中,资源元素是物理层资源的最小粒度。在时域上,资源元素对应1个OFDM符号;在频域上,资源元素对应1个子载波。
例如,第1个配置的参考信号所占用资源元素在时域上位于第1个OFDM符号和第2个OFDM符号,第2个配置的参考信号所占用资源元素在时域上位于第4个OFDM符号和第5个OFDM符号,等等。
又例如,第1个配置的参考信号所占用资源元素中,部分时域上位于第1个OFDM符号,另一部分时域上位于第2个OFDM符号,等等。
同理,m个配置的参考信号所占用资源元素在频域上位于相同或不同的子载波,具体示例可参考上述不同配置的参考信号所占用资源元素在时域上位于相同或不同的OFDM符号的示例。
本申请实施例通过对除URLLC业务之外的其它业务的RS分为m个配置,并在确定m个配置的参考信号所占用资源元素的位置时,使m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置,从而使得其它业务的RS在不同时域和/或频域位置均匀分布,相比现有参考信号配置方法,降低了URLLC业务可能抢占的OFDM符号上的其它业务的RS所占用的资源元素个数,保证URLLC业务中用于数据传输的资源;另外,还淡化了其它业务的RS所占用的资源元素在时域和/或频域位置上的差异性,从URLLC业务的角度来看,一个RB中的所有资源元素都是可用的,本申请实施例无需考虑URLLC业务是否会占用其它业务的RS所占用的资源元素,从而简化了URLLC业务的调度。
以下通过具体实现方式说明所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置。
一种实现方式中,所述m个配置中至少一个配置的参考信号所占用的部分或全部资源元素的位置为LTE系统的参考信号部分带宽或全部带宽所占用的资源元素的位置的移位或翻转或旋转。该实现方式基于LTE系统的RS部分带宽或全部带宽所占用 的资源元素的位置,对其进行移位或翻转或旋转,获得m个配置中至少一个配置的RS所占用的资源元素的位置。其中,这里的m个配置中至少一个配置的RS所占用的部分或全部资源元素是指这一个配置的RS所占用的资源元素的全部或部分,也就是说,一个配置的RS所占用的资源元素的位置的全部或部分是对LTE系统的RS部分带宽或全部带宽所占用的资源元素的位置进行移位或翻转或旋转获得的。
本申请实施例在现有LTE系统的RS部分带宽或全部带宽所占用的资源元素的位置的基础上,对现有LTE系统的RS部分带宽或全部带宽所占用的资源元素的位置进行上下(频域)移位,和/或,左右(时域)移位,和/或,翻转或旋转,得到除URLLC业务之外的其它业务,例如eMBB业务,的RS所占用的资源元素位置分布。
示例性的,图3示出现有LTE系统中eMBB业务的RS在2个PRB对中所占用的资源元素分布。参考图3,对于普通循环前缀(Normal Cyclic Prefix,Normal CP)、4天线端口条件下,eMBB业务的RS在2个PRB对中资源元素分布如该图中任一形状所示,例如,信道状态参考信号(Channel State Information Reference Signal,CSIRS)在2个PRB对中所占用的资源元素有10种分布示意,如包括圆形、正方形、椭圆、菱形及圆点等的方框;用户设备特定的参考信号(UE specific RS)在2个PRB对中所占用的资源元素分布有一种分布示意,如包括左斜线的方框;物理下行控制信道(Physical Downlink Control Channel,PDCCH)在2个PRB对中所占用的资源元素有一种分布示意,如包括右斜线的方框;公共参考信号(Common Reference Signal,CRS)在2个PRB对中所占用的资源元素有一种分布示意,如包括方格的方框;其余资源元素为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)所用,用于承载来自传输下行共享信道的数据。
例如,将图3中包括圆形的方框向上下(频域)移位,和/或,左右(时域)移位,得到eMBB业务的一个配置的RS所占用的资源元素分布。
如图3所示意,在LTE系统中,eMBB业务的RS在不同OFDM符号的分布不同,因此,每个OFDM符号上用于数据传输的可用资源元素个数不同。
