WO2016169479A1 - 一种数据传输方法及设备 - Google Patents

一种数据传输方法及设备 Download PDF

Info

Publication number
WO2016169479A1
WO2016169479A1 PCT/CN2016/079753 CN2016079753W WO2016169479A1 WO 2016169479 A1 WO2016169479 A1 WO 2016169479A1 CN 2016079753 W CN2016079753 W CN 2016079753W WO 2016169479 A1 WO2016169479 A1 WO 2016169479A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframes
subframe
mbsfn
csi
mbsfn subframe
Prior art date
Application number
PCT/CN2016/079753
Other languages
English (en)
French (fr)
Inventor
高雪娟
邢艳萍
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2016169479A1 publication Critical patent/WO2016169479A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method and device.
  • MTC Machine Type Communication
  • LTE Long Term Evolution
  • MTC terminal may have some of the characteristics of a variety of Machine to Machine (M2M) communication features, such as low mobility, small amount of transmitted data, insensitivity to communication delay, and extremely low requirements.
  • M2M Machine to Machine
  • the shortcoming of the prior art is that in the existing network, terminals working in some scenarios, such as terminals working in a basement, a shopping mall, or a corner of a building, because the wireless signal is severely blocked, the signal is greatly attenuated, and the terminal cannot Communicate with the network.
  • the present invention provides a data transmission method and apparatus for reducing the number of repetitions when the coverage gain is enhanced by repeated transmission.
  • a data transmission method is provided in the embodiment of the present invention, including:
  • all REs in the CSI-RS subframes that may be configured by the CSI-RS in all the possible configured CSI-RS subframes in the plurality of subframes are REs for transmitting CSI-RS reserved in the multiple subframes. And performing, in each of the plurality of subframes, performing rate matching and physical resource mapping on the physical downlink channel, and removing the reserved RE for transmitting the CSI-RS;
  • the RE occupied by the CSI-RS is an RE reserved for transmitting CSI-RSs in the X subframes, where X is a natural number, and in each of the X subframes, physical downlink When the channel performs rate matching and physical resource mapping, the reserved RE for transmitting the CSI-RS is removed.
  • the plurality of subframes include a multicast broadcast single frequency network MBSFN subframe and/or a non-MBSFN subframe;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the method further includes:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the cell-specific reference signal CRS in the non-MBSFN subframe, and performs rate matching and physical resource mapping on the physical downlink channel in the MBSFN subframe. Reserving the reserved CRS RE;
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing rate matching and physical resource mapping on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the same transmission scheme is used when transmitting data, and specifically includes:
  • the transmission is performed according to a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes;
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme is specifically:
  • Use single antenna port 7 or 8 based on dedicated demodulation reference signal DMRS for transmission, or DMRS based P antenna port for random beamforming, P> 1; or, for transmission mode 9 and transmission mode 10, use
  • the transmission scheme corresponding to the DCI format of the downlink control information for scheduling the multi-codewords performs spatial multiplexing transmission of a maximum of 8 layers on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the DCI format.
  • the data is transmitted on the REs reserved for the CSI-RS, further comprising: transmitting data on the REs reserved for the control area; and/or, if there is a CRS, reserved for the CRS
  • the RE is transmitted on the RE, wherein the RE reserved for the CRS is the RE corresponding to each antenna port where the CRS is transmitted; and/or, if the DMRS is present, the data is transmitted on the RE reserved for the DMRS, where The RE reserved for the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • a data transmission method is provided in the embodiment of the present invention, including:
  • At least the REs reserved for transmitting the CSI-RSs reserved in the plurality of subframes are determined, and the data is received on the REs reserved for the CSI-RS.
  • all REs in the CSI-RS subframes that may be configured by the CSI-RS in all the possible configured CSI-RS subframes in the plurality of subframes are REs for transmitting CSI-RS reserved in the multiple subframes. And performing, in each of the plurality of subframes, performing RE resource mapping and de-rate matching on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the plurality of subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the method further includes:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reservation when performing physical resource mapping and de-rate matching on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing physical resource mapping and de-rate matching on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the same transmission scheme is used when receiving data.
  • the same transmission scheme is used when receiving data, including:
  • Reception is performed in accordance with a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes;
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme is specifically:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the DCI format.
  • receiving data on the REs reserved for the CSI-RS further includes: receiving data on the REs reserved for the control area; and/or, if there is a CRS, reserving the REs other than the CRS Receiving data, wherein the RE reserved for the CRS is an RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, receiving data on an RE reserved for the DMRS, where The RE reserved for the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • a data transmission device is provided in the embodiment of the present invention, including:
  • a determining module configured to determine, at least when the same data is repeatedly transmitted on multiple subframes, at least REs reserved for transmitting CSI-RSs in the multiple subframes;
  • a transmission module configured to transmit data on an RE reserved for a CSI-RS.
  • the determining module is further configured to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing rate matching and physical resource mapping on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the plurality of subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the determining module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, or when the non-MBSFN subframe and the MBSFN subframe are included in each of the X subframes:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reserved CRS when performing rate matching and physical resource mapping on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing rate matching and physical resource mapping on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the transmitting module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, or when the non-MBSFN subframe and the MBSFN subframe are included in each of the X subframes:
  • MBSFN subframes and non-MBSFN subframes the same transmission scheme is used when transmitting data.
  • the transmission module is further configured to use when transmitting data in the MBSFN subframe and the non-MBSFN subframe.
  • the transmission module is further configured to use when transmitting data in the MBSFN subframe and the non-MBSFN subframe.
  • the transmission is performed according to a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes;
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the transmission module is further configured to transmit when the transmission scheme is predetermined:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the DCI format.
  • the transmission module is further configured to: transmit data on an RE reserved outside the control area; and/or, if there is a CRS, transmit data on an RE reserved for the CRS, wherein the data is reserved for the CRS RE is the RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is DMRS, the data is transmitted on the RE reserved for the DMRS, where the RE reserved for the DMRS is where the DMRS is transmitted.
  • a data transmission device is provided in the embodiment of the present invention, including:
  • a determining module configured to determine, at least when the same data is repeatedly transmitted on multiple subframes, at least REs reserved for transmitting CSI-RSs in the multiple subframes;
  • a receiving module configured to receive data on an RE reserved for the CSI-RS.
  • the determining module is further configured to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing physical resource mapping and de-rate matching on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the plurality of subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the determining module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, Or, when non-MBSFN subframes and MBSFN subframes are included in every X subframes:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reservation when performing physical resource mapping and de-rate matching on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing physical resource mapping and de-rate matching on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the receiving module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, or when the non-MBSFN subframe and the MBSFN subframe are included in each of the X subframes:
  • MBSFN subframes and non-MBSFN subframes the same transmission scheme is used when receiving data.
  • the receiving module is further configured to use the same transmission scheme when receiving data in the MBSFN subframe and the non-MBSFN subframe:
  • Reception is performed in accordance with a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes;
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the receiving module is further configured to perform receiving according to the predetermined transmission scheme:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the DCI format.
  • the receiving module is further configured to: receive data on an RE reserved outside the control area; and/or, if there is a CRS, receive data on an RE reserved for the CRS, where the data is reserved for the CRS
  • the RE is the RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, the data is received on the RE reserved for the DMRS, where the RE reserved for the DMRS is where the DMRS is transmitted.
  • the embodiment of the invention provides a data transmission device, including:
  • a processor for reading a program in the memory performing the following process:
  • a transceiver for transmitting data under the control of a processor performing the following processes:
  • Data is transmitted on REs reserved for CSI-RS.
  • the processor is further configured to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing rate matching and physical resource mapping on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the plurality of subframes include non-MBSFN subframes and/or MBSFN subframes; or, each X subframes includes non-MBSFN subframes and/or MBSFN subframes.
  • the transceiver is further configured to:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and performs the rate matching and the physical resource mapping on the physical downlink channel in the MBSFN subframe, and removes the reserved cell.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing rate matching and physical resource mapping on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the transceiver uses the same transmission scheme when transmitting data in MBSFN subframes and non-MBSFN subframes.
  • the transceiver when the same transmission scheme is used for transmitting data, the transceiver is specifically configured to:
  • the transmission is performed according to a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes;
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme used by the transceiver is specifically:
  • Use single antenna port 7 or 8 based on dedicated demodulation reference signal DMRS for transmission, or DMRS based P antenna port for random beamforming, P> 1; or, for transmission mode 9 and transmission mode 10, use The transmission scheme corresponding to the DCI format for scheduling multiple codewords, according to the number of DMRS antenna ports indicated by the scheduling signaling, A maximum of 8 layers of spatial multiplexing transmission is performed on some or all of the antenna ports 7 to 14.
  • the transceiver when transmitting the data on the multiple subframes, when transmitting data on the REs reserved for the CSI-RS, the transceiver is further configured to: transmit data on the REs reserved for the control area; and/ Or, if there is a CRS, transmitting data on an RE reserved for the CRS, wherein the RE reserved for the CRS is an RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, The RE is reserved for transmission on the RE other than the DMRS, where the RE reserved for the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • the embodiment of the invention provides a data transmission device, including:
  • a processor for reading a program in the memory performing the following process:
  • a transceiver for transmitting data under the control of a processor performing the following processes:
  • the processor is further configured to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing physical resource mapping and de-rate matching on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the plurality of subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the transceiver is further configured to:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reservation when performing physical resource mapping and de-rate matching on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing physical resource mapping and de-rate matching on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the same transmission scheme is used when receiving data.
  • the transceiver is specifically used to:
  • Reception is performed in accordance with a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes;
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme used by the transceiver is specifically:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the scheduling signaling.
  • the transceiver when the data is transmitted on multiple subframes, when receiving data on an RE other than the CSI-RS, the transceiver is further configured to: receive data on an RE reserved outside the control region; and/ Or, if there is a CRS, receiving data on an RE reserved for the CRS, wherein the RE reserved for the CRS is an RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, The RE is reserved for the REs other than the DMRS, and the RE reserved for the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • the resource mapping and rate matching of multiple subframes during transmission assumes the same CSI-RS resource reservation
  • the number of data transmission resources of each of the plurality of subframes participating in the cross-subframe channel estimation is guaranteed to be the same; in addition, when there are MBSFN subframes and non- In the MBSFN subframe, the same control region resource reservation, the same CRS resource reservation, and the same DMRS resource reservation (if DMRS exists) are assumed for the MBSFN subframe and the non-MBSFN subframe, that is, the data transmission is reserved.
  • the number of data transmission resources of the MBSFN subframe and the non-MBSFN subframe participating in the cross-subframe channel estimation is the same.
  • the number of available REs in the data transmission when the resource mapping is performed may be avoided due to different CSI-RSs, control area sizes, and CRS conditions included in different downlink subframes.
  • the problem that the number of target coding bits of the data channel coding and the rate matching is different can ensure the same size of the data mapping resources in each subframe, thereby supporting coherent combining when multi-subframe channel estimation is adopted.
  • FIG. 1 is a schematic flowchart of an implementation process of a data transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of PDSCH resource allocation according to mode 1 in the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a PD available in a PRB in a PRB according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of PDSCH resource allocation in mode 2 according to an embodiment of the present invention.
  • 5 is a schematic diagram of available REs of each subframe in a subframe group including CSI-RS according to method 2 of the embodiment of the present invention
  • FIG. 6 is a schematic diagram of available REs of each subframe in a subframe group that does not include a CSI-RS according to Embodiment 2 of the embodiment of the present invention
  • FIG. 7 is a schematic diagram of a receiving implementation process of a data transmission method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a data transmission device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a receiving part of a data transmission device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular" Telephone), a computer with wireless communication function, etc., the user equipment can also be portable, sleeve Jane, handheld, computer built-in or in-vehicle mobile devices.
  • RAN Radio Access Network
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • the use of the network for deep coverage of the network will greatly increase the network construction cost, and the benefits are not necessarily significant.
  • CSI-RS channel state information reference signal
