WO2021063131A1 - 信息发送方法及装置、信息接收方法及装置 - Google Patents

信息发送方法及装置、信息接收方法及装置 Download PDF

Info

Publication number
WO2021063131A1
WO2021063131A1 PCT/CN2020/110448 CN2020110448W WO2021063131A1 WO 2021063131 A1 WO2021063131 A1 WO 2021063131A1 CN 2020110448 W CN2020110448 W CN 2020110448W WO 2021063131 A1 WO2021063131 A1 WO 2021063131A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
time domain
domain resources
synchronization signal
pbch
Prior art date
Application number
PCT/CN2020/110448
Other languages
English (en)
French (fr)
Inventor
周欢
徐志昆
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2021063131A1 publication Critical patent/WO2021063131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an information sending method and device, and an information receiving method and device.
  • the base station Before the base station communicates with the terminal device, it needs to perform downlink synchronization first.
  • the base station transmits downlink synchronization signals through multiple transmit beams, and the terminal device uses one or more receive beams to receive and detect the downlink synchronization signals to obtain the best downlink transmit beam and receive beam pair, time and system information.
  • the related technology performs downlink synchronization, the overhead is large, and it cannot meet the requirements of the New Radio (NR), and the environmental adaptability and flexibility are poor.
  • NR New Radio
  • an information sending method which includes:
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, a physical broadcast channel PBCH and a demodulation reference signal DMRS for the PBCH, wherein the SSB occupies 4 Continuous Orthogonal Frequency Division Multiplexing OFDM symbol or 3 continuous OFDM symbols;
  • the SSB is sent using the time domain resource.
  • the determining the time domain resource of the synchronization signal block SSB includes:
  • the time domain resource is determined from the SSB candidate time domain resources.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 128.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, 2, 3, the maximum number of SSB candidate time domain resources is 64; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 128; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 256.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, the maximum number of SSB candidate time domain resources is 64; or
  • n 0, 1, 2, 3, the maximum number of SSB candidate time domain resources is 128;
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 256; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 512.
  • the SSS and the PSS each occupy one OFDM symbol
  • the PBCH and the DMRS used for the PBCH occupy one OFDM symbol. OFDM symbol.
  • the frequency domain resources of the PSS and/or the SSS include 12-22 PRBs
  • the PBCH includes 36-48 PRBs.
  • the subcarrier spacing of the PSS and the SSS is twice the PBCH subcarrier spacing.
  • an information receiving method is proposed, and the method includes:
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, a physical broadcast channel PBCH, and a demodulation reference signal DMRS for the PBCH, wherein the SSB occupies 4 Continuous Orthogonal Frequency Division Multiplexing OFDM symbol or 3 continuous OFDM symbols;
  • the determining the time domain resource for receiving the synchronization signal block SSB includes:
  • the time domain resource is determined from the SSB candidate time domain resources.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 128.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, 2, 3, the maximum number of SSB candidate time domain resources is 64; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 128; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 256.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, the maximum number of SSB candidate time domain resources is 64; or
  • n 0, 1, 2, 3, the maximum number of SSB candidate time domain resources is 128;
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 256; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 512.
  • the SSS and the PSS each occupy one OFDM symbol
  • the PBCH and the DMRS used for the PBCH occupy one OFDM symbol. OFDM symbol.
  • the frequency domain resources of the PSS and/or the SSS include 12-22 PRBs
  • the PBCH includes 36-48 PRBs.
  • the subcarrier spacing of the PSS and the SSS is twice the PBCH subcarrier spacing.
  • an information sending device includes:
  • the first determining module is used to determine the time domain resources for transmitting the synchronization signal block SSB, the SSB including the primary synchronization signal PSS, the secondary synchronization signal SSS, the physical broadcast channel PBCH and the demodulation reference signal DMRS for the PBCH, where ,
  • the SSB occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols;
  • a sending module electrically connected to the first determining module, and configured to send the SSB using the time domain resource.
  • an information receiving device is provided, and the transposition includes:
  • the second determining module is used to determine the time domain resources for receiving the synchronization signal block SSB, the SSB including the primary synchronization signal PSS, the secondary synchronization signal SSS, the physical broadcast channel PBCH and the demodulation reference signal DMRS for the PBCH, where ,
  • the SSB occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols;
  • the receiving module is electrically connected to the second determining module and configured to receive the SSB by using the time domain resource.
  • a computer device includes: a processor; and a memory for storing instructions executable by the processor;
  • the processor is configured to:
  • a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the information sending method is implemented, or, The described information receiving method.
  • the access network device of the embodiment of the present disclosure can determine the time domain resource for transmitting the synchronization signal block SSB, which occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols, and Use the time domain resources to send the SSB so that the terminal can obtain downlink synchronization information for downlink synchronization.
  • the SSB in the embodiment of the present disclosure occupies 4 OFDM symbols or 3 OFDM symbols, which can meet the requirements of 5G NR. , Can realize the transmission of SSB, reduce the overhead, and enhance the adaptability and flexibility of the environment.
  • Fig. 1 shows a flowchart of an information sending method according to an embodiment of the present disclosure.
  • Fig. 2 shows a schematic diagram of an SSB according to an embodiment of the present disclosure.
  • Fig. 3 shows a schematic diagram of the distribution of SSB time-frequency resources according to an embodiment of the present disclosure.
  • Fig. 4a shows a schematic diagram of time-frequency resource distribution of an SSB in a half frame according to an embodiment of the present disclosure.
  • FIG. 4b shows a schematic diagram of time-frequency resource distribution in two time slots of an SSB according to an embodiment of the present disclosure
  • FIG. 4c shows a schematic diagram of time-frequency resource distribution within a half frame of an SSB according to an embodiment of the present disclosure.
  • FIG. 4d shows a schematic diagram of time-frequency resource distribution in two time slots of an SSB according to an embodiment of the present disclosure
  • FIG. 4e shows a schematic diagram of time-frequency resource distribution within a half frame of an SSB according to an embodiment of the present disclosure.
  • Figures 5a, 5b, 5c, and 5d show schematic diagrams of an SSB according to an embodiment of the present disclosure.
  • Fig. 6 shows a flowchart of an information receiving method according to an embodiment of the present disclosure.
  • Fig. 7 shows a block diagram of an information sending device according to an embodiment of the present disclosure.
  • Fig. 8 shows a block diagram of an information receiving device according to an embodiment of the present disclosure.
  • Fig. 9 shows a schematic structural diagram of a mobile communication system according to an embodiment of the present disclosure.
  • FIG. 1 shows a flowchart of an information sending method according to an embodiment of the present disclosure.
  • the method can be applied to access network equipment.
  • the access network equipment can be a base station (base station, BS), which can also be called a base station equipment, which is a type of equipment deployed in a radio access network (Radio Access Network, RAN).
  • BS base station
  • RAN Radio Access Network
  • the equipment that provides the base station function in the 2G network includes the base transceiver station (BTS), the equipment that provides the base station function in the 3G network includes the Node B (English: NodeB), and the equipment that provides the base station function in the 4G network Including evolved NodeB (evolved NodeB, eNB), in wireless local area networks (wireless local area networks, WLAN) the equipment that provides the base station function is the access point (AP), in the 5G system, the equipment that provides the base station function
  • the equipment is a gNB and a Node B (English: ng-eNB) that continues to evolve.
  • the access network equipment in the embodiments of the present disclosure may also include equipment that provides base station functions in a new communication system in the future. The specific implementation of the access network device is not limited.
  • the access network equipment may also include a home base station (Home eNB, HeNB), a relay (English: Relay), a pico base station Pico, and so on.
  • the method includes:
  • Step S11 Determine the time domain resources for sending synchronization signal block (Synchronization Signal Block, SSB for short).
  • the SSB includes Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and physical Broadcast channel (Physical Broadcast Channel, PBCH) and demodulation reference signal (Demodulation Reference Signal, DMRS) used for the PBCH, wherein the SSB occupies 4 consecutive orthogonal frequency division multiplexing (Orthogonal Frequency Division) Multiplexing, OFDM for short) symbol or 3 consecutive OFDM symbols;
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • DMRS Demodulation Reference Signal
  • Step S12 using the time domain resource to send the SSB.
  • the access network device of the embodiment of the present disclosure can determine the time domain resource for transmitting the synchronization signal block SSB, which occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols, and Use the time domain resources to send the SSB so that the terminal can obtain downlink synchronization information for downlink synchronization.
  • the SSB in the embodiment of the present disclosure occupies 4 OFDM symbols or 3 OFDM symbols, which can meet the requirements of 5G NR. , Can realize the transmission of SSB, reduce the overhead, and enhance the adaptability and flexibility of the environment.
  • the step S11 determining the time domain resource of the synchronization signal block SSB may include:
  • the time domain resource is determined from the SSB candidate time domain resources.
