WO2019157905A1 - 参考信号的发送及接收方法、基站、终端、可读介质 - Google Patents

参考信号的发送及接收方法、基站、终端、可读介质 Download PDF

Info

Publication number
WO2019157905A1
WO2019157905A1 PCT/CN2019/072472 CN2019072472W WO2019157905A1 WO 2019157905 A1 WO2019157905 A1 WO 2019157905A1 CN 2019072472 W CN2019072472 W CN 2019072472W WO 2019157905 A1 WO2019157905 A1 WO 2019157905A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
frequency domain
index
ssb
drs
Prior art date
Application number
PCT/CN2019/072472
Other languages
English (en)
French (fr)
Inventor
沈兴亚
王化磊
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US16/321,639 priority Critical patent/US20220145837A1/en
Publication of WO2019157905A1 publication Critical patent/WO2019157905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the embodiments of the present disclosure relate to a communication system, and in particular, to a method for transmitting and receiving a reference signal, a base station, a terminal, and a readable medium.
  • a user equipment (UE) communicates with a base station (gNB)
  • gNB base station
  • the UE accesses the network mainly needs a synchronization signal and a tracking signal.
  • the synchronization signal is used for synchronizing the user terminal and the network in the time-frequency domain, and the tracking signal helps the user to accurately synchronize with the network in the time-frequency domain for a long time.
  • the 3GPP defines a Discovery Reference Signal (DRS) for the UE to synchronize with the base station and perform channel measurement.
  • DRS Discovery Reference Signal
  • a technical problem to be solved by the embodiments of the present disclosure is how to transmit a DRS to a UE, so that the UE can perform synchronization and channel access based on the DRS.
  • an embodiment of the present disclosure provides a method for transmitting a reference signal, where the method includes: determining a time-frequency domain location of a DRS, where the DRS includes at least one of the following: PSS, SSS, PBCH, and PBCH.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH, and the SSB and the CSI-RS satisfy a relationship that at least two adjacent slots corresponding to the SSB exist.
  • a CSI-RS resource is not limited to
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the sending method of the reference signal further includes: indicating the N value by using high layer signaling.
  • the sending method of the reference signal further includes: indicating, by the high layer signaling, the location of the SSB in the time domain; and indicating, by the high layer signaling, the location of the SSB in the frequency domain.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index0.
  • An embodiment of the present disclosure provides a method for receiving a reference signal, including: determining a time-frequency domain location of a DRS, where the DRS includes at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI for TRS- RS, CSI-RS for beam management, and CSI-RS for acquiring channel state information; receiving the DRS at a time-frequency domain location of the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH, and the SSB and the CSI-RS satisfy a relationship that at least two adjacent slots corresponding to the SSB exist.
  • a CSI-RS resource is not limited to
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the receiving method of the reference signal further includes: acquiring an N value by using indication information of the high layer signaling.
  • the receiving method of the reference signal further includes: obtaining the location of the SSB in the time domain by using the indication information of the high layer signaling; and acquiring the location of the SSB in the frequency domain by using the indication information of the high layer signaling.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index0.
  • An embodiment of the present disclosure provides a base station, including: a first determining unit, configured to determine a time-frequency domain location of a DRS, where the DRS includes at least one of the following: a PSS, an SSS, a PBCH, a DMRS for a PBCH, and a TRS.
  • CSI-RS, CSI-RS for beam management, and CSI-RS for acquiring channel state information and a transmitting unit adapted to transmit the DRS at a time-frequency domain location of the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH, and the SSB and the CSI-RS satisfy a relationship that at least two adjacent slots corresponding to the SSB exist.
  • a CSI-RS resource is not limited to
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the base station further includes: a first indication unit, configured to indicate an N value by using high layer signaling.
  • the base station further includes: a second indication unit, configured to indicate, by using a high layer signaling, a location of the SSB in a time domain; and a third indication unit, configured to indicate, by using high layer signaling, that the SSB is in a frequency domain position.
  • a second indication unit configured to indicate, by using a high layer signaling, a location of the SSB in a time domain
  • a third indication unit configured to indicate, by using high layer signaling, that the SSB is in a frequency domain position.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index0.
  • An embodiment of the present disclosure provides a terminal, including: a second determining unit, configured to determine a time-frequency domain location of a DRS, where the DRS includes at least one of the following: a PSS, an SSS, a PBCH, a DMRS for a PBCH, and a TRS CSI-RS, CSI-RS for beam management, and CSI-RS for acquiring channel state information; and receiving unit adapted to receive the DRS at a time-frequency domain location of the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH, and the SSB and the CSI-RS satisfy a relationship that at least two adjacent time slots corresponding to the SSB exist.
  • a CSI-RS resource is not limited to
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the terminal further includes: a first acquiring unit, configured to acquire an N value by using indication information of the high layer signaling.
  • the terminal further includes: a second acquiring unit, configured to acquire, by using indication information of the high layer signaling, a location of the SSB in a time domain; and a third acquiring unit, configured to acquire, by using indication information of the high layer signaling Describe the location of the SSB in the frequency domain.
  • a second acquiring unit configured to acquire, by using indication information of the high layer signaling, a location of the SSB in a time domain
  • a third acquiring unit configured to acquire, by using indication information of the high layer signaling Describe the location of the SSB in the frequency domain.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the indication information of the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index 0.
  • An embodiment of the present disclosure provides a computer readable storage medium having stored thereon computer instructions, the steps of the method of transmitting the reference signal or the receiving method of the reference signal when the computer instruction is executed.
  • Embodiments of the present disclosure provide a base station including a memory and a processor, the memory storing computer instructions executable on the processor, and the processor executing the computer instruction to execute any one of the above The steps of the method of transmitting the reference signal.
  • Embodiments of the present disclosure provide a terminal including a memory and a processor, the memory storing computer instructions executable on the processor, and the processor executing the computer instruction to execute any one of the above The steps of the method of receiving the reference signal.
  • Embodiments of the present disclosure determine at least one of the following by determining a time-frequency domain location of a DRS: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management And a CSI-RS for acquiring channel state information; then transmitting the DRS at a time-frequency domain location of the DRS, and transmitting a DRS to the UE, so that the UE can perform synchronization and channel access based on the DRS.
  • the DRS includes at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management, and A CSI-RS for acquiring channel state information; then receiving the DRS at a time-frequency domain location of the DRS, and performing synchronization and channel access based on the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH, and the SSB and the CSI-RS satisfy a relationship that at least one CSI-RS resource exists in each time slot corresponding to the SSB.
