CN106162922B - 发现信号的处理方法及装置 - Google Patents

发现信号的处理方法及装置 Download PDF

Info

Publication number
CN106162922B
CN106162922B CN201510170359.8A CN201510170359A CN106162922B CN 106162922 B CN106162922 B CN 106162922B CN 201510170359 A CN201510170359 A CN 201510170359A CN 106162922 B CN106162922 B CN 106162922B
Authority
CN
China
Prior art keywords
ucds
transmission
period
transmitting
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510170359.8A
Other languages
English (en)
Other versions
CN106162922A (zh
Inventor
徐汉青
赵亚军
莫林梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to PCT/CN2015/089193 priority Critical patent/WO2016119466A1/zh
Priority to US15/546,855 priority patent/US10555243B2/en
Priority to EP15879664.9A priority patent/EP3253165A4/en
Publication of CN106162922A publication Critical patent/CN106162922A/zh
Application granted granted Critical
Publication of CN106162922B publication Critical patent/CN106162922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Abstract

本发明公开了一种发现信号的处理方法及装置,在上述方法中,对发现信号各组成信号执行以下操作至少之一:确定各组成信号的配置方式;对各组成信号进行图样修改;确定各组成信号或经过图样修改后的各组成信号的发送方式。根据本发明提供的技术方案,减少占用时长,且避免对其他设备造成多次干扰。