  • multiple SSB candidate time domain resources are set according to different sub-carrier spaces (SCS), and multiple SSBs are set for carrier frequencies greater than (or equal to) 52.6 GHz and corresponding SCS.
  • SCS sub-carrier spaces
  • candidate time domain resources can satisfy the transmission of SSB in various situations, can increase the selection of base stations, and increase environmental adaptability and flexibility, so that the terminal can quickly realize downlink synchronization.
  • FIG. 2 shows a schematic diagram of an SSB according to an embodiment of the present disclosure.
  • each slot can include 14 Symbols, and how many slots are contained in 1 millisecond (ms) is determined by the subcarrier spacing. For example, when the subcarrier interval is 15 kilohertz (KHz), there is 1 slot in 1ms; when the subcarrier interval is 30KHz, there are 2 slots in 1ms; and when the subcarrier interval is 60KHz, there are 4 slots in 1ms. And so on.
  • KHz kilohertz
  • each SSB occupies 4 consecutive symbols, which are respectively the primary synchronization signal PSS, the physical broadcast channel PBCH, the secondary synchronization signal SSS and PBCH in order.
  • PRBs physical resource blocks
  • Is SSS, 4 RBs on both sides are PBCH, and some subcarriers in PBCH are demodulation reference signals DMRS for PBCH.
  • the subcarrier spacing of the synchronization signal block SSB can be 15KHz, 30KHz, 120KHz, 240KHz and so on.
  • all synchronization signal blocks can be sent in a half frame within 5 ms.
  • the embodiment of the present disclosure does not limit in which half frame the SSB is sent.
  • each beam needs to send SSB, so the maximum number of synchronization signal blocks that can be sent within 5ms is 4 (when the carrier frequency is below 3GHz) or 8 (the carrier frequency is 3GHz ⁇ 6GHz) Time) or 64 (when the carrier frequency is above 6 GHz) or others, and multiple SSBs within 5 ms are called a synchronization block set (SSB burst).
  • the period of the SSB burst set can be 5ms, 10ms, 20ms, 40ms, etc.
  • FIG. 3 shows a schematic diagram of the distribution of time-frequency resources for sending SSB according to an embodiment of the present disclosure.
  • the time domain distribution of the synchronization signal block is: symbols 2 to 5 and symbols 8 to 11 are occupied in every 14 symbols.
  • the number of synchronization signal blocks (the maximum number of the SSB candidate time domain resources) is 4 or 8, that is, the first time domain symbol of the SSB candidate time domain resource is located in a half frame
  • the symbol index of includes one or more of the following: ⁇ 2,8 ⁇ +14*n, where n is 0, 1 or 0, 1, 2, 3.
  • SSB candidate resources occupy symbols 2 to 5 and symbols 8 to 11, and the first time domain symbol is the second OFDM symbol and the eighth OFDM symbol in the half frame; when n is 1, , SSB candidate resources occupy symbols 16-19 and symbols 22-25.
  • the first time domain mapping pattern of the synchronization signal block is: symbols 2 to 5 and symbols 8 to 11 are occupied in every 14 symbols.
  • the maximum number of synchronization signal blocks is 4 or 8, that is, the symbol index of the first time domain symbol of the SSB candidate time domain resource located in a half frame includes one or more of the following: ⁇ 2 , 8 ⁇ +14*n, where n is 0, 1 or 0, 1, 2, 3.
  • the second time domain distribution of the synchronization signal block is: symbols 4-7, symbols 8-11, symbols 16-19 and Symbols 20-23.
  • the maximum number of synchronization signal blocks is 4 or 8, that is, the symbol index of the first time domain symbol of the SSB candidate time domain resource located in a half frame includes one or more of the following: ⁇ 4 , 8, 16, 20 ⁇ +28*n, where n is 0 or n is 0,1.
  • the time domain distribution of the synchronization signal block is: every 28 symbols occupy symbols 4-7, symbols 8-11, symbols 16-19 and symbols 20-23 .
  • the maximum number of synchronization signal blocks is 64, that is, the symbol index of the first time domain symbol of the SSB candidate time domain resource located in the half frame includes one or more of the following: ⁇ 4, 8 ,16,20 ⁇ +28*n, where n is 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18.
  • the time domain distribution of the synchronization signal block is: every 56 symbols occupy symbols 8-11, symbols 12-15, symbols 16-19, symbols 20-23 , Symbols 32 to 35, symbols 36 to 39, symbols 40 to 43, and symbols 44 to 47.
  • the maximum number of synchronization signal blocks is 64, that is, the symbol index of the first time domain symbol of the SSB candidate time domain resource located in a half frame includes one or more of the following: ⁇ 8,12 ,16,20,32,36,40,44 ⁇ +56*n, where n is 0,1,2,3,5,6,7,8.
  • FIG. 4a shows a schematic diagram of time-frequency resource distribution of an SSB in a half frame according to an embodiment of the present disclosure.
  • the first time domain of the SSB candidate time domain resource is The symbol index of the symbol in the field includes one or more of the following:
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 128.
  • FIG. 4b shows a schematic diagram of the time-frequency resource distribution in two time slots of the SSB according to an embodiment of the present disclosure
  • FIG. 4c shows the distribution of the SSB in a half frame according to an embodiment of the present disclosure. Schematic diagram of time-frequency resource distribution.
  • the first time domain of the SSB candidate time domain resource is The symbol index of the symbol in the field includes one or more of the following:
  • n can have multiple values that can be selected.
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 128;
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 256.
  • FIG. 4d shows a schematic diagram of the time-frequency resource distribution in two time slots of the SSB according to an embodiment of the present disclosure
  • FIG. 4e shows the distribution of the SSB in a half frame according to an embodiment of the present disclosure. Schematic diagram of time-frequency resource distribution.
  • the first time domain of the SSB candidate time domain resource is The symbol index of the symbol in the field includes one or more of the following:
  • n can have multiple values that can be selected.
  • n 0, 1, and the maximum number of SSB candidate time domain resources is 64;
  • n 0, 1, 2, 3, and the maximum number of SSB candidate time domain resources is 128;
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 256;
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 512.
  • each synchronization signal block can be sent on its corresponding fixed time-frequency resource, that is, the embodiment of the present disclosure
  • the multiple proposed SSB candidate time domain resources can all be used to send SSBs.
  • the base station can select the SSB candidate time domain resources to send the SSB as needed.
  • the beam directions for sending the SSBs can be the same or different.
  • the transmission of the synchronization signal block carries the respective SSB index (index). According to the detected SSB index and the symbol position of the SSB corresponding to the SSB index written into the terminal chip, the terminal can realize the time with the base station. Domain synchronization.
  • the SSB candidate time domain resources proposed in the embodiments of the present disclosure can be used in scenarios where the carrier frequency is higher than 52.6GHz.
  • the SSB candidate time domain resources introduced in the above examples can be used to transmit SSB in various scenarios with 5G NR.
  • the carrier frequency is higher than At 52.6 GHz, due to the possibility of using a larger sub-carrier interval (for example, 480KHz, 960KHz, etc.), the traditional downlink synchronization method will not be able to meet the needs, and the downlink synchronization cannot be achieved quickly and correctly.
  • the method can adapt to 5G NR scenarios while reducing overhead, and can accurately and quickly achieve downlink synchronization when the carrier frequency is higher than 52.6 GHz.
  • FIGS. 5a, 5b, 5c, and 5d show schematic diagrams of an SSB according to an embodiment of the present disclosure.
  • the SSS and the PSS each occupy one OFDM symbol, and the PBCH is used for all
  • the DMRS of the PBCH occupies one OFDM symbol.
  • the frequency domain resources of the PSS and/or the SSS may include 12-22 physical resource blocks PRB.
  • the PBCH includes 36 to 48 PRBs.
  • PSS and SSS can occupy 12 PRBs
  • PBCH can occupy 36 or 40 PRBs.
  • the PSS and/or SSS frequency domain resources can occupy 22 PRBs.
  • PSS PSS
  • SSS SSS
  • PBCH may also include other numbers of PRBs, so as to realize the transmission of downlink synchronization signals.
  • the subcarrier spacing of the PSS and the SSS is twice the PBCH subcarrier spacing.
  • PSS and SSS can occupy 12 PRBs
  • PBCH can occupy 40 or 30 PRBs.
  • the embodiment of the present disclosure proposes a way to transmit SSB with 3 OFDM symbols.
  • the embodiment of the present disclosure occupies 3 consecutive OFDM symbols for the SSB, the SSB candidate time domain resources of each SSB in a half frame It is not limited, and those skilled in the art can make settings according to actual conditions or needs.
  • the PBCH can be quickly demodulated to improve the speed of downlink synchronization And efficiency.
  • the SSB occupies 3 consecutive OFDMs proposed in the embodiments of the present disclosure can be applied to scenarios where the carrier frequency is greater than (or equal to) 52.6 GHz.
  • the carrier frequency is greater than 52.6 GHz
  • the PBCH can be transmitted in one time domain symbol.
  • the embodiments of the present disclosure can reduce the overhead of time domain resources and make full use of frequency domain bandwidth resources, thereby improving the utilization rate of time-frequency resources.
  • FIG. 6 shows a flowchart of an information receiving method according to an embodiment of the present disclosure.
  • the method can be applied to a terminal device, as shown in FIG. 6, the method includes:
  • Step S21 Determine the time domain resource for receiving the synchronization signal block SSB, the SSB including the primary synchronization signal PSS, the secondary synchronization signal SSS, the physical broadcast channel PBCH and the demodulation reference signal DMRS for the PBCH, wherein the SSB Occupies 4 consecutive Orthogonal Frequency Division Multiplexing OFDM symbols or 3 consecutive OFDM symbols;
  • Step S21 using the time domain resource to receive the SSB.
  • the terminal device of the embodiment of the present disclosure can determine the time domain resources for transmitting the synchronization signal block SSB, which occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols, and uses all The time domain resource receives the SSB, and the terminal device can obtain downlink synchronization information according to the received SSB to perform downlink synchronization.
  • the SSB in the embodiment of the present disclosure occupies 4 OFDM symbols or 3 OFDM symbols, which can meet the requirements of 5G NR. Each frequency band can realize SSB transmission, reduce overhead, and enhance environmental adaptability and flexibility.