  • the UE For the UE to perform channel estimation, beam management, acquisition of tracking reference signals, etc., to maintain accurate synchronization with the base station in the time-frequency domain.
  • FIG. 1 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a time slot format occupied by an SSB and a CSI-RS according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for receiving a reference signal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure determine at least one of the following by determining a time-frequency domain location of a DRS: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management And a CSI-RS for acquiring channel state information; then transmitting the DRS at a time-frequency domain location of the DRS, and transmitting a DRS to the UE, so that the UE can perform synchronization and channel access based on the DRS.
  • an embodiment of the present disclosure provides a method for sending a reference signal, which may include the following steps:
  • Step S101 determining a time-frequency domain location of the DRS, where the DRS includes at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management, and For obtaining CSI-RS of channel state information.
  • the time-frequency domain location of the DRS needs to be determined, that is, the time domain and the frequency domain location occupied by the DRS are determined, and then the DRS is sent to the UE based on the determined time-frequency domain location.
  • the DRS since the reference signal may occupy system overhead, in order to save the bit overhead of the wireless network, the DRS may use an existing reference signal.
  • the DRS includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Physical Broadcast Channel (PBCH), and a solution for the PBCH.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • TRS Tracking Reference Signal
  • the PSS, SSS, PBCH of the adjacent symbols and the DMRS for the PBCH may form a Synchronize Signal Block (SSB).
  • SSB Synchronize Signal Block
  • each time slot may include 14 symbols, and corresponding indexes are index 0 to index 13, respectively.
  • the SS burst described in the following embodiments may be a time window whose time length is in slots or milliseconds.
  • the SS burst set that is, the time window, may be a periodic signal or a non-periodic signal.
  • the time window is a periodic signal, and the period is a preset value.
  • the time window is a periodic signal, and the period is specified by Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the time window is an aperiodic signal, and the location of the time window is specified by RRC signaling.
  • the PSS sequence may be generated in an existing implementation.
  • the PSS sequence may be located in an SS burst with an index of 2/8 in each slot.
  • the SSS sequence can be generated in an existing implementation.
  • the PSS sequence can be located in an SS burst with an index of 4/10 in each slot.
  • the PBCH sequence can be generated by using an existing implementation. Referring to 3GPP TS38.211, the PBCH sequence can be located in an SS burst with an index of 3/5/9/11 in each slot.
  • the DMRS sequence used for the PBCH can be generated by using an existing implementation. See 3GPP TS38.211.
  • the DMRS sequence for the PBCH can be located in an SS burst.
  • the index in each slot is 3/5. /9/11 symbol.
  • the PSS, the SSS, the PBCH, and the DMRS for the PBCH of the adjacent symbols may form one SSB, and the SSB and the CSI-RS may satisfy the following relationship: within two adjacent time slots corresponding to the SSB.
  • the SSB is located in an SS burst with an index of 2/3/4/5/8/9/10/11 in each slot.
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information may be located in at least one symbol of each slot in the SS burst, ie, CSI-RS for beam management or The CSI-RS for acquiring channel state information may be located in an idle symbol of each slot in the SS burst, or may be multiplexed with other reference signals to save transmission overhead.
  • the CSI-RS can also be located in any other symbol than the location described in the foregoing embodiment, and details are not described herein again.
  • the location of the SSB in the subframe may be jointly determined by the PSS, the SSS, the PBCH, and the DMRS for the PBCH.
  • the sequence position of the reference signal corresponding to the SSB in the time domain is: the symbol of the PSS at the beginning of the SSB (ie, the first symbol corresponding to the SSB), and the SSS is in the On the third symbol corresponding to the SSB, the PBCH is on the remaining symbols of the SSB.
  • the first symbol corresponding to the SSB may be a symbol with an index of 0 in a slot corresponding to the SSB, or may be a symbol with another value of 0 in a slot corresponding to the SSB.
  • the embodiment of the present disclosure is not limited.
  • the location of the SSB in a subframe may also be indicated by higher layer signaling.
  • the sending method of the reference signal may further include: indicating, by the high layer signaling, the location of the SSB in the time domain; and indicating, by the high layer signaling, the location of the SSB in the frequency domain.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the center frequency point is a global synchronization channel number (GSCN).
  • GSCN global synchronization channel number
  • the high layer signaling when the location of the SSB in the frequency domain is indicated by the high layer signaling, includes: a center frequency point corresponding to the SSB and a physical resource block (PRB) Offset information between index 0 (index 0).
  • PRB physical resource block
  • the high layer signaling is: RRC signaling.
  • the high layer signaling is: Remaining Minimum System Information (RMSI).
  • RMSI Remaining Minimum System Information
  • the high layer signaling is: Other System Information (OSI).
  • OSI System Information
  • the CSI-RS may be a single-port reference signal or a multi-port reference signal, which is not limited in the embodiment of the disclosure.
  • the CSI-RS frequency domain density is 3, and the frequency domain location is fixed from the subcarrier 0, that is, the subcarrier with the index 0, or the subcarrier N, that is, the subcarrier with the index N.
  • N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain position is fixed starting from subcarrier 0 or starting from subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain position is fixed starting from subcarrier 0 or starting from subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the N value may be indicated by higher layer signaling.
  • the high layer signaling is: RRC signaling.
  • the high layer signaling is: RMSI.
  • the high layer signaling is: an OSI.
  • Step S102 Send the DRS at a time-frequency domain location of the DRS.
  • the DRS may be sent at a time-frequency domain location of the DRS.
  • the above method for transmitting the reference signal can be applied to both the licensed spectrum of the NR system and the unlicensed spectrum of the NR system.
  • the DRS includes at least one of the following: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management. And a CSI-RS for acquiring channel state information; then transmitting the DRS at a time-frequency domain location of the DRS, and transmitting a DRS to the UE, so that the UE can perform synchronization and channel access based on the DRS.
  • an embodiment of the present disclosure provides a schematic diagram of a slot format occupied by an SSB and a CSI-RS, as shown in FIG. 2 .
  • each time slot includes 14 symbols, and the corresponding indexes are 0 to 13, respectively.
  • the SSB is composed of adjacent PSS, SSS, PBCH, and DMRS for PBCH, and the time slot occupied by the time slot is 8 for the slot format 0 and 13 for the index (Symbol).
  • the index of the slot format 1 is 0 to the index of the index 9
  • the index of the slot format 2 is 4 to the index of the index 13
  • the index of the slot format 3 is 0 to the index of the index 5.
  • the time slot occupied by the CSI-RS is a symbol in which the index of slot format 0 is 0 and the index is 4, and the index of slot format 2 is 0.
  • the CSI-RS resource of the symbol satisfies a constraint relationship of at least one CSI-RS resource in two adjacent slots corresponding to the SSB.