Description

发现信号的处理方法及装置
技术领域
本发明涉及通信领域,具体而言,涉及一种发现信号的处理方法及装置。
背景技术
长期演进使用非授权载波(Long Term Evolution–Unlicensed,简称为LTE-U)是指在非授权的载波中部署LTE,用来满足无线通信系统日益增长的容量需求和提高非授权频谱的使用效率,是LTE以及未来无线通信可能的一个重要演进方向。在设计LTE-U时,需要考虑如何与无线保真(Wireless Fidelity,简称为WiFi)、雷达等异系统以及LTE-U同系统之间公平友好的竞争非授权载波来进行数据传输,同时需要尽可能的不影响和保留LTE技术特性。根据第三代合作伙伴计划(3GPP)标准会议的表述,LTE-U系统也可称为LTE授权载波辅助接入(LTE Licensed Assisted Access,简称为LAA)系统。
对于使用非授权载波的通信系统而言,需要避免使用在非授权载波中已有站点正在使用的非授权载波,否则会造成系统间彼此干扰。所以在一些国家(例如:欧洲和日本),对于非授权载波强制要求支持先听后说(Listen before Talk,简称为LBT)功能。在使用某个非授权载波之前,需要执行空闲信道评估(Clear Channel Assessment,简称为CCA)功能,如果发现存在设备正在使用该非授权载波或者检测到信号能量超过CCA门限,则延迟接入;如果发现信道空闲或者检测的信号能量低于CCA门限,则占用该非授权载波。
因此,LBT/CCA会限制LAA参考信号在占用非授权载波之前发送。欧洲电信标准协会(ETSI)EN 301 893规定:可以利用短控制信令(Short Control Signalling,简称为SCS)来发送管理和控制帧(例如:ACK/NACK信号),并且不需要感知当前信道空闲,也即发送前不需要执行LBT/CCA。但是SCS发送有严格的限定:如果使用SCS,在50ms的观察周期内,自适应设备的短信令传输占空比最大不超过5%,也即2.5ms。
非授权载波的使用同样需要解决小区发现、同步、无线资源管理(Radio ResourceManagement,简称为RRM)测量等问题,3GPP Rel-12规定的发现信号(Discovery Signal,简称为DS)可以作为一个研究参考。
目前Rel-12定义的DS组成为:主/辅同步信号(Primary/SecondarySynchronization Signal,简称为PSS/SSS)、小区专有参考信号(Cell-specificReference Signal,简称为CRS)、信道状态信息-参考信号(Channel State Information-Reference Signal,简称为CSI-RS)可配置。频分双工(FDD)模式下每个周期内DS持续时间(duration)可以为1到5个连续子帧。时分双工(TDD)模式下DS持续时间可以为2到5个连续子帧。
针对各组成信号:CRS在所有下行子帧和特殊子帧下行部分(Downlink part ofthe special subframe,简称为DwPTS)上通过天线端口0发送。PSS在FDD每个周期第一个子帧或TDD每个周期第二个子帧上发送。SSS在每个周期的第一个子帧上发送。non-zero-power CSI-RS在每个周期内0个或更多个子帧上发送。
根据上述现有技术可以发现(实际上DS各组成信号的RE位置或图样与Rel-12前各独立信号的RE位置或图样是一致的):
针对FDD而言,现有DS duration至少为1个子帧,在这1个子帧中,CRS占用符号0、符号4、符号7以及符号11,SSS占用符号5,PSS占用符号6,CSI-RS可配。如果没有配置CSI-RS,DS至少跨越了12个符号,实际占用至少为6个符号。
针对TDD而言,现有DS duration至少为2个子帧,在这2个子帧中,CRS占用第1个子帧和第2个子帧中的符号0、符号4、符号7、符号11。SSS占用第1个子帧的符号13。PSS占用第2个子帧的符号2。CSI-RS可配,如果没有配置CSI-RS,DS至少跨越了26个符号,其实际占用至少为10个符号。
非授权载波使用有其特殊性,存在使用前需要执行LBT/CCA机制和最大占用时长的限制,DS内部多符号不连续发送涉及到多次占用(如果按符号发送)或占用时间过长(一次预留整个DS时长、需发送占用或预留信号)问题,这就要求对发现信号的图样进行重新设计以减少占用次数或占用时长。
针对欧洲地区无LBT/CCA的SCS发送方式,SCS有严格的时间要求,即在50ms的观察周期内,自适应设备的短信令传输占空比最大不超过5%,也即2.5ms。这也要求减少DS占用时长,同时DS内部多符号不连续发送也会对正在竞争资源或已占用资源的用户造成多次干扰。因此也需要对发现信号的图样进行重新设计以减少占用时长,且避免对其他设备造成多次干扰,同时让出一部分SCS资源用于其它必要短信令发送。
综上所述,需要对相关技术中非授权载波中的发现信号进行重新设计,在满足和匹配非授权载波使用的特殊要求前提下,将发现信号的资源占用降到最低、且避免多次干扰问题的出现。
发明内容
本发明实施例提供了一种发现信号的处理方法及装置,以至少解决相关技术中的发现信号应用于非授权载波存在诸多问题,需要对发现信号进行重新设计的问题。
根据本发明的一个方面,提供了一种发现信号的处理方法。
根据本发明实施例的发现信号的处理方法包括:对发现信号各组成信号执行以下操作至少之一:确定各组成信号的配置方式;对各组成信号进行图样修改;确定各组成信号或经过图样修改后的各组成信号的发送方式。
优选地,对各组成信号进行图样修改包括:根据各组成信号的现有时频资源位置,选取和保留各组成信号中时域彼此相邻或相近的符号组成非授权载波中的发现信号(UCDS)进行发送;或者,对各组成信号的时频资源位置进行修改,以使各组成信号在时域的位置相邻或相近,并采用修改后的符号组成UCDS进行发送。
优选地,对各组成信号的时频资源位置进行修改包括:对各组成信号的时域位置进行修改。
优选地,UCDS包括以下至少之一:主同步信号(PSS);辅同步信号(SSS);小区专有参考信号(CRS);信道状态信息-参考信号(CSI-RS);位置参考信号(PRS);其中,PSS、SSS、CRS和PRS用于小区发现和/或同步,CRS和CSI-RS用于无线资源管理(RRM)测量和/或CSI测量。
优选地,UCDS包括PSS、SSS、CRS、PRS、CRS以及CSI-RS中单个信号的修改形式或者至少两个信号的修改形式的组合。
优选地,发送方式包括以下之一:周期性发送;非周期触发式发送;周期性发送与非周期触发式发送相结合的混合方式发送。
优选地,发送方式还包括:在各组成信号的传统发现信号发送模式与经过图样修改后的各组成信号的UCDS发送模式之间进行切换。
优选地,周期性发送包括以下之一:通过短控制信令(SCS)在每个周期点均发送UCDS;在竞争到非授权载波的情况下,在当前周期点上正常发送UCDS;在未竞争到非授权载波的情况下,则在当前周期点停止发送一次UCDS,而等待下个周期点,如果在下个周期点还未竞争到非授权载波,则继续停止发送一次UCDS;在竞争到非授权载波的情况下,在当前周期点上正常发送UCDS;在未竞争到非授权载波的情况下,则在当前周期点停止发送一次UCDS,而在下次竞争到非授权载波后,补充发送UCDS,其中,补充发送UCDS为不规则的周期发送。
优选地,周期性发送包括以下之一:通过先听后说LBT或空闲信道评估CCA按照预设发送参数集合发送UCDS,其中,预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目;在竞争到非授权载波的情况下,在当前时间点上发送UCDS;在未竞争到非授权载波的情况下,则在当前周期点停止发送一次UCDS,而在下个时间点之前的时间段内,如果重新竞争到非授权载波,则继续发送UCDS,其中,继续发送UCDS为不规则的周期发送,下个时间点位于当前时间点之后,当前时间点和下个时间点均由预设发送参数集合确定,预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
优选地,UCDS的发送策略包括以下之一:缩短UCDS的发送周期;采用发送窗增加UCDS的发送机会,其中,发送窗的设计方式包括以下之一:发送窗位于预设时间点之前、发送窗位于预设时间点之后、发送窗包含预设时间点,预设时间点由预设发送参数集合确定,预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目;采用第一周期和第二周期配合发送UCDS,其中,第一周期大于第二周期,第二周期用于在第一周期未能成功发送UCDS的情况下,在第二周期补充发送UCDS。
优选地,在采用发送窗增加UCDS的发送机会的情况下,发送窗由基站确定并由基站发送至终端;或者,在采用第一周期和第二周期配合发送UCDS的情况下,第一周期和第二周期由基站确定并由基站发送至终端。
优选地,非周期触发式发送采用授权载波或非授权载波通知用户设备(UE)与该UE对应的辅小区(SCell)是否发送UCDS和/或发送UCDS的配置信息。
优选地,触发SCell发送UCDS的触发信号是通过小区之间有线或无线方式发送的。
优选地,通过无线资源控制(RRC)信令、媒体接入控制(MAC)信令或者物理层信令将SCell是否发送UCDS和/或发送UCDS的配置信息通知给UE。
优选地,采用预先配置或动态选择的方式触发SCell发送UCDS的触发信号和/或通知UE有关SCell是否发送UCDS的信令的时频资源位置。
优选地,配置方式包括以下之一:独立配置方式、组合配置方式。
优选地,在各组成信号采用独立配置方式的情况下,各组成信号独立配置周期、偏置、持续时间、子帧位置、时频图样。
优选地,各组成信号的周期之间存在预设关系限定。
优选地,各组成信号所在的子帧位置之间存在预设关系限定。
优选地,各组成信号配置统一的周期、偏置、持续时间,其中,各组成信号具有不同的子帧位置和/或时频配置。
优选地,UCDS子帧为周期性子帧和/或非周期子帧,其中,UCDS子帧为发送UCDS的子帧或者UE假设UCDS存在的子帧。
优选地,UCDS满足LAA单次RRM测量性能。
优选地,UCDS满足LAA单次RRM测量性能的条件包括以下之一:在一个UCDS发送周期内发送至少两个UCDS occasions或UCDS bursts,其中,至少两个UCDS occasions或UCDSbursts在时域上连续发送或非连续重复发送;在修改后的符号组成的UCDS内的不连续符号上发送测量信号/符号。
根据本发明的另一方面,提供了一种发现信号的处理装置。
根据本发明实施例的发现信号的处理装置包括:处理模块,用于对发现信号各组成信号执行以下操作至少之一:确定各组成信号的配置方式;对各组成信号进行图样修改;确定各组成信号或经过图样修改后的各组成信号的发送方式。
优选地,处理模块,用于根据发现信号各组成信号的现有时频资源位置,选取和保留各组成信号中时域彼此相邻或相近的符号组成UCDS进行发送;或者,对各组成信号的时频资源位置进行修改,以使各组成信号在时域的位置相邻或相近,并采用修改后的符号组成UCDS进行发送。
优选地,处理模块,用于对各组成信号的时域位置进行修改。
优选地,UCDS包括以下至少之一:PSS;SSS;CRS;CSI-RS;PRS;其中,PSS、SSS、CRS和PRS用于小区发现和/或同步,CRS和CSI-RS用于RRM测量和/或CSI测量。
优选地,UCDS包括PSS、SSS、CRS、PRS、CRS以及CSI-RS中单个信号的修改形式或者至少两个信号的修改形式的组合。
优选地,发送方式包括以下之一:周期性发送;非周期触发式发送;周期性发送与非周期触发式发送相结合的混合方式发送。
