WO2019075690A1 - 物理广播信道pbch带宽的处理方法及装置和基站 - Google Patents

物理广播信道pbch带宽的处理方法及装置和基站 Download PDF

Info

Publication number
WO2019075690A1
WO2019075690A1 PCT/CN2017/106858 CN2017106858W WO2019075690A1 WO 2019075690 A1 WO2019075690 A1 WO 2019075690A1 CN 2017106858 W CN2017106858 W CN 2017106858W WO 2019075690 A1 WO2019075690 A1 WO 2019075690A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
pbch
current frequency
dmrs
payload
Prior art date
Application number
PCT/CN2017/106858
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201780001619.6A priority Critical patent/CN108353318B/zh
Priority to PCT/CN2017/106858 priority patent/WO2019075690A1/zh
Publication of WO2019075690A1 publication Critical patent/WO2019075690A1/zh
Priority to US16/833,389 priority patent/US11223458B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and apparatus for processing a physical broadcast channel (PBCH) bandwidth, a base station, and a computer readable storage medium.
  • PBCH physical broadcast channel
  • the present application discloses a PBCH bandwidth processing method and apparatus, a base station, and a computer readable storage medium to solve the problem that the UE search synchronization signal caused by some frequency bands is too long.
  • a method for processing a physical broadcast channel PBCH bandwidth comprising:
  • the preset type frequency band can use two subcarrier spacing SCS;
  • the current frequency band is the preset type frequency band
  • the number of resource elements RE does not change, or keeps the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band unchanged, and reduces the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB.
  • the reducing the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band includes:
  • the PBCH information contained in the payload is reduced by 14 to 22 bits.
  • the reducing the PBCH information included in the payload by 14 to 22 bits including:
  • the PBCH information contained in the payload is reduced by 18 bits.
  • the reducing the number of REs in the current frequency band corresponding to the DMRS in the SSB includes:
  • the current frequency band is reduced by 24 to 48 REs corresponding to the DMRS in the SSB.
  • the reducing, by the current frequency band, the DMRS in the SSB by 24 to 48 REs including:
  • the current frequency band is reduced by 36 REs corresponding to the DMRS in the SSB.
  • the method further includes:
  • the current frequency band is not the preset type of frequency band, reduce the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band, and increase the number of REs occupied by the DMRS in the current frequency band corresponding to the current frequency band, so as to The bandwidth of the PBCH remains unchanged.
  • a processing apparatus for a physical broadcast channel PBCH bandwidth comprising:
  • the determining module is configured to determine whether the current frequency band is a preset type frequency band, wherein the preset type frequency band can use two subcarrier spacing SCS;
  • the first processing module is configured to: if the determining module determines that the current frequency band is the preset type frequency band, reduce the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band, and maintain the current
  • the number of resource elements RE occupied by the demodulation reference signal DMRS in the frequency band corresponding to the synchronization signal block SSB is unchanged, or the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is kept unchanged and the current frequency band corresponding to the SSB is reduced.
  • the number of REs in the DMRS is configured to: if the determining module determines that the current frequency band is the preset type frequency band, reduce the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band, and maintain the current
  • the number of resource elements RE occupied by the demodulation reference signal DMRS in the frequency band corresponding to the synchronization signal block SSB is unchanged, or the number of
  • the first processing module includes:
  • the first reduction submodule is configured to reduce the PBCH information contained in the payload by 14 to 22 bits.
  • the first reduction submodule is configured to:
  • the PBCH information contained in the payload is reduced by 18 bits.
  • the first processing module includes:
  • the second reduction submodule is configured to reduce the DMRS in the current frequency band corresponding to the SSB by 24 to 48 REs.
  • the second reduction submodule is configured to:
  • the current frequency band is reduced by 36 REs corresponding to the DMRS in the SSB.
  • the apparatus further includes:
  • the second processing module is configured to: if the determining module determines that the current frequency band is not the preset type frequency band, reduce the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band, and increase the current
  • the frequency band corresponds to the number of REs occupied by the DMRS in the SSB, so that the bandwidth of the PBCH remains unchanged.
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the preset type frequency band can use two subcarrier spacing SCS;
  • the current frequency band is the preset type frequency band