  • an embodiment of the present disclosure provides a method for receiving a reference signal, as shown in FIG.
  • the method for receiving the reference signal may include the following steps:
  • Step S301 determining a time-frequency domain location of the DRS, where the DRS includes at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management, and For obtaining CSI-RS of channel state information.
  • the DRS includes at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management, and For obtaining CSI-RS of channel state information.
  • Step S302 receiving the DRS at a time-frequency domain location of the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH of the adjacent symbol, and the SSB and the CSI-RS satisfy a relationship that: at least two consecutive slots corresponding to the SSB, at least There is one CSI-RS resource.
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain position starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain position starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the receiving method of the reference signal further includes: acquiring an N value by using indication information of the high layer signaling.
  • the method for receiving the reference signal further includes: obtaining, by using indication information of the high layer signaling, a location of the SSB in a time domain; and acquiring, by using indication information of the high layer signaling, a location of the SSB in a frequency domain.
  • the high layer signaling is: RRC signaling.
  • the high layer signaling is: RMSI.
  • the high layer signaling is: an OSI.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the center frequency point is a global synchronization channel number (GSCN).
  • GSCN global synchronization channel number
  • the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index 0.
  • the above reference signal receiving method can be used for receiving the licensed spectrum of the NR system, and can also be used for receiving the unlicensed spectrum of the NR system.
  • the DRS includes at least one of the following: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, CSI-RS for beam management. And a CSI-RS for acquiring channel state information; then receiving the DRS at a time-frequency domain location of the DRS, and performing synchronization and channel access based on the DRS.
  • an embodiment of the present disclosure provides a base station capable of implementing the foregoing method for transmitting a reference signal, as shown in FIG.
  • the base station 40 may include: a first determining unit 41 and a sending unit 42, wherein:
  • the first determining unit 41 is adapted to determine a time-frequency domain location of the DRS, where the DRS includes at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, for beam Managed CSI-RS and CSI-RS for acquiring channel state information.
  • the sending unit 42 is adapted to send the DRS in a time-frequency domain location of the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH of the adjacent symbol, and the SSB and the CSI-RS satisfy a relationship that: at least two consecutive slots corresponding to the SSB, at least There is one CSI-RS resource.
  • the CSI-RS for the TRS is located at least one of an index of 0 and an index of 4 in the first slot in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain position starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain position starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the base station 40 may further include: a first indication unit (not shown) adapted to indicate an N value by higher layer signaling.
  • the base station 40 may further include: a second indication unit (not shown) and a third indication unit (not shown), where
  • the second indication unit is adapted to indicate, by using high layer signaling, a location of the SSB in a time domain.
  • the third indication unit is adapted to indicate, by using high layer signaling, a location of the SSB in a frequency domain.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the center frequency point is a global synchronization channel number (GSCN).
  • GSCN global synchronization channel number
  • the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index 0.
  • the working process and the principle of the base station 40 can be referred to the description in the method provided in the foregoing embodiment, and details are not described herein again.
  • an embodiment of the present disclosure provides a terminal capable of implementing the above method for receiving a reference signal, as shown in FIG. 5.
  • the terminal 50 may include: a second determining unit 51 and a receiving unit 52, where:
  • the second determining unit 51 is adapted to determine a time-frequency domain location of the DRS, where the DRS comprises at least one of: PSS, SSS, PBCH, DMRS for PBCH, CSI-RS for TRS, for beam Managed CSI-RS and CSI-RS for acquiring channel state information.
  • the receiving unit 52 is adapted to receive the DRS at a time-frequency domain location of the DRS.
  • the SSB includes a PSS, an SSS, a PBCH, and a DMRS for the PBCH of the adjacent symbol, and the SSB and the CSI-RS satisfy a relationship that: at least two consecutive slots corresponding to the SSB, at least There is one CSI-RS resource.
  • the CSI-RS for the TRS is located in at least one of an index of 0 and an index of 4 in the SS burst.
  • the CSI-RS for the TRS is located at the index of the third slot in the SS burst with an index of zero.
  • the CSI-RS for the TRS is located at the index of the fourth time slot in the SS burst with an index of 9.
  • the CSI-RS for beam management or the CSI-RS for acquiring channel state information is located in at least one symbol of each slot in the SS burst.
  • the CSI-RS frequency domain density is 3, and the frequency domain position starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1, and the frequency domain location starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 11.
  • the CSI-RS frequency domain density is 1/2, and the frequency domain position starts from subcarrier 0 or subcarrier N, where N is a natural number and 0 ⁇ N ⁇ 23.
  • the terminal 50 may further include: a first acquiring unit (not shown), configured to acquire an N value by using indication information of the high layer signaling.
  • the terminal 50 may further include: a second obtaining unit (not shown) and a third acquiring unit (not shown), wherein
  • the second acquiring unit is configured to acquire, by using the indication information of the high layer signaling, the location of the SSB in the time domain.
  • the third acquiring unit is configured to acquire, by using indication information of the high layer signaling, a location of the SSB in a frequency domain.
  • the location of the frequency domain includes: a center frequency point corresponding to the SSB.
  • the center frequency point is a global synchronization channel number (GSCN).
  • GSCN global synchronization channel number
  • the indication information of the high layer signaling includes: offset information between a center frequency point corresponding to the SSB and a common PRB index 0.
  • the working process and the principle of the terminal 50 can be referred to the description in the method provided in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present disclosure provides a computer readable storage medium, which is a non-volatile storage medium or a non-transitory storage medium, on which computer instructions are stored, and the computer instructions execute any of the above The steps corresponding to the method for transmitting the reference signal or the method for receiving the reference signal are not described herein again.
  • Embodiments of the present disclosure provide a base station including a memory and a processor, the memory storing computer instructions executable on the processor, and the processor executing the computer instruction to perform any of the foregoing The steps corresponding to the method for transmitting the reference signal are not described here.
  • Embodiments of the present disclosure provide a terminal including a memory and a processor, the memory storing computer instructions executable on the processor, and the processor executing the computer instruction to perform any of the foregoing The steps corresponding to the receiving method of the reference signal are not described here.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