优选地,发送方式还包括:在各组成信号的传统发现信号发送模式与经过图样修改后的各组成信号的UCDS发送模式之间进行切换。
优选地,周期性发送包括以下之一:通过SCS在每个周期点均发送UCDS;在竞争到非授权载波的情况下,在当前周期点上正常发送UCDS;在未竞争到非授权载波的情况下,则在当前周期点停止发送一次UCDS,而等待下个周期点,如果在下个周期点还未竞争到非授权载波,则继续停止发送一次UCDS;在竞争到非授权载波的情况下,在当前周期点上正常发送UCDS;在未竞争到非授权载波的情况下,则在当前周期点停止发送一次UCDS,而在下次竞争到非授权载波后,补充发送UCDS,其中,补充发送UCDS为不规则的周期发送。
优选地,周期性发送包括以下之一:通过先听后说LBT或空闲信道评估CCA按照预设发送参数集合发送UCDS,其中,预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目;在竞争到非授权载波的情况下,在当前时间点上发送UCDS;在未竞争到非授权载波的情况下,则在当前周期点停止发送一次UCDS,而在下个时间点之前的时间段内,如果重新竞争到非授权载波,则继续发送UCDS,其中,继续发送UCDS为不规则的周期发送,下个时间点位于当前时间点之后,当前时间点和下个时间点均由预设发送参数集合确定,预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
优选地,UCDS的发送策略包括以下之一:缩短UCDS的发送周期;采用发送窗增加UCDS的发送机会,其中,发送窗的设计方式包括以下之一:发送窗位于预设时间点之前、发送窗位于预设时间点之后、发送窗包含预设时间点,预设时间点由预设发送参数集合确定,预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目;采用第一周期和第二周期配合发送UCDS,其中,第一周期大于第二周期,第二周期用于在第一周期未能成功发送UCDS的情况下,在第二周期补充发送UCDS。
优选地,在采用发送窗增加UCDS的发送机会的情况下,发送窗由基站确定并由基站发送至终端;或者,在采用第一周期和第二周期配合发送UCDS的情况下,第一周期和第二周期由基站确定并由基站发送至终端。
优选地,非周期触发式发送采用授权载波或非授权载波通知用户设备UE与该UE对应的SCell是否发送UCDS和/或发送UCDS的配置信息。
优选地,触发SCell发送UCDS的触发信号是通过小区之间有线或无线方式发送的。
优选地,通过RRC信令、MAC信令或者物理层信令将SCell是否发送UCDS和/或发送UCDS的配置信息通知给UE。
优选地,采用预先配置或动态选择的方式触发SCell发送UCDS的触发信号和/或通知UE有关SCell是否发送UCDS的信令的时频资源位置。
优选地,配置方式包括以下之一:独立配置方式、组合配置方式。
优选地,在各组成信号采用独立配置方式的情况下,各组成信号独立配置周期、偏置、持续时间、子帧位置、时频图样。
优选地,各组成信号的周期之间存在预设关系限定。
优选地,各组成信号所在的子帧位置之间存在预设关系限定。
优选地,各组成信号配置统一的周期、偏置、持续时间、时频图样,其中,各组成信号具有不同的子帧位置和/或时频配置。
优选地,UCDS子帧为周期性子帧和/或非周期子帧,其中,UCDS子帧为发送UCDS的子帧或者UE假设UCDS存在的子帧。
优选地,UCDS满足LAA单次RRM测量性能。
优选地,UCDS满足LAA单次RRM测量性能的条件包括以下之一:在一个UCDS发送周期内发送至少两个UCDS occasions或UCDS bursts,其中,至少两个UCDS occasions或UCDSbursts在时域上连续发送或非连续重复发送;在修改后的符号组成的UCDS内的不连续符号上发送测量信号/符号。
通过本发明实施例,采用对发现信号各组成信号执行以下操作至少之一:确定各组成信号的配置方式;对各组成信号进行图样修改;确定各组成信号或经过图样修改后的各组成信号的发送方式,解决了相关技术中的发现信号应用于非授权载波存在诸多问题,需要对发现信号进行重新设计的问题,进而减少占用时长,且避免对其他设备造成多次干扰。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的发现信号的处理方法的流程图;
图2是根据本发明优选实施例一的方法一中UCDS各信号在时域的位置示意图;
图3是根据本发明优选实施例一的方法一中CRS的资源元素位置示意图;
图4是根据本发明优选实施例一的方法二中UCDS各信号在时域的位置示意图;
图5是根据本发明优选实施例一的方法二中CRS的资源元素位置示意图;
图6是根据本发明优选实施例一的方法三中UCDS各信号在时域的位置示意图;
图7是根据本发明优选实施例一的方法三中CRS的资源元素位置示意图;
图8是根据本发明优选实施例的CRS天线端口1的资源元素位置的示意图;
图9是根据本发明优选实施例二的方法一中UCDS各信号在时域的位置示意图;
图10是根据本发明优选实施例二的方法一中CRS的资源元素位置示意图;
图11是根据本发明优选实施例二的方法二中UCDS各信号在时域的位置示意图;
图12是根据本发明优选实施例二的方法二中CRS的资源元素位置示意图;
图13是根据本发明优选实施例三的一种UCDS各信号在时域的位置示意图;
图14是根据本发明优选实施例三的另一种UCDS各信号在时域的位置示意图;
图15是根据本发明优选实施例四的UCDS各信号在时域的位置示意图;
图16是根据本发明优选实施例五的UCDS各信号在时域的位置示意图;
图17是根据本发明实施例的发现信号的处理装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图1是根据本发明实施例的发现信号的处理方法的流程图。如图1所示,该方法可以包括以下处理步骤:
步骤S102:对发现信号各组成信号执行以下操作至少之一:确定各组成信号的配置方式;对各组成信号进行图样修改;确定各组成信号或经过图样修改后的各组成信号的发送方式。
相关技术中的发现信号应用于非授权载波存在诸多问题,需要对发现信号进行重新设计的问题。采用如图1所示的方法,对发现信号各组成信号的配置方式、设计方式以及发送方式中的至少之一进行处理,由此解决了相关技术中的发现信号应用于非授权载波存在诸多问题,需要对发现信号进行重新设计的问题,进而减少占用时长,且避免对其他设备造成多次干扰。
优选地,在步骤S102中,对各组成信号进行图样修改可以包括以下操作之一:
操作一、根据发现信号各组成信号的现有时频资源位置,选取和保留各组成信号中时域彼此相邻或相近的符号组成非授权载波中的发现信号(Unlicensed Carrier–Discovery Signal,简称为UCDS)进行发送;
操作二、对各组成信号的时频资源位置进行修改,以使各组成信号在时域的位置相邻或相近,并采用修改后的符号组成UCDS进行发送。
在优选实施例中,上述发现信号存在以下两种设计方式:
方式一、根据发现信号各组成信号的现有时频资源位置,选取和保留各组成信号中时域彼此相邻或相近的符号,组成UCDS进行发送。
例如:现有发现信号duration为1个子帧(FDD模式),在这1个子帧中,CRS占用符号0、符号4、符号7、符号11,SSS占用符号5,PSS占用符号6,CSI-RS可配,如果没有配置CSI-RS,则DS至少跨越了12个符号,其实际占用了至少为6个符号。
可以选取CRS在符号4上发送,符号0、符号7、符号11不发送CRS。SSS仍占用符号5、PSS占用符号6。因此,此处的UCDS由CRS、PSS/SSS组成,占用符号4、符号5、符号6。DS跨越了3个符号,其实际占用也为3个符号。
需要说明的是,此种方式不会更改或移动组成信号的时域位置,只会进行选择和保留,发送它们彼此之间接近的信号;其优势在于:与现有技术兼容且改动较小。
方式二、修改各组成信号的时频资源位置,特别是时域位置,使得各组成信号在时域的位置相邻或相近。修改后的符号组成UCDS进行发送。
例如:现有发现信号duration为1个子帧(FDD模式),在这1个子帧中,CRS占用符号0、符号4、符号7、符号11,SSS占用符号5,PSS占用符号6,CSI-RS可配,如果没有配置CSI-RS,DS至少跨越了12个符号,其实际占用至少为6个符号。
可以选择CRS在符号7上发送,在符号0、符号4、符号11不发送。SSS和PSS分别更改为在符号8和符号9上发送。因此,UCDS占用符号7、符号8、符号9。
此处,同样有其他选择方法,譬如:SSS和PSS时域位置不变,更改CRS的时域位置,例如:符号3、符号4、符号7、符号8发送CRS,即UCDS的符号位置为符号3、符号4、符号5、符号6、符号7、符号8。
或者,CRS、PSS、SSS、CSI-RS等UCDS组成信号的时域图样都可以在现有格式上进行修改,从而使得各组成信号在时域的位置相邻或相近。UCDS中的CRS信号或CSI-RS信号可以在PSS/SSS之前连续发送或在PSS/SSS之后连续发送,当PSS和SSS符号不相邻时,可以在PSS和SSS之间连续发送。
频域资源的修改主要应用于UCDS中信号占用相同符号的场景,需要在频域资源上错开。上述方式二的优势在于能够确保UCDS所有符号能够连续或相近进行发送,其灵活性较好,并且可以控制各组成信号占用的符号个数。
上述频域资源的修改还可以涉及到非授权载波使用需要占用名义带宽80%的问题。例如:同步信号PSS/SSS仅占用频域中间的6个RB,即使基站能够竞争到非授权载波使用权来发送同步信号,也很有可能被其他设备或基站所抢占,因此,可以在频域上重复发送PSS和/或SSS。
上述方式二与方式一相比,方式一有时无法保证UCDS中所有信号占用符号位置相邻或相近,且方式一中信号所占符号数目会存在限制。
对于非授权载波使用场景,如果没有SCS以及类似规则,则需要使用LBT/CCA机制才能发送UCDS。如果信道繁忙,则无法保证UCDS正常发送,也即有可能很长时间都无法发送UCDS,这时,RRM测量性能以及同步性能将无法维持,所以,UCDS最好能够满足LAA单次RRM测量性能(single-shot measurement)。
对于通过上述方式一或上述方式二确定的UCDS图样,已经能够确保UCDS内各符号连续(或距离相近)发送。为保证UCDS单次测量性能,可以重复且连续发送UCDS。例如:UCDS发送周期为80ms(或非周期发送),一个周期内存在一个UCDS时机(occasion)(或称为突发数目(burst)),该UCDS occasion持续时间(duration)为1ms,UCDS内部即1ms图样内各符号时域连续。
为满足single-shot measurement性能,一个UCDS发送周期内可以发送两个或多个UCDS occasions(或bursts),这些occasions(或bursts)在时域上优选连续(不排除非连续重复发送这种可能性)。例如:在80ms内,有2ms发送UCDS,这2ms在时域上连续。这2ms可以称为2个UCDS bursts或者2个UCDS occasions,当然也可以将重复发送的在时域上连续的多个UCDS occasions统称为1个UCDS occasion。
或者,为满足UCDS单次测量性能,可以采用上述方式二,修改已知信号的发送图样,在发现信号内不连续符号上发送测量信号/符号。例如:现有授权载波发现信号duration可以为1个子帧(FDD模式),在这1个子帧中,CRS可以占用符号0、符号4、符号7、符号11,而SSS可以占用符号5,以及PSS可以占用符号6,CSI-RS可配。此外,还可以在符号1、符号2、符号3、符号8、符号9、符号10等空闲符号上发送测量信号CRS和/或CSI-RS。现有发现信号经过上述修改后的图样为UCDS图样,这种方式既可以确保UCDS内各符号时域连续发送,也可以确保CDS单次测量性能。