  • the number of resource elements RE does not change, or keeps the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band unchanged, and reduces the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB.
  • a computer readable storage medium having stored thereon computer instructions for performing the steps of the PBCH bandwidth processing method described above when executed by a processor.
  • the number of PBCH information bits included in the payload of the PBCH corresponding to the current frequency band is reduced, and the number of resource elements RE occupied by the demodulation reference signal DMRS in the synchronization signal block SSB of the current frequency band is kept unchanged.
  • the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is reduced, and the number of REs occupied by the DMRS in the current frequency band to reduce the bandwidth of the PBCH, to solve the time for the UE to search for the synchronization signal. Too long a problem.
  • the current frequency band is not a preset type of frequency band
  • the number of PBCH information bits included in the PBCH corresponding to the current frequency band is reduced, and the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB is increased, so that the bandwidth of the PBCH remains unchanged.
  • the problem of solving the problem that the UE searches for the synchronization signal is too long is solved, and the impact on the entire PBCH coverage of the 5G is reduced as much as possible.
  • FIG. 1 is a flowchart of a method for processing a PBCH bandwidth according to an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of another PBCH bandwidth processing method according to an exemplary embodiment of the present application.
  • FIG. 3 is a block diagram of a processing apparatus for PBCH bandwidth, according to an exemplary embodiment
  • FIG. 4 is a block diagram of another processing device for PBCH bandwidth, according to an exemplary embodiment
  • FIG. 5 is a block diagram of another PBCH bandwidth processing apparatus according to an exemplary embodiment
  • FIG. 6 is a block diagram of another processing device for PBCH bandwidth, according to an exemplary embodiment
  • FIG. 7 is a block diagram of a processing device suitable for PBCH bandwidth, according to an exemplary embodiment.
  • FIG. 1 is a flowchart of a PBCH bandwidth processing method according to an exemplary embodiment of the present application. The embodiment is described from the base station side. As shown in FIG. 1 , the PBCH bandwidth processing method includes:
  • step S101 it is determined whether the current frequency band is a preset type frequency band, wherein the preset type frequency band can use two types of SCS.
  • some SSCs can be used in some frequency bands, and two SCSs can be used in some frequency bands.
  • the frequency bands in which two SCSs are used are referred to as preset type frequency bands. Since two types of SCS can be used for the preset type of frequency band, there may be a problem that the UE searches for the synchronization signal for a long time.
  • step S102 if the current frequency band is a preset type frequency band, the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is reduced, and the resource element occupied by the demodulation reference signal DMRS in the synchronization signal block SSB of the current frequency band is maintained.
  • the number of (RE) is unchanged, or the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is kept constant, and the number of REs occupied by the DMRS in the SSB corresponding to the current frequency band is reduced.
  • the PBCH symbol in the sync signal block occupies 288 REs, one third of which is DRMS.
  • the remaining two-thirds is the PBCH payload (Payload), which includes the PBCH information and the Cyclic Redundancy Check (CRC).
  • the bandwidth of the PBCH can be reduced by reducing the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band and keeping the number of REs occupied by the DMRS in the current frequency band corresponding to the current frequency band, for example,
  • the PBCH information contained in the payload can be reduced by 14 to 22 bits.
  • the PBCH information contained in the payload can be reduced by 18 bits.
  • the bandwidth of the PBCH can also be reduced by keeping the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band unchanged and reducing the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB.
  • the current frequency band can be corresponding to the SSB.
  • DMRS is reduced by 24 to 48 REs.
  • the current frequency band can be reduced by 36 REs corresponding to the DMRS in the SSB.
  • the 12-bit PBCH information is equivalent to the PBCH information of one PRB
  • the number of PBCH information bits included in the payload of the PBCH corresponding to the current frequency band may be replaced by reducing the load in the PBCH corresponding to the current frequency band.
  • 6 REs are equivalent to 1 PRB. Therefore, reducing the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB can also be replaced by reducing the number of PRBs of the DMRS in the current frequency band corresponding to the SSB. In other words, all alternatives modified according to unit conversion fall within the scope of protection of this embodiment.