另一种实现方式中,当m大于1时,所述m个配置中一个配置的参考信号所占用的资源元素的位置为另一个配置的参考信号所占用的资源元素的位置的移位或翻转或旋转。例如,当m为2时,对其中一个配置的RS所占用的资源元素的位置进行移位或翻转或旋转,获得另一个配置的RS所占用的资源元素的位置。这其中一个配置的RS所占用的资源元素的位置可以与LTE系统的RS所占用的资源元素的位置相同,也可以不同,本申请实施例不对其进行限制。
需说明的是,所述移位可以为时域移位和频域移位中任一个或其组合。对于旋转和翻转,本领域技术人员可以理解,如果两个配置的RS中,RS所占用的资源元素的时域位置相同,频域位置不同,那么针对配置的概念,这两个配置的RS中,其中一个配置的RS所占用的资源元素的位置为另一个配置的RS所占用的资源元素的位置的翻转或旋转。这里的翻转和旋转可以以一预设的轴翻转或旋转,或以一预设点翻转或旋转,本申请实施例不对其进行限制。
再一种实现方式中,当m大于1时,所述m个配置中的参考信号位于不同时间单元。其中,所述m个配置的参考信号中至少两个配置的参考信号所在时间单元对应 相同的第一控制信道,该第一控制信道位于所述至少两个配置的参考信号中在时域上靠前的一个配置的参考信号所在时间单元,且所述至少两个配置的参考信号位于时间单元的不同位置。
在上述实施例的基础上,在m个配置的任一个配置中,RS所占用的资源块(Resource Block,RB)在频域上连续或非连续。这里所说的RB在频域上连续或非连续是指:在一个配置的RS所占用的RB中,若其中相邻的两个RB都分布有RS,则这两个RB在频域上连续;若其中相邻的两个RB中有一个没有分布RS,则这两个RB在频域上非连续。
另外,在m个配置的任一个配置中,RS所占用的资源元素在时域上位于相同或不同的OFDM符号。例如,在图3所示的eMBB业务的RS所占用资源元素中,位于一个RB、自左边起第6个OFDM符号的包括圆形的方框向左移动一个OFDM符号之后,位于自左边起第5个OFDM符号;位于一个RB、自左边起第7个OFDM符号的包括圆形的方框向右移动一个OFDM符号之后,位于自左边起第8个OFDM符号,即同一配置中eMBB业务的RS所占用的资源元素在时域上位于不同的OFDM符号。又例如,在图3所示的eMBB业务的RS所占用资源元素中,位于一个RB、自左边起第6个OFDM符号的包括圆形的方框向上移动一个子载波之后,还位于自左边起第6个OFDM符号;位于一个RB、自左边起第7个OFDM符号的包括圆形的方框向左移动一个OFDM符号之后,位于自左边起第6个OFDM符号,即同一配置中eMBB业务的RS所占用的资源元素在时域上位于相同的OFDM符号。需说明的是,上述示例仅为方便理解,本申请实施例并不限制于此。
可选地,当m大于1时,在m个配置的两个配置之间,RS在时域上相同的OFDM符号或部分位于不同的OFDM符号或全部位于不同的OFDM符号。具体解释可参考上一段落关于同一配置eMBB业务的RS所占用的资源元素在时域上位于相同或不同的OFDM符号的具体描述,此处不再赘述。
进一步地,RS所占用的OFDM符号位于相同或不同的时间单元,该时间单元为子帧或时隙或调度单元或传输时间间隔等。也就是说,RS所占用的OFDM符号可以位于相同或不同的子帧;或,RS所占用的OFDM符号可以位于相同或不同的时隙;或,RS所占用的OFDM符号可以位于相同或不同的调度单元;或,RS所占用的OFDM符号可以位于相同或不同的传输时间间隔。
需说明的是,上述RS所占用的资源元素的时域或频域位置可通过多种方式进行配置:方式一,由系统预定义确定;方式二,通过信令进行配置,等等。
具体地,本实施例的执行主体可以是基站设备。通常基站设备可以预先配置eMBB业务的RS信息;或者,也可以在运行过程中接收控制层(例如,高层网元设备、控制面设备等)发送的相关信令获取RS配置。
本申请实施例中提及的RS为CSIRS或UE specific RS。以下针对这两种RS进行具体说明。
一、配置CSIRS的具体实施例