为了不影响数据发送时数据或PDSCH的映射,按照上述两种方式修改、或在UCDS子帧中非连续符号上填充测量信号/符号来保证UCDS连续发送不是必须的。
当没有数据发送时,UCDS子帧中的非连续符号可以按照上述两种方式修改、或填充测量信号/符号来满足或增强测量性能。
当有数据发送时,UCDS子帧中的非连续符号可以按照上述两种方式修改、或填充测量信号/符号来满足或增强测量性能。也可以按照UCDS子帧内各信号原方式发送,对其中不连续符号不进行修改或填充,可以利用数据映射来保证时域连续发送,同时不影响数据发送。
另外,针对一些特殊场景,如非授权载波设备(例如:LAA或WIFI)稀疏部署的场景,非授权载波资源很容易抢占到、对其他站点的干扰可以忽略的情况下,此时无论是LAA站点通过LBT/CCA来发送发现信号,还是通过SCS直接发送发现信号,发现信号的占用时长、多次抢占、多次干扰等问题就会弱化。这时候可以使用传统发现信号DS。利用传统发现信号DS进行发现、同步和测量效果会更好。
针对不同场景,可引入一种发现信号的两种发送模式切换机制。发现信号的两种发送模式包括Rel-12发现信号发送模式和UCDS发送模式。授权载波小区如PCell和/或非授权载波小区(例如:非授权载波接入点或其他接入点)需要在接入点发送发现信号前,将发现信号的发送模式、和/或发现信号相应的配置信息发送给所述接入点、和/或UE。
优选地,上述UCDS可以包括但不限于以下至少之一:
(1)主同步信号(PSS);
(2)辅同步信号(SSS);
(3)小区专有参考信号(CRS);
(4)信道状态信息-参考信号(CSI-RS);
(5)位置参考信号(PRS);
其中,PSS、SSS、CRS和PRS用于小区发现和/或同步,CRS和CSI-RS用于RRM测量和/或CSI测量。
需要说明的是,UCDS组成信号不但可以包括上述信号至少之一,而且可以包括上述信号的修改形式。
优选地,上述发送方式可以包括但不限于以下之一:
方式一、周期性发送,UCDS可以按照预设固定的周期、偏移、持续时间、突发数目进行发送。
上述方式一又可以分为以下三种方式:
(1)通过SCS在每个周期点都发送UCDS,无论该周期点是否已经被占用;
需要说明的是,本发明中提及的短控制信令SCS不单单指ETSI规定中的SCS,而泛指不需要执行空闲信道评估(CCA)和先听后说(LBT),而直接可发送短时的信号、信道的功能。在SCS时长内发送信号、信道,LAA接入点不需要执行空闲信道评估(CCA)和先听后说(LBT)功能,所以为保证非授权频段不同系统和设备友好共存,SCS发送时长最好需要满足一定的管制要求。有些地区和国家对于SCS可能有另外的名称和定义,这里统称为SCS。还有些地区和国家可能没有定义SCS,针对这些地区和国家可以定义SCS以及类似规则要求(例如对发送时长的要求,在固定时长的观察期内发送时长不得大于设定比例)来进行非占用期的信号发送。
(2)如果竞争到非授权载波,则可以在该周期点上正常发送UCDS;如果没有竞争到非授权载波,则该周期点停发一次UCDS,而等待下一个周期点,如果下个周期点还没有竞争到资源,则继续停发。
(3)如果竞争到非授权载波,则可以在该周期点上正常发送UCDS;如果没有竞争到非授权载波,则该周期点停发一次UCDS,而在下次竞争到非授权载波后,补充发送,但不要求一定在周期点上,也即延迟发送,其实际上是一种不规则的周期发送。
周期性发送需要通过授权载波(例如:PCell)或其他非授权载波来确定、或通知SCell和/或UEs有关SCells发送UCDS的图样(包括以下至少之一:周期、偏移、持续时间、端口、功率、突发数目(burst)),UE可以根据确定的UCDS的发送图样或测量图样(包括以下至少之一:周期、偏移、持续时间、端口、功率、突发数目)来检测UCDS。
方式二、非周期触发式发送,可以通过例如PCell来触发UCDS的非周期发送。
(1)非周期发送需要授权载波如PCell或其他非授权载波来通知UE该SCell是否发送UCDS和/或发送UCDS的配置信息。
(2)触发SCell发送UCDS的触发信号可以通过小区之间有线或无线方式发送。
(3)触发发送UCDS时,由于UCDS可能组成信号的作用不同,可以只触发发送一种信号、多种信号,或者上述UCDS可能组成信号的全部信号,或者上述信号的修改形式。
(4)通知UE该SCell是否发送UCDS和/或发送UCDS的配置的信息可以通过RRC信令、MAC信令或物理层信令(例如:DCI)进行发送。
(5)触发SCell发送UCDS时,同时通知邻小区有关该SCell发送UCDS的信息,降低对邻小区和本小区的测量影响。
(6)触发SCell发送UCDS的触发信号、和/或通知UE有关SCell是否发送UCDS的信令的时频资源位置可以预先配置或动态选择。预先配置可以有设定的周期、子帧、符号、资源元素等信息,SCell和/或UE只需要在这些预先配置点上检测触发信号和/或信令即可。动态选择需要SCell和/或UE进行盲检。
方式三、混合方式发送,也即周期性发送和触发发送相结合。例如:可以通过SCS进行稀疏的UCDS周期性发送,PCell在SCell竞争到非授权载波使用权后,根据需要触发SCell在该非授权载波上发送UCDS。
混合方式发送同样需要确定或通知上述两种发送方式的信息,例如:包括UCDS的发送图样、测量图样、UCDS是否发送等信息通知给UE和/或SCell。
根据上述发送方式,SCell可以发送UCDS的所有组成信号,也可以只发送UCDS中的一种或几种组成信号,其原因在于:不同需求对UCDS组成信号的要求不一致,例如:同步需求和RRM测量需求依赖的UCDS信号不一样。SCell发送UCDS的图样(包括以下至少之一:周期、持续时间、偏移)也可以进行必要地调整。
因此,UCDS各组成信号可以独立配置,当然也可以组合配置。
如果是独立配置,UCDS各组成信号可以独立配置周期、偏置、持续时间、子帧位置、时频图样。各组成信号之间也可以存在约束关系。
在优选实施过程中,各信号的周期之间可以存在关系限定,例如:不同信号的配置周期之间具有倍数关系。例如:UCDS可以包括PSS、SSS、CRS、CSI-RS,各信号可独立配置。CRS周期是PSS和/或SSS周期倍数;或者,PSS和/或SSS周期是CRS周期倍数;或者,CSI-RS周期是CRS周期倍数;或者,CRS周期是CSI-RS周期倍数;或者,CSI-RS周期是PSS和/或SSS周期倍数;或者,PSS和/或SSS周期是CSI-RS周期倍数。
在优选实施过程中,各信号的子帧位置可以存在关系限定,例如:约束CRS位于发送PSS和/或SSS的子帧;或者,CRS位于发送CSI-RS的子帧;或者,CSI-RS位于发送PSS和/或SSS的子帧。
如果是组合配置,UCDS可以配置一个统一的周期、偏置、持续时间、突发数目等。在上述统一的配置下,UCDS各组成信号可以有不同的子帧位置和/或时频配置,例如:子帧、符号、资源元素。UCDS(例如:包含PSS、SSS和CRS、CSI-RS,其他信号可配或不配)的周期可以配置为40ms、80ms、160ms;持续时间可配置为1个子帧到5个子帧;而在每个周期的每个duration内,UCDS各组成信号可以有不同的配置或子帧信息,例如:PSS和/或SSS只发送一次,CRS可以发送多次,CSI-RS与PSS和/或SSS存在子帧或符号偏移关系,以及各个组成信号的子帧或符号信息。
在下文中,UCDS子帧可以定义为发送UCDS的子帧或UE假设UCDS存在的子帧。UCDS子帧可以为1个、2个或多个子帧。根据上述UCDS发送方式,UCDS子帧可以是周期性的,也可以是非周期性的,抑或是两者兼有。
下面将结合以下几个UCDS发送的优选实施方式对上述优选实施过程作进一步的描述。
需要说明的是,下面几个优选实施例重点说明几种组成信号联合发送的情况。实际上,各个实施例中UCDS每个组成信号的发送方式同样适用于每个组成信号单独作为UCDS发送的情况,或其中两种、三种及多种信号组合作为UCDS发送的情况。以优选实施例一为例,UCDS可以包含PSS、SSS和CRS,在优选实施例一中设计的CRS时频域图样,同样适用于UCDS只包含CRS的场景。
同时,本发明实施例所提供的方法不仅仅局限于如下优选实施例。以优选实施例一中的方法一为例,UCDS可以包含PSS、SSS和CRS,在SSS和PSS符号之前有1个符号发送CRS。实际上,也可以在SSS和PSS符号之前有2个符号或多个相邻/相近符号发送CRS;或者,在SSS和PSS符号之后有1个符号发送CRS(即优选实施例一中方法二);或者,在SSS和PSS符号之后有2个或多个相邻/相近符号发送CRS;或者,在SSS和PSS符号前后有相等或不等数量的符号发送CRS(即优选实施例一中的方法三)。
优选实施例一
在该优选实施例中,UCDS可以包含PSS、SSS和CRS。PSS和SSS在相邻符号上发送,而CSI-RS没有配置发送。该优选实施例可以包括以下方法:
方法一、
SSS、PSS在UCDS子帧中第1个子帧或偏移后的某个子帧符号5、符号6发送。CRS在UCDS子帧符号4发送。即发送UCDS的符号为符号4、符号5和符号6。
CRS可以在所有下行子帧中或UCDS子帧中发送或多次发送。SSS、PSS在UCDS一个duration里可以只发送一次。例如:UCDS周期内UCDS持续时间为2个子帧、或一次触发发送UCDS为2个子帧,发送UCDS的符号为:第一个子帧中符号4、符号5、符号6和第二个子帧中符号4;或者,PSS/SSS偏移一个子帧,即第一个子帧中符号4和第二个子帧中符号4、符号5和符号6。
图2是根据本发明优选实施例一的方法一中UCDS各信号在时域的位置示意图。如图2所示,其表明了UCDS在时域的发送情况。
图3是根据本发明优选实施例一的方法一中CRS的资源元素位置示意图。如图3所示,其表明了CRS在子帧中的时频域位置。频域位置可以存在偏移,例如:图3发送CRS的资源元素RE(k,l)为(3,4)、(9,4),其中,k为资源元素的频域序号,l为资源元素的时域序号,如果按照子帧的符号排序,l的取值为0到13;当然也可以在频域上存在3个RE偏移,即(0,4)、(6,4);此外,还可以在频域上存在1个、2个等RE偏移。
方法二、
SSS、PSS可以在UCDS子帧中第1个子帧或偏移后的某个子帧符号5、符号6进行发送。CRS在UCDS子帧符号7进行发送(或称为第二个时隙的符号0,下同)。即发送UCDS的符号为符号5、符号6、符号7。
CRS可以在所有下行子帧中或UCDS子帧中发送或多次发送。SSS、PSS可以在UCDS一个duration里可以只发送一次。例如:UCDS周期内UCDS持续时间为2个子帧或一次触发发送UCDS为2个子帧,发送UCDS的符号为:第一个子帧中符号5、符号6、符号7和第二个子帧中符号7;或者,PSS/SSS偏移一个子帧,即第一个子帧中符号7和第二个子帧中符号5、符号6、符号7。
图4是根据本发明优选实施例一的方法二中UCDS各信号在时域的位置示意图。如图4所示,其表明了UCDS在时域的发送情况。
图5是根据本发明优选实施例一的方法二中CRS的资源元素位置示意图。如图5所示,其表明了CRS在子帧中的时频域位置。频域位置可以存在偏移。例如:图5发送CRS的资源元素RE(k,l)为(0,7)、(6,7);当然也可以在频域上存在3个RE偏移,即(3,7)、(9,7);此外,还可以在频域上存在1个、2个等RE偏移。
方法三、
SSS、PSS可以在UCDS子帧中第1个子帧或偏移后的某个子帧符号5、符号6进行发送。CRS在UCDS子帧符号4和符号7发送。即发送UCDS的符号为符号4、符号5、符号6以及符号7。