  • the determining the time domain resource for receiving the synchronization signal block SSB includes:
  • the time domain resource is determined from the SSB candidate time domain resources.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 128.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, 2, 3, the maximum number of SSB candidate time domain resources is 64; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 128; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 256.
  • the first time domain symbol of the SSB candidate time domain resource is located in the half frame.
  • the symbol index includes one or more of the following:
  • n 0, 1, the maximum number of SSB candidate time domain resources is 64; or
  • n 0, 1, 2, 3, the maximum number of SSB candidate time domain resources is 128;
  • n 0, 1, 2, 3, 5, 6, 7, 8, and the maximum number of SSB candidate time domain resources is 256; or
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, and the maximum number of SSB candidate time domain resources is 512.
  • the SSS and the PSS each occupy one OFDM symbol
  • the PBCH and the DMRS used for the PBCH occupy one OFDM symbol. OFDM symbol.
  • the frequency domain resources of the PSS and/or the SSS include 12-22 PRBs
  • the PBCH includes 36-48 PRBs.
  • the subcarrier spacing of the PSS and the SSS is twice the PBCH subcarrier spacing.
  • the information receiving method is executed by the terminal device, which corresponds to the information sending method executed by the access network device.
  • the information receiving method is executed by the terminal device, which corresponds to the information sending method executed by the access network device.
  • the information sending method executed by the access network device.
  • FIG. 7 shows a block diagram of an information sending device according to an embodiment of the present disclosure.
  • the device can be applied to access network equipment, as shown in FIG. 7, the device includes:
  • the first determining module 61 is configured to determine the time domain resource for transmitting the synchronization signal block SSB, the SSB including the primary synchronization signal PSS, the secondary synchronization signal SSS, the physical broadcast channel PBCH and the demodulation reference signal DMRS for the PBCH, Wherein, the SSB occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols;
  • the sending module 62 is electrically connected to the first determining module 61 and configured to send the SSB using the time domain resource.
  • the access network device of the embodiment of the present disclosure can determine the time domain resource for sending the synchronization signal block SSB, which occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols, and Use the time domain resources to send the SSB so that the terminal can obtain downlink synchronization information for downlink synchronization.
  • the SSB in the embodiment of the present disclosure occupies 4 OFDM symbols or 3 OFDM symbols, which can meet the requirements of 5G NR. , Can realize the transmission of SSB, reduce the overhead, and enhance the adaptability and flexibility of the environment.
  • the information sending device is a device item corresponding to the information sending method.
  • the information sending method is a device item corresponding to the information sending method.
  • FIG. 8 shows a block diagram of an information receiving device according to an embodiment of the present disclosure.
  • the device can be applied to a terminal device.
  • the transposition includes:
  • the second determining module 63 is configured to determine the time domain resources of the received synchronization signal block SSB, the SSB including the primary synchronization signal PSS, the secondary synchronization signal SSS, the physical broadcast channel PBCH and the demodulation reference signal DMRS for the PBCH, Wherein, the SSB occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols;
  • the receiving module 64 is electrically connected to the second determining module 63 and configured to receive the SSB by using the time domain resource.
  • the terminal device of the embodiment of the present disclosure can determine the time domain resource for transmitting the synchronization signal block SSB, which occupies 4 consecutive orthogonal frequency division multiplexing OFDM symbols or 3 consecutive OFDM symbols, and uses all
  • the time domain resource receives the SSB, and the terminal device can obtain downlink synchronization information according to the received SSB to perform downlink synchronization.
  • the SSB in the embodiment of the present disclosure occupies 4 OFDM symbols or 3 OFDM symbols, which can meet the requirements of 5G NR. Each frequency band can realize SSB transmission, reduce overhead, and enhance environmental adaptability and flexibility.
  • the information receiving device is a device item corresponding to the information receiving method.
  • the information receiving method is a device item corresponding to the information receiving method.
  • FIG. 9 shows a schematic structural diagram of a mobile communication system according to an embodiment of the present disclosure.
  • the mobile communication system can be a Long Term Evolution (LTE) system, or a 5G system.
  • the 5G system is also called a New Radio (NR) system, and it can also be a 5G next-generation mobile communication technology system.
  • LTE Long Term Evolution
  • NR New Radio
  • the embodiment does not limit this.
  • the mobile communication system is applicable to different network architectures, including but not limited to a relay network architecture, a dual link architecture, a vehicle to everything (V2X) architecture, etc.
  • a relay network architecture including but not limited to a relay network architecture, a dual link architecture, a vehicle to everything (V2X) architecture, etc.
  • V2X vehicle to everything
  • the mobile communication system includes: an access network device 220 and a terminal device 540.
  • the access network equipment 520 may be a base station (base station, BS), and may also be referred to as a base station equipment, and is a device deployed in a radio access network (Radio Access Network, RAN) to provide wireless communication functions.
  • the equipment that provides the base station function in the 2G network includes the base transceiver station (BTS)
  • the equipment that provides the base station function in the 3G network includes Node B (English: NodeB)
  • the equipment that provides the base station function in the 4G network Including evolved NodeB (evolved NodeB, eNB), devices that provide base station functions in wireless local area networks (WLAN) are access points (AP), and those that provide base station functions in 5G systems
  • the equipment is a gNB and a Node B (English: ng-eNB) that continues to evolve.
  • the access network equipment 520 in the embodiments of the present disclosure also includes equipment that provides base station functions in new communication systems in the future.
  • the specific implementation manner of the access network device 520 is not limited.
  • the access network equipment may also include a home base station (Home eNB, HeNB), a relay (English: Relay), a pico base station, and Pico.
  • a base station controller is a device that manages a base station, such as a base station controller (BSC) in a 2G network, a radio network controller (RNC) in a 3G network, or a new communication in the future
  • BSC base station controller
  • RNC radio network controller
  • the network side network (English: network) in the embodiment of the present disclosure is a communication network that provides communication services for the terminal device 540, and includes the base station of the wireless access network, and may also include the base station controller of the wireless access network, and may also include the core Equipment on the network side.
  • the core network can be an evolved packet core (EPC), a 5G core network (English: 5G Core Network), or a new type of core network in the future communication system.
  • the 5G Core Network is composed of a set of devices, and implements access and mobility management functions (Access and Mobility Management Function, AMF) for functions such as mobility management, and provides data packet routing and forwarding and Quality of Service (QoS) management
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • EPC can be composed of MME that provides functions such as mobility management and gateway selection, Serving Gateway (S-GW) that provides functions such as packet forwarding, and PDN Gateway (PDN) that provides functions such as terminal address allocation and rate control.
  • S-GW Serving Gateway
  • the access network device 520 and the terminal device 540 establish a wireless connection through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the 5G standard, for example, the wireless air interface is NR; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard; or, the wireless air interface It can also be a wireless air interface based on the 4G standard (LTE system).
  • the access network device 520 may receive the uplink data sent by the terminal device 540 through a wireless connection.
  • the terminal device 540 may refer to a device that performs data communication with the access network device 520.
  • the terminal device 540 may communicate with one or more core networks via a wireless access network.
  • the terminal device 540 may be various forms of user equipment (UE), access terminal equipment, user unit, user station, mobile station, mobile station (mobile station, MS), remote station, remote terminal equipment, mobile equipment , User terminal equipment, terminal equipment (English: terminal equipment), wireless communication equipment, user agent or user device.
  • the terminal device 540 may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Communication function handheld devices, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile communication network (Public Land Mobile Network, PLMN)
  • the terminal equipment, etc. are not limited in this embodiment.
  • the terminal device 540 may receive the downlink data sent by the access network device 520 through a wireless connection with the access network device 520.
  • the mobile communication system shown in FIG. 9 adopts the 5G system or the next-generation mobile communication technology system of 5G
  • the above-mentioned network elements may be affected in the 5G system or the next-generation mobile communication technology system of 5G. They have different names, but have the same or similar functions, which are not limited in the embodiments of the present disclosure.
  • the mobile communication system shown in FIG. 9 may include multiple access network devices 520 and/or multiple terminal devices 540.
  • FIG. 9 shows one access network device 520 and one terminal device 540.
  • the terminal device 540 is used as an example for illustration, but the embodiment of the present disclosure does not limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及信息发送方法及装置、信息接收方法及装置,所述信息发送方法包括:确定发送同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;利用所述时域资源发送所述SSB。本公开实施例的SSB占用4个OFDM符号或3个OFDM符号,可以满足5G NR的要求,在各个频段,可以实现SSB的发送,并减小开销,增强环境适应性及灵活性。