  • the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is reduced, and the resource element occupied by the demodulation reference signal DMRS in the synchronization signal block SSB of the current frequency band is maintained.
  • the number of REs is unchanged, or the UE reduces the bandwidth of the PBCH by maintaining the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band and reducing the number of REs occupied by the DMRS in the current frequency band to solve the UE.
  • FIG. 2 is a flowchart of a method for processing another PBCH bandwidth according to an exemplary embodiment of the present application. As shown in FIG. 2, after the step S101, the processing method of the PBCH bandwidth may further include:
  • step S103 if the current frequency band is not the preset type frequency band, the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is reduced, and the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB is increased, so that the bandwidth of the PBCH is maintained. constant.
  • the load included in the PBCH corresponding to the current frequency band may be reduced.
  • the number of REs occupied by the DMRS in the current frequency band corresponding to the current frequency band is increased, so that the bandwidth of the PBCH remains unchanged.
  • the PBCH information bit length is reduced by reducing the number of PBCH information bits included in the PBCH corresponding to the current frequency band and increasing the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB. It is unchanged, so as to solve the problem that the time for the UE to search for the synchronization signal is too long, and the impact on the entire PBCH coverage of the 5G is reduced as much as possible.
  • FIG. 3 is a block diagram of a PBCH bandwidth processing apparatus according to an exemplary embodiment.
  • the apparatus may be located in a base station. As shown in FIG. 3, the apparatus includes: a determining module 31 and a first processing module 32.
  • the determining module 31 is configured to determine whether the current frequency band is a preset type frequency band, wherein the preset type frequency band can use two subcarrier spacing SCS.
  • some SSCs can be used in some frequency bands, and two SCSs can be used in some frequency bands.
  • the frequency bands in which two SCSs are used are referred to as preset type frequency bands. Since two types of SCS can be used for the preset type of frequency band, there may be a problem that the UE searches for the synchronization signal for a long time.
  • the first processing module 32 is configured to: if the determining module 31 determines that the current frequency band is a preset type frequency band, reduce the number of PBCH information bits included in the PBCH corresponding to the current frequency band and maintain the current frequency band corresponding to the demodulation in the synchronization signal block SSB.
  • the number of resource elements RE occupied by the reference signal DMRS is unchanged, or the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is kept unchanged, and the number of REs occupied by the DMRS in the SSB corresponding to the current frequency band is reduced.
  • the PBCH symbol in the synchronization signal block occupies 288 REs, one third of which is DRMS, and the remaining two-thirds is the PBCH payload (Payload), which includes PBCH information.
  • Cyclic Redundancy Check Code CRC
  • the bandwidth of the PBCH can be reduced by reducing the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band and keeping the number of REs occupied by the DMRS in the current frequency band corresponding to the current frequency band, for example,
  • the PBCH information contained in the payload can be reduced by 14 to 22 bits.
  • the PBCH information contained in the payload can be reduced by 18 bits.
  • the bandwidth of the PBCH can also be reduced by keeping the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band unchanged and reducing the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB.
  • the current frequency band can be corresponding to the SSB.
  • DMRS is reduced by 24 to 48 REs.
  • the current frequency band can be reduced by 36 REs corresponding to the DMRS in the SSB.
  • the 12-bit PBCH information is equivalent to the PBCH information of one PRB
  • the number of PBCH information bits included in the payload of the PBCH corresponding to the current frequency band may be replaced by reducing the load in the PBCH corresponding to the current frequency band.
  • 6 REs are equivalent to 1 PRB. Therefore, reducing the number of REs occupied by DMRS in the current frequency band corresponding to the SSB can also be replaced with a decrease.
  • the pre-band corresponds to the number of PRBs in the DMRS in the SSB. In other words, all alternatives modified according to unit conversion fall within the scope of protection of this embodiment.
  • the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band is reduced, and the resource element occupied by the demodulation reference signal DMRS in the synchronization signal block SSB of the current frequency band is maintained.