CRS可以在所有下行子帧中或UCDS子帧中发送或多次发送。SSS、PSS可以在UCDS一个duration里只发送一次。例如:UCDS周期内UCDS持续时间为2个子帧、或一次触发发送UCDS为2个子帧,发送UCDS的符号为:第一个子帧中符号4、符号5、符号6、符号7和第二个子帧中符号4、符号7;或者,PSS/SSS偏移一个子帧,即第一个子帧中符号4、符号7和第二个子帧中符号4、符号5、符号6、符号7。
图6是根据本发明优选实施例一的方法三中UCDS各信号在时域的位置示意图。如图6所示,其表明了UCDS在时域的发送情况。
图7是根据本发明优选实施例一的方法三中CRS的资源元素位置示意图。如图7所示,其表明了CRS在子帧中的时频域位置。频域位置可以存在偏移,例如:图7发送CRS的资源元素RE(k,l)为(3,4)、(9,4)、(0,7)、(6,7);当然也可以在频域上存在3个RE偏移,即(0,4)、(6,4)、(3,7)、(9,7);此外,还可以在频域上存在1个、2个等RE偏移。
需要说明的是,在上述三种方法中的CRS可以是单端口发送,也可以是两端口或多端口发送。单端口发送的RE格式如图3、图5和图7所示。图8是根据本发明优选实施例的CRS天线端口1的资源元素位置的示意图。如图8所示,其表明了端口1的RE格式,其中,双端口中端口0与单端口的RE格式相同。此处,需要特别注意的是,如果单端口或端口0如上所述存在频域上的RE偏移,则端口1也在图8的基础上存在相同数量的RE偏移。
优选实施例二
在该优选实施例中,UCDS可以包含PSS、SSS和CRS。PSS和SSS在不相邻符号进行发送。CSI-RS没有配置发送。该优选实施例可以包括以下方法:
方法一、
SSS在第1个子帧的符号13发送、PSS在第2个子帧的符号2发送。CRS在第2个子帧的符号0发送。即发送UCDS的符号为第1个子帧的符号13、第2个子帧的符号0、符号2。
图9是根据本发明优选实施例二的方法一中UCDS各信号在时域的位置示意图。如图9所示,其表明了UCDS在时域的发送情况。
图10是根据本发明优选实施例二的方法一中CRS的资源元素位置示意图。如图10所示,其表明了CRS在子帧中的时频域位置。频域位置可以存在偏移。例如:图10发送CRS的资源元素RE(k,l)为(0,0)、(6,0);当然也可以在频域上存在3个RE偏移,即(3,0)、(9,0);此外,还可以在频域上存在1个、2个等RE偏移。
方法二、
SSS可以在第1个子帧的符号13发送、PSS在第2个子帧的符号2发送。CRS在第2个子帧的符号0、符号1发送。即发送UCDS的符号为第1个子帧的符号13、第2个子帧的符号0、符号1、符号2。
图11是根据本发明优选实施例二的方法二中UCDS各信号在时域的位置示意图。如图11所示,其表明了UCDS在时域的发送情况。
图12是根据本发明优选实施例二的方法二中CRS的资源元素位置示意图。如图12所示,其表明了CRS在子帧中的时频域位置。频域位置可以存在偏移。例如:图12发送CRS的资源元素RE(k,l)为(0,0)、(6,0)、(3,1)、(9,1);当然也可以在频域上存在3个RE偏移,即(3,0)、(9,0)、(0,1)、(6,1);此外,还可以在频域上存在1个、2个等RE偏移。
需要说明的是,在上述两种方法中的CRS可以是单端口发送,也可以是两端口或多端口发送。单端口发送的RE格式如图10和图12所示。双端口中端口0与单端口的RE格式相同、端口1的RE格式可以在单端口的基础上在频域偏移3个RE。此处,需要特别注意的是,如果单端口或端口0如上所述存在频域上的RE偏移,则端口1也存在相同数量的RE偏移。
优选实施例三
在该优选实施例中,UCDS可以包含PSS、SSS、CRS、CSI-RS。PSS和SSS在相邻符号发送。
PSS、SSS、CRS的发送方式和时域/频域图样可以与上述优选实施例一中介绍的各种方法或同类方法一致。CSI-RS可以按照3GPP标准36.211中规定的方法进行发送。即UCDS可以包括:PSS、SSS、CRS、CSI-RS。
或者,为了使得UCDS中CSI-RS的符号与PSS、SSS、CRS的符号相邻或相近,同时确保UCDS内部各符号之间不发生碰撞,可以具有如下约束:
基站在发送PSS、SSS、CRS的时域位置不发送CSI-RS,或者,UE假设存在UCDS中PSS、SSS、CRS的时域位置不会存在CSI-RS信号。
例如:上述优选实施例一中SSS、PSS在子帧符号5、符号6发送。如果配置CSI-RS在同子帧的符号5、符号6发送,则会发生碰撞,所以基站在该子帧可以不发送CSI-RS;
或者,如果现有CSI-RS的配置导致发送CSI-RS的符号与PSS、SSS、CRS符号重叠,则可以通过更改CSI-RS的频域位置,以避开PSS、SSS、CRS的频域位置。
例如:上述优选实施例一中SSS、PSS在子帧符号5、符号6发送。如果配置CSI-RS在同子帧的符号5、符号6发送,则会发生碰撞,此时,可以在SSS和PSS占用的6个RB不发送CSI-RS,在符号5、6的其他频域资源发送CSI-RS。
或者,设置CSI-RS与PSS、或SSS、或CRS之间的子帧偏置,确保不会在同子帧同符号发送不同信号。
例如:设置CSI-RS与SSS之间的偏置值为n个子帧,需要将偏置值通知给UE。
或者,对现有3GPP 36.211Table 6.10.5.2-1中的CSI-RS配置进行限制,保留现有配置中使得CSI-RS的符号位置与UCDS中其他组成信号所占用符号相邻或相近的配置格式。
例如:采用Table 6.10.5.2-1中CSI-RS配置1,结合上述优选实施例一中的各种方法或同类方法。图13是根据本发明优选实施例三的一种UCDS各信号在时域的位置示意图。如图13所示,符号8可以发送CRS或不发送UCDS信号。
或者,修改现有的CSI-RS时域配置,使得CSI-RS的符号位置与UCDS中其他组成信号所占用符号相邻或相近。
例如:可以修改CSI-RS配置可以在时隙1的符号0、符号1(子帧的符号7、符号8)上发送。图14是根据本发明优选实施例三的另一种UCDS各信号在时域的位置示意图。如图14所示,UCDS占用符号4、符号5、符号6、符号7、符号8;当然也可以在图12的基础上,CSI-RS更改配置,在符号8、符号9上发送,即UCDS占用符号5、符号6、符号7、符号8、符号9。
优选实施例四
在该优选实施例中,UCDS可以包含PSS、SSS、CRS、CSI-RS。PSS和SSS在不相邻符号发送。
PSS、SSS、CRS的发送方式和时域/频域图样可以与上述优选实施例二中介绍的各种方法或同类方法一致。CSI-RS可以按照3GPP标准36.211中规定的方法进行发送。即UCDS可以包括:PSS、SSS、CRS、CSI-RS。
或者,为了使得UCDS中CSI-RS的符号与PSS、SSS、CRS的符号相邻或相近,同时确保UCDS内部各符号之间不发生碰撞,可以具有如下约束:
基站在发送PSS、SSS、CRS的时域位置不发送CSI-RS,或者,UE假设存在UCDS中PSS、SSS、CRS的时域位置不会存在CSI-RS信号。
例如:上述优选实施例二中SSS、PSS在符号13(前1子帧)、符号2(后1子帧)发送。如果配置CSI-RS在这两子帧的对应符号上或其中一个符号发送,则会发生碰撞,所以基站在这类子帧可以不发送CSI-RS。
或者,如果现有CSI-RS的配置导致发送CSI-RS的符号与PSS、SSS、CRS符号重叠,则通过更改CSI-RS的频域位置,以避开PSS、SSS、CRS的频域位置。
例如:在上述优选实施例二中SSS、PSS在符号13(前1子帧)、符号2(后1子帧)发送。如果配置CSI-RS在这两子帧的对应符号上发送,则会发生碰撞,此时可以在SSS和PSS占用的6个RB不发送CSI-RS,在其他频域资源发送CSI-RS。
或者,设置CSI-RS与PSS、或SSS、或CRS之间的子帧偏置,确保不会在同子帧同符号发送不同信号。
例如:设置CSI-RS与SSS之间的偏置值为n个子帧,需要将偏置值通知给UE。
或者,对现有3GPP 36.211Table 6.10.5.2-1中的CSI-RS配置进行限制,保留现有配置中使得CSI-RS的符号位置与UCDS中其他组成信号所占用符号相邻或相近的配置格式。
或者,修改现有的CSI-RS时域配置,使得CSI-RS的符号位置与UCDS中其他组成信号所占用符号相邻或相近。
例如:修改3GPP 36.211Table 6.10.5.2-1中的CSI-RS配置20到配置31(现有技术适用于时隙1),同样适用于时隙0(即ns mod 2=0)的情况,CSI-RS可以在时隙0的符号1和符号3上发送。图15是根据本发明优选实施例四的UCDS各信号在时域的位置示意图。如图15所示,UCDS占用符号13、0、1、2、3,其中,符号13为前1子帧发送SSS的符号,其他符号位于后一子帧。同样可以存在其他类似方法,在此不一一列举。
优选实施例五
在该优选实施例中,图16是根据本发明优选实施例五的UCDS各信号在时域的位置示意图。如图16所示,UCDS可以包含PSS、SSS、CRS、PRS。PSS和SSS在不相邻符号发送。CRS和PRS占用的时域资源可以保持不变。即CRS占用子帧中符号0、4、7、11。PRS占用子帧中符号3、5、6、8、9、10、12、13。SSS占用符号1。PSS占用符号2。
优选实施例六
在该优选实施例中,主要针对上述通过LBT/CCA进行周期性机会发送UCDS的方式。
首先,UCDS可以按照周期性机会发送,即UCDS可以按照预设固定的周期、偏移、持续时间、突发数目进行发送。预设的发送参数可以包括上述多个参数中的一个或多个。但是,需要满足LBT/CCA成功的条件才能够进行发送。
如果竞争到非授权载波,则可以在预设的发送时间点(预设的时间点是指由上述周期、偏移等参数确定的从某时刻开始的一段时间)上正常发送UCDS;如果没有竞争到非授权载波,则在该时间点停发一次UCDS。而可以在下个时间点之前、本时间点之后的一段时间内,如果竞争到非授权载波,则可以继续发送,但不要求一定在预设的时间点上发送UCDS,换言之,其可以延迟发送,这种发送方式实际上是一种不规则的周期发送。
类似的,所述一段时间不一定限制在预设的时间点之后,也可以设定在预设的时间点之前或者包含预设的时间点。同时,与上述预设的时间点可以在时域上连续,当然也可以在时域上不连续。
为增加UCDS发送成功率,确保测量和同步的性能,可以采用如下几种方式:
方式一、缩短UCDS的发送周期。例如:授权载波现有发现信号的周期可以为40ms、80ms、160ms,可以设定UCDS的发送周期为10ms、20ms或者40ms。例如:UCDS如果发送周期为10ms,那么在一段时间内(例如:160ms之内),成功发送一次UCDS的概率便会大大增加。
方式二、为增加UCDS发送成功率且不能使UE检测太复杂,则可以设计UCDS发送窗来增加UCDS发送机会。UCDS发送窗可以位于UCDS预设的时间点之后、或之前,UCDS发送窗也可以包含预设的时间点这段时间。同时,UCDS发送窗与预设的时间点可以在时域上连续,也可以在时域上不连续。优选地,上述UCDS发送窗是在预设的时间点起始位置之后连续的一段可发送UCDS的时间,即UCDS发送窗时长包含预设的时间点这段时间。
UCDS发送窗可以是周期性的,即每个UCDS周期中都存在一个UCDS发送窗。如果UCDS在预设的时间点上没有竞争到资源,在下个预设时间点之前,可以在本时间点之后的UCDS发送窗内继续尝试发送。如果发送成功,则下次发送机会需要等到预设的下个时间点上。如果在所述UCDS发送窗内都没有竞争到资源,即在UCDS发送窗内发送UCDS失败,则下次发送机会需要等到预设的下个时间点上。