Description

信息发送方法及装置、信息接收方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种信息发送方法及装置、信息接收方法及装置。
背景技术
在基站与终端设备进行通信之前,首先需要进行下行同步。在进行下行同步时,基站通过多个发送波束发送下行同步信号,终端设备利用一个或者多个接收波束,对下行同步信号进行接收并检测,获取最佳下行发送波束和接收波束对、时间和系统信息。
相关技术在进行下行同步时,开销较大,且无法满足新空口(New Radio,简称NR)的要求,环境适应性及灵活性较差。
发明内容
有鉴于此,本公开提出了一种信息发送方法,所述方法包括:
确定发送同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
利用所述时域资源发送所述SSB。
在一种可能的实施方式中,所述确定发送同步信号块SSB的时域资源,包括:
在所述SSB占用4个连续的OFDM符号的情况下,在SSB候选时域资源中确定所述时域资源。
在一种可能的实施方式中,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为240KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{8,12,16,20,32,36,40,44}+56*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为128。
在一种可能的实施方式中,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为480KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{16,20,24,28,32,36,40,44,64,68,72,76,80,84,88,92}+112*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,所述SSB候选时域资源的最大数目为64;或
n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为128;或
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为256。
在一种可能的实施方式中,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为960KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92;128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188}+224*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,所述SSB候选时域资源的最大数目为64;或
n=0,1,2,3,所述SSB候选时域资源的最大数目为128;或
n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为256;或
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为512。
在一种可能的实施方式中,在所述SSB占用3个连续的OFDM符号的情况下,所述SSS、所述PSS 各占用一个OFDM符号,所述PBCH及用于所述PBCH的DMRS占用一个OFDM符号。
在一种可能的实施方式中,所述PSS和/或所述SSS的频域资源包括12~22个物理资源块PRB,所述PBCH包括36~48个PRB。
在一种可能的实施方式中,所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍。
根据本公开的另一方面,提出了一种信息接收方法,所述方法包括:
确定接收同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
利用所述时域资源接收所述SSB。
在一种可能的实施方式中,所述确定接收同步信号块SSB的时域资源,包括:
在所述SSB占用4个连续的OFDM符号的情况下,在SSB候选时域资源中确定所述时域资源。
在一种可能的实施方式中,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为240KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{8,12,16,20,32,36,40,44}+56*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为128。
在一种可能的实施方式中,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为480KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{16,20,24,28,32,36,40,44,64,68,72,76,80,84,88,92}+112*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,所述SSB候选时域资源的最大数目为64;或
n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为128;或
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为256。
在一种可能的实施方式中,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为960KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92;128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188}+224*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,所述SSB候选时域资源的最大数目为64;或
n=0,1,2,3,所述SSB候选时域资源的最大数目为128;或
n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为256;或
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为512。
在一种可能的实施方式中,在所述SSB占用3个连续的OFDM符号的情况下,所述SSS、所述PSS各占用一个OFDM符号,所述PBCH及用于所述PBCH的DMRS占用一个OFDM符号。
在一种可能的实施方式中,所述PSS和/或所述SSS的频域资源包括12~22个物理资源块PRB,所述PBCH包括36~48个PRB。
在一种可能的实施方式中,所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍。
根据本公开的另一方面,提出了一种信息发送装置,所述装置包括:
第一确定模块,用于确定发送同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
发送模块,电连接于所述第一确定模块,用于利用所述时域资源发送所述SSB。
根据本公开的另一方面,提出了一种信息接收装置,所述转置包括:
第二确定模块,用于确定接收同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
接收模块,电连接于所述第二确定模块,用于利用所述时域资源接收所述SSB。
根据本公开的另一方面,提出了一种计算机设备,所述计算机设备包括:处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
执行所述的信息发送方法,或,所述的信息接收方法。
根据本公开的另一方面,提出了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现所述的信息发送方法,或,所述的信息接收方法。
通过以上方法,本公开实施例的接入网设备可以确定发送同步信号块SSB的时域资源,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号,并利用所述时域资源发送所述SSB,使得终端可以获得下行同步信息以进行下行同步,本公开实施例的SSB占用4个OFDM符号或3个OFDM符号,可以满足5G NR的要求,在各个频段,可以实现SSB的发送,并减小开销,增强环境适应性及灵活性。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出了根据本公开一实施方式的信息发送方法的流程图。
图2示出了根据本公开一实施方式的SSB的示意图。
图3示出了根据本公开一实施方式的发送SSB时频资源的分布示意图。
图4a示出了根据本公开一实施方式的SSB在半帧内的时频资源分布示意图。
图4b示出了根据本公开一实施方式的SSB两个时隙内的时频资源分布示意图,图4c示出了根据本公开一实施方式的SSB在半帧内的时频资源分布示意图。
图4d示出了根据本公开一实施方式的SSB两个时隙内的时频资源分布示意图,图4e示出了根据本公开一实施方式的SSB在半帧内的时频资源分布示意图。
图5a、5b、图5c、5d示出了根据本公开一实施方式的SSB的示意图。
图6示出了根据本公开一实施方式的信息接收方法的流程图。
图7示出了根据本公开一实施方式的信息发送装置的框图。
图8示出了根据本公开一实施方式的信息接收装置的框图。
图9示出了根据本公开一实施方式的移动通信系统的结构示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实 施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
请参阅图1,图1示出了根据本公开一实施方式的信息发送方法的流程图。
所述方法可以应用于接入网设备中,接入网设备可以是基站(base station,BS),也可称为基站设备,是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如,在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS),3G网络中提供基站功能的设备包括节点B(英文:NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中提供基站功能的设备为接入点(access point,AP),在5G系统中的提供基站功能的设备为gNB,以及继续演进的节点B(英文:ng-eNB),本公开实施例中的接入网设备还可以包括在未来新的通信系统中提供基站功能的设备等,本公开实施例对接入网设备的具体实现方式不加以限定。接入网设备还可以包括家庭基站(Home eNB,HeNB)、中继(英文:Relay)、微微基站Pico等。
如图1所示,所述方法包括:
步骤S11,确定发送同步信号块(Synchronization Signal Block,简称SSB)的时域资源,所述SSB包括主同步信号(Primary Synchronization Signal,简称PSS)、辅同步信号(Secondary Synchronization Signal,简称SSS)、物理广播信道(Physical Broadcast Channel,简称PBCH)和用于所述PBCH的解调参考信号(Demodulation Reference Signal,简称DMRS),其中,所述SSB占用4个连续的正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号或3个连续的OFDM符号;