在本实施例中,将1个CSIRS在频域上分为A配置和B配置。该两个配置的CSIRS中至少一个配置的CSIRS所占用的资源元素与通信标准LTE Rel10~Rel13中任一版本 的CSIRS部分带宽或全部带宽所占用的资源元素相同,或为LTE Rel10~Rel13中任一版本的CSIRS部分带宽或全部带宽所占用的资源元素的时域移位、或频域移位、或时域移位与频域移位的结合,或为LTE Rel10~Rel13中任一版本的CSIRS部分带宽或全部带宽所占用的资源元素与LTE Rel10~Rel13中任一版本的CSIRS部分带宽或全部带宽所占用的资源元素时域移位和/或频域移位的组合。各个配置的CSIRS全部位于不同的OFDM符号或部分位于不同的OFDM符号上,各个配置的CSIRS对应的带宽之和小于或等于系统带宽,各个配置的CSIRS所在RB在频域上可以是连续或非连续的。
参考图4a、图4b、图5a、图5b、图6a和图6b。在图4a和图4b中,A配置的CSIRS所占用的资源元素与LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素相同,B配置的CSIRS所占用的资源元素与LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素相同,A配置与B配置的CSIRS全部位于不同的OFDM符号。在图5a和图5b中,A配置的CSIRS所占用的资源元素为LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素的频域移位,B配置的CSIRS所占用的资源元素为LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素的时域移位,A配置与B配置的CSIRS全部位于不同的OFDM符号。在图6a和图6b中,A配置的CSIRS所占用的资源元素为LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素,与LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素的时域移位组合;B配置的CSIRS所占用的资源元素为LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素,与LTE系统的CSIRS部分带宽或全部带宽所占用的资源元素的频域移位组合,A配置与B配置的CSIRS全部位于不同的OFDM符号。
二、配置UE specific RS的具体实施例
在本实施例中,将1个UE specific RS在频域上分为A配置和B配置共两个配置。各个配置的UE Specific RS所占用的资源元素与LTE Rel10~Rel13中任一版本的UE Specific RS部分带宽或全部带宽所占用的资源元素相同,或为LTE Rel10~Rel13中任一版本的UE Specific RS部分带宽或全部带宽所占用的资源元素的时频移位、或频域移位、或时域移位与频域移位的结合,或为LTE Rel10~Rel13中任一版本的UE Specific RS部分带宽或全部带宽所占用的资源元素与LTE Rel10~Rel13中任一版本的UE Specific RS部分带宽或全部带宽所占用的资源元素时域移位和/或频域移位的组合。各个配置中,UE Specific RS所占用的资源元素在时域上全部位于不同的OFDM符号或部分位于不同的OFDM符号上,各个配置对应的带宽之和小于或等于系统带宽,各个配置UE Specific RS所在RB在频域上可以是连续或非连续的。
参考图7和图8,图7中A配置的UE Specific RS所占用的资源元素与LTE系统的UE Specific RS部分带宽或全部带宽所占用的资源元素相同,B配置的UE Specific RS所占用的资源元素为LTE系统的UE Specific RS部分带宽或全部带宽所占用的资源元素的时域移位,A配置与B配置的UE Specific RS全部位于不同的OFDM符号;图8中A配置的UE Specific RS所占用的资源元素与LTE系统的UE Specific RS部分带宽或全部带宽所占用的资源元素相同,B配置的UE Specific RS所占用的资源元素为LTE系统的UE Specific RS部分带宽或全部带宽所占用的资源元素时域移位,A配置与B配置的UE Specific RS部分位于不同的OFDM符号。