方式三、为增加UCDS发送成功率,且不能使UE检测太复杂,可以考虑采用双周期设置,在预设的长周期之外,设置短周期来尝试补充发送UCDS。如果在预设的长周期的周期点上发送失败,则可在后续的短周期的周期点上继续尝试发送UCDS。如果在预设的长周期的周期点上发送成功,则下次发送机会需要等到下个预设的长周期的周期点上,即不需要执行后续的短周期的周期点上尝试发送。
针对上述三种发送方式,具体举例如下:
假设UCDS的发送周期为80ms,偏移为0ms,持续时间为1ms,突发数目为1(即一个周期里面只发一次UCDS)。预设的发送参数可以包括上述多个参数中的一个或多个,那么UCDS可能发送时间点为子帧0、子帧80、子帧160等。
在这些周期点上能否发送UCDS取决于LBT/CCA的结果。例如:如果UCDS竞争到子帧0的非授权载波使用权,则发送UCDS成功。但是在子帧80没有竞争到非授权载波,那么基站在子帧80就无法成功发送UCDS,只能继续等待下个机会竞争子帧160资源来发送UCDS。
针对上述方式一,可以设计更短的UCDS发送周期,例如:UCDS发送周期为40ms。
针对上述方式二,可以设计UCDS发送窗为20ms,也即UCDS可能发送时间点在(0ms-20ms)、(80ms-100ms)、(160ms-180ms)等之间。UCDS可以在预设的时间点和时间窗内尝试发送。如果UCDS竞争到子帧0的资源使用权,则发送UCDS成功,UCDS下次发送机会为子帧80。如果UCDS没有竞争到子帧80来发送UCDS,则在(80ms-100ms)内继续执行LBT/CCA,尝试发送UCDS。
针对上述方式三,可以设计补充发送UCDS的短周期为10ms。如果UCDS竞争到子帧0的资源使用权,则发送UCDS成功,UCDS下次发送机会为子帧80。如果UCDS没有竞争到子帧80来发送UCDS,可以竞争子帧90、100、等子帧来发送UCDS,例如:如果竞争到子帧90的使用权,发送UCDS成功,则UCDS下次发送机会为子帧160。
UCDS发送可以按照帧对齐、子帧对齐或符号对齐发送UCDS。
如果按照帧对齐发送UCDS。例如:针对上述方式二发送窗内发送UCDS,基站如果在子帧80这个时间点上没有竞争到资源,不需要等到下个预设时间点子帧160,可以继续竞争(80ms-100ms)UCDS发送窗内子帧90的使用权。如果竞争到,则可以在子帧90发送UCDS。帧对齐的优点在于无需改变UCDS内部各组成符号现有发送时域位置,例如:现有PSS/SSS一般要求在子帧0和子帧5上发送FDD。帧对齐可以不改变它们发送的子帧位置;然而,其缺点在于UCDS发送可尝试机会少,发送概率高。
如果按照子帧对齐发送UCDS。例如:针对上述方式二发送窗内发送UCDS,基站如果在子帧80这个时间点上没有竞争到资源,可以继续竞争子帧81、82、...、99来尝试发送UCDS。这种发送方式涉及到组成信号发送的子帧位置,但是子帧内的符号位置可以不做变动。这种方式的UCDS发送机会要高于上述按照帧对齐发送UCDS方式。
如果按照符号对齐发送UCDS。例如:针对上述方式二发送窗内发送UCDS,特别是针对LBE或类似方式,基站可以随时进行CCA。如果在子帧80初始时刻没有竞争到资源,可以在下一时刻继续执行CCA来竞争资源,如果竞争到资源,则按照符号对齐来发送UCDS。这种方式最为灵活,UCDS发送机会要高于前两种发送方式,但是UCDS内部各组成信号的现有符号时域位置需要改变。
LBT/CCA成功后的时间点与UCDS发送时间点之间可能存在非整数符号,或者完整符号(一个或多个),或者完整符号(一个或多个)与非完整符号之和的时间差。这段时间可以发送预留信号来保留非授权载波使用权。预留信号可以为CRS、CSI-RS、PSS/SSS、PRS、PDSCH、PDCCH、SRS、PUCCH、UCDS等信号/信道的符号或符号的修改形式,例如:SIB或DCI/UCI信息等,其可以承载PLMN ID、载波信息(载波号、载波频率、载波使用状况)、LBT参数(例如:是否执行LBT、帧结构等)、该预留信号长度等信息。
UCDS的发送存在预设的时间点(可以通过预设的周期、偏移、持续时间、突发数目、UCDS发送窗、补充发送短周期等参数中的一个或多个加以确定),但是由于非授权载波的特殊性导致LBT/CCA成功的位置不确定,导致LBT/CCA成功的位置和可以占用的时长与UCDS发送位置、及持续时间等有交叉、包含等关系,可以按照如下方式进行发送:
方式一、当LBT/CCA成功后,如果基站可以发送的起始点(即LBT/CCA成功位置)晚于UCDS预设的时间点,可以只发送部分UCDS符号(即按照定时关系对UCDS进行截断发送);也可以不立即发送UCDS,而是按照上述的符号对齐(或子帧对齐、或帧对齐)发送完整的UCDS,LBT/CCA成功位置与UCDS发送位置之间的空白可以发送上述预留信号或UCDS部分符号。
方式二、当LBT/CCA成功后,如果基站可以发送的起始点早于UCDS预设的时间点,其间的空白可以发送上述预留信号或UCDS部分符号。
方式三、当LBT/CCA成功后,如果基站可以发送的时长大于单个UCDS burst时长,在发送一个UCDS burst结束后,可以重复发送UCDS、或UCDS的部分符号、或测量信号、或控制信息,以此来满足UCDS单次测量的性能。
图17是根据本发明实施例的发现信号的处理装置的结构框图。如图17所示,该发现信号的处理装置可以包括:处理模块10,用于对发现信号各组成信号执行以下操作至少之一:确定各组成信号的配置方式;对各组成信号进行图样修改;确定各组成信号或经过图样修改后的各组成信号的发送方式。
优选地,处理模块10,用于根据发现信号各组成信号的现有时频资源位置,选取和保留各组成信号中时域彼此相邻或相近的符号组成UCDS进行发送;或者,对各组成信号的时频资源位置进行修改,以使各组成信号在时域的位置相邻或相近,并采用修改后的符号组成UCDS进行发送。
采用如图17所示的装置,解决了相关技术中的发现信号应用于非授权载波存在诸多问题,需要对发现信号进行重新设计的问题,进而减少占用时长,且避免对其他设备造成多次干扰。
优选地,上述UCDS可以包括但不限于以下至少之一:
(1)主同步信号(PSS);
(2)辅同步信号(SSS);
(3)小区专有参考信号(CRS);
(4)信道状态信息-参考信号(CSI-RS);
(5)位置参考信号(PRS);
其中,PSS、SSS、CRS和PRS用于小区发现和/或同步,CRS和CSI-RS用于RRM测量和/或CSI测量。
需要说明的是,UCDS组成信号不但可以包括上述信号至少之一,而且可以包括上述信号的修改形式。
优选地,上述发送方式可以包括但不限于以下之一:
方式一、周期性发送,UCDS可以按照预设固定的周期、偏移、持续时间进行发送。
上述方式一又可以分为以下三种方式:
(1)通过SCS在每个周期点都发送UCDS,无论该周期点是否已经被占用;
(2)如果竞争到非授权载波,则可以在该周期点上正常发送UCDS;如果没有竞争到非授权载波,则该周期点停发一次UCDS,而等待下一个周期点,如果下个周期点还没有竞争到资源,则继续停发。
(3)如果竞争到非授权载波,则可以在该周期点上正常发送UCDS;如果没有竞争到非授权载波,则该周期点停发一次UCDS,而在下次竞争到非授权载波后,补充发送,但不要求一定在周期点上,也即延迟发送,其实际上是一种不规则的周期发送。
周期性发送需要通过授权载波(例如:PCell)或其他非授权载波来确定、或通知SCell和/或UEs有关SCells发送UCDS的图样(包括以下至少之一:周期、偏移、持续时间、端口、功率),UE可以根据确定的UCDS的发送图样或测量图样(包括以下至少之一:周期、偏移、持续时间、端口、功率)来检测UCDS。
方式二、非周期触发式发送,可以通过例如PCell来触发UCDS的非周期发送。
(1)非周期发送需要授权载波如PCell或其他非授权载波来通知UE该SCell是否发送UCDS和/或发送UCDS的配置信息。
(2)触发SCell发送UCDS的触发信号可以通过小区之间有线或无线方式发送。
(3)触发发送UCDS时,由于UCDS可能组成信号的作用不同,可以只触发发送一种信号、多种信号,或者上述UCDS可能组成信号的全部信号,或者上述信号的修改形式。
(4)通知UE该SCell是否发送UCDS和/或发送UCDS的配置的信息可以通过RRC信令、MAC信令或物理层信令(例如:DCI)进行发送。
(5)触发SCell发送UCDS的触发信号、和/或通知UE有关SCell是否发送UCDS的信令的时频资源位置可以预先配置或动态选择。预先配置可以有设定的周期、子帧、符号、资源元素等信息,SCell和/或UE只需要在这些预先配置点上检测触发信号和/或信令即可。动态选择需要SCell和/或UE进行盲检。
方式三、混合方式发送,也即周期性发送和触发发送相结合。例如:可以通过SCS进行稀疏的UCDS周期性发送,PCell在SCell竞争到非授权载波使用权后,根据需要触发SCell在该非授权载波上发送UCDS。
混合方式发送同样需要确定或通知上述两种发送方式的信息,例如:包括UCDS的发送图样、测量图样、UCDS是否发送等信息通知给UE和/或SCell。
根据上述发送方式,SCell可以发送UCDS的所有组成信号,也可以只发送UCDS中的一种或几种组成信号,其原因在于:不同需求对UCDS组成信号的要求不一致,例如:同步需求和RRM测量需求依赖的UCDS信号不一样。SCell发送UCDS的图样(包括以下至少之一:周期、持续时间、偏移)也可以进行必要地调整。
因此,UCDS各组成信号可以独立配置,当然也可以组合配置。
如果是独立配置,UCDS各组成信号可以独立配置周期、偏置、持续时间、子帧位置、时频图样。各组成信号之间也可以存在约束关系。
在优选实施过程中,各信号的周期之间可以存在关系限定,例如:不同信号的配置周期之间具有倍数关系。例如:UCDS可以包括PSS、SSS、CRS、CSI-RS,各信号可独立配置。CRS周期是PSS和/或SSS周期倍数;或者,PSS和/或SSS周期是CRS周期倍数;或者,CSI-RS周期是CRS周期倍数;或者,CRS周期是CSI-RS周期倍数;或者,CSI-RS周期是PSS和/或SSS周期倍数;或者,PSS和/或SSS周期是CSI-RS周期倍数。
在优选实施过程中,各信号的子帧位置可以存在关系限定,例如:约束CRS位于发送PSS和/或SSS的子帧;或者,CRS位于发送CSI-RS的子帧;或者,CSI-RS位于发送PSS和/或SSS的子帧。
如果是组合配置,UCDS可以配置一个统一的周期、偏置、持续时间、时频图样等。在上述统一的配置下,UCDS各组成信号可以有不同的子帧位置和/或时频配置,例如:子帧、符号、资源元素。UCDS(例如:包含PSS、SSS和CRS、CSI-RS,其他信号可配或不配)的周期可以配置为40ms、80ms、160ms;持续时间可配置为1个子帧到5个子帧;而在每个周期的每个duration内,UCDS各组成信号可以有不同的配置或子帧信息,例如:PSS和/或SSS只发送一次,CRS可以发送多次,CSI-RS与PSS和/或SSS存在子帧或符号偏移关系,以及各个组成信号的子帧或符号信息。
在下文中,UCDS子帧可以定义为发送UCDS的子帧或UE假设UCDS存在的子帧。UCDS子帧可以为1个、2个或多个子帧。根据上述UCDS发送方式,UCDS子帧可以是周期性的,也可以是触发发送UCDS的子帧,抑或是两者兼有。
从以上的描述中,可以看出,上述实施例实现了如下技术效果(需要说明的是这些效果是某些优选实施例可以达到的效果):采用本发明实施例所提供的技术方案,解决了相关技术中的发现信号应用于非授权载波存在诸多问题,需要对发现信号进行重新设计的问题,进而减少占用时长,且避免对其他设备造成多次干扰。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (58)