步骤S12,利用所述时域资源发送所述SSB。
通过以上方法,本公开实施例的接入网设备可以确定发送同步信号块SSB的时域资源,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号,并利用所述时域资源发送所述SSB,使得终端可以获得下行同步信息以进行下行同步,本公开实施例的SSB占用4个OFDM符号或3个OFDM符号,可以满足5G NR的要求,在各个频段,可以实现SSB的发送,并减小开销,增强环境适应性及灵活性。
在一种可能的实施方式中,步骤S11确定发送同步信号块SSB的时域资源,可以包括:
在所述SSB占用4个连续的OFDM符号的情况下,在SSB候选时域资源中确定所述时域资源。
本公开实施例根据不同的子载波间隔(Sub-carrierspace,简称SCS)设置有多个SSB候选时域资源,并且针对大于(或等于)52.6GHz的载波频率及对应的SCS,设置了多个SSB候选时域资源,可以满足多种情况下的SSB的发送,可以增加基站的选择,增加环境适应性及灵活性,从而使得终端可以快速实现下行同步。
下面将对SSB占用4个连续的OFDM符号的情况进行示例性说明。
请参阅图2,图2示出了根据本公开一实施方式的SSB的示意图。
在新空口(New Radio,简称NR)授权频谱下,每个时隙(slot)可以包括的OFDM符号数目由CP(cyclic prefix,循环前缀)决定,在一个示例中,每个时隙可以包括14个符号,而1毫秒(ms)内含有多少个slot由子载波间隔决定。例如,子载波间隔为15千赫兹(KHz)时,1ms内含有1个slot;子载波间隔为30KHz时,1ms内含有2个slot;而子载波间隔为60KHz时,1ms内含有4个slot,以此类推。
为了减少永远在线(always on)的参考信号,从而减少开销,本公开实施例在NR中提出了一种同步信号块(Synchronization Signal Block,简称SSB)。如图2所示,每个SSB占用4个连续的符号,按顺序分别为主同步信号PSS、物理广播信道PBCH、辅同步信号SSS和PBCH,其中,SSS所在符号中间12个物理资源块(PRB)为SSS,两侧各4个RB为PBCH,PBCH中有些子载波为用于PBCH的解调参考信号DMRS。同步信号块SSB的子载波间隔可以为15KHz,30KHz,120KHz和240KHz等等。
在一种可能的实施方式中,所有同步信号块可以在5ms内的半帧发送。本公开实施例对在哪个半 帧发送SSB不做限定。
为了支持波束(beam)发送,在有beam时,每个beam都需要发送SSB,所以5ms内可发送的同步信号块的数目最大为4(载频3GHz以下时)或8(载频3GHz~6GHz时)或64(载频6GHz以上时)或其他,而这5ms内的多个SSB称为同步块集合(SSB burst set)。SSB burst set的周期可以为5ms,10ms,20ms,40ms等。
请参阅图3,图3示出了根据本公开一实施方式的发送SSB时频资源的分布示意图。
如图3所示,在一个示例中,当同步信号块的子载波间隔为15KHz时,同步信号块时域分布为:每14个符号中占用符号2~5和符号8~11。而子载波间隔为15KHz时,同步信号块的数目(所述SSB候选时域资源的最大数目)最大为4或8,即所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:{2,8}+14*n,n为0,1或0,1,2,3。
例如,当n为0时,SSB候选资源占用符号2~5和符号8~11,第一个时域符号为半帧中的第2个OFDM符号、第8个OFDM符号;当n为1时,SSB候选资源占用符号16-19和符号22~25。
在一个示例中,当同步信号块的子载波间隔为30KHz时,同步信号块的第一种时域映射图样(pattern)为:每14个符号中占用符号2~5和符号8~11。而子载波间隔为30KHz时,同步信号块的数目最大为4或8,即所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:{2,8}+14*n,n为0,1或0,1,2,3。
在一个示例中,当同步信号块的子载波间隔为30KHz时,同步信号块的第二种时域分布为:每28个符号中占用符号4~7,符号8~11,符号16~19和符号20~23。而子载波间隔为30KHz时,同步信号块的数目最大为4或8,即所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:{4,8,16,20}+28*n,n为0或者n为0,1。
在一个示例中,当同步信号块的子载波间隔为120KHz时,同步信号块时域分布为:每28个符号中占用符号4~7,符号8~11,符号16~19和符号20~23。而子载波间隔为120KHz时,同步信号块的数目最大为64,即所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:{4,8,16,20}+28*n,n为0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
在一个示例中,当同步信号块的子载波间隔为240KHz时,同步信号块时域分布为:每56个符号中占用符号8~11,符号12~15,符号16~19,符号20~23,符号32~35,符号36~39,符号40~43和符号44~47。而子载波间隔为240KHz时,同步信号块的数目最大为64,即所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:{8,12,16,20,32,36,40,44}+56*n,n为0,1,2,3,5,6,7,8。
当然,以上描述是示例性的,不应视为是对本公开的限制。
请参阅图4a,图4a示出了根据本公开一实施方式的SSB在半帧内的时频资源分布示意图。
在一种可能的实施方式中,如图4a所示,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为240KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{8,12,16,20,32,36,40,44}+56*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为128。
请参阅图4b及4c,图4b示出了根据本公开一实施方式的SSB两个时隙内的时频资源分布示意图,图4c示出了根据本公开一实施方式的SSB在半帧内的时频资源分布示意图。
在一种可能的实施方式中,如图4b所示,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为480KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{16,20,24,28,32,36,40,44,64,68,72,76,80,84,88,92}+112*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
其中,n可以有多种可以选择的值。
在一个示例中,n=0,1,2,3,所述SSB候选时域资源的最大数目为64;
在一个示例中,n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为128;
在一个示例中,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为256。
请参阅图4d及4e,图4d示出了根据本公开一实施方式的SSB两个时隙内的时频资源分布示意图,图4e示出了根据本公开一实施方式的SSB在半帧内的时频资源分布示意图。
在一种可能的实施方式中,如图4d所示,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为960KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92;128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188}+224*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
其中,n可以有多种可以选择的值。
在一个示例中,n=0,1,所述SSB候选时域资源的最大数目为64;
在一个示例中,n=0,1,2,3,所述SSB候选时域资源的最大数目为128;
在一个示例中,n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为256;
在一个示例中,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为512。
在NR授权频谱中,信道是随时可用的,所以针对每个同步信号块,只要基站想发送,那么各个同步信号块就可以在各自对应的固定的时频资源上去发送,即,本公开实施例提出的多个SSB候选时域资源,都可以用于发送SSB,基站可以根据需要选择SSB候选时域资源发送SSB,当基站发送多个SSB时,发送SSB的波束方向可以相同,也可以不同。同时同步信号块的发送携带了各自的SSB索引(index),而终端根据检测到的SSB索引,以及写入终端芯片的这个SSB索引对应的该SSB所在的符号位置,则可以实现与基站的时域同步。
本公开实施例提出的SSB候选时域资源可以用于载波频率高于52.6GHz的场景,通过以上示例介绍的SSB候选时域资源发送SSB,可以使用与5G NR的各个场景,当载波频率高于52.6GHz时,由于可能采用了更大的子载波间隔(例如480KHz,960KHz等),传统的下行同步方式将无法满足需要,无法快速、正确地实现下行同步,根据本公开实施例提出的信息发送方法,可以在降低开销的情况下,适应5G NR的场景,在载波频率高于52.6GHz的情况下,可以准确、快速地实现下行同步。
上面介绍了SSB占用4个连续的OFDM符号的情况,下面将对SSB占用3个连续的OFDM符号的情况进行介绍。
请参阅图5a、5b、图5c、5d,图5a、5b、图5c、5d示出了根据本公开一实施方式的SSB的示意图。
在一种可能的实施方式中,如图5a所示,在所述SSB占用3个连续的OFDM符号的情况下,所述SSS、所述PSS各占用一个OFDM符号,所述PBCH及用于所述PBCH的DMRS占用一个OFDM符号。
在一种可能的实施方式中,所述PSS和/或所述SSS的频域资源可以包括12~22个物理资源块PRB。
在一种可能的实施方式中,所述PBCH包括36~48个PRB。
在一个示例中,如图5a所示,PSS、SSS可以占用12个PRB,PBCH可以占用36个或40个PRB。
在一个示例中,如图5b及5c所示,PSS和/或SSS频域资源可以占用22个PRB。
当然,以上描述是示例性的,PSS、SSS、PBCH也可以包括其他数目的PRB,从而实现下行同步信号的发送。
在一种可能的实施方式中,如图5d所示,所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍。
在这种情况下,PSS、SSS可以占用12个PRB,PBCH可以占用40或30个PRB。
应该说明的是,本公开实施例提出了以3个OFDM符号传输SSB的方式,但是,本公开实施例对SSB 占用3个连续OFDM符号时,每个SSB在半帧内的SSB候选时域资源不做限定,本领域技术人员可以根据实际情况或需要进行设置。