一种参考信号的发送及接收方法、基站、终端、可读介质,所述参考信号的发送方法包括:确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;在所述DRS的时频域位置上发送所述DRS。应用上述方案,可以向UE发送DRS,使得UE可以基于DRS进行同步和信道接入。

Description

参考信号的发送及接收方法、基站、终端、可读介质 技术领域
本公开实施例涉及通信系统,尤其涉及一种参考信号的发送及接收方法、基站、终端、可读介质。
背景技术
对于新无线(New Radio,NR)系统,当用户终端(User Equipment,UE)与基站(gNB)通信时,需要在时频域上与基站获得同步。UE接入网络主要需要同步信号和跟踪信号,同步信号用于用户终端和网络在时频域上同步,跟踪信号帮助用户长时间和网络在时频域上精确同步。
对于长期演进(Long Term Evolution,LTE)系统,3GPP定义了发现参考信号(Discovery Reference Signal,DRS),用于UE与基站进行同步以及进行信道测量等目的。
对于NR系统,尤其是针对非授权频谱,目前无用于同步和接入的发现参考信号,导致NR系统的UE无法接入NR网络。
发明内容
本公开实施例解决的技术问题是如何向UE发送DRS,使得UE可以基于DRS进行同步和信道接入。
为解决上述技术问题,本公开实施例提供一种参考信号的发送方法,所述方法包括:确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;在所述DRS的时频域位置上发送所述DRS。
可选地,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
可选地,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
可选地,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
可选地,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
可选地,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
可选地,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
可选地,所述参考信号的发送方法还包括:通过高层信令指示N值。
可选地,所述参考信号的发送方法还包括:通过高层信令指示所述SSB在时域的位置;通过高层信令指示所述SSB在频域的位置。
可选地,所述频域的位置包括:所述SSB对应的中心频点。
可选地,所述高层信令包括:所述SSB对应的中心频点和公共PRB index0之间的偏置信息。
本公开实施例提供一种参考信号的接收方法,包括:确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;在所述DRS的时频域位置上接收所述DRS。
可选地,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
可选地,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
可选地,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
可选地,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
可选地,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
可选地,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
可选地,所述参考信号的接收方法还包括:通过高层信令的指示信息获取N值。
可选地,所述参考信号的接收方法还包括:通过高层信令的指示信息获取所述SSB在时域的位置;通过高层信令的指示信息获取所述SSB在频域的位置。
可选地,所述频域的位置包括:所述SSB对应的中心频点。
可选地,所述高层信令包括:所述SSB对应的中心频点和公共PRB index0之间的偏置信息。
本公开实施例提供一种基站,包括:第一确定单元,适于确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;发送单元,适于在所述DRS的时频域位置上发送所述DRS。
可选地,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
可选地,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
可选地,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
可选地,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
可选地,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
可选地,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
可选地,所述基站还包括:第一指示单元,适于通过高层信令指示N值。
可选地,所述基站还包括:第二指示单元,适于通过高层信令指示所述SSB在时域的位置;第三指示单元,适于通过高层信令指示所述SSB在频域的位置。
可选地,所述频域的位置包括:所述SSB对应的中心频点。
可选地,所述高层信令包括:所述SSB对应的中心频点和公共PRB index0之间的偏置信息。
本公开实施例提供一种终端,包括:第二确定单元,适于确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;接收单元,适于在所述DRS的时频域位置上接收所述DRS。
可选地,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内, 至少存在一个CSI-RS资源。
可选地,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
可选地,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
可选地,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
可选地,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
可选地,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
可选地,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
可选地,所述终端还包括:第一获取单元,适于通过高层信令的指示信息获取N值。
可选地,所述终端还包括:第二获取单元,适于通过高层信令的指示信息获取所述SSB在时域的位置;第三获取单元,适于通过高层信令的指示信息获取所述SSB在频域的位置。
可选地,所述频域的位置包括:所述SSB对应的中心频点。
可选地,所述高层信令的指示信息包括:所述SSB对应的中心频点和公共PRB index 0之间的偏置信息。
本公开实施例提供一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述参考信号的发送方法或者参考信号的接收方法的步骤。
本公开实施例提供一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行权利上述任一种所述参考信号的发送方法的步骤。
本公开实施例提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行权利上述任一种所述参考信号的接收方法的步骤。
与现有技术相比,本公开实施例的技术方案具有以下有益效果:
本公开实施例通过确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;然后在所述DRS的时频域位置上发送所述DRS,可以向UE发送DRS,使得UE可以基于DRS进行同步和信道接入。
进一步地,通过确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;然后在所述DRS的时频域位置上接收所述DRS,可以基于DRS进行同步和信道接入。