  • CSI-RSs can be configured in a given cell:
  • the terminal assumes 0 or 1 non-zero power CSI-RS; the terminal assumes zero or more zero-power CSI-RS; when high-level signaling ZeroPowerCSI-RS (Zero Power CSI-RS, referred to as ZP CSI-RS) 16 bits Some of the locations are set to 1, and the terminal assumes that the corresponding 4-port CSI-RS location is zero power unless these resource elements overlap with the non-zero power CSI-RS (abbreviated as NZP XSI-RS) configured by the higher layer signaling.
  • the bit corresponds to the 4-port CSI-RS configuration number one by one, and the first bit on the left corresponds to the lowest index number of the CSI-RS.
  • the CSI-RS only occurs in: the downlink time slot, the regular cyclic prefix (Cyclic Prefix, CP) and the extended CP satisfy the conditions shown in Tables 15.5-1 and 15.5-2, respectively, and the configuration period T in the subframe according to the CSI-RS
  • the CSI-RS and the subframe offset ⁇ CSI-RS are determined to be transmitted in the downlink subframe, as listed in Table 15.5-3. That is, the subframe containing the CSI-RS will satisfy:
  • the non-zero power CSI-RS and zero power CSI-RS may respectively configure the configuration index parameter I CSI-RS in Table 15.5-3.
  • the terminal assumes that the CSI-RS does not transmit in the following cases: a special subframe of a type 2 subframe structure, a CSI-RS and a synchronization signal, a physical broadcast channel (PBCH), and a system information block 1 (SystemInformationBlockType1, SIB-1) A subframe in which collision occurs; a subframe in which paging information is configured.
  • a special subframe of a type 2 subframe structure a CSI-RS and a synchronization signal
  • PBCH physical broadcast channel
  • SIB-1 system information block 1
  • Table 15.5-1 Mapping from CSI reference signal configuration to (k', l') for normal cyclic prefix (the resource mapping position of the CSI-RS corresponding to the CSI-RS configuration index under different antenna ports (k' , l')).
  • Table 15.5-2 Mapping from CSI reference signal configuration to (k', l') for extended cyclic prefix (the resource mapping position of the CSI-RS corresponding to the CSI-RS configuration index under different antenna ports under the extended CP (k') , l')).
  • Table 15.5-3 CSI reference signal subframe configuration (CSI-RS subframe configuration)
  • the multicast broadcast single frequency network (MBSFN) subframe will be described below.
  • an MBSFN subframe is defined; in one radio frame, for subframes other than subframe 0 and subframe 5, in principle, it can be configured as an MBSFN subframe.
  • the MBSFN subframe is divided into two areas, an MBSFN area and a non-MBSFN area. In the MBSFN area, there is no cell-specific reference signal, or a Cell-specific Reference Signal (CRS), and there is a CRS in the non-MBSFN area.
  • the Physical Multicast Channel (PMCH) uses extended CP transmission only in the MBSFN area of the MBSFN subframe, that is, the Orthogonal Frequency Division Multiplex (OFDM) symbol number is satisfied in the first time slot.
  • OFDM Orthogonal Frequency Division Multiplex
  • the symbol of ⁇ 1 PMCHStart starts transmission, where l PMCHStart is the length of the non-MBSFN area in the MBSFN subframe configured for higher layer signaling.
  • the non-MBSFN area in the MBSFN subframe that is, the control area, may transmit a PDCCH (Physical Downlink Control Channel), and use a CP type transmission consistent with the subframe 0 to schedule a physical uplink shared channel (Physical). Uplink Shared Channel (PUSCH) or Physical Downlink Shared Channel (PDSCH).
  • PDCCH Physical Downlink Control Channel
  • PUSCH Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • the length of the non-MBSFN area in the MBSFN subframe may be configured to be 0, 1, 2, and may be configured as 0 for the MBSFN subframe that only transmits the PMCH, and 1 or 2 for the MBSFN subframe supporting the PDSCH transmission.
  • the configuration is 2, that is, 2 OFDM symbols are reserved for transmitting the PDCCH.
  • the size of the control area can be 1, 2, and 3, as shown in Table 6.7-1.
  • Table 6.7-1 Number of OFDM symbols used for PDCCH (number of OFDM symbols occupied by the PDCCH (ie, control region size)).
  • the PDSCH may be transmitted in an MBSFN subframe other than the MBSFN subframe in the following cases: 1) the upper layer notifies that the MBSFN subframe of the PMCH needs to be received; 2) is configured to transmit the positioning reference signal (PRS) and the PRS only It is configured to transmit in MBSFN subframes and when subframe 0 uses a regular CP.
  • PRS positioning reference signal
  • the transmittable MBSFN subframes The PDSCHs transmitted in the MBSFN subframes currently only support transmission mode 9 and mode 10 based on Dedicated DeModulation Reference Signal (DMRS) transmission, as shown in the following table.
  • DMRS Dedicated DeModulation Reference Signal
  • cross-subframe channel estimation refers to joint channel estimation using reference signals in multiple subframes.
  • a typical processing method is to weight-average the results of channel estimation of multiple subframes.
  • the data parts of the multiple sub-frames can be coherently combined and then demodulated.
  • the premise of coherent combining is that the transmitted signals in the multiple subframes used for merging are the same.
  • the CSI-RS is transmitted in a specific resource element (Resource Element, RE) resource according to a configured period, and the CSI-RS conditions included in different downlink subframes are different, resulting in data transmission when resource mapping is performed.
  • the number of available RE numbers is different, and the number of target coding bits of data channel coding and rate matching is different, and data cannot be coherently combined when multiple subframes are repeatedly transmitted.
  • differences such as whether there are CRS, control area size, presence or absence of DMRS, and different transmission schemes existing between the MBSFN subframe and the non-MBSFN subframe may also result in different numbers of available REs when data transmission is performed for resource mapping.
  • a data repetition transmission scheme is provided to ensure that the data mapping resources in each subframe are the same in size, thereby supporting coherent combining when multi-subframe channel estimation is adopted. The implementation of this scheme will be described below.
  • FIG. 1 is a schematic diagram of a process for implementing a data transmission method. As shown in the figure, the following steps may be included:
  • Step 101 When repeatedly transmitting the same data on multiple subframes, determining at least REs reserved for transmitting CSI-RSs in the multiple subframes;
  • Step 102 Transmit data on an RE reserved for the CSI-RS.
  • subframe sets For ease of description and understanding, a plurality of subframes are also referred to as subframe sets below.
  • the CSI-RS includes zero power CSI-RS and/or non-zero power CSI-RS.
  • the RE corresponding to each antenna port in which the transmission is located; and/or, if there is a DMRS, receiving data on the RE reserved for the DMRS, wherein the RE reserved for the DMRS is each antenna port where the DMRS is transmitted Corresponding RE; that is, the RE reserved for the CSI-RS cannot be used to transmit data, and the RE reserved for the control region cannot be used to transmit data.
  • the RE reserved for the CRS cannot Used to transmit data.
  • DMRS exists the RE reserved for DMRS cannot be used to transmit data;
  • the data may be coherently merged between multiple subframes when the receiver uses multi-subframe channel estimation.
  • the data may be based on CRS or DMRS based demodulation, but in each subframe within a subframe group using multi-subframe channel estimation, demodulation based on the same reference signal.
  • the transmitting end first determines a subframe set of a certain physical channel time domain repeated transmission, and then, in each subframe in the subframe set, the data resource mapping does not use any RE that may be occupied by the CSI-RS configuration; or In each X subframe in the subframe set, for each of the X subframes, the data resource mapping does not use the X subframes
  • the RE in the CSI-RS configuration may be occupied. That is, when the data resource mapping is performed, the CSI-RS resources are reserved according to the maximum CSI-RS configuration resource in the system, or the X subframes are grouped, and the maximum CSI configured according to the subframes in the group in each subframe in the group.
  • the RS resource reserves CSI-RS resources to ensure that the number of data resources in each of the same group of subframes participating in the multi-subframe channel estimation is the same.
  • the resource elements reserved for the CSI-RS are resource units reserved for transmitting the CSI-RS according to the maximum CSI-RS configuration resource in the system.
  • Manner 2 A resource unit reserved for a CSI-RS in a plurality of subframes, wherein when a plurality of subframes are grouped by X subframes, a configuration CSI-RS is used for configuration in X subframes in each subframe.
  • the resource unit is reserved as a resource unit of the CSI-RS for each subframe in the subframe group, where X is a natural number.
  • the multiple subframes include non-MBSFN subframes and/or MBSFN subframes; or, each X subframes includes non-MBSFN subframes and/or MBSFN subframes.
  • the subframe set consisting of multiple subframes may include only non-MBSFN subframes, or may only include MBSFN subframes, and may also include MBSFN subframes and non-MBSFN subframes.
  • each group of subframes may include only non-MBSFN subframes, or may only include MBSFN subframes, or may also include MBSFN subframes.
  • non-MBSFN subframes may include only non-MBSFN subframes, or may only include MBSFN subframes, or may also include MBSFN subframes.
  • a non-MBSFN subframe and an MBSFN subframe are included in a subframe set composed of multiple subframes, or X in each subframe subframe when the subframe set is divided into a group by X subframes.
  • a sub-frame contains non-MBSFN subframes and MBSFN subframes:
  • the method further includes:
  • the CSF resource is reserved in the MBSFN area of the MBSFN subframe according to the CRS resource mapping manner in the non-MBSFN subframe, and the reserved CRS resources are not used when the data is mapped in the MBSFN subframe;
  • the size of the control region in the subframe is the maximum of the control region size of the MBSFN subframe configured by the system and the size of the control region of the non-MBSFN subframe. That is, not mapped to the first few OFDM symbols indicated by the maximum value;
  • 3) data transmission uses the same transmission scheme in MBSFN subframes and non-MBSFN subframes; for example, demodulation based on the same reference signal, the number of transmission ports is the same, using the same precoding method (for example, both are single End Port transmission, either for transmit diversity transmission, or both for random beamforming (RBF) transmission, or for spatial multiplexing transmission of the same number of ports and layers, using the same antenna port).
  • the same precoding method for example, both are single End Port transmission, either for transmit diversity transmission, or both for random beamforming (RBF) transmission, or for spatial multiplexing transmission of the same number of ports and layers, using the same antenna port.
  • Data transmission is based on CRS or both based on DMRS demodulation.
  • the subframe is followed in both the MBSFN subframe and the non-MBSFN subframe.
  • the transport scheme used in a particular subframe in the collection is transmitted:
  • the scheduling signaling uses the downlink control signaling format ( Downlink Control Information Format (DCI format) 1A
  • DCI format Downlink Control Information Format
  • the subframe is a non-MBSFN subframe
  • all subframes in the subframe set are scheduled in a non-MBSFN subframe according to the transmission mode 9 DCI format 1A.
  • the transmission mode is transmitted, that is, based on CRS, if the number of antenna ports of the PBCH is 1, the single antenna port is used for transmission, otherwise the transmission diversity transmission is used; for example, the first subframe in the subframe set is scheduled to be used.
  • the MBSFN subframe is scheduled according to the transmission mode 9 DCI format 1A in all the subframes in the subframe set.
  • the transmission is performed, that is, based on the DMRS, using the single antenna port transmission at the antenna port 7; for example, the transmission mode 9 is scheduled to be used in the first subframe in the subframe set, and the scheduling signaling is With DCI format 2C, all the subframes in the subframe set are transmitted according to the number of antenna ports notified in the transmission mode 9 DCI format 2C scheduling signaling, that is, based on the DMRS, in the antenna ports 7 to 14 Part or all of the ports for maximum 8-layer spatial multiplexing transmission;
  • b) always transmitting according to the transmission scheme in the MBSFN subframe; for example, DMRS based single antenna port 7 transmission.
  • the predetermined data repetition transmission is always transmitted using the DMRS-based single antenna port 7 or 8, or always using the DMRS-based P antenna port random beamforming method; or for the transmission mode 9 always according to the scheduling using the DCI format 2C The mode is transmitted.
  • the transmission is always performed according to the DCI format 2D scheduling, that is, according to the number of DMRS antenna ports indicated by the scheduling signaling, a maximum of 8 layers are performed on some or all of the antenna ports 7 to 14 Spatial multiplexing transmission.
  • a physical downlink shared channel (PDSCH) carrying a downlink shared channel (DL-SCH) transport block (TB) is taken as an example.
  • the CSI-RS is configured as a 1-port configuration 0 (ie, the CSI reference signal configuration in Table 15.5-1 is 0, and the transmission port is CSI-RS port 15).
  • This embodiment is used to describe a resource unit reserved for a CSI-RS in a plurality of subframes, and is an implementation in which resources for transmitting CSI-RSs may be reserved in each of the plurality of subframes.
  • FIG. 2 is a schematic diagram of resource allocation of PDSCH repeated transmission in mode 1
  • FIG. 3 is a schematic diagram of REs available in PDSCH in a PRB according to mode 1, which will be described below with reference to FIGS. 2 and 3.
  • the RE of the control region the RE carrying the CRS, the RE carrying the DMRS (if the PDSCH is based on DMRS demodulation), and all the REs that may carry the CSI-RS are not used. Transmitted on PDSCH.
  • the RE corresponding to CRS port 0 is not used. If the number of CRS ports is 2, the REs corresponding to CRS ports 0 and 1 are not used; if the number of CRS ports is 4, CRS is used. The REs corresponding to ports 0 to 3 are not used.
  • the RE corresponding to the DMRS port 7/8 is not used. If the DMRS exists and the number of DMRS ports is greater than 2, the REs corresponding to the DMRS ports 7 to 10 are not used. (The resources of DMRS ports 11 to 14 are the same as ports 7 to 10). Further, the size of the control region may be 0 to 4 symbols; the method may support multi-subframe channel estimation where X is any value.
  • Frequency Division Duplex FDD
  • FDD Frequency Division Duplex
  • PRB Physical Resource Block
  • the PDSCH transmission can occupy up to 6 PRB transmissions.
  • FIG. 3 four ports of CRS, four or eight ports of DMRS are given, wherein the mapping resources of ports 11 to 14 are the same as ports 7 to 10, and three symbol control areas are taken as an example. Change according to actual conditions;
  • an MBSFN subframe exists in 100 subframes, for example, only subframe 0 and subframe 5 in each radio frame are non-MBSFN subframes, and other subframes are MBSFN subframes, and an MBSFN subframe is assumed.
  • the control area is configured as 2 symbols
  • the control area of the non-MBSFN subframe is configured as 3, and the resources are reserved for 3 OFDM symbols according to the control area in the MBSFN subframe and the non-MBSFN subframe, that is, the data in each subframe. Neither is mapped to the first 3 OFDM symbols.
  • the actual configured control region size is only 2 OFDM symbols, but in order to be consistent with the MBSFN, the first 3 OFDM symbols need to be vacated.
  • the data is not transmitted; the CRS resource is reserved in the MBSFN area in the MBSFN subframe according to the CRS resource mapping manner in the non-MBSFN subframe, that is, the other subframes other than the subframe #5 are the same as the CRS existing in the subframe #5.
  • Reserve the RE location of the CRS, not For data mapping, the number of available REs for data transmission in all subframes is as described in FIG. 3; the transmission scheme used is consistent in each subframe, and can be determined in the foregoing manner.
  • the data is subjected to channel coding and rate matching in each of the repeatedly transmitted subframes in accordance with the available RE number determined in the above manner.
  • This embodiment is used to describe a resource unit reserved for a CSI-RS in a plurality of subframes.
  • the X subframes are used for each of the X subframes.
  • FIG. 4 is a schematic diagram of PDSCH resource allocation of mode 2
  • FIG. 5 is a schematic diagram of available REs of each subframe in a subframe group including CSI-RS
  • FIG. 6 is a schematic diagram of mode 2 that does not include CSI-RS.
  • a schematic diagram of the available REs for each subframe in the subframe group is described below in conjunction with FIGS. 4, 5, and 6.