本公开实施例通过设置所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍,当终端接收到SSB的情况下,可以对PBCH快速解调,以提高下行同步的速度及效率。
本公开实施例提出的SSB占用3个连续的OFDM的情况,可以适用于载波频率大于(或等于)52.6GHz的场景,当载波频率大于52.6GHz时,PBCH可以在一个时域符号传输,通过这样的方法,本公开实施例可以降低时域资源的开销,并充分利用频域带宽资源,从而提高时频资源的利用率。
请参阅图6,图6示出了根据本公开一实施方式的信息接收方法的流程图。
所述方法可以应用于终端设备中,如图6所示,所述方法包括:
步骤S21,确定接收同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
步骤S21,利用所述时域资源接收所述SSB。
通过以上方法,本公开实施例的终端设备可以确定发送同步信号块SSB的时域资源,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号,并利用所述时域资源接收所述SSB,终端设备根据接收的SSB可以获得下行同步信息以进行下行同步,本公开实施例的SSB占用4个OFDM符号或3个OFDM符号,可以满足5G NR的要求,在各个频段,可以实现SSB的发送,并减小开销,增强环境适应性及灵活性。
在一种可能的实施方式中,所述确定接收同步信号块SSB的时域资源,包括:
在所述SSB占用4个连续的OFDM符号的情况下,在SSB候选时域资源中确定所述时域资源。
在一种可能的实施方式中,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为240KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{8,12,16,20,32,36,40,44}+56*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为128。
在一种可能的实施方式中,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为480KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{16,20,24,28,32,36,40,44,64,68,72,76,80,84,88,92}+112*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,2,3,所述SSB候选时域资源的最大数目为64;或
n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为128;或
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为256。
在一种可能的实施方式中,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为960KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
{32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92;128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188}+224*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
n=0,1,所述SSB候选时域资源的最大数目为64;或
n=0,1,2,3,所述SSB候选时域资源的最大数目为128;或
n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为256;或
n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为512。
在一种可能的实施方式中,在所述SSB占用3个连续的OFDM符号的情况下,所述SSS、所述PSS各占用一个OFDM符号,所述PBCH及用于所述PBCH的DMRS占用一个OFDM符号。
在一种可能的实施方式中,所述PSS和/或所述SSS的频域资源包括12~22个物理资源块PRB,所述PBCH包括36~48个PRB。
在一种可能的实施方式中,所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍。
应该说明的是,所述信息接收方法为终端设备执行,其与接入网设备执行的信息发送方法对应,所述信息接收方法的具体介绍请参照对信息发送方法的描述,在此不做赘述。
请参阅图7,图7示出了根据本公开一实施方式的信息发送装置的框图。
所述装置可以应用于接入网设备中,如图7所示,所述装置包括:
第一确定模块61,用于确定发送同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
发送模块62,电连接于所述第一确定模块61,用于利用所述时域资源发送所述SSB。
通过以上装置,本公开实施例的接入网设备可以确定发送同步信号块SSB的时域资源,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号,并利用所述时域资源发送所述SSB,使得终端可以获得下行同步信息以进行下行同步,本公开实施例的SSB占用4个OFDM符号或3个OFDM符号,可以满足5G NR的要求,在各个频段,可以实现SSB的发送,并减小开销,增强环境适应性及灵活性。
应该说明的是,所述信息发送装置为与所述信息发送方法对应的装置项,其具体描述请参照之前对信息发送方法的描述,在此不再赘述。
请参阅图8,图8示出了根据本公开一实施方式的信息接收装置的框图。
所述装置可以应用于终端设备中,如图8所示,所述转置包括:
第二确定模块63,用于确定接收同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
接收模块64,电连接于所述第二确定模块63,用于利用所述时域资源接收所述SSB。
通过以上装置,本公开实施例的终端设备可以确定发送同步信号块SSB的时域资源,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号,并利用所述时域资源接收所述SSB,终端设备根据接收的SSB可以获得下行同步信息以进行下行同步,本公开实施例的SSB占用4个OFDM符号或3个OFDM符号,可以满足5G NR的要求,在各个频段,可以实现SSB的发送,并减小开销,增强环境适应性及灵活性。
应该说明的是,所述信息接收装置为与所述信息接收方法对应的装置项,其具体描述请参照之前对信息接收方法的描述,在此不再赘述。
请参考图9,图9示出了根据本公开一实施方式的移动通信系统的结构示意图。移动通信系统可以是长期演进(Long Term Evolution,LTE)系统,还可以是5G系统,5G系统又称新空口(New Radio,NR)系统,还可以是5G的更下一代移动通信技术系统,本实施例对此不作限定。
可选的,该移动通信系统适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、车联网(Vehicle to Everything,V2X)架构等。
该移动通信系统包括:接入网设备220和终端设备540。
接入网设备520可以是基站(base station,BS),也可称为基站设备,是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如,在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS),3G网络中提供基站功能的设备包括节点B(英文:NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中提供基站功能的设备为接入点(access point,AP),在5G系统中的提供基站功能的设备为gNB,以及继续演进的节点B(英文:ng-eNB),本公开实施例中的接入网设备520还包括在未来新的通信系统中提供基站功能的设备等,本公开实施例对接入网设备520的具体实现方式不加以限定。接入网设备还可以包括家庭基站(Home eNB,HeNB)、中 继(英文:Relay)、微微基站Pico等。
基站控制器是一种管理基站的装置,例如2G网络中的基站控制器(base station controller,BSC)、3G网络中的无线网络控制器(radio network controller,RNC)、还可以是未来新的通信系统中控制管理基站的装置。
本公开实施例中的网络侧网络(英文:network)是为终端设备540提供通信服务的通信网络,包含无线接入网的基站,还可以包含无线接入网的基站控制器,还可以包含核心网侧的设备。
核心网可以是演进型分组核心网(evolved packet core,EPC)、5G核心网(英文:5G Core Network),还可以是未来通信系统中的新型核心网。5G Core Network由一组设备组成,并实现移动性管理等功能的接入和移动性管理功能(Access and Mobility Management Function,AMF)、提供数据包路由转发和服务质量(Quality of Service,QoS)管理等功能的用户面功能(User Plane Function,UPF)、提供会话管理、IP地址分配和管理等功能的会话管理功能(Session Management Function,SMF)等。EPC可由提供移动性管理、网关选择等功能的MME、提供数据包转发等功能的服务网关(Serving Gateway,S-GW)Serving Gateway、提供终端地址分配、速率控制等功能的PDN网关(PDN Gateway,P-GW)组成。
接入网设备520和终端设备540通过无线空口建立无线连接。可选的,该无线空口是基于5G标准的无线空口,比如该无线空口是NR;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口;或者,该无线空口也可以是基于4G标准(LTE系统)的无线空口。接入网设备520可以通过无线连接接收终端设备540发送的上行数据。
终端设备540可以是指与接入网设备520进行数据通信的设备。终端设备540可以经无线接入网与一个或多个核心网进行通信。终端设备540可以是各种形式的用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端设备、移动设备、用户终端设备、终端设备(英文:terminal equipment)、无线通信设备、用户代理或用户装置。终端设备540还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本实施例对此不作限定。终端设备540可以通过与接入网设备520之间的无线连接,接收接入网设备520发送的下行数据。
需要说明的一点是,当图9所示的移动通信系统采用5G系统或5G的更下一代移动通信技术系统时,上述各个网元在5G系统或5G的更下一代移动通信技术系统中可能会具有不同的名称,但具有相同或相似的功能,本公开实施例对此不作限定。
需要说明的另一点是,在图9所示的移动通信系统中,可以包括多个接入网设备520和/或多个终端设备540,图9中以示出一个接入网设备520和一个终端设备540来举例说明,但本公开实施例对此不作限定。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (20)