进一步,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的每一时隙内,至少存在一个CSI-RS资源,以供UE进行信道估计、波束管理、获取跟踪参考信号等,从而在时频域上与基站保持精确同步。
附图说明
图1是本公开实施例提供的一种参考信号的发送方法的流程图;
图2是本公开实施例提供的一种SSB与CSI-RS所占时隙格式的示意图;
图3是本公开实施例提供的一种参考信号的接收方法的流程图;
图4是本公开实施例提供的一种基站的结构示意图;
图5是本公开实施例提供的一种终端的结构示意图。
具体实施方式
对于NR系统,尤其是针对非授权频谱,目前无用于同步和接入的发现参考信号,导致NR系统的UE无法接入NR网络。例如,对于先听后说(Linsten-before-Talk,LBT)技术,UE需要在频谱空闲时抢占频谱资源。为了保证参考信号能够连续传输,需要发送跟踪信号占用频谱,而目前的NR系统无可用的发现参考信号。
本公开实施例通过确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;然后在所述DRS的时频域位置上发送所述DRS,可以向UE发送DRS,使得UE可以基于DRS进行同步和信道接入。
为使本公开的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本公开的具体实施例做详细的说明。
参见图1,本公开实施例提供了一种参考信号的发送方法,可以包括如下步骤:
步骤S101,确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS。
在具体实施中,为了向UE发送DRS,首先需要确定DRS的时频域位置,即确定所述DRS所占的时域和频域位置,然后基于所确定的时频域位置,向UE发送DRS。
在具体实施中,由于参考信号会占用系统开销,故为了节省无线网络的比特开销,所述DRS可以采用现有的参考信号。
在本公开一实施例中,所述DRS包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、物理广播信道(Physical Broadcast Channel,PBCH)、用于PBCH的解调参考信号(Demodulation Reference Signal,DMRS),即用于接收PBCH的DMRS、用于跟踪参考信号(Tracking Reference Signal,TRS)的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、用于波束管理的 CSI-RS以及用于获取信道状态信息(Channel State Information,CSI),即信道检测的CSI-RS中的一种或者多种(即两种以上)。
在具体实施中,相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS可以组成一个同步信号块(Sychronize Signal Block,SSB)。
在具体实施中,每个时隙可以包括14个符号,对应的索引(index)分别为索引0~索引13。
在以下实施例中描述的SS突发集(SS burst)可以为一时间窗,该时间窗的时间长度单位为时隙或者毫秒。
在具体实施中,所述SS突发集,即所述时间窗,既可以为周期信号,也可以为非周期信号。
在本公开一实施例中,所述时间窗为周期信号,所述周期为预先设置的值。
在本公开一实施例中,所述时间窗为周期信号,所述周期通过无线资源控制(Radio Resource Control,RRC)信令指定。
在本公开一实施例中,所述时间窗为非周期信号,所述时间窗的位置通过RRC信令指定。
在具体实施中,PSS序列的生成方式可以采用现有的实现,参见3GPP TS38.211,PSS序列可以位于一个SS burst中每个时隙(slot)中的索引为2/8的符号。
在具体实施中,SSS序列的生成方式可以采用现有的实现,参见3GPP TS38.211,PSS序列可以位于一个SS burst中每个时隙中的索引为4/10的符号。
在具体实施中,PBCH序列的生成方式可以采用现有的实现,参见3GPP TS38.211,PBCH序列可以位于一个SS burst中每个时隙中的索引为3/5/9/11的符号。
在具体实施中,用于PBCH的DMRS序列的生成方式可以采用现有的实现,参见3GPP TS38.211,用于PBCH的DMRS序列可以位于一个SS burst 中每个时隙中的索引为3/5/9/11的符号。
在具体实施中,相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS可以组成一个SSB,所述SSB与CSI-RS可以满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源,即在所述SSB对应的2个相邻时隙内,至少存在一个符号用于传输CSI-RS资源。
在本公开一实施例中,所述SSB位于一个SS burst中每个slot中的索引为2/3/4/5/8/9/10/11的符号。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
在具体实施中,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS可以位于SS burst中的每个时隙的至少一个符号,即用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS既可以位于SS burst中的每个时隙的空闲符号,也可以与其他参考信号复用符号,以节省传输开销。
可以理解的是,CSI-RS也可以位于上述实施例所述的位置之外的任何其他符号,此处不再赘述。
在具体实施中,所述SSB在子帧中的位置可以由PSS、SSS、PBCH和用于PBCH的DMRS共同确定。
在本公开一实施例中,所述SSB对应的参考信号在时域上的先后位置为:PSS在所述SSB最开始的符号(即所述SSB对应的第一个符号)上,SSS在所述SSB对应的第三个符号上,PBCH在所述SSB的剩余符号上。
可以理解的是,所述SSB对应的第一个符号可以为所述SSB对应的时隙中的索引为0的符号,也可以为所述SSB对应的时隙中的索引为其他值0的符号,本公开实施例不做限制。
在具体实施中,所述SSB在子帧中的位置也可以由高层信令指示。
在具体实施中,所述参考信号的发送方法还可以包括:通过高层信令指示所述SSB在时域的位置;通过高层信令指示所述SSB在频域的位置。
在本公开一实施例中,所述频域的位置包括:所述SSB对应的中心频点。
在本公开一实施例中,所述中心频点为全球同步信道码(Global synchronization channel number,GSCN)。
在本公开一实施例中,通过高层信令指示所述SSB在频域的位置时,所述高层信令包括:所述SSB对应的中心频点和公共物理资源块(Physical Resource Block,PRB)索引0(index 0)之间的偏置信息。
在本公开一实施例中,所述高层信令为:RRC信令。
在本公开一实施例中,所述高层信令为:剩余最小系统信息(Remaining Minimum System Information,RMSI)。
在本公开一实施例中,所述高层信令为:其他系统消息(Other System Information,OSI)。
在具体实施中,CSI-RS可以为单端口的参考信号,也可以为多端口的参考信号,本公开实施例不做限制。
在本公开一实施例中,CSI-RS频域密度为3,且频域位置固定从子载波0,即索引为0的子载波开始,或者从子载波N,即索引为N的子载波开始,其中N为自然数,且0≤N≤11。
在本公开一实施例中,CSI-RS频域密度为1,且频域位置固定从子载波0开始,或者从子载波N开始,其中N为自然数,且0≤N≤11。
在本公开一实施例中,CSI-RS频域密度为1/2,且频域位置固定从子载波0开始,或者从子载波N开始,其中N为自然数,且0≤N≤23。
在具体实施中,可以通过高层信令指示N值。
在本公开一实施例中,所述高层信令为:RRC信令。
在本公开一实施例中,所述高层信令为:RMSI。
在本公开一实施例中,所述高层信令为:OSI。
步骤S102,在所述DRS的时频域位置上发送所述DRS。
在具体实施中,当确定所述DRS的时频域位置后,可以在所述DRS的时频域位置上发送所述DRS。
可以理解的是,上述参考信号的发送方法既可以应用于NR系统的授权频谱,也可以应用于NR系统的非授权频谱。