  • the RE corresponding to CRS port 0 is not used. If the number of CRS ports is 2, the REs corresponding to CRS ports 0 and 1 are not used; if the number of CRS ports is 4, CRS is used. The REs corresponding to ports 0 to 3 are not used.
  • the RE corresponding to the DMRS port 7/8 is not used. If the DMRS exists and the number of DMRS ports is greater than 2, the REs corresponding to the DMRS ports 7 to 10 are not used. .
  • the four ports of the CRS, the four-port or the eight-port DMRS are shown in FIG. 4, wherein the mapping resources of the ports 11 to 14 are the same as the ports 7 to 10, and the two symbol control areas are taken as an example.
  • these parameters can be changed according to the actual situation.
  • subframe #4 resources of consecutive 100 subframes starting from radio frame #M slot #8 (ie, subframe #4) are used for multiple transmissions of the same DL-SCH TB, and every four subframes are one.
  • the group performs multi-subframe channel estimation.
  • the different line types as shown in FIG. 4 are multi-subframe channel estimation packets, and the available REs in every 4 subframes are as shown in FIG. 5 and FIG. 6, and are only configured in the four subframes.
  • the first subframe group includes the wireless Subframe #4 to subframe #7 in frame #M, where subframe #4 includes CSI-RS, and other subframes do not have CSI-RS, in order to unify the number of REs available for PDSCH in the four subframes, this is 4 subframes are resource mapped according to FIG.
  • subframes #5, 6, and 7 that do not have CSI-RS transmission also need to reserve resources for CSI-RS according to CSI-RS configuration in subframe #4;
  • the subframe group includes subframes #8, 9 in the radio frame #M and subframes #0, 1 in the radio frame #M+1, and there is no CSI-RS configuration in the four subframes, and there is no need to transmit CSI- RS, then the four sub-frames are according to Figure 6.
  • Resource mapping i.e. does not reserve CSI-RS resource; and so on.
  • the control area of the frame is configured as 2 symbols, and the control area of the non-MBSFN subframe is configured to be 1, and the resources are reserved for the 2 OFDM symbols according to the control region in both the MBSFN subframe and the non-MBSFN subframe, that is, for the first Sub-frame groups, data in each sub-frame is not mapped to the first 2 OFDM symbols, for example, for sub-frames #4, #6, #7 of non-MBSFN sub-frames, the actual configured control area size is only 1 OFDM symbol, but in order to be consistent with the MBSFN, it is necessary to vacate the first two OFDM symbols without transmitting data; in the MBSFN region in the MBSFN subframe, the CRS resource is reserved according to the CRS resource mapping manner in the non-MBSFN subframe, that is, the subframe # 4, #6, #7 must reserve the RE position of the CRS according to the CRS existing in the subframe #5, without data mapping, the data transmission in the 4 subframes of the first subframe group can be used RE
  • the data is used in each of the repeatedly transmitted subframes for channel coding and rate matching in accordance with the available RE number determined in the above manner.
  • the embodiment of the present invention further provides a receiving scheme of the data transmission method.
  • the following description will be made.
  • FIG. 7 is a schematic diagram of a receiving implementation process of a data transmission method, as shown in the figure, which may include the following steps:
  • Step 701 When repeatedly transmitting the same data on multiple subframes, determining at least REs reserved for transmitting CSI-RSs in the multiple subframes;
  • Step 702 Receive data on an RE reserved for the CSI-RS.
  • determining, in all possible configuration CSI-RS subframes in the multiple subframes, all REs that may be occupied by CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, And performing, in each of the plurality of subframes, performing RE resource mapping and de-rate matching on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • a plurality of subframes include non-MBSFN subframes and/or MBSFN subframes; or, each X subframes includes non-MBSFN subframes and/or MBSFN subframes.
  • the method may further include:
  • the MBSFN area in the MBSFN subframe reserves CRS according to the RE occupied by the CRS in the non-MBSFN subframe.
  • RE in the MBSFN subframe, when performing physical resource mapping and de-rate matching on the physical downlink channel, removing the reserved CRS RE;
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing physical resource mapping and de-rate matching on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the same transmission scheme is used when receiving data.
  • the same transmission scheme is used when receiving data, and specifically includes:
  • Reception is performed in accordance with a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme is specifically:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the scheduling signaling.
  • receiving data on the REs reserved for the CSI-RS further includes: receiving data on the REs reserved for the control area; and/or, if there is a CRS, reserving the REs other than the CRS Receiving data, wherein the RE reserved for the CRS is an RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, receiving data on an RE reserved for the DMRS, wherein, the reserved The RE to the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • a data transmission device is also provided in the embodiment of the present invention. Since the principle of solving the problem is similar to a data transmission method, the implementation of the device can refer to the implementation of the method, and the repetition is no longer Narration.
  • FIG. 8 is a schematic structural diagram of a data transmission device. As shown in the figure, the device may include:
  • the determining module 801 is configured to determine, at least when the same data is repeatedly transmitted on the multiple subframes, the resource unit RE for transmitting the CSI-RS reserved in the multiple subframes;
  • the transmission module 802 is configured to transmit data on an RE reserved for the CSI-RS.
  • the determination module is further used to:
  • the pre-removal is performed.
  • the REs occupied by the CSI-RS in the configured CSI-RS subframes in each of the X subframes are reserved in the X subframes.
  • the multiple subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the determining module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, or when the non-MBSFN subframe and the MBSFN subframe are included in each of the X subframes:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reserved CRS when performing rate matching and physical resource mapping on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing rate matching and physical resource mapping on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the transport block is further configured to include a non-MBSFN subframe and an MBSFN subframe in the multiple subframes, or, when each of the X subframes includes a non-MBSFN subframe and an MBSFN subframe:
  • MBSFN subframes and non-MBSFN subframes the same transmission scheme is used when transmitting data.
  • the transmission module is further configured to use the same transmission scheme when transmitting data in the MBSFN subframe and the non-MBSFN subframe:
  • the transmission is performed according to a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the transmission module is further used when in accordance with a predetermined transmission scheme:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the scheduling signaling.
  • the transmission module is further configured to: transmit data on an RE reserved outside the control area; and/or, if there is a CRS, transmit data on an RE reserved for the CRS, where the RE reserved for the CRS The RE corresponding to each antenna port where the CRS is transmitted; and/or if there is a DMRS, the data is reserved on the RE reserved for the DMRS, wherein the RE reserved for the DMRS is the DMRS where the transmission is located.
  • FIG. 9 is a schematic structural diagram of a receiving part of a data transmission device. As shown in the figure, the device may include:
  • the determining module 901 is configured to determine, at least when the same data is repeatedly transmitted on the multiple subframes, the resource unit RE for transmitting the CSI-RS reserved in the multiple subframes;
  • the receiving module 902 is configured to receive data on an RE reserved for the CSI-RS.
  • the determination module is further used to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing physical resource mapping and de-rate matching on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the multiple subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the determining module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, or when the non-MBSFN subframe and the MBSFN subframe are included in each of the X subframes:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reservation when performing physical resource mapping and de-rate matching on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing physical resource mapping and de-rate matching on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the receiving module is further configured to include the non-MBSFN subframe and the MBSFN subframe in the multiple subframes, or when the non-MBSFN subframe and the MBSFN subframe are included in each of the X subframes:
  • MBSFN subframes and non-MBSFN subframes the same transmission scheme is used when receiving data.
  • the receiving module is further configured to use the same transmission scheme when receiving data in the MBSFN subframe and the non-MBSFN subframe:
  • Reception is performed in accordance with a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the receiving module is further used for a predetermined transmission scheme:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the scheduling signaling.
  • the receiving module is further configured to: receive data on an RE reserved outside the control area; and/or, if there is a CRS, receive data on an RE reserved for the CRS, where the RE reserved for the CRS The RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, receiving data on the RE reserved for the DMRS, where the RE reserved for the DMRS is the DMRS where the transmission is located.
  • FIG. 10 is a schematic structural diagram of a base station, as shown in the figure, the base station includes:
  • the processor 1000 is configured to read a program in the memory 1020 and perform the following process:
  • the transceiver 1010 is configured to send data under the control of the processor 1000, and performs the following processes:
  • Data is transmitted on REs reserved for CSI-RS.
  • the processor 1000 is further configured to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing rate matching and physical resource mapping on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the multiple subframes include MBSFN subframes and/or MBSFN subframes
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the transceiver 1010 is further configured to:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and performs the rate matching and the physical resource mapping on the physical downlink channel in the MBSFN subframe, and removes the reserved cell.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing rate matching and physical resource mapping on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the transceiver 1010 when the same transmission scheme is used for transmitting data in the MBSFN subframe and the non-MBSFN subframe, the transceiver 1010 is specifically configured to:
  • the transmission is performed according to a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme used by the transceiver 1010 is specifically:
  • Use single antenna port 7 or 8 based on dedicated demodulation reference signal DMRS for transmission, or DMRS based P antenna port for random beamforming, P> 1; or, for transmission mode 9 and transmission mode 10, use
  • the transmission scheme corresponding to the DCI format for scheduling the multi-codewords performs spatial multiplexing transmission of a maximum of 8 layers in some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the scheduling signaling.
  • the transceiver 1010 when transmitting the data on multiple subframes, when transmitting data on an RE other than the CSI-RS, is further configured to: transmit data on an RE reserved for the control area; and / Or, if there is a CRS, transmitting data on an RE reserved for the CRS, wherein the RE reserved for the CRS is an RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, The RE is reserved for transmission on the RE other than the DMRS, where the RE reserved for the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1000 and various circuits of memory represented by memory 1020.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1010 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 in performing operations.
  • the user equipment includes:
  • the processor 1100 is configured to read a program in the memory 1120 and perform the following process:
  • the transceiver 1110 is configured to send data under the control of the processor 1100, and performs the following process:
  • processor 1100 is further configured to:
  • all REs that may be occupied by the CSI-RS are REs for transmitting CSI-RS reserved in the multiple subframes, where In each of the plurality of subframes, when performing physical resource mapping and de-rate matching on the physical downlink channel, removing the reserved RE for transmitting the CSI-RS;
  • the multiple subframes include non-MBSFN subframes and/or MBSFN subframes;
  • non-MBSFN subframes and/or MBSFN subframes are included in every X subframes.
  • the transceiver 1110 is further configured to:
  • the MBSFN area in the MBSFN subframe reserves the CRS RE according to the RE occupied by the CRS in the non-MBSFN subframe, and removes the reservation when performing physical resource mapping and de-rate matching on the physical downlink channel in the MBSFN subframe.
  • control region size is the maximum of the control region size of the MBSFN subframe configured by the system and the control region size of the non-MBSFN subframe, and performing physical resource mapping and de-rate matching on the physical downlink channel. Removing the RE of the control region corresponding to the maximum value;
  • the same transmission scheme is used when receiving data.
  • the transceiver 1110 when the same transmission scheme is used when receiving data in the MBSFN subframe and the non-MBSFN subframe, the transceiver 1110 is specifically configured to:
  • Reception is performed in accordance with a predetermined transmission scheme in both the MBSFN subframe and the non-MBSFN subframe.
  • the first subframe is the first subframe of the multiple subframes or the X subframes
  • the first subframe is an MBSFN subframe
  • the first subframe is a non-MBSFN subframe.
  • the predetermined transmission scheme used by the transceiver 1110 is specifically:
  • Use DMRS-based single antenna port 7 or 8 transmission, or use DMRS-based P antenna port random beamforming to transmit, P> 1; or, for transmission mode 9 and transmission mode 10, schedule multi-codewords according to usage
  • the transmission scheme corresponding to the DCI format performs maximum 8-layer spatial multiplexing transmission on some or all of the antenna ports 7 to 14 according to the number of DMRS antenna ports indicated by the scheduling signaling.
  • the transceiver 1110 when the data is transmitted on multiple subframes, when receiving data on an RE other than the CSI-RS, the transceiver 1110 is further configured to: receive data on an RE reserved for the control area; and/ Or, if there is a CRS, receiving data on an RE reserved for the CRS, wherein the RE reserved for the CRS is an RE corresponding to each antenna port where the CRS is transmitted; and/or, if there is a DMRS, The RE is reserved for the REs other than the DMRS, and the RE reserved for the DMRS is the RE corresponding to each antenna port where the DMRS is located.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1100 and various circuits of memory represented by memory 1120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1110 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1130 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1100 in performing operations.
  • resource mapping and rate matching of multiple subframes are assumed to be the same CSI-RS.
  • Resource reservation when transmitting data on a resource unit reserved for a CSI-RS, ensuring that the number of data transmission resources of each of the plurality of subframes participating in the cross-subframe channel estimation is the same;
  • the same control region resource reservation assumed the same CRS resource reservation, and the same DMRS resource reservation (if DMRS exists) are also assumed for the MBSFN subframe and the non-MBSFN subframe.
  • the number of data transmission resources of the MBSFN subframe and the non-MBSFN subframe participating in the cross-subframe channel estimation is further ensured to be the same.
  • the number of available REs in the data transmission when the resource mapping is performed may be avoided due to different CSI-RSs, control area sizes, and CRS conditions included in different downlink subframes.
  • the target of data channel coding and rate matching The problem that the number of code bits is different can ensure the same size of the data mapping resources in each subframe, thereby supporting coherent combining when multi-subframe channel estimation is employed.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