  1. 一种信息发送方法,其特征在于,所述方法包括:
    确定发送同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
    利用所述时域资源发送所述SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述确定发送同步信号块SSB的时域资源,包括:
    在所述SSB占用4个连续的OFDM符号的情况下,在SSB候选时域资源中确定所述时域资源。
  3. 根据权利要求2所述的方法,其特征在于,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为240KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
    {8,12,16,20,32,36,40,44}+56*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
    n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为128。
  4. 根据权利要求2所述的方法,其特征在于,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为480KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
    {16,20,24,28,32,36,40,44,64,68,72,76,80,84,88,92}+112*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
    n=0,1,2,3,所述SSB候选时域资源的最大数目为64;或
    n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为128;或
    n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为256。
  5. 根据权利要求2所述的方法,其特征在于,在发送所述SSB的载波频率大于52.6GHz,且子载波间隔为960KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
    {32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92;128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188}+224*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
    n=0,1,所述SSB候选时域资源的最大数目为64;或
    n=0,1,2,3,所述SSB候选时域资源的最大数目为128;或
    n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为256;或
    n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为512。
  6. 根据权利要求1所述的方法,其特征在于,在所述SSB占用3个连续的OFDM符号的情况下,所述SSS、所述PSS各占用一个OFDM符号,所述PBCH及用于所述PBCH的DMRS占用一个OFDM符号。
  7. 根据权利要求6所述的方法,其特征在于,所述PSS和/或所述SSS的频域资源包括12~22个物理资源块PRB,所述PBCH包括36~48个PRB。
  8. 根据权利要求6所述的方法,其特征在于,所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍。
  9. 一种信息接收方法,其特征在于,所述方法包括:
    确定接收同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
    利用所述时域资源接收所述SSB。
  10. 根据权利要求9所述的方法,其特征在于,所述确定接收同步信号块SSB的时域资源,包括:
    在所述SSB占用4个连续的OFDM符号的情况下,在SSB候选时域资源中确定所述时域资源。
  11. 根据权利要求10所述的方法,其特征在于,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为240KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
    {8,12,16,20,32,36,40,44}+56*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
    n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为128。
  12. 根据权利要求10所述的方法,其特征在于,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为480KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
    {16,20,24,28,32,36,40,44,64,68,72,76,80,84,88,92}+112*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
    n=0,1,2,3,所述SSB候选时域资源的最大数目为64;或
    n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为128;或
    n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为256。
  13. 根据权利要求10所述的方法,其特征在于,在承载所述SSB的载波频率大于52.6GHz,且子载波间隔为960KHz的情况下,所述SSB候选时域资源的第一个时域符号位于半帧中的符号索引包括以下一个或多个:
    {32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92;128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188}+224*n,其中,集合中的数字表示半帧中的OFDM符号的索引,
    n=0,1,所述SSB候选时域资源的最大数目为64;或
    n=0,1,2,3,所述SSB候选时域资源的最大数目为128;或
    n=0,1,2,3,5,6,7,8,所述SSB候选时域资源的最大数目为256;或
    n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,所述SSB候选时域资源的最大数目为512。
  14. 根据权利要求9所述的方法,其特征在于,在所述SSB占用3个连续的OFDM符号的情况下,所述SSS、所述PSS各占用一个OFDM符号,所述PBCH及用于所述PBCH的DMRS占用一个OFDM符号。
  15. 根据权利要求14所述的方法,其特征在于,所述PSS和/或所述SSS的频域资源包括12~22个物理资源块PRB,所述PBCH包括36~48个PRB。
  16. 根据权利要求14所述的方法,其特征在于,所述PSS及所述SSS的子载波间隔为所述PBCH子载波间隔的2倍。
  17. 一种信息发送装置,其特征在于,所述装置包括:
    第一确定模块,用于确定发送同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
    发送模块,电连接于所述第一确定模块,用于利用所述时域资源发送所述SSB。
  18. 一种信息接收装置,其特征在于,所述转置包括:
    第二确定模块,用于确定接收同步信号块SSB的时域资源,所述SSB包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和用于所述PBCH的解调参考信号DMRS,其中,所述SSB占用4个连续的正交频分复用OFDM符号或3个连续的OFDM符号;
    接收模块,电连接于所述第二确定模块,用于利用所述时域资源接收所述SSB。
  19. 一种计算机设备,其特征在于,所述计算机设备包括:处理器;用于存储处理器可执行指令 的存储器;
    其中,所述处理器被配置为:
    执行如权利要求1-8任一项所述的方法,或,执行如权利要求9-16任一项所述的方法。
  20. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至8中任意一项所述的方法或权利要求9-16任一项所述的方法。
PCT/CN2020/110448 2019-09-30 2020-08-21 信息发送方法及装置、信息接收方法及装置 WO2021063131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910939566.3A CN110601809B (zh) 2019-09-30 2019-09-30 信息发送方法及装置、信息接收方法及装置
CN201910939566.3 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063131A1 true WO2021063131A1 (zh) 2021-04-08