应用上述方案,通过确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;然后在所述DRS的时频域位置上发送所述DRS,可以向UE发送DRS,使得UE可以基于DRS进行同步和信道接入。
为使本领域技术人员更好地理解和实施本公开,本公开一实施例提供了一种SSB与CSI-RS所占的时隙格式的示意图,如图2所示。
参见图2,每个时隙包括14个符号,对应的索引分别为0~13。对于240kHz的子载波间隔,SSB由相邻的PSS、SSS、PBCH和用于PBCH的DMRS组成,且所占的时隙为时隙格式0的索引为8~索引为13个的符号(Symbol)、时隙格式1的索引为0~索引为9的符号、时隙格式2的索引为4~索引为13的符号、时隙格式3的索引为0~索引为5的符号。
CSI-RS所占的时隙为时隙格式0的索引为0和索引为4的符号、时隙格式2的索引为0的符号。
由图2可以看出,在所述SSB对应的第0和第1个时隙内,存在两个符号的CSI-RS资源,在所述SSB对应的第1和第2个时隙内存在一个符号的CSI-RS资源,满足在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源的约束关系。
为使本领域技术人员更好地理解和实施本公开,本公开实施例提供了一种参考信号的接收方法,如图3所示。
参见图3,所述参考信号的接收方法可以包括如下步骤:
步骤S301,确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS。
步骤S302,在所述DRS的时频域位置上接收所述DRS。
在具体实施中,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
在本公开一实施例中,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
在具体实施中,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
在具体实施中,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
在具体实施中,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
在具体实施中,所述参考信号的接收方法还包括:通过高层信令的指示信息获取N值。在具体实施中,所述参考信号的接收方法还包括:通过高层信令的指示信息获取所述SSB在时域的位置;通过高层信令的指示信息获取所述SSB在频域的位置。
在本公开一实施例中,所述高层信令为:RRC信令。
在本公开一实施例中,所述高层信令为:RMSI。
在本公开一实施例中,所述高层信令为:OSI。
在本公开一实施例中,所述频域的位置包括:所述SSB对应的中心频点。
在本公开一实施例中,所述中心频点为全球同步信道码(Global synchronization channel number,GSCN)。
在本公开一实施例中,所述高层信令包括:所述SSB对应的中心频点和公共PRB index 0之间的偏置信息。
可以理解的是,上述参考信号的接收方法既可以用于接收NR系统的授权频谱,也可以用于接收NR系统的非授权频谱。
应用上述方案,通过确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;然后在所述DRS的时频域位置上接收所述DRS,可以基于DRS进行同步和信道接入。
为使本领域技术人员更好地理解和实施本公开,本公开实施例提供了一种能够实现上述参考信号的发送方法的基站,如图4所示。
参见图4,所述基站40可以包括:第一确定单元41和发送单元42,其中:
所述第一确定单元41,适于确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS。
所述发送单元42,适于在所述DRS的时频域位置上发送所述DRS。
在具体实施中,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
在本公开一实施例中,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
在具体实施中,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
在具体实施中,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
在具体实施中,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
在具体实施中,所述基站40还可以包括:第一指示单元(未示出),适于通过高层信令指示N值。
在具体实施中,所述基站40还可以包括:第二指示单元(未示出)和第三指示单元(未示出),其中;
所述第二指示单元,适于通过高层信令指示所述SSB在时域的位置。
所述第三指示单元,适于通过高层信令指示所述SSB在频域的位置。
在本公开一实施例中,所述频域的位置包括:所述SSB对应的中心频点。
在本公开一实施例中,所述中心频点为全球同步信道码(Global synchronization channel number,GSCN)。
在本公开一实施例中,所述高层信令包括:所述SSB对应的中心频点和公共PRB index 0之间的偏置信息。
在具体实施中,所述基站40的工作流程及原理可以参考上述实施例中提供的方法中的描述,此处不再赘述。
为使本领域技术人员更好地理解和实施本公开,本公开实施例提供了一种能够实现上述参考信号的接收方法的终端,如图5所示。
参见图5,所述终端50可以包括:第二确定单元51和接收单元52,其 中:
所述第二确定单元51,适于确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS。
所述接收单元52,适于在所述DRS的时频域位置上接收所述DRS。
在具体实施中,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的索引为0和索引为4的符号中的至少一个。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
在本公开一实施例中,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
在本公开一实施例中,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
在具体实施中,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
在具体实施中,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
在具体实施中,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
在具体实施中,所述终端50还可以包括:第一获取单元(未示出),适于通过高层信令的指示信息获取N值。
在具体实施中,所述终端50还可以包括:第二获取单元(未示出)和第三获取单元(未示出),其中;
所述第二获取单元,适于通过高层信令的指示信息获取所述SSB在时域的位置。
所述第三获取单元,适于通过高层信令的指示信息获取所述SSB在频域的位置。
在本公开一实施例中,所述频域的位置包括:所述SSB对应的中心频点。
在本公开一实施例中,所述中心频点为全球同步信道码(Global synchronization channel number,GSCN)。
在本公开一实施例中,所述高层信令的指示信息包括:所述SSB对应的中心频点和公共PRB index 0之间的偏置信息。
在具体实施中,所述终端50的工作流程及原理可以参考上述实施例中提供的方法中的描述,此处不再赘述。
本公开实施例提供一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述参考信号的发送方法或者参考信号的接收方法对应的步骤,此处不再赘述。
本公开实施例提供一种基站,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述参考信号的发送方法对应的步骤,此处不再赘述。
本公开实施例提供一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述参考信号的接收方法对应的步骤,此处不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。