公开了一种数据传输方法及设备,包括:在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输信道状态信息参考信号的资源单元,在预留给信道状态信息参考信号的以外的资源单元上传输数据。在接收时,在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输信道状态信息参考信号的资源单元,在预留给信道状态信息参考信号的以外的资源单元上接收数据。采用本发明,能够保证每个子帧中的数据映射资源大小相同,从而可以支持采用多子帧信道估计时的相干合并。

Description

一种数据传输方法及设备
本申请要求在2016年4月23日提交中国专利局、申请号为201510198181.8、发明名称为“一种数据传输方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种数据传输方法及设备。
背景技术
随着物联网的兴起,在长期演进(Long Term Evolution,LTE)系统中支持机器类通信(Machine Type Communication,MTC)越来越受到重视。在3GPP Release 13立项了针对MTC的物理层增强项目。一台MTC设备(MTC终端)可能具有多种机器与机器(Machine to Machine,M2M)通信特性之中的部分特性,如低移动性、传输数据量小、对通信时延不敏感、要求极低功耗等特征。
现有技术的不足在于:在现有网络中,在有些场景下工作的终端,比如工作于地下室、商场或者建筑角落的终端,由于无线信号被严重遮挡,信号受到很大的衰减,上述终端无法与网络进行通信。
发明内容
本发明提供了一种数据传输方法及装置,用以在通过重复传输方式增强覆盖增益时,减少重复次数。
本发明实施例中提供了一种数据传输方法,包括:
在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输信道状态信息参考信号CSI-RS的资源单元RE,在预留给CSI-RS以外的RE上传输数据。
较佳地,确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧 中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
较佳地,所述多个子帧中包含多播广播单频网络MBSFN子帧和/或非MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
较佳地,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,进一步包括:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的小区专属参考信号CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
和/或,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
较佳地,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案,具体包括:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
较佳地,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
较佳地,预定的所述传输方案,具体为:
使用基于专用解调参考信号DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的下行控制信息DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
较佳地,在预留给CSI-RS的以外的RE上传输数据,进一步包括:在预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
本发明实施例中提供了一种数据传输方法,包括:
在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE,在预留给CSI-RS以外的RE上接收数据。
较佳地,确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
较佳地,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
较佳地,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,进一步包括:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
和/或,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
较佳地,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案,具体包括:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
较佳地,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
较佳地,预定的所述传输方案,具体为:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的 DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
较佳地,在预留给CSI-RS以外的RE上接收数据,进一步包括:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
本发明实施例中提供了一种数据传输设备,包括:
确定模块,用于在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
传输模块,用于在预留给CSI-RS以外的RE上传输数据。
较佳地,确定模块进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
较佳地,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
较佳地,确定模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
和/或,传输模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
较佳地,传输模块进一步用于在MBSFN子帧和非MBSFN子帧中,传输数据时使用 相同的传输方案时:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
较佳地,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
较佳地,传输模块进一步用于在按预定的所述传输方案进行传输时:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
较佳地,传输模块进一步用于:在预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
本发明实施例中提供了一种数据传输设备,包括:
确定模块,用于在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
接收模块,用于在预留给CSI-RS以外的RE上接收数据。
较佳地,确定模块进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
较佳地,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
较佳地,确定模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧, 或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
和/或,接收模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
较佳地,接收模块进一步用于在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案时:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
较佳地,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
较佳地,接收模块进一步用于按预定的所述传输方案进行接收时:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
较佳地,接收模块进一步用于:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
本发明实施例提供了一种数据传输设备,包括:
处理器,用于读取存储器中的程序,执行下列过程:
在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
收发机,用于在处理器的控制下发送数据,执行下列过程:
在预留给CSI-RS以外的RE上传输数据。
较佳的,所述处理器进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
较佳的,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
较佳的,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,所述收发机进一步用于:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留小区专属参考信号CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
和/或,所述收发机在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
较佳的,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案时,所述收发机具体用于:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
较佳的,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
较佳的,收发机使用的预定的传输方案,具体为:
使用基于专用解调参考信号DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数, 在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
较佳的,在多个子帧上传输该数据时,在预留给CSI-RS以外的RE上传输数据时,收发机进一步用于:在预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
本发明实施例提供了一种数据传输设备,包括:
处理器,用于读取存储器中的程序,执行下列过程:
在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
收发机,用于在处理器的控制下发送数据,执行下列过程:
在预留给CSI-RS以外的RE上接收数据。
较佳的,处理器进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
较佳的,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
较佳的,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,所述收发机进一步用于:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
和/或,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
较佳的,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案时, 所述收发机具体用于:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
较佳的,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
较佳的,收发机使用的预定的传输方案,具体为:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
较佳的,在多个子帧上传输该数据时,在预留给CSI-RS以外的RE上接收数据时,收发机进一步用于:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
本发明有益效果如下:
在本发明实施例提供的技术方案中,在采用重复传输方式获得一定程度的覆盖增益时,由于多个子帧在传输时的资源映射和速率匹配是假设了相同的CSI-RS资源预留,在预留给CSI-RS以外的资源单元上传输数据时,保证参与跨子帧信道估计的多个子帧中的每个子帧的数据传输资源个数是相同的;此外,当存在MBSFN子帧和非MBSFN子帧时,对MBSFN子帧和非MBSFN子帧也假设相同的控制区域资源预留、假设相同的CRS资源预留以及相同的DMRS资源预留(如果存在DMRS),即数据传输在预留给上述资源以外的资源单元上传输时,进一步保证参与跨子帧信道估计的MBSFN子帧和非MBSFN子帧的数据传输资源个数是相同的。这样,在采用跨子帧信道估计减少重复传输次数时,可以避免因不同下行子帧中包含的CSI-RS、控制区域大小、CRS情况不同,导致数据传输在进行资源映射时的可用RE数不同,造成数据信道编码和速率匹配的目标编码比特数不同的问题,能够保证每个子帧中的数据映射资源大小相同,从而可以支持采用多子帧信道估计时的相干合并。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例中数据传输方法实施流程示意图;
图2为本发明实施例中方式一的PDSCH资源分配示意图;
图3为本发明实施例中方式一的一个PRB内PDSCH可用RE示意图;
图4为本发明实施例中方式二的PDSCH资源分配示意图;
图5为本发明实施例中方式二的包含CSI-RS的子帧组中每个子帧的可用RE示意图;
图6为本发明实施例中方式二的不包含CSI-RS的子帧组中每个子帧的可用RE示意图;
图7为本发明实施例中数据传输方法的接收实施流程示意图;
图8为本发明实施例中数据传输设备结构示意图;
图9为本发明实施例中数据传输设备接收部分结构示意图;
图10为本发明实施例中基站结构示意图;
图11为本发明实施例中UE结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖 珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
下面结合附图对本发明的具体实施方式进行说明。
发明人在发明过程中注意到,在现有网络中,在有些场景下工作的终端由于无线信号被严重遮挡,信号受到很大的衰减,使得终端无法与网络进行通信,如果针对这些场景下的终端使用进行网络的深度覆盖,则会大大增加网络的建网成本,且效益并不一定显著。
要解决该问题,就需要对现有覆盖进行一定程度的增强。而实现覆盖增强,一种较为可行的方案是,对现有信道采用重复传输或类似技术,可以通过对现有物理信道进行几十次至几百次重复传输获得一定程度的覆盖增益。
在采用重复传输时,为了减少重复传输的次数,需要用到跨子帧信道估计技术,而由于信道状态信息参考信号(channel state information reference signal,CSI-RS)的原因,使得现有技术中并不能很好的采用该技术,下面首先对CSI-RS进行说明。