  • the number of REs is unchanged, or the UE reduces the bandwidth of the PBCH by maintaining the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band and reducing the number of REs occupied by the DMRS in the current frequency band to solve the UE.
  • FIG. 4 is a block diagram of another PBCH bandwidth processing apparatus according to an exemplary embodiment.
  • the first processing module 32 may include: Sub-module 321 is reduced.
  • the first reduction sub-module 321 is configured to reduce the PBCH information contained in the payload by 14 to 22 bits.
  • the bandwidth of the PBCH can be reduced by reducing the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band and keeping the number of REs occupied by the DMRS in the current frequency band corresponding to the current frequency band, for example,
  • the PBCH information contained in the payload can be reduced by 14 to 22 bits.
  • the first reduction sub-module 321 can be configured to reduce the PBCH information contained in the payload by 18 bits.
  • the above embodiment describes an implementation that reduces the PBCH bandwidth by defining the number of bits of reduced PBCH information.
  • FIG. 5 is a block diagram of another PBCH bandwidth processing apparatus according to an exemplary embodiment. As shown in FIG. 5, on the basis of the foregoing embodiment shown in FIG. 3, the first processing module 32 may include: Sub-module 322 is reduced.
  • the second reduction sub-module 322 is configured to reduce the DMRS in the current frequency band corresponding to the SSB by 24 to 48 REs.
  • the bandwidth of the PBCH can be reduced by maintaining the number of PBCH information bits included in the payload in the PBCH corresponding to the current frequency band and reducing the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB, for example,
  • the DMRS in the current frequency band corresponding to the SSB can be reduced by 24 to 48 REs.
  • the second reduction sub-module 322 can be configured to reduce the DMRS in the current frequency band corresponding to the SSB by 36 REs.
  • the above embodiment describes another implementation for reducing the bandwidth of the PBCH by defining the RE number of the reduced DMRS.
  • FIG. 6 is a block diagram of another PBCH bandwidth processing apparatus according to an exemplary embodiment. As shown in FIG. 6, on the basis of the foregoing embodiment shown in FIG. 3, the apparatus may further include: a second processing module. 33.
  • the second processing module 33 is configured to reduce when the determining module 31 determines that the current frequency band is not a preset type frequency band.
  • the number of PBCH information bits included in the payload in the PBCH corresponding to the pre-band and the number of REs occupied by the DMRS in the SSB in the current frequency band are increased, so that the bandwidth of the PBCH remains unchanged.
  • the load included in the PBCH corresponding to the current frequency band may be reduced.
  • the number of REs occupied by the DMRS in the current frequency band corresponding to the current frequency band is increased, so that the bandwidth of the PBCH remains unchanged.
  • the PBCH information bit length is reduced by reducing the number of PBCH information bits included in the PBCH corresponding to the current frequency band and increasing the number of REs occupied by the DMRS in the current frequency band corresponding to the SSB. It is unchanged, so as to solve the problem that the time for the UE to search for the synchronization signal is too long, and the impact on the entire PBCH coverage of the 5G is reduced as much as possible.
  • FIG. 7 is a block diagram of another processing apparatus suitable for PBCH bandwidth, according to an exemplary embodiment.
  • Apparatus 700 can be provided as a base station.
  • apparatus 700 includes a processing component 722, a wireless transmit/receive component 724, an antenna component 726, and a signal processing portion specific to the wireless interface, and processing component 722 can further include one or more processors.
  • One of the processing components 722 can be configured to:
  • the preset type frequency band can use two subcarrier spacing SCS;
  • the current frequency band is a preset type of frequency band
  • the number of PBCH information bits included in the payload of the PBCH corresponding to the current frequency band is reduced, and the number of resource elements RE occupied by the demodulation reference signal DMRS in the synchronization signal block SSB of the current frequency band is kept unchanged.
  • non-transitory computer readable storage medium comprising instructions executable by processing component 1322 of apparatus 1300 to perform the processing method of PBCH bandwidth described above.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. Or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art are not engaged in creative labor. In this case, it can be understood and implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种PBCH带宽的处理方法及装置、基站和计算机可读存储介质。其中,PBCH带宽的处理方法包括:判断当前频段是否是预设类型频段,其中,预设类型频段可使用两种子载波间隔SCS;若当前频段是预设类型频段,则减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量。本公开实施例可以解决UE搜索同步信号时间过长的问题。