Claims (41)

  1. 一种参考信号的发送方法,其特征在于,包括:
    确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;
    在所述DRS的时频域位置上发送所述DRS。
  2. 根据权利要求1所述的参考信号的发送方法,其特征在于,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:
    在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
  3. 根据权利要求2所述的参考信号的发送方法,其特征在于,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
  4. 根据权利要求2所述的参考信号的发送方法,其特征在于,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
  5. 根据权利要求2所述的参考信号的发送方法,其特征在于,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
  6. 根据权利要求2所述的参考信号的发送方法,其特征在于,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
  7. 根据权利要求2所述的参考信号的发送方法,其特征在于,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
  8. 根据权利要求2所述的参考信号的发送方法,其特征在于,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
  9. 根据权利要求2所述的参考信号的发送方法,其特征在于,CSI-RS频域密度为1/2,且频域位置从子载波0或者子载波N开始,其中N为自然数,
    且0≤N≤23。
  10. 根据权利要求7至9任一项所述的参考信号的发送方法,其特征在于,还包括:
    通过高层信令指示N值。
  11. 根据权利要求2所述的参考信号的发送方法,其特征在于,还包括:
    通过高层信令指示所述SSB在时域的位置;
    通过高层信令指示所述SSB在频域的位置。
  12. 根据权利要求11所述的参考信号的发送方法,其特征在于,所述频域的位置包括:所述SSB对应的中心频点。
  13. 根据权利要求12所述的参考信号的发送方法,其特征在于,所述高层信令包括:所述SSB对应的中心频点和公共PRB index 0之间的偏置信息。
  14. 一种参考信号的接收方法,其特征在于,包括:
    确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;
    在所述DRS的时频域位置上接收所述DRS。
  15. 根据权利要求14所述的参考信号的接收方法,其特征在于,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:
    在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
  16. 根据权利要求15所述的参考信号的接收方法,其特征在于,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
  17. 根据权利要求15所述的参考信号的接收方法,其特征在于,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
  18. 根据权利要求15所述的参考信号的接收方法,其特征在于,用于TRS的 CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
  19. 根据权利要求15所述的参考信号的接收方法,其特征在于,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
  20. 一种基站,其特征在于,包括:
    第一确定单元,适于确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;
    发送单元,适于在所述DRS的时频域位置上发送所述DRS。
  21. 根据权利要求20所述的基站,其特征在于,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:
    在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
  22. 根据权利要求21所述的基站,其特征在于,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
  23. 根据权利要求21所述的基站,其特征在于,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
  24. 根据权利要求21所述的基站,其特征在于,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
  25. 根据权利要求21所述的基站,其特征在于,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符号。
  26. 根据权利要求21所述的基站,其特征在于,CSI-RS频域密度为3,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
  27. 根据权利要求21所述的基站,其特征在于,CSI-RS频域密度为1,且频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤11。
  28. 根据权利要求21所述的基站,其特征在于,CSI-RS频域密度为1/2,且 频域位置从子载波0或者子载波N开始,其中N为自然数,且0≤N≤23。
  29. 根据权利要求26至28任一项所述的基站,其特征在于,还包括:
    第一指示单元,适于通过高层信令指示N值。
  30. 根据权利要求21所述的基站,其特征在于,还包括:
    第二指示单元,适于通过高层信令指示所述SSB在时域的位置;
    第三指示单元,适于通过高层信令指示所述SSB在频域的位置。
  31. 根据权利要求30所述的基站,其特征在于,所述频域的位置包括:所述SSB对应的中心频点。
  32. 根据权利要求31所述的基站,其特征在于,所述高层信令包括:所述SSB对应的中心频点和公共PRB index 0之间的偏置信息。
  33. 一种终端,其特征在于,包括:
    第二确定单元,适于确定DRS的时频域位置,所述DRS包括以下至少一种:PSS、SSS、PBCH、用于PBCH的DMRS、用于TRS的CSI-RS、用于波束管理的CSI-RS以及用于获取信道状态信息的CSI-RS;
    接收单元,适于在所述DRS的时频域位置上接收所述DRS。
  34. 根据权利要求33所述的终端,其特征在于,SSB包括相邻符号的PSS、SSS、PBCH和用于PBCH的DMRS,且所述SSB与CSI-RS满足如下关系:
    在所述SSB对应的2个相邻时隙内,至少存在一个CSI-RS资源。
  35. 根据权利要求34所述的终端,其特征在于,用于TRS的CSI-RS位于SS burst中的第一个时隙的索引为0和索引为4的符号中的至少一个。
  36. 根据权利要求34所述的终端,其特征在于,用于TRS的CSI-RS位于SS burst中的第三个时隙的索引为0的符号。
  37. 根据权利要求34所述的终端,其特征在于,用于TRS的CSI-RS位于SS burst中的第四个时隙的索引为9的符号。
  38. 根据权利要求34所述的终端,其特征在于,用于波束管理的CSI-RS或者用于获取信道状态信息的CSI-RS位于SS burst中的每个时隙的至少一个符 号。
  39. 一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至13或者14至19中任一项所述方法的步骤。
  40. 一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至13中任一项所述方法的步骤。
  41. 一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求14至19中任一项所述方法的步骤。
PCT/CN2019/072472 2018-02-13 2019-01-21 参考信号的发送及接收方法、基站、终端、可读介质 WO2019157905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/321,639 US20220145837A1 (en) 2018-02-13 2019-01-21 Reference signal transmitting and receiving method, base station, terminal, and readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810153150.4A CN110149188A (zh) 2018-02-13 2018-02-13 参考信号的发送及接收方法、基站、终端、可读介质
CN201810153150.4 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157905A1 true WO2019157905A1 (zh) 2019-08-22