LTE系统中,CSI-RS在1,2,4,或8个天线端口上发送,分别对应天线端口p=15,p=15,16,p=15,...,18和p=15,...,22。CSI-RS仅在Δf=15kHz配置下定义。
一个给定的小区内可以配置多个CSI-RS:
终端假设0个或1个非零功率CSI-RS;终端假设0个或多个零功率CSI-RS;当高层信令ZeroPowerCSI-RS(零功率CSI-RS,简称ZP CSI-RS)中16比特中某些位置设置为1,终端假设对应的4端口CSI-RS位置为零功率,除非这些资源元素与高层信令配置的非零功率的CSI-RS(简称NZP XSI-RS)重叠。其中,比特位与4端口CSI-RS配置编号一一对应,左边第一个比特对应CSI-RS的最低索引号。
CSI-RS仅发生在:下行时隙,常规循环前缀(Cyclic Prefix,CP)和扩展CP分别满足表15.5-1和15.5-2所示的条件;并且在根据CSI-RS的子帧配置周期TCSI-RS和子帧偏移ΔCSI-RS确定的下行子帧中传输,如表15.5-3中列举。即包含CSI-RS的子帧将满足:
Figure PCTCN2016079753-appb-000001
非零功率CSI-RS和零功率CSI-RS可以分别配置表15.5-3中的配置索引参数ICSI-RS
终端在下述情况下假设CSI-RS不发送:类型2子帧结构的特殊子帧,CSI-RS与同步信号,物理广播信道(Physical broadcast channel,PBCH),和系统信息块1 (SystemInformationBlockType1,SIB-1)发生冲突的子帧;配置了寻呼(paging)信息的子帧。
表15.5-1:Mapping from CSI reference signal configuration to(k',l')for normal cyclic prefix(常规CP下,CSI-RS配置索引对应的CSI-RS在不同天线端口下的资源映射位置(k',l'))。
Figure PCTCN2016079753-appb-000002
Figure PCTCN2016079753-appb-000003
表15.5-2:Mapping from CSI reference signal configuration to(k',l')for extended cyclic prefix(扩展CP下,CSI-RS配置索引对应的CSI-RS在不同天线端口下的资源映射位置(k',l'))。
Figure PCTCN2016079753-appb-000004
Figure PCTCN2016079753-appb-000005
表15.5-3:CSI reference signal subframe configuration(CSI-RS子帧配置)
Figure PCTCN2016079753-appb-000006
下面再对多播广播单频网络(Multicast Broadcast Single Frequency Network,MBSFN)子帧进行说明。
在LTE系统中,定义了MBSFN子帧;在一个无线帧中,对于除了子帧0和子帧5之外的其他子帧,原则上都可以被配置为MBSFN子帧。MBSFN子帧被划分两个区域,MBSFN区域和非MBSFN区域。在MBSFN区域,不存在小区专属参考信号,或公共参考信号(Cell-specific Reference Signal,CRS),在非MBSFN区域存在CRS。物理多播信道 (Physical Multicast Channel,PMCH)只在MBSFN子帧的MBSFN区域采用扩展CP传输,即第一个时隙中满足正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)符号编号为l≥lPMCHStart的符号开始传输,其中,lPMCHStart为高层信令配置的MBSFN子帧中的非MBSFN区域的长度。在MBSFN子帧中的非MBSFN区域,即为控制区域,可以传输PDCCH(Physical Downlink Control Channel,物理下行控制信道),使用与子帧0一致的CP类型传输,用于调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。MBSFN子帧中的非MBSFN区域长度可配置,可以为0、1、2,对于仅传输PMCH的MBSFN子帧,可以配置为0,对于支持PDSCH传输的MBSFN子帧可配置为1或2,视系统CRS的端口数而定,当CRS配置为4天线端口时,配置为2,即预留2个OFDM符号用于传输PDCCH。对于非MBSFN子帧,控制区域的大小可以为1、2、3,如表6.7-1所示。
Table 6.7-1:Number of OFDM symbols used for PDCCH(PDCCH所占用的OFDM符号数(即控制区域大小))。
Figure PCTCN2016079753-appb-000007
PDSCH可以在除了如下情况MBSFN子帧以外的MBSFN子帧中传输:1)高层通知需要接收PMCH的MBSFN子帧时;2)被配置用来传输定位参考信号(Positioning reference signals,PRS)且PRS仅被配置在MBSFN子帧中传输且子帧0使用常规CP时。其中PDSCH 可以传输的MBSFN子帧在MBSFN子帧中传输的PDSCH目前仅支持使用基于专用解调参考信号(Dedicate DeModulation Reference Signal,DMRS)传输的传输模式9和模式10,如下表所示。
Figure PCTCN2016079753-appb-000008
发明人发现,如果需要通过重复传输获得一定程度的覆盖增益,那么为了尽可能减少 重复次数,跨子帧信道估计是一种有效的手段。所谓跨子帧信道估计,是指利用多个子帧内的参考信号进行联合信道估计,一种典型的处理方式是将多个子帧信道估计的结果进行加权平均。为了对抗发送端和接收端可能存在的频率偏差,相应的,多个子帧的数据部分可以进行相干合并后再解调。相干合并的前提是在用来合并的多个子帧中的发送信号是相同的。
但是,由于现有技术中CSI-RS按照配置的周期在特定的资源单元(Resource Element,RE)资源传输,不同下行子帧中包含的CSI-RS情况不同,导致数据传输在进行资源映射时的可用RE数不同,造成数据信道编码和速率匹配的目标编码比特数不同,数据在多子帧重复传输时不能进行相干合并。另外,MBSFN子帧和非MBSFN子帧之间存在的诸如是否存在CRS、控制区域大小、是否存在DMRS、传输方案不同等差别,也会导致数据传输在进行资源映射时的可用RE数不同。基于此,本发明实施例中提供了一种数据重复传输方案,用以保证每个子帧中的数据映射资源大小相同,从而得以支持采用多子帧信道估计时的相干合并。下面对本方案的实施进行说明。
图1为数据传输方法实施流程示意图,如图所示,可以包括如下步骤:
步骤101、在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
步骤102、在预留给CSI-RS以外的RE上传输数据。
为了便于表述及理解,下面也将多个子帧称为子帧集合。
实施中,CSI-RS包括零功率CSI-RS和/或非零功率CSI-RS。
实施中,进一步还需要在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE;即除了预留给CSI-RS的RE不能用来传输数据以外,,预留给控制区域的RE也不能用来传输数据,如果存在CRS,则预留给CRS的RE也不能用来传输数据,如果存在DMRS,则预留给DMRS的RE也不能用来传输数据;即。
实施中,该数据可以在接收端采用多子帧信道估计时的进行多子帧间的数据相干合并。
实施中,该数据可以基于CRS或者基于DMRS解调,但在采用多子帧信道估计的一个子帧组内的每个子帧中,基于同一种参考信号解调。
实施中,发送端先确定某个物理信道时域重复传输的子帧集合,然后在该子帧集合中的每个子帧中,数据资源映射不使用任何CSI-RS配置可能占用的RE;或者,在该子帧集合中的每X子帧中,对于所述X个子帧中的每个子帧,数据资源映射不使用该X个子帧 中的CSI-RS配置可能占用的RE。也即,数据资源映射时按照系统中的最大CSI-RS配置资源预留CSI-RS资源,或以X子帧为一组,在组内每个子帧中按照该组内子帧所配置的最大CSI-RS资源预留CSI-RS资源,以保证参与多子帧信道估计的同一组子帧中的每个子帧中的数据资源数相同。
具体实施中,可以有以下两种方式:
方式一、在多个子帧中的每个子帧中,预留给CSI-RS的资源单元都是按照系统中的最大CSI-RS配置资源预留的用于传输CSI-RS的资源单元。
方式二、在多个子帧中预留给CSI-RS的资源单元,是将多个子帧中以X个子帧为一组时,将每个子帧中的X个子帧中的配置用传输CSI-RS的资源单元作为该子帧组中每个子帧的预留给CSI-RS的资源单元,其中,X为自然数。
实施中,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
具体的,由多个子帧组成的子帧集合中可以仅包含非MBSFN子帧,也可以仅包含MBSFN子帧,也可以同时包含MBSFN子帧和非MBSFN子帧;
相应的,当所述子帧集合中以每X个子帧划分为一组时,每组子帧中,可以仅包含非MBSFN子帧,也可以仅包含MBSFN子帧,也可以同时包含MBSFN子帧和非MBSFN子帧;
实施中,在多个子帧组成的子帧集合中包含非MBSFN子帧和MBSFN子帧,或,当所述子帧集合中以每X个子帧划分为一组时,每组子帧中的X个子帧中包含非MBSFN子帧和MBSFN子帧时:
还需要统一MBSFN子帧和非MBSFN子帧中的可用于数据传输的资源,即需要统一MBSFN子帧中对除了CSI-RS以外的CRS、DMRS、控制区域等资源的预留;此外还需要统一MBSFN子帧和非MBSFN子帧所使用的数据传输方案。
具体的,对于方式一,当子帧集合中同时包含MBSFN子帧和非MBSFN子帧时,或者,对于方式二,在所述子帧集合中的每X个子帧中,当该X个子帧中同时包含MBSFN子帧和非MBSFN子帧时,可以进一步包括:
1)在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS资源映射方式预留CRS资源,数据在MBSFN子帧中进行资源映射时不使用这些预留的CRS资源;
和/或,2)在每个子帧中,数据资源映射时,假设该子帧中的控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,即不映射到所述最大值指示前几个OFDM符号上;
和/或,3)数据传输在MBSFN子帧和非MBSFN子帧中使用相同的传输方案;例如基于相同的参考信号进行解调,传输端口数相同,使用相同的预编码方式(例如都为单端 口传输,或者都为发送分集传输,或者都为随机波束赋形(RBF)传输,或者都为相同端口数和层数的空间复用传输,使用的天线端口相同)。
实施中,为是达到对于数据传输在MBSFN子帧和非MBSFN子帧中使用相同的传输方案,具体可以定义:
数据传输都基于CRS或者都基于DMRS解调。
实施中,为是达到对于数据传输在MBSFN子帧和非MBSFN子帧中使用相同的传输方案,还可以约定,在数据传输时,在MBSFN子帧和非MBSFN子帧中都按照所述子帧集合中的某个特定子帧中使用的传输方案进行传输:
a)总是按照第一个子帧中的传输方案进行传输;例如,所述子帧集合中的第一个子帧中被调度使用传输模式9,且调度信令使用下行控制信令格式(Downlink Control Information format,DCI format)1A,且该子帧为非MBSFN子帧,则,在所述子帧集合中的所有子帧中,都按照传输模式9 DCI format 1A调度在非MBSFN子帧中的传输方式进行传输,即基于CRS,如果PBCH的天线端口数为1,则使用单天线端口传输,否则使用发送分集传输;又例如所述子帧集合中的第一个子帧中被调度使用传输模式9,且调度信令使用DCI format 1A,且该子帧为MBSFN子帧,则,在所述子帧集合中的所有子帧中,都按照传输模式9 DCI format 1A调度在MBSFN子帧中的传输方式进行传输,即基于DMRS,在天线端口7使用单天线端口传输;又例如,所述子帧集合中的第一个子帧中被调度使用传输模式9,且调度信令使用DCI format 2C,则在所述子帧集合中的所有子帧中,都按照传输模式9 DCI format 2C调度信令中通知的天线端口数进行传输,即基于DMRS,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输;
或者,b)总是按照MBSFN子帧中的传输方案进行传输;例如基于DMRS的单天线端口7传输。
实施中,为是达到对于数据传输在MBSFN子帧和非MBSFN子帧中使用相同的传输方案,还可以约定在MBSFN子帧和非MBSFN子帧中都按照某种预定的传输方案进行传输;例如,预定数据重复传输总是使用基于DMRS的单天线端口7或8传输,或者总是使用基于DMRS的P天线端口随机波束赋形方式传输;或者对于传输模式9总是按照使用DCI format 2C调度的方式进行传输,对于传输模式10总是按照使用DCI format 2D调度的方式进行传输,即根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
下面以实例来对上述两种方式的实施进行说明。
以承载下行共享信道(Down-link Shared Channel,DL-SCH)传输块(Transport Block,TB)的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)为例。在PDSCH上的N=100个子帧中重复传输数据,假设,CSI-RS配置为1端口配置0(即表15.5-1中 的CSI reference signal configuration为0,传输端口为CSI-RS端口15),CSI-RS的子帧配置周期TCSI-RS=10ms和子帧偏移ΔCSI-RS=4(即表15.5-3中的CSI-RS-SubframeConfig ICSI-RS=9),则有如下实施方式。
方式一
本实施例用以说明在多个子帧中预留给CSI-RS的资源单元,是多个子帧中的每个子帧中可能配置传输CSI-RS的资源都预留的实施方式。
实施例中,图2为方式一的PDSCH重复传输的资源分配示意图,图3为方式一的一个PRB内PDSCH可用RE示意图,下面结合图2、3进行说明。
在N=100个子帧中的每个子帧中,对于控制区域的RE、承载CRS的RE、承载DMRS的RE(如果存在,即PDSCH基于DMRS解调)以及所有可能承载CSI-RS的RE均不用于PDSCH传输。
进一步地,若CRS端口数为1,则CRS端口0所对应的RE不使用,若CRS端口数为2,则CRS端口0和1所对应的RE不使用;若CRS端口数为4,则CRS端口0~3所对应的RE不使用。
进一步的,若存在DMRS且DMRS端口数为1或2,则DMRS端口7/8所对应的RE不使用,若存在DMRS且DMRS端口数大于2,则DMRS端口7~10所对应的RE不使用(其中DMRS端口11~14的资源同端口7~10)。进一步地,控制区域的大小可以为0~4个符号;该方式可以支持X为任一值的多子帧信道估计。
具体以频分双工(Frequency Division Duplex,FDD)为例,假设从无线帧#M时隙#8(即子帧#4)开始的连续100个子帧的资源用于相同的DL-SCH TB的多次传输,如图2所示,其在一个物理资源块(Physical Resource Block,PRB)内的可用RE如图3所示,对系统中可能被配置为CSI-RS的资源都做预留,其中PDSCH传输最大可以占用6个PRB传输。需要说明的是,图3中给出了4个端口的CRS,4或8端口DMRS,其中端口11~14的映射资源同端口7~10,以3个符号控制区域为例,这些参数都可以根据实际情况发生变化;