Description

物理广播信道PBCH带宽的处理方法及装置和基站 技术领域
本公开涉及通信技术领域,尤其涉及一种物理广播信道(PBCH)带宽的处理方法及装置、基站和计算机可读存储介质。
背景技术
在最近的第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)讨论中,提出在有些频段需要使用两种子载波间隔(SCS),对于这些频段上的较大SCS,初始搜索同步信号的同步栅格会变得很小,由于这些频段可能存在比较窄的情况,同时在用户设备(UE)最小带宽确定后,同步信号检测尝试次数就会很多,某些极端情况下UE搜索同步信号的时间长达15分钟,这是UE无法接受的。
发明内容
有鉴于此,本申请公开了一种PBCH带宽的处理方法及装置、基站和计算机可读存储介质,以解决某些频段引起的UE搜索同步信号时间过长问题。
根据本公开实施例的第一方面,提供一种物理广播信道PBCH带宽的处理方法,所述方法包括:
判断当前频段是否是预设类型频段,其中,所述预设类型频段可使用两种子载波间隔SCS;
若所述当前频段是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持所述当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少所述当前频段对应SSB中DMRS所占的RE数量。
在一实施例中,所述减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量,包括:
将所述载荷中包含的PBCH信息减少14~22比特。
在一实施例中,所述将所述载荷中包含的PBCH信息减少14~22比特,包括:
将所述载荷中包含的PBCH信息减少18比特。
在一实施例中,所述减少所述当前频段对应SSB中DMRS所占的RE数量,包括:
将所述当前频段对应SSB中的DMRS减少24~48个RE。
在一实施例中,所述将所述当前频段对应SSB中的DMRS减少24~48个RE,包括:
将所述当前频段对应SSB中的DMRS减少36个RE。
在一实施例中,所述方法还包括:
若所述当前频段不是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加所述当前频段对应SSB中DMRS所占的RE数量,以使所述PBCH的带宽保持不变。
根据本公开实施例的第二方面,提供一种物理广播信道PBCH带宽的处理装置,所述装置包括:
判断模块,被配置为判断当前频段是否是预设类型频段,其中,所述预设类型频段可使用两种子载波间隔SCS;
第一处理模块,被配置为若所述判断模块判断出所述当前频段是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持所述当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少所述当前频段对应SSB中DMRS所占的RE数量。
在一实施例中,所述第一处理模块包括:
第一减少子模块,被配置为将所述载荷中包含的PBCH信息减少14~22比特。
在一实施例中,所述第一减少子模块,被配置为:
将所述载荷中包含的PBCH信息减少18比特。
在一实施例中,所述第一处理模块包括:
第二减少子模块,被配置为将所述当前频段对应SSB中的DMRS减少24~48个RE。
在一实施例中,所述第二减少子模块,被配置为:
将所述当前频段对应SSB中的DMRS减少36个RE。
在一实施例中,所述装置还包括:
第二处理模块,被配置为若所述判断模块判断出所述当前频段不是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加所述当前频段对应SSB中DMRS所占的RE数量,以使所述PBCH的带宽保持不变。
根据本公开实施例的第三方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
判断当前频段是否是预设类型频段,其中,所述预设类型频段可使用两种子载波间隔SCS;
若所述当前频段是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持所述当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少所述当前频段对应SSB中DMRS所占的RE数量。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述的PBCH带宽的处理方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
在当前频段是预设类型频段时,通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者通过保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量来达到减小PBCH的带宽的目的,以解决UE搜索同步信号时间过长的问题。
在当前频段不是预设类型频段时,通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变,从而实现在解决UE搜索同步信号时间过长的问题的同时,尽可能地减少对5G整个PBCH覆盖的影响。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本申请一示例性实施例示出的一种PBCH带宽的处理方法的流程图;
图2是本申请一示例性实施例示出的另一种PBCH带宽的处理方法的流程图;
图3是根据一示例性实施例示出的一种PBCH带宽的处理装置的框图;
图4是根据一示例性实施例示出的另一种PBCH带宽的处理装置的框图;
图5是根据一示例性实施例示出的另一种PBCH带宽的处理装置的框图;
图6是根据一示例性实施例示出的另一种PBCH带宽的处理装置的框图;
图7是根据一示例性实施例示出的一种适用于PBCH带宽的处理装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是本申请一示例性实施例示出的一种PBCH带宽的处理方法的流程图,该实施例从基站侧进行描述,如图1所示,该PBCH带宽的处理方法包括:
在步骤S101中,判断当前频段是否是预设类型频段,其中,预设类型频段可使用两种SCS。
在5G系统中,有些频段可以使用一种SCS,而有些频段可以使用两种SCS,在该实施例中,将使用两种SCS的频段称为预设类型频段。由于预设类型频段可以使用两种SCS,因此,可能存在UE搜索同步信号的时间很长的问题。
在步骤S102中,若当前频段是预设类型频段,则减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素(RE)数量不变,或者保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量。
在该实施例中,同步信号块(SSB)中的PBCH符号占288个RE,其中三分之一是DRMS, 剩下的三分之二是PBCH的载荷(Payload),该Payload包括PBCH的信息和循环冗余校验码(CRC)。
在当前频段是预设类型频段时,可以通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应SSB中DMRS所占的RE数量不变来减小PBCH的带宽,例如,可以将载荷中包含的PBCH信息减少14~22比特。优选地,可以将载荷中包含的PBCH信息减少18比特。也可以通过保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量来减小PBCH的带宽,例如,可以将当前频段对应SSB中的DMRS减少24~48个RE。优选地,可以将当前频段对应SSB中的DMRS减少36个RE。
需要说明的是,由于12个bit的PBCH信息相当于1个PRB的PBCH信息,因此减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量也可以被替换为减少当前频段对应的PBCH中载荷所包含的PBCH信息的PRB数量。类似地,对于DMRS而言,6个RE相当于1个PRB,因此,减少当前频段对应SSB中DMRS所占的RE数量也可以被替换为减少当前频段对应SSB中DMRS的PRB数量。换言之,所有根据单位换算修改的替代方案均落入本实施例的保护范围内。
上述实施例,在当前频段是预设类型频段时,通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者通过保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量来达到减小PBCH的带宽的目的,以解决UE搜索同步信号时间过长的问题。
图2是本申请一示例性实施例示出的另一种PBCH带宽的处理方法的流程图,如图2所示,在步骤S101之后,该PBCH带宽的处理方法还可以包括:
在步骤S103中,若当前频段不是预设类型频段,则减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变。
在当前频段不是预设类型频段时,不存在UE搜索同步信号时间过长的问题,为了减少对5G整个PBCH覆盖的影响,在该实施例中,可以在减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量的同时,增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变。
上述实施例,在当前频段不是预设类型频段时,通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变,从而实现在解决UE搜索同步信号时间过长的问题的同时,尽可能地减少对5G整个PBCH覆盖的影响。
图3是根据一示例性实施例示出的一种PBCH带宽的处理装置的框图,该装置可以位于基站中,如图3所示,该装置包括:判断模块31和第一处理模块32。
判断模块31被配置为判断当前频段是否是预设类型频段,其中,预设类型频段可使用两种子载波间隔SCS。
在5G系统中,有些频段可以使用一种SCS,而有些频段可以使用两种SCS,在该实施例中,将使用两种SCS的频段称为预设类型频段。由于预设类型频段可以使用两种SCS,因此,可能存在UE搜索同步信号的时间很长的问题。
第一处理模块32被配置为若判断模块31判断出当前频段是预设类型频段,则减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量。
在该实施例中,同步信号块(SSB)中的PBCH符号占288个RE,其中三分之一是DRMS,剩下的三分之二是PBCH的载荷(Payload),该Payload包括PBCH的信息和循环冗余校验码(CRC)。
在当前频段是预设类型频段时,可以通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应SSB中DMRS所占的RE数量不变来减小PBCH的带宽,例如,可以将载荷中包含的PBCH信息减少14~22比特。优选地,可以将载荷中包含的PBCH信息减少18比特。也可以通过保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量来减小PBCH的带宽,例如,可以将当前频段对应SSB中的DMRS减少24~48个RE。优选地,可以将当前频段对应SSB中的DMRS减少36个RE。
需要说明的是,由于12个bit的PBCH信息相当于1个PRB的PBCH信息,因此减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量也可以被替换为减少当前频段对应的PBCH中载荷所包含的PBCH信息的PRB数量。类似地,对于DMRS而言,6个RE相当于1个PRB,因此,减少当前频段对应SSB中DMRS所占的RE数量也可以被替换为减少当 前频段对应SSB中DMRS的PRB数量。换言之,所有根据单位换算修改的替代方案均落入本实施例的保护范围内。
上述实施例,在当前频段是预设类型频段时,通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者通过保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量来达到减小PBCH的带宽的目的,以解决UE搜索同步信号时间过长的问题。
图4是根据一示例性实施例示出的另一种PBCH带宽的处理装置的框图,如图4所示,在上述图3所示实施例的基础上,第一处理模块32可以包括:第一减少子模块321。
第一减少子模块321被配置为将载荷中包含的PBCH信息减少14~22比特。
在当前频段是预设类型频段时,可以通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应SSB中DMRS所占的RE数量不变来减小PBCH的带宽,例如,可以将载荷中包含的PBCH信息减少14~22比特。
优选地,第一减少子模块321可以被配置为:将载荷中包含的PBCH信息减少18比特。
上述实施例,通过限定减少的PBCH信息的比特数来描述减小PBCH带宽的一种实现方式。
图5是根据一示例性实施例示出的另一种PBCH带宽的处理装置的框图,如图5所示,在上述图3所示实施例的基础上,第一处理模块32可以包括:第二减少子模块322。
第二减少子模块322被配置为将当前频段对应SSB中的DMRS减少24~48个RE。
在当前频段是预设类型频段时,可以通过保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量来减小PBCH的带宽,例如,可以将当前频段对应SSB中的DMRS减少24~48个RE。
优选地,第二减少子模块322可以被配置为:将当前频段对应SSB中的DMRS减少36个RE。
上述实施例,通过限定减少的DMRS的RE数来描述减小PBCH带宽的另一种实现方式。
图6是根据一示例性实施例示出的另一种PBCH带宽的处理装置的框图,如图6所示,在上述图3所示实施例的基础上,该装置还可以包括:第二处理模块33。
第二处理模块33被配置为若判断模块31判断出当前频段不是预设类型频段,则减少当 前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变。
在当前频段不是预设类型频段时,不存在UE搜索同步信号时间过长的问题,为了减少对5G整个PBCH覆盖的影响,在该实施例中,可以在减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量的同时,增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变。
上述实施例,在当前频段不是预设类型频段时,通过减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加当前频段对应SSB中DMRS所占的RE数量,以使PBCH的带宽保持不变,从而实现在解决UE搜索同步信号时间过长的问题的同时,尽可能地减少对5G整个PBCH覆盖的影响。
图7是根据一示例性实施例示出的另一种适用于PBCH带宽的处理装置的框图。装置700可以被提供为一基站。参照图7,装置700包括处理组件722、无线发射/接收组件724、天线组件726、以及无线接口特有的信号处理部分,处理组件722可进一步包括一个或多个处理器。
处理组件722中的其中一个处理器可以被配置为:
判断当前频段是否是预设类型频段,其中,预设类型频段可使用两种子载波间隔SCS;
若当前频段是预设类型频段,则减少当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少当前频段对应SSB中DMRS所占的RE数量。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指令可由装置1300的处理组件1322执行以完成上述PBCH带宽的处理方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的 情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种物理广播信道PBCH带宽的处理方法,其特征在于,所述方法包括:
    判断当前频段是否是预设类型频段,其中,所述预设类型频段可使用两种子载波间隔SCS;
    若所述当前频段是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持所述当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少所述当前频段对应SSB中DMRS所占的RE数量。
  2. 根据权利要求1所述的方法,其特征在于,所述减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量,包括:
    将所述载荷中包含的PBCH信息减少14~22比特。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述载荷中包含的PBCH信息减少14~22比特,包括:
    将所述载荷中包含的PBCH信息减少18比特。
  4. 根据权利要求1所述的方法,其特征在于,所述减少所述当前频段对应SSB中DMRS所占的RE数量,包括:
    将所述当前频段对应SSB中的DMRS减少24~48个RE。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述当前频段对应SSB中的DMRS减少24~48个RE,包括:
    将所述当前频段对应SSB中的DMRS减少36个RE。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述当前频段不是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加所述当前频段对应SSB中DMRS所占的RE数量,以使所述PBCH的带宽保持不变。
  7. 一种物理广播信道PBCH带宽的处理装置,其特征在于,所述装置包括:
    判断模块,被配置为判断当前频段是否是预设类型频段,其中,所述预设类型频段可使用两种子载波间隔SCS;
    第一处理模块,被配置为若所述判断模块判断出所述当前频段是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持所述当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持所述当前 频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少所述当前频段对应SSB中DMRS所占的RE数量。
  8. 根据权利要求7所述的装置,其特征在于,所述第一处理模块包括:
    第一减少子模块,被配置为将所述载荷中包含的PBCH信息减少14~22比特。
  9. 根据权利要求8所述的装置,其特征在于,所述第一减少子模块,被配置为:
    将所述载荷中包含的PBCH信息减少18比特。
  10. 根据权利要求7所述的装置,其特征在于,所述第一处理模块包括:
    第二减少子模块,被配置为将所述当前频段对应SSB中的DMRS减少24~48个RE。
  11. 根据权利要求10所述的装置,其特征在于,所述第二减少子模块,被配置为:
    将所述当前频段对应SSB中的DMRS减少36个RE。
  12. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第二处理模块,被配置为若所述判断模块判断出所述当前频段不是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且增加所述当前频段对应SSB中DMRS所占的RE数量,以使所述PBCH的带宽保持不变。
  13. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    判断当前频段是否是预设类型频段,其中,所述预设类型频段可使用两种子载波间隔SCS;
    若所述当前频段是所述预设类型频段,则减少所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量且保持所述当前频段对应同步信号块SSB中解调参考信号DMRS所占的资源元素RE数量不变,或者保持所述当前频段对应的PBCH中载荷所包含的PBCH信息比特数量不变且减少所述当前频段对应SSB中DMRS所占的RE数量。
  14. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1所述的PBCH带宽的处理方法的步骤。
PCT/CN2017/106858 2017-10-19 2017-10-19 物理广播信道pbch带宽的处理方法及装置和基站 WO2019075690A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780001619.6A CN108353318B (zh) 2017-10-19 2017-10-19 物理广播信道pbch带宽的处理方法及装置和基站
PCT/CN2017/106858 WO2019075690A1 (zh) 2017-10-19 2017-10-19 物理广播信道pbch带宽的处理方法及装置和基站
US16/833,389 US11223458B2 (en) 2017-10-19 2020-03-27 Method and apparatus for processing physical broadcast channel (PBCH) bandwidth, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106858 WO2019075690A1 (zh) 2017-10-19 2017-10-19 物理广播信道pbch带宽的处理方法及装置和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/833,389 Continuation US11223458B2 (en) 2017-10-19 2020-03-27 Method and apparatus for processing physical broadcast channel (PBCH) bandwidth, and base station

Publications (1)

Publication Number Publication Date
WO2019075690A1 true WO2019075690A1 (zh) 2019-04-25

Family

ID=62961512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106858 WO2019075690A1 (zh) 2017-10-19 2017-10-19 物理广播信道pbch带宽的处理方法及装置和基站

Country Status (3)

Country Link
US (1) US11223458B2 (zh)
CN (1) CN108353318B (zh)
WO (1) WO2019075690A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147200B (zh) * 2018-11-02 2021-05-14 中国信息通信研究院 一种参考信号的发送方法和装置
CN111464954B (zh) * 2019-01-18 2021-10-26 华为技术有限公司 通信方法、装置及设备
CN110601809B (zh) * 2019-09-30 2021-04-02 北京紫光展锐通信技术有限公司 信息发送方法及装置、信息接收方法及装置
CN113271192B (zh) * 2020-02-14 2023-04-07 大唐移动通信设备有限公司 一种信息发送方法、接收方法及装置
CN112188573B (zh) * 2020-09-11 2023-04-21 Oppo(重庆)智能科技有限公司 小区驻留处理方法及装置、终端设备和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098401A1 (ko) * 2012-12-20 2014-06-26 주식회사 팬택 단말, 단말의 정보 수신 방법, 기지국, 및 기지국의 정보 전송 방법
CN105027584A (zh) * 2013-03-04 2015-11-04 高通股份有限公司 Mtc设备关联方案
WO2017019120A1 (en) * 2015-07-30 2017-02-02 Intel IP Corporation Physical broadcast channel design
CN106455040A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
CN106507439A (zh) * 2016-10-28 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2978244B1 (en) * 2013-04-03 2017-06-07 Huawei Technologies Co., Ltd. Broadcast information sending and receiving method, device and system
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
EP3665956A4 (en) * 2017-08-11 2020-07-29 Nec Corporation METHODS AND APPARATUS FOR TRANSMISSION OF SYNCHRONIZATION SIGNALS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098401A1 (ko) * 2012-12-20 2014-06-26 주식회사 팬택 단말, 단말의 정보 수신 방법, 기지국, 및 기지국의 정보 전송 방법
CN105027584A (zh) * 2013-03-04 2015-11-04 高通股份有限公司 Mtc设备关联方案
WO2017019120A1 (en) * 2015-07-30 2017-02-02 Intel IP Corporation Physical broadcast channel design
CN106507439A (zh) * 2016-10-28 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
CN106455040A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "NR-PBCH content", 3GPP TSG RAN WG1 NR AD-HOC#2 R1-1711264, 30 June 2017 (2017-06-30), XP051300459 *

Also Published As

Publication number Publication date
CN108353318A (zh) 2018-07-31
US20200228276A1 (en) 2020-07-16
CN108353318B (zh) 2021-08-31
US11223458B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
US10986598B2 (en) Synchronization signal carrying method and user equipment
WO2019075690A1 (zh) 物理广播信道pbch带宽的处理方法及装置和基站
WO2021027694A1 (zh) Ssb候选位置索引指示、接收方法及装置、存储介质、基站、用户设备
WO2019154425A1 (zh) 一种导频信号生成方法及装置
JP5569652B2 (ja) スケジューリングされているコンポーネントキャリアの確定方法、ユーザ端末、基地局及びシステム
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
CA2886245A1 (en) Control channel detection method and user equipment
US10992445B2 (en) Signal processing method and device
BR112012033717B1 (pt) Dispositivo de rede de acesso, equipamento de usuário e respectivos métodos de configuração de recursos de sinal de referência de demodulação
JP6935499B2 (ja) 情報伝送方法、ネットワーク機器及び端末装置
CN109548149A (zh) 一种rbg的划分方法和用户终端
CN111865478A (zh) 侧行链路控制信息的发送方法及设备
JP2017502613A (ja) フレーム中の帯域幅指示
KR20190095245A (ko) 신호 전송 방법, 네트워크 장치 및 단말기 장치
US9749848B2 (en) User apparatus, base station, user apparatus category information notification method, and user apparatus category information reception method
US11751220B2 (en) Signal sending and receiving methods and devices
EP3490317B1 (en) Control channel transmission method, device and system
WO2018228497A1 (zh) 一种指示方法、处理方法及装置
US10735384B2 (en) Techniques for key ratcheting with multiple step sizes
WO2019029385A1 (zh) 一种控制信息的发送、接收方法及设备
US11032042B2 (en) Candidate control channel resource determining method and apparatus
US10841050B2 (en) Signal sending apparatus, signal receiving apparatus, and methods
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2022151457A1 (zh) 一种多trp系统中tci状态的配置方法
JP2016092701A (ja) 能力情報通知方法、ユーザ装置、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928922

Country of ref document: EP

Kind code of ref document: A1