Family

ID=67589081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072472 WO2019157905A1 (zh) 2018-02-13 2019-01-21 参考信号的发送及接收方法、基站、终端、可读介质

Country Status (3)

Country Link
US (1) US20220145837A1 (zh)
CN (1) CN110149188A (zh)
WO (1) WO2019157905A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511987A (zh) * 2020-03-05 2021-03-16 中兴通讯股份有限公司 无线传输方法和装置、信息确定方法和装置、电子设备
WO2021063131A1 (zh) * 2019-09-30 2021-04-08 北京紫光展锐通信技术有限公司 信息发送方法及装置、信息接收方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166213B (zh) * 2018-02-13 2021-04-16 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、存储介质、系统
US11870721B2 (en) * 2020-05-14 2024-01-09 Qualcomm Incorporated Enhanced tracking reference signal patterns
WO2021229258A1 (en) * 2020-05-14 2021-11-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of ssb design
WO2022151100A1 (zh) * 2021-01-13 2022-07-21 北京小米移动软件有限公司 资源的确定方法、装置及通信设备
CN117461277A (zh) * 2021-09-29 2024-01-26 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480342A (zh) * 2010-11-25 2012-05-30 普天信息技术研究院有限公司 一种传输参考信号的方法和系统
CN103379072A (zh) * 2012-04-20 2013-10-30 电信科学技术研究院 一种信号传输方法及装置
CN104968052A (zh) * 2015-05-15 2015-10-07 宇龙计算机通信科技(深圳)有限公司 配置方法、配置系统、设备、接收方法、接收系统和终端
WO2015156573A1 (ko) * 2014-04-09 2015-10-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
CN106411805A (zh) * 2015-07-28 2017-02-15 中兴通讯股份有限公司 一种非授权载波的同步信号的发送方法和基站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3114786A4 (en) * 2014-03-04 2017-11-01 LG Electronics Inc. Method of receiving control information for receiving discovery reference signal and apparatus thereof
US10959197B2 (en) * 2014-09-08 2021-03-23 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
CN106162922B (zh) * 2015-01-27 2021-01-26 中兴通讯股份有限公司 发现信号的处理方法及装置
CN104955018B (zh) * 2015-06-19 2019-08-02 宇龙计算机通信科技(深圳)有限公司 在非授权频段上识别运营商标识的方法、装置和终端
US10778486B2 (en) * 2015-08-13 2020-09-15 Intel IP Corporation Discovery reference signal design for LTE in unlicensed bands
CN106936558B (zh) * 2017-04-19 2021-03-30 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
US10541772B2 (en) * 2017-04-28 2020-01-21 Qualcomm Incorporated Techniques for transmission of discovery reference signals in new radio shared spectrum
CN107682133B (zh) * 2017-09-20 2020-08-14 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备
US11070333B2 (en) * 2017-12-21 2021-07-20 Samsung Electronics Co., Ltd. Method and apparatus for SS/PBCH block frequency location indication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480342A (zh) * 2010-11-25 2012-05-30 普天信息技术研究院有限公司 一种传输参考信号的方法和系统
CN103379072A (zh) * 2012-04-20 2013-10-30 电信科学技术研究院 一种信号传输方法及装置
WO2015156573A1 (ko) * 2014-04-09 2015-10-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
CN104968052A (zh) * 2015-05-15 2015-10-07 宇龙计算机通信科技(深圳)有限公司 配置方法、配置系统、设备、接收方法、接收系统和终端
CN106411805A (zh) * 2015-07-28 2017-02-15 中兴通讯股份有限公司 一种非授权载波的同步信号的发送方法和基站

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063131A1 (zh) * 2019-09-30 2021-04-08 北京紫光展锐通信技术有限公司 信息发送方法及装置、信息接收方法及装置
CN112511987A (zh) * 2020-03-05 2021-03-16 中兴通讯股份有限公司 无线传输方法和装置、信息确定方法和装置、电子设备
CN112511987B (zh) * 2020-03-05 2024-04-26 中兴通讯股份有限公司 无线传输方法和装置、信息确定方法和装置、电子设备

Also Published As

Publication number Publication date
CN110149188A (zh) 2019-08-20
US20220145837A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2019157905A1 (zh) 参考信号的发送及接收方法、基站、终端、可读介质
US11659537B2 (en) Method and device for allocating resources, user equipment, base station and readable storage medium
US10673670B2 (en) Demodulation reference signal transmission apparatus, system, and method
WO2015106715A1 (zh) 信号传输方法和装置
WO2018099330A1 (zh) 一种传输信息的方法、基站及终端
CN109391452B (zh) 分配、获取空闲态coreset的方法、基站、用户设备及可读介质
US20230156642A1 (en) Enabling Multiple Numerologies in a Network
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
US10411860B2 (en) Information transmission method, base station, and user equipment
KR20180049030A (ko) 동기화 방법, 사용자 기기 및 기지국
JP2019536335A5 (zh)
US10165517B2 (en) Power allocation method and communications device
JP2018504833A (ja) 免許不要の周波数帯域を使用するセル内で基準信号を送信するための方法およびデバイス
US20190081769A1 (en) Resource determining method, related device, and system
WO2016150224A1 (zh) 一种数据传输方法及装置
US10251142B2 (en) User equipment and method for time and frequency synchronization
US11974240B2 (en) Resource information determining method and device, storage medium, and user equipment
EP3592084A1 (en) Signal transmission method and apparatus
WO2017166234A1 (zh) 信号传输方法、信号传输控制方法、用户设备及基站
WO2019157907A1 (zh) 参考信号的发送及接收方法、基站、终端、存储介质及系统
WO2019157906A1 (zh) 参考信号的发送及接收方法、基站、终端、存储介质、系统
WO2018028428A1 (zh) 接入子带的方法、装置及存储媒介
WO2020029772A1 (zh) 同步信号块位置的指示及获取方法、基站、终端、介质
WO2016180352A1 (zh) 用户设备、基站及相关方法
US20170071012A1 (en) Base station, user equipment and associated methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754871

Country of ref document: EP

Kind code of ref document: A1