进一步,当100个子帧中存在MBSFN子帧时,例如,仅每个无线帧中的子帧0和子帧5为非MBSFN子帧,其他子帧都为MBSFN子帧时,且假设MBSFN子帧的控制区域配置为2个符号,非MBSFN子帧的控制区域被配置为3,则在MBSFN子帧和非MBSFN子帧中都按照控制区域为3个OFDM符号预留资源,即每个子帧中数据都不映射到前3个OFDM符号上,例如对于MBSFN子帧的子帧#5,其实际配置的控制区域大小仅为2个OFDM符号,但为了与MBSFN一致,需要空出前3个OFDM符号都不传输数据;在MBSFN子帧中的MBSFN区域中按照非MBSFN子帧中的CRS资源映射方式预留CRS资源,即子帧#5以外的其他子帧都按照子帧#5中存在的CRS同样预留出CRS的RE位置,不进行 数据映射,则所有子帧中的数据传输可用RE数都如图3所述;使用的传输方案在每个子帧中一致,具体可采用前述方式确定。
数据在每个重复传输的子帧中,按照上述方式确定出的可用RE数进行信道编码和速率匹配。
方式二:
本实施例用以说明在多个子帧中预留给CSI-RS的资源单元,是多个子帧中以X个子帧为一组时,对每X个子帧中的每个子帧按照该X子帧中所实际配置的CSI-RS子帧中的CSI-RS资源进行预留的实施方式。
实施例中,图4为方式二的PDSCH资源分配示意图,图5为方式二的包含CSI-RS的子帧组中每个子帧的可用RE示意图,图6为方式二的不包含CSI-RS的子帧组中每个子帧的可用RE示意图,下面结合图4、5、6进行说明。
在N=100个子帧中,以X子帧为一组,在X=4时,的每4个子帧中,对于控制区域的RE、承载CRS的RE、承载DMRS的RE(如果存在,即PDSCH基于DMRS解调)以及该X=4个子帧中配置的承载CSI-RS的RE均不用于PDSCH传输。
进一步地,若CRS端口数为1,则CRS端口0所对应的RE不使用,若CRS端口数为2,则CRS端口0和1所对应的RE不使用;若CRS端口数为4,则CRS端口0~3所对应的RE不使用。
进一步的,若存在DMRS且DMRS端口数为1或2,则DMRS端口7/8所对应的RE不使用,若存在DMRS且DMRS端口数大于2,则DMRS端口7~10所对应的RE不使用。
需要说明的是,实施例中,图4中给出了4个端口的CRS,4或8端口DMRS,其中端口11~14的映射资源同端口7~10,以2个符号控制区域为例,但这些参数都可以根据实际情况发生变化。
具体以FDD为例,假设从无线帧#M时隙#8(即子帧#4)开始的连续100个子帧的资源用于相同的DL-SCH TB的多次传输,且每4个子帧一组进行多子帧信道估计,如图4所示的不同线型为多子帧信道估计分组,每4个子帧中的可用RE如图5、6所示,仅对该4个子帧中被配置为CSI-RS的资源做预留,即根据CSI-RS配置,CSI-RS仅在每个无线帧中的子帧4存在传输,且为单端口15传输,则第一个子帧组包含无线帧#M中的子帧#4到子帧#7,其中子帧#4中包含CSI-RS,其他子帧中无CSI-RS,为了统一这4个子帧中的PDSCH可用RE数,对这个4个子帧都按照图5进行资源映射,即不存在CSI-RS传输的子帧#5、6、7也需要按照子帧#4中的CSI-RS配置对CSI-RS预留资源;第二个子帧组包含无线帧#M中的子帧#8、9以及无线帧#M+1中的子帧#0、1,这4个子帧中都不存在CSI-RS配置,不需要传输CSI-RS,则对这4个子帧都按照图6进行资源映射,即不预留CSI-RS资源;以此类推。
进一步,当X=4个子帧中存在MBSFN子帧时,例如,仅每个无线帧中的子帧0和子帧5为非MBSFN子帧,其他子帧都为MBSFN子帧时,且假设MBSFN子帧的控制区域配置为2个符号,非MBSFN子帧的控制区域被配置为1,则在MBSFN子帧和非MBSFN子帧中都按照控制区域为2个OFDM符号预留资源,即对于第一个子帧组,每个子帧中数据都不映射到前2个OFDM符号上,例如对于非MBSFN子帧的子帧#4、#6、#7,其实际配置的控制区域大小仅为1个OFDM符号,但为了与MBSFN一致,需要空出前2个OFDM符号都不传输数据;在MBSFN子帧中的MBSFN区域中按照非MBSFN子帧中的CRS资源映射方式预留CRS资源,即子帧#4、#6、#7都要按照子帧#5中存在的CRS同样预留出CRS的RE位置,不进行数据映射,则第一个子帧组中的4个子帧中的数据传输可用RE数都如图5所示;使用的传输方案在每个子帧中一致,具体可采用前述方式确定。对于第二个子帧组,同样按照上述方式确定控制区域大小和CRS资源,可用RE数如图6所示。使用的传输方案在每个子帧中一致,具体可采用前述方式确定。
数据在每个重复传输的子帧中,按照上述方式确定出的可用RE数进行信道编码和速率匹配时。
相应的,针对网络侧的传输方案,本发明实施例中还提供了一种数据传输方法的接收方案。下面进行说明。
图7为数据传输方法的接收实施流程示意图,如图所示,可以包括如下步骤:
步骤701、在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
步骤702、在预留给CSI-RS以外的RE上接收数据。
实施中,确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
实施中,多个子帧中包含非MBSFN子帧和/或MBSFN子帧;或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
实施中,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,可以进一步包括:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS  RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
和/或,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
实施中,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案,具体包括:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
实施中,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
实施中,预定的传输方案,具体为:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
实施中,在预留给CSI-RS以外的RE上接收数据,进一步包括:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
基于同一发明构思,本发明实施例中还提供了一种数据传输设备,由于该设备解决问题的原理与一种数据传输方法相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
图8为数据传输设备结构示意图,如图所示,设备中可以包括:
确定模块801,用于在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的资源单元RE;
传输模块802,用于在预留给CSI-RS以外的RE上传输数据。
实施中,确定模块进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE 为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS的子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
实施中,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
实施中,确定模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
和/或,传输块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
实施中,传输模块进一步用于在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案时:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
实施中,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
实施中,传输模块进一步用于在按预定的传输方案时:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
实施中,传输模块进一步用于:在预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
图9为数据传输设备接收部分结构示意图,如图所示,设备中可以包括:
确定模块901,用于在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的资源单元RE;
接收模块902,用于在预留给CSI-RS以外的RE上接收数据。
实施中,确定模块进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
实施中,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
实施中,确定模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
和/或,接收模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
实施中,接收模块进一步用于在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案时:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
实施中,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
实施中,接收模块进一步用于按预定的传输方案:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
实施中,接收模块进一步用于:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本发明时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
在实施本发明实施例提供的技术方案时,可以按如下方式实施。
图10为基站结构示意图,如图所示,基站中包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:
在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于CSI-RS的RE;
收发机1010,用于在处理器1000的控制下发送数据,执行下列过程:
在预留给CSI-RS以外的RE上传输数据。
实施中,处理器1000进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
实施中,所述多个子帧中包含MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
实施中,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,收发机1010进一步用于:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留小区专属参考信号CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
和/或,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
实施中,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案时,收发机1010具体用于:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
实施中,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
实施中,收发机1010使用的预定的传输方案,具体为:
使用基于专用解调参考信号DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
实施中,在多个子帧上传输该数据时,在预留给CSI-RS以外的RE上传输数据时,收发机1010进一步用于:在预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机 1010可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
图11为UE结构示意图,如图所示,用户设备包括:
处理器1100,用于读取存储器1120中的程序,执行下列过程:
在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
收发机1110,用于在处理器1100的控制下发送数据,执行下列过程:
在预留给CSI-RS以外的RE上接收数据。
实施中,处理器1100进一步用于:
确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
实施中,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
实施中,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,收发机1110进一步用于:
在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
和/或,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
实施中,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案时,收发机1110具体用于:
在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
实施中,所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
或者,所述第一子帧为MBSFN子帧;
或者,所述第一子帧为非MBSFN子帧。
实施中,收发机1110使用的预定的传输方案,具体为:
使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据调度信令指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
实施中,在多个子帧上传输该数据时,在预留给CSI-RS以外的RE上接收数据时,收发机1110进一步用于:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
综上所述,在本发明实施例提供的技术方案中,在采用重复传输方式获得一定程度的覆盖增益时,由于多个子帧在传输时的资源映射和速率匹配是假设了相同的CSI-RS资源预留,在预留给CSI-RS以外的资源单元上传输数据时,保证参与跨子帧信道估计的多个子帧中的每个子帧的数据传输资源个数是相同的;此外,当存在MBSFN子帧和非MBSFN子帧时,对MBSFN子帧和非MBSFN子帧也假设相同的控制区域资源预留、假设相同的CRS资源预留以及相同的DMRS资源预留(如果存在DMRS),即数据传输在预留给上述资源以外的资源单元上传输时,进一步保证参与跨子帧信道估计的MBSFN子帧和非MBSFN子帧的数据传输资源个数是相同的。这样,在采用跨子帧信道估计减少重复传输次数时,可以避免因不同下行子帧中包含的CSI-RS、控制区域大小、CRS情况不同,导致数据传输在进行资源映射时的可用RE数不同,造成数据信道编码和速率匹配的目标编 码比特数不同的问题,能够保证每个子帧中的数据映射资源大小相同,从而可以支持采用多子帧信道估计时的相干合并。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (32)