1.一种发现信号的处理方法,其特征在于,包括:
对发现信号各组成信号执行以下操作至少之一:
确定所述各组成信号的配置方式;
对所述各组成信号进行图样修改;
确定所述各组成信号或经过图样修改后的各组成信号的发送方式;
其中,对所述各组成信号进行图样修改包括:
根据所述各组成信号的现有时频资源位置,选取和保留所述各组成信号中时域彼此相邻或相近的符号组成非授权载波中的发现信号UCDS进行发送;
或者,
对所述各组成信号的时频资源位置进行修改,以使所述各组成信号在时域的位置相邻或相近,并采用修改后的符号组成所述UCDS进行发送。
2.根据权利要求1所述的方法,其特征在于,对所述各组成信号的时频资源位置进行修改包括:对所述各组成信号的时域位置进行修改。
3.根据权利要求1所述的方法,其特征在于,所述UCDS包括以下至少之一:
主同步信号PSS;
辅同步信号SSS;
小区专有参考信号CRS;
信道状态信息-参考信号CSI-RS;
位置参考信号PRS;
其中,PSS、SSS、CRS和PRS用于小区发现和/或同步,CRS和CSI-RS用于无线资源管理RRM测量和/或CSI测量。
4.根据权利要求3所述的方法,其特征在于,所述UCDS包括PSS、SSS、CRS、PRS、CRS以及CSI-RS中单个信号的修改形式或者至少两个信号的修改形式的组合。
5.根据权利要求4所述的方法,其中,在所述UCDS中配置有所述CSI-RS的情况下,将所述CSI-RS的时域位置限定在预设位置上。
6.根据权利要求5所述的方法,其中,在所述UCDS中的所述PSS或所述SSS的时域位置不发送所述CSI-RS。
7.根据权利要求5所述的方法,其中,配置所述CSI-RS的符号与所述PSS、所述SSS、所述CRS的符号相邻或相近,使得所述UCDS内部各符号之间不发生碰撞。
8.根据权利要求6所述的方法,其中,配置CSI-RS在符号9和符号10发送。
9.根据权利要求1所述的方法,其中,确定组成信号的发送方式包括:在一个发送窗内按照帧对齐、子帧对齐或符号对齐发送UCDS。
10.根据权利要求1所述的方法,其特征在于,所述UCDS的发送方式包括:
采用发送窗增加所述UCDS的发送机会,其中,所述发送窗的设计方式包括以下之一:所述发送窗位于预设时间点之前、所述发送窗位于所述预设时间点之后、所述发送窗包含所述预设时间点,所述预设时间点由预设发送参数集合确定,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
11.根据权利要求10所述的方法,其特征在于,在采用所述发送窗增加所述UCDS的发送机会的情况下,所述发送窗由基站确定并由所述基站发送至终端。
12.根据权利要求1所述的方法,其特征在于,所述配置方式包括以下之一:独立配置方式、组合配置方式。
13.根据权利要求12所述的方法,其特征在于,在所述各组成信号采用所述独立配置方式的情况下,所述各组成信号独立配置周期、偏置、持续时间、子帧位置、时频图样、和/或突发数目。
14.根据权利要求13所述的方法,其特征在于,所述各组成信号的周期之间存在预设关系限定。
15.根据权利要求14所述的方法,其特征在于,所述各组成信号配置统一的周期、偏置、持续时间、和/或突发数目,其中,所述各组成信号具有不同的子帧位置和/或时频配置。
16.根据权利要求1所述的方法,其特征在于,所述发送方式包括以下之一:
周期性发送;
非周期触发式发送;
所述周期性发送与所述非周期触发式发送相结合的混合方式发送。
17.根据权利要求1所述的方法,其特征在于,所述发送方式还包括:
在所述各组成信号的传统发现信号发送模式与所述经过图样修改后的各组成信号的UCDS发送模式之间进行切换。
18.根据权利要求16所述的方法,其特征在于,所述周期性发送包括以下之一:
通过短控制信令SCS在每个周期点均发送UCDS;
在竞争到非授权载波的情况下,在当前周期点上正常发送所述UCDS;在未竞争到所述非授权载波的情况下,则在所述当前周期点停止发送一次所述UCDS,而等待下个周期点,如果在所述下个周期点还未竞争到所述非授权载波,则继续停止发送一次所述UCDS;
在竞争到所述非授权载波的情况下,在当前周期点上正常发送所述UCDS;在未竞争到所述非授权载波的情况下,则在所述当前周期点停止发送一次所述UCDS,而在下次竞争到所述非授权载波后,补充发送所述UCDS,其中,补充发送所述UCDS为不规则的周期发送。
19.根据权利要求16所述的方法,其特征在于,所述周期性发送包括以下之一:
通过先听后说LBT或空闲信道评估CCA按照预设发送参数集合发送UCDS,其中,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目;
在竞争到非授权载波的情况下,在当前时间点上发送所述UCDS;在未竞争到所述非授权载波的情况下,则在所述当前周期点停止发送一次所述UCDS,而在下个时间点之前的时间段内,如果重新竞争到非授权载波,则继续发送所述UCDS,其中,继续发送所述UCDS为不规则的周期发送,所述下个时间点位于所述当前时间点之后,所述当前时间点和所述下个时间点均由预设发送参数集合确定,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
20.根据权利要求1或19所述的方法,其特征在于,所述UCDS的发送方式包括:
缩短所述UCDS的发送周期;
采用第一周期和第二周期配合发送所述UCDS,其中,所述第一周期大于所述第二周期,所述第二周期用于在所述第一周期未能成功发送所述UCDS的情况下,在所述第二周期补充发送所述UCDS。
21.根据权利要求19所述的方法,其特征在于,所述UCDS的发送方式还包括:采用发送窗增加所述UCDS的发送机会,其中,所述发送窗的设计方式包括以下之一:所述发送窗位于预设时间点之前、所述发送窗位于所述预设时间点之后、所述发送窗包含所述预设时间点,所述预设时间点由预设发送参数集合确定,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
22.根据权利要求20所述的方法,其特征在于,在采用所述第一周期和所述第二周期配合发送所述UCDS的情况下,所述第一周期和所述第二周期由基站确定并由所述基站发送至终端。
23.根据权利要求16所述的方法,其特征在于,所述非周期触发式发送采用授权载波或非授权载波通知用户设备UE与该UE对应的辅小区SCell是否发送UCDS和/或发送所述UCDS的配置信息。
24.根据权利要求23所述的方法,其特征在于,触发所述SCell发送所述UCDS的触发信号是通过小区之间有线或无线方式发送的。
25.根据权利要求23所述的方法,其特征在于,通过无线资源控制RRC信令、媒体接入控制MAC信令或者物理层信令将所述SCell是否发送所述UCDS和/或发送所述UCDS的配置信息通知给所述UE。
26.根据权利要求23所述的方法,其特征在于,采用预先配置或动态选择的方式触发所述SCell发送所述UCDS的触发信号和/或通知所述UE有关所述SCell是否发送所述UCDS的信令的时频资源位置。
27.根据权利要求14所述的方法,其特征在于,所述各组成信号所在的子帧位置之间存在预设关系限定。
28.根据权利要求1至19、21-27中任一项所述的方法,其特征在于,UCDS子帧为周期性子帧和/或非周期子帧,其中,所述UCDS子帧为发送所述UCDS的子帧或者UE假设所述UCDS存在的子帧。
29.根据权利要求20中任一项所述的方法,其特征在于,UCDS子帧为周期性子帧和/或非周期子帧,其中,所述UCDS子帧为发送所述UCDS的子帧或者UE假设所述UCDS存在的子帧。
30.根据权利要求1所述的方法,其特征在于,所述UCDS满足授权载波辅助接入LAA单次无线资源管理RRM测量性能。
31.根据权利要求30所述的方法,其特征在于,所述UCDS满足所述LAA单次RRM测量性能的条件包括以下之一:
在一个UCDS发送周期内发送一个或多个UCDS突发数目bursts,其中,所述多个UCDSbursts在时域上连续发送或非连续重复发送;
在所述UCDS内的不连续符号上发送测量信号/符号。
32.一种发现信号的处理装置,其特征在于,包括:
处理模块,用于对发现信号各组成信号执行以下操作至少之一:
确定所述各组成信号的配置方式;
对所述各组成信号进行图样修改;
确定所述各组成信号或经过图样修改后的各组成信号的发送方式;
其中,所述处理模块,用于根据发现信号各组成信号的现有时频资源位置,选取和保留所述各组成信号中时域彼此相邻或相近的符号组成非授权载波中的发现信号UCDS进行发送;或者,对所述各组成信号的时频资源位置进行修改,以使所述各组成信号在时域的位置相邻或相近,并采用修改后的符号组成所述UCDS进行发送。
33.根据权利要求32所述的装置,其特征在于,所述处理模块,用于对所述各组成信号的时域位置进行修改。
34.根据权利要求32所述的装置,其特征在于,所述UCDS包括以下至少之一:
主同步信号PSS;
辅同步信号SSS;
小区专有参考信号CRS;
信道状态信息-参考信号CSI-RS;
位置参考信号PRS;
其中,PSS、SSS、CRS和PRS用于小区发现和/或同步,CRS和CSI-RS用于无线资源管理RRM测量和/或CSI测量。
35.根据权利要求34所述的装置,其特征在于,所述UCDS包括PSS、SSS、CRS、PRS、CRS以及CSI-RS中单个信号的修改形式或者至少两个信号的修改形式的组合。
36.根据权利要求32所述的装置,其特征在于,所述UCDS的发送方式包括:
采用发送窗增加所述UCDS的发送机会,其中,所述发送窗的设计方式包括以下之一:所述发送窗位于预设时间点之前、所述发送窗位于所述预设时间点之后、所述发送窗包含所述预设时间点,所述预设时间点由预设发送参数集合确定,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
37.根据权利要求32所述的装置,其特征在于,所述配置方式包括以下之一:独立配置方式、组合配置方式。
38.根据权利要求37所述的装置,其特征在于,在所述各组成信号采用所述独立配置方式的情况下,所述各组成信号独立配置周期、偏置、持续时间、子帧位置、时频图样。
39.根据权利要求38所述的装置,其特征在于,所述各组成信号的周期之间存在预设关系限定。
40.根据权利要求39所述的装置,其特征在于,所述各组成信号所在的子帧位置之间存在预设关系限定。
41.根据权利要求40所述的装置,其特征在于,所述各组成信号配置统一的周期、偏置、持续时间,其中,所述各组成信号具有不同的子帧位置和/或时频配置。
42.根据权利要求32所述的装置,其特征在于,所述发送方式包括以下之一:
周期性发送;
非周期触发式发送;
所述周期性发送与所述非周期触发式发送相结合的混合方式发送。
43.根据权利要求32所述的装置,其特征在于,所述发送方式还包括:
在所述各组成信号的传统发现信号发送模式与所述经过图样修改后的各组成信号的UCDS发送模式之间进行切换。
44.根据权利要求42所述的装置,其特征在于,所述周期性发送包括以下之一:
通过短控制信令SCS在每个周期点均发送UCDS;
在竞争到非授权载波的情况下,在当前周期点上正常发送所述UCDS;在未竞争到所述非授权载波的情况下,则在所述当前周期点停止发送一次所述UCDS,而等待下个周期点,如果在所述下个周期点还未竞争到所述非授权载波,则继续停止发送一次所述UCDS;
在竞争到所述非授权载波的情况下,在当前周期点上正常发送所述UCDS;在未竞争到所述非授权载波的情况下,则在所述当前周期点停止发送一次所述UCDS,而在下次竞争到所述非授权载波后,补充发送所述UCDS,其中,补充发送所述UCDS为不规则的周期发送。
45.根据权利要求42所述的装置,其特征在于,所述非周期触发式发送采用授权载波或非授权载波通知用户设备UE与该UE对应的辅小区SCell是否发送所述UCDS和/或发送所述UCDS的配置信息。
46.根据权利要求42所述的装置,其特征在于,所述周期性发送包括以下之一:
通过先听后说LBT或空闲信道评估CCA按照预设发送参数集合发送所述UCDS,其中,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目;
在竞争到非授权载波的情况下,在当前时间点上发送所述UCDS;在未竞争到所述非授权载波的情况下,则在所述当前周期点停止发送一次所述UCDS,而在下个时间点之前的时间段内,如果重新竞争到非授权载波,则继续发送所述UCDS,其中,继续发送所述UCDS为不规则的周期发送,所述下个时间点位于所述当前时间点之后,所述当前时间点和所述下个时间点均由预设发送参数集合确定,所述预设发送参数集合包括以下至少之一:周期、偏移、持续时间、突发数目。
47.根据权利要求32或46所述的装置,其特征在于,所述UCDS的发送方式包括以下之一:
缩短所述UCDS的发送周期;
采用第一周期和第二周期配合发送所述UCDS,其中,所述第一周期大于所述第二周期,所述第二周期用于在所述第一周期未能成功发送所述UCDS的情况下,在所述第二周期补充发送所述UCDS。
48.根据权利要求46所述的装置,其特征在于,所述UCDS的发送方式还包括以下之一:
缩短所述UCDS的发送周期;
采用第一周期和第二周期配合发送所述UCDS,其中,所述第一周期大于所述第二周期,所述第二周期用于在所述第一周期未能成功发送所述UCDS的情况下,在所述第二周期补充发送所述UCDS。
49.根据权利要求36所述的装置,其特征在于,在采用所述发送窗增加所述UCDS的发送机会的情况下,所述发送窗由基站确定并由所述基站发送至终端。
50.根据权利要求48所述的装置,其特征在于,在采用所述第一周期和所述第二周期配合发送所述UCDS的情况下,所述第一周期和所述第二周期由基站确定并由所述基站发送至终端。
51.根据权利要求44所述的装置,其特征在于,触发所述SCell发送所述UCDS的触发信号是通过小区之间有线或无线方式发送的。
52.根据权利要求45所述的装置,其特征在于,通过无线资源控制RRC信令、媒体接入控制MAC信令或者物理层信令将所述SCell是否发送所述UCDS和/或发送所述UCDS的配置信息通知给UE。
53.根据权利要求45所述的装置,其特征在于,采用预先配置或动态选择的方式触发所述SCell发送所述UCDS的触发信号和/或通知所述UE有关所述SCell是否发送所述UCDS的信令的时频资源位置。
54.根据权利要求32至46、48-49、51-53中任一项所述的装置,其特征在于,UCDS子帧为周期性子帧和/或非周期子帧,其中,所述UCDS子帧为发送所述UCDS的子帧或者UE假设所述UCDS存在的子帧。
55.根据权利要求47所述的装置,其特征在于,UCDS子帧为周期性子帧和/或非周期子帧,其中,所述UCDS子帧为发送所述UCDS的子帧或者UE假设所述UCDS存在的子帧。
56.根据权利要求50所述的装置,其特征在于,UCDS子帧为周期性子帧和/或非周期子帧,其中,所述UCDS子帧为发送所述UCDS的子帧或者UE假设所述UCDS存在的子帧。
57.根据权利要求32所述的装置,其特征在于,所述UCDS满足授权载波辅助接入LAA单次无线资源管理RRM测量性能。
58.根据权利要求57所述的装置,其特征在于,所述UCDS满足所述LAA单次RRM测量性能的条件包括以下之一:
在一个UCDS发送周期内发送至少两个UCDS时机occasions或UCDS突发数目bursts,其中,所述至少两个UCDS occasions或UCDS bursts在时域上连续发送或非连续重复发送;
在修改后的符号组成的所述UCDS内的不连续符号上发送测量信号/符号。
CN201510170359.8A 2015-01-27 2015-04-10 发现信号的处理方法及装置 Active CN106162922B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/089193 WO2016119466A1 (zh) 2015-01-27 2015-09-08 发现信号的处理方法及装置
US15/546,855 US10555243B2 (en) 2015-01-27 2015-09-08 Discovery signal processing method and device
EP15879664.9A EP3253165A4 (en) 2015-01-27 2015-09-08 Processing method and device for discovery signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510041892 2015-01-27
CN2015100418924 2015-01-27