Family

ID=68865082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110448 WO2021063131A1 (zh) 2019-09-30 2020-08-21 信息发送方法及装置、信息接收方法及装置

Country Status (2)

Country Link
CN (1) CN110601809B (zh)
WO (1) WO2021063131A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037294A1 (en) * 2021-09-08 2023-03-16 Lenovo (Singapore) Pte. Ltd. Transmitting single-carrier synchronization signal block

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601809B (zh) * 2019-09-30 2021-04-02 北京紫光展锐通信技术有限公司 信息发送方法及装置、信息接收方法及装置
EP4072214A4 (en) * 2019-12-31 2022-12-28 Huawei Technologies Co., Ltd. COMMUNICATION APPARATUS AND METHOD
CN113271192B (zh) * 2020-02-14 2023-04-07 大唐移动通信设备有限公司 一种信息发送方法、接收方法及装置
CN112511987B (zh) * 2020-03-05 2024-04-26 中兴通讯股份有限公司 无线传输方法和装置、信息确定方法和装置、电子设备
CN111953627B (zh) * 2020-08-11 2022-11-11 Oppo广东移动通信有限公司 检测ssb序号的方法及装置
CN111953452A (zh) * 2020-08-11 2020-11-17 Oppo广东移动通信有限公司 检测ssb序号的方法及装置
CN112312331B (zh) * 2020-10-20 2022-07-08 捷开通讯(深圳)有限公司 一种物理广播信道和信息传输方法、装置
CN114499800A (zh) * 2020-11-13 2022-05-13 华为技术有限公司 信号传输的方法和通信装置
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质
CN115190613A (zh) * 2021-04-06 2022-10-14 展讯通信(上海)有限公司 同步信号块ssb确定方法及相关设备
CN118715829A (zh) * 2022-02-18 2024-09-27 惠州Tcl移动通信有限公司 无线通信方法、用户设备和基站

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353318A (zh) * 2017-10-19 2018-07-31 北京小米移动软件有限公司 物理广播信道pbch带宽的处理方法及装置和基站
CN108632982A (zh) * 2017-03-24 2018-10-09 北京展讯高科通信技术有限公司 基站、同步信号块配置方法、用户设备及其同步方法
CN108781432A (zh) * 2017-08-07 2018-11-09 北京小米移动软件有限公司 信息传输方法、装置和计算机可读存储介质
CN109586873A (zh) * 2017-09-29 2019-04-05 中兴通讯股份有限公司 确定同步信号块的时域位置的方法及装置
WO2019157905A1 (zh) * 2018-02-13 2019-08-22 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、可读介质
CN110166393A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121198A (zh) * 2017-06-23 2019-01-01 维沃移动通信有限公司 一种非授权频段下的信息传输方法及网络设备
CN109495413B (zh) * 2017-09-11 2022-04-01 中国移动通信有限公司研究院 同步信号块的传输、小区质量的测量方法、基站及终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632982A (zh) * 2017-03-24 2018-10-09 北京展讯高科通信技术有限公司 基站、同步信号块配置方法、用户设备及其同步方法
CN108781432A (zh) * 2017-08-07 2018-11-09 北京小米移动软件有限公司 信息传输方法、装置和计算机可读存储介质
CN109586873A (zh) * 2017-09-29 2019-04-05 中兴通讯股份有限公司 确定同步信号块的时域位置的方法及装置
CN108353318A (zh) * 2017-10-19 2018-07-31 北京小米移动软件有限公司 物理广播信道pbch带宽的处理方法及装置和基站
WO2019157905A1 (zh) * 2018-02-13 2019-08-22 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、可读介质
CN110166393A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037294A1 (en) * 2021-09-08 2023-03-16 Lenovo (Singapore) Pte. Ltd. Transmitting single-carrier synchronization signal block

Also Published As

Publication number Publication date
CN110601809B (zh) 2021-04-02
CN110601809A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2021063131A1 (zh) 信息发送方法及装置、信息接收方法及装置
CN108347778B (zh) 通信方法及装置
TWI746970B (zh) 存取點及於其中使用的方法
JP6545910B2 (ja) 複数のトーンホッピング距離をもつ狭帯域prach
JP6019005B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US11405895B2 (en) Method and apparatus for configuring feedback signal for sidelink communication in wireless communication system
WO2016205988A1 (zh) 数据传输的功率控制方法和装置
US9467259B2 (en) Methods and apparatus for wireless communication using a mixed format
CN107889261A (zh) 通信方法、基站和终端设备
TW202008828A (zh) 資源配置的方法和終端設備
JP2020115641A (ja) 高効率ワイヤレスネットワークにおける向上した通信効率のためのシステムおよび方法
JP2019503111A (ja) マルチプロトコル送信の方法およびシステム
TW202008829A (zh) 資源配置的方法和終端設備
WO2019183972A1 (zh) 一种信息的指示方法及装置、计算机存储介质
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
CN108476491A (zh) 一种无线通信方法、设备及系统
CN110677912B (zh) 信息发送方法及装置、信息接收方法及装置
US9698898B2 (en) Apparatuses, methods, and computer programs for a receiver and a transmitter of a wireless system for improved wireless communication
WO2018061599A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling
US11895538B2 (en) Improving Wi-Fi spectrum efficiency
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2023078107A1 (zh) 一种通信方法和通信装置
WO2022087970A1 (zh) 无线通信的方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871758

Country of ref document: EP

Kind code of ref document: A1