  1. 一种数据传输方法,其特征在于,包括:
    在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输信道状态信息参考信号CSI-RS的资源单元RE,在预留给CSI-RS以外的RE上传输数据。
  2. 根据权利要求1所述的方法,其特征在于,具体包括:
    确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
    或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个子帧中包含多播广播单频网络MBSFN子帧和/或非MBSFN子帧;
    或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
  4. 根据权利要求3所述的方法,其特征在于,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,进一步包括:
    在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留CRS RE;
    和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
    和/或,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
  5. 根据权利要求4所述的方法,其特征在于,在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案,具体包括:
    在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
    在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
  6. 根据权利要求5所述的方法,其特征在于:
    所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
    或者,所述第一子帧为MBSFN子帧;
    或者,所述第一子帧为非MBSFN子帧。
  7. 根据权利要求5所述的方法,其特征在于,预定的所述传输方案,具体为:
    使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的下行控制信息DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
  8. 根据权利要求1至7任一所述的方法,其特征在于,在预留给CSI-RS以外的RE上传输数据,进一步包括:在预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
  9. 一种数据传输方法,其特征在于,包括:
    在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE,在预留给CSI-RS以外的RE上接收数据。
  10. 根据权利要求9所述的方法,其特征在于,具体包括:
    确定所述多个子帧中的所有可能配置CSI-RS的子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
    或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
  11. 根据权利要求9或10所述的方法,其特征在于,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
    或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
  12. 根据权利要求11所述的方法,其特征在于,在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时,进一步包括:
    在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
    和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小 和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
    和/或,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
  13. 根据权利要求12所述的方法,其特征在于,在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案,具体包括:
    在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
    在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
  14. 根据权利要求13所述的方法,其特征在于:
    所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
    或者,所述第一子帧为MBSFN子帧;
    或者,所述第一子帧为非MBSFN子帧。
  15. 根据权利要求13所述的方法,其特征在于,预定的所述传输方案,具体为:
    使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
  16. 根据权利要求9至15任一所述的方法,其特征在于,在预留给CSI-RS以外的RE上接收数据,进一步包括:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
  17. 一种数据传输设备,其特征在于,包括:
    确定模块,用于在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
    传输模块,用于在预留给CSI-RS以外的RE上传输数据。
  18. 根据权利要求17所述的设备,其特征在于,确定模块进一步用于:
    确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE;
    或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为 自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留的用于传输CSI-RS的RE。
  19. 根据权利要求17或18所述的设备,其特征在于,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
    或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
  20. 根据权利要求19所述的设备,其特征在于,确定模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
    在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行速率匹配和物理资源映射时,去除所述预留CRS RE;
    和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行速率匹配和物理资源映射时,去除所述最大值对应的控制区域的RE;
    和/或,传输模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
    在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案。
  21. 根据权利要求20所述的设备,其特征在于,传输模块进一步用于在MBSFN子帧和非MBSFN子帧中,传输数据时使用相同的传输方案时:
    在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行传输;或者,
    在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行传输。
  22. 根据权利要求21所述的设备,其特征在于:
    所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
    或者,所述第一子帧为MBSFN子帧;
    或者,所述第一子帧为非MBSFN子帧。
  23. 根据权利要求21所述的设备,其特征在于,传输模块进一步用于在按预定的所述传输方案进行传输时:
    使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
  24. 根据权利要求17至23任一所述的设备,其特征在于,传输模块进一步用于:在 预留给控制区域以外的RE上传输数据;和/或,如果存在CRS,在预留给CRS以外的RE上传输数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上传输数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
  25. 一种数据传输设备,其特征在于,包括:
    确定模块,用于在多个子帧上重复传输同一数据时,至少确定在所述多个子帧中预留的用于传输CSI-RS的RE;
    接收模块,用于在预留给CSI-RS以外的RE上接收数据。
  26. 根据权利要求25所述的设备,其特征在于,确定模块进一步用于:
    确定所述多个子帧中的所有可能配置的CSI-RS子帧中所有可能被CSI-RS占用的RE为在所述多个子帧中预留的用于传输CSI-RS的RE,在所述多个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE;
    或,在所述多个子帧中以X个子帧为一组,确定每X个子帧中的配置的CSI-RS子帧中被CSI-RS占用的RE为在所述X个子帧中预留的用于传输CSI-RS的RE,其中,X为自然数,在所述X个子帧中的每个子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留的用于传输CSI-RS的RE。
  27. 根据权利要求25或26所述的设备,其特征在于,所述多个子帧中包含非MBSFN子帧和/或MBSFN子帧;
    或,每X个子帧中包含非MBSFN子帧和/或MBSFN子帧。
  28. 根据权利要求27所述的设备,其特征在于,确定模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
    在MBSFN子帧中的MBSFN区域按照非MBSFN子帧中的CRS所占用的RE预留CRS RE,在MBSFN子帧中,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述预留CRS RE;
    和/或,在每个子帧中,假设控制区域大小为系统配置的MBSFN子帧的控制区域大小和非MBSFN子帧的控制区域大小的最大值,对物理下行信道进行解物理资源映射和解速率匹配时,去除所述最大值对应的控制区域的RE;
    和/或,接收模块进一步用于在所述多个子帧中包含非MBSFN子帧和MBSFN子帧,或,每X个子帧中包含非MBSFN子帧和MBSFN子帧时:
    在MBSFN子帧和非MBSFN子帧中,接收数据时使用相同的传输方案。
  29. 根据权利要求28所述的设备,其特征在于,接收模块进一步用于在MBSFN子帧 和非MBSFN子帧中,接收数据时使用相同的传输方案时:
    在MBSFN子帧和非MBSFN子帧中都按照所述多个子帧中或所述X个子帧中的第一子帧中使用的传输方案进行接收;或者,
    在MBSFN子帧和非MBSFN子帧中都按照预定的传输方案进行接收。
  30. 根据权利要求29所述的设备,其特征在于:
    所述第一子帧为所述多个子帧或所述X个子帧中的第一个子帧;
    或者,所述第一子帧为MBSFN子帧;
    或者,所述第一子帧为非MBSFN子帧。
  31. 根据权利要求29所述的设备,其特征在于,接收模块进一步用于按预定的所述传输方案进行接收时:
    使用基于DMRS的单天线端口7或8传输,或者使用基于DMRS的P天线端口随机波束赋形方式传输,P>=1;或者,对于传输模式9和传输模式10,按照使用调度多码字的DCI格式所对应的传输方案,根据所述DCI格式指示的DMRS天线端口数,在天线端口7~14中的部分或者所有端口进行最大8层的空间复用传输。
  32. 根据权利要求25至31任一所述的设备,其特征在于,接收模块进一步用于:在预留给控制区域以外的RE上接收数据;和/或,如果存在CRS,在预留给CRS以外的RE上接收数据,其中,预留给CRS的RE为CRS在传输所在的每个天线端口所对应的RE;和/或,如果存在DMRS,在预留给DMRS以外的RE上接收数据,其中,预留给DMRS的RE为DMRS在传输所在的每个天线端口所对应的RE。
PCT/CN2016/079753 2015-04-23 2016-04-20 一种数据传输方法及设备 WO2016169479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510198181.8 2015-04-23
CN201510198181.8A CN106160940B (zh) 2015-04-23 2015-04-23 一种数据传输方法及设备