Publications (2)

Publication Number Publication Date
CN106162922A CN106162922A (zh) 2016-11-23
CN106162922B true CN106162922B (zh) 2021-01-26

Family

ID=57336731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510170359.8A Active CN106162922B (zh) 2015-01-27 2015-04-10 发现信号的处理方法及装置

Country Status (3)

Country Link
US (1) US10555243B2 (zh)
EP (1) EP3253165A4 (zh)
CN (1) CN106162922B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404372B (zh) * 2016-05-20 2019-02-22 北京小米移动软件有限公司 一种通信方法及装置
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
JP2020031250A (ja) * 2016-12-20 2020-02-27 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
WO2018218545A1 (zh) * 2017-05-31 2018-12-06 华为技术有限公司 一种发现信号的发送方法、检测方法、基站和用户设备
US11470522B2 (en) * 2017-06-16 2022-10-11 Mediatek Inc. Radio resource management (RRM) measurement for new radio (NR) network
US10863542B2 (en) * 2017-09-19 2020-12-08 Qualcomm Incorporated Listen-before-talk and channel reservation for millimeter wave systems
CN109788427A (zh) * 2017-11-10 2019-05-21 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
KR20200115548A (ko) * 2018-02-01 2020-10-07 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 채널 송신 방법 및 관련 제품
CN110166213B (zh) * 2018-02-13 2021-04-16 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、存储介质、系统
CN110149188A (zh) * 2018-02-13 2019-08-20 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、可读介质
WO2019183814A1 (zh) * 2018-03-27 2019-10-03 Oppo广东移动通信有限公司 一种接入信息的传输方法及装置、计算机存储介质
CN110662306B (zh) * 2018-06-29 2021-06-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110768761B (zh) * 2018-07-26 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、装置、基站及可读存储介质
CN110856096B (zh) * 2018-07-30 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、相关装置、通信系统及存储介质
CN113141234B (zh) * 2020-01-19 2022-11-29 中国移动通信有限公司研究院 一种重复传输的方法、终端及基站
US20220171016A1 (en) * 2020-11-27 2022-06-02 Qualcomm Incorporated Transmission configuration for target radar signals with different target radar signal densities in time-domain
CN114760649A (zh) * 2021-01-08 2022-07-15 大唐移动通信设备有限公司 辅小区组去激活态下的通信方法、装置、设备及介质
US20230403641A1 (en) * 2022-06-10 2023-12-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting a discovery signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647790A (zh) * 2011-02-18 2012-08-22 华为技术有限公司 参考信号的发送、接收方法及装置
CN103069882A (zh) * 2010-08-13 2013-04-24 瑞典爱立信有限公司 用户设备在授权频谱和非授权频谱中的双重操作
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
WO2014089069A1 (en) * 2012-12-03 2014-06-12 Interdigital Patent Holdings, Inc. Multi-site operation in shared spectrum
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399664B2 (en) * 2010-03-29 2016-07-26 Biocon Limited Process for purification of pneumocandin
CN104168636A (zh) 2013-05-17 2014-11-26 中兴通讯股份有限公司 一种小小区功率控制方法和装置
CN104619027B (zh) 2013-11-01 2020-01-14 中兴通讯股份有限公司 一种发现信号处理方法和基站
CN104796930A (zh) 2014-01-17 2015-07-22 中兴通讯股份有限公司 一种小区处理方法和装置
US11303403B2 (en) * 2014-08-05 2022-04-12 Nokia Technologies Oy Signaling arrangement for wireless system
US10959197B2 (en) 2014-09-08 2021-03-23 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
EP3217701B1 (en) * 2014-11-06 2020-12-30 Sharp Kabushiki Kaisha Terminal device, base station device, and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069882A (zh) * 2010-08-13 2013-04-24 瑞典爱立信有限公司 用户设备在授权频谱和非授权频谱中的双重操作
CN102647790A (zh) * 2011-02-18 2012-08-22 华为技术有限公司 参考信号的发送、接收方法及装置
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
WO2014089069A1 (en) * 2012-12-03 2014-06-12 Interdigital Patent Holdings, Inc. Multi-site operation in shared spectrum
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Required functionalities and possible solution related to SCE operation in unlicensed carrier;ETRI;《3GPP TSG RAN WG1 Meeting #79 R1-144921 》;20141121;正文第1-3节 *
Required functionalities and possible solution related to SCE operation in unlicensed carrier;ETRI;《3GPP TSG RAN WG1 Meeting #79 R1-144921》;20141121;正文第1-3节 *

Also Published As

Publication number Publication date
US10555243B2 (en) 2020-02-04
US20180027481A1 (en) 2018-01-25
CN106162922A (zh) 2016-11-23
EP3253165A4 (en) 2018-02-21
EP3253165A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
CN106162922B (zh) 发现信号的处理方法及装置
EP3776970B1 (en) Uplink bandwidth part switching on new radio unlicensed
KR102503604B1 (ko) 공유 통신 매체 상에서의 업링크 절차들
CN107371274B (zh) 传输数据的方法及设备
US9967863B2 (en) Systems and methods for uplink control information reporting with license-assisted access (LAA) uplink transmissions
CN107295696B (zh) 信道接入方法、装置、ue及基站
US11197320B2 (en) Uplink transmission resource scheduling method and device, and uplink transmission method and device
EP3345445B1 (en) Control signaling in a shared communication medium
KR102079200B1 (ko) 면허 지원 액세스에서의 스케줄링
US20200107322A1 (en) Resource allocation in random access procedure
KR102032884B1 (ko) 물리적 다운링크 제어 채널의 전송 방법 및 장치
CN110741597A (zh) 针对5g-nr的半静态和动态tdd配置
WO2016119466A1 (zh) 发现信号的处理方法及装置
KR20190030748A (ko) 비인가 대역에서 채널 엑세스 방법, 장치 및 시스템
US10091819B2 (en) Systems and methods for timeslot structure and synchronization in licensed-assisted access
WO2017136759A1 (en) Systems and methods for contention access
JP2016532343A (ja) 共有スペクトルにおける異なる事業者の優先度付け
CN107370589B (zh) 信号传输方法、装置及用户设备
CN107926042B (zh) 一种用于无线通信系统的发送器和接收器
KR102150368B1 (ko) 상향링크 데이터 전송 방법 및 관련 장치
US20230199735A1 (en) Methods and systems for coverage enhancement in wireless networks
CN115052363A (zh) 信道接入过程切换的方法
CN107182092B (zh) 信道探测信号srs的发送方法及装置
CN115052364A (zh) 传输数据的方法及设备
KR102225167B1 (ko) 신호 전송 방법, 신호 전송 제어 방법, 사용자 디바이스, 및 기지국

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant