WO2018099330A1 - 一种传输信息的方法、基站及终端 - Google Patents

一种传输信息的方法、基站及终端 Download PDF

Info

Publication number
WO2018099330A1
WO2018099330A1 PCT/CN2017/112854 CN2017112854W WO2018099330A1 WO 2018099330 A1 WO2018099330 A1 WO 2018099330A1 CN 2017112854 W CN2017112854 W CN 2017112854W WO 2018099330 A1 WO2018099330 A1 WO 2018099330A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission time
base station
terminal
time number
synchronization signal
Prior art date
Application number
PCT/CN2017/112854
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Priority to US16/326,566 priority Critical patent/US10701651B2/en
Priority to EP17876556.6A priority patent/EP3499983A4/en
Publication of WO2018099330A1 publication Critical patent/WO2018099330A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a base station, and a terminal for transmitting information.
  • the synchronization signal includes: Primary Synchronization Signal (PSS). And the Secondary Synchronization Signal (SSS), both synchronization signal periods are 5ms, are sent in subframes 0 and 5, but are transmitted in different symbols.
  • the Physical Broadcast Channel (PBCH) mainly transmits a Master Information Block (MIB), which is sent periodically, with a period of 40 ms, and is repeated 4 times every 40 ms.
  • MIB Master Information Block
  • the first transmission of the symbol 7, 7, 9, 10 of the subframe 0 of the frame whose system frame number is a multiple of 4 is transmitted, and the subframe 0 of the next three frames repeats the transmission content of the first subframe 0.
  • the next 40ms transmission can be different from the previous 40ms transmission.
  • PSS/SSS and PBCH are transmitted in the center of 6 Resource Blocks (RBs).
  • the center 6RB refers to the subcarrier spacing of 15KHz, each RB is 12 subcarriers, and 6RB is 72 subcarriers. .
  • the transmission mode of the synchronization signal and the PBCH is very solid and single, which makes it impossible to meet the flexible and variable delay requirements in different scenarios of the future 5G services, especially for some services with low latency requirements.
  • the synchronization signal and the transmission of the PBCH can be performed based on a beam. If different beams are transmitted using different time domain resources, in order to achieve time domain synchronization, the terminal must know the exact location of the beam it receives in the time domain.
  • each beam corresponds to the transmittable time position of one signal, and the three transmittable time positions constitute a transmittable time zone.
  • the transmittable time zone corresponds to a symbol range of 6- 11.
  • Each beam occupies two consecutive symbols, that is, the first beam transmits occupied symbols 6 and 7, the second beam transmits occupied symbols 8 and 9, and the third beam transmits occupied symbols 10 and 11.
  • the time position of the three beams at each base station relative to the boundary of its own subframe has been defined in advance.
  • the mapping table of the time-frequency domain transmission location and the sub-carrier spacing and the carrier frequency are defined in advance, and the base station will The corresponding parameter is selected according to the carrier frequency used by itself, and the terminal also determines the time domain subframe boundary according to the synchronization signal and the PBCH detected by itself and the corresponding mapping table.
  • the terminal receives the synchronization signal and the PBCH, if different beams are transmitted in different time domains, the direction of each beam is different, so the terminals in different locations detect the beams transmitted at different times, if the terminal does not know itself. The first few beams are detected, so it is not known which of the symbols in the symbol range is occupied by the beam, and it is not known which relative position is used to determine the subframe boundary.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method for transmitting information, a base station and a terminal. In order to facilitate the terminal to accurately perform time domain synchronization.
  • a first aspect of the embodiments of the present invention provides a method for transmitting information, including:
  • the base station selects one of the preset at least one subcarrier spacing for transmitting the synchronization signal and the physical broadcast channel according to the service delay requirement;
  • the base station uses the beam to send the synchronization signal and the physical broadcast channel, configure a transmission time number of the beam, where the transmission time number is used to indicate that the beam corresponds to the synchronization signal and the transmittable time region of the physical broadcast channel.
  • Transmitting information related to the transmission time number to the terminal so that the terminal determines a subframe boundary and completes time domain synchronization according to information related to the transmission time number and the pre-stored transmittable time zone.
  • the information about the sending time number is sent to the terminal, including:
  • the information about the sending time number is sent to the terminal, including:
  • the information about the sending time number is sent to the terminal, including:
  • mapping the reference signal to the transmission time number to obtain a mapping table
  • transmitting reference information to the terminal so that the terminal determines, according to the pre-stored mapping table Send the time number.
  • a second aspect of the embodiments of the present invention provides a method for synchronizing, including:
  • the terminal receives information about the transmission time number sent by the base station, where the transmission time number is used to indicate that the beam is in the synchronization signal and the physical broadcast channel.
  • the transmittable time zone includes a transmit time location corresponding to at least one beam;
  • the terminal receives the information about the sending time number of the beam sent by the base station, including:
  • a third aspect of the embodiments of the present invention provides a base station, including:
  • a selecting unit configured to select one of the preset at least one subcarrier spacing for transmitting the synchronization signal and the physical broadcast channel according to the service delay requirement
  • a configuration unit configured to: if the base station uses a beam to send the synchronization signal and a physical broadcast channel, configure a transmission time number of the beam, where the transmission time number is used to indicate that the beam is in the synchronization signal Corresponding transmission time position in a transmittable time zone of the physical broadcast channel, where the transmittable time zone includes a transmit time location corresponding to at least one beam;
  • the sending unit is specifically configured to:
  • the table lookup table determines the transmission time number.
  • the sending unit is specifically configured to:
  • the sending unit is specifically configured to:
  • mapping the reference signal to the transmission time number to obtain a mapping table
  • transmitting reference information to the terminal so that the terminal determines, according to the pre-stored mapping table Send the time number.
  • a fourth aspect of the embodiments of the present invention provides a base station, including:
  • a processor configured to call the program code stored in the memory, and perform the following operations:
  • the base station uses the beam to send the synchronization signal and the physical broadcast channel, configure a transmission time number of the beam, where the transmission time number is used to indicate that the beam corresponds to the synchronization signal and the transmittable time region of the physical broadcast channel.
  • Time domain synchronization
  • the processor is specifically configured to:
  • the table lookup table determines the transmission time number.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • mapping the reference signal to the transmission time number to obtain a mapping table
  • transmitting reference information to the terminal so that the terminal determines, according to the pre-stored mapping table Send the time number.
  • a fifth aspect of the embodiments of the present invention provides a terminal, including:
  • a receiving unit configured to: if the base station uses the beam to send the synchronization signal and the physical broadcast channel, receive information related to a transmission time number sent by the base station, where the transmission time number is used to indicate that the beam is in the synchronization signal a transmission time position corresponding to a transmittable time zone of the physical broadcast channel, where the transmittable time zone includes a transmit time location corresponding to the at least one beam;
  • a synchronization unit configured to determine a subframe boundary according to the information related to the sending time number and the transmittable time region pre-stored by the terminal, and complete time domain synchronization.
  • the receiving unit is specifically configured to:
  • a sixth aspect of the embodiments of the present invention provides a terminal, including:
  • a processor a memory, an interface circuit, and a bus, wherein the processor, the memory, and the interface circuit are connected by a bus, wherein the memory is configured to store a set of program codes, and the processor is used to call the The program code stored in the memory, do the following:
  • Receiving, by the base station, the synchronization signal and the physical broadcast channel receiving information related to a transmission time number of the beam sent by the base station, where the transmission time number is used to indicate that the beam is in the synchronization signal and the physical broadcast channel Transmitting a corresponding transmission time position in a time zone, where the transmittable time zone includes a transmission time location corresponding to at least one beam;
  • the subframe boundary is determined based on the information related to the transmission time number and the pre-stored transmittable time zone and time domain synchronization is completed.
  • the processor is specifically configured to:
  • the beam transmission synchronization signal and the physical broadcast channel can improve signal coverage and configure beam transmission.
  • Time number sending information related to the transmission time number to the terminal, so that the terminal can determine the specific transmission time position of the beam according to the transmission time number information, thereby accurately determining the subframe boundary and completing the time domain synchronization, thereby bringing the user more Good experience.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for transmitting information according to the present invention
  • FIG. 2 is a diagram showing the time corresponding to the transmission time number in different subcarrier intervals in the method for transmitting information according to the present invention Domain diagram
  • FIG. 3 is a schematic diagram showing the composition of a first embodiment of a base station according to the present invention.
  • FIG. 4 is a schematic diagram showing the composition of a second embodiment of a base station according to the present invention.
  • FIG. 5 is a schematic flow chart of a first embodiment of a method for synchronizing according to the present invention.
  • Figure 6 is a schematic diagram showing the composition of a first embodiment of the terminal of the present invention.
  • Figure 7 is a schematic diagram showing the composition of a second embodiment of the terminal of the present invention.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for transmitting information according to the present invention.
  • the method includes the following steps:
  • the base station selects one of the preset at least one subcarrier spacing for transmitting the synchronization signal and the physical broadcast channel according to the service delay requirement.
  • the base station may configure the subcarrier spacing and the number of occupied symbols of the at least one synchronization signal, and configure the subcarrier spacing and the number of occupied symbols of the at least one physical broadcast channel.
  • the subcarrier spacing of the synchronization signal may be configured to be 15*2 m kHz
  • the subcarrier spacing of the physical broadcast channel is 15*2 n kHz
  • m and n are integers equal to or greater than 5 and greater than or equal to 0.
  • m can be equal to n or less than n.
  • the information contained in the Physical Broadcast Channel includes system information such as a Master Information Block (MIB) and random access information.
  • MIB Master Information Block
  • the synchronization signal includes a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS), and the number of symbols occupied by the primary synchronization signal is one, and the secondary synchronization signal occupies The number of symbols is one;
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the symbol occupied by the secondary synchronization signal is a previous symbol adjacent to a symbol occupied by the primary synchronization signal
  • One symbol occupied by the secondary synchronization signal is the same as a symbol occupied by the primary synchronization signal a symbol of.
  • the SSS occupies the sixth symbol in subframe 0
  • the PSS occupies the seventh symbol in subframe 0 or both the SSS and the PSS occupy the sixth or seventh symbol transmission.
  • the number of symbols occupied by the physical broadcast channel is less than or equal to four, and the time domain start symbol position of the physical broadcast channel is transmitted after transmitting the symbol of the secondary synchronization signal, the xth symbol, where x is 0 or 1.
  • the length of the unit symbol occupied by the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel is determined by the configured subcarrier spacing, if the subcarrier spacing of the primary synchronization signal and the secondary synchronization signal is 15*2 m kHz, Then, the symbol length is 1/(14*2 m ) milliseconds, and if the subcarrier spacing of the physical broadcast channel is 15*2 n kilohertz, the symbol length is 1/(14*2 n ) milliseconds.
  • a transmit burst may contain multiple PSS/SSS transmit blocks and multiple PBCH transmit blocks, and each transmit PSS/SSS transmit block can independently perform PSS/SSS functions, and each PBCH transmit block also Can independently complete the function of PBCH.
  • the base station may configure at least one synchronization signal and the subcarrier spacing of the physical broadcast channel and the number of symbols respectively occupied by each of the carrier frequencies.
  • the terminal needs to access the cell quickly, and some services have lower delay requirements. Therefore, slower processing can be adopted.
  • the base station can according to the delay requirement of the service.
  • a suitable configuration is selected among a plurality of configurations to transmit a synchronization signal and a physical broadcast channel. Thereby meeting the needs of different terminals.
  • the base station sends the synchronization signal and the physical broadcast channel by using a beam, configure a transmission time number of the beam.
  • the sending time number is used to indicate a corresponding transmitting time position of the beam in the transmittable time zone of the synchronization signal and the physical broadcast channel, where the transmittable time zone includes a transmit time location corresponding to at least one beam.
  • FIG. 2 it is a time domain diagram corresponding to a transmission time number in different subcarrier intervals in the method for transmitting information according to the present invention, where subframe 1 is 1 ms, subcarrier spacing is 15 kHz, and one subframe includes 14 Symbols in which the symbols 6 and 7 of the diagonal stripe correspond to the transmission time position of beam 1, the symbols 8 and 9 of the vertical stripe correspond to the transmission time position of beam 2, and the symbols 10 and 11 of the grid stripe are beam 3 Corresponding transmission time position, a total of 6 symbols make up the transmission time zone (can The transmission time zone may also consist of a plurality of discontinuous multiple transmittable time locations).
  • subframe 2 is a 1 ms subframe, and the subcarrier spacing is 30 kHz. A total of 28 symbols are included. Although the number of symbols and the sequence number occupied by each beam are different, the specific transmission time starting point can still be Same as in subframe 1. For example, in subframe 2, the symbols 12, 13, 14, 15 of the diagonal stripes are the transmission time positions corresponding to the beam 1, and the symbols 16, 17, 18, 19 of the vertical stripes are the transmission time positions corresponding to the beam 2, The symbols 20, 21, 22, and 23 of the lattice are the transmission time positions corresponding to the beam 3, and a total of 12 symbols constitute a transmission time region.
  • the transmission time occupied by each beam of subframe 2 in FIG. 2 is an example diagram of 4 symbols. In other examples, when the subcarrier spacing is 30 kHz, the transmission time occupied by each beam may also be 2 symbols.
  • the time domain location at which the synchronization signal and the physical broadcast channel are transmitted is adjacent or partially identical.
  • adjacent or partially identical time domain locations may be selected to transmit synchronization signals and physical broadcast channels of the same beam.
  • the synchronization signals transmitted on different carrier frequencies and the time domain transmission locations of the physical broadcast channels are maximally coincident or partially coincident.
  • the subcarrier spacing used by the synchronization signal and the broadcast signal is different, and thus the corresponding occupied symbol length is also different.
  • the starting time of the transmission time is the same, and the corresponding symbol length is different, so the transmission time length is different, so the transmission time end point is different.
  • the subframe 1 of 1 ms contains 14 symbols, if the transmission block composed of PSS, SSS, and PBCH is The transmission of 4 symbols of 6, 7, 8, and 9, the transmission time is 4/14 ms, and the transmission time starts at 6/14 ms.
  • subframe 1 will contain 28 symbols, and each symbol occupies 1/28 ms, then PSS, SSS, and PBCH
  • the composed transmission block still starts to transmit at 6/14ms, that is, 12/28ms, and still takes 4 symbols to transmit, then the 4 symbols will be sent at 12, 13, 14, 15 and the symbol is shortened due to the symbol length.
  • the number is unchanged, so the length of the transmission time will become 4/28ms, so different subcarrier intervals can be used to transmit at the same transmission time start, but end at different transmission time ends.
  • the delay of the terminal searching for the cell, synchronizing with the cell, and accessing the cell can be reduced.
  • the PSS, SSS, and PBCH transmitted at different subcarrier intervals are maximized at the transmission time, so that the shortest transmission time is included in a long transmission time, thereby facilitating terminal detection.
  • the time of coincidence can greatly reduce the delay.
  • the end of the send time is the same, but the start time is different;
  • the sending time is the same in the middle time, but the starting time of the sending time is different from the ending time of the sending time; for example, the intermediate time is 0.5ms of the 1ms subframe, then if the sending time is 0.2ms, the starting position of the sending time is 0.4ms and the ending position is 0.6. At ms, if the transmission duration is 0.1ms, the start position of the transmission time is 0.45ms and the end position is 0.55ms.
  • the secondary synchronization signal occupies one symbol immediately before the time of 0.5 ms, and the primary synchronization signal occupies one symbol immediately after the time of 0.5 ms.
  • S103 Send information related to the sending time number to the terminal, so that the terminal determines a subframe boundary according to the information related to the sending time number and the pre-stored transmittable time zone, and completes time domain synchronization.
  • the manner in which each beam transmits information is independent, that is, the frequency domain position and the time domain position in each beam may be different or the same, and the present invention The embodiment is not limited at all.
  • the number corresponding to the transmission time position of each beam is determined; and when each beam transmits information, the related information of the number of the transmission time position where the beam is located is carried.
  • the PSS/SSS/PBCH is transmitted based on multiple beams, and multiple beams are transmitted at different times. For example, if multiple beams are distributed in several consecutive symbols of a subframe, the user can only receive PSS/SSS/PBCH sent by one of the beams in one direction. The user does not know that the beam is the beam sent in the first few symbols, and the user cannot determine the subframe boundary. Therefore, when transmitting PSS/SSS/PBCH based on multi-beam, each beam needs to indicate that it is the first beam, and the user knows the transmission symbol position of the PSS/SSS/PBCH of the first beam, and also knows the PSS of each beam. /SSS/PBCH The transmission duration can be inferred from the symbol position of the PSS/SSS/PBCH of the beam received by itself, and the subframe boundary can be further calculated to achieve subframe synchronization.
  • the following three methods may be used:
  • the base station may configure the number of the secondary synchronization signal sequence according to the number of the beams, map the transmission time number and the secondary synchronization signal sequence to obtain a mapping table, and send a secondary synchronization signal sequence to the terminal, so that the terminal according to the pre-stored
  • the mapping table lookup table determines the sending time number.
  • LTE itself has two SSS sequences for indicating subframe #0 and subframe #5, when there are only two beams, if different SSS sequences are not needed to indicate different subframes or symbol positions. If only the indicator is needed to indicate the beam, the new SSS sequence may not be configured, but if different subframes or symbol positions need to be indicated or three or more beams need to be indicated, more different SSS sequences may be configured. That is to say, the SSS sequence can be used to indicate a combination of one or more of different subframes, different symbols or different beams, and the number of SSS sequences is to be comprehensively determined according to the features that the SSS sequence needs to indicate.
  • the sending time number may be sent to the terminal as system information by using the physical broadcast channel.
  • the transmission time numbers of different beams are sent as system information in the physical broadcast channel.
  • no additional mapping table is needed.
  • the reference signal (RS) corresponding to the beam may be configured, the reference signal is mapped to the sending time number to obtain a mapping table, and the reference information is sent to the terminal, so that the terminal is pre-stored according to the pre-stored
  • the mapping table lookup table determines the transmission time number.
  • the RS corresponding to the beam may be a newly designed new RS different from the existing RS or an existing CSI-RS (Channel State Indication RS).
  • the flexible response to different services can be improved, and the flexibility of resource utilization is improved; the beam coverage synchronization signal and the physical broadcast channel can be used to improve signal coverage. And configuring the transmission time number of the beam, and transmitting the information related to the transmission time number to the terminal, so that the terminal can determine the specific transmission time position of the beam according to the transmission time number information, thereby accurately determining the subframe boundary and completing the time domain synchronization. To bring a better user experience.
  • the base station includes:
  • the selecting unit 100 is configured to select one of the preset at least one subcarrier spacing for transmitting the synchronization signal and the physical broadcast channel according to the service delay requirement;
  • the configuration unit 200 is configured to: if the base station uses the beam to send the synchronization signal and the physical broadcast channel, configure a transmission time number of the beam, where the transmission time number is used to indicate that the beam is in the synchronization signal and the physical broadcast channel Transmitting a corresponding transmission time position in the time zone, where the transmittable time zone includes a transmission time location corresponding to at least one beam;
  • the sending unit 300 sends information related to the sending time number to the terminal, so that the terminal determines the subframe boundary and completes the time domain according to the information related to the sending time number and the pre-stored transmittable time zone. Synchronize.
  • the sending unit 300 is specifically configured to:
  • the table lookup table determines the transmission time number.
  • the sending unit 300 is specifically configured to:
  • the sending unit 300 is specifically configured to:
  • mapping the reference signal to the transmission time number to obtain a mapping table
  • transmitting reference information to the terminal so that the terminal determines, according to the pre-stored mapping table Send the time number.
  • the above selection unit 100, the configuration unit 200, and the sending unit 300 may exist independently or may be integrated.
  • the selection unit 100, the configuration unit 200, or the sending unit 300 may be separately set in hardware form independently of the processor of the base station, and the setting form may be It is in the form of a microprocessor; it can also be embedded in the processor of the base station in hardware, or can be stored in the memory of the base station in software, so that the processor of the base station invokes the above selection unit 100 and configuration.
  • the operations corresponding to unit 200 and transmitting unit 300 may exist independently or may be integrated.
  • the selection unit 100, the configuration unit 200, or the sending unit 300 may be separately set in hardware form independently of the processor of the base station, and the setting form may be It is in the form of a microprocessor; it can also be embedded in the processor of the base station in hardware, or can be stored in the memory of the base station in software, so that the processor of the base station invokes the above selection unit 100 and configuration.
  • the configuration unit 200 may be a processor of the base station, and the functions of the selecting unit 100 and the transmitting unit 300 may be embedded in the In the processor, it can also be set separately from the processor, or can be stored in the memory in the form of software, and the function is called by the processor.
  • the embodiment of the invention does not impose any limitation.
  • the above processor may be a central processing unit (CPU), a microprocessor, a single chip microcomputer, or the like.
  • the base station includes:
  • the processor 110, the memory 120, the transceiver 130, and the bus 140, the processor 110, the memory 120, and the transceiver 130 are connected by a bus 140, wherein the transceiver 130 is used between the base station and the terminal.
  • Information and data are transmitted, the memory 120 is for storing a set of program codes, and the processor 110 is configured to call the program code stored in the memory 120 to perform the following operations:
  • the base station uses the beam to send the synchronization signal and the physical broadcast channel, configure a transmission time number of the beam, where the transmission time number is used to indicate that the beam corresponds to the synchronization signal and the transmittable time region of the physical broadcast channel.
  • the processor 110 is specifically configured to:
  • the table lookup table determines the transmission time number.
  • the processor 110 is specifically configured to:
  • the processor 110 is specifically configured to:
  • mapping the reference signal to the transmission time number to obtain a mapping table
  • transmitting reference information to the terminal so that the terminal determines, according to the pre-stored mapping table Send the time number.
  • FIG. 5 is a schematic flowchart of a first embodiment of a synchronization method according to the present invention.
  • the method includes the following steps:
  • the terminal receives information related to the transmission time number of the beam sent by the base station.
  • the sending time number is used to indicate a corresponding transmitting time position of the beam in the transmittable time zone of the synchronization signal and the physical broadcast channel, where the transmittable time zone includes a transmit time location corresponding to at least one beam.
  • the terminal receives information about the sending time number of the beam sent by the base station, including:
  • the base station Since the base station is configured with multiple subcarrier spacings and the number of occupied symbols, it can be flexibly selected according to the terminal service, and the synchronization signal and the physical broadcast channel are closely transmitted, which facilitates the terminal to perform cell search, synchronization, and access, thereby reducing the processing of the terminal.
  • the delay increases the efficiency of the terminal accessing the cell.
  • FIG. 6 it is a schematic diagram of a composition of a first embodiment of a terminal according to the present invention.
  • the terminal includes:
  • the receiving unit 400 is configured to: if the base station uses the beam to send the synchronization signal and the physical broadcast channel, receive information about a transmission time number sent by the base station, where the transmission time number is used to indicate that the beam is in the synchronization. a corresponding transmission time position in a transmittable time zone of the signal and the physical broadcast channel, where the transmittable time zone includes a transmit time location corresponding to the at least one beam;
  • the synchronization unit 500 is configured to determine a subframe boundary according to the information related to the sending time number and the transmittable time region pre-stored by the terminal, and complete time domain synchronization.
  • the receiving unit 400 and the synchronization unit 500 may exist independently or may be integrated.
  • the receiving unit 400 or the synchronization unit 500 may be separately set in hardware form independently of the processor of the terminal, and the setting form may be in the form of a microprocessor; It may be embedded in the processor of the terminal in hardware, or may be stored in the memory of the terminal in software, so that the processor of the terminal invokes the operations corresponding to the receiving unit 400 and the synchronization unit 500.
  • the synchronization unit 500 may be a processor of the terminal, and the function of the receiving unit 400 may be embedded in the processor, or Independently set by the processor, it can also be stored in memory in the form of software, which is called by the processor to implement its functions.
  • the embodiment of the invention does not impose any limitation.
  • the above processor may be a central processing unit (CPU), a microprocessor, a single chip microcomputer, or the like.
  • FIG. 7 is a schematic diagram of a composition of a second embodiment of a terminal according to the present invention.
  • the terminal includes:
  • the processor 210, the memory 220, the interface circuit 230, and the bus 240, the processor 210, the memory 220, and the interface circuit 230 are connected by a bus 240, wherein the memory 220 is used to store a set of program codes, and the processor 210 For invoking the program code stored in the memory 220, the following operations are performed:
  • Receiving, by the base station, the synchronization signal and the physical broadcast channel receiving information related to a transmission time number of the beam sent by the base station, where the transmission time number is used to indicate that the beam is in the synchronization signal and the physical broadcast channel Transmitting a corresponding transmission time position in a time zone, where the transmittable time zone includes a transmission time location corresponding to at least one beam;
  • the subframe boundary is determined based on the information related to the transmission time number and the pre-stored transmittable time zone and time domain synchronization is completed.
  • the processor 210 is specifically configured to:
  • the present invention has the following advantages:
  • the beam transmission synchronization signal and the physical broadcast channel can improve signal coverage and configure beam transmission.
  • Time number sending information related to the transmission time number to the terminal, so that the terminal can determine the specific transmission time position of the beam according to the transmission time number information, thereby accurately determining the subframe boundary and completing the time domain synchronization, thereby bringing the user more Good experience.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输信息的方法、基站及终端,方法包括:基站根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。采用本发明,利于终端准确的进行时域同步。

Description

一种传输信息的方法、基站及终端 技术领域
本发明涉及通信技术领域,尤其涉及一种传输信息的方法、基站及终端。
背景技术
随着用户通信需求的不断发展,人们希望自身的需求得到更快的响应和处理,在传统长期演进技术(Long Term Evolution,LTE)下,同步信号:包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),两个同步信号周期都是5ms,都是在子帧(subframe)0和5发送,但在不同的符号发送。物理广播信道(Physical Broadcast Channel,PBCH)主要传送主要信息块(Master Information Block,MIB),其发送方式为周期性发送,40ms为周期,每40ms重复发送4次。第一次发送在系统帧号为4的倍数的帧的subframe0的符号7,8,9,10发送,接下来的三个帧的subframe0重复第一个subframe0的发送内容。下一个40ms的发送可以与之前的40ms发送的内容不同。频域位置上,PSS/SSS和PBCH都在中心6个资源块(Resource Block,RB)发送,中心6RB指的是子载波间隔为15KHz,每个RB为12个子载波,6RB即为72个子载波。这样的同步信号和PBCH的传输方式非常固化且单一,导致无法满足未来5G业务不同场景下灵活多变的时延需求,尤其对于一些低时延要求的业务,更加无法满足。因此提出了针对不同业务类型,使用不同的子载波间隔来进行业务传输,以满足不同业务的需求。由于业务类型不一样,所以每个载波一定时间内发送同步信号和PBCH的子载波间隔也不一样,这样使得同步信号和PBCH的发送时间长度和发送带宽也不一样。另外,由于高频段情况下,衰落较强,这将使得小区覆盖范围较小。为了加大覆盖范围,可以基于波束(beam)来进行同步信号和PBCH的发送。如果不同波束使用不同的时域资源发送,那么为了实现时域同步,终端必须知道自己接收到的波束在时域的准确位置。但由于存在多个波束时,每个波束对应的时域的发送时间位置不同,实际上终端在接收到波束发送的同步信号和PBCH时,只知道波束所在的时域的范围信息,例如,当前有三个波束用于发送同步 信号和PBCH,每个波束对应一个信号的可发送时间位置,三个可发送时间位置组成一个可发送时间区域,例如在1ms子帧的14个符号中可发送时间区域对应的符号范围为6-11,每个beam占用连续的两个符号,即第一个beam发送占用符号6和7,第二个beam发送占用符号8和9,第三个beam发送占用符号10和11。现已提前定义好三个波束在每个基站相对于自己的子帧边界的时间发送位置,这个时频域发送位置以及子载波间隔等与载频的映射表都是提前定义好的,基站会根据自己使用的载频选择对应的参数进行发送,而终端也根据自身检测到的同步信号和PBCH以及对应的映射表来确定时域子帧边界。当终端接收到同步信号和PBCH时,如果不同的beam在不同的时域发送,每个beam的方向不一样,所以在不同位置的终端检测到的是不同时间发送的beam,如果终端不知道自己检测到的是第几个beam,所以就不知道这个beam到底是占用符号范围中的哪些符号,也就不知道基于哪个相对位置来确定子帧边界。
发明内容
本发明实施例所要解决的技术问题在于,提供一种传输信息的方法基站及终端。以方便终端准确的进行时域同步。
为了解决上述技术问题,本发明实施例第一方面提供了一种传输信息的方法,包括:
基站根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述将与所述发送时间编号相关的信息发送给终端,包括:
根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述 终端根据预存储的所述映射表查表确定所述发送时间编号。
其中,所述将与所述发送时间编号相关的信息发送给终端,包括:
通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
其中,所述将与所述发送时间编号相关的信息发送给终端,包括:
配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
本发明实施例第二方面提供了一种同步的方法,包括:
若基站采用波束发送所述同步信号和物理广播信道,则终端接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
根据与所述发送时间编号相关的信息以及所述终端预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述终端接收所述基站发送的与波束的发送时间编号相关的信息,包括:
接收所述基站发送的辅同步信号序列,结合所述终端预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
接收所述基站发送的参考信号,结合所述终端预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信号由所述基站配置并与波束对应。
本发明实施例第三方面提供了一种基站,包括:
选择单元,用于根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
配置单元,用于若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号 和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
发送单元,将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述发送单元具体用于:
根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
其中,所述发送单元具体用于:
通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
其中,所述发送单元具体用于:
配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
本发明实施例第四方面提供了一种基站,包括:
处理器、存储器、收发信机及总线,所述处理器、存储器、收发信机通过总线连接,其中,所述收发信机用于所述基站与终端之间传输信息和数据,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
通过所述收发信机将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述处理器具体用于:
根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
其中,所述处理器具体用于:
通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
其中,所述处理器具体用于:
配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
本发明实施例第五方面提供了一种终端,包括:
接收单元,用于若基站采用波束发送所述同步信号和物理广播信道,则接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
同步单元,用于根据与所述发送时间编号相关的信息以及所述终端预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述接收单元具体用于:
接收所述基站发送的辅同步信号序列,结合所述终端预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
接收所述基站发送的参考信号,结合所述终端预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信号由所述基站配置并与波束对应。
本发明实施例第六方面提供了一种终端,包括:
处理器、存储器、接口电路和总线,所述处理器、存储器、接口电路通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所 述存储器中存储的程序代码,执行以下操作:
若基站采用波束发送所述同步信号和物理广播信道,则接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述处理器具体用于:
接收所述基站发送的辅同步信号序列,结合所述存储器预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
接收所述基站发送的参考信号,结合所述存储器预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信号由所述基站配置并与波束对应。
实施本发明实施例,具有如下有益效果:
通过配置多个子载波间隔以供选取,从而可以提升面对不同业务时的灵活应对,提高了资源利用的灵活性;采用波束发送同步信号和物理广播信道可以提高信号覆盖范围,并配置波束的发送时间编号,发送与发送时间编号相关的信息给终端,这样终端就可以根据发送时间编号信息确定波束具体的发送时间位置,从而可以精确的确定子帧边界并完成时域同步,为用户带来更好的使用体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明传输信息的方法的第一实施例的流程示意图;
图2是本发明传输信息的方法中不同子载波间隔下发送时间编号对应的时 域示意图;
图3是本发明基站的第一实施例的组成示意图;
图4是本发明基站的第二实施例的组成示意图;
图5是本发明同步的方法的第一实施例的流程示意图;
图6是本发明终端的第一实施例的组成示意图;
图7是本发明终端的第二实施例的组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,为本发明传输信息的方法的第一实施例的流程示意图,在本实施例中,所述方法包括以下步骤:
S101,基站根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道。
为了满足不同业务不同的时延需求,基站可以配置至少一种同步信号的子载波间隔和占用的符号数,并配置至少一种物理广播信道的子载波间隔和占用的符号数。
例如,可以配置所述同步信号的子载波间隔为15*2m千赫兹,物理广播信道的子载波间隔为15*2n千赫兹,m和n均为小于等于5且大于等于0的整数。m可以等于n,也可以小于n。
物理广播信道(Physical Broadcast Channel,PBCH)中包含的信息有主要信息块(Master Information Block,MIB)和随机接入信息等系统信息。
具体地,所述同步信号包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),所述主同步信号占用的符号数为1个,所述辅同步信号占用的符号数为1个;
其中所述辅同步信号占用的一个符号为与所述主同步信号占用的一个符号相邻的前一个符号;或
所述辅同步信号占用的一个符号为与所述主同步信号占用的一个符号相同 的一个符号。例如,SSS占用子帧0中的第6个符号,PSS占用子帧0中的第7个符号,或者SSS和PSS都占用第6个或第7个符号发送。
所述物理广播信道占用的符号数小于等于4个,发送所述物理广播信道的时域起始符号位置在发送所述辅同步信号的符号之后的第x个符号,其中x为0或1。
且所述主同步信号、辅同步信号和物理广播信道占用的单位符号的长度由配置的子载波间隔决定,若所述主同步信号和辅同步信号的子载波间隔为15*2m千赫兹,则符号长度为1/(14*2m)毫秒,若所述物理广播信道的子载波间隔为15*2n千赫兹,则符号长度为1/(14*2n)毫秒。
需要说明的是,以上所说的PSS/SSS占用1个符号,PBCH占用4个符号,都是说的一个PSS/SSS发送块和一个PBCH发送块。一个发送突发脉冲(burst)里面可能包含多个PSS/SSS发送块和多个PBCH发送块,每个发送PSS/SSS发送块都能独立的完成PSS/SSS的功能,每个PBCH发送块也能独立的完成PBCH的功能。
由于可能存在多个载频供基站使用,因此基站可以为每个载频配置至少一种同步信号和物理广播信道的子载波间隔以及二者各自占用的符号数。
由于有的业务时延需求高,此时就要求终端可以快速接入小区,有的业务时延需求较低,因此可以采用较慢的处理,此时基站就可以根据业务的时延需求,从多种配置中选择合适的配置来发送同步信号和物理广播信道。从而满足不同终端的需求。
S102,若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号。
所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置。
例如,如图2所示,为本发明传输信息的方法中不同子载波间隔下发送时间编号对应的时域示意图,其中,子帧1为1ms,子载波间隔为15KHz,一个子帧中包含14个符号,其中斜条纹的符号6和7位为波束1对应的发送时间位置,竖条纹的符号8和9则为波束2对应的发送时间位置,网格条纹的符号10和11则为波束3对应的发送时间位置,一共6个符号组成可发送时间区域(可 发送时间区域也可以由不连续的多个可发送时间位置组成)。每个符号占用1/14ms,波束1可以在6/14ms处开始发送同步信号和物理广播信道。由于终端在接收到波束发送的同步信号和物理广播信道时,只知道其位于可发送时间区域,但是无法确定其到底是哪个波束,到底具体的发送时间位置在哪里,因此无法精确地确定子帧边界并进行时域同步。因此,在本申请引入发送时间编号,其可以指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置。当终端获取到发送时间编号时,便可以根据其指示的具体发送时间位置来精确确定子帧边界并进行时域同步。类似地,如图2所示,子帧2为1ms子帧,子载波间隔为30KHz,共包括28个符号,虽然每个波束占用的符号数和序号不同,但是其具体的发送时间起点仍然可以与子帧1中相同。例如,在子帧2中,斜条纹的符号12,13,14,15为波束1对应的发送时间位置,竖条纹的符号16,17,18,19则为波束2对应的发送时间位置,网格条纹的符号20,21,22,23则为波束3对应的发送时间位置,一共12个符号组成可发送时间区域。每个符号占用1/28ms,波束1可以在12/28ms处开始发送同步信号和物理广播信道,与子帧1中波束1的发送时间起点相同。图2中给出的子帧2每个波束占用的发送时间是4个符号的示例图,其它实例中当子载波间隔为30KHz时,每个波束占用的发送时间也可以是2个符号。
可选地,发送所述同步信号和物理广播信道的时域位置相邻或部分相同。
即在时域上,可以选择相邻或部分相同的时域位置来发送同一个波束的同步信号和物理广播信道。
可选地,不同的载频上发送的同步信号和物理广播信道的时域发送位置最大限度的重合或部分重合。
具体地,同步信号和广播信号使用的子载波间隔不同,因此对应占用的符号长度也不同。对于时域发送位置,规定发送时间起点相同,对应的符号长度不同因此发送时间长度不同,所以发送时间终点不同。例如,在子帧1中,对于子帧1中发送的PSS、SSS和PBCH,子载波间隔为15KHz时,1ms的子帧1包含14个符号,假如PSS、SSS和PBCH所组成的发送块在6,7,8,9这4个符号中传输,则其发送时间长度为4/14ms,发送时间起点为6/14ms处。则当基站选择另一个子载波间隔来发送这些信息时,由于子载波间隔变为30KHz,则此时子帧1将包含28个符号,每个符号占用1/28ms,则可以将PSS、SSS和PBCH 所组成的发送块仍然在6/14ms处即12/28ms处开始发送,依然占用4个符号发送,则将在12,13,14,15这4个符号完成发送,由于符号长度变短,符号数不变,因此发送时间长度将变为4/28ms,因此使用不同子载波间隔可以在相同发送时间起点发送,但在不同发送时间终点结束。且由于发送时间长度变短,因此可以减少终端搜索小区、与小区同步及接入小区的时延。且不同的子载波间隔下发送的PSS、SSS和PBCH在发送时间最大限度的重合,使得最短的发送时间包含在较长的发送时间内,从而利于终端检测。重合的时间可大大减少时延。
或者类似地,还可以是以下方式,
发送时间终点相同,但发送时间起点不同;或者
发送时间中间时刻相同,但发送时间起点和发送时间终点不同;例如中间时刻就是1ms子帧的0.5ms处,那么如果发送时间长度为0.2ms,则发送时间起点位置为0.4ms处结束位置为0.6ms处;如果发送时长为0.1ms,则发送时间起点位置为0.45ms处结束位置为0.55ms处。
或者
以1ms子帧中的0.5ms时刻为基础,辅同步信号占用0.5ms时刻之前紧挨着的1个符号,主同步信号占用0.5ms时刻之后的紧挨着的1个符号。
上述方式时域重合的原理类似,只是具体位置存在区别,此处不再赘述。
S103,将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
可选地,若采用多波束发送所述同步信号和物理广播信道,则每个波束传输信息的方式独立,即每个波束中频域位置和时域位置都可以不相同,也可以相同,本发明实施例不做任何限定。
且当至少两个波束采用不同的时域传输信息时,则确定每个波束的发送时间位置对应的编号;且在每个波束传输信息时,携带波束所在发送时间位置的编号的相关信息。
这是因为,如果PSS/SSS/PBCH是基于多个波束(beam)来发送的,而且多个beam是不同时间发送的。比如多个beam分布在子帧的几个连续的符号中,那么用户在一个方向只能接收到其中一个beam发送的PSS/SSS/PBCH,如果用 户不知道这个beam是在第几个符号发送的beam,那么用户也无法确定子帧边界。所以在基于多beam发送PSS/SSS/PBCH时,每个beam需要指出自己是第几个beam,而用户知道第一个beam的PSS/SSS/PBCH的发送符号位置,也知道每个beam的PSS/SSS/PBCH的发送时长,就能推断出自己接收到的beam的PSS/SSS/PBCH所处的符号位置,则能进一步推算出子帧边界,实现子帧同步。
可选地,为了使终端可以获知发送时间编号,可以采用以下三种方式:
基站可以根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
需要说明的是,由于LTE本身就有两个SSS序列用来指示子帧#0和子帧#5,当波束只有两个时,如果不同的SSS序列不需要用来指示不同的子帧或者符号位置,只需要用来指示波束,则可以不配置新的SSS序列,但是如果需要指示不同的子帧或符号位置或需要指示三个或以上的波束时,则可以配置更多不同的SSS序列。也就是说SSS序列可以用来指示不同的子帧、不同的符号或不同的波束中的一种或多种的组合,要根据SSS序列需要指示的特征来综合确定SSS序列的数量。
或者可以通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。即将不同波束的发送时间编号作为系统信息在物理广播信道中发送。这里因为直接携带的是beam发送时间编号,所以不需要额外的映射表。
或者还可以配置与波束对应的参考信号(Reference Signal,RS),将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
需要说明的是,此处与波束对应的RS可以为新设计的与现有RS不同的新RS或者是已有的CSI-RS(Channel State Indication RS)。
在本实施例中,通过配置多个子载波间隔以供选取,从而可以提升面对不同业务时的灵活应对,提高了资源利用的灵活性;采用波束发送同步信号和物理广播信道可以提高信号覆盖范围,并配置波束的发送时间编号,发送与发送时间编号相关的信息给终端,这样终端就可以根据发送时间编号信息确定波束具体的发送时间位置,从而可以精确的确定子帧边界并完成时域同步,为用户带来更好的使用体验。
请参照图3,为本发明基站的第一实施例的组成示意图;在本实施例中,所述基站包括:
选择单元100,用于根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
配置单元200,用于若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
发送单元300,将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
可选地,所述发送单元300具体用于:
根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
可选地,所述发送单元300具体用于:
通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
可选地,所述发送单元300具体用于:
配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
以上选择单元100、配置单元200和发送单元300可以独立存在,也可以集成设置,选择单元100、配置单元200或发送单元300可以以硬件的形式独立于基站的处理器单独设置,且设置形式可以是微处理器的形式;也可以以硬件形式内嵌于该基站的处理器中,还可以以软件形式存储于该基站的存储器中,以便于该基站的处理器调用执行以上选择单元100、配置单元200和发送单元300对应的操作。
例如,在本发明基站的第一实施例(图3所示的实施例)中,配置单元200可以为该基站的处理器,而选择单元100和发送单元300的功能可以内嵌于该 处理器中,也可以独立于处理器单独设置,也可以以软件的形式存储于存储器中,由处理器调用实现其功能。本发明实施例不做任何限制。以上处理器可以为中央处理单元(CPU)、微处理器、单片机等。
请参照图4,为本发明基站的第二实施例的组成示意图,在本实施例中,所述基站包括:
处理器110、存储器120、收发信机130及总线140,所述处理器110、存储器120、收发信机130通过总线140连接,其中,所述收发信机130用于所述基站与终端之间传输信息和数据,所述存储器120用于存储一组程序代码,所述处理器110用于调用所述存储器120中存储的程序代码,执行以下操作:
根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
通过所述收发信机130将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
所述处理器110具体用于:
根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
可选地,所述处理器110具体用于:
通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
可选地,所述处理器110具体用于:
配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
请参照图5,为本发明同步方法的第一实施例的流程示意图;在本实施例中,所述方法包括以下步骤:
S501,若基站采用波束发送所述同步信号和物理广播信道,则终端接收所述基站发送的与波束的发送时间编号相关的信息。
其中,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置。
S502,根据与所述发送时间编号相关的信息以及所述终端预存储的所述可发送时间区域确定子帧边界并完成时域同步。
可选地,所述终端接收所述基站发送的与波束的发送时间编号相关的信息,包括:
接收所述基站发送的辅同步信号序列,结合所述终端预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
接收所述基站发送的参考信号,结合所述终端预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信号由所述基站配置并与波束对应。
由于基站配置了多个子载波间隔及占用符号数的配置,因此可以根据终端业务进行灵活选择,且同步信号和物理广播信道紧密发送,利于终端进行小区搜索、同步以及接入,降低了终端的处理时延,提高了终端接入小区的效率。
请参照图6,为本发明终端的第一实施例的组成示意图;在本实施例中,所述终端包括:
接收单元400,用于若基站采用波束发送所述同步信号和物理广播信道,则接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
同步单元500,用于根据与所述发送时间编号相关的信息以及所述终端预存储的所述可发送时间区域确定子帧边界并完成时域同步。
以上接收单元400和同步单元500可以独立存在,也可以集成设置,接收单元400或同步单元500可以以硬件的形式独立于终端的处理器单独设置,且设置形式可以是微处理器的形式;也可以以硬件形式内嵌于该终端的处理器中,还可以以软件形式存储于该终端的存储器中,以便于该终端的处理器调用执行以上接收单元400和同步单元500对应的操作。
例如,在本发明终端的第一实施例(图6所示的实施例)中,同步单元500可以为该终端的处理器,而接收单元400的功能可以内嵌于该处理器中,也可以独立于处理器单独设置,也可以以软件的形式存储于存储器中,由处理器调用实现其功能。本发明实施例不做任何限制。以上处理器可以为中央处理单元(CPU)、微处理器、单片机等。
请参照图7,为本发明终端的第二实施例的组成示意图,在本实施例中,所述终端包括:
处理器210、存储器220、接口电路230和总线240,所述处理器210、存储器220、接口电路230通过总线240连接,其中,所述存储器220用于存储一组程序代码,所述处理器210用于调用所述存储器220中存储的程序代码,执行以下操作:
若基站采用波束发送所述同步信号和物理广播信道,则接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
其中,所述处理器210具体用于:
接收所述基站发送的辅同步信号序列,结合所述存储器预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
接收所述基站发送的参考信号,结合所述存储器预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信 号由所述基站配置并与波束对应。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
通过上述实施例的描述,本发明具有以下优点:
通过配置多个子载波间隔以供选取,从而可以提升面对不同业务时的灵活应对,提高了资源利用的灵活性;采用波束发送同步信号和物理广播信道可以提高信号覆盖范围,并配置波束的发送时间编号,发送与发送时间编号相关的信息给终端,这样终端就可以根据发送时间编号信息确定波束具体的发送时间位置,从而可以精确的确定子帧边界并完成时域同步,为用户带来更好的使用体验。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,简称ROM)或随机存储记忆体(Random Access Memory,简称RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (14)

  1. 一种传输信息的方法,其特征在于,包括:
    基站根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
    若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
    将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
  2. 如权利要求1所述的方法,其特征在于,所述将与所述发送时间编号相关的信息发送给终端,包括:
    根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
  3. 如权利要求1所述的方法,其特征在于,所述将与所述发送时间编号相关的信息发送给终端,包括:
    通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
  4. 如权利要求1所述的方法,其特征在于,所述将与所述发送时间编号相关的信息发送给终端,包括:
    配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
  5. 一种同步的方法,其特征在于,包括:
    若基站采用波束发送所述同步信号和物理广播信道,则终端接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
    根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
  6. 如权利要求5所述的方法,其特征在于,所述终端接收所述基站发送的与波束的发送时间编号相关的信息,包括:
    接收所述基站发送的辅同步信号序列,结合所述终端预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
    接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
    接收所述基站发送的参考信号,结合所述终端预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信号由所述基站配置并与波束对应。
  7. 一种基站,其特征在于,包括:
    选择单元,用于根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
    配置单元,用于若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
    发送单元,将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
  8. 如权利要求7所述的基站,其特征在于,所述发送单元具体用于:
    根据波束的数量配置辅同步信号序列的数量,将所述发送时间编号与辅同 步信号序列进行映射得到映射表,发送辅同步信号序列给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
  9. 如权利要求7所述的基站,其特征在于,所述发送单元具体用于:
    通过所述物理广播信道将所述发送时间编号作为系统信息发送所述终端。
  10. 如权利要求7所述的基站,其特征在于,所述发送单元具体用于:
    配置与波束对应的参考信号,将所述参考信号与所述发送时间编号进行映射得到映射表,发送参考信息给所述终端,以便所述终端根据预存储的所述映射表查表确定所述发送时间编号。
  11. 一种基站,其特征在于,包括:
    处理器、存储器、收发信机及总线,所述处理器、存储器、收发信机通过总线连接,其中,所述收发信机用于所述基站与终端之间传输信息和数据,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
    根据业务时延需求从预设的至少一种子载波间隔中选择一种用于发送同步信号和物理广播信道;
    若所述基站采用波束发送所述同步信号和物理广播信道,则配置波束的发送时间编号,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域中包括至少一个波束对应的发送时间位置;
    通过所述收发信机将与所述发送时间编号相关的信息发送给终端,以便所述终端根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
  12. 一种终端,其特征在于,包括:
    接收单元,用于若基站采用波束发送所述同步信号和物理广播信道,则接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间 位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
    同步单元,用于根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
  13. 如权利要求12所述的终端,其特征在于,所述接收单元具体用于:
    接收所述基站发送的辅同步信号序列,结合所述终端预存储的所述辅同步信号序列与所述发送时间编号的映射表,查表确定所述发送时间编号;或者
    接收所述基站通过所述物理广播信道发送的系统信息,从所述系统信息中确定所述发送时间编号;或者
    接收所述基站发送的参考信号,结合所述终端预存储的所述参考信号与所述发送时间编号的映射表,查表确定所述发送时间编号,其中,所述参考信号由所述基站配置并与波束对应。
  14. 一种终端,其特征在于,包括:
    处理器、存储器、接口电路和总线,所述处理器、存储器、接口电路通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
    若基站采用波束发送所述同步信号和物理广播信道,则接收所述基站发送的与波束的发送时间编号相关的信息,所述发送时间编号用于指示波束在所述同步信号和物理广播信道的可发送时间区域中对应的发送时间位置,所述可发送时间区域包括至少一个波束对应的发送时间位置;
    根据与所述发送时间编号相关的信息以及预存储的所述可发送时间区域确定子帧边界并完成时域同步。
PCT/CN2017/112854 2016-11-30 2017-11-24 一种传输信息的方法、基站及终端 WO2018099330A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/326,566 US10701651B2 (en) 2016-11-30 2017-11-24 Information transmission method, base station and terminal
EP17876556.6A EP3499983A4 (en) 2016-11-30 2017-11-24 INFORMATION TRANSMISSION METHOD, BASE STATION AND TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611092653.2A CN106455040B (zh) 2016-11-30 2016-11-30 一种传输信息的方法、基站及终端
CN201611092653.2 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018099330A1 true WO2018099330A1 (zh) 2018-06-07

Family

ID=58222623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112854 WO2018099330A1 (zh) 2016-11-30 2017-11-24 一种传输信息的方法、基站及终端

Country Status (4)

Country Link
US (1) US10701651B2 (zh)
EP (1) EP3499983A4 (zh)
CN (1) CN106455040B (zh)
WO (1) WO2018099330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025420A (zh) * 2021-11-05 2022-02-08 北京中科晶上科技股份有限公司 5g nr主同步检测方法、装置以及无线终端

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455040B (zh) * 2016-11-30 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
WO2018115205A2 (en) * 2016-12-22 2018-06-28 Sony Corporation Base station and user equipment
CN108260181B (zh) * 2016-12-29 2020-08-11 维沃移动通信有限公司 一种同步接入信号块的传输方法、网络侧设备和用户终端
IL269319B2 (en) 2017-03-15 2023-10-01 Guangdong Oppo Mobile Telecommunications Corp Ltd A method for transmitting a signal, a terminal device and a network device
US10880031B2 (en) 2017-03-17 2020-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
WO2018170878A1 (zh) * 2017-03-24 2018-09-27 Oppo广东移动通信有限公司 资源指示方法、装置、接入网设备、终端及系统
CN108668354B (zh) * 2017-03-28 2021-08-03 华为技术有限公司 一种通信方法、终端与网络设备
CN108738123B (zh) * 2017-04-14 2020-12-25 普天信息技术有限公司 一种同步信号发送方法和装置
CN108737309B (zh) * 2017-04-20 2020-10-16 中国移动通信有限公司研究院 一种应用于5g系统的同步方法及装置
US11799603B2 (en) * 2017-05-02 2023-10-24 Ntt Docomo, Inc. Base station apparatus
CN109348534B (zh) 2017-05-04 2020-01-03 华为技术有限公司 传输信号的方法和装置
CN109302741B (zh) * 2017-05-05 2019-11-19 华为技术有限公司 通信方法和通信装置
EP3621367B1 (en) * 2017-05-05 2024-02-28 Fujitsu Limited Information indication method, detection method and device therefor, and communication system
CN109150448B (zh) * 2017-06-16 2023-04-18 华为技术有限公司 发送信号和接收信号的方法、网络设备和用户设备
CN109391431B (zh) 2017-08-11 2021-10-26 华为技术有限公司 一种获取参考信号的方法、装置和计算机可读存储介质
CN114025365B (zh) 2017-08-11 2024-04-12 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统
CN109451859B (zh) * 2017-10-11 2022-12-27 北京小米移动软件有限公司 对应关系的指示及确定方法、装置、基站和用户设备
WO2019075690A1 (zh) 2017-10-19 2019-04-25 北京小米移动软件有限公司 物理广播信道pbch带宽的处理方法及装置和基站
CN108390747B (zh) * 2018-01-19 2021-10-22 宇龙计算机通信科技(深圳)有限公司 一种同步信号的发送方法和装置
US10880864B2 (en) * 2018-02-22 2020-12-29 Qualcomm Incorporated Methods and apparatuses for waveform indication in high-frequency bands
WO2019183940A1 (zh) * 2018-03-30 2019-10-03 北京小米移动软件有限公司 波束选择方法及装置
WO2019191898A1 (zh) * 2018-04-03 2019-10-10 Oppo广东移动通信有限公司 免授权频谱的信道传输方法及网络设备、终端
GB201810478D0 (en) * 2018-06-26 2018-08-08 Nordic Semiconductor Asa Precision timing between systems
KR102569149B1 (ko) * 2018-07-17 2023-08-21 지티이 코포레이션 신호 및 채널 정보를 송신하기 위한 방법, 장치 및 시스템
AU2018442389A1 (en) 2018-09-18 2021-04-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus and computer storage medium
CN113872897B (zh) * 2021-10-28 2023-09-29 上海创远仪器技术股份有限公司 实现mib主消息块解析的方法、装置、处理器及其存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547968A (zh) * 2012-01-16 2012-07-04 电信科学技术研究院 一种协作多点传输下行同步方法及装置
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统
CN106455040A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186643A (ja) 1995-12-28 1997-07-15 Kyocera Corp 無線基地局
TW595857U (en) * 2001-11-29 2004-06-21 Us 091219345
US8223625B2 (en) * 2006-08-23 2012-07-17 Qualcomm, Incorporated Acquisition in frequency division multiple access systems
EP4089928A1 (en) * 2011-07-28 2022-11-16 Samsung Electronics Co., Ltd. Apparatus and method for beamforming in wireless communication system
KR20130028397A (ko) 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
KR20140056561A (ko) * 2012-10-29 2014-05-12 한국전자통신연구원 다중 빔을 운영하는 이동통신시스템에서 기지국 및 단말의 동작 방법
AU2014355189B2 (en) * 2013-11-27 2018-02-01 Telefonaktiebolaget L M Ericsson (Publ) Network node, wireless device, methods therein, for sending and detecting, respectively, synchronization signal and an associated information
CN104734760A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统
KR101664173B1 (ko) 2015-06-08 2016-10-11 한국과학기술연구원 양자암호 시스템의 안정화 장치 및 방법
KR20170126376A (ko) * 2016-05-09 2017-11-17 삼성전자주식회사 무선 셀룰라 통신 시스템의 동기신호 송수신 방법 및 장치
EP3487254A4 (en) * 2016-07-15 2020-02-26 NTT DoCoMo, Inc. USER TERMINAL AND RADIO COMMUNICATION METHOD
CN107734674B (zh) * 2016-08-11 2023-09-01 华为技术有限公司 数据传输的方法和系统
US10673672B2 (en) * 2016-09-30 2020-06-02 Motorola Mobility Llc Method and apparatus for synchronization signals and random access for flexible radio communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547968A (zh) * 2012-01-16 2012-07-04 电信科学技术研究院 一种协作多点传输下行同步方法及装置
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统
CN106455040A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025420A (zh) * 2021-11-05 2022-02-08 北京中科晶上科技股份有限公司 5g nr主同步检测方法、装置以及无线终端
CN114025420B (zh) * 2021-11-05 2023-09-26 北京中科晶上科技股份有限公司 5g nr主同步检测方法、装置以及无线终端

Also Published As

Publication number Publication date
EP3499983A1 (en) 2019-06-19
EP3499983A4 (en) 2019-10-30
CN106455040A (zh) 2017-02-22
US10701651B2 (en) 2020-06-30
US20190261297A1 (en) 2019-08-22
CN106455040B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2018099330A1 (zh) 一种传输信息的方法、基站及终端
CN106507439B (zh) 一种传输信息的方法、基站及终端
US20210092714A1 (en) Methods and apparatus for supporting multiple services in wireless communication system
AU2015226655B2 (en) Signal processing method, base station and terminal
JP7382403B2 (ja) Qcl参照信号の確定方法および装置
JP2021515473A (ja) 制御シグナリングを送受信するための方法および装置、ならびに情報を決定するための方法
CN109391452B (zh) 分配、获取空闲态coreset的方法、基站、用户设备及可读介质
RU2596595C2 (ru) Вставка виртуальной несущей в обычную хост-несущую ofdm в системе связи
JP7072564B2 (ja) 同期信号のためのサブキャリア間隔選択
TWI584623B (zh) 一種在非授權頻段上的資料傳輸方法及裝置
CN112073167B (zh) 同步信号块的传输方法、接收方法、基站及用户设备
JP5065389B2 (ja) Ofdm通信環境におけるアップリンクアクセス要求
KR102351414B1 (ko) 랜덤 액세스를 위한 방법 및 장치
CN108377559A (zh) 基于波束的多连接通信方法、终端设备及网络设备
JP6350836B2 (ja) 情報伝送方法、基地局、およびユーザ機器
KR20190082806A (ko) 기준 신호 전송 방법 및 통신 기기
WO2019157905A1 (zh) 参考信号的发送及接收方法、基站、终端、可读介质
WO2018028347A1 (zh) 一种确定基带参数的方法和设备
WO2018028270A1 (zh) 一种发送和检测同步信号的方法、设备
JP2018529252A (ja) セルラ無線通信におけるリソース利用のためのブランキングパターンの指標
KR20200107992A (ko) Bwp의 주파수 호핑 구성 방법 및 네트워크 장치, 단말
WO2018082610A1 (zh) 确定方法、接入、发送、处理方法及装置、基站及终端
WO2017080271A1 (zh) 传输调度信息的方法和装置
EP3142438A1 (en) Method for inter-device communications, base station, and user equipment
CN105207752A (zh) 一种信号发送和检测的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017876556

Country of ref document: EP

Effective date: 20190314

NENP Non-entry into the national phase

Ref country code: DE