Publications (1)

Publication Number Publication Date
WO2016169479A1 true WO2016169479A1 (zh) 2016-10-27

Family

ID=57142854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079753 WO2016169479A1 (zh) 2015-04-23 2016-04-20 一种数据传输方法及设备

Country Status (2)

Country Link
CN (1) CN106160940B (zh)
WO (1) WO2016169479A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109218991B (zh) * 2017-06-30 2021-04-20 华为技术有限公司 信号传输方法、基站、终端及通信系统
CN110071788B (zh) * 2018-01-24 2022-03-08 维沃移动通信有限公司 信道状态信息参考信号传输方法、网络设备及终端
WO2020132873A1 (zh) * 2018-12-25 2020-07-02 北京小米移动软件有限公司 数据传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119884A (zh) * 2010-08-16 2013-05-22 高通股份有限公司 用于多载波操作的ack/nack传输
CN103503327A (zh) * 2011-04-29 2014-01-08 英特尔公司 管理与多传输点的无线通信的系统和方法
CN104168610A (zh) * 2013-05-17 2014-11-26 华为技术有限公司 一种传输下行信号的方法、装置及终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244877A1 (en) * 2009-10-08 2011-10-06 Qualcomm Incorporated Method and apparatus for using channel state information reference signal in wireless communication system
BRPI1100024A2 (pt) * 2010-02-17 2016-05-03 Zte Usa Inc métodos e sistemas para transmissão csi-rs em sistemas avançados lte
US8942176B2 (en) * 2010-06-16 2015-01-27 Panasonic Intellectual Property Corporation Of America Wireless communication device and wireless communication method
CN102340379B (zh) * 2010-07-15 2015-04-22 中国移动通信集团公司 一种csi-rs的发送方法、检测方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119884A (zh) * 2010-08-16 2013-05-22 高通股份有限公司 用于多载波操作的ack/nack传输
CN103503327A (zh) * 2011-04-29 2014-01-08 英特尔公司 管理与多传输点的无线通信的系统和方法
CN104168610A (zh) * 2013-05-17 2014-11-26 华为技术有限公司 一种传输下行信号的方法、装置及终端设备

Also Published As

Publication number Publication date
CN106160940B (zh) 2019-11-19
CN106160940A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
RU2701202C1 (ru) Конфигурация передачи нисходящего канала
WO2017183252A1 (ja) 端末装置、基地局装置、通信方法
WO2017134954A1 (ja) 端末装置、基地局装置および通信方法
JP2019097214A (ja) 通信装置、通信方法、基地局およびプログラム
JP7110092B2 (ja) システムメッセージの伝送方法及び装置
JP2022174214A (ja) マルチコードワード伝送方法及び装置
US11218279B2 (en) Method and apparatus for transmitting and receiving downlink data
WO2015158111A1 (zh) 一种下行数据速率匹配的方法和装置
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
CN105934917A (zh) 一种下行控制信道传输方法及设备
JP6439883B2 (ja) 端末装置、基地局装置および通信方法
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
CN108811074B (zh) 信息传输方法及装置
EP3573274B1 (en) Communication method and network device
WO2017130500A1 (ja) 端末装置、基地局装置および通信方法
WO2017024582A1 (zh) 上行参考信号传输方法、用户终端及基站
WO2013034042A1 (zh) 传输控制信息的方法、基站和用户设备
JP2018538729A (ja) データ伝送方法、ネットワーク装置、及び端末装置
WO2017166224A1 (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
WO2018165987A1 (zh) 上行传输方法、装置、终端设备、接入网设备及系统
JP7140129B2 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
WO2017128296A1 (zh) 一种参考信号的传输方法、装置和系统
CN111601382B (zh) 一种数据传输方法及通信装置
WO2016169479A1 (zh) 一种数据传输方法及设备
US9480059B2 (en) Method of indicating downlink control channel and related communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782626

Country of ref document: EP

Kind code of ref document: A1