针对不同配置的RS所占用的OFDM符号位于不同时间单元的场景,以下以不同配置的RS所占用的OFDM符号位于不同的子帧为例进行说明:
本申请实施例提供一种动态的UE specific RS配置的具体实施例。
在本申请实施例中,有两个配置的UE specific RS,如图9所示。参考图9,其中,子帧1,子帧2和子帧3共用控制信道,每个子帧拥有各自的UE specific RS,UE specific RS所占用的OFDM符号位置靠近子帧的开始位置;子帧1中UE specific RS为A配置,子帧2和子帧3中的UE specific RS为B配置。每个配置的UE specific RS所占用的OFDM符号位于不同的子帧中,且每个配置的UE specific RS配置的参考信号在子帧中的位置不同,每个配置UE specific RS所占用的资源块在频域上连续或非连续。在图9中,空白方框所代表的资源元素为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或PDSCH。
补充说明的是,图4a至图8中,各种形状的资源元素所代表的具体含义可参考图3所示相同形状的资源元素所代表的具体含义,此处不再赘述。
可选地,基站设备间交互新的RS配置的时频资源信息,也就是不同的基站设备之间可以交互新的RS配置的时频资源信息,这样可以避免相邻小区间的参考信号干扰。
图10为本申请参考信号配置装置实施例一的结构示意图。如图10所示,该参考信号配置装置90包括配置模块91和处理模块92。
其中,配置模块91,用于将RS分为m个配置,m为正整数。
处理模块92,用于确定所述m个配置的参考信号所占用资源元素的位置,其中,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置。
本实施例的装置,可以用于执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在上述实施例的基础上,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置,包括:在所述m个配置的任一个配置中,RS所占用的RB在频域上连续或非连续;和/或,当m大于1时,在所述m个配置的两个配置之间,参考信号在时域上位于相同的OFDM符号或部分位于不同的OFDM符号或全部位于不同的OFDM符号。
进一步地,RS所占用的OFDM符号位于相同或不同的时间单元,该时间单元为子帧或时隙或调度单元或传输时间间隔等。
其中,RS所占用的资源元素的时域或频域位置由系统预定义确定;或者,RS所占用的资源元素的时域或频域位置通过信令进行配置。
示例性地,所述m个配置中至少一个配置的参考信号所占用的部分或全部资源元素的位置,为LTE系统的参考信号部分带宽或全部带宽所占用的资源元素的位置的移位或翻转或旋转;或者,当m大于1时,所述m个配置中一个配置的参考信号所占用的资源元素的位置,为另一个配置的参考信号所占用的资源元素的位置的移位或翻转或旋转;或者,当m大于1时,所述m配置的参考信号位于不同时间单元,其中,所述m个配置的参考信号中至少两个配置的参考信号所在时间单元对应相同的第一控制信道,该第一控制信道位于所述至少两个配置的参考信号中在时域上靠前的一个 配置的参考信号所在时间单元,且所述至少两个配置的参考信号位于时间单元的不同位置。其中,上述移位可以为时域移位和频域移位中任一个或其组合。
上述RS可以为CSIRS或UE specific RS。
该参考信号配置装置90可以具体为基站设备或集成于基站设备之中。基站设备间交互新的RS配置的时频资源信息。
图11为本申请参考信号配置装置实施例二的结构示意图。如图11所示,该参考信号配置装置100包括处理器110和用于存储可执行指令的存储器120。其中,该处理器110用于执行可执行指令,以执行上述任一项所述的方法。
在本申请所提供的几个实施例中,应该理解到,所揭示的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。

Claims (15)

  1. 一种参考信号配置方法,其特征在于,包括:
    将参考信号分为m个配置,m为正整数;
    确定所述m个配置的参考信号所占用资源元素的位置;
    其中,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置。
  2. 根据权利要求1所述的方法,其特征在于,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置,包括:
    在所述m个配置的任一个配置中,参考信号所占用的资源块在频域上连续或非连续;
    和/或,当m大于1时,在所述m个配置的两个配置之间,参考信号在时域上位于相同的正交频分复用OFDM符号或部分位于不同的OFDM符号或全部位于不同的OFDM符号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参考信号所占用的正交频分复用OFDM符号位于相同或不同的时间单元,所述时间单元为子帧或时隙或调度单元或传输时间间隔。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,
    所述参考信号所占用的资源元素的时域或频域位置由系统预定义确定;
    或者,所述参考信号所占用的资源元素的时域或频域位置通过信令进行配置。
  5. 根据权利要求1~4中任一项所述的方法,其特征在于,所述m个配置中至少一个配置的参考信号所占用的部分或全部资源元素的位置为长期演进LTE系统的参考信号部分带宽或全部带宽所占用的资源元素的位置的移位或翻转或旋转;
    或者,当m大于1时,所述m个配置中一个配置的参考信号所占用的资源元素的位置为另一个配置的参考信号所占用的资源元素的位置的移位或翻转或旋转;
    或者,当m大于1时,所述m个配置的参考信号位于不同时间单元,其中,所述m个配置的参考信号中至少两个配置的参考信号所在时间单元对应相同的第一控制信道,所述第一控制信道位于所述至少两个配置的参考信号中在时域上靠前的一个配置的参考信号所在时间单元,且所述至少两个配置的参考信号位于时间单元的不同位置;
    其中,所述移位为时域移位和频域移位中任一个或其组合。
  6. 根据权利要求1~5中任一项所述的方法,其特征在于,所述参考信号为信道状态参考信号CSIRS或用户设备特定的参考信号UE specific RS。
  7. 根据权利要求1~6中任一项所述的方法,其特征在于,所述方法的执行主体为基站设备,基站设备间交互新的参考信号配置的时频资源信息。
  8. 一种参考信号配置装置,其特征在于,包括:
    配置模块,用于将参考信号分为m个配置,m为正整数;
    处理模块,用于确定所述m个配置的参考信号所占用资源元素的位置;
    其中,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位 置。
  9. 根据权利要求8所述的装置,其特征在于,所述m个配置的参考信号所占用资源元素位于不同的时域和/或频域位置,包括:
    在所述m个配置的任一个配置中,参考信号所占用的资源块在频域上连续或非连续;
    和/或,当m大于1时,在所述m个配置的两个配置之间,参考信号在时域上位于相同的正交频分复用OFDM符号或部分位于不同的OFDM符号或全部位于不同的OFDM符号。
  10. 根据权利要求8或9所述的装置,其特征在于,所述参考信号所占用的正交频分复用OFDM符号位于相同或不同的时间单元,所述时间单元为子帧或时隙或调度单元或传输时间间隔。
  11. 根据权利要求8~10中任一项所述的装置,其特征在于,
    所述参考信号所占用的资源元素的时域或频域位置由系统预定义确定;
    或者,所述参考信号所占用的资源元素的时域或频域位置通过信令进行配置。
  12. 根据权利要求8~11中任一项所述的装置,其特征在于,所述m个配置中至少一个配置的参考信号所占用的部分或全部资源元素的位置为长期演进LTE系统的参考信号部分带宽或全部带宽所占用的资源元素的位置的移位或翻转或旋转;
    或者,当m大于1时,所述m个配置中一个配置的参考信号所占用的资源元素的位置为另一个配置的参考信号所占用的资源元素的位置的移位或翻转或旋转;
    或者,当m大于1时,所述m个配置的参考信号位于不同时间单元,其中,所述m个配置的参考信号中至少两个配置的参考信号所在时间单元对应相同的第一控制信道,所述第一控制信道位于所述至少两个配置的参考信号中在时域上靠前的一个配置的参考信号所在时间单元,且所述至少两个配置的参考信号位于时间单元的不同位置;
    其中,所述移位为时域移位和频域移位中任一个或其组合。
  13. 根据权利要求8~12中任一项所述的装置,其特征在于,所述参考信号为信道状态参考信号CSIRS或用户设备特定的参考信号UE specific RS。
  14. 根据权利要求8~13中任一项所述的装置,其特征在于,所述装置为基站设备或集成在基站设备之中,基站设备间交互新的参考信号配置的时频资源信息。
  15. 一种参考信号配置装置,其特征在于,包括:处理器和用于存储可执行指令的存储器,其中,所述处理器用于执行所述可执行指令,以执行权利要求1~7中任一项所述的方法。
PCT/CN2017/084188 2016-05-18 2017-05-12 参考信号配置方法及装置 WO2017198120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610334784.0A CN107404370B (zh) 2016-05-18 2016-05-18 参考信号配置方法及装置
CN201610334784.0 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017198120A1 true WO2017198120A1 (zh) 2017-11-23

Family

ID=60324836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084188 WO2017198120A1 (zh) 2016-05-18 2017-05-12 参考信号配置方法及装置

Country Status (2)

Country Link
CN (1) CN107404370B (zh)
WO (1) WO2017198120A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049561A (zh) * 2018-01-16 2019-07-23 华硕电脑股份有限公司 不连续传送指示的准共址关联指示的方法和设备
WO2019157897A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 一种上行数据的发送方法、接收方法和装置
CN111386669A (zh) * 2017-11-27 2020-07-07 高通股份有限公司 参考信号与被先占资源的冲突处理

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082521A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for radio link monitoring
CN109391434B (zh) * 2017-08-11 2021-11-30 中兴通讯股份有限公司 参考信号的配置方法及装置
CN109963335B (zh) * 2017-12-23 2022-12-02 华为技术有限公司 通信方法和装置
WO2019157998A1 (zh) * 2018-02-13 2019-08-22 华为技术有限公司 一种传输信息的方法和装置
CN110167172B (zh) 2018-02-13 2021-09-03 华为技术有限公司 一种传输信息的方法和装置
US10680745B2 (en) * 2018-04-11 2020-06-09 Samsung Electronics Co., Ltd. Blind detection of preempted resources in orthogonal frequency division multiplexing (OFDM) systems
CN110719149B (zh) * 2018-07-11 2022-04-19 普天信息技术有限公司 一种用于对上行抢占信息的监测进行指示的方法和装置
CN110830219B (zh) * 2018-08-14 2021-03-30 成都华为技术有限公司 资源管理的方法和装置
CN114402686A (zh) * 2019-09-20 2022-04-26 华为技术有限公司 参考信号的发送方法、接收方法、装置及系统
CN113517966B (zh) * 2020-04-10 2023-08-29 展讯通信(上海)有限公司 下行参考信号处理方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
US8046029B2 (en) * 2007-08-14 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method for selecting antennas in a wireless networks
CN102263723A (zh) * 2010-05-31 2011-11-30 中国移动通信集团公司 下行信道测量参考信号发送方法、装置和接收方法、装置
CN102549997A (zh) * 2010-08-16 2012-07-04 中兴通讯(美国)公司 Lte-advance系统的csi-rs资源分配的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046029B2 (en) * 2007-08-14 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method for selecting antennas in a wireless networks
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
CN102263723A (zh) * 2010-05-31 2011-11-30 中国移动通信集团公司 下行信道测量参考信号发送方法、装置和接收方法、装置
CN102549997A (zh) * 2010-08-16 2012-07-04 中兴通讯(美国)公司 Lte-advance系统的csi-rs资源分配的方法和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZTE: "Considerations on CSI-RS configuration signaling", 3GPP TSG RAN WG1 MEETING #62 RL-104554, 17 August 2010 (2010-08-17) - 27 August 2010 (2010-08-27), XP050449851 *
ZTE: "CSI-RS Pattern and Configuration", 3GPP TSG RAN WG1 MEETING #61 RL-103375, 14 May 2010 (2010-05-14) - 15 May 2010 (2010-05-15), XP050420449 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386669A (zh) * 2017-11-27 2020-07-07 高通股份有限公司 参考信号与被先占资源的冲突处理
CN111386669B (zh) * 2017-11-27 2022-12-13 高通股份有限公司 用于无线通信的方法、装置和计算机可读介质
CN110049561A (zh) * 2018-01-16 2019-07-23 华硕电脑股份有限公司 不连续传送指示的准共址关联指示的方法和设备
WO2019157897A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 一种上行数据的发送方法、接收方法和装置

Also Published As

Publication number Publication date
CN107404370A (zh) 2017-11-28
CN107404370B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2017198120A1 (zh) 参考信号配置方法及装置
JP6911037B2 (ja) 狭帯域インターネットオブシングスに対するアップリンク許可
TWI790201B (zh) 支援車輛對車輛通訊中的高速
EP3414950B1 (en) Techniques for providing network access
US20210194652A1 (en) Transport block size (tbs) determination for sidelink communication
WO2021063131A1 (zh) 信息发送方法及装置、信息接收方法及装置
US10568060B2 (en) Using a WLAN interworking gateway (WIG) for offloading UE traffic from cellular network to WLAN
JP2020503712A (ja) 低いピーク対平均電力比を有する復調基準信号および粒度を伴う割振り情報
US10313208B2 (en) Flexible assignment of network functions for radio access
EP3923625A1 (en) Data packet latency parameter acquisition method, system and apparatus
JP2019509683A (ja) 超低レイテンシ(ull)送信およびレガシ送信のためのリソース管理のための方法および装置
WO2017025484A1 (en) Improved blind decoding of (e)pdcch for partial subframes
TW201806411A (zh) 多個服務供應商的通用授權存取(gaa)主通道分配
US10992358B2 (en) Signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul
JP2019531636A (ja) シングルキャリア周波数分割多元接続(sc−fdma)およびofdmaを用いた柔軟性のある参照信号送信のための方法
JP6336593B2 (ja) 通信装置及び通信方法
JP6466591B2 (ja) Fdd半二重ネットワークにおける電力制御コマンドを用いたアップリンクスケジューリング
CN113473635A (zh) 用于nr操作的两小区调度
US11950267B2 (en) Mechanisms for transmission of multiple downlink control information
WO2019228511A1 (zh) 资源配置方法、网络设备和终端
TW202137725A (zh) Lte nr參考信號的衝突管理
CN113825235A (zh) 用于多trp场景中的ul传输的装置和方法
CN113179551A (zh) 用于高速场景的下行链路传输
CN113766665A (zh) 用于多trp场景中基于码本的ul传输的装置和方法
CN112567864A (zh) 未授权频谱中的新空口(nr-u)的调度

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798683

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798683

Country of ref document: EP

Kind code of ref document: A1